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1. 

1 1~TRODu c'rr ON . 

In the post-war years, the theory of 3- dimensional manifolds 

has developed tremendously. On the one hand, Bing and I. LOi se have 

proved that 3-manifolds can be triangulated, and tha. t the Hauptver-

mutung (tha t any t wo triangulations of the same space are combin-

atorially eQuivalent) is true for 3-manifolds. On the other hand, 

Papakyriakopoulos has proved Dehn ' s Lemma, and, u sing ide s of 

Papakyriakopoulos, Vhitehead has proved t he Sphere Theorem. As a 

result of this concerted attack from two different directions, the 

theory of 3-manifolds has become an extremely interesting and frui-L-

ful field of study . It seems as though Vie are wel l on the way to 

solving the two main problems in the field:- the Poinc8r~ Conjecture, 

and the classifica.tion of closed 3-manifolds. 

In this the sis , some theorems connected vtith 3-manifolds a.re 

proved. The most important theorem is the Projective Plane Theorem 

(6.1), in which it is proved that elel1lents of the se cond homotopy 

group of a 3-manifold can be represented, in a certain sense, by 

2-spheres or projective planes in the manifold . The Projective 

Plane r:Pheorem is, perhaps, an important tool in the problem of class-

ifying non-orientable 3-ma.nifolds. 

The entire thesis depends on the Projective Plane Theorem, except 

for Chapters I and 111. In Chapter I, the linking of n-spheres 
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2. 

in (n+2 )-spa.ce is dealt with . In Chapter Ill, non-orientable compact 

3-ma.nifolds, with finite fundamental groups a.re considered, with the 

aim of proving that there is essentially only one such 3-ma.nifold. 

The reader is wa. rned that a different definition of a 3-manifold 

is adop ted in ea.ch chapter. This is in the interest of brevity and 

clarity. Th8 author hopes that no confusion will arise. The 

clefini tion appropriate in eacb cha:pter is given in the introduction to 

that chapter. The exact hypotheses about the 3-manifold, required 

for ea.ch theorem, are gi ven just before the statement of the theorem. 

The follov/ing conventions are used throughout the thesi s:-

i) "M" denotes a 3-manifold; 

ii ) "X" denotes some covering space of the topological space X; 

iii ) "G" deno tes a. gToup; 

iV) "0 " denotes the group lJIJith only one element, or the unit element 

of a group which is definitely abelia.n, or the integer zero; 

v) "1 " denotes the unit element of a (possibly) non-abelian group, 

or the integer one; 

vi ) "Homotopic to zero " means "homotopic to the constant map " ; 

vii) '"1'he zero ma.p" of one group into another group denotes the 

map which sends all elements into the trivial element. 

The author would like to thank Dr.E.C.Zeeman mos t warmly for 

his consta.nt help and encouragement during the writing of this work. 

He could not have hoped for a better teacher. The author has found 

Dr. Zeeman ' s comments, suggestions and keen interest in his work 

) 
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invaluable and inspiring. 'rhe author has also had many very inter-

esting and useful conversations with Dr.J.F.Adams, to whom he is 

most grateful. 



Chapter I. LINKING SPHERES. 

J.J . Andrews and M.L.Curtis have shovm [lJ that one can embed 

two Sn , s in En+2 for n = 2, in such a way that one sphere cannot 

be shrunk to a point in the residue space of the other. In this 

chapter, the result is shown to be true for any n ~ l. (It is trivial 

for n = 1). The method is to calculate the appropriate homotopy 

group of the residue space of one sphere, and to show that the embed-

ding of the other sphere represents a non-zero element of the group. 

n If the two S ' s are required to be embedded analytically, the same 

result holds good. (The easy proof of this is omitted). The 

material in this chapter is in the process of being published [4J. 

§l. Spun knots. 

In this sectio n we describe a method of embedding knotted Sn , s 

Let En "be n-dimensional Euclidean space with coordinates 

Let En be embedded in En+l by putting x 1 = O. 
n+ 

Let H = {x; XEE3 , x3?- o} . 

Let K be a polygonal arc lying in H. Let the intersection 

2 of K with E be its endpoints. 
2 Let Y = H-K and let Y = Y f\ E • 

o 
n n-l Let B be the n-ball, with boundary S 0 

n-l n Let X = YxS U Y xB , 
o 

n as a subspace of YxB • 

n a subspace of HxB 0 

E
n+2 " h h " t n-l 2 n , ~s omeomorp lC 0 HxS V E xB as 

Therefore X is homeomorphic to En+2 with an 
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sn removed. This Sn is called a svun knot. When n = 2, the process 

is equivalent to Artin t s me thod of "spinning" H about the axis E2 

to obtain knotted ?-spheres [2J. 

Lemma (1. 1 ) • Y is a K(1\,l) . 

We embed Y in Ht {X; 3 xEE , 

open linear se~nents of unit length 

X3 > -I} . We add to K two 

perpendicul ar to E2, obtaining 

Kt. Y is a deformation retract of Ht_K t . Compactifying Ht with 

3 a point P \le get an S • 

of [9J. 

,., 

S3_( Kt v p) = Ht_Kt is aspherica.l by ( 26.3) 

§2. Construction. 

Let p:Y -----> Y be the universal covering of Y. We emphasize 

N 
that Y is contractible, since all its homotopy groups vanish. 

,., -1 
Let Y = P Y. 

o 0 

~ ,., n-l ,., n - n 
Let A = YxS U Y x B ( a subspace of YxB ). o 

e then have the commutative diagram 

,., n-l > f.:'! 
YxS A 

1 1 
YxSn- l > X 

where the vertical maps are induced by p , and the horizontal maps 

a re inclusions. X is a covering space of X, with the covering 

map as in the di agram. Our aim is to calculate 1\ (X), which is 
n 

) 



isomorphic to n (X). 
n 

Let Z denote the additive group of integers and let S be a 

non-empty se t. Then we denote by Z(S) the free abelian group on 

the elements of S. 

Lemma (2.1). H rJ ) :::: Z( n l (Y-l} D· o 0 0 

,..., 
The set of components of Y i s in (1-1) corre spondence with the 

o 

set of homotopy classes of paths in Y, beginning a t a base- point 

and ending in Y • 
o 

The correspondence is obtained by lifting e a ch 

path representing an element of nl(Y,Y
O

) to a path with base-point 
,..J ,-../ 

in Y, a.nd noting in which component of Y the other endpoint lie s . 
o 

§3. Algebra. 

We have 

Lemma (3.1). 

The firs t i somorphi sm is obtained by excision , and the se cond 

I. 
from the Kunneth relations. 

F 1 -<. th kIt f <:t . t · d' "'y Sl1-l or _ r < n, e r-s e e on 0 A l S COll alne ll1 XI • 

(""' '" n-l Therefore n X, YxS ) = O. 
r 

sequence 

(

_,J n-l 
n 1 X, YxS ) r+ 

So, for 1 ~ r < 11, we have the exact 

--> 1( (X) 
r 

---:> O. 



The homomorphism 

,...,... n-l 
1\: l(X,YxS ) r+ 

7. 

is onto. This can be seen from the commutative diagram 

,...,.. n-l 
1\: l(X'YXS ) 

r+ 1 
n n-l 

1\: l(B ,s ) r+ 

- n where the vertical maps are induced by t he projection X ---> B , 

...... 
resulting from the product structure of X, and the horizontal maps 

a,re boundary homomorphi sms. The vertica l map on the right is an 

N 

isomorphism since Y i s contractible. rPhe lower hori zontal and left 

vertical maps are onto. Therefore we have: 

Lemma (3. 2) . 1\: (X') = 0 for 1 ~ r < n. 
r 

We have the diagram 

H (YXSn- l ) --> H (X) --> H (X,yxSn- l ) 
n n n 

11 m III 
0 1\: (x) H (Y' ) 

n o 0 
111 lit 

1\: (x) n Z ('RI (Y , Y 0) ) 

--> H (YXSn- l ) --> H
n

_
l 

(X) 
n-l 

m " z 0 

where the horizontal row is exact. The vertical isomophisms first 

N 

and fourth from the left result from the contra ctibility of Y. 
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'l'he second and fifth isomorphisms are Hurewi cz isomorphisms . '1'he 

third vertical i s omorphism is given by (3.1) and (2.1). 

Lemma (3.3 L. 1C CX) is isomorphic to the free a.belian group generated n 

by the non-trivial homotopy classes of paths in Y, beginning at a 

base-point in Y and ending in Y • 
o 0 

From the above discussion, we ha.ve the exact sequence 

o --> 7C (X) 
n ---> Z ---> O. 

