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CHAPTER 1

The Hoyle-Narlikar Theory

of Gravitation

1. Introduction

2

The success of Maxwell's equations has led ©o
electrodynamics being normally foraulated in terms of fields
that have degrees of freedom independent of the particles in
them. However, Gauss suggested that an action-at-a-distance
theory in which the action travelled at a finite velocity
might be possible. ‘This idea was develovned by wWheeler and
an (152) : their theopy f p IO
eynman who derived their theory from an action-principle
that involved only direct interactions between pairs of part-
icles. & feature of this theory was that the 'pseudo'=-fields
introduced are the half-retarded plus half-advanced fields
claculated from the world-lines of the particles. However,
=N
Wneeler and leynman, and, in a different way, Hogarth (3)
were able to show that, provided certain cosmological
conditions were satisfied, these fields could combine to

; " 4 ; & ; ‘ i
zive the observed field. Hoyle and Narlikar (%) extended the
tueory to general space-times and obtained similar theories
-~ A i i 2 (.5) } ey’ 3 o 3 - 4 (6)
for their 'C'-field and for the gravitational field .

It is with these theories that this chapter is concerned.




It will be shown that in an exp:i.ndingz universe the

advanced fields are infinite,and the retarded fields finite.
ahe

Jhis is because, unlike electric charges, all wmasses have the

same 31n

2. The Boundary Condition

Hoyle and Narlikar derive their theory from the

action:

/? s 5 ‘j(;(q’b')d‘.ad'b)

Q tb
where the integration is over the world-lines of particles
Qa, B, ww In this expression q is a Green function
that satisfies the wave eguation:

G(x X'), - RAXX) = £ X)

1] /., g

where 3 is the determinant of ji} . oince the double sum
in the actionfq is symmetrical between all pairs of
particles &,b , only that part of G{&_b) that is

symmetrical between & and b will contribute to the action

i.e. the action can be written

A - 22 HC (o.b)da cl b
w%m<(0@:;cm¢>vgcua)

Thus G must Dbe

the
i
be written: = 2 q 'rz(?aév where Gﬁef

time-symmetric Green function, and can
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where m(a)(x)

consequence of
contraction of
'here are thus
and the system
iioyle and
a5 the

approximation,

they obtain the

b 2 ”
m2 (R,

Thereis an important difference, however, between
field-equations in the direct-particle interaction treory

and in the usual general theory of relativity.

zeneral theory of relativity,

are
that the action

lioyle and Narlikar obtain

Xyl OV Ry~ G R)

tenth equation. By then makin:

functions.

the retarded and advanced Green

be stationary under veariztions

the field-equation

wr

"

(b
M .y

o iﬁf{m mm"r

However, &s a

\ ¥
f(f [’I}Q)c(,a .
the particular choice of Green function, the

the field-equations is satisfied identicall:;

only 9 equations for the 10 components of Q[J

is indeterminate.
)

Narlikar therefore immoself}n,= ﬁﬂo =const.,
'smooth-fluid'

(ﬂ) (b)

Jﬁe N

wne

2
that is by putting 24
a#b

Linstein field-equations:

ngﬁ) ol aw

these

In the

any metric that satisfies




the field-equations is admissible, but in the direct-particle

interaction theory only taose solutions of the field-equation

fed

are admissible that satisfy the additional requirement:

no(z) - £m V) £(Cx o) da

13

52(6,, (x,a)da r 12(G,,, (xa)da

This requirement is highly restrictive; it will be shown
thet it is not satisfied for the cosmological solutions of
the kinstein field-equations, and it appears that it cannot
be satisfiied for any models of the univerie thot either
contain an infinite amount of matteir or undergo infinite
expansion,

The difficulty is similar to that occurring in
Newtonian thecory when it is recognized that the universe
mizht be infinite.

L

The Newtonian potential (F obeys the equation:

¢ - -rp (p70),

where f is the density.

)




In an infinite static universe > would be infinite., since
b ]

the source always has the same sign. The difficulty was resol-
ved when it was realized that the universe was expending, since
in an expanding universe the retarded solution of the ahove
equation is finite by a sort of'red-shift' effect. The
advanced solution will be infinite Ly & 'blue-shift' effect.
I'nis is unimportant in Newtonian theory, since one is free
to choose ithe solution of the equation and so mzy ignore the
infinite advanced solution and take simply the finite
retarded solution.

.pimilarLy in the direct-particle interaction thaeory the

M -field satisfies the equation:

Om + é&ﬂl: N/ UV}O)

where AJ is the density of world-lines of particles. As in

the Newtonian case, one may expect that the effect of the
expansion of the universe will be to make the retarded solution
finite and the advanced solution infinite. However, one is

now not free to cnoose the finite retarded solution, for the
equation is derived from a direct-particle interaction action-
principle symmetric between pairs of particles, and one must
choose for M. half the sum of the retarded and advanced

solutions. We would expect tuis to be infinite, and this is

Shown to be so in the next section.




5. The Cosmological wolutions

The Robertson-Walker cosmological metrics have the
o ]

" OT I \ , " ‘ 2/ I.‘? 3
" CLS’ = (‘Lt R CL')[ (L?‘ + ?"‘{(QL@ J'-fr qin y(( (// >!)

Ky *

Since tuney are conformal'!y flat, one can choose coordinates
7 o b ]

in which they become
ds? . 52 [dt?- d 102(('(,9 @ “an2dd @ )}
ﬂz7 o x® d,
ab

where 7041 is the flat-spoce metric tensor and

L s (1;()) B RE) S———

ST+ 4K ,.F) O+ K( ¢t - £}

For example, for the Linstein-de Sitter universe

kK - 0, Q(ﬁ),(%é (‘Oa;f:/_’oOl
AR ) L

L
3

C

Wirs

"oep (2= T

For the steady-state (de Sitter) universe
K -_O, R(f)= _L— (_-(,Oz;d’zoO)
€T




ro:p (”C: -Te.:)

K_
The Green function q (a) b) obeys the equation

G, b) « # RC*G,b) = §ab)

.—C‘\

I'rom t1ia it follows that J

WA iz 4 “b " ol ; -3, #
7 o (M5 )al (7 a%ﬁﬂ)ﬂ C'

= ﬂ*ﬂjq (Ca, }3)
If we let Gkéz-jldig’ then

ng%(f“’g% g) . §$Ya,b)

This is simply the flat-space Greoen function equation, and

nence q%( ‘Z‘l ’OJ Tl F) ] _Q__}(’C‘ ) [S(f )
¢+ | JL ( “Cl)f)

. 8lprto )]

The 'm - field is given by

m(4,) - 5 K/V/‘"ﬂ dx® e g

for universes without creation (e.g. the Hinstein-de Sitter

Vo= R -
= TN, n = const. Ior

universe),




' universes with creation (steady state) N; n, n:-

; s ) 3 - .
fp{l‘&')‘/\ (ua‘) = ‘j-)/ [‘(‘/L\:)] M——“—(—u) CZ Trr (,'Lf'

(T

where the integration is over the future light cone.
w#ill normally be infinite in an expanding miverse,

the minstein-de Bitter universe.

, -9 A0 |
M(,L.JJ (VDI) « (L n( fl K ‘/L\) cl Ly
T
I.||:\I

In the steady-state universe

; . - | o -—,'— 3 2
MCL" v (\?‘ ) - -TA( f - (m ( \
L. e &
i LI 2

sy conbtrast, on the other hand, we have

Miet (T') - J2 (R

Grr

where the integration is over the past light cone.

NS (rrid T




normally be finite, e.g. in the Linstein-de oitver universs

A o\ 74 z : —
m.. (T) (%. ~al -2 )2, bn T

/

O

while in the steady-state universe

(e)-/-T\ (© T\*
M Li.\' =/ n = A e N v
et (‘i‘; J @ (t,~ ¢, >°t 02

L

Thus it can be seen that the solution M = const. of the

equation

|
Clm + 6Rm = [V

is not, in & cosmological metric, the half-advsnced plus

half-retarded solution since this would be infinite. In fzct,
it is the pure retarded solution.

4. The 'C'=i'ield

Hoyle and MNarlikar derive ¢their direct-particle

interaction theory of the 'C'-field from the action

Ao 22((Glab),, da'db]

o Fb

b




where tne suffixes Q. b refer to differentiation of

A
(1 (Oq b) on the world-lines of (x, b respectively.
N

G is a Green function obeying the equation

oG (x,x) - (X X)

ve define the 'C'-field by

Clzx) ny(fx‘ Q)

and the matier-current .J by

i (3 .éj’5 C b)CLb
Then C Q; - EC(I j)jd((j); K /“6’ cﬁrx ‘t)

C1€ = o 4

de thus see that the sources of the 'C'-field are the places
where matter is created or destroyed.

is in the case of the 'm '-field, the Green function

must be time-symmetric, that is . A ; )

q«((ﬁ\’b> - C? (O\JA)'T ll([-‘(,\c)._,/(c’"f Zj




Hoyle and Narlikar claim that if the action of the

1

1g'-field is included alon : with the action of the '/M. '-field,
a4 universe will be obtained tnut approximates to the steady-
atate universe on a large scale although tiaere may be local
irrezularities. In this universe, the value of © will Dbe
finite and its gradient time-like and of unit magnitude.

