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Abstract

In this thesis, the stability of the family of subextremal Kerr–Newman space-

times is studied in the case of linear scalar perturbations.

That is, nondegenerate energy bounds (NEB) and integrated local energy decay

(ILED) results are proved for solutions of the wave equation on the domain of

outer communications. The main obstacles to the proof of these results are su-

perradiance, trapping and their interaction. These difficulties are surmounted

by localising solutions of the wave equation in phase space and applying the

vector field method. Miraculously, as in the Kerr case, superradiance and trap-

ping occur in disjoint regions of phase space and can be dealt with individually.

Trapping is a high frequency obstruction to the proof whereas superradiance

occurs at both high and low frequencies. The construction of energy currents

for superradiant frequencies gives rise to an unfavourable boundary term. In

the high frequency regime, this boundary term is controlled by exploiting the

presence of a large parameter. For low superradiant frequencies, no such pa-

rameter is available. This difficulty is overcome by proving quantitative ver-

sions of mode stability type results. The mode stability result on the real axis

is then applied to prove integrated local energy decay for solutions of the wave

equation restricted to a bounded frequency regime.

The (ILED) statement is necessarily degenerate due to the trapping effect.

This implies that a nondegenerate (ILED) statement must lose differentiabil-

ity. If one uses an (ILED) result that loses differentiability to prove (NEB),

this loss is passed onto the (NEB) statement as well. Here, the geometry of

the subextremal Kerr–Newman background is exploited to obtain the (NEB)

statement directly from the degenerate (ILED) with no loss of differentiability.
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Introduction

1.1 Context

In 1915, after a seven year struggle to incorporate gravity in his theory of relativity, Ein-

stein published [Ein15]. In this pioneering work, he formulated the fundamental equations

of the general theory of relativity:

Gµν = Tµν . (Einstein field equations)

The unknown in the theory is a spacetime (M, g), where M is a Lorentzian manifold with

metric g. The Einstein tensor Gµν describes the curvature of spacetime and the energy-

momentum tensor Tµν models the energy and matter within that spacetime. For this

system to be fully determined, Tµν must be specified and equations must be specified for

the matter fields.

The Einstein field equations model the gravitational interaction of space, matter and

energy. Therefore, the geometry of the spacetime and the matter and energy present are

interconnected. In this, the Einstein equations are similar to the Maxwell equations, where

charges and currents determine an electromagnetic field.

Einstein’s geometrisation of the Newtonian theory of gravity has the immediately re-

markable consequence that the theory is nontrivial even in the case of vacuum (Tµν = 0).

In this case the Einstein field equations reduce to

Rµν = 0, (Einstein vacuum equations)

where Rµν is the Ricci curvature of (M, g).

The Einstein field equations can be viewed as a system of ten nonlinear partial differen-

tial equations for the unknown metric g. Their analysis is therefore very difficult. In fact,

the formulation and proof of well-posedness of the initial value problem for the Einstein

vacuum equations was achieved more than thirty years after [Ein15] was published. This

was done by Fourès-Bruhat [FB52] and Choquet-Bruhat and Geroch [CBG69] after the

ground-breaking works of Friedrichs, Schauder, Sobolev, Petrovsky, Leray and others in

the interim.

The identification of explicit solutions (those that can be written in closed form) is

a useful first step in understanding a theory in which the fundamental equations are

nonlinear. The simplest solution of the vacuum Einstein equations is Minkowski space

(R4, diag(−1, 1, 1, 1)). This is the space in which the special theory of relativity is formu-

lated.

In the early years of the study of general relativity there was considerable interest in

deriving and interpreting explicit solutions of the Einstein equations under simplifying

assumptions.
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1.1. Context

In 1916, Schwarzschild discovered a solution of the vacuum Einstein equations which

contains a region of spacetime which cannot communicate with the rest of the spacetime

[Sch03]. Such regions were later named black holes by Wheeler.1 The discovery of a

black hole solution of the Einstein–Maxwell electrovacuum equations (where Tµν is defined

through the Maxwell equations, see (2.1.5)) followed shortly after in [Rei16] and [Nor18].

This charged black hole solution is known as the Reissner–Nordström spacetime.

Both the Schwarzschild and Reissner–Nordström solutions are spherically symmetric.

It was only much later that explicit metrics for spacetimes containing rotating black holes

were discovered. In 1963, Kerr derived an explicit solution of the vacuum Einstein equa-

tions that models a rotating black hole in [Ker63]. In [NCC+65], Newman et al. derived

charged rotating black hole solutions of the Einstein–Maxwell electrovacuum equations.

These solutions are known as the Kerr–Newman family of spacetimes. The family is

parametrised by three physical parameters: the mass M , angular momentum density a

and charge Q.2 Subextremal means that 0 ≤ a2 +Q2 < M2. It is the subextremal family

(and the extremal case a2 + Q2 = M2) of Kerr–Newman spacetimes in which a charged

rotating black hole is present. The fast Kerr–Newman spacetimes (where a2 +Q2 > M2)

have profoundly different structure, see [Car73].

Table 1.1 illustrates the relationships between each of the solutions mentioned above

as subfamilies of the Kerr–Newman family.

Uncharged Q = 0 Charged Q 6= 0

Non-rotating a = 0 Schwarzschild gM Reissner–Nordström gQ,M
Rotating a 6= 0 Kerr ga,M Kerr–Newman ga,Q,M

Table 1.1: The subfamilies of the Kerr–Newman family

The Kerr–Newman solutions are of particular significance in light of the

“No-Hair” Conjecture. The domain of outer communications of a smooth, stationary,

four dimensional, electrovacuum, connected black hole solution is isometrically diffeomor-

phic to that of a member of the Kerr–Newman family of black holes.

Conditional versions of this conjecture were proved under the additional assumption

of either axisymmetry or analyticity in the work of Bunting, Carter, Hawking, Mazur

and Robinson in the 1970s and 80s (see [Heu96] for a detailed account). More recently,

conditional versions of the conjecture have been proved under much weaker assumptions

in [IK09] and [AIK10] (for the Kerr case) and [Won09] (for the Kerr–Newman case).

The existence of black holes is perhaps the most striking prediction of general relativity.

1The interested reader is referred to [DR13] for an excellent account of the intriguing history of the
Schwarzschild solution.

2The parameter Q represents the total electric charge of the spacetime, see [Wal84, §12.3]
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Introduction

This prediction arises from the study of explicit solutions in the hope that they may be

suggestive of the behaviour of general solutions. However, if one wishes to draw any such

conclusions from an explicit solution it is imperative to prove that the solution in question

is stable in an appropriate sense.

This motivates the focus of this thesis: the study of the stability of the subextremal

Kerr–Newman family of explicit solutions of the Einstein electrovacuum equations.

1.2 The black hole stability problem

Since the Kerr–Newman solution is thought to be the unique stationary electrovacuum

black hole spacetime, the question of its stability is closely related to the plausibility of

the concept of a black hole.

The ultimate goal is to understand the dynamical stability of the Kerr–Newman solu-

tions as a family of solutions to the Cauchy problem for the Einstein–Maxwell Equations,

affirming the following:

Conjecture (Global stability of Kerr–Newman). Any small perturbation of the ini-

tial data set of a Kerr–Newman spacetime has a global future development with a complete

future null infinity which, within its domain of outer communication, behaves asymptoti-

cally like a (another) Kerr–Newman solution.

This is one of the most important unresolved issues in the theory of relativity (see

[Kla07] for an insightful discussion of this and other open problems).

1.2.1 Linear stability

The only asymptotically flat spacetime which is known to be globally stable with respect

to nonlinear perturbations is Minkowski space. This was first proved by Christodoulou

and Klainerman in the monumental [CK93]. Following their philosophy, the first step

toward the proof of the nonlinear stability of the Kerr–Newman solution is to understand

the behaviour of scalar perturbations, i.e. solutions of the linear wave equation

�gM,a,Qψ = 0. (1.2.1)

This stability problem may be thought of as a “poor-man’s version” of the problem of

gravitational perturbations, obtained by linearising the Einstein equations with respect to

a fixed subextremal Kerr–Newman metric gM,a,Q.

The particular understanding of (1.2.1) required is a proof that ψ is uniformly bounded

and decays (sufficiently rapidly) in time. This stability with respect to linear scalar per-
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1.3. Main results

turbations is proved in Chapter 3 of this thesis, see Theorem 3.2.1.3

1.2.2 Carter’s separation & mode stability

A general subextremal Kerr–Newman metric possesses two Killing fields T and Φ so the

wave equation (1.2.1) admits solutions of the form

ψ(t, r, θ, φ) = e−iωteimφψ̃(r, θ), where ω ∈ C,m ∈ Z.

Carter discovered in [Car68] that (1.2.1) can be formally separated. The wave equation

therefore admits mode solutions of the form

ψ(t, r, θ, φ) = R
(aω)
m` (r)S

(aω)
m` (θ)eimφe−iωt,where ` ∈ Z, ` ≥ |m|. (1.2.2)

The function S
(aω)
m` (θ) solves a Sturm-Liouville problem and R

(aω)
m` (r) satisfies the Carter

ODE :
d2

dr2
R

(aω)
m` (r) +

(
ω2 − V (aω)

m` (r)
)
R

(aω)
m` (r) = 0, (Carter ODE)

where V
(aω)
m` (r) is a smooth potential.

A priori, (1.2.1) may admit mode solutions that have finite energy but grow expo-

nentially in time, i.e. solutions of the form above with ω in the upper half-plane. The

(qualitative) statement that such modes do not exist is known as mode stability.

The proof of Theorem 3.2.1 (quantitative boundedness and decay for solutions of

(1.2.1)) given in Chapter 3 depends on a quantitative refinement of the qualitative state-

ment of mode stability.

The necessary refinement is proved by first extending the mode stability statement

to exclude resonances on the real axis and then refining this qualitative statement to a

quantitative estimate.

In Chapter 4 both the qualitative mode stability results (in the upper half-plane and on

the real axis) as well as the quantitative estimate are proved for the family of subextremal

Kerr–Newman spacetimes. See §4.5 for the precise statements of the mode stability results.

The application of the quantitative mode stability results required in the proof of Theorem

3.2.1 is stated as Theorem 4.8.2.

1.3 Main results

In this thesis the stability of the subextremal Kerr–Newman exterior spacetime for linear

scalar perturbations is proved. The proof appeals to quantitative mode stability results.

3In the Kerr case, the linear stability problem has been resolved in [DR11a, DRSR14], see §1.5.3.
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The main results are summarised below.

1.3.1 Linear stability results

The primary goal here is to provide a proof of the energy estimates (NEB) and (ILED)

below. Higher order and pointwise decay results are then derived from these key estimates.

Theorem 1.3.1. Solutions of the wave equation (1.2.1) on a subextremal Kerr–Newman

exterior spacetime satisfy the following energy estimates:

• nondegenerate energy bounds ∫
Στ

E[ψ] ≤ C
∫

Σ0

E[ψ], (NEB)

• integrated local energy decay∫ τ

0

∫
Σs

E\[ψ] + r−3−δψ2ds ≤ C
∫

Σ0

E[ψ], (ILED)

where Σ0 and Στ are spacelike hypersurfaces and E[ψ] and E\[ψ] are appropriately weighted

square sums of the first derivatives of ψ.

The energy E\[ψ] in (ILED) is necessarily degenerate due to the presence of trapped

null geodesics (see §1.4). However, trapping is an obstacle to decay but not boundedness.

Therefore, (NEB) should not ‘see’ trapping. That is, E[ψ] in (NEB) is nondegenerate and

both sides of the inequality (NEB) contain only first order derivatives of ψ. In this thesis,

we extract the fully nondegenerate energy bound (NEB) from a degenerate integrated

local energy statement (ILED) with no loss of differentiability. To achieve this, the precise

degeneration of (ILED) due to trapping must be understood in phase space.

The precise version of the theorem above is Theorem 3.2.1. Its proof is the content of

Chapter 3. An overview of the proof can be found in §3.1.

1.3.2 Mode stability results

In the proof of estimate (ILED), a quantitative energy estimate is required for mode

solutions of the form (1.2.2) supported in the bounded frequency range

F ⊂
{

(ω,m, `) ∈ R× {Z× Z | ` ≥ |m|} |
(
|ω|+ |ω|−1 + |m|+ |`|

)
<∞

}
.
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1.4. The main difficulties

Theorem 1.3.2. There exists a constant CF such that∫
ω∈F

∑
m,`∈F

(∣∣∣R(aω)
m` (r+)

∣∣∣2 +

∫ r1

r0

∣∣∣∂rR(aω)
m`

∣∣∣2 +
∣∣∣R(aω)

m`

∣∣∣2 dr∗) dω ≤ CF
∫

Σ0

E[ψ], (1.3.1)

where each R
(aω)
m` solves (Carter ODE) for (ω,m, `) ∈ F .

This estimate is an application of the following quantitative mode stability result

Theorem 1.3.3 (Quantitative mode stability on the real axis). Let (ω,m, `) ∈ F . The

Wronskian W (given by (4.3.1)) satisfies

sup
(ω,m,`)∈F

∣∣W−1
∣∣ ≤ G(F).

where the function G can, in principle, be given explicitly.

Theorem 1.3.3 provides a quantitative upper bound for
∣∣W−1

∣∣. This bound implies

that any solution of (Carter ODE) can be expressed as a superposition of solutions of

(Carter ODE) defined by the asymptotics of R
(aω)
m` (see §4.3). This rules out the existence

of resonances on the real axis.

Note that it is essential that this estimate on the Wronskian is quantitative in order

to prove Theorem 1.3.2.

In proving Theorem 1.3.3, we will also obtain the following qualitative results.

Theorem 1.3.4 (Mode Stability on the real axis). There exist no non-trivial mode solu-

tions corresponding to ω ∈ R \ {0}.

Theorem 1.3.5 (Mode Stability). There exist no non-trivial mode solutions corresponding

to Im(ω) > 0.

Chapter 4 contains the proofs of the precise versions of these theorems. An overview

of the proof can be found in §4.1.

1.4 The main difficulties

The understanding of superradiance, trapping and their interaction is crucial in the proof

of linear stability given in this thesis. Let us briefly discuss these issues before reviewing

the relevant literature.
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Introduction

1.4.1 Future trapped null geodesics

There exist trapped null geodesics on a subextremal Kerr–Newman spacetime. These are

geodesics that remain for all affine time on, or asymptote in the future to, a constant r

value. Physically, this means that photons following such geodesics are neither scattered

to infinity, nor do they fall into the black hole. This forces any useful energy current

to degenerate in view of a general result of Sbierski [Sbi13], in the spirit of the classical

[Ral69]. Here degeneration means that any integrated local energy decay estimate (such as

(ILED)) will either have a region in which we do not control all derivatives, or the estimate

must lose differentiability. This degeneration is simple on a Schwarzschild spacetime, but

considerably more complicated on a subextremal Kerr–Newman spacetime. In fact, the

structure of this set can only be completely understood in phase space.

1.4.2 Superradiance

One of the key features of the Kerr–Newman geometry is the existence of an ergoregion.

This is a region in which the Killing vector field T is spacelike. The presence of the

ergoregion complicates the analysis of wave equations as it corresponds to a region in

which the conserved energy associated to T is not positive. Thus the conservation law

for this energy does not yield control of the solution ψ. This leads to the possibility

that the energy flux to null infinity may be larger than the initial energy, hence the term

superradiance. This phenomenon was first discussed by Zel’Dovich in [Zel71].

1.4.3 Interaction of trapping and superradiance

The main difficulty in proving the required energy estimates in the full subextremal range

of Kerr–Newman spacetimes is the interaction of trapping and superradiance. In physical

space, it appears that these phenomena must be dealt with simultaneously, as there exist

future trapped null geodesics inside the ergoregion. Dealing with the possibility of this

interaction thus involves overcoming a potentially serious obstacle. Miraculously, it turns

out that superradiance and trapping can be dealt with separately in phase space, see §1.5

for more on this.

1.4.4 Low frequency obstructions

Trapping is a high frequency phenomenon whereas superradiance occurs at low frequencies

as well. For superradiant frequencies, the frequency localised energy currents available

generate a boundary term with an unfavourable sign. For the superradiant frequencies

in the high frequency regime, a large parameter is exploited to deal with this boundary

term. In the low frequency regime no large parameter is available, making it difficult to
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obtain quantitative estimates directly. This low frequency obstruction is overcome through

appeal to the estimate of Theorem 1.3.3, see §3.6.

1.5 Historical overview

1.5.1 Classical analysis

In the classical analysis of the stability of black holes, only mode solutions were studied.

This work was initiated in the Schwarzschild case in [RW57] and the literature has become

vast, see [DR10a] for an overview and references. The mode stability of the Schwarzschild

family – the statement that there are no mode solutions of �gMψ = 0 with finite energy

at t = 0 and Im(ω) > 0 – follows immediately from the observation that the potential V

is non-negative in the Schwarzschild case. It is a remarkable fact that this result carries

over to gravitational perturbations of Schwarzschild [Vis70] .

The existence of mode solutions on a Schwarzschild background is a consequence of the

dimension of the Lie algebra of symmetries of that spacetime (the stationary Killing field

T and the rotations). As mentioned in §1.2.2, Carter discovered in [Car68] that, despite

the Kerr(–Newman) family possessing only two Killing vector fields, the wave equation

can be formally separated on these backgrounds. This is related to the integrability of

the geodesic equations on Kerr–Newman spacetimes. This separation was later found to

originate from the existence of a “hidden symmetry” in the Kerr–Newman metric, see

[WP70] for more on this.

Mode analysis of the Kerr–Newman spacetime reveals that superradiance is frequency

specific in the sense that the energy flux through the horizon is negative precisely in the

frequency range

0 ≤ mω < am2

2M(M +
√
M2 − a2 −Q2)−Q2

.

A priori, superradiance may allow for the existence of mode solutions of �gM,a,Qψ = 0

with finite initial energy and Im(ω) > 0. As mentioned before, such solutions grow

exponentially in time. In the celebrated [Whi89], Whiting showed that no such solutions

exist in the Kerr case. Whiting’s proof of the mode stability of Kerr is seen today as the

culmination of the classical mode analysis. However, for Kerr–Newman spacetimes, the

analogue of Whiting’s mode stability is absent in the literature.

1.5.2 Limitations of the classical analysis

Classical analysis of mode solutions alone is not enough to resolve the question of linear

stability of a spacetime. Recall from §1.2.1 that linear stability refers to solutions of

(1.2.1) being uniformly bounded and decaying (sufficiently rapidly) in time. However,
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mode stability is still completely consistent with general solutions of (1.2.1) with finite

initial energy growing in time without bound. Indeed, it is not a priori apparent that

general solutions of (1.2.1) can be represented as a superposition of modes with ω ∈ R.

Even with this established, statements about individual modes do not carry over to the

superposition of infinitely many modes without some additional knowledge.

It is only through the estimates of energy-type quantities that one can bound solutions

of (1.2.1) and rule out exponentially growing solutions. The modern PDE theory provides

powerful tools for the derivation of such energy estimates.

1.5.3 Modern analysis

Boundedness on Schwarzschild

The study of black hole stability from the point of view of modern PDE theory was

effectively initiated by the celebrated results of Wald [Wal79] and Kay–Wald [KW87]:

Theorem 1.5.1 (Kay–Wald). Solutions of the wave equation on a Schwarzschild back-

ground arising from sufficiently regular initial data are pointwise uniformly bounded in the

exterior region up to and including the horizon.

The proof of the Kay–Wald Theorem makes no appeal to mode analysis. Instead,

the fundamental statements are L2 based estimates of derivatives of the solution of the

wave equation. The pointwise statement follows from commuting the wave equation with

certain vector fields and applying Sobolev inequalities. These modern arguments are

essential when working with nonlinear equations, such as the Einstein equations. Indeed,

it was by these methods that Christodoulou and Klainerman proved the nonlinear stability

of Minkowski space in [CK93] (though boundedness alone does not suffice, see below).

From the perspective of modern PDE theory, the proof of the Kay–Wald Theorem

away from the horizon follows from a standard application of the energy method (since

the vector field T is timelike there). At the horizon T becomes null and the associated

conserved energy degenerates. This obstacle was overcome in [Wal79] and [KW87] to

obtain estimates up to and including the horizon. However, the geometric arguments

employed in this proof are extremely particular to the Schwarzschild solution and as such

are very delicate with respect to metric perturbations, see [DR13, §3] for further discussion.

The work of Dafermos–Rodnianski in the slowly rotating Kerr case [DR11b] yields a

simpler proof of the Kay–Wald Theorem that does not appeal to fragile geometric proper-

ties of Schwarzschild. The Dafermos–Rodnianski approach also highlights the celebrated

red-shift effect as the physical origin of the boundedness of the horizon energy flux [DR09].

The red-shift effect is discussed further below and in §2.2.3.
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Decay on Schwarzschild

The boundedness statement of the Kay–Wald Theorem alone is not sufficient as a linear

stability result. Quantitative decay bounds on the solution of the wave equation are also

required, where the rate depends only on the size of the initial data. Decay provides a

physical interpretation of the linear stability result but moreover, it is the only known

mechanism for nonlinear stability (see [CK93, LR10]). It is therefore essential to prove

decay estimates in the context of the nonlinear stability problem.

Decay results on Schwarzschild have been proved by many authors [BS03, DR05,

BS06a, BS06b, DR07, DR09, Luk10, MMTT10]. These results have led to a better un-

derstanding of how geometric aspects of black hole spacetimes interact in the analysis of

the wave equation. In particular, the obstruction to decay due to trapping is captured by

use of virial-type energy currents that degenerate precisely on the trapped geodesics. The

use of virial-type estimates originates in the work of Morawetz (c.f. [Mor68]).

The final proof of boundedness and decay in the Schwarzschild case, found in [DR11b]

and [DR07] respectively, both take place entirely in physical space and do not require any

mode analysis.

Slowly rotating Kerr

In the Kerr case, the linear stability problem for scalar perturbations has been resolved

as a result of the work by several authors. The early work in this direction was restricted

to perturbations of Schwarzschild and the slowly rotating Kerr case |a| �M .

In [DR11b], a proof of (NEB) was given for solutions of (1.2.1) on a class of metrics

which includes very slowly rotating and small charge Kerr–Newman, a2 +Q2 � M2, as

a special case. The decay result (ILED) in the very slowly rotating Kerr case was then

proved in [DR10a]. These results make essential use of the smallness of the parameters a

and Q to control the strength of superradiance. In particular, by taking the parameters

small enough, the ergoregion can be contained in a region arbitrarily close to the horizon.

Energy estimates in the ergoregion can then by obtained from the red-shift estimate (see

§2.2.3). Furthermore, the trapping region is bounded away from the horizon, so the

difficulties of superradiance and trapping decouple in this case.

Energy decay results were also proved independently in [TT11] and [AB09]. These

results also exploit the smallness of the parameters a and Q in a crucial way.

The full subextremal range

The proof of stability for linear scalar perturbations for the full subextremal Kerr family,

|a| < M , has been achieved recently in [DR11a] and [DRSR14].

11



Introduction

The main difficulties of superradiance, trapping and their interaction were overcome

by employing a hybrid of the vector field method and classical mode analysis. These two

approaches were united by revisiting Carter’s separation of the wave equation [Car68] and

constructing frequency-localised energy currents. The success of this approach hinges on

the miraculous fact brought to light in [DR11a] – superradiance and trapping occur in

disjoint regions of phase space for the full subextremal range of Kerr spacetimes. The

deeper origin of this decoupling (if there is one) remains mysterious and may have bearing

on the Kerr(–Newman) uniqueness problem [DR11a, §7.3].

It is possible to partition phase space in a way that allows for bespoke energy estimates

to be derived by exploiting the character of each phase space regime. In this way, the

degeneration of the estimates due to trapping can be precisely captured.

To overcome superradiance, a frequency localised energy estimate can be derived in

the high frequency regime. As mentioned in §1.4.4, this approach is difficult in the low

frequency regime. This low frequency obstruction is overcome by appeal to a quantitative

refinement of Whiting’s celebrated [Whi89]. The necessary refinement was proved very

recently by Shlapentokh-Rothman in [SR13] by first extending [Whi89] to exclude reso-

nances on the real axis and then upgrading this qualitative statement to a quantitative

estimate.

Once frequency localised estimates are proved in each phase space regime, they are

summed up and inverse Fourier transformed to obtain (ILED).

In order to apply Carter’s separation, it is necessary to Fourier transform in time.

However, there is no a priori guarantee that solutions of the wave equation on a Kerr

background are sufficiently integrable to allow this. This final hurdle is leapt over by

employing a continuity argument. The separation is carried out on a class of solutions

of the wave equation that are assumed to be sufficiently integrable. It is then proved

that all solutions of the wave equation on a subextremal Kerr background lie in this class

of solutions. This continuity argument is due to [DRSR14]. The argument is simplified

by the discovery that for solutions of the wave equation supported only on a single fixed

azimuthal frequency, trapping occurs outside the ergoregion.

The (NEB) statement is then extracted from the (ILED) statement to complete the

proof of stability of the subextremal family of Kerr spacetimes for linear scalar perturba-

tions.

Turning now to the Kerr–Newman spacetimes, it turns out that all the structure

necessary to carry out the strategy of [DR11a] and [DRSR14] carries over from the Kerr

to the Kerr–Newman case. A thorough discussion of this structure is given in §3.1 and

§4.1.

In [Civ14b] (Chapter 3 of this thesis) the linear stability problem for scalar perturba-

tions for the Kerr–Newman family of spacetimes is resolved.
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The argument in [Civ14b] requires the quantitative mode stability result analogous to

[SR13]. However, even the analogue of Whiting’s mode stability result is absent in the

literature for the Kerr–Newman spacetimes. In [Civ14a] (Chapter 4 of this thesis), both

the qualitative mode stability results (in the upper half-plane and on the real axis) as well

as the quantitative estimate in the spirit of [SR13] are proved.

The extremal and cosmological cases

In the extremal case, the stabilising mechanism of the red-shift effect degenerates and one

expects blow-up rather than decay results. Great progress in this direction has been made

by Aretakis, see [Are12a, Are12b, Are13a, Are13b]. See [Sch13] for an overview of the

Λ > 0 case. For the Λ < 0 case, see for example [HS13a], [HS13b] and [HS13c].
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Chapter 2

The Kerr–Newman family of

spacetimes

15



The Kerr–Newman family of spacetimes

2.1 The Kerr–Newman family

We begin with a brief review of the relevant geometric and physical features of the Kerr–

Newman spacetimes. For an in-depth treatment, the reader is referred to [Wal84].

The Kerr–Newman metric depends on three physical parameters: the mass M , angular

momentum density a and charge density Q. We express these parameters in “natural

units” , setting both the gravitational constant G and speed of light c to unity.

Here we consider the subextremal family of Kerr–Newman spacetimes in which a

charged, rotating black hole is present. Recall that subextremal means that 0 ≤ a2 +Q2 <

M2.

We first fix the underlying manifold we wish to consider, then discuss the Kerr–

Newman metric in suitable local coordinates in §2.1.2.

2.1.1 The underlying manifold

We first make a precise definition of the manifold we wish to consider. Let

M = {t∗ > −∞, y∗ ≥ 0, θ∗ ∈ [0, π], φ∗ ∈ [0, 2π]} .

Here θ∗ and φ∗ are standard spherical coordinates on S2. This is a manifold with boundary

∂M = H+ = {y∗ = 0}. This boundary is the event horizon. We also define the vector

fields T = ∂t∗ and Φ = ∂φ∗ and denote the one parameter family of transformations

generated by T by ϕτ .

We will define a family of metrics on M, parametrised by M , a and Q. In §3.7.4 we

will be concerned with the smooth dependence of this family on the parameters. The

precise dependence we require is given in Lemma 2.2.1.

Before defining this family of metrics, it is convenient to define coordinate systems

that depend on the parameters M , a and Q.

Kerr–Newman star coordinates

We introduce the Kerr–Newman star coordinate chart (t∗, r, θ, φ∗), which depends on the

parameters a2 +Q2 < M2. For each triple a2 +Q2 < M2, set r± = M ±
√
M2 − a2 −Q2.

Then define a new coordinate r, depending smoothly on y∗ and the parameters and such

that r = r+ on H+. We denote by Z∗ the smooth extension of the Kerr–Newman star

coordinate vector field ∂r to M.

It is often convenient to work with a rescaled version of r, denoted by r∗ and defined
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only in the interior of M by

dr∗

dr
=
r2 + a2

∆
, r∗(3M) = 0, (2.1.1)

where

∆ := (r − r+)(r − r−) = r2 − 2Mr + a2 +Q2. (2.1.2)

Note that ∆ vanishes on H+ and that the range {r > r+} corresponds to {r∗ > −∞}. In

star coordinates T = ∂t∗ and Φ = ∂φ∗ .

Remark For subextremal Kerr–Newman metrics, 0 < a2 +Q2 < M2, hence

0 < r± = M ±
√
M2 − a2 −Q2 < 2M.

This humble pair of inequalities is crucial to many of the arguments of this thesis.

Boyer–Lindquist coordinates

We define the Boyer-Lindquist coordinates (t, r, θ, φ) by applying the coordinate transfor-

mations {
t = t∗ − t̄(r), dt̄(r) = r2+a2

∆2 ,

and φ = φ∗ − φ̄(r), dφ̄(r) = a
∆ .

(2.1.3)

See [DR10a] for the details and explicit definitions of t̄(r) and φ̄. We will denote the

Boyer–Lindquist ∂r by ZBL. It will turn out that ZBL defines the directional derivative

that does not degenerate in the integrated decay estimate due to trapping (see §1.4.1 and

(3.5.11)) but it is Z∗ which is regular at the horizon. We therefore define the following

combination of Z∗ and ZBL.

Definition 2.1.1. For each a2 +Q2 < M2, let χ(r) be a cut-off function such that χ = 1

for r ≥ r\ and χ = 0 for r ≤ (r+ + r\)/2, where r\ is sufficiently close to r+. Finally, for

each a2 +Q2 < M2, we define the vector field

Z = χZBL + (1− χ)Z∗.
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2.1.2 The Kerr–Newman metric

With M , a and Q as above, we finally define a Kerr–Newman metric on the interior ofM
in Boyer–Lindquist coordinates by

gM,a,Q := −∆

ρ2

(
dt− a sin2 θdφ

)2
+

sin2 θ

ρ2

(
adt− (r2 + a2)dφ

)2

+
ρ2

∆
dr2 + ρ2dθ2, (2.1.4)

where ρ2 = r2 + a2 cos2 θ

and ∆ is defined by (2.1.2). Applying (2.1.3) in reverse, we see indeed that the metric

extends regularly to H+. Note that H+ is a null hypersurface.

The metric gM,a,Q together with appropriate Fµν satisfies the following system of par-

tial differential equations, known as the electrovacuum Einstein–Maxwell equations:
Rµν = 2

(
FµβFν

β − 1
4gµνFρσF

ρσ
)
,

∇ · F = 0

and dF = ∇αFβγ +∇γFαβ +∇βFγα = 0,

(2.1.5)

where Rµν is the Ricci curvature ofM. We call the tensor Fµν the electromagnetic tensor.

The interested reader is referred to [Wal84, p. 313] for more details.

Remark The Kerr–Newman family has three well-known subfamilies. When Q = 0,

(2.1.4) is the Kerr metric. Letting a = 0, we obtain the Reissner-Nordström metric.

Finally, if we set a = Q = 0 we simply have the Schwarzschild metric. See Table 1.1.

The vector fields T and Φ are Killing and if a 6= 0 they span the Lie algebra of Killing

fields. In Boyer–Lindquist coordinates we have T = ∂t and Φ = ∂φ. Thus it is clear from

(2.1.4) that LT g = LΦg = 0. T is referred to as the stationary Killing field and Φ is called

the axisymmetric Killing field. As r → ∞, T is asymptotically future pointing timelike

and Φ is asymptotically orthogonal to T .

The determinant of the metric is simply det(gµν) = −ρ4 sin2 θ. Hence the volume form

on a (3 + 1) dimensional Kerr–Newman manifold in Boyer–Lindquist coordinates is

dV = ρ2 dt dr dVS2 = ρ2 sin θ dt dr dθ dφ. (2.1.6)

2.1.3 The wave equation

As mentioned in the introduction, the first step in the journey toward resolution of the

nonlinear stability problem is the analysis of the linear stability problem for scalar per-

turbations, using sufficiently robust techniques. The simplest such linear problem is the
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scalar wave equation

�gψ = 0,

which may be thought of as a “poor-man’s version” of the linearised Einstein equations

(taken around a subextremal Kerr–Newman metric). Thus the boundedness and energy

decay of such ψ on a Kerr–Newman background may be thought of as stability of this

spacetime for linear scalar perturbations.