le assert that each element of 7C l ~Yo ) maps onto the same _element 

of Z. This element genera tes Z. 
~~~--~~~~~ 

ry (3.1), 

This isomoruhism is induced as follows. Wi t h every singular O-cube 

in Y , we associate that singul ar n-cube in Y XBn , which is the 
o 0 

..... 
product of the degenerat~ map into the O-cube in Y and a definite 

o 
n homeomorphism h of an n-cube onto B • (The isomorphism is the 

,. 
same a·s t hat produced by the Kunneth re l a t ions) . Us ing the isomorphism 

of (2.1), the assert ion follo ws . 

If 0(. is any e l ement of 7C
l 

( Y, Y
o

) and ~ i s the element of o 

7Cl ( Y,Yo ) represented by the cons t ant pat h , we define 

g :Z(7C
l

( Y,yo » ---> 7C
n

(X) 

by g(o<, ) f-l (o<. - o{o). The map g induces the isomorphism mentioned 
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in Lemma (3.3). 

§4 . Realizing elements. 

1'/e wish to show that the isomorphism in Lemma (3 . 3), induced 

by g , can a lso be induced by spinning a knot. Expli ci t ly, le t a 

be an A.rc in Y H-K, whose intersection wi th E2 is its endpoints . 

Let a represent rJ. E 1cl (Y, Y 0) • -

Lemma ( 4. 1 ) • The spun kno t a ssociated wi th a represents the element 

,.w 

Let a be a lifting of ~ from Y to Y. Let the end points of 

,.., ,.. ,.. 
a and a be a o ' a l and ao ' a l respectively. Let Sa denote the spun 

n-l n n ,..., 
kno t axS U aoxB U a l xB and let Sa deno t e 

-embe dded i n X and X respe ctively . Then the map Sa --...;> Sa 

-induced by p:Y ----...;> Y is a homeomorphism. Let u s follo w the image 

of the element of ~ (X) represented by Sa , in the sequence of groups 
n 

1C (X) ~ 1C (50 S H eX) 
n n n 

(
IV"" n-l) ,... ( ,.., n '" n-l 

---> H X, YxS = H Y xB , Y xS ) 
n n 0 0 

::: H (Y ) ~ Z(1c
l

( Y, Y )). 
000 

'1'hen { Sal becomes, in ~ (X ), 
n 

{sa}; in H (X) , < Sa) , the image n 
f ,'" } .-J "" n-l of \Sa under t he Hurewicz homomorphi sm . In Hn (X, YxS ) the image 

of {S~ be comes <al xBn;> - \ aoxB
n;> , where (ai XBn>is the homology 

cl a.ss of that singul ar n-cube whi ch is the product of a degenerate 
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cube in E{. , with the homeomorphism h. 
l 

is therefore "<a
l
) - <a

o
'> , where < a i ) is the obvious a-dimensional 

homology class. The ima,cre of {Sa} in Z(1cl (Y,Yo )) is c( - o{o by 

8.pplying Lemma (2.1). 'l1herefore f( {SaJ ) = 01.- d.. . There fore o 

g ( ol. ) = f-l( o( - c;(o) = { SaJ , which proves (4.1). 

§5 . Theorems. 

Theorem ( 5 .1). 'rVlO Sn , s can be embedded in :8
n
+2 (n ~l) in such a 

way that neither can be shrunk to a point in the residue space of 

the other. 

For n = 1, let the two Sl , s be circles which link ea ch other . 

For n > 1, l et K be a trefoil knot with a small linear segment removed, 

as in §l. Let a also be a trefoil knot with a small linear segment 

removed, such that ~ represents a non-trivial element of ~l(Y'Yo)' 

We choose a so that K represents a non-trivial element in ~1( H-a,E2-a ) . 

( See Diagram 1). I t is easy to show that a suitably chosen ~ 

represents a non-trivial element, if one bears in mind the fact that 

if the group of a knot is infinite cyclic, then the knot is unknotted 

«28 .1) of [9J), and the fact that there is an exact sequence 

> 'Jtl ( Y,yo ) ---> o. 

( 5.1 ) follows from (401 ) . 



Diagr am 1. 

a 

Di a.gra.m 2 . 
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The orem (5.2). 
n M2 Two S I S can be embedded in E (n ~ 1) so that 

one Sn can and the other can not be shrunk to a point in the re sidue 

space of the other. 

For n = 1, we can take one Sl to be a circle and the other to 

be a trefoil knot. For n > 1, let K be a trefoil knot with a small 

linear- segment removed. Let a be a semicircular path which represents 

a non-trivial element of ~l(Y'Yo). (See Diagram 2). 

~1(H-a,E2-a) contains only the trivial element and so the n-dimensional 

homotopy group of the residue space of the spun knot associated 

wi th ~, is zero by (3.3). (5.2) follows from ( 4. 1). 

We now compactify En+2 , so that all our spun knots are embedded 

This does not affect the homotopy groups in dimensions 

less than or equal to n. 

Theorem (5.3). The following conditions are eguivalent:-

i) The residue space of a spun knot is a K (~,l); 

ii) The spun knot is unknotted; 

iii ) The residue space is a K(Z, l). 

If the residue space is a K(~,l ) , then, by (3.3), ~l(Y'Yo) 

contains only the trivial element. Therefore the homomorphism 

-----> ~l(Y)' induced by inclusion, is onto. 

1Cl (Y
o

) is the free group on two genera t ors, which become the same 

element in ~l(Y). Therefore ~l (Y) ~ Z. (~l(Y) cannot be finite 
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since Hl ( y ) = Z). Therefore, by (28.1) of [9J and the proof of 

(1.1), K is ullicnotted. Unknotting K automatically ullicnots the spun 

knot a.ssociated with it. 

If the spun knot is unknotted, it is embedded as a standard 

Sn . Sn+2 
1n an • So the residue space is homoto py equivalent to 

an Sl, which i s a K(Z,l ). 
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Chap ter II. rpHE PHOJBCTI VE PLANE rl'1iF.O ~rr.;l\l . 

In [9J and lIsJ, C.:D.Papakyriakopoulos and J.H.C.Whitehead 

proved the Sphere Theorem:-

Let M be an orientable 3-manifold and MC: X, where X is a topological 

space. Suppose there is a (singular) 2-sphere in M which is essentiai 

in X. Then there is a non-singular 2-sphere in ,l , which is essential 

in X. 

In thia chapter the Sphere Theorem is extended to apply to 

non-orientable 3-manifolds. 

Theorem ( 6.1). 

The precise statement is gi ven in 

The method of proof is to perform standard Dehn cuts on a 2-sphere 

and its image under the covering translation, in the minimal orientable 

cover of M. 'l'his method of proof was suggested to the author by 

J.Stallings in connection with a strong form of the Loop Theo rem [13J. 

In thi s chapter, we shall mean by a 3-manifold l\i (unle ss othervti se 

stated ), a connected space ,vi t h a fixed semilinear structure, such 

that each point has a simplicial neighbourhood homeomorphic to a 

closed 3-ball. (rrhat is, we admit 3-manifolds with boundary). 

The triangulation is combinatorial. 
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§6. The Projective Plane Theorem. 

Let hi be a triangulated 3-mRnifold, possibly non-compact and 

possibly with boundary. Let i:M -----> X, be a continuous map into 

a space X. 

Theorem (~. 2 There is a semilinear map g:S ---> M - B<Thl , 

whose composition ,nth i is essential in X. The map g is eithe~ 

non-singular or identifies antipodal points . The image of g is a 

two-sided 2-manifold in M. 

Thus the image of g is a two-sided 2-sphere or projective plane 

( denoted s2 or p2 respectively). We llote that a projective plane 

ca.n only be two-s ided in a 3-manifold, if the 3-manifold is non-

orientable. So Theorem (6.1) implies (1.1) of [15J. (However, 

[15J is not superceded, since our proof use s [15J). 

If M is not paracompa,ct, (and hence not triangulable), and 

ker i* !1C2(M), then there is a map h: S2 ---> M, whose composition 

with i is essential in X. We may take a paracompact neighbourhood 

2 
of h (S ) and triangulate it ( see [3J) so that it becomes a combinatorial 

manifold. TIe may then apply Theorem (6.1). Thus Theorem ( 6.1) 

is true for non-paracompact 3-manifolds, if the pord flsemilinear" 

is deleted from the statement ( see [15J). 

Similarly, if we are given a map h: S2 ---> IH , whose composi-

tion wi th i is essential in X we can find a map g , a s in the statement 
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2 of Theorem (6.1), in an arbitrarily sma.ll neighbourhood of h(S ). 

We may as sume i is an inclusion mapping by using a mapping 

cylinder. We assume !.vi is non-orientable, since the theorem has been 

proved if M is orientable ( see [15J ). 

'" Let p : M ---> M be the orientable double cover of M. Let 

--Y be the mapping cylinder of ip: M ----~> x. 

Lemma ( 6. 2). 2 The class of semilinear maps S > M-BdM, which 

are essential in X, who s e only singularities a.re double curve s, and 

whose liftings to M are non-singular, is non-empty. ( We use the 

nomenclature of [9J). 

We have the commutative diagram 

--> 'JI:
2

(Y) 

1 
--> 'JI: 2(X) 

where the vertical maps are isomorphisms. Therefore 

By (1.1 ) of [15J, there is a semilinear embedding of a 2-sphere S 

in M-BaM, whi ch i s essential in Y. Its image under p is essential 

in X. As poi nted out in (3. 2) of [llJ, we can normali ze the image 

under p of S without introducing a.ny singu\ariti es in S itself. 

Then all the singularities of p ( S) must be double curves. ( 6.2 ) 
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follows. 

Given a finite set of disjoint simple closed curves on a 2-s~here, 

we define an inner curve to be a curve in the set which divides 

the 2-sphere into t wo disks, one of which co nt ains no curves in the 

set, and one of whi ch contains at least or£.. curve in the set . If the 

finite set of curves contains more than one curve, there must be 

an inner curve. If it contains only one curve, there are no inner 

curve s . 

2 
