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Abstract  19 

Purpose:  Augmented microfracture techniques use growth factors, cells and/or scaffolds to 20 

enhance the healing of microfracture treated cartilage defects. This study investigates the 21 

effect of delivering recombinant human fibroblastic growth factor 18 (rhFHF18, Sprifermin) 22 

via a collagen membrane on the healing of a chondral defect treated with microfracture in an 23 

ovine model. Methods:  8mm diameter chondral defects were created in the medial femoral 24 

condyle of 40 sheep (n=5/treatment group).  Defects were treated with microfracture alone, 25 

microfracture + intra-articular rhFGF18 or microfracture + rhFGF-18 delivered on a 26 

membrane. Outcome measures included mechanical testing, weight bearing, International 27 

Cartilage Repair Society repair score, modified O’Driscoll score, qualitative histology and 28 

immunohistochemistry for types I and II collagen.  Results: In animals treated with 32g 29 

rhFGF-18 + membrane and intra-articularly there was a statistically significant improvement 30 

in weight bearing at 2 and 4 weeks post surgery and in the modified O’Driscoll score 31 

compared to controls.  In addition repair tissue stained was more strongly stained for type II 32 

collagen than for type I collagen. Conclusion:  rhFGF-18 delivered via a collagen membrane 33 

at the point of surgery potentiates the healing of a microfracture treated cartilage defect.  34 

 35 
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 37 

Introduction  38 

Microfracture, first described by Steadman et al [1,2], permits bone marrow derived 39 

mesenchymal stem and progenitor cells into a chondral defect site [3]  by making small holes 40 

through the subchondral bone plate to access the underlying subchondral bone marrow [4].  41 
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The progenitor cells have a multipotent differentiation capacity that includes the ability to 42 

form cells of the chondrocyte lineage; this differentiation capacity produces a cartilaginous 43 

repair tissue at the site of the defect. Of the many different surgical procedures which are in 44 

routine use worldwide in order to promote articular cartilage healing, microfracture is 45 

commonly performed [5] and often advocated as a first line of treatment for cartilage defect 46 

repair [6]. 47 

In the joint, bones are surfaced with hyaline cartilage. Whilst a number of treatment methods 48 

stimulate cartilage repair at the site of defects, the type of the repair tissue is crucial for 49 

restoration of normal joint function, with improved patient outcome directly correlated with 50 

repair tissue quality [7,8]. In microfracture healed defects, the initial tissue formed is 51 

granulation tissue which becomes replaced with fibrous repair tissue [4], biochemically and 52 

mechanically inferior to hyaline cartilage.  Continuous loading of the fibrocartilagenous 53 

repair leads to degeneration of the repair tissue [9], with deteriorating results following 54 

microfracture at 24 month second-look arthroscopy and biopsy [8].  Thus, one goal of 55 

improving the efficacy of microfracture is to modify the repair tissue produced.  A number of 56 

different strategies have been reported including the use of growth factors in combination 57 

with microfracture [10] in animal models – one example of an ‘augmented microfracture’ 58 

strategy. Growth factors used have included the bone morphogenic proteins (BMPs)[11,12], 59 

transforming growth factors (TGF-βs) [13] and platelet rich plasma (PRP) [14], with and 60 

without biomaterials [15]. Recently, our group reported significantly improved healing of a 61 

microfracture treated large animal chondral defect when intra-articular rhFGF-18 62 

(Sprifermin) was administered post-surgery [16]. 63 

FGF-18 has been reported to be an anabolic growth factor [17,18], promoting 64 

chondrogenesis, osteogenesis and bone and cartilage repair [19-22]. Intra-articular rhFGF-18 65 

has been shown to increase in de novo cartilage formation and reduce osteoarthritis (OA) in 66 
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rat surgical models of OA[23,24]. These results, in combination with our published data[16], 67 

indicate that intra-articular rhFGF18 has the potential to enhance hyaline cartilage repair in 68 

microfracture treatment of cartilage defects.  However, whilst intra-articular injections are an 69 

efficacious treatment method, they are invasive, transiently painful and require repeated 70 

clinic visits for administration, leading to reduced patient compliance.  Indeed, there is an 71 

increasing trend, within the clinic, towards development of ‘one-step articular cartilage 72 

repair’ treatments in order to simplify cartilage defect therapy [25].  The development of a 73 

single step system for the administration of FGF-18 to defects treated by microfracture would 74 

therefore represent a significant improvement over the intra-articular administration of 75 

rhFGF-18. 76 

The purpose of this study was to investigate whether delivering rhFGF-18 via a bilayer 77 

collagen membrane at the point of surgery to a microfracture treated chondral defect would 78 

demonstrate improved articular cartilage repair compared to microfracture alone or rhFGF-18 79 

administered intra-articularly in an ovine chondral defect model. 80 

 81 

Methods 82 

This study received approval from both local research ethics committee and the Home Office.   83 