The wave equation on a Lorentzian manifold can be written in coordinates as

�gψ =
1√−g∂α

(√−ggαβ∂βψ) = 0. (2.1.7)

For the Kerr–Newman metric in Boyer–Lindquist coordinates, this is

1

ρ2 sin θ

[(
a2 sin2 θ − (a2 + r2)2

∆

)
∂2
t ψ −

a2

∆
∂2
φψ

−2a(2Mr −Q2)

∆
∂t∂φψ + ∂r(∆∂rψ) + ∆/ S2ψ

]
= 0, (2.1.8)

where ∆/ S2 denotes the (unit) spherical Laplacian:

∆/ S2ψ =
1

sin θ
∂θ(sin θ∂θψ) +

1

sin2 θ
∂2
φψ.

Similarly, we denote the covariant derivative on the unit sphere by ∇/ S2 and the gradient

∇/ S2ψ =
∂ψ

∂θ
∂θ +

1

sin θ

∂ψ

∂φ
∂φ.

We also denote

|∇/ S2ψ|2 := (∂θψ)2 +
1

sin2 θ
(∂φψ)2.

We introduce the related operators

∆/ψ =
1

ρ2
∆/ S2ψ and ∇/ψ =

1

ρ
∇/ S2ψ.

Note that |∇/ψ|2 =
1

ρ2
|∇/ S2ψ|2.

Carter discovered in [Car68] that (2.1.8) can be formally separated. The separation

introduces frequencies ω, m, and λ. This provides us with the means to frequency localise

and thus capture frequency specific phenomena. This separation is carried out in §3.3.3.
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Me

M

Σe
0 i0

H+

H−

I+

I−

Figure 2.1.1: The maximal globally hyperbolic extension

2.1.4 The maximal globally hyperbolic extension

In the physical application, the asymptotically flat spacetime (M, gMa,Q) is meant to

represent the gravitational field in the vicinity of an isolated charged rotating black hole.

From a purely mathematical perspective, there is a larger manifold that we could

consider. By appropriate coordinate changes and combining coordinate patches one can

construct the maximally extended Kerr–Newman manifold ME , see [Car73] and [HE73].

However,ME is not compatible with the dynamical formulation of general relativity. If we

consider the spacetime as the solution of an initial value problem with data prescribed on a

Cauchy hypersurface,ME will necessarily contain inextendable causal geodesics which do

not intersect that Cauchy hypersurface. Indeed, the maximally extended Kerr–Newman

solutions are quit bizarre – in particular, they contain closed timelike curves.

In the dynamical formulation of the Einstein equations, the correct manifold to con-

sider is the Cauchy development of initial data prescribed on a suitable hypersurface. In

the maximally extended Kerr–Newman spacetime ME , there are two regions which are

isometric to the original exterior region M. This suggests that the Cauchy hypersurface

used in the initial value problem should have have topology S2×R with two asymptotically

flat ends. Let Σe
0 be such a hypersurface. Viewing the Einstein–Maxwell equations as a

hyperbolic system of PDE, the Kerr–Newman manifold is then the solution of (2.1.5) with

appropriate initial data prescribed on Σe
0, see [Wal84]. We will denote this solution by

(Me, g
e
M,a,Q).

The manifold M that we have considered thus far is a submanifold of the Cauchy

development Me of Σe
0 with geM,a,Q = gM,a,Q on M.

The Penrose diagram of Me, along the axis of symmetry, is depicted in Figure 2.1.1.
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The boundary component I+ is known as future null infinity and comprises the limit

points of future directed null rays in M along which r →∞. Similarly, I− comprises the

limit points of past directed null rays for which r →∞. We call I− past null infinity. The

remaining boundary components i0 and i± are called spacelike infinity and future (past)

timelike infinity, respectively. In the physical application, I+ is an idealisation of far away

astrophysical observers receiving radiation from the system.

The maximal globally hyperbolic developmentMe will be useful in the proof of (NEB),

see §3.8.2.

2.2 Preliminaries

The main results of this thesis are energy estimates for solutions ψ of the wave equation

(2.1.8). Here energy refers to an integral of square sum of derivatives of ψ of the form∫
Σ

∑
1≤i1+i2+i3≤j

∣∣∣∇/ i1T i2Zi3ψ∣∣∣2 dgΣ,

where Σ is a spacelike hypersurface. We typically prove estimates in the case j = 1 and

then extend the results to the higher order case j ≥ 1 as corollaries.

2.2.1 Foliation and well-posedness

In order to formulate the initial value problem for the wave equation, we must prescribe

data on a suitable hypersurface. The submanifold {t∗ ≥ 0} of M is the future Cauchy

development of Σ0 = {t∗ = 0}. We are interested in the behaviour of solutions of the

wave equation (2.1.8) in the future of Σ0. To prove energy estimates, we use a folia-

tion of the type described in [DR11a, §4]. Letting ϕτ denote the 1−parameter family of

diffeomorphisms generated by the vector field T , we define the hypersurfaces

Στ = ϕτ (Σ0) = {t∗ = τ} .

Note that each leaf of this foliation is terminates on H+ and spatial infinity i0. (More

details can be found in [DR11a, §2].) Let τ2 > τ1 so that Στ2 lies in the future of Στ1 .

Denote the region bounded by Στ1 , Στ2 and H+ by

R(τ1, τ2) =
⋃

τ1≤τ≤τ2
Στ
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so that the future Cauchy development of Σ0 is precisely

D+(Σ0) =
⋃
τ ′≥τ
R(0, τ ′).

The lapse function associated with the foliation is uniformly bounded above and away

from zero. That is, there exist positive uniform constants b < B such that for all τ ≥ 0,

B ≥ (−gM,a,Q(∇τ,∇τ))−
1
2 ≥ b > 0. (2.2.1)

In particular this means that each Στ is spacelike.

By the smooth coarea formula, for a smooth, integrable function F , there exist con-

stants c and C such that

c

∫ τ2

τ1

(∫
Στ

F

)
dτ ≤

∫
R(τ1,τ2)

F ≤ C
∫ τ2

τ1

(∫
Στ

F

)
dτ. (2.2.2)

This is used many times without further comment in what follows.

We denote the causal future and past (restricted toM) of a set A ⊂M by J+(A) and

J−(A) respectively.

Proposition 2.2.1. [Hör07, Theorem 23.2.4] Let Σ0 be as above and let nΣ be the (future

directed) unit normal to Σ0. For any

ψ|Σ0 = ψ0 ∈ Hk
loc(Σ0) and nΣ0ψ = ψ1 ∈ Hk−1

loc (Σ0), k ≥ 1,

there exists a unique solution to the initial value problem
�gψ = 0,

ψ|Σ0 = ψ0,

nΣ0ψ = ψ1,

(2.2.3)

such that

ψ(τ, ·) ∈ C([0,∞);Hk
loc(Στ )) ∩ C1([0,∞);Hk−1

loc (Στ )).

Furthermore, the solution depends smoothly on the parameters a and Q. The precise

dependence on Q is as follows.

Lemma 2.2.1. Let Q2 < M2 − a2 and {Qk}∞k=1 have the limit Qk → Q. Define the
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sequence {ψk}∞k=1 as the solutions of
�gM,a,Qkψk = 0,

ψk|Σ0 = ψ0,

nΣ0ψ = ψ1,

where ψ0 and ψ1 are as in Proposition 2.2.1. Then, for every j ≥ 1 and τ ≥ 0,

lim
k→∞

∫
Στ

∑
1≤i1+i2+i3≤j

∣∣∣∇/ i1T i2Zi3ψk∣∣∣2 dg(k)
Στ

=

∫
Στ

∑
1≤i1+i2+i3≤j

∣∣∣∇/ i1T i2Zi3ψ∣∣∣2 dgΣτ .

Note that in the expression above, the geometric objects ∇/ , Z, and the volume form

dg
(k)
Στ

depend on the metric gM,a,Qk .

The analogous statement holds for a dependence, see [DRSR14, Lemma 4.1.1].

In §3.7.4, we will make explicit use of the smooth dependence of the solution on Q.

2.2.2 The sign of a

Let ψ be a solution of 2gM,a,Qψ = 0, for some M , a, Q. Then defining

ψ̃(y∗, t∗, θ∗, φ∗) = ψ(y∗, t∗, θ∗, 2π − φ∗),

we have that ψ̃ satisfies 2gM,−a,Qψ̃ = 0.

Taking all objects and quantities defined with respect to the metric gM,−a,Q, the results

of §3.2 for ψ̃ are equivalent to those for ψ with respect to gM,a,Q. Therefore, it suffices to

consider a ≥ 0.

This reduction is of no conceptual significance and is made only to simplify the notation

when discussing the superradiant frequency range, see (3.3.21) and (3.3.22).

The reader can assume that a ≥ 0 everywhere in this thesis, though it is only strictly

necessary for statements that refer explicitly to frequency-dependent functions.

2.2.3 Energy currents

The vector field method

The vector field method is a robust technique for deriving L2-based identities with the

help of geometrically natural vector fields. These are in turn used to link the geometry

of the spacetime (M, g) to the behaviour of solutions of �gψ = 0 on M. There are two

aspects to this method. Firstly, that of vector field multipliers which are used extensively

in this thesis. Secondly, by commuting the wave equation with certain vector fields one
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can derive higher order and pointwise estimates. For example, commutation vector fields

are used extensively in proving Corollary 3.2.4 below. A brief history of the vector field

method can be found in [Kla10].1

The vector field multiplier method is based on applying the Divergence Theorem to

a particular class of 1-forms, known as energy currents. Energy currents are constructed

from the energy momentum tensor. The energy momentum tensor associated with the

wave equation (2.1.7) on a Lorentzian manifold is given by

Tµν [ψ] = ∂µψ∂νψ −
1

2
(gαβ∂αψ∂βψ)gµν .

Given a vector field V and a (sufficiently regular) function ψ, we define the following

energy currents.

JVν [ψ] = Tµν [ψ]V ν ,

KV [ψ] = Tµν [ψ]∇µV ν

and EV [ψ] = div(T)V = (�ψ)dψ(V ).

Note that

∇µ JVµ [ψ] = KV [ψ] + EV [ψ].

The wave equation is satisfied if and only if the divergence of the energy momentum

tensor vanishes. If V is a Killing vector field then KV [ψ] = 0. These facts are vital in the

construction which follows.

We will be working with an inhomogeneous wave equation �gψ = F due to the neces-

sity of cutting off in time (see §3.3.3). As such, the divergence of the associated energy

momentum tensor will not vanish. Thus

EV [ψ] = FV ν∂νψ.

It will be useful to augment JVν [ψ] with a (sufficiently regular) function w. We define

JV,wν [ψ] = JVν [ψ] +
1

8
w∂µ(ψ2)− 1

8
(∂µw)(ψ2).

Hence KV,w[ψ] = KV [ψ]− 1

8
(�w)(ψ2) +

1

4
w∇αψ∇αψ

and EV,w[ψ] = EV [ψ] +
1

4
(wψ)(�ψ).

The vector field method essentially refers to applying the Divergence Theorem to JV,wν [ψ]

within a region such as R(τ1, τ2) for carefully chosen V and w, to obtain the associated

1Available online at http://web.math.princeton.edu/~seri/homepage/papers/John2010.pdf.
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energy identity.∫
Στ2

JV,wµ [ψ]nµΣτ +

∫
H+∩R(τ1,τ2)

JV,wµ [ψ]nµH+ +

∫
R(τ1,τ2)

KV,w[ψ]

+

∫
R(τ1,τ2)

EV,w[ψ] =

∫
Στ1

JV,wµ [ψ]nµΣ0
.

In implementing the vector field method, it is often useful to arrange for the boundary

terms to have a “good” sign and treat the bulk terms as error terms. For example, if V is

a Killing field and ψ satisfies the wave equation, then the bulk terms vanish and we obtain

the following conservation law∫
Στ2

JVµ [ψ]nµΣτ +

∫
H+∩R(τ1,τ2)

JVµ [ψ]nµH+ =

∫
Στ1

JVµ [ψ]nµΣ0
,

which is a version of Noether’s Theorem. There are other situations in which it is desirable

to have bulk terms with a sign (see for example Proposition 3.6.4).

The following proposition and its corollary give the essential definiteness properties

that make the energy currents compatible with Sobolev estimates.

Proposition 2.2.2. Let V and W be two future directed timelike vector fields. Then for

any function ψ, T[ψ](V,W ) is positive definite. By continuity, if V or W is null then

T[ψ](V,W ) is non-negative definite.

Proof. The proof is an immediate application of the Cauchy–Schwarz inequality.

The redshift estimate

A subextremal Kerr–Newman spacetime possesses the following Killing field

K := T +
a

(r2
+ + a2)2

Φ = T +
a

Mr+ −Q2
Φ (2.2.4)

known as the Hawking vector field. It is a null generator of H+. Therefore, the event

horizon is a Killing horizon. Note the identity

∇KK = κK where κ =
r+ − r−

2(r2
+ + a2)

> 0.

The quantity κ is the surface gravity. The positivity of κ allows for the construction of

a nondegenerate energy on (and near) the horizon which has the divergence properties

needed to prove energy estimates [DR09] (see Theorem 2.2.3).

Remark In the extremal case, κ = 0, so this stabilising mechanism breaks down. In fact,
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our results do not hold in the extremal case! Aretakis has recently made great progress in

classifying the stability and instabilities of extremal black holes, see for example [Are11],

[Are12a] and [Are12b].

The following vector field will be useful:

Ke := T +
a(r2 + a2 −∆)

(r2 + a2)2
Φ = T +

a(2Mr −Q2)

(r2 + a2)2
Φ. (2.2.5)

This vector field has the following important properties.

Lemma 2.2.2. The vector field Ke defined by (2.2.5) is null on the horizon H+ and

timelike in M\H+.

Proof. We compute g(Ke,Ke). First, note that ∆ = (r − r+)(r − r−) so ∆ = 0 on the

horizon. Therefore, the vector field defined by (2.2.5) reduces to (2.2.4) on the horizon. A

simple computation shows that g(Ke,Ke)|r=r+ = g(K,K)|r=r+ = 0.

Off the horizon, we need to show that

ρ2g

(
T +

a(r2 + a2 −∆)

(r2 + a2)2 Φ, T +
a(r2 + a2 −∆)

(r2 + a2)2 Φ

)
= −∆ + sin2 θ

(
a2 − a2(r2 + a2 −∆)2

(r2 + a2)2
− ∆a4(r2 + a2 −∆)2 sin2 θ

(r2 + a2)4

)
< 0.

We need only consider the case that the term in parentheses is positive. It then suffices

to show that

−∆ + a2 − a2(r2 + a2 −∆)2

(r2 + a2)2
< 0.

Multiplying through by −(r2 + a2)2, we would like to have

(∆− a2)(r2 + a2)2 + a2(r2 + a2 −∆)2 > 0.

Now

(∆− a2)(r2 + a2)2 + a2(r2 + a2 −∆)2 = ∆(r2 + a2)2 + ∆2(r2 + a2)2 − 2a2∆(r2 + a2)

= (∆(r2 + a2)[r2 − a2 + ∆(r2 + a2)] > 0,

since r > M > a.

Lemma 2.2.3. There exists an ε0 such that K (defined by (2.2.4)) is timelike for r ∈
(r+, r+ + ε0).
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Proof. We consider re = r+ + ε for ε < ε0 and note that ∆ > 0 for r > r+ and ∆ = 0 at

r = r+, so ∆(re) = O(ε). So

ρ2g

(
T +

a(
r2

+ + a2
)Φ, T +

a(
r2

+ + a2
)Φ

)

= −∆ + sin2 θ

(
a2 − 2a2(r2 + a2)

(r2
+ + a2)

− a2(r2 + a2)

(r2
+ + a2)2

)
+O(ε)

= −∆ + sin2 θ

(
a2[(r2

+ − r2)− a2 − r2]

(r2
+ + a2)

− a2(r2 + a2)

(r2
+ + a2)2

)
+O(ε) < 0,

taking ε0 small enough and noting that r > r+.

Dafermos and Rodnianski showed in [DR13] that for all stationary black hole space-

times with Killing horizons of positive surface gravity, there exists a timelike vector field

N whose multiplier current JNµ [ψ] captures the red-shift effect. In the Kerr–Newman case,

we have

Theorem 2.2.3. Let a2 +Q2 < M2, g = gM,a,Q be a Kerr–Newman metric and D+(Σ0)

be as defined in §2.2.1. There exist positive constants b = b(a,Q,M) and B = B(a,Q,M),

parameters r1(a,Q,M) > re(a,Q,M) > r+ and a ϕt-invariant timelike vector field N =

N(a,Q,M) on D such that

1. KN [ψ] ≥ b JNµ [ψ]Nµ for r ≤ re,

2. −KN [ψ] ≤ B JNµ [ψ]Nµ for r ≥ re,

3. N = T for r ≥ r1,

where the currents are defined with respect to g.

One of the most important uses of this current is that it yields the following estimate

for nondegenerate energy near the horizon, provided we can control the last term on the

right hand side of (2.2.6).

Proposition 2.2.4. [DR10a] Let a2 +Q2 < M2 and Στ = ϕτ (Σ0). For all r+ < r0 ≤ re

and δ > 0, there exists a constant B0 = B(Σ0, r0, δ) such that for all solutions of (2.2.3)

we have ∫
R(0,τ)∩{r+≤r≤r0}

[
JN [ψ] ·N + (|r − r+|−1 log |r − r+|−2)ψ2

]
+

∫
H+(0,τ)

JN [ψ] · nH+ +

∫
Στ∩{r+≤r≤r0}

JN [ψ] · nΣτ

≤ B0

∫
Σ0

JN [ψ]nµΣ0
+B0

∫
R(0,τ)∩{R0≤r≤r0+δ}

[
JN [ψ] · nΣ0 + ψ2

]
. (2.2.6)
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In what follows, we sometimes use the shorthand |∂ψ|2 to denote the quantity con-

trolled by JNµ [ψ]nµΣτ , where nΣτ is the normal to Στ = {t∗ = τ}. More explicitly, let us

set

|∂ψ|2 = (∂t∗ψ)2 + (∂rψ)2 + |∇/ψ|2. (2.2.7)

In what follows, we often need to estimate a weighted L2 norm of a function by

energy quantities (which contain only derivatives). This is accomplished by using Hardy

inequalities of the following form:

For a square-integrable, differentiable function f vanishing as x → ∞ with square

integrable derivative: ∫ ∞
0

f2(x)dx ≤ C
∫ ∞

0
x2

(
df

dx

)2

dx. (2.2.8)

To prove a Hardy inequality, one integrates the right hand sign by parts, eliminates

the boundary terms and identifies a factor on the right hand side as the square root of

the left hand side. The bound then follows by an application of the L2 Cauchy–Schwarz

inequality.

28



Chapter 3

Stability of subextremal

Kerr–Newman spacetimes for

linear scalar perturbations

29



Stability of subextremal Kerr–Newman spacetimes for linear scalar perturbations

3.1 Introduction

Our primary goal here is the proof of the following energy estimates:

• nondegenerate energy bounds ∫
Στ

E[ψ] ≤ C
∫

Σ0

E[ψ], (NEB)

• integrated local energy decay∫ τ

0

∫
Σs

E\[ψ] + r−αψ2ds ≤ C
∫

Σ0

E[ψ], (ILED)

where α > 3 and E[ψ] and E\[ψ] are appropriately weighted square sums of the first

derivatives of ψ and Σ0 and Στ are spacelike hypersurfaces. See Theorem 3.2.1 for the

precise statement of these results. Higher order and pointwise decay results are then

derived from these key estimates.

The energy E\[ψ] in (ILED) is necessarily degenerate due to the presence of trapped

null geodesics. However, trapping is an obstacle to decay but not boundedness. Therefore,

(NEB) should not ‘see’ trapping. That is, E[ψ] in (NEB) is nondegenerate and both sides

of the inequality (NEB) contain only first order derivatives of ψ. In this chapter, we

extract the fully nondegenerate energy bound (NEB) from a degenerate integrated local

energy statement (ILED) with no loss of differentiability. To achieve this, the precise

degeneration of (ILED) due to trapping must be understood in phase space.

In this thesis we resolve the linear stability problem for scalar perturbations for the

Kerr–Newman family of spacetimes by adapting the strategy of [DR11a] and [DRSR14].

3.1.1 Key elements

The following properties of subextremal Kerr spacetimes are crucial to the proof of (NEB)

and (ILED) given in [DR11a] and [DRSR14]:

1. The span of the Killing vector fields T and Φ is timelike away from the horizon.

2. The wave equation can be separated as discovered by Carter in [Car68]. This sepa-

ration can be carried out rigorously by restricting attention to solutions of the wave

equation that are sufficiently integrable in time.

3. Superradiance and trapping are frequency specific phenomena and can be captured

in disjoint regions of phase space. This means they can be dealt with separately,

circumventing the need to deal with their possibly nontrivial interaction.
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4. The separated wave equation possesses an algebraic structure that allows for mode

stability results to be proved for solutions of the wave equation supported only on a

compact range of frequencies. This was first discovered by Whiting in the celebrated

[Whi89]. Whiting’s result has recently been extended and quantified in [SR13].

It is the quantitative estimates of [SR13] which are necessary in the argument of

[DRSR14].

5. For solutions of the wave equation supported only on a single fixed azimuthal fre-

quency, superradiance and trapping are disjoint in physical space.

6. The metric depends smoothly on the parameter a. This allows for the restriction

to sufficiently integrable solutions of the wave equation by a continuity argument in

that parameter.

Miraculously, all the properties listed above have analogues in the Kerr–Newman case.

Property (4) is proved in Chapter 4. The other properties of the subextremal Kerr–

Newman spacetimes are proved here and used to prove that these spacetimes are stable

with respect to linear scalar perturbations, i.e. (NEB) and (ILED).

3.1.2 Overview

The main results of this chapter are the precise versions of (NEB) and (ILED) for the

subextremal Kerr–Newman spacetimes, stated in Theorem 3.2.1.

The proof of Theorem 3.2.1 begins in §3.3 with the restriction of attention to solu-

tions ψ of the wave equation that are sufficiently integrable. Under this assumption, we

prove (ILED) by first Fourier transforming ψ. This in turn allows for the use of Carter’s

separation of the wave equation.

This separation reduces the problem to analysing a second order linear ODE with

potential V . The behaviour of this potential captures superradiance and trapping. The

analysis of this potential in §3.4 leads to the miraculous confinement of superradiance and

trapping in disjoint regions of phase space. The significance of this fact is that it allows us

to construct bespoke energy multipliers to prove the phase space analogue of (ILED) in

each frequency regime, see §3.5. Furthermore, this phase space version of (ILED) provides

the precise understanding of trapping required to prove (NEB).

There is one further obstruction in that the frequency localised energy current used

to deal with superradiance exploits a large frequency parameter. In the low frequency

superradiant regime, no frequency localised energy current is available, making it difficult

to obtain quantitative estimates directly. In the Kerr case, the mode stability result of

[Whi89] has been recently refined in [SR13]. This refinement allows for quantitative es-

timates for the bounded superradiant frequencies in the Kerr case. The analogous mode
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stability results and quantitative estimates for the Kerr–Newman case are proved in Chap-

ter 4. The low frequency estimates are presented here in §3.5.6.

The (ILED) statement then follows from summing up and inverse Fourier transforming

the estimates of §3.5 and the quantitative mode stability result of Chapter 4. This is

presented in §3.6.

We then remove the integrability assumption by a continuity argument in the param-

eter Q in §3.7. This is analogous to the continuity argument in a for the Kerr case in

[DRSR14]. The proof of the (ILED) estimates under the integrability assumption is es-

sentially the closedness part of the argument. Non-emptiness follows from the analogous

(ILED) and (NEB) results for the Kerr case.

To prove openness we first note in §3.7.1 that it suffices to work with modes of fixed

azimuthal frequency. We then observe that for modes of fixed azimuthal frequency, trap-

ping is disjoint from superradiance in physical space (see Lemma 3.4.5). That is, the

degeneracy in the (ILED) statement is supported strictly outside the ergoregion. We take

advantage of this fact in §3.7.3 to prove a derivative-gaining (ILED)-type estimate. Fi-

nally, we define an interpolating metric and use the derivative-gaining estimate to prove

that the set of subextremal Kerr–Newman spacetimes for which solutions of the wave

equation are sufficiently integrable is indeed open.

In §3.8, the (NEB) statement is extracted from the (ILED) statement by constructing

bespoke physical space energy currents for solutions of the wave equation localised around

fixed degeneracies of the (ILED) estimate.

3.2 Main results

Our main result is a quantitative energy bound and energy decay result for solutions of

(2.2.3) on the full range of subextremal Kerr–Newman spacetimes.

3.2.1 The main results: (NEB) and (ILED)

Theorem 3.2.1. Let a2 + Q2 ≤ K2
0 < M2. Let g = gM,a,Q be a subextremal Kerr–

Newman metric and Σ0 be the Cauchy hypersurface described in 2.2.1. Let ψ be a solution

of (2.2.3). For any δ > 0 and any r+ < Re <∞, there exist constants CRe = CRe(K0,M)

and Cδ = Cδ(K0,M), such that we have the following: For τ ≥ 0 (including the limit

τ →∞), the following estimates hold:

• Nondegenerate energy bound

∫
Στ

JN [ψ] · nΣτ ≤ C
∫

Σ0

JN [ψ] · nΣ0 (NEB)
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• Integrated local energy decay for arbitrary r+ < Re <∞

∫ τ

0

∫
Στ∩{r+≤r≤Re}

(
χ\ JN [ψ] · nΣτ + |ψ − ψ∞|2

)
dt∗ +

∫
H+

JNµ [ψ]nµH+

≤ CRe
∫

Σ0

JN [ψ] · nΣ0 (ILED)

• Integrated local energy decay up to null infinity∫ τ

0

∫
Στ

(
r−1χ\|∇/ψ|2 + r−1−δχ\(Tψ)2 + r−1−δ(Zψ)2 + r−3−δ|ψ − ψ∞|2

)
dt∗

+

∫
H+

JNµ [ψ]nµH+ +

∫
I+

JTµ [ψ]nµI+

≤ Cδ
∫

Σ0

JN [ψ] · nΣ0 , (3.2.1)

where 4πψ∞ = limR→∞
∫

Σ0∩{r=R} r
−2ψ2.

Here χ\ is a cut-off function that vanishes in a neighbourhood of the physical space pro-

jection of the trapped set, see (3.6.2). In fact, a stronger version of (ILED) is proved in

phase space, namely (3.5.11). The constants C and CRe blow up as K0 →M .

We first prove the estimates stated in the theorem under the assumption that ψ is

sufficiently integrable to allow Fourier transform, see §3.3.1 and Theorem 3.3.2. The

integrability assumption allows us to rigorously apply Carter’s separation to the wave

equation (2.1.8) in §3.3.3 and derive the phase space estimate (3.5.11) in §3.5. This

follows the approach taken by Dafermos–Rodnianski for the Kerr case in [DR11a] and

Dafermos–Rodnianski–Shlapentokh-Rothman in [DRSR14].

In proving (3.5.11), we come across a low-frequency obstruction which is overcome

by appealing to the quantitative mode stability result Theorem 4.5.1, which itself is a

generalisation of the analogous Kerr result of [SR13].

The physical space result (ILED) is retrieved from the phase space result in §3.6.

We then remove the integrability assumption by a continuity argument in the param-

eter Q in §3.7. This is analogous to the continuity argument in a for the Kerr case in

[DRSR14]. The continuity argument makes use of the fortuitous fact that trapping occurs

outside the ergoregion for solutions of (2.1.8) supported on fixed azimuthal frequencies

(see Lemma 3.4.5).

Finally, we extract (NEB) from (3.5.11) in §3.8. Extensive use is made of the precise

understanding of trapping in phase space and the feature of the Kerr–Newman geometry

that the span of T and Φ is timelike off the horizon.
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The following higher order statement is useful for various applications, e.g., proving

pointwise estimates.

Theorem 3.2.2. Under the hypotheses of Theorem 3.2.1, for all δ > 0 and all integers

j ≥ 1, there exists a constant C = C(j, δ,M) such that for all τ ≥ 0 (including the limit

τ →∞), the following inequalities hold:

∫ τ

0

∫
Σs

r−1−δ

 ∑
1≤i1+i2+i3≤j−1

(∣∣∣∇/ i1T i2(Z)i3+1ψ
∣∣∣2 +

∣∣∣∇/ i1T i2Zi3ψ∣∣∣2)

+χ\
∑

1≤i1+i2+i3≤j

∣∣∣∇/ i1T i2(Z)i3ψ
∣∣∣2
 ds

+

∫
H+(0,τ)

∑
1≤i≤j−1

JNµ [N iψ]nµH+ +

∫
I+

∑
1≤i≤j−1

JNµ [N iψ]I+

≤ C
∫

Σ0

∑
0≤i≤j−1

JN [N iψ] · nΣ0 , (3.2.2)∫
Στ

∑
0≤i≤j−1

JN [N iψ] · nΣτ ≤ C
∫

Σ0

∑
0≤i≤j−1

JN [N iψ] · nΣ0 . (3.2.3)

Proof. Once Theorem 3.2.1 has been established, this higher order result follows by com-

muting the wave equation with the vector fields T , Φ and Y and applying elliptic estimates,

see [DRSR14, §10] for the details.

3.2.2 Decay results

Once (NEB) and (ILED) have been proved, one can invoke the Dafermos–Rodnianski

method of [DR10b] to obtain more explicit quantitative decay results. The Dafermos–

Rodnianski method makes use of a different foliation to that described in §2.2.1. Let ς0

be a spacelike hypersurface terminating on H+ and asymptoting to null infinity (rather

than i0). The explicit form of such hypersurfaces is not important in the analysis, though

examples may be found in [DR10b] and [DR10a]). A detailed treatment of the Dafermos–

Rodnianski method allowing for a large class of spacetimes (including Kerr–Newman) and

very general asymptotics may be found in [Mos].

The foliation is then defined as before: let ϕτ denote the 1-parameter family of diffeo-

morphisms generated by the vector field T , and define the hypersurfaces

ςτ = ϕτ (ς0).

Corollary 3.2.3. With the foliation described above and under the hypotheses of Theorem

3.2.1, we have, in addition to (NEB) and (ILED),
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• Explicit integrated energy decay∫ 2τ

τ

∫
ςτ∩{r+≤r≤Re}

|∂ψ|2dτ ≤ CReDτ−2 (3.2.4)

• Explicit decay of energy flux∫
ςτ

f(r)(∂t∗ψ)2 + (∂rψ)2 + |∇/ψ|2 ≤ CDτ−2, (3.2.5)

where f(r) is a positive, bounded function, such that f(r) → 0 as r → ∞. The explicit

form of f depends on the choice of ς0 (see [SR13, Lemma D.4] for more details). The

constant D denotes the square of a weighted higher-order Sobolev norm of the initial data

and τ is the time function of the foliation ∪τ≥0ςτ .

The Dafermos–Rodnianski method is a “black box” result. It requires (NEB) and the

nondegenerate form of (ILED) (obtained by commuting with the Killing fields) as input

and outputs (3.2.4) and (3.2.5).

One may obtain the following higher order boundedness and decay results through

commutation arguments (for the details of such arguments, see [Sch12] and [DRSR14,

§10])

Corollary 3.2.4. With the foliation by hypersurfaces ∪τ≥0ςτ and under the hypotheses of

Theorem 3.2.1, for any δ > 0 there exists a constant C = C(K0,M, δ,Re) > 0 such that

sup
ςτ
r|ψ − ψ∞| ≤ C

√
Dτ−

1
2

sup
ςτ∩{r≤Re}

|ψ − ψ∞| ≤ C
√
Dτ−3/2+δ

and sup
ςτ∩{r≤Re}

(|nςτψ|+ |∇ςτψ|) ≤ C
√
Dτ−2+δ

Here D denotes the square of a weighted higher-order Sobolev norm of the initial data and

τ is the time function of the foliation ∪τ≥0ςτ .

3.3 Frequency localisation

3.3.1 Assumptions

Before we begin the proof, we discuss an integrability assumption that allows us to perform

phase space analysis and a criterion that ensures we have good asymptotics near the

horizon and spacelike infinity.
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Integrability assumption

Carter’s separation of the wave equation requires Fourier transform in the t variable but,

a priori, solutions of the wave equation (2.2.3) could grow exponentially in time. We

therefore restrict attention to a class of functions which are assumed to be sufficiently

integrable in the following sense:

Definition 3.3.1. Let a2 + Q2 ≤ K2
0 < M and let g = ga,Q,M . A smooth function

Ψ :M→ R is said to be sufficiently integrable if for every j ≥ 1 and R > r+, we have

sup
r∈[r+,R]

∫ ∞
−∞

∫
S2

∑
0≤i1+i2+i3≤j

∣∣∣∇/ i1T i2 (Z)i3 Ψ
∣∣∣2 +

∣∣∣∇/ i1T i2 (Z∗)i3 �gΨ
∣∣∣2 sin θ dt dθ dφ <∞.