From the class of semilinear maps S -----> M-Bill[ , whose liftings 

I'V 
to 111 are non-singular, whose only singularities are double curves, 

and which are essential in X, we select one with the minimum possible 

number of double curves . We denote this map by h:S2 
----> Iv. 

Since h has only double curves as singulari tie s , the inverse image 

under h of all the double curve s forms a finite set of disjoint 

2 simple closed curves on S • An inner double curve of h will refer 

to a double curve of h(S2), such that at l east one of it s inverse 

images under h is inner. 

Lemma (6.3) . h has no orient a tion preserving inner double cur ves. 

Let 1:: be the covering transl at ion of M and let h: S2 
,.., 

---> ~1 

be a lifting of h. Then all singularities in h(s2) arise from the 

fact that h(S2) ('\ "th(S2) I~. Suppose CC h ( S2 ) is an ori entation 

preserving inner double curve . Le t Cl and C2 be the disjoint simple 
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"" 2 -l( ) closed curves in h( S ), such that Cl U C2 = pC. Let Cl be inner. 

Then h( S2) = Dl U D2 U E, where Dl and D2 are disks with boundary curves 

Cl and C
2 

respectively, and E is a cylinder with boundary curves 

Cl and C
2

• '.l'hen p IDl is non-singular. How 'r Cl = C
2

• So 't D
l 

V D2 

is a 2-sphere in M without singularities, and 

h .s fe I8r double curves than h ( S2 ). Therefore P(Dl U D
2

) is an 

inessential 2-sphere in X. In X, '.7e deform P(D
2

) into P(D
l

), wi thout 

moving C. Thus VIe obtain a map h ' :S2 :> M, such that h l~ h 

in X, and (on normalizing), h I has fewer double curves than h. 

This contradicts our definition of h . ( 6.3) follows. 

Lemma. (6.4). h has no orientation reversing inner double curves. 

Suppose Cc h( s 2) is such a double curve. 

more than one double curve . Let Cl = p-l(C). 

where Dl and D2 are disks with boundary Cl. 

D
l 

U 'tD
l 

is a 2-sphere (non-singula.r) in iL'. 

Then there must be 

P / Dl-Cl is non-singular. 

On normB.li zing p (D
l 

U t D
l

), 

by slightly movillg L:Dl and keeping Dl fixed, Vie get a singular 

2-sphere in 11'1 , vvi th only one double curve. 

is contractible in Y, by our choice of h . So we can deform Dl into 

t Dl in Y, keeping Cl fixed. On normalizing P ( D
2

U T D
l

), we obtain 

B. 2-sphere in M which i s essentia.l in X, and v ' th fe wer double curves 

than h. This contradicts our choice of h , and (6.4) is proved . 

) 
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If h has no double curves, (6.1) is proved. There cannot 

be more than one double curve by ( 6.3) and (6.4). If t,here is one 

double curve CC h(S2), then C must reverse orientation by ( 6.3). 

Let p-l ( c) = Cl and let Cl divide h( s2) into the disks Dl and D
2

• 

Then p(Dl \J 'tDl ) gives a map g: S2 > M-BdM, which identifies 

antipodal points . If g were inessential in X, we would get a contra-

diction as in the proof of ( 6.4 ). 

,-.J 2 
Let g: S 

,y 

-----> ill be a lifting of g. Then g is nonsingular . 

So g(S2) is two-sided in M, since a,ny 2-sphere is two-sided in a 

3-manifold . The covering transla,tion "t is orientation reversing 

-' g( S2). g(S2). on H and on So 1:; does not interchange the sides of 

So 2 g(S ) is a two-sided projective plane in M. The jJroof of ( 6.1 ) 

is completed. 

§7. Generators of 'J1: 2(!l. 

In this section, vre assume M is a compact, connected, triangulated 

3-manifold, possibly with boundary. 

Theorem (7.1). There are a finite number of semilinear maps 

2 go<,, : S ---,> M-Bill\[ , such that:-

i) go<" is either non-singular or identifies antipodal points and 

go'.. ( S2) is a two-sided 2-sphere or projective plane in M; 

i i ) go( ( S 
2

) n gp ( S 
2 

) = ~ if d... I f3 ; 
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iii) 'Phe maps go(, are a s~ t of 'J1: 1 (M) - p;enerators of ?C
2

(Ml:.. 

Condition iii) is elucidated as foJ lo~s. 

module for I' :? 2. By the homoto oy ext8t1sion theorem, any map 

e:: SI' ---> M is homotopic to a map h: SI' ---> M which represents 

an ~lement of 'J1: (M). 
I' 

( That is, h ma~3 basa - Doiut into base-~oint). 

Ho '."8ve I' , the elerne 1lt of 'J( (M) reprw:"'mte<J by h, is onl y (letermined 
I' 

up to eouivalence un~er ~l(M ). 

Our proo f of (7.1 ) fol1 6 ws (3.6 ) of [15J. 

Let p (I, ) be the minimum numbe:r: of ,o·eneJ'a.tor s of 1tl (M), where 

M i s the miniwCl.l oripntable cover of j ( the double cover if M is 

non-ol'ielltable, and J\ itself other1,.,ise). ['he t)l'oof is by ill"uction 

on pO·l). 

Let 1\ be the 'iC l ( IV1 )'- Rubf1od ul e 0L' 'J1:2(r~) frenel'a~erJ b.1 the sploricFJ.l 

a,HI I)l'o,iecti" plaJJe boww' J'y COII11)OneLts ai' E. 

then b.y (lefnrll1inp- :-light.ly the mA.ps S? ---> Bdl,1, Vfe [':et Cl. fi ,d te 

"hq, by 

','heo)"l111 (6.1) ( see [15J), tlore h. a Plan ,9': 82 ----> 1 -?c1! " \'!hich 

is essex,tiR.1 !no (1 1\ , (1)( which if" either non-pill. u 12.r or i(l,~, tiJ'ies 

1"nti,o(l1"l 1)1ints, aid whoGe i)l;:'~'e i,· tv'o-ailied. Vie take Cl repular 

neip-hbourhoo', U of (" (S?) in n" homeomorphic to .r-(S2)X (0,1), vihere 
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(0,1 ) is the open interval. Let the components of M-U be denoted 
..., 

by N. (there are at most two components). 
1 

Let N. be a component 
1 

.-J 

of the inverse image of N. in M. 
1 

Then ']Cl (M) = 1cl (Ni )~G for some 
IV ,.. ,.. 

group G, since Ni is a.ttached to M-Ni by 2-spheres. 

where S is the minimum number of generators of G. 

for some i, then S = 0, and so G = 0. 

So p (M) = f (Ni )+S , 

If f (M) = [i- Ni ) 

--> ?Cl (M) 

is an ~somorphism. ,..., '" So g, a lifting of g to M, has an image which 

is a 2-sphere separating M into two components, one of which is a 

homotopy 3-sphere with a number of 3-balls removed. 
,...., 

did not separate ~l , G would ha.ve an infinite cyclic free factor _ 

see (1l.2)). Therefore g is not essential mod !\ , in contradi ction 

to our choice of g. Thus 

By the inductive hypothesis, we can select maps ',hi ch satisfy 

Theorem (7.1) for N .• 
1 

Using all such maps for each i, we obtain 

Theorem (7.1). The fact that the maps are a set of ']Cl ( l\1) -generators 

of ?C 2 (M) , is deduced by applying the Maye r-Vietori s exact sequence 

to the universal cover of M. 



Chap,ter 111. NON-ORI:8N'l'ABLE 3-MANIFOLDS WI'llH FINITE FUlmA1,lENTAL 

GROUPS. 

In this chapter, we prove that a compact non-orientable 3-manifold 

M vrith finite fundamental group is homotopy equivalent to p2xI ~rith 

a. number of 3-balls removed from its interior. 

§8. 'l'he boundary of M. 

Lemma (8 . 1 ) • Each component of Bdl~ is homeomorphic to p2 or S2. 

Let i be the orientable double cover of M. Then ~l(i ) is finite. 

By Satz IV, §64, [lOJ, each component of BdM is a 2-sphere. (8 .1) 

follows. 

(8 . 2). H
2

(M;Q) 
~ 

H
2

( BdM;Q) 
,.. 

¥1, Lemma + q if BdM r and the projection 

H2( Bdhl; Q) :> H2(M;Q) is induced by inclusion. H2(M;Q) = 0 

if BdM = ~. (Q is the field of rationals) . 

Hl (M;Q) = 0, since ~l (M) is finite. Therefore, by duality, 

2 ...... "'" H (M, BdllI ; Q ) = O. By the universal coefficient theorem, H2 (M, Bill~;Q ) 

(8 . 2) now follows from the exact homology sequence f or NI and Bdfu. 

Let T be the 3-manifold obtained from M by filling in the boundary 

2-spheres with 3-balls. Then ~l (M ) ~ ~l(T). Let BdT have n com

ponents ( all of whi ch are homeomorphic to p2 by (8 .1)). 

o. 
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Lemma (8 .3). n = 2. 

;'V 

Let the orientable double cover of T be T. Substi tuting 'll 

for M and ~ for i in (8 .2), we see that if n = 0, H (~;Q) = 0, and 
2 ,.., 

if n > ° then H2(T; Q) == ( n-l) Q. T has a covering translation of 

period t wo acting on it. We know the effect of the covering trans-

rV 

lation on BdT. So we can calculate the Lefsche tz inde x from (8 .2). 

The index of the covering translation turns out to be 1 if n = 0, and 

l-O+[-(n-l)J if n > 0. Since the covering translation has no fixed 

points, the inde x must be zero. (8 .3) follows. 

Lemma (8 .4). If K is a compact tri angul a t ed n-lJ1anifold with bounda ry 

then Hn_l(K;Z ) is torsion free. 

For every prime p , H (K;Z ) = o. n p 

t he unive rsal coefficient theorem. 

There fore (8 .4) follows from 

Lemma (8 .5). H3~1(T);Z) is a quotient group 

The homology group H ( G;Z) of a group G is by definition t he 
n 

homolo gy group H (K( G,l) ;Z) of a K( G,l). We shall prove (8 .5) by 
n 

a tta ching 3-cells and 4-cell s to T tha t will leave ~l unaltered and 

kill off ~2 . 

The universal cover of T is a homoto py 3-sph8re with some 3-balls 

removed. 2 There fo re the t wo ma~s S --.....,> BdT which identify anti-

podal points, are ~l(T)-generators of ~2( T) . Let the components 
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of Bd '1' be denoted by Rl and R
2

• Vve attach one copy of p4 to '}' 

by identifying a standard p2 in p4 wi th R
l

• We do the same ,vi th 

another copy of p4 and R
2

• 1.'/e call the new space A. 

'J\l (A) ::: 'J\l ('1' ) by van Kampen ' s 'l'heorem. 

A can be converted into a K('J\l( T),l ) by adding n-cells (n i> 3 ) . 

Therefore H2( ?C l ( T);Z ) ~ H
2