Given this universe, we may check it for consistency Dy
claculating the advanced and retarded 'C'-fields and finding
if their sum is finite. e shall not do this directly but
will show that the advanced field is infinite waile tThe retar-
ded field is finite.

Consider a region in space-time bounded by & three-
dimensional space-like hypersurfacegp at the present time,
and tne past light cone ji of some point F) to the future .

of :i) o

By Gauss's theoremn
aC/-gdx"- PIGES
dn

s+P

= JJK,'K\/”\C]O(fm(If

v

i

Let the advanced field produced by sources within V/ be L .

- 3 ! !C’\ . .
Then C and ) will be zZero on éi , and hence
on




;) K D n
J \
But 3 is the rate of creation of matter= n (const.) in
' K
the steady-state universe, and hence

3&’&5‘ s e

D,

w . 3 Q. o . T - ,
58 the point M 1is taken further into the future, the volume
of the rwulunl/ tends to infinity. However, the area of the
D
hypersurface 4/ tends to a finite lim t owing to horizon

effects. ‘hereforec the gradient must be infinite.

O
<3|m

A similar calculation shows the gradient of the retarded
field to be finite. "Their sums cannot therefore ;sive the
field of unit gradient required by the Hoyle-=itarlikar Lheory.

It is worth noting that this result was obtained

without assumptions of a smooth distribution of matter or

of conformal.flatness.




5. Conclusion

~
1

It is one of the weaknesses of the Hinstein theory of
relativity that although it furnishes field equations it does
not provide boundary conditions for them. Thus it does not
ive a unique model for the universe but allows a whole series
of models. Clearly a theory thct provided boundary conditions
and taus Trestricted the possible solutions would be very
attractive. The Hoyle-Narlikar theory does Jjust thsat(the
/ A

requirement thet M = Eiy%@t T Wy is
equivalent to a boundary condition). Unfortunately, as ue
have seen above, this condition excludes those wodels that
seem o correspond to the actual universe, namely the
Robertson-wWallker models.

The calculations given above have considered the universe

as being filled witn a uniform distribution of matter Yais

is legitimate if we are able to make the 'smooth-fluid'
approximation to obtéin the Minstein equations. Alternatively
if this approximation is invalid, it cannot be said that the
theory yields the Einstein equations.
It mizht possibly be that local irrezularities could make
My finite, but this has certainly not been demonstrated

and seems unlikely in view of the fact thut, in the Hoyle-

[}

Narlikar direct-particle interaction theory of their 'C'-field,




wanich is derived from a very similar action-principle, it can

be shown without assuming a smooth distribution that the
advanced 'C' field will be infinite in an expandingzg universe
witn creation.

The reason tnat it is possible to formulate a direct-
particle interaction theory of electrodynamics that does not
encounter this difficulty of having the advanced solution
infinite is that in electrodynamics there are ecgual numbers
of sources of positive and negative sign. Thelr fields can
concel each other out and the total field can be zero apart
from local irregularities. This sugzest that & possible way
to save the Hoyle-Narlikar theory would be to allow messes of
both positive and negative sign. The action would be

fo 2 f[CED bttty

o £b

waere ?Qh,ﬁ'b are gravitational charges aralogous to
electric chares. Particles of positive q' in a positive
'm '-field and particles of negutive q_ in a nezative 'm '-

field would h&ave the normal gravitational properties, that is,

tney would have positive gravitational and inertial masses.




A particle of nezgative ? in a positive 'm '-

still follow a geodesic. Therefore it would be &t

a particle of positive Q— . 1Its own gravitatio

£ = | - S - |
field would
5

¥ Hp—— o - .
cractea

nal effect

however would be to repel all other particles. <Thus it would

have the properties of the negative mass described
that is, negative gravitational mass and negative

Mmasse.

g".
by lﬁorulj_(hj)

inertial

Bince there does not seem to be any matter having

tnese vroperties in our region of space ( where m L= const.

> Q)

there must clearly be separation on a very large scale. It

would not be possible to identify particles of nega:

with antimatter, since it is known that antimatter

tive &
b
has positive |

inertial mass. Hwever, the introduction of negative masses

would probably raise more difficulties than it wulc

i solve.
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CHAPTER 2

PERTURBATIONS

1. Introduction

Perturbations of a spatially isotropic and homogeneous expanding
universe have been investigated in a Newtonian approximation by

(1)

Bonnor and relativistically by Lifshitz(‘), Liftshitz and

(3) (L)

Khalatnikov and Irvine » Their method was to consider small
variations of the metric tensor., This has the disadvantage that the
metric tensor is not a physically significant quantity, since one
cannot directly measure it, but only its second derivatives. It is
thus not obvious what the physical interpretation of a given
perturbation of the metric is. Indeed it need have no physical
gignificance at all, but merely correspond to a coordinate trans-

formation. Instead it seems preferable to deal in terms of

peérturbations of the physically significant quantity, the curvature.

2. Notation

Space~-time is represented as a four-dimensional Riemannian space
with metric tensor 8ab of signature +2. Covariant differentiation
in this space is indicated by a semi-colon, Sguare brackets around
indices indicate antisymmetrisation and round brackets symmetrisation,

The conventions for the Riemann and Ricci tensors are:-

Vcb;tbc“] . 2 Rpo-cb \IP ~
P\mb = R@Pb{_\

Debce 18 the alternating tensor.

Units are such that k the gravitational constant and ¢, the speed of

light are one.




3, The Field Fquations

We assume the Einstein equations:
Rcﬂo = “ri ‘3QBR = = Tab

where Tab is the energy momentum tensor of matter. We will assume

that the matter consists of a perfect fluid. Then,

Tal: = "U. UQUL 4 ffl h‘ab

a

where Ua 1s the velecity of the fluid, Ua U = =1
p  is the density
h 1is the pressure
b = gt U, W is the projection operator

into the hyperplane orthogonal to Ua

hab L(L =0, |

We decbmpose the gradient of the velocity vector Ua as

Uaih = Way + G,y + % haj O -u, Y,

+

where (:{a - Um}b Ub is the acceleration,

8 = U g *° is the expansion,

Ty = WU(c;d) he ]’10};[, - % haba is the shear,

Wy = U(e,d] he I'fi is the rotation of the
flow lines Ua' We define the rotation vector (W, as

Wa = T Naobed wtu® .

We may decompose the Riemann tensor Rabcd into the Ricci tensor

Rab and the eyl tensor Cabcd:

Rabed = Cabed = Gapd Rejb = G o Ruja = R Sageqaib
Cabed = Clabld)

J

Caf-‘.loca = 0 = a[bcd] .




is that part of the curvature that is not determined locally

Oapca
the matter. It may thus be taken as representing the free gravit=-

ational field (Jordan, Ehlers and Kundt(5)). We may decompose it

into its "electric" and "magnetic! components.

E,‘L = Cuio: uPUq >
b P9

= w kb il L 3
Ha,lg - 2 Cq 9 ’?C{l"bS UP u ?

cd - fc e (e dl
C’c\b = 8 UE(\_EBJ U\J"‘}-‘SE“_E]’] 3

~27obed WP HHMEUT 2 m i Uy H, (o Uy,

!

Eav = Be Ha = Hew

Eab and Hab each have five independent components.

We regard the Bianchi identities,

Robf_c.d.;,e} = B

as field equations for the free gravitational field.

Then .
C abed?’

= w R c[b,-a]+'|g” CJc[b'RJ-q] (Kundt and Trimper,

by

kshy,




e in a form

Using the decompositions given above, we may write thes
analogous to the Maxwell equations.

de b
:-‘5' hu }J?b 2

cd c
h‘,_b Ebc)-gl}'\ + > Habwb - T?obc.d UbU e H

| e
habec;d th -~ 3 Eﬂ-b ‘-Qb o Y}obcd U‘bO‘ce E (‘_"— ()"4' h) wa ; (2)

. & d; c
J— Eab+ h(&{‘?b}cde U Hf : + Eabe - E (a w‘b)c

R i g er
E (ug_b)c - \’?oc.de y)bpqr ucub CJ"c'lIi E

o -
+2 H% Npeae USGE = - F(Meh) Cab .

. ‘ o3
L Hay - h (a Neycde U Ey “r Ha - Hc(ﬂwaf'-
= Hcfcxcrb)c -Y)cx;cle YJqur I'J"L UP qu H “r (Li-)
'1‘2Hdo.}?|~,c,r)gucd‘e = O o

where 1 indicates projection by h,, orthogonal to U_.

(c.f. Trﬁmper,(?)).