(3.3.1)

Under this assumption, Ψ and its derivatives may be Fourier transformed.

The outgoing condition

We introduce a condition that will imply that solutions of the radial ODE (3.3.12) have

outgoing boundary conditions.

Definition 3.3.2. Let K0 < M and a2 + Q2 ≤ K2
0 . A smooth function Ψ is said to be

outgoing if there exists an ε > 0 such that for all τ ≤ −ε−1,
Ψ = 0 in Στ ∩ {r ≤ r+ + ε},
Ψ = 0 Στ ∩ {r ≥ ε−1}

and �gM,a,QΨ = 0 for sufficiently large r.

(3.3.2)

The outgoing condition ensures that Ψ is supported away from the past event horizon

and away from past null infinity. Heuristically, this means that there is no energy entering

M. We instantiate the class of outgoing, sufficiently integrable functions by applying an

appropriate cut-off ψQ = γψ for ψ satisfying (2.2.3).

Cutting off in time

Let ψ be a solution of (2.2.3). Define

ψQ = γψ, (3.3.3)

where γ is a smooth cut-off function such that

γ(t∗) =

{
0 for t∗ ≤ 0

1 for t∗ ≥ 1.
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3.3. Frequency localisation

This ensures that ψQ will satisfy the outgoing condition (3.3.2) and upon inverse Fourier

transform, we will be able to control ψ in terms of initial data on Σ0. The cost of this is

that ψQ satisfies the inhomogeneous wave equation

�gψQ = F, where F = (�γ)ψ + 2∇µγ∇µψ. (3.3.4)

Note that F is supported in

Sγ := {0 ≤ t∗ ≤ 1} ⊂
⋃

0<t∗<τ

Σt.

This is convenient for controlling various error terms that arise in §3.6 and §3.8 by using

the following

Proposition 3.3.1. Given any τ ≥ 0, we have the following bound on the growth of the

energy of a solution ψ of (2.2.3),∫
Στ

JNµ [ψ]nµΣτ ≤ e
Pτ

∫
Σ0

JNµ [ψ]nµΣ0
(3.3.5)

for some uniform positive constant P .

Proof. Apply the energy identity for N and use (2.2.2), Theorem 2.2.3 and (3.3.4) to

control the spacetime integral of KN [ψ] by the spacetime integral of JNµ [ψ]nµΣ0
and apply

Grönwall’s inequality.

By the reduction argument in [DR10a, §4.6], we can, without loss of generality, assume

further that ψ that arises from smooth, compactly supported data on Σ0. It follows that

ψ is compactly supported on all Στ for τ ≥ 0 and limx→i0 r|ψ(x)|2 = 0.

3.3.2 The conditional version of (ILED)

From here until the end of §3.6 we work with solutions ψ of (2.2.3) that arise from smooth,

compactly supported data on Σ0 and associated ψQ that are assumed to satisfy (3.3.2)

and (3.3.1). Under these assumptions we prove the following conditional theorem.

Theorem 3.3.2. Let a2+Q2 ≤ K2
0 < M2. Let g = gM,a,Q be a subextremal Kerr–Newman

metric and Σ0 be the Cauchy hypersurface described in 2.2.1. Let ψ be a solution of (2.2.3)

arising from smooth, compactly supported data on Σ0. Assume that ψQ defined by (3.3.3)

satisfies (3.3.1) and (3.3.2). For any δ > 0 and any r+ < Re < ∞, there exist constants

CRe = CRe(K0,M) and Cδ = Cδ(K0,M) such that the following estimates hold for all

τ ≥ 0 (including the limit τ →∞):
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• Integrated local energy decay for arbitrary r+ < Re <∞

∫ ∞
0

∫
Στ∩{r+≤r≤Re}

(
χ\|∂ψ|2 + |ψ − ψ∞|2

)
dt∗ ≤ CRe

∫
Σ0

JN [ψ] · nΣ0 . (3.3.6)

• Integrated local energy decay up to null infinity∫ τ

0

∫
Στ

(
r−1χ\|∇/ψ|2 + r−1−δχ\(Tψ)2 + r−1−δ(Zψ)2 + r−3−δ|ψ − ψ∞|2

)
dt∗

+

∫
H+

JNµ [ψ]nµH+ +

∫
I+

JTµ [ψ]nµI+

≤ Cδ
∫

Σ0

JN [ψ] · nΣ0 , (3.3.7)

Here χ\ is a cut-off function that vanishes in a neighbourhood of the physical space pro-

jection of the trapped set, see (3.6.2). In fact, a stronger version of (ILED) is proved in

phase space, namely (3.5.11).

As stated, Theorem 3.3.2 may be read as the improvement of a soft nonquantitative

statement to a uniform quantitative statement. In the case of axisymmetry, the assumption

that ψ is sufficiently integrable function can easily be removed in light of [DR10a] and

[DR11b]. In the general case, it can be seen in the context of a continuity argument.

From this point of view, Theorem 3.3.2 corresponds to the closedness part (see §3.7.4) and

the removal of the restriction (3.3.1) is then openness (see §3.7.3).

3.3.3 Carter’s separation

Carter discovered in [Car68] that the wave equation on a Kerr–Newman background can

be formally separated.

In the Kerr case, the authors of [DR10a], [DR11a] and [DRSR14] used Carter’s sepa-

ration as a geometric framework to derive frequency localised energy estimates. In partic-

ular, the frequency localisation captures trapping and superradiance in disjoint regions of

phase space. This is the key observation in proving (ILED). This new approach highlights

salient properties of individual modes and unites classical mode analysis and the vector

field method, both of which have long histories in the literature. Here we generalise this

approach to the Kerr–Newman spacetimes.
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Oblate spheroidal harmonics

The separation of the wave equation will require the decomposition of ψ into oblate

spheroidal harmonics. Let ξ ∈ R and consider the following elliptic operator acting on the

dense subset of L2(S2) formed by the smooth functions on S2 :

Pξf = −∆/ S2f − (ξ2 cos2 θ)f.

We gather some useful facts from elliptic PDE theory in the following proposition.

Proposition 3.3.3. Let ξ ∈ R. The eigenvalues λ
(ξ)
m` of Pξ are real with corresponding

eigenfunctions of the form S
(ξ)
m`(cos θ)eimφ . These eigenfunctions constitute a complete

orthonormal basis for L2(S2) and satisfy:(
Pξ − λ(ξ)

m`

)
S

(ξ)
m`(cos θ)eimφ = 0 with m, ` ∈ Z, ` ≥ |m|.

The functions S
(ξ)
m`(cos θ) are smooth in ξ and θ and λ

(ξ)
m` are smooth in ξ. Further

λ
(ξ)
m` + ξ2 ≥ |m|(|m|+ 1)

and λ
(ξ)
m` + ξ2 ≥ 2|mξ|.

For ξ = 0, these simplify to the standard spherical harmonics S
(0)
m` = Ym` and λ

(0)
m` =

`(`+ 1).

Proof. See [Are12a, §8.2].

The functions S
(ξ)
m` are known as oblate spheroidal harmonics. Turning to the Kerr–

Newman geometry, we will apply Proposition 3.3.3 with ξ = aω, where ω is the phase

space variable associated to Fourier transforming ψQ in time.

Performing the separation

Let ψ be and ψQ be as in Theorem 3.3.2. Since ψQ satisfies the integrability assumption

(3.3.1), it may be Fourier transformed in t. This allows us to separate the wave equation

(2.1.8) by first Fourier transforming �gψQ = F in t and expanding in terms of the oblate

spheroidal harmonics. This leads to the following decomposition:

ψQ(t, r, θ, φ) =

Fourier expansion︷ ︸︸ ︷
1√
2π

∫ ∞
−∞

∑
m,`>|m|

R
(aω)
m` (r) · S(aω)

m` (cos θ)eimφ

︸ ︷︷ ︸
Oblate spheroidal expansion

e−iωt dω (3.3.8)
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where S
(aω)
m` (cos θ) and λ

(aω)
m` are the eigenfunctions and eigenvalues of Paω respectively

and

R
(aω)
m` (r) =

∫
S2

ψ̂Q(ω, r, θ,m) · S(aω)
m` (cos θ)eimφdVS2 . (3.3.9)

Moreover, R
(aω)
m` (r) satisfies the radial equation[

∂r(∆∂r)− ω2

(
a2 − (a2 + r2)2

∆

)
+
a2m2

∆

−2amω(2Mr −Q2)

∆
− λ(aω)

m`

]
R

(aω)
m` = F

(aω)
m` (3.3.10)

in the sense of L2(dω)`2(m, `). It is convenient to work with the coordinate r∗. Note that

in this coordinate system

{t, r∗, θ, φ} = R× R× [0, π]× [0, 2π),

whereas Boyer–Lindquist coordinate patch was only valid (modulo degeneration of angular

coordinates) in the range r ∈ (r+,∞).

We now define

u
(aω)
m` (r∗) =

√
r2 + a2R

(aω)
m` (r). (3.3.11)

Writing (3.3.10) in the new coordinates, we have the radial Carter ODE :

d2

(dr∗)2
u

(aω)
m` (r∗) +

(
ω2 − V (aω)

m` (r)
)
u

(aω)
m` = H

(aω)
m` , (3.3.12)

where equality is meant in the sense of L2(dω)`2(m, `) and

V
(aω)
m` (r) =

2amω(2Mr −Q2)− a2m2 + ∆ · Λ(aω)
m`

(r2 + a2)2

+
∆(3r2 + a2 +Q2 − 4Mr)

(r2 + a2)3
− 3∆2r2

(r2 + a2)4
,

H
(aω)
m` (r) =

∆F
(aω)
m` (r)

(r2 + a2)1/2

and Λ
(aω)
m` = λ

(aω)
m` + a2ω2,

which obeys Λ
(aω)
m` ≥ |m|(|m|+ 1) (3.3.13)

and Λ
(aω)
m` ≥ 2|amω|. (3.3.14)

Note that even though R
(aω)
m` is complex-valued, the potential V

(aω)
m` is real.
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Physical space–Fourier space identities

The following identities are immediate consequences of Parseval’s identity and Plancherel’s

identity. They form the bridge between frequency-localised estimates and physical space

estimates.

For any fixed r > r+:∫ +∞

−∞

∑
m,`

∣∣∣u(aω)
m`

∣∣∣2dω =

∫ +∞

−∞

∫
S2

(ψQ)2 · (r2 + a2) dt dgS2 ,

∫ +∞

−∞

∑
m,`

ω2
∣∣∣u(aω)
m`

∣∣∣2dω =

∫ +∞

−∞

∫
S2

(TψQ)2 · (r2 + a2) dt dgS2 ,

∫ +∞

−∞

∑
m,`

∣∣∣u(aω)
m`

′∣∣∣2dω =

∫ +∞

−∞

∫
S2

(
∂r∗
(√

r2 + a2 · ψQ
))2

dt dgS2 ,

and∫ +∞

−∞

∑
m,`

Λ
(aω)
m`

∣∣∣u(aω)
m`

∣∣∣2dω =

∫ +∞

−∞

∑
m,`

(λ
(aω)
m` + a2ω2)

∣∣∣u(aω)
m`

∣∣∣2dω
=

∫ +∞

−∞

∫
S2

(−∆/ S2 − a2ω2 cos2 θ + a2ω2)|u|2dω dgS2

=

∫ +∞

−∞

∫
S2

(|∇/ S2u|2 + a2ω2 sin2 θ|u|2)dω dgS2

=

∫ +∞

−∞

∫
S2

(|∇/ S2ψQ|2 + a2 sin2 θ(TψQ)2) · (r2 + a2) dt dgS2 ,

The identities above immediately imply that for any fixed r > r+:∫ +∞

−∞

∫
S2

(ψQ)2 · r2 dt dgS2 ≤
∫ +∞

−∞

∑
m,`

∣∣∣u(aω)
m`

∣∣∣2dω,
∫ +∞

−∞

∫
S2

(TψQ)2 · r2 dt dgS2 ≤
∫ +∞

−∞

∑
m,`

ω2
∣∣∣u(aω)
m`

∣∣∣2dω,
∫ +∞

−∞

∫
S2

|∇/ψQ|2r2 dt dgS2 ≤
∫ +∞

−∞

∑
m,`

Λ
(aω)
m`

∣∣∣u(aω)
m`

∣∣∣2dω
and

∫ +∞

−∞

∫
S2

(∂r∗ψQ)2 · r2 dt dgS2 ≤
∫ +∞

−∞

∑
m,`

2
∣∣∣u(aω)
m`

′∣∣∣2 + 8
∣∣∣u(aω)
m`

∣∣∣2dω.
Boundary conditions

In view of the cut-off γ, the solution ψQ of (3.3.4) satisfies (3.3.2).

Recall that K = T + a
2Mr+−Q2 Φ is the null generator of the future horizon H+. Since
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∂r∗ → K as r∗ → −∞ and ψQ is smooth at r = r+, Plancherel implies the following

asymptotic condition on u
(aω)
m` (r∗) near the horizon:

∫ ∞
−∞

∑
m,`

∣∣∣∣(u(aω)
m` )′(r∗) + i

(
ω − am

2Mr+ −Q2

)
u

(aω)
m` (r∗)

∣∣∣∣2dω (3.3.15)

is smooth in r and tends to 0 as r → r+.

A similar argument shows that (3.3.2) implies the following asymptotic condition on

u
(aω)
m` (r∗) for large r (see [DRSR14, §5.3-5.4] for the details): There exists a sequence

{rn}∞n=1 such that rn →∞ and

lim
n→∞

∣∣∣(u(aω)
m` )′(rn)− iωu(aω)

m` (rn)
∣∣∣ = 0 for almost every ω. (3.3.16)

Here, and in all that follows, u′ denotes a derivative with respect to r∗.

Almost everywhere regularity

The analysis that follows is focused on (3.3.12), which holds for u
(aω)
m` (r∗) ∈ L2(dω)`2(m, `).

It is much more convenient to consider smooth solutions u
(aω)
m` of (3.3.12) satisfying the

boundary conditions (3.3.15) and (3.3.16).

Definition 3.3.3. Let ψQ satisfy (3.3.1) and (3.3.2) and define u
(aω)
m` (r∗) by (3.3.11) and

(3.3.9). Define Ω ⊂ R to be the set of frequencies ω such that for all m and `, H
(aω)
m`

is smooth and u
(aω)
m` is a smooth solution of (3.3.12) satisfying the boundary conditions

(3.3.15) and (3.3.16).

The following lemma allows for the reduction to classical solutions.

Lemma 3.3.4. The set {ω ∈ R} \ Ω has measure zero.

Proof. See [DRSR14, Lemma 5.4.1].

Since we will integrate over ω ∈ R to prove the physical space (ILED) estimate, it

suffices to prove frequency-localised energy estimates hold for almost every ω. Therefore,

we may restrict attention to smooth solutions u
(aω)
m` of (3.3.12) by considering ω ∈ Ω.

3.3.4 Frequency-localised energy current templates

We now turn our attention to the task of generating frequency-localised estimates. That

is, we will prove energy estimates for each u
(aω)
m` with ω ∈ Ω. To do this, we need frequency-

localised analogues of the energy currents of §2.2.3. In this section, templates for such
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currents are described. Note that the dependence of u, H and V on aω,m and ` is

suppressed in this section. Let us also reiterate the warning that we use the notation

f ′ := df
dr∗ .

The frequency-localised conserved energy currents

The frequency-localised analogue of the conserved energy current JTµ [ψ] is

QT [u] = ωIm[u′ū]. (3.3.17)

From this we compute

Q′T [u] = ωIm[u′′ū+
∣∣u′∣∣2]

= ωIm[Hū− (ω2 − V )|u|2]

= ωIm[Hū].

The conservation identity for the QT current is∫ ∞
r+

Q′T [u](r) dr = QT [u](∞)−QT [u](r+). (3.3.18)

The boundary conditions (3.3.15) and (3.3.16) imply that

QT [u](r+) = −ω
(
ω − am

2Mr+ −Q2

)
|u(r+)|2 and QT [u](∞) = ω2|u(∞)|2, (3.3.19)

where

ω+ :=
am

2Mr+ −Q2
. (3.3.20)

Clearly, QT [u](∞) ≥ 0. Denoting

G☼ := {(ω,m) : ω(ω − ω+) < 0} , (3.3.21)

we have non-negativity of −QT [u](r+) for (ω,m) /∈ G☼. We refer to G☼ as the superradiant

regime. Thus the bulk term on the left hand side of (3.3.18) is positive in the non-

superradiant regime.

Since we assume a ≥ 0, (3.3.21) is equivalent to

G☼ = {(ω,m) : mω ∈ (0,mω+)} . (3.3.22)

We will use this simpler condition when discussing superradiance. Recall that the assump-
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tion a ≥ 0 is made with no loss of generality, see 2.2.2.

The frequency-localised analogue of the conserved energy current JKµ [ψ] is

QK [u] = (ω − ω+)Im[u′ū]. (3.3.23)

From this we compute

Q′K [u] = (ω − ω+)Im[Hū].

The boundary conditions (3.3.15) and (3.3.16) imply that

QK [u](r+) = −
(
ω − am

2Mr+ −Q2

)2

|u(r+)|2 and QK [u](∞) = ω(ω − ω+)|u(∞)|2.
(3.3.24)

The frequency-localised virial currents

The frequency-localised analogues of virial currents JX,wµ [ψ] (where X is in the ∂r∗ direc-

tion and w is some function) are naturally constructed from combinations of the following

templates: for arbitrary piecewise differentiable f(r∗), h(r∗) and y(r∗), define

Qf0 [u] = f [
∣∣u′∣∣2 + (ω2 − V )|u|2] + f ′Re(u′ū)− 1

2
f ′′|u|2, (3.3.25)

Qh1 [u] = hRe(u′ū)− 1

2
h′|u|2, (3.3.26)

Qy2[u] = y[
∣∣u′∣∣2 + (ω2 − V )|u|2]. (3.3.27)

Note that Qf0 = Qf
′

1 +Qf2 . We compute

(Qf0)′ = 2f ′
∣∣u′∣∣2 − fV ′|u|2 − 1

2
f ′′′|u|2 + 2fRe(u′H̄) + f ′Re(uH̄),

(Qh1)′ = h[
∣∣u′∣∣2 + (V − ω2)|u|2]− 1

2
h′′|u|2 + hRe(uH̄),

(Qy2)′ = y′[
∣∣u′∣∣2 + (ω2 − V )|u|2]− yV ′|u|2 + 2yRe(u′H̄),

where we have made repeated use of the Carter ODE (3.3.12) and the simple identity

2Re(wz̄) = wz̄ + w̄z.
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The frequency-localised red-shift current

The frequency-localised analogue of the red-shift current JNµ is

Qzred = z
[∣∣u′ + i (ω − ω+)u

∣∣2 +
(
ω2 − V − |ω − ω+|2

)
|u|2
]
. (3.3.28)

Recall that ∆ = 0 at r = r+. This allows us to characterise ω+ by

ω2 − V (r+) = |ω − ω+|2. (3.3.29)

Coupling this to the boundary conditions (3.3.15) and (3.3.16) we have

∣∣u′(r+)
∣∣2 = (ω − ω+)2|u(r+)|2 (3.3.30)

and
∣∣u′(∞)

∣∣2 = ω2|u(∞)|2. (3.3.31)

In §3.5.2, the function z is chosen in such a way that z → ∞ as r → r+ to produce a

finite, non-zero boundary term for Qzred.

Let Ṽ = V + |ω − ω+|2 − ω2. Then Ṽ (r+) = 0 and Ṽ ′(r) = V ′(r). Note that we are

referring to the value of r∗ for which r = r+. We compute

(Qzred)
′ = z′

∣∣u′ + i (ω − ω+)u
∣∣2 − (zṼ )′|u|2 + 2zRe

(
(u′ + i(ω − ω+)u)H̄

)
.

3.4 Properties of the potential

In §3.5, we will use the templates of §3.3.4 to derive frequency localised energy estimates

analogous to (ILED). The proof of these estimates hinges on the properties of the potential

V in the Carter ODE (3.3.12).

This argument in the Kerr case is due to Dafermos and Rodnianski and was first given

in the survey paper [DR11a]. The analysis of the potential V is extended to the Kerr–

Newman case here. In particular, the miraculous fact that trapping and superradiance

occur in disjoint regions of phase space in the Kerr case carries over to the Kerr–Newman

case. Furthermore, for solutions of (2.2.3) supported only on a single azimuthal frequency,

superradiance and trapping are disjoint in physical space as well. These properties of the

subextremal Kerr–Newman spacetimes are extremely fortunate as there is no a priori

reason to expect them to follow from the Kerr case.

Consider the potential V (r) for r ≥ r+. We begin by decomposing V into its frequency
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dependent and independent parts:

V = V0 + V1,

where V0 =
2amω(2Mr −Q2)− a2m2 + ∆Λ

(r2 + a2)2
(3.4.1)

and V1 =
∆

(r2 + a2)4
((3r2 − 4Mr + a2 +Q2)(r2 + a2)− 3∆r2)

=
∆

(r2 + a2)4
(a2∆ + 2Mr3 − 2Q2r2)

>
∆

(r2 + a2)4
(a2∆ + 2r2(M2 −Q2)). (3.4.2)

We immediately see that V1 ≥ 0. We will focus mainly on proving properties of V0 and

show that these properties carry over (with slight perturbation) to V .

3.4.1 Critical points of the potential

Lemma 3.4.1. For ω ∈ Ω and any m, Λ:

1. The potential function V0 has at most one maximum, r0
max, and one minimum, r0

min,

on the interval (r+,∞).

2. If these extrema are achieved, r0
min < r0

max.

3. For all sufficiently large Λ, the value r0
max is bounded uniformly from above provided

that either mω ≥ 0 or a2ω2 ≤ CΛ for some constant C. In the latter case the bound

for r0
max may depend on C.

Proof. Compute

d

dr
V0 =

4amωM

(r2 + a2)2
+

(4r)
(
a2m2 − 2amω(2Mr −Q2)

)
(r2 + a2)3

+
Λ

(r2 + a2)3

[
2(r −M)(r2 + a2)− 4∆r

]
.

So

(r2 + a2)3 d

dr
V0 = −12amωMr2 + 4a2m2r + 4amω[Q2r +Ma2]

−2Λ
[
r3 − 3Mr2 + (2Q2 + a2)r + a2M

]
. (3.4.3)
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Compute

d

dr

[
(r2 + a2)3 d

dr
V0

]
= −24amωMr + 4a2m2 + 4amωQ2

−2Λ
[
3r2 − 6Mr + (2Q2 + a2)

]
.

Letting σ =
amω

Λ
,

d

dr

[
(r2 + a2)3 d

dr
V0

]
= −6Λ

[
r2 − 2Mr + 4Mrσ − 2

3

(
Q2σ +

a2m2

Λ

)
+

1

3
(a2 + 2Q2)

]
.

The zeros of this function lie at

r1,2 = M(1− 2σ)±
√
M2(1− 2σ)2 − 1

3

[
a2(1− 2m2

Λ
) + 2Q2(1− σ)

]
.

We now consider the cases σ ≥ 0 and σ < 0 separately.

Case σ ≥ 0 : In this case r2 < M < r+ so the only point where d
dr

[
(r2 + a2)3 d

drV0

]
can

vanish on (r+,∞) is

r1 = M(1− 2σ) +

√
M2(1− 2σ)2 − 1

3

[
a2(1− 2m2

Λ
) + 2Q2(1− σ)

]
.

Observe that Λ > 0 by Proposition 3.3.3, so (3.4.3) implies that

(r2 + a2)3 d

dr
V0 → −∞ as r →∞.

Since r1 is the only root of d
dr

[
(r2 + a2)3 d

drV0

]
and (r2 + a2)3 and its derivative are pos-

itive on (r+,∞), d
drV0 has at most two zeros r0

min and r0
max, which must be the extrema

corresponding to their subscripts since

d2

dr2
V0(r0

max) < 0 and
d2

dr2
V0(r0

min) > 0.

Further, r0
min < r0

max.

If it turns out that r1 /∈ R, then d
dr

[
(r2 + a2)3 d

drV0

]
is negative for all r ≥ r+, so d

drV0

can vanish at only one point, where V0 must attain a maximum.
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Case σ < 0: In this case we need to do some work to show that r2 < M . We factorise

r2 = M(1− 2σ)

1−
√

1− a2(1− 2m2

Λ ) + 2Q2(1− σ)

3M2(1− 2σ)2

 .
Since σ < 0, a2 +Q2 < M2 and Λ > m2:∣∣∣∣∣ a2(1− 2m2

Λ )

3M2(1− 2σ)2

∣∣∣∣∣ < 1

3
and

∣∣∣∣ 2Q2(1− σ)

3M2(1− 2σ)2

∣∣∣∣ < 2

3
.

Also, for 0 ≤ x < 1,
√

1− x > 1− x. Thus 1−
√

1− x < x. This implies

r2 < M(1− 2σ)

[
a2(1− 2m2

Λ ) + 2Q2(1− σ)

3M2(1− 2σ)2

]

=

[
a2(1− 2m2

Λ ) + 2Q2(1− σ)

3M(1− 2σ)

]

<
a2 + 2Q2

3M
<

3M2

M
.

So r2 < M and we may argue as in the previous case.

For the last statement of the lemma, we observe that as r → ∞, the behaviour of

(r2 + a2)3 d
drV0 is governed by (6Λ−12amωM)r2−2Λr3. For (6Λ−12amωM)r2−2Λr3 = 0,

r = 3M

(
1− 6amω

Λ

)
.

So if mω ≥ 0 or a2ω2 ≤ CΛ this quantity is bounded, consequently bounding r0
max.

3.4.2 Superradiant frequencies are not trapped

Lemma 3.4.2. For ω ∈ Ω and any m, Λ:

V (r+) ≤ ω2

with equality only for ω = ω+. In particular, this implies

V0(rmin) ≤ ω2.
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Proof. Recall that ∆ = r2
+ − 2Mr+ + a2 +Q2 = 0 on the horizon and compute

ω2 − V (r+) = ω2 − 2amω(2Mr+ −Q2)− a2m2

(r2
+ + a2)2

= ω2 − 2amω(2Mr+ −Q2)− a2m2

(2Mr+ −Q2)2

=
ω2(2Mr+ −Q2)2 − 2amω(2Mr+ −Q2) + a2m2

(2Mr+ −Q2)2

=

(
ω(2Mr+ −Q2)− am

)2
(2Mr+ −Q2)2

,

which is manifestly non-negative.

This result means that if rmin exists, it can only be ‘trapped’ for the threshold value

of the superradiant regime:

ω = ω+ =
am

2Mr+ −Q2
.

By Lemma 3.4.1, For rmin to exist, it is necessary that d
drV (r+) < 0. The next lemma

shows that this is not the case for superradiant frequencies. Therefore, in the superradiant

regime, V0 has only a maximum (rmin is absent).

Lemma 3.4.3. Let ω ∈ Ω. If mω ≤ am2

2Mr+ −Q2
, then there exists a c > 0 such that

d

dr
V (r+) ≥ d

dr
V0(r+) ≥ cΛ > 0.

Proof. To show the first inequality it suffices that

d

dr
V1(r+) =

2r2
+(r+ −M)(Mr+ −Q2)

(r2
+ + a2)

> 0. (3.4.4)

We now show that d
drV0(r+) is positive. Noting that r2

+ + a2 = 2Mr+ −Q2, we have

(r2
+ + a2)3 d

dr
V0(r+) = (4amωM)(2Mr+ −Q2) + 4a2m2r+ − 8amrω(2Mr+ −Q2)

+2Λ(r+ −M)(2Mr+ −Q2). (3.4.5)
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Using the superradiant condition we have

(2Mr+ −Q2)2 d

dr
V0(r+) = 4amωM + 4amωr+

−8amωr+ + 2Λ(r+ −M)

= 4amω(M − r+) + 2Λ(r+ −M)

= 2(r+ −M)(Λ− 2amω)

≥ 2(r+ −M)

(
Λ− 2a2m2

2Mr+ −Q2

)
≥ 2(r+ −M)

(
(2Mr+ −Q2)Λ− 2a2m2

2Mr+ −Q2

)
> 2m2(r+ −M)

(
2Mr+ −Q2 − 2a2

2Mr+ −Q2

)
where we have used Proposition 3.3.3. Positivity holds since r+ > M .

Corollary 3.4.1. The conclusion of Lemma 3.4.3 can be extended to the range

amω ≤ a2m2

2Mr+ −Q2
+ αΛ, ω ∈ Ω, (3.4.6)

for sufficiently small constant α.

Proof. A small negative term just appears in our estimates:

(r2
+ + a2)2 d

dr
V0(r+) = 4amωM + 4amωr+ − 4αΛr+ − 8amωr+ + 2Λ(r+ −M)

= 4amω(M − r+) + 2Λ(r+ −M)− 4αΛr+

= 2(r+ −M)(Λ− 2amω)− 4αΛr+.

Using (3.4.6) we have

d

dr
V0(r+) ≥ 2(r+ −M)

(r2
+ + a2)2

(
Λ− 4αΛr+ −

2a2m2

2Mr+ −Q2

)
− (4αΛr+)

(r2
+ + a2)

≥ 2(r+ −M)

(r2
+ + a2)2

(
(2Mr+ −Q2)(1− 4αr+)Λ− 2a2m2

2Mr+ −Q2

)
− (4αΛr+)

(r2
+ + a2)

> 2m2(r+ −M)

(
(2Mr+ −Q2)(1− 4αr+)− 2a2

2Mr+ −Q2

)
− (4αΛr+)

(r2
+ + a2)

,

so choosing α small enough we retain positivity.

The next result mathematically embodies the miraculous disunion of the superradiant

and trapped frequencies.

50



3.4. Properties of the potential

Lemma 3.4.4. For all a2 + Q2 < M2, ω ∈ Ω and 0 ≤ mω ≤ mω+ + αΛ there exists a

k > 1 such that

ω2 − V (rmax) < ω2 − V0(r0
max) <

∆

2(r2
+ + a2)2

[
m2 − kΛ

]
< 0. (3.4.7)

Proof. It suffices to prove the lemma with α = 0.

We first consider the case when m
(

am
2Mr+−Q2 − ω

)
≤ ε |m|

√
Λ. In this case we have

ω2 − V0(r+) =

(
ω − am

2Mr+ −Q2

)2

≤ ε2Λ.

Combining this with Corollary 3.4.1, we have

V0(r+ + δ)− ω2 ≥ bΛ

for some sufficiently small δ > 0 and even smaller ε.

In the case where ω2 ≤ εΛ, we have

V0(r)− ω2 ≥ Λ

r2
+O

(
Λ

r3

)
− εΛ as r →∞.

So taking r̃ sufficiently large and letting ε be sufficiently small,

V0(r̃)− ω2 ≥ bΛ.

Finally, consider the case where m
(

am
2Mr+

− ω
)
> ε |m|

√
Λ and ω2 > εΛ.

Pick r0 such that

mω =
am2

2Mr0 −Q2
.

Then ω(2Mr0 −Q2) = am.

In this case, r0 will satisfy r0 ∈ [r+ + δ,R] for some δ > 0 and R <∞.
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Now compute

ω2 − V0(r0) =

[
(r2

0 + a2)2ω2 − 2amω(2Mr0 −Q2) + a2m2 −∆Λ
]

(r2
0 + a2)2

=

[
(r2

0 + a2)2ω2 − ω2(2Mr0 −Q2)2 −∆Λ
]

(r2
0 + a2)2

=

[
ω2[(r2

0 + a2)2 − (2Mr0 −Q2)2]−∆Λ
]

(r2
0 + a2)2

=
∆

(r2
0 + a2)2

[
ω2(r2

0 + a2 + 2Mr0 −Q2)− Λ
]

=
∆

(r2
0 + a2)2

[
a2m2(r2

0 + a2 + 2Mr0 −Q2)

(2Mr0 −Q2)2
− Λ

]
<

∆

(r2
0 + a2)2

[
a2m2r2

0

(2Mr0 −Q2)2
(1 +

a2

r2
0

+
2M

r0
)− Λ

]
.

But

(2Mr0 −Q2)2 = 4M2r2
0 − 4Q2Mr0 +Q4

> 4M2r2
0 − 4Q2r2

0.

Since a2 < r+ − δ < r0,

ω2 − V0(r0) <
∆

(r2
0 + a2)2

[
a2m2

4(M2 −Q2)
(1 +

a2

r2
0

+
2M

r0
)− Λ

]
<

∆

(r2
0 + a2)2

[
m2(1− δ)− Λ

]
which is negative by Proposition 3.3.3.

It is immediate that

ω2 < V0(r0
max) ≤ V (r0

max) ≤ V (rmax)

so that the characterisation above of the disunion of the superradiant and trapped fre-

quencies holds for the full potential.