( A;Z ), which is proved below to be zero, 

a,nd H3 (?tl ( T) ;Z) is a quotient group of H
3

( A;Z ), which is proved below 

to be 2Z2 . 

The Mayer-Vi etori s exact sequence for the subspaces p 4 u p4 

a,nd T of A i s 

o 

--...,> 0 

---> 2Z2 

---i> --> H
3

(A ;Z ) 

----,> H
2

(A; Z) 

---> 2Z +H ( 'r· Z) --> 
21' 

Therefore H3 (A ; Z) ~ 2Z2. H
2

( A; Z) ~ H
2

('l'; Z) which is free abelian 

by ( A. 4 ). Also H2 (A;Z) ~ H
2

('J\1( T) ;Z ) is fini t e since it is the 

homology group of a: finite group . So H
2

(?'1( 'I' ) ; Z) = O. 

§9 . The dihedral group appea rs and disappears. 

Any compact non-orientable 3-manifold M wi th finite fundamental 

group has exactly t wo projective p l ane boundaries Rl a.nd R2 by ( 8 .3). 

---i> 'J\l(M) is a monomorphism. Let the non-trivial 
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element of the image of thi s map be called 0<. • 

Theorem ( 9 .1). 'rhen ?~l (M.) contains a dibedral 

subgroup of order 2q (0 an odd prime) or a. subgroup Z2>s.?2. In 

either case the subgroup contains the element cl . 

L'et 'I' be the 3-manifo1d obtained from M by filling in the boundary 

2-spheres 1.vi th 3-balls. By (8 . 1), BdT consists only of RI and R
2

• 

Let p :T' -----> T be the proper covering of T, correspondine to the 

subgroup generated by cI.. . Then p -1 (RI) contains ei ther one or tVTo 

pro jective planes, its other cOJOponents being 2-spheres by (8 .1) 

and (8 .3) (p-l( R2) contains one or no projective pl anes respectively). 

Let r be a base-point in RI. 

Lemma (9.2). If p-1 ( Rl ) contains two projective planes , R' and RI! , 

then 7Cl ( rl1 ) contains the subgroup Z2>s.?2. 

Let r I ER ' and r Il ER " such that p (rl u r ll ) r. Let gE7Cl (T) be 

represented by a pa. th from r to r in T, which; when lifted to T', 

runs from r ' to 

-1 
or gtJ.g ~ = rf.... . 

r ". Then ( reading from left to right) 

Since c( is orientation reversing and 

-1 
g cX. g eX.. 

-1 
g d,. g ~ 

not, we must have g al... d.. g . 

On lifting the paths represent ing 

g
2o<-. and d...g

2 
to paths in T' based on r ', t hese paths in T' must 

is 

1 

have t he same endpoint . 2 So, lifting g to a oath in T' based on r ' , 

it must end at a projective pl ane in p-l (R
l

). This projective 



plane must be R'. 

proved. 

2 So g 
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1 or cA. . As before g2 1. (9.2) is 

Lemma (9.3). If p-l(R
l

) contains one pro jective plane only, then 

~l(T) contains a dihedral subgroup of order 2q (q an odd prime). 

Let T be the orientable double covering of T. We have the 

exact sequence 

o --:> ~l (T') --> ~l (T) > Z2 ---> o. 

'l'he non-trivial element of Z2 is represented by oL.. E~l('I'). Let 

--.> ~l ( '1' )). 

Lemma ( 9. 4- ). Let p-l (R
l

) contain only one projective plane. 

or any gEG, if oL g = go!... then g 1. 

Let r IEP-l(r) lie in the one projective plane in p-l(R
l

). 

If c{g = gc:l.. in ~l (T), then paths re ', resenting O(g and g r/.. , based 

on r ' , must have the same endpoints in TI. This is obviously only 

true if g lifts to a closed path in T'. So g = cl or 1. But g I d.. 
since gEG . 

Lemma (9.5). Let p-l (Rl ) contain only one projective plane . 

Fo r any gE G , 0<. g of... -1 
g • * 

Consider the set of elements of G of the form o( h oeh -1 where 

*The author would like to thank Dr . P.Fong most sincerely for l?roviding 

the proof of (9.5), which Dr. F,:mg ascribes to Burnside. 
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hEG. If oL h oL h-l 
= oLk o( .. k-l, then h oeh- l = koLk-l a.nd so 

-1 / -1 ( ) ( k h ~ = o(k h. By 9.4, k = h. Therefore the possibly non-

homomorphic) mR.pping G > G given by h > oL h oLh-l is a 

(1-1) map and therefore is onto since G is finite. Given gEG, there 

-1 is 8.n hEG such that o(h oL, h = g . -1 
So d g oL = et.. . o[h oLh • cL = 

h oeh - loe = ( o<...h o<..h - 1) - 1 = g -1 . 

On selecting an element g of prime order q in G, we see that 

q I 2 by (9.4) and (9 . 5). (9.3) is proved and so ( 9 . 1 ) is proved. 

TheoreJO (9 . 6) . If i' is a compact non-orientabl e 3-manifold with 

For if not, ( 9 . 1 ) would give us a compact non-orientable 3-

manifold T, '\\rith projective planes RI and R2 its only boundary com

ponents, and with fundamental group Z2XZ2 or di hedral of order 2q, 

where q is an odd prime . This is done by simply using the covering 

spaces associated with these subgroups, and t hen f i lling in the 

boundary 2-spheres 'nth 3-1):3-11s. 

By the rc{lnneth relations , H2(Z2XZ 2;Z ) ~ HI ( Z2;Z )(8I HI ( Z2; Z)~ Z2' 

SO , by (8 . 5) , 1'1( T) 1=- Z2xZ2. 
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Lemma (9. 7) • If D i s a dihedral group of order 2~ , then 

Let E3 , Euclidean 3-space, be given cylindri ca l polar coordi nate s 

(r, e , z), where ( r , e ) are polar coordinates i n the pl ane z = 0. 

The lens space L(q,l) is the 3-manifold obtained by t aking the unit 

bal l r:;l, and identifying (1, 8, z) wi t h (1, e +211:/q, -z) for z~O . 

Th · . S3 ere ~s a cover~ng map --~ L(<l,l). 

Since L(q,l) is an orientabl e 3-manifold, we have 

Z . 
<l 

If we fill in S3 with a 4-ball , which we at t a ch to 1( q ,1) by the 

covering map, then we ki ll off 1I:
3

(1( <l ,1)). In order to convert 

1(q,1) into a K(Z<l,l), we have to add further n-cells (n > 4). 

We deduce that Hl(Z ;Z) ~ Z , H2(Z ;Z) = 0, and H
3

(Z ;Z) ~ Z • 
<l <l <l <l q 

The sign changing automorphism of the fundamenta.l group Z<l' 

is induced by the homeomorphism (r,8,z) > (r,- e ,-z) of 1(q,1). 

This homeomorphism is orienta tion preserving. Therefore the sign 

chang~ng automorphism of Z induces the sign changing automorphism 
<l 

of Hl ( Z<l;Z) and leaves H
3

(Z<l;Z) fixed. 

*( 9.7) can be much more easily deduced from the cohomolo gy ring 

of Z , and the Serre- Hochs child spectral se<luence. 
<l 

prefers the proof given here. 

The author 



If D is the dihedral group of order 2q, we ha.ve an exact sequence 

o --~> Z -----> D 
q 

---> O. 

Using the previous paragraph, we see that the Serl'e-Hochschild spectI'al 

Z2q is not a quotient group of Z2+Z2' 

So (9. 6) is true. 

So, by (8. 5 ), "1 ( 'r ) '*' D. 

§lO . Homotopy e quiva lence. 

Let hi be Cl compact non-orientable 3-ma.nifold vii th finite fund-

amental group. By (8 .1) and ( 8 .3), BerM con-

sists of two projective planes a.nd ( say ) r 2-spheres. Let T be 

obta ined from M by filling in the boundary 2-spheres with 3-balls. 

Then Bd 'I' consists of two projective planes Rl and R
2

• RI has a 

2 
regular neighbourhood U, homeomorphic to P xl. By using a homeo-

morphi srn of T with itse lf, we can a.ssume tha.t the r 2-spheres in 

BdM all lie in U. Let P be p2xI v.~th r 3-balls removed. 1.'le have 

the homeomorphism P ---i> u n M. This gives rise to a map P --.....,> M, 

which is a homotopy equivalence, since it induces isomorphisms of all 

homotopy groups. We have therefore proved: 

Theorem (10.1). Given any COml)Bct, triangulated, non-orientable 

3-manifold Iv[ with finite fundamental group , there is a semilinear' 

homeomorphism of p2xI wi th r 3-balls removed, into H, which is a. 
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homotopy equivalence . BdM consists of two projective planes and 

r 2-spheres. 

Let Cl be the conjecture that any closed 3-manifold with t rivial 

fundamental group is a 3-sphere (the Poincar~ Conjecture). Let 

C2 be the conjecture that any orientation reversing involution of 

33 with exactly two fixed points is equivalent to the involution 

which maps each 2-sphere "of constant latitude " antipodally onto 

itself. Let C3 be the conjecture that any non-orientable 3-manifold 

with finite fundamental group is p2xI with r 3-balls removed. 

Then Cl and C2 together imply C3, and C3 implies both Cl and C2. 

'rhe author hopes to investigate C2 at some later date . 
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Chapter IV. FUNDAIV1ENTAL GROUPS OF 3-MANIF01DS. 

In this chapter a 3-manifold may be paracompact or with boundary . 
~ 

M is a 3-manifold if it is a" Hausdorff space such that each point 

has a neighbourhood homeomorphic to a closed 3-ball. 

We investigate here, under what conditions certain groups can 

be subgroups of the fundamental group of a 3-manifold. 'l'heorem (13.2) 

is the lo gical conclusion of Hopf ' s Conjecture that there are no 

elements of finite order in a knot group. Ne cessary and sufficient 

conditions are given for ~l(M ) to have a finite subgroup. (13.7)a) 

states tha t any finite subgroup of ~l (M ) i s the fundamental group 

of a closed orientable 3-manifold. In (14.1 ) it is proved that the 

only finitely generated abelian subgroups of '!Cl (M) are Z, Z+Z, Z+Z+Z, 

Z+Z2 and Zr' 

§ll. Essential mappings . 

Let Q a.nd R be two 3-manifolds. We remove, from a closed 

3-ball neighbourhood in Q, a small concentric open 3-ball, and similar-

ly in R. We identify the boundary 2-spheres thus created , and obtain 

a 3-manifold denoted Q-=#= R, with a submanifold 2-sphere S. (The 

symbol Q=#=R is unique up to homeomorphism, bu t we will not prove this). 

We say S splits Q4fR into Q and R. We note that Q n (Q # R) =f Q, 

since there is a 3-ball missing. 