Animals:  A total of forty skeletally mature female Welsh Mountain Sheep (mean age 3.9 84 

years) were included in the study.  Each sheep weighed between 40 and 42kg at the start of 85 

the experiment with no significant differences in weight between groups.  Each experimental 86 

group contained five sheep.  This number was derived from a Power calculation using the 87 

results from previous similar experiments[16]. 88 
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Experimental design:  For all animals, full thickness chondral defects of 8mm diameter were 89 

created in the medial femoral condyle (MFC) of the right stifle joint. A microfracture awl was 90 

then used to create seven evenly spaced microfracture holes (1.5mm diameter, 3mm deep) in 91 

each defect. Eight experimental groups were created (Table 1).  92 

Surgical technique:  93 

The basic surgical procedure was as described previously [16]. An 8mm diameter chondral 94 

defect was created 10 mm distal to the condyle groove junction and aligned with the medial 95 

crest of the trochlear groove.  96 

rhFGF-18  administration: rhFGF-18 was applied either at point of surgery delivered 97 

adsorbed to a membrane or as intra-articular injections. Previous experiments in our group 98 

had demonstrated a statistically significant effect of 30g rhFGF18 administered intra-99 

articularly [16].  Membrane delivered rhFGF-18: rhFGF-18 was applied to an 8mm 100 

diameter bilayer collagen membrane (Chondrogide, Geistlich) at concentrations between 101 

0.064g and 32g (Table 1). The membrane/growth factor construct was applied to the 102 

chondral defect and glued in place using Tisseel tissue glue at the periphery of the membrane 103 

(Baxter). Intra-articular rhFGF-18 30g rhFGF18 was injected into the medial femoro-104 

tibial joint once a week for 3 weeks at 4, 5 and 6 weeks post-operatively and 16, 17 and 18 105 

weeks post-operatively. 106 

Force plate analysis of weight bearing A force plate (Accusway, AMTI, USA) was used to 107 

quantify the weight bearing of the operated limb.  Weight bearing was measured at a walking 108 

gait prior to surgery, 2 weeks, 4 weeks, 2 months, 3 months, 4 months and 5 months after 109 

surgery. At each time point each animal had 10 recordings acquired and a mean weight 110 

bearing value calculated.  Each measurement was converted into N/kg force and calculated as 111 
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a percentage of weight bearing pre-surgery for each individual animal.  Weight bearing data 112 

was grouped into treatment groups for final analysis. 113 

Necropsy:  Animals were humanely sacrificed at 13 or 26 weeks postoperatively using a 114 

lethal dose of sodium pentobarbital.   115 

Gross Morphology:  The joints were photographed and the surface of the osteochondral 116 

defect sites blindly scored using the International Cartilage Repair Society score (Table 2). 117 

Mechanical testing:  After the gross morphological observations were made, each implant 118 

site underwent non-destructive mechanical testing to determine changes to the cartilage 119 

surface surrounding the implant or empty defect.  Hardness measurements were taken in 120 

duplicate from the centre of the chondral defect, and at a distance of 1 mm inside the original 121 

edge of the created chondral defect at the 12, 3, 6, and 9 o’clock positions, and 1mm from the 122 

edge in the perilesional cartilage, using a handheld digital durometer (Shore S1, M scale, 123 

Instron Ltd, UK).   A number between 0-100 would be given with an inbuilt calibrated error 124 

of +/-5.  These measurements were then repeated in the contralateral limb in the same 125 

anatomic sites giving a surrogate measure of hardness of the reparative tissue by expressing 126 

the result as a percentage relative to the control cartilage in the contralateral limb, and the 127 

perilesional cartilage of the ipsilateral limb.   128 

Histology: Following mechanical testing the specimens were decalcified in formic 129 

acid/sodium citrate over four weeks, prior to routine paraffin processing. Sections of 10 m 130 

thickness were made through the central portion of the defect.  Sections were stained with 131 

Toluidine Blue and Safranin O/Fast Green.  The histology sections were blindly scored by 132 

one investigator, using a modified O’Driscoll score (Table 3).  133 

Immunohistochemistry:   Immunohistochemistry was performed as described previously [26].  134 

The following primary antibodies were used in this study; monoclonal mouse anti human 135 

a) b) c) d) 



7 
 

type I collagen (MP Biomedicals, US, 1 in 200 dilution) and monoclonal mouse anti human 136 

type II collagen (MP Biomedicals, US, 1 in 100 dilution). Horseradish peroxidase-conjugated 137 

secondary anti-rabbit and mouse immunoglobulins were used as appropriate, and the colour 138 

reaction developed with 0.1% 3′, 3-diaminobenzidine tetrachloride (DAB)/0.01% hydrogen 139 

peroxide. Normal species-specific serum was used as a control in all experiments.   140 

Analysis of rhFGF-18 concentrations in serum and synovial fluid Blood samples and 141 

synovial fluid from the operated joint were obtained from animals in which 32g rh FGF-18 142 

was administered on the membrane to the chondral defect treated by microfracture (Group 143 