3.4.3 Trapping for fixed azimuthal mode solutions

The following lemma shows that if we fix the azimuthal frequency m, then trapping occurs

outside the ergoregion.

Lemma 3.4.5. Let λ2 be a potentially small parameter and let λ1 and ω1 be potentially

large parameters, all of which are to be determined in §3.5. Recall that σ = amω
Λ . Let m
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be fixed, ω ∈ Ω and let (ω,Λ) lie in the trapped frequency regime

Fm\ =
{

(ω,Λ) : |ω| > ω1, λ2Λ ≤ ω2 ≤ λ−1
2 Λ

}
.

There exists a constant c > 0 such that the conditions |σ| ≤ c, m2 ≤ cΛ, c−1 ≤ Λ and

a2 +Q2 ≤ K2
0 < M2 imply that r0

max > (1 +
√

2)M .

Proof. We showed in the proof of Lemma 3.4.1 that

(r2 + a2)3 d

dr
V0 = −12amωMr2 + 4a2m2r + 4amω[Q2r +Ma2]

−2Λ
[
r3 − 3Mr2 + (2Q2 + a2)r + a2M

]
By the same lemma, r0

max is the largest critical point of V0, so it suffices to show that
d
drV0(r = (1 +

√
2)M) > 0.

We compute

Λ−1 (r2 + a2)3 d

dr
V0|(r=(1+

√
2)M)

= −12σM2(1 +
√

2)2 + 4
a2m2

Λ
(1 +

√
2)M + 4σM [Q2(1 +

√
2) + a2]

−2
[
(1 +

√
2)3M3 − 3M2(1 +

√
2)2 + (2Q2 + a2)(1 +

√
2)M + a2M

]
= 4σ

[
−3M2(1 +

√
2)2 +MQ2(1 +

√
2) +Ma2

]
+ 4

a2m2

Λ
(1 +

√
2)M

−2
[
(7 + 5

√
2− 3(3 + 2

√
2))M3 + (Q2 + a2)(2 +

√
2)M

]
= 2(2 +

√
2)M

[
M2 − (Q2 + a2)

]
+ 4

a2m2

Λ
(1 +

√
2)M

+4σM
[
−3M(3 + 2

√
2) +Q2(1 +

√
2) + a2

]
.

It is only the σ term which may be non-positive, so choosing c small enough completes

the proof. Since m is fixed and ω2 ∼ Λ, σ ∼ 1√
Λ

. Hence the choice of c can be made by

ensuring that Λ is large enough.

Remark The ergoregion is confined to
{
r < 2M < (1 +

√
2)M

}
. Thus the lemma above

implies that trapping occurs outside the ergoregion for modes of fixed azimuthal frequency.

This will be important in the continuity argument, see Lemma 3.7.4.
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3.5 Frequency localised estimates

In this section we will construct frequency localised energy estimates that, upon summa-

tion and inverse Fourier transform, will yield the required physical space energy estimate

(ILED). To do this, it is useful to exploit the frequency specific behaviour of the potential

V obtained in §3.4. We begin by partitioning phase space into disjoint regimes in which the

potential displays certain distinctive properties. In particular, we deal with superradiance

and trapping separately in phase space.

3.5.1 Partitioning the frequency ranges

Let λ2 be a potentially small parameter and let λ1 and ω1 be potentially large parameters,

all of which are to be determined but are subject to the constraint

λ2λ1 = ω2
1. (3.5.1)

This constraint will be enforced by choosing λ1, and ω1 as large as required and λ2 as

small as required, then either enlarging λ1 or shrinking λ2 (by a finite amount) to satisfy

(3.5.1), see §3.5.7.

We decompose phase space parametrised by the frequencies ω, m and Λ as follows :

Unbounded frequencies

F] = {(ω,m,Λ) : |ω| > ω1 or Λ > λ1}

• High superradiant frequencies

F☼ =

{
(ω,m,Λ) ∈ F] : Λ ≥

(
a

2Mr+ −Q2
+ α

)−2

ω2
1, mω ∈ [0,mω+ + αΛ]

}

• Trapped frequencies

F\ =
{

(ω,m,Λ) ∈ F] : |ω| > ω1, λ2Λ ≤ ω2 ≤ λ−1
2 Λ, mω /∈ [0,mω+ + αΛ]

}
• Time dominated frequencies

F� =
{

(ω,m,Λ) ∈ F] : |ω| > ω1, Λ < λ2ω
2, mω /∈ [0,mω+ + αΛ]

}
• Angular dominated frequencies

F] =
{

(ω,m,Λ) ∈ F] : Λ > λ−1
2 ω2

1, ω2 < λ2Λ, mω /∈ [0,mω+ + αΛ]
}
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Bounded frequencies

F[,full = {(ω,m,Λ) : |ω| ≤ ω1, 0 ≤ Λ ≤ λ1}

• Near-stationary frequencies

F[,1 =
{

(ω,m,Λ) ∈ F[,full : |ω| ≤ ω0 � 1, 0 ≤ Λ ≤ λ1

}
• Non-stationary frequencies

F[,2 =
{

(ω,m,Λ) ∈ F[,full : ω0 < |ω| ≤ ω1, Λ ≤ λ1

}
The following lemma shows that the partitioning above indeed covers the whole of

phase space.

Lemma 3.5.1. For all a2 + Q2 < M2 and all (ω,m,Λ) satisfying (3.3.13) and (3.3.14),

for all choices of parameters ω1, λ2, the triple (ω,m,Λ) lies in exactly one of the frequency

ranges F☼, F\, F�, F], or F[,full.

Proof. Observe that

|ω| ≥ ω1 and mω ∈
(

0,
am2

2Mr+ −Q2
+ αΛ

]
⇒ Λ ≥

(
a

2Mr+ −Q2
+ α

)−2

ω2
1.

Also note that the constraint (3.5.1) ensures that Λ ≤ λ−1
2 ω2

1 ⇒ Λ ≤ λ1. This in turn

implies that ω2 ≤ λ2Λ⇒ ω2 < ω2
1.

As discussed in §3.3.3, we restrict attention to frequencies ω ∈ Ω. For these frequencies,

the solutions u
(aω)
m` of (3.3.12) are smooth and satisfy the boundary conditions (3.3.15) and

(3.3.16).

The energy estimates for each frequency regime are presented below. The derivations

of the estimates are based on those for the Kerr case. Wherever details are omitted they

may be found in [DR11a, §11] for the high frequency range F] and [DRSR14, §8.7] for the

low frequency range F[.

3.5.2 High superradiant frequencies F☼
This is a large frequency regime in which superradiance occurs.

Proposition 3.5.1. Let ω ∈ Ω and (ω,m,Λ) ∈ F☼ and suppose 0 ≤ a2 +Q2 ≤ K2
0 < M2.

Let u be a smooth solution of (3.3.12) with boundary conditions (3.3.15) and (3.3.16).
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Taking λ1, R∞ and E all sufficiently large, there exist functions f , h, ζ satisfying the

uniform bounds

|f |+ ∆−1r2
∣∣f ′∣∣+ |h|+ |ζ| ≤ B,

f = 1, h = 0, ζ = 0 for r∗ ≥ R∗∞,

and positive frequency independent constants A and Γ such that, for sufficiently small

b > 0,

b

(∫ Re

r+

(
∣∣u′∣∣2 + (ω2 + Λ)|u|2dr∗) +

∫ rmax

r+

|u′ + i(ω − ω+)u|2
r − r+

dr∗
)

+b(ω2 + Λ)
[
|u|2|r=r+ + |u|2|r=∞

]
≤ −

∫ ∞
r+

(
f ′ +Ah

)
Re(uH̄) + 2fRe(u′H̄)− 2Γ

ζ

Ṽ
Re(u′ + i(ω − ω+)H̄)dr∗

+

∫ ∞
r+

EωIm(uH̄)dr∗. (3.5.2)

The key to the proof of this estimate is that trapping does not occur in this frequency

range, see Lemma 3.4.4. Before we proceed, we must take into account the frequency

independent part of the potential V1.

Lemma 3.5.2. In the unbounded frequency regime F], if the potential V0 attains a maxi-

mum at r0
max, then the full potential V attains a maximum at rmax,

∣∣rmax − r0
max

∣∣ ≤ cλ−1
1

Proof. Note that r0
max is uniformly bounded above and away from r+ by Lemma 3.4.1.

(The lower bound follows from the fact that the maximum must lie beyond the value r1

defined in the proof of Lemma 3.4.1). That is,

c ≤ r0
max − r+ ≤ C

where c and C do not depend on Λ. We first show that V has a critical point:

We know that d
drV0 = 0 at r0

max > r1 + c1 and (r2 + a2)3 d
drV0 → −∞ as r → ∞. In

light of the bound: ∣∣∣∣ ddrV1

∣∣∣∣ ≤ Cr−4,

we see that d
drV0 must eventually dominate d

drV1, so that d
drV = 0 at some rmax. Further-

more, this rmax is also bounded above.

We now locate the maximum of V :
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Since r0
max > r1 + c1, we can bound

d

dr
V0 > cλ1 in [rmin + δ, r1]

So for λ1 large enough,

d

dr
V0 > cλ1 − Cr−4 > 0 in [rmin + δ, r1].

Thus
d

dr
V > cλ1 > 0 in [rmin + δ, r1].

We can find rc ∈ (r1, r
0
max) such that

d

dr
V0 >

cλ1

2
in [rmin + δ, rc]

and
d

dr

(
(r2 + a2)3 d

dr
V0(r)

)
≤ −cΛr2 in [rc,∞).

Applying the mean value theorem, there exists an rd such that∣∣∣∣ ddr
(

(r2
d + a2)3 d

dr
V0(rd)

)∣∣∣∣∣∣rmax − r0
max

∣∣ = (r2
d + a2)3

∣∣∣∣ ddrV (rmax)− d

dr
V (r0

max)

∣∣∣∣
Now since rmax and r0

max are both greater than r1, we have

∣∣rmax − r0
max

∣∣ ≤ c

λ1
.

This bound on the location of rmax also tells us that a maximum occurs there.

Proof of Proposition 3.5.1. Recall from Proposition 3.3.3 that Λ ≥ |m|(|m|+ 1). Combin-

ing this with the superradiant condition

mω ≤ am2

2Mr+ −Q2
,

we have

ω2 ≤
(

am

2Mr+ −Q2

)2

<

(
a

2Mr+ −Q2

)2

Λ.

Also, ω2 + Λ > λ1 in F☼, so we conclude that Λ must be very large in this regime. Thus

a bound on |u′|+ Λ|u|2 will suffice.

We know from Lemmas 3.4.3 and 3.5.2, that in F☼, the potential V has only one critical

point, a maximum at rmax, uniformly bounded above and away from r+ by Lemma 3.4.1.
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Now that we understand the behaviour of the potential in this regime we may construct

our frequency-localised current from the templates (3.3.25), (3.3.26), (3.3.28) and (3.3.17):

Q = Qf0 +AQh1 + ΓQzred − EQT ,

where A, E and Γ are positive frequency independent constants and f , h and z are real-

valued functions depending on the frequency triple (ω,m,Λ). The purpose of each term

in the above current is as follows:

• Applying Qf0 with suitable f gives us control over a non-negative definite expression

in |u|2 + Λ|u|2. However, the estimate we obtain will degenerate at r = rmax due to

the presence of V ′. We choose f such that

f =


−1 at r = r+,

0 at r = rmax,

1 for r ≥ R∞

and − fV ′ − 1

2
f ′′′ ≥ 0.

We further require that f ′ > 0 and f ′′′ < 0 in (r+, R∞). Such an f can be constructed

in [r+, R∞] by choosing f ′′′ = (r − rmax)3 and choosing the constants of integration

appropriately. Then we have the required control

(Qf0)′ ≥ b(
∣∣u′∣∣2 + Λ|u|2).

in (r+, R∞) \ rmax. (This degeneracy is due to the vanishing of f at rmax.)

• By (3.4.7), the degeneracy in the estimate for (Qf0) may be removed by adding a

large multiple of the current Qh1 , where h is a non-negative function supported in

[rmax − δ, rmax + δ] and

h(r) = 1 ∀ r ∈ (rmax − δ/2, rmax + δ/2).

• For non-superradiant frequencies, the boundary terms in the estimate for Qf0 +AQh1

have a favourable sign and can be controlled by simply subtracting a large multiple

of QT . In the superradiant regime, there is a lack of control on these boundary terms

as they have unfavourable sign.

We apply the current ΓQzred to ensure that the sum of all boundary terms on the

horizon has a favourable sign. We exploit the presence of the large parameter Λ by
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Figure 3.5.1: The functions f , h and ζ.

taking z = −ΛṼ −1(r)ζ(r) where
ζ(r) = 1 for r+ ≤ r ≤ rmax,
0 ≤ ζ(r) ≤ 1 for rmax < r < rmax + δ/2,

ζ(r) = 0 for rmax + δ/2 < r.

By choosing choosing A� Γ and λ1 large enough,

Ah(V − ω2)−Ah′′ ≥ A(chΛ− h′′)− ΓΛ ≥ 0.

So the integrand on the left hand side of the estimate is positive and controls the

necessary terms. Note that we have again made crucial use of (3.4.7).

• Since we have the large parameter Γ, we can control the boundary terms by adding

the current −EQT with 2 < E � Γ. Then the boundary terms have the ‘right’

sign. This will finalise the choice of Γ and A once we have chosen E, see the remark

below.

Applying the current constructed above yields the frequency-localised estimate for F☼.

Figure 3.5.1 illustrates the functions f , h and ζ in this construction.

Remark Let us emphasise that f , h and ζ are real-valued functions that can be uniformly

controlled so that the right hand side of (3.5.2) can be dominated by initial data (see §3.6).

The constants A and Γ are frequency independent parameters, however they depend on

the constant E. This constant will be used in applying the QT current in each frequency

range. The required size of E varies in each regime but it is always a large parameter. We
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will finalise the choice of E in §3.5.7. This in turn finalises the choice of the constants A

and Γ. The constant b > 0 can always be replaced with a smaller positive value without

affecting the validity of (3.5.2).

3.5.3 Trapped frequencies F\

Consider the large frequency regime

F\ =
{

(ω,m,Λ) : |ω| > ω1, λ2Λ ≤ ω2 ≤ λ−1
2 Λ, mω /∈ [0,mω+ + αΛ]

}
,

This is the range in which trapping occurs. This means that any positive definite current

controlling all derivatives must necessarily degenerate at r = rmax.

Proposition 3.5.2. Let ω ∈ Ω and (ω,m,Λ) ∈ F\ and suppose 0 ≤ a2 +Q2 ≤ K2
0 < M2.

Let u be a smooth solution of (3.3.12) with boundary terms (3.3.15) and (3.3.16). Taking

ω1, R∞ and E all sufficiently large, there exist functions f and y satisfying the uniform

bounds

|f |+ ∆−1r2
∣∣f ′∣∣+ |y| ≤ B,

f = 1, y = 0 for r∗ ≥ R∗∞

such that, for sufficiently small b > 0,

b

∫ Re

r+

[∣∣u′∣∣2 + |u|2 + (r − rmax)2(ω2 + Λ)|u|2
]
dr∗

+b(ω2 + Λ)
[
|u|2|r=r+ + |u|2|r=∞

]
≤ −

∫ ∞
r+

2fRe(u′H̄) + f ′Re(uH̄)− EωIm(uH̄)dr∗ −
∫ r3

r+

2yRe(u′H̄)dr∗. (3.5.3)

Proof. For trapped frequencies, the potential V0 may have at most two critical points

r0
min < r0

max. From Lemma 3.4.2, we know that ω2 − V (r+) ≥ 0. To construct a current,

it is necessary to identify the region where (ω2 − V ) may be negative. Following the

argument in [DR11a, §11.5], we find that there exists r3 > r+,

V (r) ≤ ω2 − c

4
Λ ∀ r ∈ [r+, r3].

Either r3 is bounded above, or r3 = ∞. If r3 is finite, the potential V has a unique

nondegenerate maximum at some rmax in [r3,∞) which is Λ−1−close to r0
max.

Since λ2Λ ≤ ω2 ≤ λ−1
2 Λ, it suffices to bound

∣∣u′∣∣2 + Λ|u|2 or
∣∣u′∣∣2 + ω2|u|2.
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However, we cannot control these quantities everywhere, the best we can hope for is an

estimate that degenerates precisely at rmax.

We use the templates (3.3.25), (3.3.26), (3.3.27) and (3.3.17) to construct a frequency-

localised current as follows:

Q = Qf0 −Qy2 − EQT ,

where E is a positive frequency independent constant and f and y are real-valued functions

depending on the frequency triple (ω,m,Λ). Of f , we require that f(r+) = 0, f ′ > 0 on

[r3,∞), f ′′′ < 0 on [r3, R∞), f changes sign from negative to positive at r = rmax (That

is, f(rmax) = 0, f ′(rmax) > 0) and f = 1 for r ≥ R∞.

We will take y supported in [r+, r3), with y′ < 0 on [r+, r3). It remains to construct y

so that the left hand side of the estimate is non-negative and vanishes only at r = rmax.

In summary, it suffices that y be positive, monotonically decreasing and

− d

dr
y ≥ −Cy + C.

The function

y = CeCr
∫ r3

r
eCrdr = 1− eC(r−r3)

satisfies this differential inequality. For large enough E, the boundary conditions will have

the right sign due to the non-superradiant condition.

Figure 3.5.2 illustrates the functions f and y in this construction.

Noting that y and f vanish precisely at r = rmax, we have the estimate for the trapping

regime.

Remark The estimate for the trapped regime (3.5.3) reveals the nature of the trapped

set – the estimate for each trapped frequency must degenerate at exactly one point (where

V attains its maximum). The degeneration of these estimates carries over into physical

space: the physical space estimate must degenerate in a neighbourhood of the physical

space projection of the ‘trapped set’r : r ∈
∞⋂
L=1

⋃
l≥L

r
(aω)
m`


where r

(aω)
m` are the points rmax where the potential V attains its maximum in the F\

range.
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Figure 3.5.2: The functions f and y.

3.5.4 Time dominated frequencies F�
We have already dealt with the superradiant and trapped frequencies, so these obstructions

are not present here.

Proposition 3.5.3. Let ω ∈ Ω and (ω,m,Λ) ∈ F� and suppose 0 ≤ a2 +Q2 ≤ K2
0 < M2.

Let u be a smooth solution of (3.3.12) with boundary conditions (3.3.15) and (3.3.16).

Taking ω1, λ1, λ−1
2 , R∞ and E all sufficiently large, there exists a function f satisfying

the uniform bounds

|f | ≤ B and f = 1 for r∗ ≥ R∗∞,

such that, for sufficiently small b > 0,

b

∫ Re

r+

∆

r5

[∣∣u′∣∣2 + |u|2 + (ω2 + Λ)|u|2
]
dr∗ + b(ω2 + Λ)[|u|2|r=+ + |u|2|r=∞]

≤
∫ ∞
r+

EωIm(uH̄)− 2fRe(u′H̄)dr∗. (3.5.4)

Proof. Here ω2 dominates Λ so it suffices to estimate |u′|2 + ω2|u|2. We construct the

following current from the templates (3.3.27) and (3.3.17):

Q = Qf2 − EQT ,

where f is monotonically increasing with 1
2 ≤ f ≤ 1 in (r+, R∞), f = 1 for r ≥ R∞ and

E is a positive frequency independent constant. Again, f depends on the frequency triple

(ω,m,Λ). The subtraction of a large multiple of the conserved energy current EQT yields
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3.5. Frequency localised estimates

boundary terms with favourable sign. We obtain

b

∫ Re

r+

[
f ′
∣∣u′∣∣2 +

(
f ′(ω2 − V )− fV ′

)
|u|2
]
dr∗ + b(ω2 + Λ)[|u|2|r=+ + |u|2|r=∞]

≤
∫ ∞
r+

EωIm(uH̄)− Re(u′H̄)dr∗

It just remains to check that the integrand of the left hand side of the estimate above

is positive and controls the desired quantity. This is done by choosing ω1, λ1 and λ2

appropriately.

3.5.5 Angular dominated frequencies F]

Proposition 3.5.4. Let ω ∈ Ω and (ω,m,Λ) ∈ F] and suppose 0 ≤ a2 +Q2 ≤ K2
0 < M2.

Let u be a smooth solution of (3.3.12) with boundary conditions (3.3.15) and (3.3.16).

Taking ω1, λ−1
2 , R∞ and E all sufficiently large, there exist functions f and y satisfying

the uniform bounds

|f |+ ∆−1r2
∣∣f ′∣∣+ |h| ≤ B,

f = 1, h = 0 for r∗ ≥ R∗∞

and a positive frequency independent constant A such that, for sufficiently small b > 0,

b

∫ Re

r+

[∣∣u′∣∣2 + |u|2 + (ω2 + Λ)|u|2
]
dr∗ + b(ω2 + Λ)[|u|2|r=+ + |u|2|r=∞]

≤ −
∫ ∞
r+

2fRe(u′H̄) + (f ′ +Ah)Re(uH̄)− EωIm(uH̄)dr∗. (3.5.5)

Proof. We just repeat the construction of the current used in the proof of Proposition

3.5.1, letting

Q = Qf0 +AQh1 − EQT

with the same f , h and A and E. The argument is simpler than in the superradiant regime

as we may control the boundary terms directly.

3.5.6 The bounded frequency range F[

This bounded low-frequency regime depends on ω1 and λ1 but unlike the high frequency

regimes, the estimates in this section will hold for arbitrarily chosen (but finite) ω1 and

λ1.
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We will consider four subcases. This requires the introduction of a small parameter

K̃0 which will be chosen later in this section.

Note that we do not need to distinguish between superradiant and non-superradiant

frequencies. In the near-stationary frequency range, we follow the approach of [DRSR14]

with by further decomposing F[,1 to take advantage of small parameters, axisymmetry

and non-vanishing of parameters respectively.

In light of Theorem 4.5.1, the desired estimate for the non-stationary frequencies may

be obtained directly.

In view of the boundedness of the frequency parameters in F[, we have

∣∣u′∣∣2 + (ω2 + Λ)|u|2 ≤ max {1, λ1, ω1} (
∣∣u′∣∣2 + |u|2),

so it suffices to estimate the quantity |u′|2 + |u|2.

The near-stationary subrange (small parameters case): |ω| ≤ ω0 and 0 ≤ a2 +

Q2 ≤ K̃2
0

Proposition 3.5.5. Let ω ∈ Ω and (ω,m,Λ) ∈ F[,1 and suppose 0 ≤ a2 +Q2 ≤ K̃2
0 . Let

u be a smooth solution of (3.3.12) with boundary conditions (3.3.15) and (3.3.16). Then

for all ω1 > 0, λ2 > 0, sufficiently small ω0 > 0 and K̃0 > 0 (depending on ω1 > 0 and

λ2 > 0), sufficiently large R∞ > Re and E > 2, there exist functions y, ŷ, χ2 and h,

satisfying the uniform bounds

|y|+ |ŷ|+ |h|+ |χ2| ≤ B,

y = 1, ŷ = 0, h = 0 for r∗ ≥ R∗∞,

such that

b

∫ Re

re

(∣∣u′∣∣2 + |u|2
)
dr∗ + b(

∣∣u′∣∣2 + ω2|u|2)|r=∞

≤
∫ ∞
−∞

(
2(y + ŷ) Re(u′H) + hRe(uH) + EωIm(Hu) + χ2 (ω − ω+) Im(Hu)

)
. (3.5.6)

Proof. We construct a current analogous to that given in [DRSR14, §8.7.1]. All that is

required is that the following hold.

1. It is clear from (3.4.1) and (3.4.2) that for every −∞ < α < β < ∞, we may take

K̃0 and ω0 small enough that r ∈ [α, β]⇒ V − ω2 > 0.

2. By Lemma 3.4.1, we have V ′ < 0 for sufficiently large positive r∗.

64



3.5. Frequency localised estimates

ep
−1
R∗

1
R∗

1 R∗
1 + 1 R∗

2 − 1 R∗
2 ep

−1
R∗

2

1
2

1

1
2
+ ǫ

hχ2

y

ŷ
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Figure 3.5.3: The functions χ2, h, y and ŷ used in the proof of Proposition 3.5.5.

3. It follows from (3.4.4) and (3.4.5) and the smoothness of V that for sufficiently small

K̃0, we have V ′ > 0 for r near r+.

Now following the argument given in [DRSR14, §8.7.1], we may construct a current

from the templates (3.3.26), (3.3.27), (3.3.17) and (3.3.23):

Q[,1,small = Qh1 +Qy2 +Qŷ2 − Ey(∞)QT + χ2QK .

Here, Qh1 is used to obtain a coercive estimate in a bounded interval [R1, R2], with R1

bounded away from the horizon and R2 bounded. This achieved by cutting off an indicator

function and introduces negative terms in the regions [R0, R1] and [R2, R3]. The currents

Qy2 and Qŷ2 are constructed to remedy this.

It then remains to deal with the boundary terms. Choosing K̃0 small enough, we see

from (3.3.19) that this frequency regime is non-superradiant. Thus the subtraction of the

current Ey(∞)QT controls the boundary term at r∗ =∞. The χ2QK current is introduced

to absorb the boundary term at r∗ = −∞. The function χ2 is a smooth bounded cut-off

that is identically 1 in (−∞, R1] and identically 0 in [R2,∞). Applying the χ2QK current

gives control over the boundary term. Moreover, the bulk term
∫∞
−∞(χ2QK)′ is supported

only in [R1, R2] and comes with a ω-weight. Since we already have a coercive estimate in

[R1, R2], we may absorb this term into the left hand side. See Figure 3.5.3 for the form of

the functions used in constructing the currents.
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The near-stationary subrange (axisymmetric case): |ω| ≤ ω0 and m = 0

Proposition 3.5.6. Let ω ∈ Ω and (ω,m,Λ) ∈ F[,1 and suppose m = 0. Let u be a

smooth solution of (3.3.12) with boundary conditions (3.3.15) and (3.3.16). Then for all

ω1 > 0, λ2 > 0, sufficiently small ω0 > 0 sufficiently large R∞ > Re and E > 2, there

exist functions y, ŷ and h, satisfying the uniform bounds

|y|+ |ŷ|+ |h| ≤ B,

y = 1, ŷ = 0, h = 0 for r∗ ≥ R∗∞,

such that

b

∫ R∗+

R∗−

(∣∣u′∣∣2 + |u|2
)
dr∗ + b(

∣∣u′∣∣2 + ω2|u|2)|r=∞

≤ −
∫ ∞
−∞

(
2(y + ŷ) Re(u′H) + hRe(uH) + EωIm(Hu)

)
. (3.5.7)

Proof. The properties of the potential V used to obtain (3.5.6) also hold here:

1. It is clear from (3.4.1) and (3.4.2) that if m = 0, for every −∞ < α < β < ∞, we

may take ω0 small enough that r ∈ [α, β]⇒ V − ω2 > 0.

2. By Lemma 3.4.1, we have V ′ < 0 for sufficiently large positive r∗.

3. There is no superradiance in the axisymmetric case, so it follows directly from Lemma

3.4.3 and the smoothness of V that for sufficiently small K̃0, we have V ′ > 0 for r

near r+.

The arguments from the proof of the estimate (3.5.6) may now be applied. The situa-

tion is simpler here: since there is no superradiance we do not need χ2. The result follows

from applying the following current, contructed from the templates (3.3.26), (3.3.27),

(3.3.17):

Q[,1,m=0 = Qh1 +Qy2 +Qŷ2 − Ey(∞)QT ,

where E, h, y and ŷ are as before.

The near-stationary subrange (non-vanishing parameters case): |ω| ≤ ω0, m 6= 0

and a2 +Q2 ≥ K̃2
0

In this frequency regime, we exploit the non-vanishing of the parameters m 6= 0 and

0 < K̃2
0 ≤ a2 +Q2.
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Proposition 3.5.7. Let ω ∈ Ω and (ω,m,Λ) ∈ F[,1 and suppose m 6= 0 and 0 < K̃2
0 ≤

a2 + Q2. Let u be a smooth solution of (3.3.12) with boundary conditions (3.3.15) and

(3.3.16),. Then for all ω1 > 0, λ2 > 0, sufficiently small ω0 > 0 (depending on K̃0),

sufficiently large R∞ > Re and E > 2, there exist functions y, ŷ and h, satisfying the

uniform bounds

|ỹ|+ |y|+ |h|+ |χ1|+ |χ2| ≤ B
(
K̃0

)
,

and |ỹ| ≤ B exp (−br) , y = 1, h = 0 for r∗ ≥ R∗∞,

such that

b
(
K̃0

)∫ R∗e

r∗e

(
|u′|2 + |u|2

)
dr∗ + b(

∣∣u′∣∣2 + ω2|u|2)|r=∞

≤
∫ ∞
−∞

(
−2ỹRe(u′H)− hRe(uH)− 2yRe(u′H)

)
dr∗

+

∫ ∞
−∞

(−Eχ2ω Im(Hu)− 2χ1 (ω − ω+) Im(Hu)) dr∗. (3.5.8)

Proof. It suffices to show that we can adapt the argument given in [DRSR14, §8.7.2].

This amounts to verifying that

1. Since m 6= 0, there exists a constant b = b(K̃0) > 0 such that

(ω − ω+)2 =

(
ω − am

2Mr+ −Q2

)2

> b,

provided we choose ω0 small enough.

2. Since m 6= 0, Λ ≥ 2. So

V = Λr−2 +O(r−3) as r →∞.

This in turn implies that for every 1 � α � β < ∞, we may take ω0 small enough

that r ∈ [α, β]⇒ V − ω2 > br−2. This positivity allows for the use of a Qh1 current.

Armed with these properties of the potential, we can construct the following current

from the templates (3.3.26), (3.3.27), (3.3.23) and (3.3.17):

Q[,1,non−vanishing = Qh1 +Qỹ2 +Qy2 − χ1QK − Eχ2QT

for suitable functions h, ỹ, y, χ1 and χ2 as given in [DRSR14, §8.7.2]. Refer to Figure

3.5.4 for the forms of these functions.
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Figure 3.5.4: The functions χ1, χ2, h, y and ỹ used in the proof of Proposition 3.5.7.

Application of the Qỹ2 current yields the coercive term in the estimate. A large param-

eter is needed to deal with the boundary term at r = r+. The Qh1 current is deployed to

provide this large parameter. The boundary term can then be dealt with by application

of χ1QK .

The cost of this construction is that it produces error terms that must then be absorbed

by application of the Qy2 current.

Finally, the boundary term at r =∞ is handled by subtracting Eχ2QT with E ≥ 2.

Remark The function ỹ is defined by

ỹ(r∗) := − exp

(
−C

∫ r∗

−∞
υdr∗

)
, (3.5.9)

where υ(r) is a positive function such that

υ = ∆ near r+, υ = 1 when r∗ ≥ R∗∞, |υ| ≤ B.

Note that ỹ (−∞) = −1 and ỹ (∞) = 0 . In particular ỹ < 0 and ỹ′ 6= 0 in the r ≥ R∞
range.

This differs from all our other seed functions so the error term
∫∞
−∞ 2ỹRe(u′H) gener-

ated by Qỹ2 must be handled separately from the other error terms, see §3.6.3.
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The nonstationary subrange: |ω| ≥ ω0

The estimate in this final frequency range is relatively simple aside from the presence of

the horizon term
(
|ω(ω − ω+)||u|2

)
r=r+

in (3.5.10). This term arises due to superradiant

frequencies in the nonstationary bounded frequency regime F[,2. There are no known

localised energy currents for dealing with these superradiant frequencies. As such, this

horizon term gives rise to a term 1{ω0≤|ω|≤ω1}∩{Λ≤λ−1
2 ω2

1}
∣∣∣u(aω)
m` (−∞)

∣∣∣2 on the right hand

side of (3.5.11) in the statement of Proposition 3.5.9. This troublesome term is controlled

by applying the quantitative mode stability result of Chapter 4 after summation, see §3.6.

Proposition 3.5.8. Let ω ∈ Ω and (ω,m,Λ) ∈ F[,2 and let u be a smooth solution of

(3.3.12) with boundary conditions (3.3.15) and (3.3.16). Then for all ω1 > 0, λ2 > 0,

sufficiently small ω0 > 0 (depending on K̃0), sufficiently large R∞ > Re and E > 2, there

exists a function y satisfying the uniform bounds

|y| ≤ B, and y = 1 for r∗ ≥ R∗∞,

such that

b (ω0, ω1)

∫ R∗e

r∗e

(
|u′|2 + |u|2

)
dr∗ + b(

∣∣u′∣∣2 + ω2|u|2)|r=∞

≤ B
(
|ω(ω − ω+)||u|2

)
r=r+

−
∫ ∞
−∞

(
2yRe(u′H)− EωIm(Hu)

)
. (3.5.10)

Proof. The argument of [DRSR14, §8.7.4] applies directly. We apply a current of the form

Q[,2 = Qy2 − EQT

where Q2 and QT are defined by (3.3.27), (3.3.17) repectively and

y(r∗) := exp

(
−C

∫ ∞
r∗

χR∗∞r
−2dr

)
.