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Lemma (11. 1 ) • 1C
l 

( Q=#=R) ;: 1Cl Ui~1Cl CR). If S is not essential 

in Q;# R, then either Q or R is a homotppy 3-sphere ( and therefore 

a compact 3-manifold wi thout boundary). 

The isomorphism is a consequence of van Kampen ' s Theorem. 

If S is not essentia.l, it can be deformed to a point in some 

comoact 3-dimensional submanifold of Q:=ltR. (11.1) therefore reduces 

to the case vthere Q and R are compact, when the result follows easily 

by examining the homology of the universal cover. 

Lemma ( II • 2) • If S is a submanifold 2-sphere in M-BdM, and S does 

not senarate 1>1. , then 1C
l 

(¥) £: Z * 1C
l 

(M-S) and S is essential in 1. 

We construct an infinite covering space V of M by cutting t S. 

ach sheet of the covering is homeomorphic to M-S, and we cross to 

another sheet whenever we cross S. Let S be a lifting of 8 to V. 

S separates the covering space into two non-compact components. 

r-" 

80 S is esse ntial in V by (11.1). 'fherefore S is essential in H. 

The group of covering translations of V i .s cyclic infinite. 

We denote its generator by d-- • 

'.'!e have the exact sequence 

o --....,> Z ---> O. 

So 1Cl (M) is determined by giving the automorphism determined by d.... . 
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'Jlhe automorphism is induced by 

We easily deduce that 1\:1 (M) '2: 1\:1 (M-S) * Z. 

2 Lemma (11. 3). If g:S e> M- BdM identifies antipodal points 

and g(S2) is a. t wo-sided subrnanifold of M, then g is essentia l. 

Let M be the orientable double cover of M. 
-' 2 ,-..... Let g: S ---:e> M 

be a lifting of g . The map g is non-singular. If g is not e ssential 

then g(S2) splits M into a hornotopy 3-sphere and some othe r 3-manifold 

by (11.1) and (11. 2). Therefore the closure of one component of 

M_g(S2) is a compact non-orient able 3-manifold with finite fundament a l 

group and only one boundary component. This is impossible by (10.1). 

So (11.3) fo llows. 

Let ];I be a compact triangulated 3-manifold. Let G lObe a 

subgroup of 1\:1 (M) • We suppose G has the following property. 

Condition ~1 2 .l~. a} G is not a non-trivial free ;eroduct ; 

b 2 G is not infini te cyclic. 

This condition a rises from the attempt to preve nt the existence 

of an essential 2-sphere in a certain 3-manifold. ( Se e ( 11. 1) and 

(11.2)). 
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Since M is compact, we have a finite set t of ~l(M ) -generators 

of ~2 (M ), gol..:S2 --.> M- BdM as given by (7.1). Let p:V
G 
---> M 

be the covering of M, such that P*(~l(VG)) = G. ',Ye cut VG at all 

components of p-l (~( S2 ) ) that are 2-spheres, so that VG falls into 

a number of components. One and only one of these, W
G

, has a non-

zero fundamental group, by (1 2.1) and van Kampen ' s ~[lheorem. ( We 

note that all 2-spheres separate VG' by (1 2 .1) and (11. 2) ). Then 

1c
1 

( ~G) ~ G. 

Let lk be a.n open regula.r neighbourhood of g.,( s2), whi ch is 

homeomorphic to g",,( s2)X(0,1) by (7.1) , where (0,1) is the open inter-

val. If W
G
-p-l ( UoL q,J is connected, 

covers some component lif of H- w'DoL • 

we denote it by N
G

• NG 

If WG-p-l( U"" DoJ is not 

connected, we denote the components by N~ (i = 1, 2 , ..... ). Then , 

for each i, 7(1 ( N~) I 0, since 
i 

NG has a projective plane in its boundary . 

For each i, Ni 
G covers some component l~i of M- W. Do( (in general, 

Ni = N
j 

for some i I .i) • If we fill in the boundary 2-spheres of 

WG with 3-balls, we get a 3-manifold M( Gi (3 ). 

We emphasize that the notation above will be retained (at least, 

whenever M is compact and G satisfies (12.1)) for the r emainder of 

this chapter. 

Lemma (12.2). 

This follo ws from van Kampen ' s Theorem. 
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Lemma ( 12. 3) • H
2

( G;Z ) 9: H
2

(M( G; ~ );z1. 

'R
2

(H( G; lS' ) ) has 'Rl-genera.tors , all of which have projective planes 

in p-l ( U oL goL(S2)) as images. If we attach one copy of p3 to M( G; '?5 ) 

for ea,ch such generator, by identifying th.e subspaces p2, 1!re kill 

off 'R
2

• However, H is una.ltered, as can be seen from the MRyer-
2 

Vietoris sequence . We novl convert the space into a. K( G,l ) by attach-

ing n-cells (n > 3). Obviously H2 is unaffected. (1 2 .3) follows. 

-1 2 
If every component of p ( UoL g~( S )) fl 1:'JG is a 2-sphere , we say 

( G, ~ ) is reducible. 

Lemma (12.4). If ( G, ~ ) is reducible, then wG-p-lC U oL U,,() is con-

nected . ( '1'he case v/here we l,vri te NG and N instead of N~ and Ni 

re specti vely). NG is homeomorphic to WG• 

'I'his folloVls from the defini tion of WG* 

Lemma (12.5). If (G, cS ) is reducible, then 'R
2

(M ( G; i )) = o. 

possi ble liftings ~ of g.,l- for ea.ch oC ) * 

W
G

, to form M( G; ~ ), 'R
2 

is killed off c 

On attaching 3-balls to 

Lemma (1 2 * 6) • IfM(G; (S' ) is orientable, then ( G , ~ ) is reducible. 

For then we coul d have no two-sided projective planes in W
G

• 

Lemma. (12~. If all s ub groups H of index at most two in G, satisfy 
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(12.1) and if G t. Z2' then, for some such H, (H, ){ ) is reducible. 

(We assume G t Z2' since, if H = 0, the construction is not defined). 

~fe merely take the minimal orientable cove r of VG' 

can have no two-sided projective planes. 

Here we 

Lemma (1 2, 8) . If G contains no elements of order t wo, then ( G, IS' ) 

is reducible. 

For then, there could be no two-sided projective planes in W
G

, 

§13. Subgroups of ~l(~' 

Lemma (13,1). Let L be a 3-ma.nifold., such that ~2(_L .... 2_=_0_. __ T_h-,e_n, 

if L is not aspherical, it is closed and has a finite fundamental 

group and is orientable, 

This lemma is, the author believes, due to J.B.C.Whitehead. 

If L is not aspherical, then its universal cover i has some 

non-vanishing homology group . Therefore H
3

(L;Z) I 0 (using singular 

homology since L may not be triangul able), Therefore H3 (L; Z) ::::: z. 
,,-v 

Therefore L is compact and without boundary. Therefore L is compact, 

~l ( L ) is finite, and L has no boundary. By (10.1 ) , L is orientable. 

1 We say two loops f:S 1 
--..... > M and g:S ---> M are equivalent 

1 under ~l(M ), if there are maps f ' and g ' of S with base-point into 

M . ' th base-point, f ' !:::!. f, g ' ~ g and the elements of ~l (M) defined 
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by f ' and g ' are conjugate . 

Theorem (13.2). If M i s a possibly non-paracompact 3-manifold, 

possibly with boundary, and G is a finite subgroup of ')\1 (M) , then 

either 

JJ G s: Z2' and the non-zero element of G is equivalent under ')\1 (!l 

to a loop on a two-sideo_ projec tive plane submanifo l d P of M; 

or 

ii) lvi = Q# R, where Q is a closed orientable 3-manifold , wi th finite 

fundamental group, and G is conjugate to a subgroup of 7i:
l

(.9.l. 

(')\1 (M) ~ 7tl (Q) * ')\1 (R), by (11.1), whi ch define s the embedding of ')\1 ( Q) 

in 7tl (M)). 

VIe may assume, without loss of generality , that M is compact. 

We assume that i) is not true. 

Lemma (13.3). 

G t Z2' 

If i) is not true and ( G, ~ ) is not reducible then 

.For suppose G '::'. Z2' Since (a, 't ) is not reducible, there is 

a projective plane component in p-l(goL(S2)) f\W
G 

for some 0<. . '1'hen 

g ol..(S2) is a two-sided projective plane in lVI which satisfies i). 

But we have B,ssumed that i) is not true. 

Lemma (13.4). If ')\ is a group and K( 7t, 1) is a fi ni te dimensional 

aspherical complex, with fundaloelltal group 7t, then ?c contains no 

elements of finite order. 
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For if there were SU C1l elements, the universa l cover of K(1C,l ) 

would be a resolution of a f inite cyclic group . Thi s is impossible, 

be cause all such groups are infinite dimensi onsl. 

Lemma (1 3.5 ). If i) is not true then C G, ~ ) is reducible . 

For suppose ( G, 0 ) i s not reducible •. By (1 2.7) and (13.3), 

for some sub group H I 0, of i ndex two in G, (H, ~ ) is r educibl e .• 

Now 1C2 (M ( H ; ~ )) = ° by (1 2 .5)~ and B is finite . By (1 3 . 4), M ( H; ~ ) 

i s not asphe rical. By (13.1), M(H; O ) is closed and orientable . 

By (1 2. 6 ), M( G; (5 ) is not orientable . Therefore WG is a compact 

non-ori entable 3-manifold with finite fundamental group . By (10.1), 

G ~ Z2' which is impossible by (13.3). 

if we assume (G, ~ ) is not reducible . 

So we have a contradiction, 

rye assume that i) is not true, so that, by (13.5 ), (G, £s' ) i s 

reducible . By (13. 4), I\I1 ( G; ~ ) i s 

not aspherical. By (13.1), M( G; i ) is clo sed and orient ab l e . 

The refore NG is a finite sheeted cover of N and ~l(N) is finite. 

So N is a compact 3-manifold wi th finite fundamental group . Since 

i ) is not true, N is orientable by (10 .1). So Bdrl is a fini te 

union of 2-spheres. 

Lemma (13. 6). If n is a compact 3-manifolcl, embedded in a 3-manifold 

L, so tha t Ne L-BdL , and BdN i s a fini te union of 2-spheres , then 

L = N I # N", 'vhere N I n L c N and t he i nclusion induce s an isomorphism 
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of fundamental groups, and N I is a clo sed manifold. 