The contracted Bianchi identities give,

(Ra'b*'li'%ab]?>}b: -—Tmb;b‘—"o 5
Aov(arp)B =0, (5)
Ouﬁﬂ Wa + h;bh{xﬁo . (6)

The definitien of the Riemann tensor is,

Ua lbe] = 2 ’Rapbc L

Using the decompositions as above we may obtain what may be regarded

as "equations of motion",




zc@zﬂzdj—-§92+ W, - (pe3h) | (7)

it

0

= v ¢ P L9
i{" (_1_)05 = e % Wals Q + 2 6_0[0\ U-jb]c + l’{'{_P:(‘}] h a \‘! b ; (8)

| & J ; 0

L 0= Eap @, @ TS - §040
2 | R st ® () T s

=7 Nap (2"~ 207 + U ) + UgUb

A—Q(pﬂ)hi h1 ; (9)

2 2 — ab
where 2 6" T Wk gg““ ; 20 = Oun 0°

We also obtain what may be regarded as equations of constraint,

. c “ b ;
9)}_, hg_ = —3_: (( wbc;b"} Oib(}")) hu - K (;wﬁb+6“b)‘] 2 (10)
B < aw.it -
+ CI;E 0{;@,
H o = h (& Ob}cd& u® Lw{ + OA{ J . (12)

We consider perturbations of a universe that in the undisturbed state

in conformally flat, that is

Capea

By equations (1) - (3), this implies,

UQB: (J)Clb_:o

b
hab)_,l;'b = 02 @}-}th




1f we assume an equation of state of the form, ho= TL(P) j

_‘E}ﬂen by (6)9 (10)9 ‘f't;bh‘ba - 0 = (J(O_ 2

This implies that the universe is spatially homogeneous and isotropic
since there is no direction defined in the 3%-space orthogonal to Ua'

Ir this universe we consider small perturbations of the motion
of the fluid and of the Weyl tensor. We neglect products of small
guantities and perform derivatives with respect to the undisturbed
metric. Since all the quantities we are interested in with the
exception of the scalars, u,fx, 6 have unperturbed value zero, we
avoid perturbations that merely represent coordinate transformation
and have no physical significance.

To the first order the equations (1) - (4) and (7) - (9) are

i %habﬂ;b ) (13) i

|

Ho'® = (v h) wa (14 |
E L+ E 0 + hanede W H o c5(uip) our (15)
Hoo * Hao 8 = b @iy cae W E;d"e =0 (16)
O =-30"+ &~ Fpe3h) (17)
G = ~% Wb O+ U hi he ; (18)

. B o i T
Oqab = Eab - ‘%‘ 6'0[)8 =Tk he.lg Uec = + u(P;C{) ha hb ° ('19)




from these we see that perturbations of rotation or of Eab or Hab do

not produce perturbations of the expansion or the density. Nor do

perturbations of Eab and Hab produce rotational perturhations.

i, The Undisturbed Metric

Since in the unperturbed state the rotation and acceleration
are zZero, Ua must be hypersurface orthogonal.

a

Ue* T a ;

where T measuresthe proper time along the world lines. As the
gurfaces T = constant are homogeneous and isotropic they must be
3mgurfaces of constant curvature. Therefore the metric can be

written, X
ds®* = -dt*+ O dfz

where £} = C}(?) .
d-yz is the line element of a space of

zero or unit positive or negative curvature.

/e define t Dby,

gt . .l
ar :
2
then ds? = Q"“(._d.t % d'?l’?] ;
In this metric, Ug = (-0, 0,0,0) ,

.. 813_@_“__ 3

2 Ti*

(prime denotes differentiation with respect to t)




Then, by (5), (7)

p % - (/}++1) zé%

350 L - (uesh)

1f we know the relation between

and h , we may determine (1

We will consider the two extreme cases,fi = 0 (dust) and ﬁ= é?

(radiation). Any physical situation should lie between these.

By (20), P QQB Ny = const.
CL
>0 . 2 .
. el 9 (1°
5 -3 2y1ﬁ Lo
Ml Ttk

(a) For E 0,

M

(j\)_ - -21-!‘5 (c‘.osh{j.-:__—ﬁ——'{ - 1_)

(b) For E = O,

n- M

12 ?

(¢) For 8 O,

— E/

(2 = g (1 cos )

2

E represents the energy (kinetic +

If it is non-negative the universe will

wise it will eventually contract again.

const.

potential) per unit mass.

expand indefinitely, other-




By the Gauss Codazzi eguations %R ,the curvature of the
i x

ersurface T = const, is - : | 2
hyp y “[\:4(*-3—9 -I}})

= > 5 &
I = T e , M = &= ?
~ L. A
= =0 H e .
= ] [\ = £,

e

L1

E <o , S v . B —
"R = , VA E

= | ; 2 = —
‘ ‘(2 = -—--]:-:;:— S.4 ¥ 5 “{' - *—:' (L,()E--{s "’]) . i\ = < 2

5. Rotational Ferturbations

. | c d o _
G egag b b -5

§
|
|
|
i

N




For 41: ©

:——.;‘OJQ )

Thus rotation dies away as the universe expands., This is in fact a
statement of the conservation of angular momentum in an expanding

universe,

6. Perturbations of Density

For ﬁ‘: 0 we have the equations,

.}"‘L = —-/u_Q

O =-586-1Tpm
These involve no spatial derivatives. Thus the behaviour of one
region is unaffected by the behaviour of another. Perturbations
Will consist in some regions having.slightly higher or lower values
of ¥ than the average. If the universe as wh> le has a value of E

greater than zero, a small perturbation will +till have B greater
2

than gero and will continue to expand. It will not contract to




I

the

form a galaxy. universe has a

gmall perturbation can contract. Howe

contracting at a time & ¢ earlier tha

contracting, where

5T _ LE
p-
o -
7 E4
L is the time at which the whol

0O

There is only any real instability when

measure zero relative to all the poss

used as

However this cannot really be

as there might be some reason why the

For a region with energy in

Q

= 4%E 7z
! - 5
?_4 - ____,_.;._.—- ( t 2 - L_._ - .y )
17 b 20 £
- K] o -2
; = — m = - T ( | +
}A SE Q2
For L = O? % S S =
Thus the perturbation grows only as
to produce galaxies from statistical f
could occur, However, since an evolut

horizon (Rindler(a), Penrosc(ﬁ>) diffec

in the early stages. This makes it even more difficult for
statistical fluctuations to occur over a reg: n until light hed time
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ps before, a perturbation cannot contract unless it has a negative
value of B, The action of the pressure forces make it still more

gifficult for it to contract. Eliminating O,

to our avpproximation,

oL v b —
h c he Vb  is the Laplacian in the hypersurface T = constant.

B(n) of

e represent the perturbation as a sum of eigenfunctions

this operator, where, ) -
S e L = O

4

e i ”
SCr b s (w - g C )
) ( h e S) )‘; L:) e T E_‘Zn_ -~

These eigenfunctions will be hyperspherical and pseudohypersphericsl
harmonics in cases (c¢) and (a) respectively anc plane waves in case

(b). In case (¢) n will take only discrete - Jdlues but in (a) and

(b) it will take all positive values.




yhere W is the undisturbed density.

o {"‘) ol (n) . ~M) [ 4 2 _:3‘_._. ; - _
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B(n) will grow.
2 () i =
2 s C D™

These perturbations grow for as long as light has not had time to

travel a significant distance compared to the scale of the perturbation

(~ £ ), Until that time pressure forces cannot act to even out

_I_::.

perturbations.,

When o i B " g
he o > M, B B _(:_‘__4. ?B =0,
i
) .
. B acnFeEl

e obtain sound waves whose amplitude decreases with time. These
results confirm those obtained by Lifshitz and Khalatnikov(j),

Prom the forgoing we see that galaxies cannot T'orm as the result

of the growth of small perturbations. We may >xpect that other non-

gravitational force: will have an effect smaller than pressure equal




to one third of the density and so will not cause relative perturbations

to grow faster than T . To account for galaxies in an evolutionary
miverse we must assume there were finite, non-statistical, initial

jphomogeneities.

7, The Steady-state Universe
To obtain the stcady-state universe we must add extra terms to

(10)

the energy-momentum tensor., Hoyle and Narlikar use,

; . d
Tuo = pt Uolle + frhay = CaCht & g0 CaC?

—
3]
@

o

where, C.u e O
. 5 A,

Fo = (peh) va

: b
Since Tan' =0

}Al ¥ Q.u h) 8 & &* Gy C;J‘/b = 0O

b iy e % B B s,

There is a difficulty here, if we require that the "C" field




ghould not produce acceleration or, in other words, that the matter

created should have the same velocity as the matter already in

existence ,We must ‘thén have

hoe Cy =0

However since C is a scalar, this implies that the rotation of the

medium is zero., On the other hand if (23) does not hold, the eguations

In order to

(ﬁ1)).

are indeterminate (c.f. Raychaudhuri and Banner jee
have a determinate set of eguations we will adopt (23) but drop the
requirement that C_, 1s the gradient of a scalar. The condition (23)
is not very satisfactory but it is difficult to think of one more
satisfactory, Hoyle and Narlikar(12) seck to avoid this difficulty

by taking a perticle rather than a fluid picture. However this has a
serious drawback since it leads to infinite fields (Hawking(13)).
From (17), h

Co e 17 G

v Col™ = - (aR) - h)6 ,

= - € } o > (:_ ; r )Q
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Thus, small perturbations of density die away.

(ir £) = 0 [1 -(ue 1))

Moreover equation (18)

still holds, and therefore rotational perturbations also die away.

fquation (19) now becomes
jife)

£ B = A3E-,

These results confirm those obtained by Hoyle and Narlikar

6= -% @1--%5(/J.+3-f1) + 1

(14)

gee therefore that galaxies cannot be formed in the steady-state

universe by the growth of small perturbations.,

However this does

exclude the possibility that there might by a self-perpetuating

I

system of Tinite perturbations which could produce g

15)

(Sciama , Roxburgh and Saffman

(16))n

nl e e i VAT s e, o
8, Gravitational Waves

We now congider perturbations of the

arise from rotational or density perturbat

o b
e

E ok - !1: C.l'_\z = 0

Multiplying (15) by W V. , and (16) by

Weyl

tensor that do not

ions, that is,




we obtain, after a lot of reduction,

3 = 3 d ¢ - ,
Ealg N ( I:Col}‘i‘_ h g h 9 hi )_;i. hk hi%i + "%" k- il b‘

+ Eab(e + %Bt*“'[:?(/i“'if"ﬂ t U;b[“'g"f?(,u+jv..) 5 (e 7”} = 0 (2l)

s 5 e N
in empty space with a non-expanding congruence U® this reduces to

the usual form of the linearised theory,

2,

O B =0

The second term in (24) is the Laplacian in the hypersurface

“C = constant, acting on E We will write E_ as a sum of

ab *
eigensfunctions of' this operator.