Here C = C(ω0, ω1, λ2) is sufficiently large and the function χR∗∞ is smooth, which iden-

tically 1 on [r+, R∞ − 1) and identically 0 on [R∞,∞). Note that y|r∗≥R∗∞ = 1 and

y (−∞) = 0.

3.5.7 The general frequency-localised estimate

Note that the partitioning parameters λ1, λ2, ω0 and ω1 have been fixed in the proofs

contained in §3.5.2 to §3.5.6. Observe that these proofs all hold for all sufficiently large

but finite λ1 and all sufficiently small postive λ2. Let ω1 be fixed and let λ∗1 = λ1 and
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λ∗2 = λ2. If it is already the case that we require λ1 so large that λ1 > (λ∗2)−1ω1, we make

a new choice of λ2 < λ∗2 to fulfil (3.5.1). In the case that we require λ2 small enough that

λ∗1 < λ−1
2 ω1, we finalise the choice of λ1 by enlarging it so that (3.5.1) is satisfied.

Proposition 3.5.9. Under the hypotheses of Theorem 3.3.2, there exist frequency inde-

pendent positive constants b and E and bounded positive functions C
(aω)
m` (r∗), D(aω)

m` (r∗)

and J
(aω)
m` (r∗) such that for all frequency triples (ω,m,Λ) where ω ∈ Ω, the following holds

for each u
(aω)
m` satisfying (3.3.12) and the boundary conditions (3.3.15) and (3.3.16):

b

∫ R∗e

r∗e

(∣∣∣∣ ddr∗u(aω)
m`

∣∣∣∣2 +
∣∣∣u(aω)
m`

∣∣∣2 + χ
(aω)
m` (r)(ω2 + Λ)

∣∣∣u(aω)
m`

∣∣∣2) dr∗ + bω2|u|2|r=∞

≤ χ[,☼

∣∣∣u(aω)
m` (−∞)

∣∣∣2 +

∣∣∣∣∫ ∞
r+

[C
(aω)
m` (r∗)− 2ỹ]Re(u′H̄) +D

(aω)
m` (r∗)Re(uH̄) dr∗

∣∣∣∣
+

∣∣∣∣∫ ∞
r+

J
(aω)
m` (r∗)Re(u′ + i(ω − ω+)uH̄) + EωIm

[
uH̄
]
dr∗
∣∣∣∣, (3.5.11)

where

χ[,☼(ω,m,Λ) = 1{ω0≤|ω|≤ω1}∩{Λ≤λ−1
2 ω2

1},

χ
(aω)
m` (r) =

{
(r − r(ω,m,`)

max )2 for each (ω,m,Λ) ∈ F\,
1 for (ω,m,Λ) /∈ F\

,

C
(aω)
m` (r∗) = B (|y|+ |f |+ 1) ,

D
(aω)
m` (r∗) = B

(∣∣f ′ +Ah
∣∣+
∣∣f ′∣∣+ |h|

)
and J

(aω)
m` (r∗) = BΓ

∣∣∣∣ ζṼ
∣∣∣∣,

where B is a large positive constant.

Proof. We choose E and R∞ large enough and b > 0 small enough that (3.5.2), (3.5.3),

(3.5.4), (3.5.5), (3.5.6), (3.5.7), (3.5.8) and (3.5.10) all hold. Since every (ω,m,Λ) lies in

one of the frequency ranges for which we have a frequency localised estimate for ω ∈ Ω,

this establishes (3.5.11). The choice of E finalises the choice of the constants A and Γ in

(3.5.2) and (3.5.5).

All of the frequency dependent functions f , h, y and ζ are bounded by the functions

C
(aω)
m` , D

(aω)
m` and J

(aω)
m` . The precise degeneration of the current for trapped frequencies

was used to obtain χ
(aω)
m` . The horizon term χ[,☼

∣∣∣u(aω)
m` (−∞)

∣∣∣2 arises from the superradiant

frequencies in the bounded regime F[,2, see (3.5.10).
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3.6 Proof of the conditional (ILED)

The time has come to return to physical space. We turn our frequency-localised estimate

(3.5.11) into a physical space estimate. We do this by summing the frequency localised

estimate (3.5.11) over m and `, integrating over ω and appealing to the Parseval-type

identities of §3.3.3. Since these identities hold in L2(dw) it suffices that we proved the

frequency localised estimates for almost every ω (see §3.3.3).

3.6.1 The physical space estimate

Proposition 3.6.1. Let ψ be a solution of (2.2.3) arising from smooth, compactly sup-

ported data on Σ0. Assume that ψQ defined by (3.3.3) satisfies (3.3.1) and (3.3.2). Then

there exist frequency independent constants b > 0 and B > E such that for any time τ > 0,

(including the limit τ →∞),

b

∫ τ

0

∫
Σt∩[r+,R∗e ]

[
(∂r∗ψQ)2 + ψ2

Q + χ\
(
(TψQ)2 + (∇/ψQ)2

)]
dt∗ + b

∫
I+

JT [ψQ] · nI+

≤

∣∣∣∣∣∣∣∣
∫ ∞
−∞

∫ ∞
re

∑
m∈Z
`≥|m|

[C
(aω)
m` (r∗)− 2ỹ]Re(u′H̄) +D

(aω)
m` (r∗)Re(uH̄) dr∗dω

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣
∫ ∞
−∞

∫ ∞
re

∑
m∈Z
`≥|m|

J
(aω)
m` (r∗)Re(u′ + i(ω − ω+)uH̄) dr∗dω

∣∣∣∣∣∣∣∣
+B

∣∣∣∣∣∣∣∣
∫ ∞
−∞

∫ ∞
r+

∑
m∈Z
`≥|m|

ωIm
[
u

(aω)
m` H̄

(aω)
m`

]
dr∗dω

∣∣∣∣∣∣∣∣+B

∫
Σ0

JNµ [ψ]nµΣ0
. (3.6.1)

The functions C
(aω)
m` (r∗), D(aω)

m` (r∗) and J
(aω)
m` (r∗) are as in Proposition 3.5.9 and

χ\(r) =
1√
2π

∫ ∞
−∞

∑
m∈Z
`≥|m|

χ
(aω)
m` (r) · S(aω)

m` (cos θ)eimφe−iωt dω (3.6.2)

in the L2(dω)`2(m, `) sense.
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Proof. First note that∫ τ

0

∫
Σt∩[re,R∗e ]

[
(∂r∗ψQ)2 + ψ2

Q + χ\
(
(TψQ)2 + (∇/ψQ)2

)]
dt∗

≤
∫ ∞
−∞

∫
Σt∩[re,R∗e ]

[
(∂r∗ψQ)2 + ψ2

Q + χ\
(
(TψQ)2 + (∇/ψQ)2

)]
dt∗.

Applying the physical space–Fourier space identities in §3.3.3, we obtain for any τ > 0∫ ∞
−∞

∫
Σt∩[re,R∗e ]

[
(∂r∗ψQ)2 + ψ2

Q + χ\
(
(TψQ)2 + (∇/ψQ)2

)]
dt∗

=

∫ ∞
−∞

∫
S2

∫ Re

re

[
(∂r∗ψQ)2 + ψ2

Q + χ\
(
(TψQ)2 + (∇/ψQ)2

)]
ρ2 sin θ dθ dφ dr dt∗

=

∫ ∞
−∞

∑
m∈Z
`≥|m|

∫ R∗e

r∗e

∣∣∣∣ ddr∗u(aω)
m`

∣∣∣∣2 +
∣∣∣u(aω)
m`

∣∣∣2 + χ
(aω)
m` (r)(ω2 + Λ)

∣∣∣u(aω)
m`

∣∣∣2dr∗dω (3.6.3)

and since ∂tγ is not supported on I+,∫
I+

JT [ψ] · nI+ =

∫
I+

JT [ψQ] · nI+ =

∫ ∞
−∞

∑
m∈Z
`≥|m|

ω2
∣∣∣u(aω)
m` (r =∞)

∣∣∣2.
Applying (3.5.11) for ω ∈ Ω, summing over m and ` and integrating with respect to ω, we
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have ∫ ∞
−∞

∑
m∈Z
`≥|m|

∫ R∗e

r∗e

∣∣∣∣ ddr∗u(aω)
m`

∣∣∣∣2 +
∣∣∣u(aω)
m`

∣∣∣2 + χ
(aω)
m` (r)(ω2 + Λ)

∣∣∣u(aω)
m`

∣∣∣2dr∗dω
+

∫ ∞
−∞

∑
m∈Z
`≥|m|

ω2|u|2r=∞dω

≤ b−1

∣∣∣∣∣∣∣∣
∫ ∞
−∞

∫ ∞
r+

∑
m∈Z
`≥|m|

[C
(aω)
m` − 2ỹ]Re(u′H̄) +D

(aω)
m` (r∗)Re(uH̄) dr∗dω

∣∣∣∣∣∣∣∣
+ b−1

∣∣∣∣∣∣∣∣
∫ ∞
−∞

∫ ∞
r+

∑
m∈Z
`≥|m|

J
(aω)
m` Re(u′ + i(ω − ω+)uH̄) dr∗dω

∣∣∣∣∣∣∣∣
+ b−1B

∣∣∣∣∣∣∣∣
∫ ∞
−∞

∫ ∞
r+

∑
m∈Z
`≥|m|

ωIm
[
u

(aω)
m` H̄

(aω)
m`

]
dr∗dω

∣∣∣∣∣∣∣∣
+B

∫
{ω0≤|ω|≤ω1}

∑
|m|(|m|+1)≤Λ

Λ≤λ−1
2 ω2

1

∣∣∣u(aω)
m` (−∞)

∣∣∣2dω.
Recall that we take B > E, where E is as in Proposition 3.5.9. The last term on the right

hand side is controlled by application of the quantitative mode stability result (Theorem

4.5.1). That is, by Theorem 4.8.2,∫
{ω0≤|ω|≤ω1}

∑
|m|(|m|+1)≤Λ

Λ≤λ−1
2 ω2

1

∣∣∣u(aω)
m` (−∞)

∣∣∣2dω ≤ BF[ ∫
Σ0

JNµ [ψ]nµΣ0
.
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Absorbing BF[ into B, we have thus obtained

b

∫ τ

0

∫
Σt∩[re,R∗e ]

[
(∂r∗ψQ)2 + ψ2

Q + χ\
(
(TψQ)2 + (∇/ψQ)2

)]
dt∗ + b

∫
I+

JT [ψ] · nI+

≤

∣∣∣∣∣∣∣∣
∫ ∞
−∞

∫ ∞
re

∑
m∈Z
`≥|m|

[C
(aω)
m` − 2ỹ]Re(u′H̄) +D

(aω)
m` Re(uH̄) dr∗dω

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣
∫ ∞
−∞

∫ ∞
re

∑
m∈Z
`≥|m|

J
(aω)
m` Re(u′ + i(ω − ω+)uH̄) dr∗dω

∣∣∣∣∣∣∣∣
+B

∣∣∣∣∣∣∣∣
∫ ∞
−∞

∫ ∞
r+

∑
m∈Z
`≥|m|

ωIm
[
u

(aω)
m` H̄

(aω)
m`

]
dr∗dω

∣∣∣∣∣∣∣∣+B

∫
Σ0

JNµ [ψ]nµΣ0
. (3.6.4)

The low frequency estimates do not give control all the way up to the horizon. We therefore

couple the above estimate to an ε−multiple of the red-shift estimate (2.2.6) with R0 = re

and taking δ > 0 small enough that re+ δ < infω,m,` rmax(ω,m,Λ) allows us to extend the

radial region of integration on the left hand side to [r+, R
∗
e] and absorb last term on the

right hand side of (2.2.6):

bB−1
0 ε

∫ τ

0

∫
Σt∩[r+,R0]

[
(∂r∗ψQ)2 + ψ2

Q + χ\
(
(TψQ)2 + (∇/ψQ)2

)]
ρ2dt∗

+bB−1
0 (1− ε)

∫ τ

0

∫
Σt∩[R0,R∗e ]

[
(∂r∗ψQ)2 + ψ2

Q + χ\
(
(TψQ)2 + (∇/ψQ)2

)]
ρ2dt∗

+b

∫
I+

JT [ψ] · nI+ + ε

∫
H+(0,τ)

JNµ [ψ]nµH+

≤

∣∣∣∣∣∣∣∣
∫ ∞
−∞

∫ ∞
r+

∑
m∈Z
`≥|m|

[C
(aω)
m` − 2ỹ]Re(u′H̄) +D

(aω)
m` Re(uH̄) dr∗dω

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣
∫ ∞
−∞

∫ ∞
r+

∑
m∈Z
`≥|m|

J
(aω)
m` Re(u′ + i(ω − ω+)uH̄) dr∗dω

∣∣∣∣∣∣∣∣
+ B

∣∣∣∣∣∣∣∣
∫ ∞
−∞

∫ ∞
r+

∑
m∈Z
`≥|m|

ωIm
[
u

(aω)
m` H̄

(aω)
m`

]
dr∗dω

∣∣∣∣∣∣∣∣+B

∫
Σ0

JNµ [ψ]nµΣ0
.

Taking ε small enough and absorbing B−1
0 , ε and (1− ε) into the constant b, we arrive at

the the result.
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Remark In proving the estimate above, we appealed to the quantitative mode stability

results of Chapter 4. Note that appeal to mode stability is not necessary if we restrict

to a2 + Q2 � M2 or require that m = 0 or m � 1. In the former case superradiance

is absent. In the latter case, the unfavourably signed boundary terms that arise due to

superradiance may be dominated using the redshift current directly, see §1.5.

Proposition 3.6.2. Let ψ be a solution of (2.2.3) arising from smooth, compactly sup-

ported data on Σ0. Assume that ψQ defined by (3.3.3) satisfies (3.3.1) and (3.3.2). There

exists a uniform constant CRe > 0 such that for any time τ > 0, (including the limit

τ →∞), ∫ τ

0

∫
Σt∩[r+,R∗e ]

[
(∂r∗ψQ)2 + ψ2

Q + χ\
(
(TψQ)2 + (∇/ψQ)2

)]
ρ2dt∗

+

∫
I+

JT [ψ] · nI+ +

∫
H+(0,τ)

JN [ψ] · nH+ ≤ CRe
∫

Σ0

JNµ [ψ]nµΣ0
. (3.6.5)

Proof. It remains to control the right hand side of (3.6.1) by data. In order to control the

terms containing C
(aω)
m` , D

(aω)
m` and J

(aω)
m` , we take R∞ � Re and split the integral in r∗

into two regions

B = {r+ ≤ r ≤ R∞} and U = {r > R∞} .

which we deal with separately. The integral over the compact region∫ ∞
−∞

∫
B

∑
m∈Z
`≥|m|

[C
(aω)
m` (r∗)−2ỹ]Re(u′H̄)+D

(aω)
m` (r∗)Re(uH̄)+J

(aω)
m` Re(u′+i(ω−ω+)uH̄) dr∗dω

is controlled §3.6.2 and the integral over the unbounded region∫ ∞
−∞

∫
U

∑
m∈Z
`≥|m|

[C
(aω)
m` (r∗)−2ỹ]Re(u′H̄)+D

(aω)
m` (r∗)Re(uH̄)+J

(aω)
m` Re(u′+i(ω−ω+)uH̄) dr∗dω

is controlled in §3.6.3.

The term ∫ ∞
−∞

∫ ∞
r+

∑
m∈Z
`≥|m|

ωIm
[
u

(aω)
m` H̄

(aω)
m`

]
dr∗dω

is dealt with in §3.6.4.
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3.6.2 Error terms in B = {r+ ≤ r ≤ R∗∞}

In this section we control the following error term by data∫ ∞
−∞

∫
B

∑
m∈Z
`≥|m|

[C
(aω)
m` +J

(aω)
m` − 2ỹ]Re(u′H̄) + Re

[(
D

(aω)
m` (r∗) + i(ω − ω+)J

(aω)
m`

)
uH̄
]
dr∗dω.

In this region we want to absorb error terms into the left hand side of (3.6.1). For r∗ ∈ B:∣∣∣∣∣∣∣∣
∫ ∞
−∞

∑
m∈Z
`≥|m|

[C
(aω)
m` + J

(aω)
m` − 2ỹ]Re(u′H̄) + Re

[(
D

(aω)
m` + i(ω − ω+)J

(aω)
m`

)
uH̄
]
dω

∣∣∣∣∣∣∣∣
≤ ε−1

∫ ∞
−∞

∑
m∈Z
`≥|m|

[
(C

(aω)
m` (r∗))2 + (D

(aω)
m` (r∗))2 + (J

(aω)
m` (r∗))2 + 4ỹ(r∗)2

]
(H

(aω)
m` )2 dω

+ε

∫ ∞
−∞

∑
m∈Z
`≥|m|

(
[(u

(aω)
m` )′]2 + (u

(aω)
m` )2 + 1F☼

(ω − ω+)2(u
(aω)
m` )2

)
dω.

Taking the physical/Fourier space identities in §3.3.3 into account, we have

ε

∫ ∞
−∞

∑
m∈Z
`≥|m|

(
[(u

(aω)
m` )′]2 + (u

(aω)
m` )2 + 1F☼

(ω − ω+)2(u
(aω)
m` )2

)
dω

≤ εC

∫ ∞
0

∫
S2

∆

r2 + a2
[(r2 + a2)(∂r∗ψQ)2 + 1̌F☼

∂tψ
2
Q + ψ2

Q] dt dgS2 .

Integrating this term over r∗ in the region B and taking ε small enough, this term can be

absorbed into the left hand side of (3.6.1). Note that this works for the ∂tψQ term as it

is only supported in the superradiant regime, where (3.6.1) does not degenerate due to

trapping.

Recall from Proposition 3.5.9 that the functions C
(aω)
m` (r∗), D(aω)

m` (r∗), J (aω)
m` (r∗) and

ỹ(r∗) are bounded (uniformly w.r.t (r, ω,m, `)) in the compact region B, so∫ ∞
−∞

∑
m∈Z
`≥|m|

ε−1
[
(C

(aω)
m` (r∗))2 + (D

(aω)
m` (r∗))2 + (J

(aω)
m` (r∗))2 + (ỹ(r∗))2

]
(H

(aω)
m` )2 dω

≤ C
∫ ∞
−∞

∑
m∈Z
`≥|m|

ε−1 ∆2

r2 + a2
(F

(aω)
m` )2 dω

≤ C
∫ 1

0

∫
S2

ε−1 ∆2

r2 + a2
F 2 dt dgS2 .
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Now integrating over r∗ in the region B and recalling the definition of F we have∫ ∞
−∞

∫ R∞

r+

∑
m∈Z
`≥|m|

ε−1
[
(C

(aω)
m` )2 + (D

(aω)
m` )2 + (J

(aω)
m` )2 + (ỹ(r∗))2

] ∣∣∣H(aω)
m`

∣∣∣2 dωdr∗
≤ Cε−1

∫ 1

0

∫ R∞

r+

∫
S2

∆2

r2 + a2
((�γ)ψ + 2∇µγ∇µψ)2 dt∗ dgS2dr∗

≤ Cε−1

∫ 1

0

∫ R∞

r+

∫
S2

∆2

r2 + a2
[(�γ)2ψ2 + |∇γ|2|∇ψ|2] dt∗ dgS2dr∗

≤ Cε−1

∫ 1

0

∫
Σt

JNµ [ψ]nµΣt dt
∗.

Here we have used the Hardy inequality (2.2.8) in r to control the term containing ψ2. It

now follows from Proposition 3.3.1 that∫ 1

0

∫
Σ0

JNµ [ψ]nµΣt dt
∗ ≤ eP

∫
Σ0

JNµ [ψ]nµΣ0
.

We have thus controlled all error terms in the bounded region B.

3.6.3 Error terms in U = {r ≥ R∗∞}

We now control the term∫ ∞
−∞

∫
U

∑
m∈Z
`≥|m|

[C
(aω)
m` (r∗)−2ỹ]Re(u′H̄)+D

(aω)
m` (r∗)Re(uH̄)+J

(aω)
m` Re(u′+i(ω−ω+)uH̄) dr∗dω.

Recall that

C
(aω)
m` (r∗) = B (|y|+ |f |+ 1) ,

D
(aω)
m` (r∗) = B

(∣∣f ′ +Ah
∣∣+
∣∣f ′∣∣+ |h|

)
and J

(aω)
m` (r∗) = BΓ

∣∣∣∣ ζṼ
∣∣∣∣,

Looking back to §3.5, we see that ζ = h = y = f ′ = 0 and f = 1 in U . Therefore, C
(aω)
m` (r∗)

is constant and D
(aω)
m` (r∗) = J

(aω)
m` (r∗) = 0 in U . It thus remains only to estimate the term

(B − 2ỹ)Re(u′H̄) in U .

Recall the definition of the inhomogeneity

F = (�γ)ψ + 2∇µγ∇µψ.
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For the term containing the function ỹ, we note that y is not constant in U (see (3.5.9))

but since |ỹ| ≤ exp (−br∗) as r∗ → ∞, we may apply Plancherel and a Hardy inequality

in r∗ to obtain∣∣∣∣∣∣∣∣∣
∫
{ω0≤|ω|≤ω1}

∑
|m|(|m|+1)≤Λ

Λ≤λ−1
2 ω2

1

∫ ∞
R∗∞

−2ỹRe(u′H̄)dr dω

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣
∫ 1

0

∫ ∞
R∗∞

∫
S2

−2ỹ · Re
(
∂r∗
((
r2 + a2

)1/2
ψQ

)
∆ (r2 + a2)−1/2 F

)
sin θ dt dr∗ dθ dφ

∣∣∣∣∣
≤ B

∫ 1

0

∫
Σt∩[R∗∞,∞)

∆ exp (−br∗)
∣∣(γ∂r∗ψ + r−1(γ + ∂rγ)ψ

)
((�γ)ψ + 2∇µγ∇µψ)

∣∣dt
≤ BC

∫ 1

0

∫
Σt

JN [ψ] · nΣt dt

≤ BCeP
∫

Σ0

JN [ψ] · nΣ0 ,

by Proposition 3.3.1.

Let us now deal with the term not containing ỹ. By the physical/Fourier space iden-

tities in §3.3.3, and the support of γ,∫ ∞
−∞

∫ ∞
R∗∞

∑
m,`

Re(u′H̄)dωdr∗

=

∫ ∞
−∞

∫ ∞
R∞

∫
S2

Re
(
∂r∗
(

(r2 + a2)1/2ψQ

)
∆(r2 + a2)−1/2F

)
sin θdθ dφ dr∗ dt∗.

Observe that for R∞ large enough, γ depends only on t, so

F =
(
r2 + a2

)−1
ρ2
(

2gtt∂tγ∂tψ + 2gtφ∂tγ∂φψ + gtt∂2
t γψ

)
for r ≥ R∞.

So (suppressing the factor sin θ dt dr dθ dφ),∫ ∞
0

∫ ∞
R∗∞

∫
S2

Re
(
∂r∗
((
r2 + a2

)1/2
ψQ

)
∆ (r2 + a2)−1/2 F

)
=

∫ ∞
0

∫ ∞
R∗∞

∫
S2

Re
(
∂r∗
((
r2 + a2

)1/2
ψQ

)
∆ (r2 + a2)−3/2 ρ2 (2gtt∂tγ∂tψ + 2gtφ∂tγ∂φψ)

)
+

∫ ∞
0

∫ ∞
R∗∞

∫
S2

Re
(
∂r∗
((
r2 + a2

)1/2
ψQ

)
∆ (r2 + a2)−3/2 ρ2gtt∂2

t γψ
)
.
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For the gtt∂tγ∂tψ term:∣∣∣∣∣
∫ ∞

0

∫ ∞
R∗∞

∫
S2

Re
(
∂r∗
((
r2 + a2

)1/2
ψQ

)
∆ (r2 + a2)−3/2 ρ2 (2gtt∂tγ∂tψ)

)∣∣∣∣∣
≤ B

∣∣∣∣∣
∫ ∞

0

∫ ∞
R∗∞

∫
S2

Re
(

(∂r∗ψQ) ∆ (r2 + a2)−1 ρ2 (2gtt∂tγ∂tψ)
)∣∣∣∣∣

+B

∣∣∣∣∣
∫ ∞

0

∫ ∞
R∗∞

∫
S2

r

(r2 + a2)1/2
Re
(

(ψQ) ∆ (r2 + a2)−3/2 ρ2 (2gtt∂tγ∂tψ)
)∣∣∣∣∣

≤ BeP
∫

Σ0

JNµ [ψ]nµΣτ ,

where the last inequality follows by applying the Hardy inequality (2.2.8) and Proposition

3.3.1.

Since gtφ = −a(2Mr −Q2)∆−1ρ−2 = O
(
r−3
)
, the gtφ∂tγ∂φψ term can dealt with in

the same way.

Let χB be a smooth cut-off which is identically 1 for r ≤ R∞ − 1 and identically 0 for

r ≥ R∞. Then since ∂r∗γ = 0 for r ≥ Re,∣∣∣∣∣
∫ ∞

0

∫ ∞
R∗∞

∫
S2

Re
(
∂r∗
((
r2 + a2

)1/2
ψQ

)
∆ (r2 + a2)−3/2 ρ2gtt∂2

t γψ
)∣∣∣∣∣

=

∣∣∣∣∣
∫ ∞

0

∫ ∞
R∗∞

∫
S2

χB∆
(
r2 + a2

)−2
ρ2gtt∂2

t γγRe
(
∂r∗
((
r2 + a2

)1/2
ψ
)

(r2 + a2)1/2 ψ
)∣∣∣∣∣

=
1

2

∣∣∣∣∣
∫ ∞

0

∫ ∞
R∗∞

∫
S2

χB∂r∗
(

∆
(
r2 + a2

)−2
ρ2gtt∂2

t γγ
) (
r2 + a2

)
|ψ|2

∣∣∣∣∣
≤ B

∫ 1

0

∫
Στ∩[Re∗ ,∞)

|ψ|2
r2
≤ BeP

∫
Σ0

JNµ [ψ]nµΣ0
.

Again, the last inequality follows by applying the Hardy inequality (2.2.8) and Proposition

3.3.1. Combining everything implies∣∣∣∣∣∣
∫ ∞
R∗∞

∑
m,`

(∫ ∞
R∗∞

2Re
(
u′H

))
dω

∣∣∣∣∣∣ ≤ BeP
∫

Σ0

JNµ [ψ]nµΣ0
.
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3.6.4 Controlling the error from the conserved energy current

We first note that the constant B is frequency independent and that this term arises from

the energy identity for JTµ [ψQ]. By Parseval’s identity and expanding ET ,∣∣∣∣∣∣∣∣
∫ ∞
−∞

∫ ∞
r+

∑
m∈Z
`≥|m|

ωIm
[
u

(aω)
m` H̄

(aω)
m`

]
drdω

∣∣∣∣∣∣∣∣
=

∣∣∣∣∫ ∞−∞
∫ ∞
r+

∫
S2

Re[T (γψ)]F∆ dgS2drdt

∣∣∣∣
=

∣∣∣∣∫ 1

0

∫ ∞
r+

∫
S2

GRe (∂tγψ + γ∂tψ) dgS2drdt.

∣∣∣∣
≤

∣∣∣∣∫ 1

0

∫ R∞

r+

∫
S2

χBGRe (∂tγψ + γ∂tψ) dgS2drdt

∣∣∣∣ (3.6.6)

+

∣∣∣∣∫ 1

0

∫ ∞
R∞−1

∫
S2

(1− χB)GRe (∂tγψ + γ∂tψ) dgS2drdt

∣∣∣∣, (3.6.7)

were χB is a smooth cut-off which is identically 1 for r ≤ R∞ − 1 and identically 0 for

r ≥ R∞ and

G =
∆ρ2

r2 + a2

(
2gtt∂tγ∂tψ + 2gtφ∂tγ∂φψ + gtt∂2

t γψ
)
.

The integral over the bounded region, (3.6.6), can be controlled by data as in §3.6.2. The

other term requires more care.

Most of the terms in (3.6.7) can be dealt with painlessly:∣∣∣∣∫ 1

0

∫ ∞
−∞

∫
S2

∆ρ2(1− χB)

r2 + a2
gtφ∂tγRe

(
(∂tγψ) ∂φψ

)∣∣∣∣
=

∣∣∣∣∫ 1

0

∫ ∞
−∞

∫
S2

∆ρ2(1− χB)

r2 + a2
gtφ (∂tγ)2 ∂φ |ψ|2

∣∣∣∣ = 0.

∣∣∣∣∫ 1

0

∫ ∞
−∞

∫
S2

∆ρ2(1− χB)

r2 + a2
gtφγ∂tγRe

(
(∂tψ) ∂φψ

)∣∣∣∣ ≤ C ∫ 1

0

∫
Στ

JNµ [ψ]nµΣτ

≤ C
∫

Σ0

JNµ [ψ]nµΣ0
.

2

∣∣∣∣∫ 1

0

∫ ∞
−∞

∫
S2

∆ρ2(1− χB)

r2 + a2
gttγ∂tγ |∂tψ|2

∣∣∣∣ ≤ C ∫ 1

0

∫
Στ

JNµ [ψ]nµΣτ ≤ C
∫

Σ0

JNµ [ψ]nµΣ0
.
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It remains to deal with the following term:∣∣∣∣∫ 1

0

∫ ∞
−∞

∫
S2

∆ρ2(1− χB)

r2 + a2

(
Re
(
∂tγψ

(
2gtt∂tγ∂tψ + gtt∂2

t γψ
))

+ Re
(
γ∂tψgtt∂2

t γψ
))∣∣∣∣

≤
∫

Σ0

JNµ [ψ]nµΣ0
+

∣∣∣∣∫ 1

0

∫ ∞
−∞

∫
S2

gtt
∆ρ2(1− χB)

r2 + a2

(
γ∂tγRe

(
∂2
t ψψ

))∣∣∣∣ .
See [DRSR14, §9.6] for the derivation of this inequality. Instead of additional integration

by parts on the last term, we use that ψ solves the wave equation:

gtt∂2
t ψ =

2a(2Mr −Q2)

ρ2∆
∂φ∂tψ −

∆− a2 sin2 θ

∆ρ2 sin2 θ
∂2
φψ

− r2 + a2

∆ρ2
∂r∗
((
r2 + a2

)
∂r∗ψ

)
− 1

ρ2 sin θ
∂θ (sin θ∂θψ) .

Substituting the right hand side of the wave equation above for gtt∂2
t ψ and integrating by

parts in φ, r and θ, we have∣∣∣∣∫ 1

0

∫ ∞
−∞

∫
S2

gtt
∆ρ2(1− χB)

r2 + a2

(
γ∂tγRe

(
∂2
t ψψ

))∣∣∣∣ ≤ B ∫ 1

0

∫
Σ0

JNµ [ψ]nµΣ0
.

Now by Proposition 3.3.1,∣∣∣∣∫ 1

0

∫ ∞
−∞

∫
S2

gtt
∆ρ2(1− χB)

r2 + a2

(
γ∂tγRe

(
∂2
t ψψ

))∣∣∣∣ ≤ B ∫
Σ0

JNµ [ψ]nµΣ0
.

This concludes the proof of Proposition 3.6.2, our integrated local energy decay result

for ψQ.

3.6.5 Concluding the proof of the conditional (ILED)

We now show that (ILED) holds for ψ from the result for ψQ.

Proposition 3.6.3. For a solution ψ of (2.2.3) satisfying the hypotheses of Theorem 3.3.2

and for any time τ > 0, (including the limit τ →∞),∫ τ

0

∫
Σt∩[r∗+,R

∗
e ]

[
(∂r∗ψ)2 + ψ2 + χ\

(
(Tψ)2 + |∇/ψ|2

)]
dt∗ (3.6.8)

+

∫
I+

JT [ψ] · nI+ +

∫
H+(0,τ)

JN [ψ] · nH+

≤ C
∫

Σ0

JNµ [ψ]nµΣ0
, (3.6.9)

where C depends only on M , re, Re and P . Moreover, χ\ > 0 for r /∈ {re ≤ r ≤ R\ < Re}.
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Proof. Let I[ψ] = (∂r∗ψ)2 + ψ2 + χ\
(
(Tψ)2 + (∇/ψ)2

)
.

Recall that Sγ := {0 ≤ t∗ ≤ 1} so ψ = ψQ in R(0, τ) \ Sγ ,∫
R(0,τ)∩[r∗+,R

∗
e ]\Sγ

I[ψ] =

∫
R(0,τ)∩[r∗+,R

∗
e ]\Sγ

I[ψQ].