We werely bore thin tubular tunnels through N, so a.s to join 

up all the 2-spheres in BdN, into one 2-sphere. 

We have therefore proved (13.2). 

Corollaries (13.7) to Theorem (13.2}. ~a~) __ ~I~f_1Cl(M) is finite, 

then 11:1 (11) f:. 11:1 (Q) , where Q is a clo sed orientable 3-manifold. 

b) If G i 0 is a finite subgroup of 1Cl (M) and 1C 2 (M) = 0, then 

1C
l 

(M) is fini te, and M is closed and orientable. 

b) is an immediate conse quence of (11.3) a nd (11.1). 

Theorem (13. 8 ). Let M be a poss ibly non-paracompact 3-manifold, 

possibly with boundary. Let G be i somorphi c to the fundamental 

£gr;::..:;.0,;.:u.£;,p....:;;0=.f....:;;a:.:.;n:.-,;:a:.;;:s;,;;:p=.h:.;:e..=r..=i:...;:c:.;:a;,;:1:...-:c:.,:1:.,:0:..:s::..:e:...;:d:,-:;3,--...;:m~a;;.:n;.:;;:i;:;:f:....:o:....:l~d~L~.:----=I:;.:f~G;;;.' ..;;;c.;:,.1C'1 (11 ) , then 

either 

i) There i s a t wo-sided projective plane P embedded in M; 

or 

ii) M = Q:#=R, where R is an aspherical closed 3-manifold, and G 

is conjugate to a subgroup of finite inde x in 1Cl (El. 

Without los s of generality , we may assume M compact, since G is 

finitely generated and has a finite number of rel ations . 

By [16J, G satisfies (12.1). By (1 3 .4), G is torsion free. 

By (12.8), (G, ~ ) is reducible for any set (5 of 1Cl - generators of 

1C 2(M), satisfying (7.1). Since G is infinite, we know from (13.1) 
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and (1 2.5) that M(G; (5' ) is aspherical. 

'rherefore 

So l~ (G; ~ ) is a closed 3-manifold. Therefore NG is a finite sheeted 

cover of N and has only spherical boundaries. Therefore N is a com-

pact 3-manifold with only spherical and projective plane boundaries. 

If vre assume i) is not true, then ii) follov's from (13. 6 ). 

Corollary (1 3.9) to ~~eorem (13 .8 ). If the hypotheses of (13.8) 

hold and if 1C2(~L..O, then M is an aspherical clo sed 3-mA.nifold, and 

G is of finite index in 1Cl (!!L. 

This follows from (11.3) and (11.1). 

§14 . Finitely ge~erated abelian subgroups of 1Cl (Ml. 

Theorem (14.l~. Let ~ be a possibly non-paracompact 3-manifold, 

possibly with "boundary. The following is a comple t e list of finitely 

generated abeli an subgroups, which can occur in 1Cl (M:";;J..)...:.._--=E:.::;x;.::a:.;.;,m;..:n-=l~e..::..s 

of their realisations are also given. 

/.) Z+Z Z+Z2 Z+Z+Z Z r __ 0. --
I SlxS2 1 1 Slxp2 SlxSlxSl S xlxI, S xS xl Lens space 

"Je note that all abelian e;roups except Z satisfy (1 2.1). V.ie 
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ma.y assume, wi thout loss of genera.li ty, that M is a compact 3-ma.nifold. 

Lemma (1 4. 2). G ~ Z+Z+Z+Z cannot be 8. subgroup of '11:1 (Ml, where 

M is a compact 3-manifold. 

For suppose (1 4 . 2) is not true. By (12.8) ( G, ~ ) is reducible. 

'fherefore M( G; Q ) is aspherical by (12 . 5) and (13.1). Therefore 

which is impossible, since M( G; ~ ) is a 3-manifold. 

Lemma (1 4.3). G ~ Z+Z+Z2 cannot be a subgroup of 'lt l (M), where M 

is a com-pa.ct 3-manifold. 

For suppose (14.3) is not true. By (1 2.3), 

By the universal coefficient t heorem, H
3

(M( G; i ) ; Z2) contains a 

subgroup Z2+Z2' whi ch is impossible. 

Lemma. (1 4 .4). G r..- Zr ~s cannot be a. subgroup of 'lt l (M), where M 

is a compact 3-manifold and r l s . 

For suppose (14.4) is not true. From (13.7)a), we see that 

G ~ 'ltl( Q ), where Q is a clo sed orientable 3-manifold. Therefore 

Q has a finite covering space, which is a homo topy 3-sphere. There-

fore 'lt2 (Q) = O. 'fherefore H2(Q;Z ) ~ H
2

( G;Z ) -::::. Zr' By Poincar~ 

Duality, Hl(Q;Z) ~ Z. But Hl( Q; Z) is torsion free, by the universal 
I' 

coefficient theorem. So we ha.ve a contra.diction . 



By (13.2), the group Z+Z is impo ssible when r > 2. From . r 

(14.2), (14.3) and (14.4), we easily deduce (14.1). 

Theorem (14.5). If M is a possibly non-paracompact 3-manifold, 

possibly with boundary, and 'Kl(:M) contains a sub group G ~ Z+Z2,..J;hen 

M = Q:#R , where R is a closed 3-manifold and 'Kl (R) S::; Z+Z2' and G 

is conjugate to a subgroup of 'Kl(Bl. 

We assume, without lo ss of gene rality, tha t M is compact. 

H3 (M( G; ~ ); Z2) I 0 by the universal coefficient the orem. So we ha ve: 

Lemma (14. 6). M( G; (S' ) is a closed 3-manifold. 

WG is therefore a compa.ct 3-ma.nifold with only spheri cal bound-

a ries. Suppo se ( G, '6 ) is reducible. 

So, by (1 3 .1), 1I'J ( G; i ) is aspherica l, which is iHlpossible by (1 3 . 4 ). 

So 1G-BdWG contains a t least one t wo-sided pro jective p l ane P . 

Any such projective plane cannot separate W
G

, s ince we woul d then 

have a compact 3-manifold, who se boundary had B.n odd Euler-Poincar~ 

charact eristic ( see [lOJ , §64, Satz Ill). 

We construct a cove r ing spa.c e W of W
G

, whose sheets a re homeo-

morphic to \VG-p, and suc h tha t Fe cross to a different shee t every 

ti me we cross P . We ha ve the exact sequenc e 

o --> 'Kl ( W) ---> Z ---> 0 

) 
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We easi ly see that ']1;1 (1!t) /"'- Z2 

from the exact sequence. 

From van Kampen ' s 'l'heorem, 'f.re ea.sily see that ']1;1 (WG-p) ::::: Z2. 

Therefore ']I;l(N~) ~ Z2 for each i (it is not zero, since N~ contai ns 

a two-sided projective plane). Since WG is compa..ct, N~ is compact 

for each i. Therefore N~ is a finite sheeted cover of Ni . 'l'here-

i fore H is a compact non-orientable 3-manifold with finite fundamental 

group . By (10.1), ']I;l(N
i

) ::: Z2 and BdN
i 

consists of a number of 

2-spheres and two projective planes. 

_ i 
cove r of N • The pro jective planes 

i 
Therefore NG is not a proper 

in BdN
i 

do not separate M by 

the paragraph before the last. i By glueing the N together along 

boundary projective planes (using t he sets U~ as glue), and using 

(13.6), we obtain (14.5). 
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Chapter V. GENERATORS AND RELA'l'IONS. 

Let a group G have a finite presentation 

Then we define deficiency of P def P = n-m. 

We define deficiency of G =: def G = maximum of def P over all 

possible presentations P of G. 

In this chapter we obtain an upper bound for def P in terms of in-

variants of the group ( its homology groups) . This upper bound is 

actual ly attained for abelia.n groups , groups given by presentations 

\'Ii th only one relation, and fundalnental groups of compact 3-manifolds. 

We deduce from this some theorems about fundamental groups of 3-

manifolds. 'llhis cha.p ter is completely independent of Chapters III 

and IV. 

In this chapter a 3-manifold will be assumed compact, connected 

and possibly with boundary. 

§15. An upper bound for def P. 

This section contains two lemmas ((15.1) and (15.2)), whi ch are 

due to Professor P.Hall, for whose assistance I am extremely gr ateful. 

Suppose we are given a presentation P of a group G as above. 

Let F be the free group on the n generators xl' ••••• x
n

• Let R be 

the normal subgroup of F, generated by r l , ••••• rm' '1'hen G :: FIR. 
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Let s(G) = minimum number of generators of G. 

If A and B are two subgroups of a group H, then LA,BJ is the 

-1 -1 
group generated by the set of all commutators a b ab (aEA, bEB). 

Lemma (1S.1). R/[F,RJ is an abelian group generated by the m gen-

Since any element of R is of the form 

-1 E. -1 € 
fl r. I f l ••••• fr. s f 

1 , S l s S 

where f .E F and E. = ± l (1 ~ j ~ s), (lS.l) is obvious. 
J J 

Lemma (lS. 2) . clef P ~ rankHl(G;Z) - S( H
2

(G; Z) ). 

Vie have the following diagram of abelia.n groups and homomorphi sms 

o --> [F,FJ n R/[F,RJ --> R/LF,RJ --> R/LF,FJ () R > o 
II~ 

o <:--- F/LF,FJR <:-- F/[F,FJ <:-- LF,F]R/[F,FJ <._- o. 

where the horizontal rows are exact. By a well-known result of 

Hopf (see [6J ) , H
2

(G;Z) :":: LF,FJ n R/[F,RJ. Also 

F/[F,FJ is free abelian. Therefore [F,FJR/LF,FJ is free abelian. 

'l'herefore R/[F,RJ % [F,FJ (") R/[F,RJ + R/LF,FJ n R.. 

Since the summand on the right is free abelian, we have 

by the exactness of the second row. Therefore, by (15.1), 
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(15.2) follows. 

If G is a group such that eauality is attained in (15.2), we 

say G is efficient. The author suspects that (ZXZ
2

) * (ZXZ
3

) is 

not efficient. 

Lemma (15.3). If G is a fini tely generated abelian group , it is 

efficient. 

VIe simply use the canonical presentation of G. 

Lemma (15.4). If X is a free complex, then 

where p is a prime and rank denotes the dimension of the vector 
p 

space over the field Z . 
P 

We have equality if and only if the canon-

ical presentation of H
2

(X;Z) 

H 2 ( X; Z) s: Z+... .. + Z+ Z a + Zb + Z c + • • • • • + Z j + Zk ' ( a I b, b \ c. • • •• and j \ k) , 

is such that p i a. 

Let H 'l'or (Hl (X; Z), Zp ), Then 

Hl(X;Zp) 9:: Hl(X;Z) ® Zp :; (rankII1(X;Z))Zp + I1, and 

H
2

(X; Z ) ~ H
2

(X; Z)® Z + H ::: rZ + H, 
P P P 

where r < s(H
2

(X; Z)) if p l' a Emd r = s ( H
2

(X ; Z)) if pr a . 

ra.nk Hl (X;Z ) 
p p 

r nk Hr')(X;Z ) 
p cc p 

rankHl(X;Z) + rankpH, a.nd 

r + rank H. 
p 

'l'herefore 
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Therefore ranJcpHl (X;Zp) - rankpH2(XjZp) = rankHl (XjZ ) - r 