- X ) )
l: ob = Z A ¢ \/a- b
- h)
where \/cﬁf =0 P
c o d 2 ki ¢ 9 _ - " (n)
(\ngeh{;hs hi))Lh hnlib ® ?51 Vab 3
b a
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Similal"ly'g 6_0\‘0 = Z J_) \/(I

Yn o T
then by (19) D ). AV -2D 2=

gubstituting in (2U4)

3 ek " 2 I 19
A 6(22 A e R [n ) 3% r(w%s: -*'*’ZU“”OQQ?

¢ D [ Qlpeh) 1+ Q20 )

e may differentiate again and substitute for D',
For n>>1

I
and (1% 2

AL_H) K | int
80 the gravitational field Eab decreases as (1 =1 and the "“energy"
2 ab ab m =6
'!g(}bab E™" + H, H ) as ( >

We might expect this as the

Bianchi identities may be written, to the linear approximation,

(2 980]3&— (2 ket )

Therefore if the

abc :

interaction with the matter could be neglected
; -

C T Y ] i [=% ¥

abed would be proportional to ) and Eab " Hab t0 Q

In the steady-state universe when K

and ©6 have reached their
equilibrium values, Rau = K«'i b h}{‘j“!{

Jabe = Rcpash] = € Fela R;sb)

o &




thus the interaction of the "C" field with gravitational radiation is

equal and opposite to that of the matter. There is then no net

-1
& and qu decrease as SU .
(=

The "energy" %(Eubﬁab 4 Habﬁab)

Al

interaction, and E
depends on seeond derivatives
of the metrie, It is therefore proportional to the freguensy squared
times the energy as measured by the energy momentum pseudo-tensor, in
a local co-moving Cartesian coordinate system which depends only on
first derivatives. Since the frequency will he inversely proportional
t0 W , the energy measured by the pseudo-tensor will be proportional

to (1 L as f'or other rest mass zero fields,

9. Absorption of Gravitational Waves
As we have seen, gravitational waves are not absorbed by a
perfect fluid. Suppose however there is a small amount of viscosity.
We may represent this by the addition of a term N O sk to the
energy-momentum tensor, where A is the coefficient of viscosity

(17))°

(Ehlers,

Since Tak’ =o

we have

|

}l:-[/uw'h)e-*Z)\O’z' = O (2

n
7
—

o

. ) Y
{}J.*‘fftj ey + g hZa + 2\ O_c_b/) he = o

(26)




pguations (15) (16) become

2 - ol 5
Eqb ¥ Eob 8 + h{v(o“ 1?‘)76::1& u(’ H'{ ¢ T .—%: ;l‘(i f’L) o_-olb
~3 A ( Eab -5 0,0 9) ; (27,
b { die
'kiab* Hob@ *Lq(ﬂvb)ﬂielicfzg = - LA F{ub_ (28)

The extra terms on the right of equations (27), (28) are similar to
conduction terms in Maxwell's equations and will cause the wave to

o, o
decrease by a factor e zt . Neglecting expansion for the moment,

guppose we have a wave of the form,

= _ o LV7T
Calo"' E]ae .

o o

- g : . . 2 "

This will be absorbed in a characteristic time ,/ﬁ independent of }
frequency. By (25) the rate of gain of rest mass energy of the

: o ; o5 T .2
matter will be 220 ° which by (19) will be 2X E vV ~. Thus the

2 -2

available energy in the wave is 4% o7 VT, mhis confirms that the
density of available energy of gravitational radiation will decrease
g (2 “L{I 3 P R i - i 1 £ T CEe N o
as in an expanding universe. TIFrom this we see that
gravitational radiation behaves in much the same way asg other
radiation fields. In the early stages of an evolutionary universe
When the temperature was very high we might expect an equilibrium to

be set up between black-hody electromagnetic : diation and black-body

gravitational radition. Since they both have itwo polarisations their




energy densities should be equal. As the universe expanded they woul:

poth cool adiabatically at the same rate. As we know the temperature

of black-body extragalactic eleciromagnetic radiation is less than

5OK , the temrperature of the black-body gravitational radiation musi
pe also less than this which woul.l be absolutely undetectable. Now

o

the energy ¢f gravitational radirtion does not contribute to the
ordinary energy momentum tensor T n Nevertheless it will have an

active gravitational effect. By the expansion equation,

Eﬂ

i

-8 -2t (mash)

FPor incoherent gravitationsl radiation at frequency v

9
; &
we a E 9t
2 -2
But the energy density of the radiation is a4 ig WV

B = ~ _;; 6‘3" ",;:/UG ~ 'é(}" ,.3}1')

whei = LLG

is the gravitational ‘''energy" density. Thus gravitational
radiation has an active attractive gravitational effect. It is
interesting that this seems to be Jjust half that of electromagnetic
radiation,

18)

))
and Hoyle and Narlikar(jt‘,

It has been suggested by ﬂogarth(
that there may be a connection between the absorption of radiation
and the Arrow of Time. Thus in universes like the steady-state, in

Which all electromggnetic radiation emitted is :ventually absorbed by

Other matter, the Absorber theory would predic retarded solutions of




the Maxwell equations while in evolutionary universes in which

electromagnetic radiation is not completely absorbed it would predict
gdvanced solutions. Similarly, if one accepted this theory, one would
expect retarded solutions of the Einstein equations if and only if all
gravitational radiation emitted is eventually absorbed by other matter,
clearly this is so for the steady-state universe since A will be
constant, In evolutionary universes A will be a function of time.
We will obtain complete absorption if fhd?‘ diverges., Now fr2 a gas,
)

§

1 : : " -2
A< T2 where T is the temperature. For a monatomic gas, T {1 <,
therefore the integral will diverge (just). However the expression
used for viscosity assumed that the mean free path of the atoms was
small compared to the scale of the disturbance. S8Since the mean frece

- s y oy =1 L
path o< u x{27° and the wavelength K @) , the mean free path will
eventually be greater than the wavelength and so the effective viscosity

- 2
1 q . a - - : . g_? “—I r 3 ~+ ~+ o
Will decrease more rapidly than « Thus there will not be complcte
abgorption and the theory would not predict retarded solutions,
(1 A
However this is slightly academic since gravitational radiation hag nos

yet been detected, let alone investigated to see whether it corresponds

to a retarded or advanced solution,
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Gravitational Radiation In An

Expanding Universe

Fad

Gravitational radiavion in empty asymptotically flet

space has been examined by means of asymptotic exvansions
by & aumber of authors.(q—q) They find that the different
components of the outroing radiation ficld "peel off", thet
is, they go as different powers of the affine radial distance.
If one wishes to investigate how this behaviour is modified
by the presence of matter, one is faced with a difficuluy
that does not @rise in the case oi, say, electromagnetic
radiation in matter. TFor this one can consider the radiation
travelling through an infinite uniform medium that is static
apart from the disturbance created by the radiation. In the
case of gravitational radistion this is not possible. lLor,
if the medium were initizlly static, its own self gravitation
would cause it to contract in on itself and it would cease %o
be static. Hence one is forced to investigate gravitationagl
radiation in matter that is either contracting or expanding.
48 in vhapter 2, we identify the Weyl or conformal
Gensor j[th with the fres gravitational field and the

fa

53 ; 0 . , - 2 y
Ricecl-tensor “ah with the contribution of the matter to the

curvature. Instead of considerings gravitational radiation in
s B




npbotically flat space, that is, space that approaches

u = -

flat space at large radial distances, we consider it in

asymptotically conformally flat space. asS it is only
conformally flat, the Ricci-teusor and the density of mutte

need not be Zero.

n

I'o avoid essentially non-gravitational phenomena suc
ac sound waves, we will consicer gravitationalradiation
travelling throuzh dust. It was shown in Chapter 2 that a

Lo ] =

conformally flat universe filled with dust must have one of

the metrics:
; 2 2 ¢ 3% R
(8 ele? . .f'l((tt’)‘““({,f/{" " 0 (L0 sn"8d( )]

% “'Ql(dtq ep (f"’(w rsmn 2B @ //

sAC (1.2)

128 AL - |

[
|

S - f)(COSA~5 *1) (1.3)

Pype(a) represents a universe in which the matter
expands from the initial singularity with insufficient energy

to reach infinity and so falls back again to another

singularity. It is therefore unsuitable for a dipcussion of

(\é 2 ﬂ h (,LC . - ?L()Z__ [<ATAN z\_ A{') »bl{- + CinL {,




gravitational radiation by & method of &symptotic expansions

since one connot et an infinice distance from thi@ source.