By (3.6.5),∫
R(0,τ)∩[r∗+,R

∗
e ]
I[ψ] =

∫
R(0,τ)∩[r∗+,R

∗
e ]\Sγ

I[ψ] +

∫
R(0,τ)∩[r∗+,R

∗
e ]∩Sγ

I[ψ]

=

∫
R(0,τ)∩[r∗+,R

∗
e ]\Sγ

I[ψQ] +

∫
R(0,τ)∩[r∗+,R

∗
e ]∩Sγ

I[ψ]

≤
∫
R(0,τ)∩[r∗+,R

∗
e ]
I[ψQ] +

∫ 1

0

∫
Σt

JNµ [ψ]nµΣt dt
∗

≤ C

∫
Σ0

JNµ [ψ]nµΣ0
+ eP

∫
Σ0

JNµ [ψ]nµΣ0
,

where we have applied Proposition 3.3.1.

We have thus proved (3.3.6).

3.6.6 Integrated decay up to null infinity

We now extend (3.3.6) up to null infinity, consequently proving (3.3.7). We make use of

the following energy estimate for large r.

Proposition 3.6.4. Fix M > 0 and a2 +Q2 ≤ K2
0 < M2. Let ψ be a solution of (2.2.3)

satisfying the hypotheses of Theorem 3.3.2 and ψ∞ = 0. For any δ > 0, there exist

positive constants B(δ), 2M < R0 < Re, such that for any time τ > 0, (including the

limit τ →∞),∫ τ

0

∫
Σs∩{r≥Re}

r−1(r−δ|∂rψ|2 + r−δ|∂tψ|2 + |∇/ψ|2 + r−2−δψ2) ds

≤ B(δ)

(∫
Σ0

JNµ [ψ]nµΣ0
+

∫
Στ

JNµ [ψ]nµΣτ

)
.

Proof. Following [DR11a, §6], we let δ > 0 and apply the current JX,w[ψ] with

w = 2f ′(r∗) + 4
r − 2M

r2
f(r∗)− 2δ

r − 2M

r2+δ
f(r∗),

X = f(r∗)∂r,

f(r∗) = χ(1− r−δ),
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where χ is a smooth cut-off such that χ = 1 for r ≥ Re, χ = 0 for r ≤ Re − 1. Then

KX,w[ψ] =

(
r

r − 2M
f ′(r∗)− f(r∗)δ

2r1+δ

)
(∂r∗ψ)2 +

f(r∗)δ
2r1+δ

(∂tψ)2

+

(
r − 3M

r2
− δ(r − 2M)

r2+δ

)
f(r∗)|∇/ψ|2 − 1

2
(�w)(ψ2)

Taking Re large enough

KX,w[ψ] ≥ b(δ)
(
r−1−δ(∂r∗ψ)2 + r−1−δ(∂tψ)2 + r−1|∇/ψ|2 + r−3−δψ2

)
for r ≥ Re.

We now apply the energy identity between Σ0 and Στ . Since ∂rχ is compactly supported

and Re− 1 > R\, we can use (3.3.6) to control the spacetime error terms it generates. We

must control the error term∫ τ

0

∫
Σs

EV,w[ψ]ds

=

∫ τ

0

∫
Σs∩{r≥Re−1}

(χ(1− r−δ)∂rψ)F +
1

4
(wψF )

=

∫ 1

0

∫
Σs∩{r≥Re−1}

(χ(1− r−δ)∂rψ +
1

4
wψ)

(
2gtt∂tγ∂tψ + 2gtφ∂tγ∂φψ + gtt∂2

t γψ
)
.

The terms involving only first order derivatives of ψ can immediately be controlled using

Proposition 3.3.1.

For zeroth order terms we first use a Hardy inequality in r and then Proposition 3.3.1.

This can immediately be done for terms containing w as they come with the required

weights in r−1.

The remaining term is dealt with by integrating by parts:∫ 1

0

∫
Σs∩{r≥Re−1}

gttχ(1− r−δ)(∂2
t γ)(ψ∂rψ)ds

=

∫ 1

0

∫
Σs∩{r≥Re−1}

[
gtt(∂rχ)(1− r−δ)(∂2

t γ)ψ + ∂rg
ttχ(1− r−δ)(∂2

t γ)ψ

+gttχ(1− r−δ)(∂2
t γ)∂rψ + gttχ(δr−1−δ)(∂2

t γ)ψ
]

(ψ).

The first term is compactly supported so it can be controlled by (3.3.6). The other terms,

apart from the last one all have sufficient weights in r−1 to apply Hardy inequalities and

use Proposition 3.3.1. We integrate the final term by parts to obtain∫ ∞
∞

∫
Σs∩{r≥Re−1}

gttχ(δr−1−δ)(∂2
t γ).(ψ2) =

∫ 1

0

∫
Σs∩{r≥Re−1}

gttχ(δr−1−δ)(∂tγ)(ψ∂tψ).
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After Cauchy-Schwarz, this term has the required r-weight to apply Hardy inequalities and

use Proposition 3.3.1. Finally, we use Hardy inequalities in r to control
∫

Σ JX,w[ψ] · nΣ ≤
C
∫

Σ JN [ψ] · nΣ on the spacelike hypersurfaces.

Remark Recall from §3.3.1 that the assumption ψ∞ = 0 can be made without loss of

generality.

We must take care in applying Proposition 3.6.4 since we do not have an (NEB) result

yet and the right hand side has an error term supported on Στ . However, the assumption

(3.3.1) implies that ∫
Στ∩[r+,Re]

JNµ [ψ]nµΣτ ∈ L
1
τ [0,∞).

By the pigeon-hole principle, there exists a constant C and a dyadic sequence τn → ∞
such that ∫

Στn∩[r+,Re]
JNµ [ψ]nµΣτn ≤

C

τn
. (3.6.10)

Since T is timelike in the region r ≥ Re we may apply its associated energy estimate∫
Στn

JNµ [ψ]nµΣτn =

∫
Στn∩[r+,Re]

JNµ [ψ]nµΣτn +B

∫
Στn∩[Re,∞)

JTµ [ψ]nµΣτn

≤ C

τn
+ C

∫
H+(0,τn)

JNµ [ψ]nµH+ + C

∫
Σ0

JNµ [ψ]nµΣ0
. (3.6.11)

Adding an ε-multiple of the estimate of Proposition 3.6.4 to (3.3.6) and then applying

(3.6.11), we have∫ τn

0

∫
Σs∩{r≥Re}

(
r−1χ\|∇/ψ|2 + r−1−δχ\(Tψ)2 + r−1−δ(Zψ)2 + r−3−δψ2

)
ds

+ ε

∫ τn

0

∫
Σs∩{r≥Re}

(
r−1χ\|∇/ψ|2 + r−1−δχ\(Tψ)2 + r−1−δ(Zψ)2 + r−3−δψ2

)
ds

+ (b− ε)C
∫
H+(0,τn)

JNµ [ψ]nµH+ + C

∫
I+

JNµ [ψ]nµI+

≤ B (δ)

∫
Σ0

JNµ [ψ]nµΣ0
+
C

τn
.

Taking ε small enough and letting n → ∞ yields (3.3.7). Since we proved (3.3.6) in

Proposition 3.6.3, this concludes the proof of the conditional Theorem 3.3.2.

3.7 The continuity argument

At this stage, we have proved Theorem 3.3.2 (and consequently Theorem 3.2.2) for solu-

tions of (2.2.3) which are assumed to be sufficiently integrable in the sense of (3.3.1). We
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now remove this assumption by proving the following:

Proposition 3.7.1. Let M > 0 and a2 + Q2 ≤ K2
0 < M . All solutions ψ to the wave

equation (2.2.3) (arising from smooth, compactly supported initial data on Σ0) are future

integrable.

We follow the strategy of [DRSR14] in first considering modes of fixed azimuthal

frequency. Since Φ is a Killing field, it commutes with the D’Alembertian �g. Thus for

each azimuthal frequency m ∈ Z, the projection Pm of ψ to its mth azimuthal mode,

Pmψ(t, r, θ, φ) = ψ̃(t, r, θ)eimφ, is well defined. Furthermore, �g(Pmψ) = 0.

3.7.1 The reduction to fixed azimuthal frequency

Lemma 3.7.1. It suffices to prove Proposition 3.7.1 for solutions ψ to (2.2.3) supported

on a single fixed azimuthal frequency m ∈ Z.

Proof. Let ψ solve (2.2.3). The fundamental theorem of calculus implies that

B−1 sup
r∈[r+,A]

∫ ∞
0

∫
S2

∑
1≤i1+i2+i3≤j

|∇/ i1T i2(Z)i3ψ|2 sin θ dt dθ dφ

≤
∫
H+

∑
1≤i1+i2+i3≤j

|∇/ i1T i2(Z)i3ψ|2 +

∫ ∞
0

∫
Σs∩[r+,A]

∑
1≤i1+i2+i3≤j+1

|∇/ i1T i2(Z)i3ψ|2ds.

Suppose we have established Proposition 3.7.1 for solutions supported on any fixed az-

imuthal frequency. We may then use the orthogonality of the azimuthal modes to expand

ψ =
∑

m∈Z ψm. Since each ψm is future-integrable, we have (ILED) and (3.2.1) for each

ψm, verifying that (3.3.1) holds in the future of Σ0.

Now it remains to prove the following:

Proposition 3.7.2. Let M > 0, a2 + Q2 ≤ K2
0 < M2, m ∈ Z and ψ be a solution of

(2.2.3) that is supported only on the azimuthal frequency m. Then ψ satisfies (3.3.1).

Our main tool in the proof of is a version of (ILED) for fixed mode azimuthal mode

solutions, where we do not assume ψ is integrable a priori.

Lemma 3.7.2. Under the hypotheses of Proposition 3.7.2, for every τ ≥ 0, j ≥ 1 and

δ > 0,
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∫ τ

0

∫
Σs

(
r−1χm\

(
|∇/ψ|2 + r−δ |Tψ|2

)
+ r−1−δ |Zψ|2 + r−3−δ |ψ|2

)
ds+

∫
H+(0,τ)

JNµ [ψ]nµH+

≤ B(δ,m)

(∫
Σ0

JN [ψ] · nΣ0 +

∫
Στ

JN [ψ] · nΣτ

)
(3.7.1)

and

∫ τ

0

∫
Σs

r−1−δ

 ∑
1≤i1+i2+i3≤j−1

(
|∇/ i1T i2(Z)i3+1ψ|2 + |∇/ i1T i2Zi3ψ|2

)

+χm\
∑

1≤i1+i2+i3≤j
|∇/ i1T i2(Z)i3ψ|2

 ds

+

∫
H+(0,τ)

∑
1≤i1+i2+i3≤j

|∇/ i1T i2(Z)i3ψ|2

≤ B(δ, j,m)

∫
Σ0

∑
0≤i≤j−1

JN [N iψ] · nΣ0 +

∫
Στ

∑
0≤i≤j−1

JN [N iψ] · nΣτ

 , (3.7.2)

where χm\ =
(

1− 1{(1+
√

2)M≤r≤R\}
)

.

Proof. For the first statement, we modify the cut-off γ of §3.3.1 and repeat the arguments

of §3.6. That is, let γ = 1 identically between Σ1 and Στ−1 and identically 0 to the past

of Σ0 and the future of Στ . This allows us to remove the assumption that ψ is future

integrable at the expense of picking up extra terms supported on Στ on the right hand

side of the estimates (3.7.1) and (3.7.2).

It is crucial that the degeneration of the estimate is encapsulated in χm\ rather than

χ\. This is due to Lemma 3.4.5, which tells us that for fixed m and large Λ the trapped

set is contained in
{
r ∈ [

(
1 +
√

2
)
M,∞)

}
.

The second statement follows from the first in the same way that (3.2.2) follows from

(3.2.1).

Remark Recall from Lemma 3.4.5 that the degeneration due to trapping lies outside

the ergoregion in this fixed azimuthal frequency case. This is extremely useful in the

subsequent argument.

The following corollary will be our final reduction of the problem.
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Corollary 3.7.3. Under the hypotheses of Proposition 3.7.2, ψ is future-integrable if

sup
τ≥0

∫
Στ

∑
1≤i1+i2+i3≤j

|∇/ i1T i2(Z)i3ψ|2 <∞ ∀ j ≥ 1. (3.7.3)

Proof. As in the proof of Lemma 3.7.1, observe that

[B(j)]−1 sup
r∈[r+,A]

∫ ∞
0

∫
S2

∑
1≤i1+i2+i3≤j

|∇/ i1T i2Zi3ψ|2 sin θ dt dθ dφ

≤
∫
H+

∑
1≤i1+i2+i3≤j

|∇/ i1T i2(Z)i3ψ|2 +

∫ ∞
0

∫
Σs∩[r+,A]

∑
1≤i1+i2+i3≤j+1

|∇/ i1T i2(Z)i3ψ|2ds,

and apply (3.7.2) to the right hand side of this estimate.

3.7.2 The setting and non-emptiness

We are now ready to run a continuity argument in the parameter Q to prove Proposi-

tion 3.7.2. Proposition 3.7.1 then follows immediately by Corollary 3.7.3.

We fix M > 0 and a such that |a| < M and define for each m ∈ Z, the set

Qa,m := {Q2 ∈ [0,M2 − a2) : (3.7.3) holds for g = ga,Q,M}.

We will prove that Qa,m = [0,M2− a2) by showing that it is non-empty, open and closed.

Proposition 3.7.2 then follows by Corollary 3.7.3.

We begin with non-emptiness.

Proposition 3.7.4. For all m ∈ Z and a such that |a| < M , the set Qa,m is non-empty.

Proof. When Q = 0, the argument of [DRSR14, §11] shows that (3.7.3) holds. Thus

0 ∈ Qa,m.

Remark This appeal to the result of [DRSR14] is not necessary. We could just as well

have run the continuity argument in both parameters a and Q, reproving the result of

[DRSR14] in the process. In the interest of a clean and brief presentation, we just use the

continuity of the metric in Q here.

3.7.3 Openness

In this section, we prove
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Proposition 3.7.5. For all m ∈ Z and a such that |a| < M , the set Qa,m is open. That

is, suppose Q̊ ∈ Qa,m. Then there exists ε > 0 such that∣∣∣Q− Q̊∣∣∣ < ε =⇒ Q ∈ Qa,m.

The proof is in two parts. We first prove a derivative gaining (NEB)-type estimates

in the spirit of §3.8.2 in §3.7.3. We then define a metric that interpolates between gM,a,Q

and gM,a,Q̊ and use the estimates of §3.7.1 and §3.7.3 to prove that if Q and Q̊ are close

enough and (3.7.3) holds for gM,a,Q, it also holds for gM,a,Q̊.

Gaining derivatives

We begin by defining the following smooth, locally Killing, globally timelike vector field

Definition 3.7.3. Let a2 +Q2 ≤ K2
0 < M2 and take ε0 > 0 as in Lemma 2.2.3. Let α(r)

be a function such that V := T +α(r)Φ is a smooth vector field, timelike in M, satisfying

V = T +
a

r2
+ + a2

Φ, for r ∈ [r+, r+ + ε0/2],

V = T +
a(r2 + a2 −∆)

(r2 + a2)2 Φ, for r ∈
[
r+ + ε0,

M
(
7 +
√

2
)

4

]
,

V = T, for r ≥ M
(
3 +
√

2
)

2
.

Since 2M <
M(3+

√
2)

2 < M
(
1 +
√

2
)
, V is Killing in the region where trapping occurs

for fixed azimuthal frequency m (see Lemma 3.4.5). Because of this, the error terms arising

from the energy identity associated to V can be controlled by (3.7.1) and (3.7.2).

The following lemma is used as a converse to Lemma 3.7.2. However, we gain a

derivative in the sense that the spacetime integral term on the right hand side of (3.7.4)

is zeroth order.

Lemma 3.7.4. Let M > 0, a2+Q2 ≤ K2
0 < M2, m ∈ Z and ψ be a solution of (2.2.3) that

is supported only on the azimuthal frequency m. Then there exists a constant B = B(m)

such that for all τ ≥ 0,

∫
Στ

JNµ [ψ]nµΣτ ≤ B(m)

∫ τ

0

∫
Σs∩

{
r≤M(3+

√
2)

2

} |Φψ|2 ds+

∫
Σ0

JNµ [ψ]nµΣ0


≤ B(m)

∫ τ

0

∫
Σs∩

{
r≤M(3+

√
2)

2

} |ψ|2 ds+

∫
Σ0

JNµ [ψ]nµΣ0

 . (3.7.4)
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Proof. Applying the energy identity associated to the vector field V , we have∫
Στ

JVµ [ψ]nµΣτ ≤ B
∫ τ

0

∫
Σs

∣∣KV [ψ]
∣∣ ds+

∫
Σ0

JVµ [ψ]nµΣ0
.

It remains to control the spacetime integral term. We observe that KV [ψ] = 0 outside

supp(dαdr ) and ∣∣KV [ψ]
∣∣ ≤ B (ε|∂rψ|2 + ε−1|Φψ|2

)
,

and apply (3.7.1) to the first term:

ε

∫ τ

0

∫
Σs∩supp( dα

dr
)
|∂rψ|2 ds ≤ B(m)ε

(∫
Στ

JNµ [ψ]nµΣτ +

∫
Σ0

JNµ [ψ]nµΣ0

)
.

Adding this estimate to the energy identity above, we have

∫
Στ

JVµ [ψ]nµΣτ ≤ B(m)

ε−1

∫ τ

0

∫
Σs∩

{
r≤M(3+

√
2)

2

} |Φψ|2 ds+ ε

∫
Στ

JNµ [ψ]nµΣτ


+B(m)

∫
Σ0

JNµ [ψ]nµΣ0
.

The proof is completed by applying the argument presented in [DRSR14, §11.2].

The proof above does not use the fact that the ergoregion and trapping region are

disjoint. Rather, the non-degeneracy of the (∂rψ)2 term in (3.7.1) is used. Therefore, we

could prove the first line of (3.7.4) without the restriction to fixed m.

For fixed ψ supported on a fixed, azimuthal frequencym however, we have |Φψ| = |mψ|.
Since m is fixed, the presence of the ergoregion is only a low-frequency obstruction to

proving (NEB).

The proof of Lemma 3.7.4 is similar to Proposition 3.8.3 in that we obtain a nonde-

generate boundedness estimate without the use of a fully nondegenerate integrated local

energy decay estimate.

By combining (3.7.2) and (3.7.4), we obtain the following higher order version of

(3.7.4).

Lemma 3.7.5. Let M > 0, a2 + Q2 ≤ K2
0 < M2, m ∈ Z and ψ be a solution of (2.2.3)
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that is supported only on the azimuthal frequency m. Then, for every j ≥ 1, and all τ ≥ 0,∫
Στ

∑
1≤i1+i2+i3≤j

|∇/ i1T i2(Z)i3ψ|2

≤ B(j,m)

∫ τ

0

∫
Σs∩

{
r≤M(3+

√
2)

2

} |ψ|2 ds+

∫
Σ0

∑
1≤i1+i2+i3≤j

|∇/ i1T i2(Z)i3ψ|2
 . (3.7.5)

Proof. The additional Q-terms that arise in passing from the Kerr to the Kerr–Newman

case are harmless in the derivation of the higher order result, so the argument of [DRSR14,

§11.2] may be applied directly.

Combining (3.7.2) and (3.7.5), we obtain the following useful corollary.

Corollary 3.7.6. Let M > 0, a2 +Q2 ≤ K2
0 < M2, m ∈ Z and ψ be a solution of (2.2.3)

that is supported only on the azimuthal frequency m. Then, for every δ > 0, j ≥ 1, and

all τ ≥ 0,

sup
τ ′≤τ

∫
Στ ′

∑
1≤i1+i2+i3≤j

|∇/ i1T i2Zi3ψ|2

+

∫ τ

0

∫
Σs

r−1−δ

r−2 |ψ|2 + 1[r+,(1+
√

2)M]

∑
1≤i1+i2+i3≤j

|∇/ i1T i2Zi3ψ|2
 ds

+

∫ τ

0

∫
Σs

r−1−δ

 ∑
1≤i1+i2+i3≤j−1

|∇/ i1T i2Zi3ψ|2 +
∑

1≤i1+i2+i3≤j−1

|∇/ i1T i2Zi3+1ψ|2
 ds

≤ B(δ, j,m)

∫ τ

0

∫
Σs∩

{
r≤M(3+

√
2)

2

} |ψ|2 ds+

∫
Σ0

∑
1≤i1+i2+i3≤j

|∇/ i1T i2Zi3ψ|2
 . (3.7.6)

The interpolating metric

We now prove Proposition 3.7.5.

Proof of Proposition 3.7.5. Consider fixed M > 0, fixed a2 ≤ a2
0 < M2 and fixed m ∈ Z.

Let Q̊ ∈ Qa,m. Then choose Q0 such that Q̊2 < Q2
0 < M2 − a2. Our aim is to find an

ε > 0 satisfying Q̊2 + ε2 ≤ Q2
0 such that∣∣∣Q− Q̊∣∣∣ < ε =⇒ Q ∈ Qa,m.

Let ψ be a solution of (2.2.3) on gM,a,Q that is supported only on the azimuthal

frequency m and take Q such that
∣∣∣Q− Q̊∣∣∣ < ε for an ε to be determined.
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3.7. The continuity argument

g̃τ := χτgM,a,Q̊ + (1− χτ ) gM,a,Q

g̃τ := gM,a,Q̊

g̃τ := gM,a,Q

Στ−δτ

ΣτH+ I+

i0

Figure 3.7.1: The interpolating metric.

Let ψ̃ be a solution of (2.2.3) on gM,a,Q̊, also supported only the single azimuthal

frequency m. Since Q̊ ∈ Qa,m, Corollary 3.7.3 implies that ψ̃ is future-integrable. We will

exploit this by introducing a metric g̃τ which interpolates between gM,aQ̊ and gM,a,Q:

Definition 3.7.6. Set τ ≥ 1. Let

χτ =


1 in the future of Στ

0 in the past of Στ−δτ ,

smooth between Στ−δτ and Στ

for sufficiently small δτ > 0. Now define the interpolating metric g̃τ by

g̃τ := χτgM,a,Q̊ + (1− χτ ) gM,a,Q. (3.7.7)

See Figure 3.7.1.

If ε is small enough, g̃τ is a Lorentzian metric on M.

With our interpolating metric defined, we define the solution to its wave equation.

Definition 3.7.7. Let ψ be the solution of �gM,a,Qψ = 0 defined above. Let ψ̃τ be the

interpolating solution of �g̃τ ψ̃τ = 0 with the same initial data as ψ on Σ0.

This is well defined since Στ is a past Cauchy hypersurface for the future of Στ with

respect to g̃τ (which is identically equal to gM,a,Q̊ in that region).

Now ψ̃τ = ψ in the past of Στ−δτ and �gM,a,Q̊ψ̃τ = 0 in the future of Στ .

Since Φ is a Killing vector field for gM,a,Q and gM,a,Q̊ and χτ does not depend on Φ, it

is clear that Φ is Killing for the metric g̃τ . Therefore, the interpolating solution ψ̃τ and
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the as the original solution ψ will be supported on the same azimuthal frequency m.

The assumption Q̊ ∈ Qa,m allows us to use Corollary 3.7.3 to conclude that ψ̃τ is

future-integrable with respect to Q̊.

Note that

�gM,a,Q̊ψ̃τ =
(
�gM,a,Q̊ −�g̃τ

)
ψ̃τ .

A computation then shows that

r1+δ
∣∣∣(�gM,a,Q̊ −�g̃τ) ψ̃τ ∣∣∣2 ≤ B (δ−1

τ

) ∣∣∣Q− Q̊∣∣∣2 r−2
∑

1≤i1+i2+i3≤2

∣∣∣∇/ i1T i2Zi3ψ̃τ ∣∣∣2 . (3.7.8)

This structure is essential to proving the desired estimate. With (3.7.8) established, the

argument follows the same logic as in [DRSR14, §11.2].

In what follows, metric defined quantities refer to gM,a,Q̊.

The error term (3.7.8) is supported only in the past of Στ , so Proposition 3.3.1 followed

by (ILED) for gM,a,Q̊ imply

∫ τ

0

∫
Σs∩

{
r≤M(3+

√
2)

2

} ( JNµ [ψ]nµΣs + |ψ|2
)
ds

≤
∫ τ−δτ

0

∫
Σs∩{r≤M(1+

√
2)}

(
JNµ [ψ]nµΣs + |ψ|2

)
ds

≤ B(δτ ,m)
∣∣∣Q− Q̊∣∣∣2 ∫ τ

0

∫
Σs

∑
1≤i1+i2+i3≤2

r−2
∣∣∣∇/ i1T i2Zi3ψ̃τ ∣∣∣2 ds

+B (δτ ,m)
∣∣∣Q− Q̊∣∣∣2 ∫ ∞

τ

∫
Σs∩[r+,(1+

√
2)M ]

[∣∣∣T ψ̃τ ∣∣∣2 + |ψ|2
]
ds

+B(m)

∫
Σ0

[
JNµ [ψ]nµΣ0

+ |ψ|2
]
, (3.7.9)

for δτ sufficiently small.

Again by Proposition 3.3.1 (applied to second order derivatives of ψ̃τ and those of ψ

respectively),∫ τ

τ−δτ

∫
Σs

∑
1≤i1+i2+i3≤2

r−2

(∣∣∣∇/ i1T i2Zi3ψ̃τ ∣∣∣2 +
∣∣∣∇/ i1T i2Zi3ψ∣∣∣2) ds

≤ B
∫

Στ−δτ

∑
1≤i1+i2+i3≤2

∣∣∣∇/ i1T i2Zi3ψ∣∣∣2 . (3.7.10)

Since ψ̃τ is future integrable, we can apply (3.2.2), and Proposition 3.3.1 again, to
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arrive at∫ ∞
τ

∫
Σs∩[r+,(1+

√
2)M ]

[∣∣∣T ψ̃τ ∣∣∣2 + |ψ|2
]
≤ B

∫
Στ−δτ

∑
1≤i1+i2+i3≤2

∣∣∣∇/ i1T i2Zi3ψ∣∣∣2 . (3.7.11)

Combining (3.7.9), (3.7.10) and (3.7.11) gives∫ τ

0

∫
Σs∩

{
r≤M(3+

√
2)

2

} ( JNµ [ψ]nµΣs + |ψ|2
)
ds

≤B(m)
∣∣∣Q− Q̊∣∣∣2 ∫

Στ−δτ

∑
1≤i1+i2+i3≤2

∣∣∣∇/ i1T i2Zi3ψ̃τ ∣∣∣2
+B(m)

∣∣∣Q− Q̊∣∣∣2 ∫ τ

0

∫
Σs

∑
1≤i1+i2+i3≤2

r−2
∣∣∣∇/ i1T i2Zi3ψ∣∣∣2 ds (3.7.12)

+B(m)

∫
Σ0

[
JNµ [ψ]nµΣ0

+ |ψ|2
]
.

Applying Corollary 3.7.6 followed by (3.7.12):

sup
τ ′≤τ

∫
Στ ′

∑
1≤i1+i2+i3≤j

|∇/ i1T i2Zi3ψ|2

+

∫ τ

0

∫
Σs

r−1−δ

r−2 |ψ|2 + 1[r+,(1+
√

2)M]

∑
1≤i1+i2+i3≤j

|∇/ i1T i2Zi3ψ|2
 ds

+

∫ τ

0

∫
Σs

r−1−δ

 ∑
1≤i1+i2+i3≤j−1

|∇/ i1T i2Zi3ψ|2 +
∑

1≤i1+i2+i3≤j−1

|∇/ i1T i2Zi3+1ψ|2
 ds

≤B(δ, j,m)

∫ τ

0

∫
Σs∩

{
r≤M(3+

√
2)

2

} |ψ|2 ds+

∫
Σ0

∑
1≤i1+i2+i3≤j

|∇/ i1T i2Zi3ψ|2


≤B(δ, j,m)
∣∣∣Q− Q̊∣∣∣2 ∫ τ

0

∫
Σs

∑
1≤i1+i2+i3≤2

|∇/ i1T i2Zi3ψ|2ds

+B(δ, j,m)
∣∣∣Q− Q̊∣∣∣2 ∫ τ

0

∫
Σs

r−2
∑

1≤i1+i2+i3≤2

|∇/ i1T i2Zi3ψ|2 ds

+B(δ, j,m)

∫
Σ0

∑
0≤i1+i2+i3≤j

|∇/ i1T i2Zi3ψ|2.

Taking j ≥ 3 and letting ε be small enough that we can absorb the
∣∣∣Q− Q̊∣∣∣2 term on the

left hand side. We conclude that

sup
τ ′≤τ

∫
Στ ′

∑
1≤i1+i2+i3≤j

|∇/ i1T i2Zi3ψ|2 ≤ B(j,m)

∫
Σ0

∑
0≤i1+i2+i3≤j

|∇/ i1T i2Zi3ψ|2 <∞.
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Since τ was chosen arbitrarily and the right hand side of this estimate is independent of

τ , this is the sufficient condition for integrability of Corollary 3.7.3. We have therefore

shown that there exists an ε small enough that
∣∣∣Q− Q̊∣∣∣ < ε =⇒ Q ∈ Qa,m.

3.7.4 Closedness

To close the continuity argument and complete the proof of Proposition 3.7.2, it remains

to prove

Proposition 3.7.7. The set Qa,m is closed in [0,M2 − a2). That is, if the sequence

{Qk}∞k=1 ⊂ Qa,m and Q2
k < M2 − a2, then Q ∈ Qa,m.

Proof. As in the statement of Proposition 3.7.2, let ψ be a solution the wave equation

�gM,a,Qψ = 0 supported on a fixed azimuthal frequency m. Set Q0 < M such that

Q2 < Q2
0. Without loss of generality, we assume that Q2

k ≤ Q2
0 for all k.

Now define the sequence of functions ψk to be solutions of �gM,a,Qkψk = 0 with the

same initial data as ψ. Then by Lemma 2.2.1,∫
Στ

∑
1≤i1+i2+i3≤j

|∇/ i1T i2Zi3ψ|2 = lim
k→∞

∫
Στ

∑
1≤i1+i2+i3≤j

|∇/ i1T i2Zi3ψk|2 (3.7.13)

for every τ ≥ 0, j ≥ 1. Since each Qk ∈ Qa,m, each ψk is future integrable. We may then

apply (3.2.3) to each ψk: for every j ≥ 1,

sup
τ≥0

∫
Στ

∑
1≤i1+i2+i3≤j

|∇/ i1T i2Zi3ψk|2 ≤ B(j,m)

∫
Σ0

∑
1≤i1+i2+i3≤j

|∇/ i1T i2Zi3ψk|2. (3.7.14)

Combining (3.7.13) and (3.7.14), we conclude that

sup
τ≥0

∫
Στ

∑
1≤i1+i2+i3≤j

|∇/ i1T i2Zi3ψ|2 ≤ B(j,m) lim
k→∞

∫
Σ0

∑
1≤i1+i2+i3≤j

|∇/ i1T i2Zi3ψk|2

= B(j,m)

∫
Σ0

∑
1≤i1+i2+i3≤j

|∇/ i1T i2Zi3ψ|2,

which is (3.7.3), so Q ∈ Qa,m.

3.7.5 Proof of (ILED)

We have now proved Proposition 3.7.2, the integrability result for solutions supported

on fixed azimuthal frequency. By the reduction given by Lemma 3.7.1, Proposition 3.7.1
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follows directly. We have therefore shown that any solution of (2.2.3) on a subextremal

Kerr–Newman exterior spacetime is future integrable. This allows us to appeal to the

conditional Theorem 3.3.2 for the full range of solutions. From this we conclude that

(ILED) in Theorem 3.2.1 holds unconditionally.

3.8 Proof of (NEB)

At this point we have proved that for a2 +Q2 < M2, every solution ψ of (2.2.3) is future-

integrable and moreover satisfies the integrated decay statements (ILED) and (3.2.1). We

now prove (NEB). Naively, one may apply the energy identity for N ,∫
Στ

JNµ [ψ]nµΣτ ≤
∫

Σ0

JNµ [ψ]nµΣ0
−
∫ τ

0

∫
Σt

KN [ψ] dt∗ (3.8.1)

and attempt to control the last term on the right hand side by (3.2.1). In the case that

a2 +Q2 �M2, this approach works. This is because one has a small parameter to exploit,

which allows the vector field N to be chosen in such a way that KN [ψ] is not supported

in the physical space projection of the trapped set. See [DR11a] for the details.

In general, this approach fails due to the degeneracies of (3.2.1). For the full subex-

tremal Kerr–Newman case, we turn to a more sophisticated approach which employs phase

space localisation of ψ and specific features of the Kerr–Newman geometry.