~ rankHl( X;Z ) - s (H2(XjZ)). 

(15.4) follows. 

Lemma (l~. rank Hl ( G; Z ) - rank H2( G= Z ) ~ def G. 
-p --"-P P --"-p--

Thi s follows from (1 5 .4) and (15. 2) . 

rye say G is p-effi cient if there is equality in (1 5 . 5 ). If 

G is p-efficient , it is efficient . If G is efficient , then , by (1 5 . 4), 

it is p-efficient for some p. 

Lemma (15.6). If A and Bare -p-efficient groups , then A* B is p-

efficient and def(A * B) = def A + def B. 

rank Hl(AjZ ) + rank Hl( Bj Z ) - rank H2(AjZ ) - ra.nk H2(Bj Z ) p p p p p p p p 

rank Hl( A* Bj Z ) - rank H2(A * B; Z ) p p p p 

~def ( A * B) ~ de f A + de f B ( this follows by adjoining a present-

ation of A to a presentation of B) 

= rank Hl(A;Z ) + ra.nk Hl( Bj Z ) - rank H2(A;Z ) - rank H2( E;Z ). p p p p p p p p 

So (1 5 .6) follows. 

Lemma (15.7). If G has a presentation with only one relation 

{ xl' ..... xn/r } , G is efficient and def G = n-l, unless r = 1, when 

def G = n . 

In the proof of (15. 2) , the only place vrhere equal ity between 

(n-1) and rankHl(GjZ) - s(H2(GjZ)) could break down, is in (15.1). 



48. 

'l'hat is, we have equality in (15.2), unless R/lR,F] has 0 generators. 

If R/lR,FJ = 0, then R = LR,FJ. By induction, 

R = [[ ••• [[R,FJ,FJ, ••• F],FJ ~ l[ •.• [L:F',F],F], ••• F],FJ. 

So R ~ (J [l ••• [[F,FJ,F], ••• FJ,F], where we take the intersection over 

all possible subgroups of the form given. By [8J, page 38 , R = O. 

Therefore r = 1. So G is free, and is efficient by (15.3) and (15.6). 

§16. The fundamental group of a 3-manifold. 

Lemma (16 .1 ). If M is a compact 3-manifold, there i s a cell decompos-

i tion of M wi th only one 3-ce11 , and with B. si mp licial 2-skeleton. 

We simply triangulate M and abolish interiors of 2-simplexes 

one by one. 

Lemma (16. 2). If M is a compact 3-manifold V'ri th boundary, then 

def 11:1 (M) ? 1- X (M). 

We perform a deformation retra ction of M by pushing in the 

interior of a 2-simplex of Bdlvl , until the 3-cell of (1 6.1) is entirely 

retracted onto the 2-ske l eton of M. Let there no w be p n-simple xes. 
n 

A maximal tree in M contains (p -1) l-simplexes. 
o There is therefore 

a presentation of 11:1 (M) wi th (Pl-p 0 +1) genera tors and P2 rel a tions. 

Therefore def 11:1 (M) ~ Pl-Po+l-P2 = l- X (M). 
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Lemma (1 6.3) . If J.t1 is a. closed 3-manifold, then def ?C
l 

( M) L Q.. 

We remove a small open 3-ball from 1':1, thus changinG X (M) from 

o to 1. (1 6.3 ) now follows from (16.2). (For a closed 3-manifold, 

X (M) = 0 by PoincHr~ Duality). 

Lemma (16.4). All torsion elelpeuts in H
2

(M; Z) are of order two '. if 

M is a compact 3-manifold . 

If H2 (11'1 ; Z) ha.s 

then H
3

(M; Zr) has a. 

coefficient theorem. 

a direct summand isomorphic to Z , where r ,; 2, 
r 

rlirect swmnand isolilorphic to Z , by the universal . r 

Therefore H
3

(lvqZ ) ~ Z , and H
3

(H;Z) = O. 
r r 

('l'he first isomorphism is the only non-zero possibility, and the 

second follows from the universa l coefficient theorelil). These two 

isomorphisms are contradictory, since the first implie s that M is 

orientable and closed. 

For any compact 3-manifold 1-1 , there exists a finite set '{5 of 

2 
maps ~: S ---,> M, as given by (7.1), which form a set of ?Cl(M)-

generators of ?C
2

(M). Let n( M, '(( ) be the number of d.... suc h that 

go( is non-sillgula.r. 

Theorem (1 6.5) . ?Cl ( I~i) is 2-efficient, if M is a compact 3-manifold. 

We prove (16.5) by induction on n(1.1 , <f ). 
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Lemma (16.6). 

(Compare (1?3)). 

We attach one copy of p3 to M for each 0<.. , by identifying the 

This does not affect H
2

(M;Z). By attaching 

n-ce11s (n > 3), we obtain a K(1t
l

(M),l). (1 6.6) follows. 

Lemma (16.7). If n(l"r, )( ) = 0 a.nd id is closed, then (16.5) is true. 

° rank2Hl (lil; Z2) - rank
2
H2 (11; Z2) by Poincar~ Duality 

rank2Hl (1t1 (H);Z2) - rank
2
H2 (1t1 (ll);Z2) by (16.6) 

:? def 1tl (1 ) by (15.5) 

~ O 

( 16.-7) follows. 

Lemma (16. 8 ). 

(16.8) follows. 

by (16.3). 

If n( [ , '(1 ) = 0 and M has boundary , (16.5) is true. 

rank2Hl (N; Z2) - rank
2
H

2
(M; Z2) 

rank2ill (1tl (M) ; Z2) - rank
2
H

2 
(1t

l 
(H) ; Z) 

~ def 1tl (M) 

;? l - X (L ) 

by (16.6) 

by (15.5) 

by (16.2). 

We can now proceed wi th the proof by induction on n(1'1, '6 ). 

If n(l!!i, (( ) > 0, there is at least one 2-s-phere gJ.. (S2) (denoted by s). 
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Lemma (16.9). If S separates M, then (16.5) fo llows from the in-

duction hypothesis . 

If we cut M a t S and fill in the boundary 2-snheres thus created 

\'.'i th 3-balls, we get two 3-ffianifolds Y 1 and M2 • Let '61 
de note the 

set of maps go(. (except for the one giving rise to S), whose ima,ges 

v? 
lie in l\~l' and silnilarly for 0 

2 
generators of '1I:?(I.1

1
) and similarly for (5 • ~his follows by attaching 

3-balls to M by means of the inaps ~ and then applying the £Jiayer-

Vietoris sequence to the universa,l cover of this space. :.re see 

thct attaching 3-balls to Illl by the maps in ~l kills off li
2
(r:;; Z), 

cv 
\"'here b

l 
is the universal cover of 111 , and siTllilcn'ly for lli 2 • 

Therefore (1 6 .5) is true for 1.11 and H2 • Now '11:1 (11 ) ~ '1I:l(Ml) * 1~1(M2). 

Therefore '1I:
l

(k) is ?-efficient by (15.6). (16.9) follows. 

Lemma (16. 10 2 . If S does not separate h , then (16.52 follows from 

the induct ion hypothesis . 

If rye cut M at S and fill in the boundary 2-spheres thus created, 

we obtain a 3-manifold lvi '. 

the one gi ving rise to S . 

Let ~' be the se t of maps g~ other than 

'A
2

(M') is '11:
1 

(hi ' )-generated by the set ~ I . 

This can be proved by going to the coverillg space of 11-, ea.ch sheet 

of which is homeomorphic to 11'1-8, and in which we cross to a neVT sheet 
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whenever we cross S. In this spa.ce we apply a similar argument to 

that in the proof of (16.9 ). l~ow n(lil l , ~I ) < n(ii'l , (( ), since 

Therefore (16.5) is true for fu l . 

NOVI1l:1( ~1 ) :: 1I: l (H' ) * Z by (11.2). (16 . 10) follo w_s from (15. 6) , 

since Z is 2-efficient . 

The proof of (16.5) is now completed. 

§17. Applications of the 2-efficiency of 11:1 (!2.. 

Let 1"1 be a closed 3-manifold . Let '0 be a. set of 11:1 (}.l ) -gen

erators of 1I: 2(M) as given by (7.1). The image of the Hurewicz 

homomorphism 1I:
2

(M) 

So, in determining the image , Vie can neglect those ~ which identify 

2 antipodal points, and those go( such tha.t goL(S ) separates h . Let 

V (M) be the number of times that we can cut Ivr at a 2-sphere 2 
g'oL (S ) 

for some 01.. , so that M remains connected. Let cS be El. subset of 

'6 containing V ( 1~ ) such 2-spheres denoted 2 
g(3 (S ). 

Lemma (17.1). If l~ is closed, 

SU1)pose 1.1 is triangulated so that g~(s2 ) is simplicial for 

each 01.. . There is obviously no relation bet7een the elements rep-

resented by gf3 (S2) in H2(HjZ2)' since any union of 3-simplexes whose 

boundary consists only of the 2-spheres gp (S2 ) , must have a boundary 
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in which each term efo (s2 ) occurs tvnce. Therefore 

On the other hano, each 2-sphere €?bt(S2) is homologous to la sum of the 

2 
2-spheres g~(s ). The first equality of (17.1) follows. 

We can make lir1 into a K(1I:l (M) ,1 ) by attaching 3-balls to 1111 by 

means of the maps 12'0( ' and then adding n-cells (n > 3). Therefore 

Therefore 

by the equality just proved. By (16.5), 

rank2Hl (1I: l (M) ;Z2) - rank2H2(1I: l (M ) ;Z2 ) 

rank2Hl (M; Z2) - rank 2H2(M; Z2) + V(IvI ) 

V (M) by Poincar' Duality. 

If we cut M at a ?-sphere S whi ch does not separate lVI , and fill 

in the boundary 2-spheres thus created vnth 3-balls, we get a closed 

3-manifold 11 ' • '1'herefore we have: 

Lemma (17.2). For some closed 3-manifold N, 11:1 (M) ~ 11:1 ( N) * Z ••.•• * Z, 

where there are Y (111 ) cyclic infinite free factors . 

It is possible to prove that 1I:l (N) contains no further cyclic 

infini te free factors, bu t Vle will not concern ourselves with this 

point. 
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Theorem (17.3). The following is a complete list of abelian groups, 

which can be fundamental group s of closed 3-manifolds: Z, Z+Z+Z, 

Z+Z2 and Zr' ( The proof given here i s cOTO-pletely inde-pendent of 

Chapter IV. SeA (14.1)). 

~'heorem (17.3) was first proved by Reidemeister. 

Since a free product is not abelian, 've S88 from (17.2) that 

V(l'l) = 0, unless 11:1 (M) -::::: Z. 

from (17.1) that def ~l(~ ) o. 

Excluding the c ase 11:1 ( j"I ) ::::: Z, we see 

(1'he only abelian group s , i~rhose 

deficiencies are zero, are those listed and also Z+Z (r > 2). 
r 

Since Z+Z is not a free 'product, \"e see from (11.2) and van 
r 

Kampen ' s Theorem, that there is no essential 2-sphere in M. (lie 

recall that R, comps,ct 3-manifold wi th only one boundar;y- component 

and fundamental group zero is a homotopy 3-ball). By (16.6), 

By (16.4), all torsion elements of H
2

(1I:
l

(M);Z) 

a.re of order tv,o. Since H
2

(Z+Z ;Z ) -::::::: Z , 1/Ie see that l' = 2. 