Type (b) is the HYinstein-De Bitter universe in which the

matter nas Jjust sufficient energy to reach infinity. It 1s
thus a special case. D. Norman (%) has investigated the
"peeling off" behaviour in this case using Penrose's conformal
technique (6). He was however forced to m&ke certain assumpt-
ions about the movement of the matter which will be shown to
be false. [Moreover, he was misled by the special nature of
the Kinstein-De 3itter universe in which affine and luminositly
distances differ. Another reason for not considering radiation
in the Hinstein-De Sitter universe is that it is unstable.

'he passage of a gravitational wave will cause it to contract
azain eventually and develop a singularity.

o

ie will therefore consider radiation in a universc of

type (¢) which corresponds to the general case where the
mabtter is expanding with more thin enough energy to avoid

contracting again.

2. 'The Newman-Penrose Formalism

we employ the notation of Newman and Penrose.(p) A

Mt =
tetrad of null vectors,tﬁ‘rl,lnl. ﬁlfd

is introduced




gravitational radiation by a method of &asymptotic expansions

since onc cannot et an infinite distance from thi® source.
Type (b) is the Hinstein-ve Bitter universe in which vhe
matter has just sufficient energy to reach infinity. It is

(5 .
thus a speclal case. D. Norman (%) has investigated ©

=

]
"peeling off" behaviour in this case using Penrose's conformal
(6)

techrique He was however forced to m&ke certain assumpt-

ions about the movement of the matter which will be shown to
be false. lioreover, he was misled by the special nzture of
the linstein-De Sitler universe in which affine and luminosity
distances differ. Another reason for not considering; radiction
in the Ginstein-le Sitter universe is that it is unstable.
'he passage of a gravitational wave will cause it to contract
azaln eventually and develop a singsularity.

#e will therefore consider radiation in a universe of
type (¢) which corresponds to the general case where the

matter 1s expanding with more thin enough enerzy to avoid

contracting again.

2. ''he Newman-Penrose Formalism

Wwe employ the notation of Newman and Penrose.(p) A

ﬁ.,fh —
tetrad of null vectors,éﬁ‘rl ,ﬂ)/ frlft is introduced




we label lhese vectors with a tetrad index

2L (LM afme M) il

O

tetrad indices are raised ana lowered with the metric

ab - _ oy
17 = 7 - o1 O O
(& E { O O o
g © € =y
o © =l @
L |
LV A b v
we have cf{ - Y ZfJ 2
J 7 ' b

b Z/.Mn,vf /Z,P(_'f i ﬁl)lu {-ﬁv’-#

Ricci rotation coefficients are defined by:

be :
Y = Zpw 2l 2

(2.1)

1a d m (2 1)
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| =
N
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In fact it is more convenlent to

complex combinations of rotation coefficients de

follows:
K

[

&

5. >

o

{L,L

i’

-

Jork ‘in Lterms of twelve
defined &s
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B Coordinates

Like newman and Penrose, we introduce a null coordinate
. ]
L,L(: x")
n MV | (3.1)
(/t A v O .,.___ﬂ
- I
we take / = UL f . Thus L g4 will be

= /1_/\ N }

geodesic and irrotational. This implies

K -0
[ T, 3.2)

& =

} n
_ o BN T I Sm——
we bake /lﬁ* % ﬁip\ to be parallelly transportad
/ )

along [ ™ . This gives ;
e 3.3)
[ = E/ = O <;nmj

As a second coordinate we take an affine parameter r(_,x‘y
long the geodesics L}A
2 \
v é.ﬁ = | L@..E/
A
2 ‘!

e and XY are two coordinates that label the geodecic

in the surface W = const. o O A
2 e \ ( )
fr v )&'f* Lj - x';b&l R ¥
Thus & s e P T
) = 6 1 0 O
X L

|

In these coordinates




The field Scustions

wWwe may calculate the Ricci and eyl tensor components from

ti?e felabaioni sl od ebe t\( ¢ bl abe / cd ’(/; \ < )

&h e W - S (o &7 54 \ . / _. L
Vg vd L i \/ B/ a \ ( { b | ,L_ :.)
{“a = b a/ + \ ~ 8 /

{
<. o

p 3 N | -0 | p . ‘ "
N : . C . O !\ - '7 I = _;\_ 4‘7 r / R 9 )
b fde e T4 VT

Using the combinations of rotation coefficients &already
defined and with K=1=€¢€ =0 we nave

Pp = p+ 9 + Oy Sl
pa. - :)(JG * __“\F‘O i 1 (‘3 r{J ;
Dt = 1p + Te P Qo (3. 12) i
D - xp o+ K& r C]J,D (2. 13)
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where
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the rotation coefficients in terms of the metric,

pxpressing

we have: )
C - 2 A
(848

E) g L = r>‘§ w G“S
Dod = O T & D - (a +B> @ ﬂ()
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is in Chapter 2 we use the Bianchi identities as

field cquations for the Weyl tensor. In tae Newmon-Penrose

formalism they may be writven:

(I am indebted to R. G. McLenashan for these)
R R R I S
| RIS R
AY, - S¥ T D9, 89, = (b~ Ve = 2(22+ )y
+ 364, - \q,, - Wi+ 26 P, >p P (352)
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4, The Undisturbed Metric

The undisturbed metric may be written
9 % 2 12 [0 B *esinTA b2
As? = SL Ce(,t -c-l,fﬂ—s.-n/» F(rLS’ e Sin¢ )
2 = A 6(398/1 & '-}>

put Lo = b__p

. ‘ 2/ AT
ds2 . j)_?' (“C{/wz r Jdud t - S:/L)\ C(—'-—u)(((,((;“m &;'L{]I})z
_ (4 1)

then
(. 1is a null coordinate
T'o calculate [, the affine parameter, we note thet C
is an affine parameter for the metbtric within the square

brackets. Therefore ¥ jﬂ-ﬁ— 10{/ tm"" E (LH @3 <P) (9. :4_)

will be an «ffine parameter for(u‘l)

j? is constant aleng the null geodesic, Normally it
would be taken so that V= O when o . However,
in our case it will be more convenient to make it zero and

e f;ﬂl‘ib/ (4 3)

define I as
This means that surfaces of constant are surfaces of
constant £ . This may seem ruther odd, but it should

be pointed out that the choice of Eg will not affect the

asympbtotic dependence of quantities. That is, if

1( - O(v"“')
.{ =orf) CT'IHr%) ¥ f:: f-fgg

J

Then




It proves easier to perform tie calculations with Tthis

choice of §F but all results could be transformed back

to a more normal coordinate systemn.

Jﬁm1(t § I ﬁlfésmﬁﬂT”QSMJL&T'%tj @.w)

The matter in the universs is assumed to be dust so its

energy tensor may be written

o~
for the undisturbed case, from Chapter 2

= 6A
5 1 : of
/ - _SZ.C;OM I/ \/6L; | -

O~ On

Now

where g'l_ 9
Therefore if we try to expand ﬁ; as a series din powzsr of £

the result will be very messy and will involve terms of

_m
the form log S *

Sﬂ.

*It should be pointed out that the expansions used will
only be assumed to be valid asymptotically. They will not
be assumed to converge at finite distances nor will the
quantities concerned be assumed analytic. (see A. Erdelyi:

Asymptotic fixpansions - Dover




This <(oes not invalidate it as an asymptotic expansion but

it makes it tedious to handle. For convenience therefore,

we will perform the expansions in terms of ‘jg,(r) which
will be defined in general as the same function of as
it is in the undisturbed case. ''hat is ’
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For the third and fourth coordinates it is more convenient to
use stereographic coordinates than spherical polars.,
since the matter is dust its energy-momentum tensor

and hence the Ricci-tensor have only four independent

» T =] tal 1 o +1 o < :
components. We will take these as /\;(Pdo ,CPO¢ .
(zince qhh is complex it represents two components)

In terms of these the other components of the Ricci-tensor

may be expressed as: (b
O\
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(%5. 10-50) to find the

unperturbed universe: o)
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are zero, we may integrate equations

values of the spin coefficients for the
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5. Boundary Conditions

We wish to consider radiation in a universe that

asymptotically approaches the uniisturbed universe given

above. QbOD and. /\ will then have the values
ziven above plus terms of smaller order. To determine this
order ond the order of thI and yé, , Lhere-are tvo
ways in which we may procecsd. e may take the smallest orders
that will permit radiation, thuot is V@ " [D(Q'ﬂi) .
Larger order terms than these in Gip ’ /\ anda.

d) turn out to have their (L derivatives
dependggt only on themselves and not on the [ K coefficient
of uﬁ , the radiation field. They are thus disturbunces

not produced by the radiation field and will not be considered.

Alternatively we may proceed by a method of successive




approximations. Ue take the undisturbed values of the snin

coefficients and use them to solve the Bianchi Identities os

field equations for the conformal tensor using the flat svace
1 boundary coridition that 'HU'; CJ(P#i) . Then substituting

these ‘Vfﬂ in equations (3.i0 - 27 ) calculate the disturb-

ances inauced in the spin coefficients and subsitituting these
i back in the Biancni Identities, calculate the disturbances in
the qu . iurther iteration does not affect the orders
of the disturbances.