We begin by recalling from Lemmas 3.4.1 and 3.5.2 that there exists a constant R\

such that the degeneration of estimate (3.5.3) due to trapping only occurs in R(0, τ) ∩
{re < r < R\} where

re < R\ � Re.

Theorem 3.2.1 ensures that we can fix Re large enough in (ILED) to satisfy the inequality

above. Cover M by the sets

ÃH = M∩ {r+ ≤ r < re − ε} ,
Ãtrap = M∩ {re − 2ε < r < R\ + 2ε}

and ÃR = M∩ {r > R\ + ε} ,

where the presence of ε > 0 ensures that the trapping region is strictly contained in Ãtrap.

Let us take a smooth partition of unity {χH(r), χtrap(r), χR(r)} subordinate to the cover{
ÃH , Ãtrap, ÃR

}
with

supp χ{H,trap,R}(r) = Ã{H,trap,R}.
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Now for a solution of (2.2.3) we can write

ψ = ψH + ψtrap + ψR, (3.8.2)

where

ψ{H,trap,R} = χ{H,trap,R} · ψ.

Clearly each ψ{H,trap,R} has the same smoothness and integrability properties as ψ. Fur-

thermore,

�gψ{H,trap,R} = G{H,trap,R}, (3.8.3)

where

G{H,trap,R} = (�(χ{H,trap,R}))ψ + 2∇µ(χ{H,trap,R})∇µψ.

Outside the trapping region Ãtrap, the (NEB) statement may be extracted from (ILED)

in a direct manner. We will consider this first.

3.8.1 (NEB) outside the trapping region

(NEB) near the horizon

Applying the energy identity for N to ψH , we have∫
Στ

JNµ [ψH ]nµΣτ ≤
∫

Σ0

JNµ [ψH ]nµΣ0
−
∫ τ

0

∫
Σt∩{r+≤r≤re−ε}

(KN [ψH ] + EN [ψH ]) dt∗.

Since χH is smooth with compactly supported derivatives,

∣∣EN [ψH ]
∣∣ = |[N(χH)ψ + (χH)(Nψ)][�(χH)ψ + 2∇µ(χH)(∇µψ)]|
≤ Cψ2 + C|∂ψ|2.

So∫ τ

0

∫
Σt∩{r+≤r≤re−ε}

∣∣KN [ψH ]
∣∣+
∣∣EN [ψH ]

∣∣ dt∗ ≤ C ∫ τ

0

∫
Σt∩{r+≤r≤re−ε}

ψ2 + |∂ψ|2 dt∗.

The estimate (3.6.8) does not degenerate in ÃH , so we may apply it to the spacetime

integral above to obtain∫
Στ

JNµ [ψH ]nµΣτ ≤
∫

Σ0

JNµ [ψH ]nµΣ0
+ C

∫
Σ0

JNµ [ψ]nµΣ0
.
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The zeroth order terms in JNµ [ψH ]nµΣ0
can be controlled using the Hardy inequality (2.2.8)

in r (we exploit the smoothness of the cut-offs and the compact support of ψH). Hence∫
Στ

JNµ [ψH ] ≤ (CH + C)

∫
Σ0

JNµ [ψ]nµΣ0
. (3.8.4)

(NEB) for large r

Here we apply the energy identity for T to ψR,∫
Στ

JTµ [ψR]nµΣτ ≤
∫

Σ0

JTµ [ψR]nµΣ0
−
∫ τ

0

∫
Σt∩{r≥R\+ε}

ET [ψR] dt∗.

Note that∫
Σ0

JTµ [ψR]nµΣ0
≤ C

∫
Σ0

|∇(χRψ)|2

≤ C

∫
Σ0

|χR(∇ψ) + (∂rχR)(ψ)|2

≤ C

∫
Σ0

|(∂ψ)|2 + C

∫
Σ0∩{R\+ε≤r≤R\+2ε}

(∂rχR)2(ψ)2

≤ C(R\ + 2ε)2

∫ τ

0

∫
Σt∩{R\+ε≤r≤R\+2ε}

r−2ψ2 + |∂ψ|2 dt∗

≤ C

∫
Σ0

JNµ [ψ]nµΣ0
,

where we have used the Hardy inequality (2.2.8) in r. The spacetime integrand is

ET [ψR] = [T (χR)ψ + (χR)(Tψ)][�(χR)ψ + 2∇µ(χR)(∇µψ)]

= (χR)(Tψ)[�(χR)ψ + 2∇µ(χR)(∇µψ)]

=

(
∂r(∆∂rχR)

ρ2 sin θ

)
(ψ)(χR)(Tψ) + 2(grr)(χR)(∂rχR)(∂rψ)(Tψ)

Observe that each term in ET [ψR] contains factors of (∂rχR) or (∂2
rχR) and is conse-

quently supported in {R\ + ε ≤ r ≤ R\ + 2ε}. Applying Cauchy Schwarz and using the

boundedness of the metric components and cut-offs,∫ τ

0

∫
Σt∩{r≥R\+ε}

∣∣ET [ψR]
∣∣ dt∗ =

∫ τ

0

∫
Σt∩{R\+ε≤r≤R\+2ε}

∣∣ET [ψR]
∣∣ dt∗

≤ C

∫ τ

0

∫
Σt∩{R\+ε≤r≤R\+2ε}

ψ2 + |∂ψ|2 dt∗

≤ C

∫
Σ0

JNµ [ψ]nµΣ0
,

97



Stability of subextremal Kerr–Newman spacetimes for linear scalar perturbations

where we have used (3.6.8) in the last inequality (note that this estimate does not degen-

erate in the region under consideration). We conclude that

∫
Στ

JNµ [ψR] ≤ CR
∫

Σ0

JNµ [ψ]nµΣ0
. (3.8.5)

3.8.2 The set up for the proof of (NEB) in the trapping region

Recall the decomposition (3.8.2),

ψ(t∗, r, θ, φ) = (χH(r) + χR(r) + χtrap(r))ψ(t∗, r, θ, φ).

We have proved (NEB) for (χH + χR)ψ in (3.8.4) and (3.8.5). The proof of (NEB) for

χtrapψ requires a more sophisticated approach which employs features of the Kerr–Newman

geometry and localisation of ψ in phase space.

The idea is to project to finitely many wave packets for which the degeneration of

(3.6.8) is contained in a particular bounded r−interval. Then a bespoke energy current

can be constructed for each wave packet so that, upon application of the associated energy

identity, we obtain (NEB) for each wave packet. It then remains to sum over the wave

packets to obtain (NEB) for the full solution of (2.2.3).

We first describe the relevant geometric features. The localisation depends on these

features and follows in §3.8.3.

It will be convenient to extend the solution ψ of (2.2.3) from the future of Σ0 to the

entire domain of outer communications.

Extending to the past

The initial data in (2.2.3) only determine the solution ψ in the future of Σ0. We extend

the solution ψ to the entire domain of outer communications as follows:

Consider the maximal globally hyperbolic extension of the Kerr–Newman manifold

Me (see for example [Car73]). Denote the extension of Σ0 as a spacelike hypersurface to

Me by Σe
0. Now Σe

0 is a Cauchy hypersurface for Me.

We can extend the initial data on Σ0 to Σe
0 as C1 functions in such a way that∫

Σe0

JNµ [ψ]nµΣe0
≤ C

∫
Σ0

JNµ [ψ]nµΣ0
. (3.8.6)

Since Σe
0 is a Cauchy hypersurface for Me, we can solve the initial value problem both

forwards and backwards in such a way that the solution is C2(M) and agrees with the

solution ψ of (2.2.3) in M∩ J+(Σ0).
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From here on we consider the extended solution, which we continue to denote by ψ.

Let Σ̃e
0 be the image of Σe

0 under the map t 7→ −t, where t is the Boyer–Lindquist

coordinate of §2.1.1. Then applying the energy identity for nΣe0
between Σe

0 and Σ̃e
0, the

proof of Proposition 3.3.1 and the analogue of (3.8.6) for Σe
0 we have∫

Σ̃0

JNµ [ψ]nµ
Σ̃0
≤ C

∫
Σ0

JNµ [ψ]nµΣ0
. (3.8.7)

We now extend (ILED) to the past of Σ0.

Corollary 3.8.1. Let ψ solve (2.2.3). For any r+ < r0 < R0 ≤ Re there exists a positive

constant Cr0,R0 such that∫ ∞
−∞

∫
Στ∩{r0≤r≤R0}

(
χ\|∂ψ|2 + |ψ|2

)
dt∗ ≤ Cr0,R0

∫
Σ0

|∂ψ|2, (3.8.8)

Here χ\ is a cut-off function that vanishes in a neighbourhood of the physical space pro-

jection of the trapped set, see §3.5.3.

Proof. Write∫ ∞
−∞

∫
Σs∩{r0≤r≤R0}

(
χ\|∂ψ|2 + |ψ|2

)
ds

=

(∫
J+(Σ0)∩{r0≤r≤R0}

+

∫
{J−(Σ0)∩J+(Σ̃0)}∩{r0≤r≤R0}

)(
χ\|∂ψ|2 + |ψ|2

)
+

∫
J−(Σ̃0)∩{r0≤r≤R0}

(
χ\|∂ψ|2 + |ψ|2

)
.

For the first integral, we simply apply (ILED). For the last integral, we note that mapping

(t, a) 7→ (−t,−a) is an isometry, so (ILED) holds with Σ0 replaced by Σ̃0 and the integrals

(0, τ) replaced by integrals over (−τ, 0). The remaining term is controlled Proposition

3.3.1 and (3.8.7).

Locally Killing, globally timelike vector fields

Let us first recall the following property of subextremal Kerr–Newman spacetimes: For

any r̃ ≥ r+, there exists a constant c = c(r̃) such that the smooth vector field

Qc = T + cΦ

is timelike and Killing at r̃. By continuity of the metric, there exists an open set of the

form A = {ra < r < RA} containing this r̃ for which Qc remains timelike and Killing in
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A. We extend Qc to a globally defined smooth vector field by defining

QA = T + bA(r)Φ

where bA(r) is a smooth function chosen such that QA is smooth and globally timelike in

R(0, τ) with the further property that bA(r) = c in A.

Covering the trapping region

Our goal is to overcome the degeneration of (3.6.8) in a neighbourhood of the physical

space projection of the trapped set
{
r : r ∈ ⋂∞L=1

⋃
`≥L r

(aω)
m`

}
. This degeneration arose

from the fact that the estimate (3.5.3) must degenerate on
{
r = r

(aω)
m`

}
(ω,m,`)

for each

trapped mode. Recall from Lemmas 3.4.1 and 3.5.2 that these r
(aω)
m` must lie in R(0, τ) ∩

{re < r < R\} ⊂ Ãtrap.
By compactness and the construction in §3.8.2, Ãtrap can be covered by finitely many

open sets, say {An}Ñn=1, for which the smooth vector field

QAn = T + cnΦ

is timelike and Killing in An. We now use QAn to define the vector field

Qn = T + bn(r)Φ

where bn(r) is a smooth function chosen such that Qn is smooth and globally timelike in

R(0, τ) with the further property that

Qn =


N for R(0, τ) ∩ {r < re − 3ε} ,
QAn in An,

T for R(0, τ) ∩ {r > R\ + 3ε} .
(3.8.9)

We emphasise that Qn is smooth and globally timelike and in particular, a local Killing

vector field in An.

For n = 0 we just let Q0 = N .

A refinement

Ultimately we want to apply energy currents JQn to appropriately localised solutions of

(3.3.4), which we will call wave packets (the precise definition is given later in (3.8.10)).

We want to construct each wave packet in such a way that (3.5.11) applied to the nth

wave packet is nondegenerate in R(0, τ) \An.
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To ensure this, we will need a refinement
{
Ãn

}Ñ
n=1

of {An}Ñn=1 such that the degener-

ation of (3.5.11) applied to the nth wave packet is strictly contained in Ãn ⊂ An. Denote

each An by

An = (rAn , RAn) where rAn < rAn+1 < RAn < RAn+1 .

Observe that the intersections of adjacent An are nonempty open sets of the form

An−1 ∩An = (rAn , RAn−1).

Hence we can define

Ãn = (rAn + εn, RAn − εn)

where each εn is chosen small enough that the intersections of adjacent Ãn are nonempty

open sets.

3.8.3 Construction of wave packets

We now construct the wave packets by localising solutions of (3.8.3) appropriately in phase

space. First recall our decomposition (3.8.2):

ψ = ψH + ψR + ψtrap.

We apply the decomposition (3.3.8) to ψtrap = χtrapψ:

ψtrap(t, r, θ, φ) =
1√
2π

∫ ∞
−∞

∑
m∈Z

∑
`>|m|

χtrap(r)R
(aω)
m` (r)S

(aω)
m` (cos θ)eimφe−iωt dω.

Let {χn(r)}Ñn=1 be a smooth partition of unity subordinate to the cover
{
Ãn

}Ñ
n=1

such

that

supp χn(r) = Ãn.

Define the cut-off functions as follows:

αn(ω,m, `) = χn(r
(aω)
m` ).

We use these to localise in phase space by defining, for (ω,m,Λ) ∈ F\:
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ψn(t, r, θ, φ) =
1√
2π

∫ ∞
−∞

∑
m∈Z
`≥|m|

αn(ω,m, `)χtrap(r)R
(aω)
m` (r)S

(aω)
m` (cos θ)eimφe−iωt dω.

(3.8.10)

To get the full solution of (3.8.3) upon summation, we need one more wave packet

that takes into account (ω,m,Λ) /∈ F\. Define

ψ0(t, r, θ, φ) =
1√
2π

∫ ∞
−∞

∑
m∈Z

∑
`>|m|

α0(ω,m, `)χtrap(r)R
(aω)
m` (r)S

(aω)
m` (cos θ)eimφe−iωt dω

where

α0(ω,m, `) = 1−
Ñ∑
n=1

αn(ω,m, `).

Note that the estimate (3.5.11) for α0(ω, r,m, `)u
(aω)
m` will not degenerate as the phase-

space support of this wave packet lies outside the trapping regime. Therefore the (NEB)

statement in Ãtrap for these modes is proved by the same argument as in §3.8.1, so∫
Στ

JNµ [ψ0] ≤ C0

∫
Σ0

JNµ [ψ]nµΣ0
. (3.8.11)

Remark Note that in this section, R
(aω)
m` and u

(aω)
m` denote the solutions of (3.3.10) and

(3.3.12) respectively with F
(aω)
m` and H

(aω)
m` arising from the cut-off χtrap(r) rather than

the cut-off γ(t∗).

Proposition 3.8.2. Each wave packet ψn defined by (3.8.10) enjoys the following prop-

erties.

1. Each ψn is sufficiently integrable in the sense of (3.3.1).

2. The estimate (3.5.11) for αn(ω,m, `)u
(aω)
m` will degenerate only in Ãn as desired.

3. Every (ω,m,Λ) ∈ F\ belongs to the phase-space support of some wave packet ψ̂n.

Proof. 1. This follows immediately from Plancherel and the assumption that ψ satisfies

(3.3.1).

2. We have constructed αn such that

supp αn(ω,m, `) =
{

(ω,m, `) | r(aω)
m` ∈ Ãn

}
.
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3. This follows from the item above and the fact that
{
Ãn

}Ñ
n=1

covers Ãtrap.

3.8.4 (ILED) for wave packets

We first prove that the analogue of (ILED) holds for each wave packet.

Lemma 3.8.1. There exists a positive constant C depending only on M , re, Re and P

such that for any wave packet ψn, n ≥ 1, and any τ > 0,∫ τ

0

∫
Σt∩[r∗e ,R∗e ]

[
(∂r∗ψn)2 + ψ2

n + ξn(r)
(

(Tψn)2 + |∇/ψn|2
)]
dt∗ ≤ C

∫
Σ0

JNµ [ψ]nµΣ0
,

(3.8.12)

where ξn degenerates only in Ãn.

Proof. Note that |αn(ω,m, `)| ≤ 1 and |χtrap| ≤ 1. Since χtrap(r) and χn(r) are compactly

supported smooth functions in r,

|∂rχn|2 + |∂rχtrap|2 ≤ max
1≤n≤Ñ

sup
r∈[rAn ,RAn ]

|∂rχn|2 + sup
r∈[re,Re]

|∂rχtrap|2 := C.

This constant is independent of ω, m and `. Repeating the proof of Proposition 3.5.9 and

recalling that J
(aω)
m` is not supported in the trapping regime F\,

∫ ∞
−∞

∑
m∈Z
`≥|m|

∫ R∗e

r∗e

(∣∣∣∣ ddr∗ (αnχtrapu(aω)
m`

)∣∣∣∣2 +
∣∣∣αnχtrapu(aω)

m`

∣∣∣2

+(r − r(aω)
m` )2(ω2 + Λ)

∣∣∣αnχtrapu(aω)
m`

∣∣∣2) dr∗dω
≤ 4C

∫ ∞
−∞

∑
m∈Z
`≥|m|

∫ R∗e

r∗e

∣∣∣∣ ddr∗u(aω)
m`

∣∣∣∣2 +
∣∣∣u(aω)
m`

∣∣∣2 + (r − r(aω)
m` )2(ω2 + Λ)

∣∣∣u(aω)
m`

∣∣∣2dr∗dω
≤

∫ ∞
−∞

∑
m∈Z
`≥|m|

∫
Ãtrap

C
(aω)
m` (r∗)Re

[
(u

(aω)
m` )′H̄(aω)

m`

]
+D

(aω)
m` (r∗)Re

[
u

(aω)
m` H̄

(aω)
m`

]
dr∗dω

+ B

∫ ∞
−∞

∑
m∈Z
`≥|m|

∫
Ãtrap

ωIm
[
u

(aω)
m` H̄

(aω)
m`

]
dr∗dω,

where we have absorbed constants,

H
(aω)
m` (r) :=

∆G
(aω)
m` (r)

(r2 + a2)1/2
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and

G
(aω)
m` :=

∫
S2

Ĝtrap(ω, r, θ,m) · S(aω)
m` (cos θ)eimφdVS2 .

By construction, χn(r
(aω)
m` ) is only supported in Ãn for 1 ≤ n ≤ Ñ . Hence (r − r(aω)

m` )2

vanishes only in Ãn for 1 ≤ n ≤ Ñ and χ0 = 1. From the identities in §3.3.3 and (3.8.10),

we have for any τ > 0

∫ ∞
−∞

∑
m∈Z
`≥|m|

∫ R∗e

r∗e

(∣∣∣∣ ddr∗ (αnχtrapu(aω)
m`

)∣∣∣∣2 +
∣∣∣αnχtrapu(aω)

m`

∣∣∣2

+(r − r(aω)
m` )2(ω2 + Λ)

∣∣∣αnχtrapu(aω)
m`

∣∣∣2) dr∗dω
≥ c

∫ ∞
−∞

∫
S2

∫ Re

r+

[
(∂r∗ψn)2 + ψ2

n + ξn(r)
(
(Tψn)2 + (∇/ψn)2

)]
ρ2 sin θ dθ dφ dr dt∗

≥ c

∫ τ

0

∫
Σt∩[r∗e ,R∗e ]

[
(∂r∗ψn)2 + ψ2

n + ξn(r)
(
(Tψn)2 + (∇/ψn)2

)]
dt∗,

where c is a positive constant depending on M , re and Re and ξn(r) is a strictly positive

function outside of Ãn which vanishes on the physical space projection of r
(aω)
m` for r

(aω)
m` ∈

Ãn.

So we have

c

∫ τ

0

∫
Σt∩[r∗e ,R∗e ]

[
(∂r∗ψn)2 + ψ2

n + ξn(r)
(
(Tψn)2 + (∇/ψn)2

)]
dt∗

≤
∫ ∞
−∞

∑
m∈Z
`≥|m|

∫
Ãtrap

C
(aω)
m` (r∗)Re

[
(u

(aω)
m` )′H̄(aω)

m`

]
+D

(aω)
m` (r∗)Re

[
u

(aω)
m` H̄

(aω)
m`

]
dr∗dω

+ B

∫ ∞
−∞

∑
m∈Z
`≥|m|

∫
Ãtrap

ωIm
[
u

(aω)
m` H̄

(aω)
m`

]
dr∗dω.

It thus remains to prove that the right hand side of this estimate is controlled by initial

data. Recall that

Gtrap = (�χtrap)ψ + 2∇µ(χtrap)∇µψ

=
1

ρ2 sin θ
∂r(∆∂rχtrap)ψ + 2

∆

ρ2
∂r(χtrap)(∂rψ). (3.8.13)

By the identities in §3.3.3,

B

∫ ∞
−∞

∫ ∞
r+

∑
m∈Z
`≥|m|

ωIm
[
u

(aω)
m` H̄

(aω)
m`

]
dr∗dω = B

∫ ∞
−∞

∫ ∞
r+

∫
S2

(Tψ)(Gtrap) ∆drdgS2dt
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Observe that each term in Gtrap contains factors of (∂rχtrap) or (∂2
rχtrap) and conse-

quently

ζ := supp Gtrap ⊂ {re − 2ε ≤ r ≤ re − ε} ∪ {R\ + ε ≤ r ≤ R\ + 2ε} .

Note that supp H
(aω)
m` ⊂ ζ as well. Recall from §3.6 that C

(aω)
m` (r), D

(aω)
m` (r) and χtrap(r)

are smooth functions, bounded uniformly with respect to ω,m,Λ, so by (3.8.8) there exists

a positive frequency independent constant C such that

∫ ∞
−∞

∑
m∈Z
`≥|m|

∫
Ãtrap

C
(aω)
m` (r∗)Re

[
(u

(aω)
m` )′H̄(aω)

m`

]
+D

(aω)
m` (r∗)Re

[
u

(aω)
m` H̄

(aω)
m`

]
dr∗dω

+ B

∫ ∞
−∞

∑
m∈Z
`≥|m|

∫
Ãtrap

ωIm
[
u

(aω)
m` H̄

(aω)
m`

]
dr∗dω

≤ C

∫ ∞
−∞

∑
m∈Z
`≥|m|

∫
ζ

∣∣∣(u(aω)
m` )′

∣∣∣2 +
∣∣∣u(aω)
m`

∣∣∣2 + ω2
∣∣∣u(aω)
m`

∣∣∣2 +
∣∣∣H(aω)

m`

∣∣∣2 dr∗dω.
≤ C

∫ ∞
−∞

∫
Σt∩ζ
|ψ|2 + |∂rψ|2 + |∂tψ|2 dt.

Now ζ is disjoint from the trapping region, so we may apply (3.8.8) to obtain the result.

3.8.5 (NEB) for wave packets

Proposition 3.8.3. For each wave packet ψn, we have (NEB). That is, there exists a

constant Cn, depending on M , re, Re, P (from Proposition 3.3.1), λ2, ω1 and ω2 such

that ∫
Στ

JQnµ [ψn]nµΣτ ≤ Cn
∫

Σ0

JQnµ [ψ]nµΣ0
. (3.8.14)

Proof. In light of (3.8.11), we need only consider the wave packets supported in F\, that

is, ψn for n ≥ 1.

Each wave packet ψn is sufficiently integrable in the sense of (3.3.1) so for each n there

exists a dyadic sequence τ
(n)
j → −∞ and a constant kn such that∫

Σ
τ
(n)
j

JQnµ [ψn]nµΣ
τ
(n)
j

≤ −kn
τ

(n)
j

. (3.8.15)
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Applying the energy identity for Qn to ψn between a Σ
τ

(n)
j

and Στ for 1 ≤ n ≤ Ñ we have

∫
Στ

JQnµ [ψn]nµΣτ =

∫
Σ
τ
(n)
j

JQnµ [ψn]nµΣ
τ
(n)
j

−
∫ τ

τ
(n)
j

∫ Re

re−2ε

∫
S2

(
EQn [ψn] + KQn [ψn]

)
ρ2 sin θ dr dθ dφ dt.

By (3.8.15), taking j →∞, we have∫
Στ

JQnµ [ψn]nµΣτ ≤
∣∣∣∣∫ τ

−∞

∫ Re

re−2ε

∫
S2

(
EQn [ψn] + KQn [ψn]

)
ρ2 sin θ dr dθ dφ dt

∣∣∣∣. (3.8.16)

Since Qn is a timelike Killing vector field in An and Qn = T for r > R\ + 3ε, the bulk

term KQn [ψn] vanishes in these regions, so∫ τ

−∞

∫
r∈[rAn ,RAn ]∪{r<re−2ε}∪{r>R\+3ε}

∫
S2

KQn [ψn] ρ2 sin θ dr dθ dφ dt = 0.

Moreover, (3.8.12) has no degeneracies outside of Ãn ⊂ An, so∫ τ

−∞

∫
{re−2ε≤r≤R\+3ε}\[rAn ,RAn ]

∫
S2

∣∣KQn [ψn] ρ2 sin θ
∣∣ dr dθ dφ dt ≤ C ∫

Σ0

JQnµ [ψ]nµΣ0
.

It remains to control the error term. Recalling (3.8.13),∫ τ

−∞

∫ Re

re−2ε

∫
S2

EQn [ψn] ρ2 sin θ dr dθ dφ dt

=

∫ τ

−∞

∫ Re

re−2ε

∫
S2

(Qnψn)(Gtrap) ρ
2 sin θ dr dθ dφ dt

=

∫ τ

−∞

∫
r∈ζ

∫
S2

(Qnψn)(Gtrap) ρ
2 sin θ dr dθ dφ dt

≤ C(re, Re, ε, χtrap)

∫ τ

−∞

∫
r∈ζ

∫
S2

ψ2 + |∂ψ|2 dr dθ dφ dt,

where

ζ := supp Gtrap ⊂ {re − 2ε ≤ r ≤ re − ε} ∪ {R\ + ε ≤ r ≤ R\ + 2ε} .

Recall that the degeneracy of (3.8.12) is contained in the region {re < r < R\} which is

disjoint from ζ. Therefore, the right hand side of the estimate above may now be controlled

by applying (3.8.12).
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3.8.6 (NEB) for the full solution

We now need to sum up the energies of the wave packets to carry this result over to the

full solution ψ of (2.2.3).

Proposition 3.8.4. For each vector field Qn, 0 ≤ n ≤ Ñ and τ ≥ 0, there exists a

constant cn > 0 such that

∫
Στ

JQnµ [ψ]nµΣτ ≤ cn
Ñ∑
k=0

∫
Στ

JQkµ [ψk]n
µ
Στ

+ cn

∫
Στ

JQnµ [ψH ]nµΣτ + cn

∫
Στ

JQnµ [ψR]nµΣτ .

(3.8.17)

Proof. From (2.2.7) we see that

∫
Στ

JQnµ [ψ]nµΣτ =

∫
Στ

JQnµ [
Ñ∑
k=0

ψk + ψH + ψR]nµΣτ

≤ (cn/2)

∫
Στ

∣∣∣∣∣∣∂
 Ñ∑
k=0

ψk + ψH + ψR

∣∣∣∣∣∣
2

≤ cn

Ñ∑
k=0

∫
Στ

|∂ψk|2 + cn

∫
Στ

|∂ψH |2 + cn

∫
Στ

|∂ψR|2

which is the result modulo a constant which can be absorbed into cn.

We now complete the proof of (NEB). First apply Proposition 3.8.4. Then apply the

(NEB)-type results Proposition 3.8.3, (3.8.4), (3.8.5) and (3.8.11).

∫
Στ

JQnµ [ψ]nµΣτ ≤ cn

Ñ∑
k=0

∫
Στ

JQkµ [ψk]n
µ
Στ

+ cn

∫
Στ

JQnµ [ψH ]nµΣτ + cn

∫
Στ

JQnµ [ψR]nµΣτ

≤ cn(C0 + CH + CR)

∫
Σ0

JQnµ [ψ]nµΣ0
+

Ñ∑
n=1

Cn

∫
Σ1

JQnµ [ψ]nµΣ1
.

This concludes the proof of Theorem 3.2.1.
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Quantitative mode stability for
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Kerr–Newman spacetime
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Quantitative mode stability for the wave equation on the Kerr–Newman spacetime

4.1 Introduction

In this chapter, mode stability results for solutions of the wave equation on a subextremal

Kerr–Newman spacetime are proved. Both the qualitative results of the type proved in

[Whi89] for the Kerr case and the extended, qualitative results of the type proved in

[SR13] for the Kerr case are shown to hold in the Kerr–Newman case. In particular, the

quantitative mode stability result is used to prove an energy estimate for low superradiant

frequencies, required in the proof of Proposition 3.6.1.

As in the Kerr case, one of the major difficulties in understanding the wave equation on

a Kerr–Newman background is that of superradiance, the fact that the conserved ∂t energy

is not positive definite and thus does not control the solution ψ. After an appropriate

frequency localisation in the frequency parameters ω and m (corresponding to the Killing

fields ∂t and ∂φ respectively), the superradiant frequencies are seen to be those satisfying

0 ≤ mω ≤ am2

2Mr+ −Q2
. (4.1.1)

In particular, the ∂t energy identity does not preclude finite-energy exponentially growing

mode solutions (with explicit t, φ dependence e−iωteimφ ) associated with the frequencies

(4.1.1), with ω in the upper half-plane. The statement that such modes do not exist is

known as mode stability. In the Kerr case, this has indeed been proven by Whiting in the

celebrated [Whi89].

The proof of quantitative boundedness and decay for solutions of (1.2.1) in the Kerr

case given in [DRSR14] in fact depended on a quantitative refinement of Whiting’s [Whi89].

The necessary refinement was proved very recently by Shlapentokh-Rothman in [SR13]

by first extending [Whi89] to exclude resonances on the real axis and then refining this

qualitative statement to a quantitative estimate.1

Turning to the Kerr–Newman spacetimes, even the analogue of Whiting’s mode sta-

bility is absent in the literature. In the present chapter, we will prove for these spacetimes

both the qualitative mode stability results (in the upper half-plane and on the real axis) as

well as the quantitative estimate in the spirit of [SR13]. In particular, the latter result is

needed for the general boundedness and decay results presented in Chapter 3. The precise

mode stability results are stated here in §4.5 and the estimate needed in in the proof of

Proposition 3.6.1 is presented here in Theorem 4.8.2.

In the Kerr case, the crucial ingredients in the proof of mode stability given in [Whi89]

1In the case |a| �M , one need not appeal to Whiting’s [Whi89] (or its refinement [SR13]) as the small
parameter may be exploited to deal directly with superradiance. A boundedness result had been obtained
for |a| �M in [DR11b] followed by decay results in [AB09], [DR09] and [TT11]. For the situation in the
extremal case |a| = M , see [Are12a] and [Are12b]. For the case where Λ > 0, see [Dya11] and for the Λ < 0
case, see [Gan12], [HS13a] and [HS13b].

110



4.2. Mode solutions of the wave equation

and [SR13] are the remarkable transformation properties of the radial ODE satisfied by the

modes. Miraculously, all the essential elements of this structure are preserved in passing

from the Kerr to the Kerr–Newman solution. In particular, we show that the radial ODE

can be represented as a confluent Heun equation (See §4.4). We then define the Whiting

transform for u(ω,m, λ, r) with Im(ω) ≥ 0 (see (4.6.3) for the definition). The Whiting

transform takes the solution u∗ of a confluent Heun equation to ũ which solves another

confluent Heun equation with different coefficients (See Proposition 4.6.1). There are three

pivotal facts about this transform:

(a) The potential in the confluent Heun equation satisfied by ũ possesses certain positivity

properties. (See Proposition 4.7.1.)

(b) ũ has ‘good’ asymptotics near the horizon and near null infinity. (See Propositions

4.6.2 and 4.6.3.)

(c) For ω 6= 0 on the real axis, the limit of u at the horizon is a positive multiple of the

limit of ũ at r →∞. (See Proposition 4.6.3.)

The statements above were shown to be true for the Kerr case in [Whi89] and [SR13];

there is no a priori reason why one would expect these properties to carry over to the

Kerr–Newman case. It is thus a fortunate fact that the potential and ∆ parameter for the

Kerr–Newman case differ from those in the Kerr case in such a way that the conditions

(a), (b) and (c) still hold. This is discussed further in §4.6.

4.2 Mode solutions of the wave equation

A general subextremal Kerr–Newman metric possesses only the two Killing fields ∂t and ∂φ.