r r 

(17 ~ 3) follows. 

'Pheorem (17.4). If 11 is a closed 3-manifold, and 1(1 (Id ) has et present-

ation with only one (non-trivial) relation, theE; 11:1 (H) 9= Z ~ •.• * Z * Zr 

or ~* ... *Z. 

Let the presentation of 11:1 (I l) ~'ri th only one relation, have n 

{"enerators . By (15.7), def 11:1 (1 ) = n-l. By (17.1) clef 1I:
l

(M) = V C-). 

l<y (17.2),11:1(1 ) ~ A* Z -Jt ••• ~ Z '.'rith 11-1 cyclic infinite free f8ctors. 
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By Grusko's Theorem , ([8J, pa.ge 58), using the n generators of 1cl (t "), 

we easily see tha,t A is isomorphic to some quotient r roup of Z. 
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Chapter VI . 3- xlA1HFOJ,DS WHI CH ARE TOPOLOGI CAL PHODUCTS. 

In this chapter, we consider closed 3-manifolds whose fundamental 

groups are infinite, and are also non-trivial direc t products. The 

author has conjectured tha,t such a manifolr is the topological product 

of a circle and a closed 2-manifold. Here, vIe prove only that one 

of the direct factors of the fundamental group is cyclic infinite. 

Considerable progress has been made to"iards proving the conjecture 

by J.stallings ( (5J ~ [I4-J) . 

§18. Ends. 

We recall some facts about Rnds. If K is a locally finite 

complex, let C'*(K;Z) Hnd C~(K;Z ) be the [ roups of ordinary and finite 
.L 

cochains with coefficients in Z. We have the exact sequence 

o --> C1(K;Z) -~> C*(K;Z) 

which defines the term on the right. 

--:> C*(Ki Z) 
e 

---:> 0, 

We get an exact sequence of 

homology groups of t hese chain complexes 

(lA.l) o --> H~ ( I(; Z) 

--> H~ ( K;Z ) 

From results of Specker ([12J, Satz Ill), we easily see that 

HO(y;Z ) is free abelian. 
e 

K ([12J, Satz IV). 

Its rank is equal to the nwnber of ends of 
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Let G be Cl finitely generated group , and let L be a. finite, 

connected sim)licial complex. Let K be a regular covering space of 

L and let G be isomorphic to the group of covering translations. 

Then the number of ends of K is independent of the particular complexes 

K and L and depends only on G. , 'Phe number of ends of G is defined 

to be the number of ends of' K [7J. 

Lemma (18 .2). A necessary and sufficient condition for G to have 

two ends is that it should_ have an infini te cyclic subgroup of finite 

index. 

(18.2) is proved in l7J. 

1, 19. Direct products. The orientable case. 

In this section, we assume 111 i s a closed , orientable 3-manifold, 

such that 1c
l 

(l,I) CxD, where C is infini t e and D I o. 

Lemma (19.1). lvI is aspheri cal. 

If ~2(M ) I 0, then, by the Sphere Theorem (see 15J), there exists 

a non-contractible 2-sphere in lYL . By (11.1) and (11.2), ~l(M ) ::::::- A * B 

or Z, where A I 0 and B I o. Both of these possibilities are ex-

cluded since ~l(M ) is a direct product. (By [8J, pa~e 28, a direct 

product cannot be a free product). 'l'herefore ~2(M ) = O. By (13.1), 

M is aspherical. 
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We have the covering maps PC: MC 

associated with the subgroups e and D respectively. Since J'l is 

aspherical, CxD is torsion free by (13.4). Therefore e and Dare 

torsion free. rl1herefore D is infinite. Therefore MC and M] are 

Lemma (19.2 ). If G = exD is finitely generated, then so are e and D. 

This follows immediately by projecting the generators of G into 

e and D respectively. 

Lemma (19.3). (c and D are both 

infinite, and are therefore in a symmetrical position in the hypotheses 

of (19.3 ). A conclusion in whi ch e and D are interchanged in (19.3) 

is also possible, but wi ll be suppressed for convenience). 

M ~ MexM)) since all three are aspherical. 11 By the Kunne th rela-

tions 

Z -::: H 3 ( r~l; Z) eo H 2 (11[ e ; Z) ® HI (MD; Z) + HI (M C ; Z) ® H 2 (MD; Z) + 

Tor (H1(Mc; Z), Hl (MD;Z». 

Hl(MC; Z) :::::: c/[c,e] is a finitely generated abelian group by (19.2). 

Similarly for D. Therefore the third summand is finite, and, being 

a subgroup of Z, vanishes. Without loss of generality, we assume 

Hl (MC; Z) ® H2(W1D;Z ) ~ Z. Vlri t ing Hl(MC;Z) ~ Z+ •.. +Z+F, where F is 

a fini te group, we have H2(M'D;Z)+ ••• +H2(M
D

;Z)+H ::::::. Z, where H is 

a torsion group . Pherefore H = 0, since it is a subgroup of Z. 
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Therefore 

Lemma (19. 4) • C has hJo ends. 

Since MD is a regular covering space of M wi th C the group of 

covering translations, the number of ends of MD is equa.l to the 

number of ends of C (see §18) . Since MD is non-compact, H~(MD;Z) =,0. 

Therefore (18 .1) becomes 

° 
By [12J, last line of Satz V, 

is ei ther free a:bel i an of infini te rank or zero. But 

Z ~ H2(MD;Z) :::: H~.(MD;Z) by (19.3) and Poincar6 Duality. 'rherefore 

R~(MD;Z ) > H~(MD;Z) is an epimorphism. From the exact sequence, 

we deduce H~(MD;Z ) ::::: Z+Z. 'llherefore lID has tyro ends. 

Therefore , by (18.2), C has an infinite cyclic subgroup C' of 

fini te index. We have an epimorphism C ---> c/lc,eJ ~ Z by (19.3). 

Finally C i s torsi on free by (19.1) and (13.4). 



60. 

Lemma (l~. C .=:;' z.* 

'1'he composition 

Z :::: CI --> C --> c/[c,c] :::::. z 

is either a monomor~hism or zero . If it were zero, then, since 

C I has finite index in C, the image of C ---> c/lc,c] would be 

fini te. But this ma.p is an epirnorphism . Therefore the composition 

is a monomor~hism . Since Cl has finite index in C, the k ernel of 

C ---> C I[ C , C] -::::::. Z i s fi 11i t e • But C is tor~ion free, and ~o the 

!cArnel is zero . '-,-'herefore C ---> c/Lc,c] ~ Z is an isomorphism. 

}30 . Direct QEoclucts_._ ']Ihe non-orienta.ble C8.se. 

In this section, we assume L i s a. non-orientable, closed 3-

manifold, 2.nc1 that 'lCl(L) = CxD, where C is infinite qnd DI O. ,"fe 

shall prove that one of the croups, say C, is cyclic infinite. 

'"-' 
Let ):M ---> 1 be the orienta ble double covering' of :h . '!Ihen 

index t\"O in ?Cl (M). 11* ('lC l (h')) ha.s 

D n p.* ('lC l (M) ) = D'. Cl has index at most two in C, and D' has index 

a t most tyro in D. Let M be the covering of g associated with t he 

subgroup CI XU I of CxD. ill is a closed, orientable 3-rna.nifold, such 

that 'lCl(B.) S:! C ' xD ' , where Cl is i nfinite . 

~<'l'he author vrishes to thank Dr.J .Stallings for providing this proof. 

'1'he author I s original proof was much longer . 
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Lemma (20.1). The fo110vring t hree statements are eguiva1ent: 

D ' I 0; h is a.snherica1; D =lE Z2' 

If D' I 0, i'.'e may ap-p1y (19.1) to ! , to show that M is aspherical . 

Since M covers M, M is a l so aspherica1. If _ 1 is aspherica l, CxD 

is torsion free by (1 3.4) , and so Di z2. If D * Z2' then D' I o. 

If 11 is as-pherical, then ( i thout loss of generality) 

C % Z. 

1C
l

(M) -::= C' xD ', where C' is infinite and ]) ' f O. By (19.5), 

c' ~ Z. Either C = C' or C' has index two in C. lloreover , since 

M is aspherical, C is torsion free. Therefore, if C' I c, C has 

a presentation 

where d.. is a. generator of C' , f IC ' and e= ± 1. Then 

f 2 = f -1 
d.. n;8 

n€ 2c 
= cl = f3 

Therefore e = 1, since C is torsion free. Therefore C is abe1ian. 

· ( -1 rn) 2 If n = 2m, f or some 1.nteger la, then ~ cl-.- = 1, and so 
m f3 = cJ.... , 

since C is torsion free. This is impossible, since f IC '. Therefore 

2 1 d · db ( 13 - 1 _, m). r-.; n = :m+ , a.n C 1. S generate y r lX.- Therefore C = Z. 

Lemma ( 20. 3 ) . If M is not aspherica1, then either C 8:=: Z or C ~ A "* B. 

By ( 20 .1), D' = 0, for otherwise M i s aspherica1. Therefore 

1) ~ Z2' and the non-zero element of D is orientation revers ing. By 
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(1 3.2), there is a two-sided proje ctive p l ane P in M. Let S be the 

rJ 
inve rse illlage of P in M. S is essential in Mby (11.3). ~.'here fore 

by (11.1) and (11.2), '1I: l (i) s; Z or A * B, where A I ° and E :J 0. 

Since the non-zero element of D commutes vi th all elements of '11:
1 

( 111 ) , 

and p* ('11:1 (1\1) ) fl D = D' 0, we have 

p* ('1I: l (i))x = '1I: l (M) CxD. 

r.pherefore 

Lemma (20.4). If M is not a spherical, t hen '11:
1 

(M) ~ ZxZ
2

• * 

If C ::::: A *B, there is an element of infinite order in C. 

Therefore '1I: l (M) contains a subgroup isomorphic to ZxZ
2

• By (14.5), 

Since CxD is not a free p roduct, 

H = 0. Therefore '11:
1 

(M) -::: Zx Z
2

• 

§ 21. Summary of re sult s in Chap ter VI. 

Theorem (21.1). If M is a clo sed 3-manifold , a nd '11:
1 

(1,,1) = CxD, 

where C i s infinite and D t 0, t hen one of the follo wing thre e pos-

s ibi litie s occurs: 

~< ( 20 .4) was first proved by J . Stallings using the theory of ends , 

before the Projective Plane 'l'he o rem (6.1) was discovered . 'l'hat 

proo f ras very mu ch longer than the proof given a bove . 

) 



~ I~ is orientable and aspherical o.nd , say C =- Z; 

ii) tt·is non-orientable and aspherical and, say, C ~ Z; 

iii) is non-orientable, 1c
2

(M) i 0, and 1Cl CM) =: ZxZ2 , 

i) folIo's from (19.1) ano (19.5). ii) folIoVIS from ( 20 .2). 

iii) folloFs from (20.4) and (11.3), 
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