Both these methods indicate that the boundary conditions
Ao A v o) (5.1)
oL
. -9 -
% = 38 + O(7) (+.2)
C)éjlﬂ}) (see next section) G£;§>
’\{B & (DC;YI_}) (i;}

We also assume”"uniform smoothness", that is:
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should be:
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1v will be shown that if these boundary conditions

hold on one hypersurface (i = const.) they will hold on
succeeding hypersurfaces and that these conditions are the

most severe to permit radiation.

b Integration
As Newman and Penrose, we begin by integrating the
equations (3. 10 &11)
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if - is non-singular (The case F singular corresponds to

asymptotically

considered here).
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plane or cylindrical surfaces and will not be
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Repcat the process with ¢
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Unlike lNewman and Unti, we cannot m:ke P zero by
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the transformation ¥ = 7r ~ QR , Since this would
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Continuing the above process we de ive:
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To determine the asjyuptotic behaviour o"lr. d!gb,g
3 ;

and 2 we use the lemma proved by Newman «nd FPenrose:
The n x n matrixPand the column vector b are
given functions of x such that:
B.: Cj(k'_g> ) b = (J(X 41) ﬂé;i})

The n x matrix £ is independent of x and has no

eigzenvelue with positive real part. Any eigenvalue with

vanishing real pert is regular. Then all solutions of:

Ly 2 (AaB) g b a,

are bounde:r as X 'fD (15) 5 :1 is a column
vector.

ror reaso. 8 to be explained below, we will assume for

the moment that S
o = 27, ,
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Using this we integrate equatlion Cg-/Q) by the same
method as above., We obtain o
- i - : (-L‘_,) ( ary ~,>
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e may make a null rotation of the tetrad on each null
geodesic Lffx = L}A
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¢~ is constant alone the geodesic since the tetrad is

parallelly transported.

s - s .L wn @ o 4O s
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Jnder a null rotation
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Phus until we heve specified the null rotation we cannot

impose & boundery condition on qkn; more severe than
N S . ; ; -
(p : L(fl ) . We will specify the null rotation by
Qi
“Eo' O and in that tetrad system will impose the
£ s DI Vs 45w .
boundary condition that ¢L < and is uniformly smooth.
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using this in ecguation (3. S .')
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uniformly smooth.
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we may use the lemma again with j
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We may use this to reduce the leading term of SLJ(QJ';QQ) to

a conformally flat metric (c.f. Newman and Unti), that is:
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7. Non-redial Teuatvions

~

By comparing coefficients of the various powers of Lfl
in the non-radial equations of 'éig , relations between
the integration constants of the radial equations may be
obtained:
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By making & spatial rotation of the tetrad
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As mentioned before, this asymptotic behaviour 1
of the zero of r
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Thus the derivative of 4“ , tepends only on itself
i

)

)

and not on the radiastion field. 1t therefore reur

5ents a

4]

Gype of disturbance unconnected with radiation. If it is
zero on one hypersurface, it will remain 2zero. In this case

it is possible to continue the ex»vansions of all guantities

in negzative powers of\Jz_ without any log terms appesring.

3. The Asymptotic Group

‘'he metric has the form:
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The asymptotic group fs the group of coordinate traensformations
thaet leave the form of the metric and of the boundary conditions

unchanged. It can be derived most simply by considering the

corresvnonding infinitesimal transformations:
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the asymptotic group is isomorphic to the conformal group in

two dimensions. qachscy> has shown tnat this is isomorphic
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curvature which is the group of the unperturbed Robertson-
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only the 10 dimensional inhomogeneous Lorentz group, the group
of motions of flat space, but also infinite dimensional

"supertrauslations". It has been suggested that these

supertranslations mignt have some physical significance in

clementary particle physics. The above result would secem




to indicate that this is probuably not the case since our
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Sinzulari

If the Linstein equations without cosmological constant
are satisfied, a Robertson-Walker model can 'bounce' or avoid
a singularity only if the pressure is less than minus one-
third the density. This is clearly not & property vossessed
by normal matter though it might be possessed by a field of
negative energy density like the 'C' field. However there 1is
a grave quantum-mechanical difficulty associated with The
existence of negative enerzy density, for there would be
nothin; to prevent the creation, in a given volume of space-
time, of an infinite number of quantva of the negative energy
fiecld snd a corresponding infinity of particles of positive
energy. I1f we therefore exclude such fields, all Robertson-

I : 7

big-bang' type, that is They

Walker models must be of the
have a singularity in the past and maybe one in the futur
as well. It has been sugzested 1 that the occurrence of
these singularities is a consequence of the high degree of
symnetry of the Robertson-Walker models which restricts the
expansion and contraction so that they are purely radial and

that more realistic models with fewer or no exact symmetries

would not have a singularity. This chapter will be devoted




to an examination of this question and 1t will be shown Thil

provided certain physically reasonable conditions hold, any

model must have a singularity, thst is, 1t cannot ve a

S A . ) e . 5
geodesically ccmplete C', piecewlise C~ manifold.

2. The Mandamental Souatvion
cA
The expansion EJ S Vf e of a time-like gzeodesic
F

G
congruence with unit tangent vector l/ obeys equation (7)

of Chapter 2: _ , 92 0 47« > :
ve. —18%- 96t Dt Ry VEVE

, O

A point CL will be said to be a singular point on a geodesic
E/ of a time-like geodesic congrueance ifffor the congruence
is infinite on X’ at CL . A point ﬁ» will be said to be
conjuzate to a point ? along a geodesic 5 if it is a
singular point on K of the congruence of all time-like
zeodesics tinrough f) . A point %_ will be said to conjugate
3
to a space-like hypersurface. if it is a singular point
of the congruence of geodesic normals to ff . An alternative
description of conjugate points may be given as follows:

K

let [y be a vector connecting points corresponding distences

alony two neighbouring geodesics in a congruence with unid




, p e O, . . ,
tangent vector V’. Then /1 is 'dragged' along by the

congruence, that is

£ K

=0
R ?__'L.{.q = ‘/a,i K* (2

Vs .

: PR - K pi el 4
Ds*

o

Ve ke 6,

Introducing an orthonormal tetrad €  parallelly transported

A m
Q. o a
odong V with € = V we have

m N

: a
ine n no oo b V/C b/

OL IZ:; - ""3: /( ((_[)

i solution of (9) will be called a Jacobl field. There are

. . ; G X — a _ gﬂ o
clearly eight independent solutions. ©Since V and SV a1

solutions, the other six indevendent solutions of @ﬂ mey be

: ; o : - ; :
taiken orthozonal to V . TnencL 1s congugate To ? along

a geodesic a/ if, and only if, there is a Jacobi field alo

whlch vanishes at f> and ﬂ, . This may be shown as follow

the Jacobi fields which vanish &t iﬁ nay be regarded as

£

1§

= \l

[

adie i

generatving neipghbouring geodesics in the irrotational congruence

of all time-like geodesics through_ID . Therefore the




They may be written

K < A Cif_

n

mn e lp

mn o V @

CL“"“S, m.F N

t)

J&QPE} § F} (S\ will be positive definite. There will De
nin

: e 3 - TR (N
and g 1f, and only 1f,¢CL

But A(S) > ELKP(S‘; Vn (/‘IJSI‘)
P iy

sza_df e (dek (AN
det (A1) ds e

1 © r
and CL g ]C) ) = 9

wvan )
e mi n

cleo™

a Jacobl field vanishing at

1Therefore

‘‘herefore é%L (4?‘) is finite
3

Hence 6l is infinite where and only where ce
Thus the two definitions of conjuzate points are equivalent.

This also shows that singular points of congruences are

points where neighbouring geodesics intersect.




lI'or null geodesic congruences with parallelly transporbted
ne

a
vector C_ ve may define the convergence p as
\
in Cheapter ). ﬂh%s obeys = { Q L(Aﬁ.b (g\
ﬁ&L & 62?6361-dr,b /
O

e define a singular point of a null geodesic congruence as

one where f is infinite.

d'he condition that the pressure is greater than minus

one-third toe density may be staled more generally as

condition (a).

= = 5 L
(a; € 2 O, € 23 Ly for any
-'\CL

Tl W

11

A
observer with 4-velocity 2 , where G

is the energy density in the rest-frame of the observer and

i — & ; '
| = | & 13 the

=-Mass Cellsliy.

p]

w

c

atisfied by a perfect Ifluid with

in

Condition (a) will De
4 .84 7h

density M ?© and pressure P b E‘}Jv . It implies %bl/ \V?O for
any time-like or null vector Ve, ‘herefore by equations
(1) and (5) any time~like or null irrotational geodesic
congruence must have a singular point on each geodesic within
a finite affine distance. Obviously if the flow-lines form
sn irrotational geodesic conzgruence, there will be a shysical
singularity ot the singular points of tThe congruence wiaere

the density and hence the curvature are infinite. This will

be the case 1f the universe is filled with non-rotating dust . .

However, if the flow-lines are not geodesic (ie. non-vanisaing ‘

pressure gradient) or are rotating, equation (1) cannot be {
applied directly.




g

5., opatially iHomozencous Anisotropic Universes

i
1 o

The Robertson-ialker models are spatially nouwogeneous
and isotropic, that is, they have a six paramebler gsroup of
motions transitive on a spsace-like surface. 1f we reduce the [
symmetry by considering models thet are spatially homogereous

|

but anisotropic (thatiis, they have a three parameter group
of motions transitive on a space-like hypersurfazce) then ‘
the matter flow may hsve rotation, acceleration znd shear.
Thus there would seem to be the possibility of non-singular J

| N | ‘ ?
models. L. Shepley has investigated one particular |
| . | _ . |
homogeneous model containing rotating dust and has shown that
there is always a singularity. Here a peneral result will be L
proved. i

There must be a singularity in every model which satisfies 1
condition (&) and, |
(b) there exists a q;- of motions on the space or on

universal covering space P‘Zvj which is transitive on at

¥ wvee section 5

least one space-like surface but space-time is not stationary,
(¢c) the energy-momentum tensor is that of & perfect fluid,
= -— u- S ] : e 2 o .;,“_,_\ e o o i T 10
!ab - ([L’k T P) LL& b ?86\‘&) ° LL 15 Tlhe uu,,-_,Cu L U

flow-lines and is uniquely defined as the time-like eigen-

vector of the Riccl tensor.