Nonetheless, Carter discovered in [Car68] that the wave equation (2.1.8) can be formally

separated. This is related to the existence of an additional hidden symmetry. We use this

to make the following definition:

Definition 4.2.1. Let (M, g) be a subextremal Kerr–Newman spacetime. A smooth so-

lution ψ of the wave equation (2.1.8) is called a mode solution if there exist (ω,m, `) ∈
C \ {0} × Z× {Z : ` ≥ |m|} such that

ψ(t, r, θ, φ) = R
(aω)
m` (r)S

(aω)
m` (θ)eimφe−iωt,

where
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1. S
(aω)
m` solves the following Sturm-Liouville problem

1

sin θ

d

dθ

(
sin θ

dS
(aω)
m`

dθ

)
−
(

m2

sin2 θ
− a2ω2 cos2 θ

)
S

(aω)
m` + λ

(aω)
m` S

(aω)
m` = 0 (4.2.1)

with the boundary condition that

eimφS
(aω)
m` (θ) extends smoothly to S2, (4.2.2)

with S
(aω)
m` an eigenfunction with corresponding eigenvalue λ

(aω)
m` of the angular ODE

(4.2.1).2

2. R solves the radial equation[
∂r(∆∂r)− ω2

(
a2 − (a2 + r2)2

∆

)
+
a2m2

∆
− 2amω(2Mr −Q2)

∆
− λ(aω)

m`

]
R = 0.(4.2.3)

3. R(r)(r − r+)
− i(am−(2Mr+−Q2)ω)

r+−r− is smooth at r = r+.3

4. There exist constants {Ck}∞k=0 such that for any N ≥ 1,

R(r∗) =
eiωr

∗

r

N∑
k=0

Ckr
−k +O(r−N−2),

for large r.4

The boundary conditions (4.2.2) and in points 3 and 4 above are uniquely determined

by requiring that ψ extends smoothly to the horizon H+ and has finite energy along

asymptotically flat hypersurfaces for Im(ω) > 0 and along hyperboloidal hypersurfaces

for Im(ω) ≤ 0. See the discussion in [SR13, Appendix D] for details, cf. [Dya11] and

[War13].

It is convenient to define

u
(aω)
m` (r∗) =

√
r2 + a2R

(aω)
m` (r) (4.2.4)

2The Sturm–Liouville problem admits a set of eigenfunctions
{
S

(aω)
m`

}∞
`=|m|

and real eigenvalues{
λ

(aω)
m`

}∞
`=|m|

. The eigenfunctions
{
S

(aω)
m`

}
are called “oblate spheroidal harmonics” and define an or-

thonormal basis for L2(sin θdθ).

3We will subsequently denote this as R(r) ∼ (r − r+)
i(am−(2Mr+−Q2)ω)

r+−r− at r = r+.
4We will subsequently denote this as R(r∗) ∼ r−1eiωr

∗
as r →∞.
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which satisfies the radial Carter ODE:

d2

(dr∗)2
u

(aω)
m` (r∗) +

(
ω2 − V (aω)

m` (r)
)
u

(aω)
m` = 0. (4.2.5)

Note that even though R
(aω)
m` is complex-valued, the potential V

(aω)
m` is real (see (3.3.12)

for more details).

We will often drop the indices ω,m, ` when there is no risk of confusion. We will also

adopt the convention that u′ denotes a derivative with respect to r∗.

4.3 The Wronskian

Through asymptotic analysis of (4.2.5), one can make the following definitions:

Definition 4.3.1. Let uhor(r
∗, ω,m, `) be the unique function satisfying

1. u′′hor + (ω2 − V )uhor = 0.

2. uhor ∼ (r − r+)
i(am−(2Mr+−Q2)ω)

r+−r− as r∗ → −∞.

3.

∣∣∣∣∣
(

(r(r∗)− r+)
− i(am−(2Mr+−Q2)ω)

r+−r− uhor

)
(−∞)

∣∣∣∣∣
2

= 1.

Definition 4.3.2. Let uout(r
∗, ω,m, `) be the unique function satisfying

1. u′′out + (ω2 − V )uout = 0.

2. uout ∼ eiωr∗ as r∗ →∞.

3.
∣∣(uoute−iωr∗) (∞)

∣∣2 = 1.

One then defines the Wronskian

W (ω,m, `) = uhor(r
∗)u′out(r

∗)− u′hor(r∗)uout(r∗). (4.3.1)

The Wronskian can be evaluated at any fixed r∗. The Wronskian W will vanish if the

solutions are linearly dependent. Then W = 0 implies
∣∣W−1

∣∣ = ∞. The quantitative

mode stability result will be an explicit upper bound for
∣∣W−1

∣∣, so that uout and uhor are

linearly independent and any solution of the Carter ODE (4.2.5) can be expressed as a

superposition of those solutions.
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4.4 The inhomogeneous equation

In the proof of Theorem 4.5.1, we will consider the following inhomogeneous form of

(4.2.3),[
∂r(∆∂r)− ω2

(
a2 − (a2 + r2)2

∆

)
+
a2m2

∆
− 2amω(2Mr −Q2)

∆
− λ(aω)

m`

]
R

(aω)
m` = F,

(4.4.1)

where F is a compactly supported smooth function on (r+,∞). The corresponding inho-

mogeneous version of (4.2.5) is then

d2

(dr∗)2
u

(aω)
m` (r∗) +

(
ω2 − V (aω)

m` (r)
)
u

(aω)
m` = H :=

∆F

(r2 + a2)1/2
. (4.4.2)

4.5 Statement of mode stability results

For a subextremal Kerr–Newman spacetime (M, g), we have the following results.

Theorem 4.5.1 (Quantitative mode stability on the real axis). Let

F ⊂ {(ω,m, `) ∈ R× {Z× Z | ` ≥ |m|}}

be a frequency range for which

CF := sup
(ω,m,`)∈F

(
|ω|+ |ω|−1 + |m|+

∣∣∣λ(aω)
m`

∣∣∣) <∞.
Then the Wronskian W given by (4.3.1) satisfies

sup
(ω,m,`)∈F

∣∣W−1
∣∣ ≤ G(CF , a,Q,M).

where the function G can, in principle, be given explicitly.

In proving the quantitative result above, we will also obtain the following qualitative

results.

Theorem 4.5.2 (Mode Stability on the real axis). There exist no non-trivial mode solu-

tions corresponding to ω ∈ R \ {0}.

Theorem 4.5.3 (Mode Stability). There exist no non-trivial mode solutions corresponding

to Im(ω) > 0.

Theorem 4.5.3 is the analogue of Whiting’s original mode stability result [Whi89].

Theorem 4.5.2 is the analogue of Shlapentokh-Rothman’s extension of Whiting’s mode
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stability result [Whi89] to the real axis. Theorem 4.5.1 is the quantitative refinement

of Theorem 4.5.2 needed in Chapter 3 for the proof of linear stability of subextremal

Kerr–Newman black holes.

Note that for non-superradiant frequencies ω, m, i.e. those outside of the range (4.1.1),

Theorem 4.5.2 and Theorem 4.5.3 follow immediately from the energy identity (see [SR13,

§1.5 & §1.6]). In what follows, we will not however make a distinction between superradiant

and non-superradiant frequencies.

4.6 The Whiting transform

The problem with trying to derive energy estimates for the Carter ODE (4.2.5) is that

the boundary condition at r∗ = −∞ may give a non-positive term due to superradiance.

To deal with this, we will first cast (4.2.5) as a confluent Heun equation (4.6.2). Applying

the Whiting transform (4.6.3) to (4.6.2), we will obtain a new confluent Heun equation

(4.6.4) with different coefficients and boundary conditions that allow for a useful energy

estimate.

4.6.1 The confluent Heun equation

We rescale R as follows. Let

u∗ := eiωr(r − r−)−η(r − r+)−ξR(r) (4.6.1)

where

η := − i
(
am− ω

(
2Mr− −Q2

))
r+ − r−

and ξ :=
i
(
am− ω

(
2Mr+ −Q2

))
r+ − r−

.

Then u∗ satisfies the following Confluent Heun equation:

(r − r+)(r − r−)
d2u∗

dr2
+ (γ(r − r+) + δ(r − r−) + p(r − r+)(r − r−))

du∗

dr
+ (αp(r − r−) + σ)u∗ = G (4.6.2)
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where

γ := 2η + 1,

δ := 2ξ + 1,

p := −2iω,

α := 1,

σ := 2amω − 2ωr−i− λ(aω)
m` − a2ω2

and G := eiωr(r − r−)−η(r − r+)−ξF.

This can be verified by a direct calculation, generalising the analogous computation in

[Whi89].

Note that, as in the (subextremal) Kerr case, r+ and r− are distinct roots of ∆. If ∆

had more roots, or if these roots were not distinct, the Carter ODE would lie in a different

class of equations.

4.6.2 The transformed equation

We now generalise the Whiting transformation to the Kerr–Newman case.

Proposition 4.6.1. Let Im(ω) ≥ 0, ω 6= 0, and let R solve (4.4.1) with the boundary

conditions of Definition 4.2.1. Define x∗ analogously to r∗ by

dx∗

dx
=

x2 + a2

(x− r+)(x− r−)
, x∗(3M) = 0,

Then define ũ by

ũ(x∗) := (x2 + a2)1/2(x− r+)−2iMωe−iωx

×
∫ ∞
r+

e
2iω

r+−r−
(x−r−)(r−r−)

(r − r−)η(r − r+)ξe−iωrR(r)dr (4.6.3)

where

η := − i
(
am− ω

(
2Mr− −Q2

))
r+ − r−

and ξ :=
i
(
am− ω

(
2Mr+ −Q2

))
r+ − r−

.

Then ũ(x) is smooth on (r+,∞) and satisfies the following confluent Heun equation:

ũ′′ + Φũ = H̃, (4.6.4)
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where primes denote derivatives with respect to x∗,

H̃(x∗) :=
(x− r+)(r − r−)

(x2 + a2)2
G̃(x),

G̃(x) :=
(x2 + a2)1/2

(x− r+)2iMω
e−iωx

∫ ∞
r+

e
2iω

r+−r−
(x−r−)(r−r−)

(r − r−)η(r − r+)ξe−iωrF (r)dr,

Φ(x∗) :=
(x− r−)(x− r+)

(a2 + x2)4

((
2x2 − a2

)
(r−r+)− 2Mx(x2 − 2a2)− 3a2x2

)
+

(x− r−)(x− r+)

(a2 + x2)2

(
4am(x−M)ω

r− − r+
− λ(aω)

m` − a2ω2

+
8M2(x−M)(x− r−)ω2

(r− − r+)(r+ − x)
+

(x− r−)
(
(r+ − r−)(x− r+)− 4Q2

)
ω2

r+ − r−

)

Proof. It turns out that the proof is a direct modification of the computations in [SR13,

§4]. Let us remark on the fortuitous structure of the Kerr–Newman spacetimes that makes

this so. We have already remarked in §4.6.1 that (4.6.2) is a confluent Heun equation and

thus (at least formally) admits non-trivial transformations. The exponents η and ξ are

obtained from indicial equation associated to (4.2.5). They are the unique exponents that

give the correct asymptotics at r+ and r−.

The definitions of η, ξ, r+ and r− for the Kerr–Newman case differ from those in the

Kerr case, but the potential V
(aω)
m` , the parameter ∆ and the asymptotics of the solutions

of mode solutions of (4.2.5), have the same structure. The convergence of the integral in

(4.6.3) thus follows as in [SR13, §4].

Remark. The Whiting transform is a shifted, rescaled Fourier transform of a rescaled

version of R. This fact will be crucial in showing that the vanishing of ũ forces R to vanish.

4.6.3 Asymptotics of the transformed solution

The good asymptotic properties of ũ (c.f. (b) and (c) of the introduction) are encapsulated

in the following two propositions.

Proposition 4.6.2. Let ω and ũ be as in the statement Proposition 4.6.1. If Im(ω) > 0

then

1. ũ = O
(
(x− r+)2MIm(ω)

)
as x→ r+.

2. ũ′ = O
(
(x− r+)2MIm(ω)

)
as x→ r+.

3. ũ = O
(
e−Im(ω)x1+2MIm(ω)

)
as x→∞.
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4. ũ′ = O
(
e−Im(ω)x1+2MIm(ω)

)
as x→∞.

Proposition 4.6.3. Let ω and ũ be as in the statement Proposition 4.6.1. If ω ∈ R \ {0}
then

1. ũ and ũ′ are uniformly bounded.

2. |ũ(∞)|2 = (r+−r−)2|Γ(2ξ+1)|2
4(2Mr+−Q2)ω2 |u(−∞)|2, where Γ(z) :=

∫∞
0 e−ttz−1dt is the Gamma func-

tion.

3. ũ′ − iωũ = O
(
x−1

)
as x∗ →∞.

4. ũ′ + iωr−1
+ (r+ − r−)ũ = O (x− r+) as x∗ → −∞.

The proofs of these propositions are direct modifications of the computations in [SR13,

§4].

For all the results above, except Proposition 4.6.3.2, the difference between the Kerr

and Kerr–Newman case is encapsulated within the different definitions of r+ and r−.

Proposition 4.6.3.2 is exceptional in that we see an explicit difference from the Kerr

case. This is due to the presence of (2Mr+−Q2) in the null generator of the Kerr–Newman

horizon.

Proposition 4.6.3.2 is crucial in proving the quantitative result Theorem 4.5.1 as it

provides a correspondence between the horizon asymptotics of the solution of the Carter

ODE and the large r∗ asymptotics of the transformed solution. This correspondence is

what allows for the quantitative estimate of the horizon flux in terms of the inhomogeneity

F (see the proof of Proposition 4.7.2).

We can now prove the qualitative Theorems 4.5.2 and 4.5.3.

4.7 Proofs of mode stability

4.7.1 Qualitative results

The final element of the structure necessary to prove mode stability for the Kerr–Newman

spacetimes is the following positivity property (c.f. (a) of the introduction):

Proposition 4.7.1. Under the conditions of Proposition 4.6.1,

Im(Φω̄) ≥ 0.

If ω ∈ R \ {0}, then Φ is real-valued.
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Proof. The second statement is clear from the definition of Φ. A (tedious) computation

shows that

Im(Φω̄)

=
(x− r−)(x− r+)

(a2 + x2)2 Im
(

(−λ(aω)
m` − a2ω2)ω̄

)
+

(x− r−)2(x− r+)2ωI |ω|2

(a2 + x2)2

+
(x− r−)2(x− r+)ωI |ω|2

(a2 + x2)2

(
8M2(x−M)− 4Q2(x− r+) + (r+ − r−)(x− r+)2

)
(r+ − r−)(x− r+)

+
(x− r−)(x− r+)

(a2 + x2)4 (ωI)
[
x2(r+ − a2 −Q2) + r−(x2 + a2)(x− r+)

+2xa2(x+ r− − r+)
]
.

To see that Im
(

(−λ(aω)
m` − a2ω2)ω̄

)
≥ 0, multiply (4.2.1) by ωS

(aω)
m` sin θ and integrate by

parts over [0, π].

The positivity of the other terms follows from the following chain of inequalities

0 ≤ r− ≤M ≤ r+ ≤ x

and the subextremal condition a2 +Q2 < M2.

We define the microlocal energy current

Q̃T := Im(ũ′ωũ).

Proof of Theorem 4.5.3 (Mode stability in the upper half-plane). Let ω = ωR + iωI and

Im(ω) = ωI > 0 and consider a mode solution of (2.1.8) with (u
(aω)
m` , S

(aω)
m` , λ

(aω)
m` ). Define

ũ to be the (4.6.3) of u
(aω)
m` . Then Proposition 4.6.2 implies that Q̃T (±∞) = 0 so

0 = −
∫ ∞
−∞

(Q̃T )′dr∗ =

∫ ∞
−∞

ωI
∣∣ũ′∣∣2 + Im(Φω̄)|ũ|2dr∗

Since Proposition 4.7.1 guarantees that Im(Φω̄) ≥ 0, we conclude that, ũ, the Whiting

transform of u vanishes. Hence

R̃(x) :=

∫ ∞
r+

e
2iω

r+−r−
(x−r−)(r−r−)

(r − r−)η(r − r+)ξe−iωrR(r)dr = 0.

Extending R by 0, we see that the Fourier transform of (r− r−)η(r− r+)ξe−iωrR(r) is (up
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to a change of variable)

R̂(z) :=

∫ ∞
−∞

e2i|ω|2(z−r−)(r − r−)η(r − r+)ξe−iωrR(r)dr.

The function R is supported in [0,∞), so by the Paley–Wiener Theorem, R̂ can be ex-

tended holomorphically into the upper half plane. Since R = 0 for x ∈ (−∞, r+) and

R̃ = 0 for x ∈ (r+,∞), R̂ = 0 on the real line. We can therefore use the Schwartz

reflection principle to extend R̂ holomorphically to all of C.

Furrthermore, the vanishing of R̃ on x ∈ (r+,∞) implies that R̂ = 0 on the line

{z = ω̄(x− r+)/(r+ − r−) | x ∈ (r+,∞)} .

The Identity Theorem for holomorphic functions then implies that R̂ vanishes everywhere.

This forces R to vanish everywhere, completing the proof.

Lemma 4.7.1 (Unique continuation [SR13]). Suppose that we have a solution u(r∗) :

(−∞,∞)→ C to

u′′ + (ω2 − V )u = 0

such that

1. ω ∈ R \ {0},

2. u is uniformly bounded and (|u′|2 + |u|2)(∞) = 0,

3. V is real, uniformly bounded, V = O(r−1) as r →∞ and V ′ = O(r−2) as r →∞.

Then u is identically 0.

Proof. This follows exactly as in [SR13, §6]

Proof of Theorem 4.5.2 (Mode stability on the real axis). Let ω ∈ R \ {0} and consider a

mode solution of (2.1.8) with (u
(aω)
m` , S

(aω)
m` , λ

(aω)
m` ). Define ũ by (4.6.3). By Proposition

4.6.1, Φ is real, so (Q̃T )′ = 0 . Hence Q̃T (∞) − QT (−∞) = 0. The boundary conditions

from Proposition 4.6.3 then imply that

ω2|ũ(∞)|2 +
∣∣ũ′(∞)

∣∣2 + ω2 r+ − r−
r+

|ũ(−∞)|2 +
r+

r+ − r−
∣∣ũ′(−∞)

∣∣2 = 0.

By Lemma 4.7.1, we conclude that ũ vanishes.
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4.7. Proofs of mode stability

Extending R by 0, we see that

R̃(y) :=

∫ ∞
−∞

e
2iω

r+−r−
(y−r−)(r−r−)

(r − r−)η(r − r+)ξe−iωrR(r)dr

vanishes for {y ∈ (r+,∞)}. Now repeating the closing argument of the proof of Theorem

4.5.3, we conclude that R must vanish everywhere.

4.7.2 Quantitative results

The strategy is to express ũ in terms of the functions uout and uhor and W defined in §4.3

and obtain an an estimate for W−1 in terms of u(−∞). This quantity is then estimated

using the ODE (4.4.2).

Proposition 4.7.2. Define F as in Theorem 4.5.1. For (ω,m, `) ∈ F let u solve (4.4.2)

with H(x∗) a smooth, compactly supported function. Then for sufficiently small ε > 0,

there exists a positive constant C := C(F , a,Q,M) such that

|u(−∞)|2 ≤ C
(
ε−1

∫ ∞
r+

|F (r)|2r4dr

)
.

Proof. Since (Q̃T )′ = ωIm(H̃ū),∫ ∞
−∞

ωIm(H̃ū)dr∗ = Q̃T (∞)− Q̃T (−∞).

The boundary conditions from Proposition 4.6.3 imply that

ω2|ũ(∞)|2 +
∣∣ũ′(∞)

∣∣2 + ω2 r+ − r−
r+

|ũ(−∞)|2 +
r+

r+ − r−
∣∣ũ′(−∞)

∣∣2 =

∫ ∞
−∞

ωIm(H̃ū)dr∗.

So changing variables, applying the Plancherel identity and the Cauchy Schwarz inequality,

we have

ω2|ũ(∞)|2 ≤
∫ ∞
−∞

ωIm(H̃ū)dr∗ ≤ C
(
ε−1

∫ ∞
r+

|F (r)|2r4dr + ε

∫ ∞
r+

|R(r)|2dr
)
.

Then by Proposition 4.6.3

|u(−∞)|2 =
4ω2(2Mr+ −Q2)

|Γ(2ξ + 1)|2
|ũ(∞)|2 ≤ C

(
ε−1

∫ ∞
r+

|F (r)|2r4dr + ε

∫ ∞
r+

|R(r)|2dr
)
.

Finally,

ε

∫ ∞
r+

|R(r)|2dr ≤ C
∫ ∞
r+

|F (r)|2r4dr,
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Quantitative mode stability for the wave equation on the Kerr–Newman spacetime

by the same argument as found in [SR13, §5].

For the quantitative result, we construct mode solutions solutions to the Carter ODE

from the Wronskian and apply the proposition above.

Lemma 4.7.2. Let H(x∗) be compactly supported. For any (ω,m, `) ∈ F (where F is as

defined in Theorem 4.5.1), the function

u(r∗) = W (ω,m, `)−1

(
uout(r

∗)
∫ r∗

−∞
uhor(x

∗)H(x∗)dx∗

+uhor(r
∗)
∫ ∞
r∗

uout(x
∗)H(x∗)dx∗

)
satisfies

u′′ + (ω2 − V )u = H

and the boundary conditions of a mode solution (see Definition 4.2.1).

Proof. This is verified by a direct calculation.

Proof of Theorem 4.5.1 (Quantitative mode stability on the real axis). Take ũ as defined

in Lemma 4.7.2. Then

|u(−∞)|2 =
∣∣W−2

∣∣∣∣∣∣∫ ∞−∞ uout(x∗)H(x∗)dx∗
∣∣∣∣2.

Rearranging this expression and applying Proposition 4.7.2 we find that

∣∣W−2
∣∣ =

|u(−∞)|2∣∣∣∫∞−∞ uout(x∗)H(x∗)dx∗
∣∣∣2 ≤ C

∫∞
−∞

∣∣(r2 + a2)1/2∆−1H(r∗)
∣∣2r4dr∣∣∣∫∞−∞ uout(x∗)H(x∗)dx∗
∣∣∣2 .

Note that by Proposition 4.6.3, for sufficiently large x,
∣∣uout(x)− eiωx

∣∣ < Cx−1 for an

explicit C. Since W is independent of H we choose a compactly supported H for which

the right hand side of the estimate above is finite. We thus have a quantitative estimate

for
∣∣W−2

∣∣.
4.8 Application: Integrated local energy decay

We now apply Theorem 4.5.1 to prove Theorem 4.8.2, which provides a quantitative energy

decay estimate for solutions of the wave equation (2.1.8) on subextremal Kerr–Newman

spacetimes which are supported in a compact range of superradiant frequencies. This is
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4.8. Application: Integrated local energy decay

the estimate appealed to in the proof of Proposition 3.6.1 to control the horizon term

|u(aω)
m` (−∞)|2 in the bounded superradiant frequency region.

We wish to apply Carter’s separation to the solution of (2.1.8). In order to perform

this separation, we must be able to take the Fourier transform in time. We therefore deal

with solutions of (2.1.8). which belong to the following class of functions.

Definition 4.8.1. A smooth function f(t, r, θ, φ) is said to be admissible if for any multi-

indices α, β s.t. |α| ≥ 1, |β| ≥ 0, we have

1.

∫
r>r0

∫
S2

|∂αf |2|t=0r
2 sin θdr dθ dφ <∞ for sufficiently large r0.

2.

∫ ∞
0

∣∣∣∂βf ∣∣∣2dt <∞ for any (r, θ, φ) ∈ (r+,∞)× S2.

3.

∫ ∞
0

∫
K

∣∣∣∂βf ∣∣∣2 sin θ dr dθ dφ dt <∞ for any compact K ∈ (r+,∞)× S2.

For an admissible function f we also define

|∂f |2 := |(∂t + ∂r∗)f |2 + ∆|(∂t − ∂r∗)f |2 + r−2
(

sin−2 θ|∂φf |2 + |∂θf |2
)
.5 (4.8.1)

The main application of Theorem 4.5.1 in §3.6 is to admissible solutions ψ of (2.1.8)

which are cut off as follows.

Definition 4.8.2. Let Σ0 be a spacelike hyperboloidal hypersurface connecting the horizon

H+ and future null infinity. Let Σ1 be the time 1 image of Σ0 under the flow generated by

∂t. Then define a smooth cut-off γ which is identically 0 in the past of Σ0 and identically 1

in the future of Σ1. We define ψQ := γψ, which satisfies the inhomogeneous wave equation

�gψQ = F, where F = (�γ)ψ + 2∇µγ∇µψ. (4.8.2)

Proposition 4.8.1 (Carter’s separation). Admissible solutions f of (2.1.8) and (4.8.2)

can be expressed as

f(t, r, θ, φ) =

Fourier transform︷ ︸︸ ︷
1√
2π

∫ ∞
−∞

∑
m,`≥|m|

R
(aω)
m` (r) · S(aω)

m` (cos θ)eimφ

︸ ︷︷ ︸
Oblate spheroidal expansion

e−iωt dω. (4.8.3)

The function R
(aω)
m` corresponding to f = ψ solves (4.2.3). The function R

(aω)
m` correspond-

ing to f = ψQ satisfies the inhomogeneous equation (4.4.1) with F = F
(aω)
m` , the Fourier

5The apparent degeneration of this energy as r → ∞ is due to the hyperboloidal nature of Σ0. The
term ∆|(∂t − ∂r∗)f |2 converges to the transversal derivative at the horizon.
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transform of F projected to the oblate spheroidal harmonic corresponding to λ
(aω)
m` . The

rescaled function u
(aω)
m` satisfies (4.4.2) with H = H

(aω)
m` := ∆(r2 +a2)−1/2F

(aω)
m` , where this

equality is to be understood in the sense of L2
ω∈B`

2
m,`∈C. Note moreover that this H is not

compactly supported.

Proof. See §3.3.3.

Theorem 4.8.2. Let ψQ be an admissible solution of (4.8.2) and let B ⊂ R and

C ⊂ {(m, `) ∈ Z× Z | ` ≥ |m|}

such that

CB := sup
ω∈B

(
|ω|+ |ω|−1

)
<∞ and CC := sup

m,`∈C

(
|m|+

∣∣∣λ(aω)
m`

∣∣∣) <∞.
There exists a constant K := K(r0, r1, CB, CC , a,Q,M) such that∫

B

∑
m,`∈C

((∣∣∣u(aω)
m` (−∞)

∣∣∣2 +
∣∣∣u(aω)
m` (∞)

∣∣∣2)+

∫ r1

r0

∣∣∣∂r∗u(aω)
m`

∣∣∣2 +
∣∣∣u(aω)
m`

∣∣∣2 dr∗) dω

≤ K
∫

Σ0

|∂ψ|2, (4.8.4)

where |∂ψ|2 is defined by (4.8.1), u
(aω)
m` =

√
r2 + a2R

(aω)
m` and each R

(aω)
m` solves (4.4.1) for

ω ∈ B and (m, `) ∈ C.

Proof. For u satisfying the hypotheses of the theorem, we have for any r∗ ∈ (−∞,∞),

u(r∗) = W (ω,m, `)−1

(
uout(r

∗)
∫ r∗

−∞
uhor(x

∗)H(x∗)dx∗

+uhor(r
∗)
∫ ∞
r∗

uout(x
∗)H(x∗)dx∗

)
, (4.8.5)

u′(r∗) = W (ω,m, `)−1

(
u′out(r

∗)
∫ r∗

−∞
uhor(x

∗)H(x∗)dx∗

+u′hor(r
∗)
∫ ∞
r∗

uout(x
∗)H(x∗)dx∗

)
, (4.8.6)

where the inequalities above hold in the sense of L2
ω∈B`

2
m,`∈C (see [SR13, §3] for the full

derivation of this representation).6

6Roughly speaking, this is the converse of Lemma 4.7.2.
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By the construction of uhor and uout, there exists a positive K := K(CB, CC , a,Q,M)

such that

sup
r∗∈R,ω∈B,(m,`)∈C

(|uhor|+ |uout|) < K <∞, (4.8.7)

Evaluating (4.8.5) at r∗ = −∞ and taking (4.8.7) into account,

∫
B

∑
m,`∈C

∣∣∣u(aω)
m` (−∞)

∣∣∣2 dω ≤ K lim sup
r∗→−∞

∫
B

∑
m,`∈C

W−2

∣∣∣∣∫ ∞
r∗

uout(x
∗)H(aω)

m` (x∗)dx∗
∣∣∣∣2 dω.

(4.8.8)

For the term |u(∞)|2 we apply the microlocal energy current:

ω2
∣∣∣u(aω)
m` (∞)

∣∣∣2 = QT (∞) = QT (−∞) +

∫ ∞
−∞

(QT )′dr∗

= ω(am− (2Mr+ −Q2)ω)
∣∣∣u(aω)
m` (−∞)

∣∣∣2 + ω

∫ ∞
−∞

Im(H
(aω)
m` ū

(aω)
m` )dr∗

So by (4.8.8),

∫
B

∑
m,`∈C

∣∣∣u(aω)
m` (∞)

∣∣∣2 dω ≤ K

∫
B

∑
m,`∈C

W−2

∣∣∣∣∫ ∞−∞ uout(x∗)H(aω)
m` (x∗)dx∗

∣∣∣∣2 dω
+

∫
B

∑
m,`∈C

ω

∫ ∞
−∞

Im(H
(aω)
m` ū

(aω)
m` )dr∗ dω. (4.8.9)

For the integral term, we begin by taking R1 much larger than r1 and applying (4.8.5):

∫
B

∑
m,`∈C

sup
r∗∈(r0,r1)

∣∣∣u(aω)
m`

∣∣∣2 dω
≤ K

∫
B

∑
m,`∈C

W−2

 sup
r∗∈[r0,r1]

∣∣∣∣∣
∫ r∗

−∞
uhor(x

∗)H(aω)
m` (x∗)dx∗

∣∣∣∣∣
2

+ sup
r∗∈[r0,r1]

∣∣∣∣∫ R1

r∗
uout(x

∗)H(aω)
m` (x∗)dx∗

∣∣∣∣2
+

∣∣∣∣∫ ∞
R1

uout(x
∗)H(aω)

m` (x∗)dx∗
∣∣∣∣2
)
dω

≤ K

∫
B

∑
m,`∈C

W−2

(∫ R1

r+

|F |2dr +

∣∣∣∣∫ ∞
R1

uout(x
∗)H(aω)

m` (x∗)dx∗
∣∣∣∣2
)
dω.

125



Quantitative mode stability for the wave equation on the Kerr–Newman spacetime

This estimate may be integrated over (r0, r1) to obtain∫
B

∑
m,`∈C

∫ r1

r0

∣∣∣u(aω)
m`

∣∣∣2 dω ≤ K ∫
B

∑
m,`∈C

W−2

∫ R1

r+

|F |2dr

+K

∫
B

∑
m,`∈C

W−2

∣∣∣∣∫ ∞
R1

uout(x
∗)H(aω)

m` (x∗)dx∗
∣∣∣∣2 dω. (4.8.10)

The same argument, with (4.8.5) replaced with (4.8.6) yields∫
B

∑
m,`∈C

∫ r1

r0

∣∣∣(u(aω)
m` )′

∣∣∣2 dω ≤ K ∫
B

∑
m,`∈C

W−2

∫ R1

r+

|F |2dr

+K

∫
B

∑
m,`∈C

W−2

∣∣∣∣∫ ∞
R1

uout(x
∗)H(aω)

m` (x∗)dx∗
∣∣∣∣2 dω. (4.8.11)

Collecting (4.8.8), (4.8.9), (4.8.10) and (4.8.11) and applying Theorem 4.5.1 to control

W−2, we have∫
B

∑
m,`∈C

((∣∣∣u(aω)
m` (−∞)

∣∣∣2 +
∣∣∣u(aω)
m` (∞)

∣∣∣2)+

∫ r1

r0

∣∣∣∂r∗u(aω)
m`

∣∣∣2 +
∣∣∣u(aω)
m`

∣∣∣2 dr∗) dω

≤ KG

∫
B

∑
m,`∈C

[∣∣∣∣∫ ∞
R1

uout(x
∗)H(aω)

m` (x∗)dx∗
∣∣∣∣2 +

∫ R1

r+

|F |2dr

+ω

∫ ∞
−∞

Im(H
(aω)
m` ū

(aω)
m` )dr∗

]
dω.

It remains to control the right hand side of this estimate by
∫

Σ0
JN [ψ] · nΣ0 . The control

of the first term is achieved using the proof of [SR13, Lemma 3.3]. The remaining terms

are controlled using the argument presented in §3.6.

Remark We can replace the hyperboloidal hypersurface Σ0 with an asymptotically flat

hypersurface in Theorem 4.8.2 as follows. Let Σ∗0 be an asymptotically flat hypersurface

that agrees with Σ0 for {r ≤ R} and which lies in the past of Σ0. Choosing R large enough

that T is timelike in {r ≤ R}, applying the T energy estimate immediately implies that∫
Σ0

|∂ψ|2 ≤ C
∫

Σ∗0

∣∣∣∇gΣ∗0
ψ
∣∣∣2 +

∣∣nΣ∗0ψ
∣∣2,

so we can then replace the right hand side of (4.8.4) by this integral over an asymptotically

flat hypersurface.
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