SdOd

e~

R, The curvature scalar must De consvant on & sSNH&C

like suriace of transitivit;ff of the group. Yherefore K.

I 1 . 2 ) . 5 . . . - G
must be in the direction of the unit time~like normal V

to ffz .

Lih % e.(ffi;o_) jz;cx
V{F"

where Q.o\, R;a = F)O

ilrected

(@)

I

@,Cf) j 1s an indicator +1 if Q.a is past
\‘;o_ f

I

-1 if R.. is future directed
uﬁlen'ngb] =0.
Thus b& is & congruence of geodesic irrotational time-like
<8
vectors. By condition (a), Q«L V=V b‘> o .

T

r‘herefore the congruence must have a sinzulor point on eacr
seodesic ( by equation 1) either in the fubture or in the »nast.
Further, by the homogeneity, the distance along eacn geodesic
f* é{l L. i} 4 o 3 } 4= 1 £ 1 :
from to the singular point must be the same for each eocesic.
hus if the surfaces of transitivity remain space-like, tney
ks b = — e L. - | - - - - o "2 P 1 r= 1
must degenerate into, at the most, a 2-surface C~ which will
be uniquely defined . Let M bve the subset of the flow-lines

2 -
of the matter which intersect Cr . Let [_ be the non-

3
eupty subset of r{ intersected by M . Since there is a

group transitive on %4 ,Z~ must be H itself. Thus all tue




.2 r
) flow-lines tlruugnff must intersect the 2-surface C-. Thus
the density will be infinite there an.: There will be a

physical singularity. Alternatively if the surfaces

- g
mua.se

L'-5

w2

transitivity do not remain space-like, there

lezast one surface which is null - call thnis

.

Q;& % O ( ijfﬁo_is zero, we can take any other scalor
nolynomial in the curvature tensor and 1ts covariant
they cannot all be zero if space-time is not stationary,.
introduce a geodesic irrotational null congruence on ﬂﬂ»

‘k N '8 - -
i tangent vector L where L Q; . ‘Then by ecuation (5),
G O-
| i/
there will be a singular point of edch nulli geodesic in o
within finite c«ffine distance eitner in the future or in t

past. he 2-surface of these sinpguler points will be unig

defined. The same argumenc used before shows thalb the dc
becomes infinite and there is a physical singularity. In

as 57 1is a surface of homozeneity, the whole of Sﬁ will ©
singulere and it is not meaningful’to call it null or to
distinguish this case from the case where The surfaces of

transitivity remain space-like.

The conditions (a), (b), (c) may be weakened in two

[+

sroup of motions throuihout

(d.)

Condition (b) tanat there is

; ; / ;
space-time may be replaced by (b") and

Ve

. e, PR
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(0 ) Themw is a space-like hypnersurface f/ in which there

o 3 ] = g & = ’ o 1 1.1 1.
are three independent vector fields X~ such that
N~

-0, ¥R 3

jﬁa Cjbc_ : A . = O on H « That 1is, there
A A

1% one homogeneous space section.

(d) 'There exist equations of state such that the Jvauchy

= M3 "
development of ff is determinate.

D

Then sug¢ceeding space-like surfaces of constant

are homozgeneous and much the same proof can be given tvhat vhere
/

are no non-singular models satisfying (a), (b), (c¢), (d4).

The only proverty of perfect fluids that has been used
in the above vroof is that they have well defined flow-lines
intersection of which implies a physical zingularity. Obviousl
however, tonls vroperty will be possessed by a much more gern

£

class of fluids. For these, we define the

"low vecvor as
time-like eigeanvector (assumed unique) of the enerzgy-momentui
tensor. ‘'nen we can replace condition (c¢) on the nature of
the matter by the much weaker condition (e).

(e) If the model is singularity-free, the flow-lines form
& smooth time-like congruence wilth no singular points with

a line tarough eachn point of space-time.

Condition (e) will be satisfkd automatically if conditions

(a) and (c) are.




This proof rests strongly on the assumption of

homogeneity which is clearly not satisfied by the physical
universe locally though it may hold on a large enough scale.
However it would seem to indicate thet large scale effects

like rotation cannot prevent the singularity.

It is of interest to examine the nature of the singulerity
in the homogeneous anisotropic models since this is more
likely to be representative of thne general case than that of
the isotropic models. It seems that in general the collapsge
will be in one (iirection,5 that is, the universe will collapse
down to a 2-surface. Near the singularity, the volume will Dbe
proportional to the time from the singularity irrespective of
the precise mnature of the matter. It also apsears that the
nature of the particle horizon is different. There will be
a particle horizon in every direction except that in which

the collapse is taking place.

4, Bincgularities in Inhomoseneous Models

lbifshitz and Khalatnikov6 claim to have proved that &
general solution of the field equations will not have a
singularity. Their method is to contract a solution witn a
singularity which they claim is representative of the

=
LV

general solution with a singularity, and then show That 1

has one fewer arbitrary function than a fully general solution.




Clearly tueir whole proof rests on whether their solution

i o~

is fully representative and of that Ghey give no proof.
Indeed it would seem that it is not representative since it
involves collapse in two directions to a 1-surface whereas
in general one would expect collapse in one direction to &
2-surface. In fact their claim has been proved false by

7/

Penrose’ for the case of a collansing star using the notion

of a 'closed trapped surface'. A similar method will Dbe

used to prove the occurrence of singularities in 'open '

universe models.

5. 'Open' and 'Closed' Models

The method used by Penrose to prove the occurrence
of a physical singularity depends on the existence of a
non-compact Cauchy surface. A Cauchy surface will Dbe tTaken
to mean a complete, connected spece=like surface that
intersects every time-like and null line once and once only.
Not all spaces possess a Cauchy surface: examples of Those
that do not include the plane-wave metrics,8 the Godel model,a
and N.U.T. Space?o However none of these have any paysical

significance. Indeed it would seem reasonable o demand of

any physically realistic model that it possess a Cauchy

surface. If the Cauchy surface is compact, the model is

commonly said to be 'closed'; if non-compact, it is said to




to be 'open'. The surfaces, t = constant, in the Robertson-

dalker solutions for normal matter are examples of Cauchy
surfaces. 1f K = =1, they have negative curvature and it is
frequently stated that they are non-compact. <Tnis is not
necessarily so: ‘there exist possible topologies for which
they are compact. However, the following statements may be
made about the topology of the surfaces t = constant.

If the curvature is negative, X = -1, the universal
covering space is non-compact and is diffeomorphic To 33.
Any other topology can be obtained by identification of
points. '©hus any other topology will not be simply connected
and, 1f compact, must have elements of infinite order in the
fundamental group. Iurther if compact, they can have no
group of n*.o‘tions./E2

If the curvature is zero, K = O, the universal covering

a 5 . , 5.2 : ; : 15 s
space 1s B2, There are eighiteen possible topolo;les. 5 Tf

-

compact they have a G5 of motions and Betti numbers, Bq = %
By i B B

If the curvature is positive, K = +1, the universal
covering space is 85. Thus all topologies are compact. The
Betti numbers are all ze:t'c:r./I2

oince a singularity in the universal covering space

implies a singularity in the space covered, Penrose's method

is applicable not only to spaces that have a non-compact vauchy




surface but also to spaces whose universal covering svace

-

has a non-compact Cauchy surface. Yhus 1t is applicable to
models which, at the present time, are homogeneous and iso-
tropic on a large scale with surfaces of aporoximate homo-

geneity which have negative or zero curvature.

6. The Closed Trapped Surfecce

Let ﬁj be & 3-ball of coordinate radius r in a 5-surface

ﬂ5 (t = const.) in a Robertson-Walker metric with X = Q or -1.

A]

Ja. 8‘ == g - ] -4 [ 1 R
Let q° be the outward directed unit normal to T, the boundary

o o S . a - L o ; p
of rj, in ﬂ5 and let V- be the past directed unit normal to
3

H”. Consider the outgoing family of null geodesics which

: 2 . - il .
intersect I~ orthogonally. at T, y Gheir convergence will
, f( . ( “eb &“ﬁb)

De: =2 -_— -+

{D P Va‘.‘u;b ¥ q'C’L:b) S)
prd

: o 3 ; s 1Y Ly X
where $* ¢ are unit space-like vectors in H” orthogonel

. a . :
to q and to each other,

s . 1 g
toerefore F 2 _Z [‘V/ - K - T i~ Kr ]
R LS |
= 0 or -1, by taking r large enough, we may

B i }L_,& 7 O and K
make*? negotive at T2. Therefore, in the language of Fenroce,

£
?“ is a closed trapped surface.

Another way of seeing vuais is to consider the diagran




in which the flow-=lines are drawn at their proper spatial

distance from andserver. They all meet in the singularity
at t = J. LT the past light cone of the observer is drawn

on tanis diagram, it initially diverges from his world-line

( f < ). It reaches a maximum proper radius ( f s
and then converges again to the singularity ( FL>CJ ). r'he
. 5

intersection of the converging light cone and the surface I
gives a closed trapped surface TE. If the red-shifv of the
cuasi-stellar %C9 is cosmological then it will be beyond @he
point P = O if we are living in a Roberitson-iialker type
universe with normeal matter. However, the assumpitions of
homogeneity and isotropy in The large seem to hold out to vae
distance of 509. Thus there 1s zood reason to believe thuat
our universe does in fact contain a closed trapped surfice.
1t should be pointed out that the possession of a closed
trapped surface is a large scale property that does not cdepend
on the exact local metric. Thus a model thet had local irrepul-
arities, rotation and shear but was similar on a large sccle
at the present time to a Robertson-Walker model would have a
closed trapped surface.

Following Penrose it will be shown that space-time has
a singularity if there is a closed trapped surface and :

(£) E Y O for any observer with velocity

(s) there is & global time orientation




(h) the universal covering space has a non-compact Cauchy

surface H”.

PROOF

Assume space-time is singularity free. Let F be
cet of points to the past of H5 that can be Jjoined by a
smooth future directed time-like line to Ta or its interior

->

T7. Let B” be the boundary of F . Local consderations show

pS

AN

- :
that B - 1”7 is null where it is non-singular and is

generated by the outgoing family of vast directed null geodesic

e 2 8 P P X o 2 i ;"2 h - 4= P | - e
segments which have future end-point on T~ and vast end-point

where or before a singular point of the null geodesic

: = ; ;
congruence. woince at T° , the convergence, f’? O  and

o, b
since &LL;L { 2 O by (f), the convergence must

O
N

become infinite within finite affine distance. ‘fhus B” - 17

Pl o b

will be compact being generated by a compact family of compact

4
segments. dence B? will be compact. Penrose's method is
e
then as follows: approximate B~ arbitrarily closely by a

smooth spsce-like surface and project 55 onto H”

by the

normals to ¥his surface. <his gives a many-one continuous

L=}

o
mapping of 35 into 33. oince B5 is compact, its image B~
A
must be compact. Let(i(Q) be the number of points of B~
| L3 -:? - 1 i - 1
maovped to a point Q of i”, QLG@) will change only at the
g2 ;

intersection of caustics of the normals with Moreover,

by continuity d’@?) can only change by an even number.




3%
3
But G&CTR) = 71 since this is the identity and d(“ . g )=

! This is a contradiction, thus the assumption that space-time

@

is non-singuléer must be false. 4An alternative proceedure

woich avoids the slightly questionable step of approximating

"
| B’ by a space-like surface is possible if we adopt condition

(e) on the nature of the matter, then B may be projected

i’ by the flow-lines. +his

5

continuously one-to-one onto

~

again Ieads to a contradiction since B” is compact and H

L
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each flow=line at most _once Dherefore—theres—ds o - nope—

x - - P £ -3 nk o [ 3 3 e h Tl & - PR x5 ’}5 2 =

CORPaetr—-if—condition () holds—everynull -gaodesic—Zener-tor
. A3
C-F )‘?\ lns

: o
- 3 T

Pl el o e
AL

=
4 Lo
ot -

cines @3 i oconnact Thus '»-i5 is a _Cavechy supface .
I T n Q2

8. wingularities in 'Closed' Universes

Phere is a singularity in every model which satisfies

(a), (g) and (i).

2

(i) ‘'here exists a compect Cauchy surface H” whose unit
normal V has positive expansion everywhere on 7.
PROOF

el

I'or the proof it is necessary to establish a couple of
lemmas. Assume that space-time is singulerity-free. The
following result is quoted without oroof, it mey meatily be
derived from lemmas proved in reference 11.

| Lf P and qﬁ are conjugate points along a geodesic )

and:- X 1s a point on ﬁ' not in Pi thenX must have a conjugote

point in Pﬁ".




An lmmediate corrollary is tnat if q is the first voint

along Y conjugave to p and y dis in pa then Yy nss no
conjugate points in pq . 4Also since thne result that x
hzs a conjugate point in pgq can only depend on the valucs
of Qv in pq, any irrotational geodesic congruence including
MmN
the geodesic Y must have a singular point on 5’ in pa.
Thus if q is a point on N5 and h/ is the geodesic normal to
M3 through ¢, then a point conjugate to q along -y’ cavnot occur
until after a point conjugate to M3o
If ﬁ3 is a complete connected space-=like surfeace which
intersects every time-like and null line from a point p, we
may define & function over MB as the square of the geodesic
distance from p which is taken as positive if the geodesic is
time-like and negative if the geodesic is space-like. e call
this the world function O with respect o p. Ior the closed
set of values & 20O , O will be a continuous ( in
general multi-valued) function over NB. A time-like geocucesic
( from p will be said to be critical if it corresponds
to a value of & for which : EM .0 (,"- 2 4% 3’)

4
’ [P

—

M .
where C are three independent vectors in N5. Clesrly
%

a critical geodesic must be orthogonal to MB. A geodesic




which is critical will be said to be maximal if it corresponds to a

local maximum of P
Lemma 1.
e X : i B .
A geodesic () cannot be maximal for a smooth M” if there is a
point X conjugate to Mj but no point conjugate to q on ¥ in qp,

3

where gq is the intersection of ,ﬁj and M7,

Let f and g be the Jacobi fields along Y which vanish at X
m m
and [ respectively. They may be written
|
n
f = A(s) £/q ,
m mn
n
g = B(s)g/q .
m mn . _
r o } I; :f'; { i’ | A
Then 4 '.':f;r'“ W 1 ) 1N must be positive for
n A .I'I. (S L n
any h since if it were negative for any h by taking a =~-b h h
mb m n

beyond q, it would be possible to have a point y on fﬁ. beyond ¢
conjugate to A before a point conjugate to P . If it were zero
would be conjugate to F . This shows that the surface at q
of constant geodesic distance from }? lies nearer to 7 in every
direction than the surface oﬁ'q_ of constant geodesic distance from
¥ does. Since X is c;njugate to M3 the surface at q of

)J

constant geodesic distance from fj lies closer 'i',o::bﬂ"—5 in some

direction than M3 does., Hence E is not maximal.




sl (A = 8B\

1’n r—— spnot—po—positive—definite <t—g.—Lhere~
LI.AL: } 4 T o+
fore there must be some direction K for which
o L ’
A n
e g ol B s oS dop
T < T% ] Y LR Y ]
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g 3 A e SR
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: If M7 is compact or if the intersection of all Time-like
and null lines with H5 is compact, & wust have a maximu:.:
value, thus there must be & jeodesic normal to H5 through
longer than '{ . We use this to prove another lemuc.
Lemma 2

If p lies to tane future (past) on a time-like peodesic

K‘ through q, beyond & point z conjugate to ¢g,and taere

: : R - N , |
exists a compact Cauchy surface #” tarough q, then ther
|
1 nmust be another time-like geodesic from p to q longer tanan T’.

®
J

Let y be the last point conjugate to q on X'bnfor
Let x be the nearest point to p conjugate to p in pa. Let

r be a point in yx. Let nj be the set of points which have

a future (past) directed geodesic of length rq from g. Then




will be a space-like hypersurface throush ». Let I

2
4

be the set of points which have at lezast one fuiure (past)

directed geodesic from q of length greater than rg. <Then the
o4 ]

w

. - . - . ’ . 1S y
bpoundary of F , Jac: K5. Since p is in F  and since every

past (future) directed time-like and null line from p intersects
5 L P | A e -14‘ 4 A &1 R S = *f’ T
H” which is not in ¥, they must also intersect J-. Let L

5

be the intersection of J5 and these lines. Bince [i” is

2

compact, Lj must be compact. Consider the function O° with

respect to p over KE. Its maximum must lie in the compact

region 5, sut, by Tthe vprevious lemma {’ is not maximal,

moreover, local considerations show that a singular vpoint in
the surface J5 cannot be a maximum of O . 'Thus the
maximum value of 0 must occur for a zeodesic from p ortio-

-

igonal to L?. This must also be a goedesic from o to g of

length greater than ( "

these two lemmas the theorem may be oroved. woince

2

Usin:

the future (past) directed normals to H” are converging

everywhere on HB, there must be a point conjugote to HB a
finite distance along each future (past) directed geodesic
normal. Let $> be the maximum of these distances. Let D

be a point on a future (past) directed geodesic normal at

a distance greater than ¢> . Consider the function O with




respect to p over the compact surface 7. Let,& be the

geodesic from p normal to H” at the point ¢q, whereO has 1its

maximum. ‘‘here must be & point conjugate to H” along A in c¢p.

But if there is no point conjugate to g along ) in ap, then
>\ cennot be maximal by the first lemma. If however there
is a point conjugate to g along‘A in qp, then there must be
& longer geodesic from q to p by the second lemma. [Lhus

is not the pgeodesic of maximum lenzth from H5 to p. “whis is
a contradiction which shows that the original assumotion tast
the space was non-singular must be false.

I'his proof could also be used to show The occurrence
of a singularity in a model with & mon-compact Cauchy surfice
provided tnat the expansion of its normals was bounded away
from zero and provided that the intersection of the Cauchy

surface with all the time~like and null lines from a point

was compact.
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