H). Samples were obtained at weekly intervals week 1 – 12. 144 

Synovial fluid samples were analysed using a qualified three step immunoassay sandwich 145 

method performed on a Gyrolab platform. Samples were treated with 20 µg/mL 146 

Hyaluronidase, incubated for 30 minutes at 22±2°C in shaking and centrifuged prior to 147 

dilution with assay buffer and analysis.  A biotinylated mouse monoclonal antibody against 148 

rhFGF-18 (clone F44A2, 0.1 mg/mL, Merck Serono) was used as capture reagent, and an 149 

Alexa Fluor-647 labelled monoclonal antibody against rhFGF-18 (clone F5A2, 20 nM, 150 

Merck Serono) was used as a detection reagent. The specifically-bound analyte was 151 

quantified by laser-induced fluorescence detection.   152 

Statistical analysis:  Statistical significance between groups and within groups for each end 153 

point was determined using a one-way analysis of variance (ANOVA) and Bonferroni's post 154 

hoc test. Where data sets within groups were not found to be normally distributed, a non-155 

parametric Kruskal-Wallis test was instead used, with a post hoc Dunns multiple comparisons 156 

test. GraphPad Prism 5 statistical software package (Graphpad Software Inc, La Jolla, CA) 157 

was used for data analysis.   158 

Results 159 
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Surgery:  The surgical procedures and recovery from surgery was uneventful.  160 

rhFGF-18 concentrations: rhFGF-18 was detected in the synovial fluid of all 5 animals at 161 

week 1 post surgery (mean 3466.44 pg/ml +/- 1735.94 pg/ml).  No rhFGF-18 could be 162 

detected in the synovial fluid after week 1 and no rhFGF-18 was detected in the serum at any 163 

time point. 164 

Force plate analysis: Using a force plate, the peak vertical force of the operated leg was 165 

measured pre and post surgery.  In all operated animals there was a reduction in weight 166 

bearing at 2 weeks post surgery (Fig 1a and b) and then a recovery in weight bearing with 167 

time.   168 

There was a significant difference between weight bearing in animals that received 0g 169 

rhFGF-18 and animals that received 6.4g rhFGF-18 delivered on the membrane at 2 weeks 170 

post-operatively and a significant difference between weight bearing in animals that received 171 

0g rhFGF-18 and animals that received 32g rhFGF-18 delivered on the membrane at 2 and 172 

4 weeks post-operatively i.e. animals that received rhFGF-18 had increased weight bearing 173 

following surgery. No difference was observed between other experimental groups.  174 

Gross morphology:  No adverse effects, for example, osteophyte formation or joint 175 

degeneration was found in any of the animals. The quality of repair at the site of the defect 176 

was assessed using the macroscopic ICRS scoring scale. No significant difference was found 177 

between treatment groups (Fig. 2). 178 

Mechanical testing: At 6m there was no significant difference between the treatment groups, 179 

either between the contralateral limb or the perilesional cartilage in the operated limb (Fig. 3). 180 

Quantitative Histology 181 
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Modified O’Driscoll total histology scores:  All samples were scored using the modified 182 

O’Driscoll score (Fig. 4). No differences were detected between the two control groups (i/a 183 

vehicle injections and membrane applied with no rhFGF-18 added).  The administration of 184 

two cycles of i/a rhFGF-18 significantly improved the modified O’Driscoll score.  In 185 

addition, there was a statistically significant increase in modified O’Driscoll score when 186 

either 6.4µg and 32µg rhFGF-18 were loaded onto the Chondrogide membrane when 187 

compared to controls.  There was no difference between the intra-articular injected rhFGF-18 188 

and 32µg rhFGF-18 loaded onto the membrane at the point of surgery 189 

Histological evaluation and immunohistochemistry In the control sections and those animals 190 

receiving 0.064 and 0.64µg rhFGF-18 there was little evidence of cartilage repair (Fig. 5A), 191 

as indicated by the modified O’Driscoll score. Most of these samples showed no repair, with 192 

denuded subchondral bone still present even at 6 months over much of the damaged zone.  In 193 

contrast, in the membrane + 32µg rhFGF-18 and 30µg rhFGF-18 administered intra-194 

articularly there was evidence of repair tissue with characteristic features of hyaline cartilage 195 

extending over a wider area of the defect with evidence of zonal organisation of the 196 

chondrocytes (Figs 5B and C).  197 

IHC for collagen types I and II was performed  on all of the samples.  In the control samples 198 

interpretation of the results was hampered because little repair tissue was present, so that 199 

there was minimal tissue present to be stained with either antibody. In the presence of both 200 

membrane + 32µg rhFGF-18 and 30µg rhFGF-18, the repair tissue was strongly stained for 201 

type II collagen with minimal type I collagen staining, indicating a mature hyaline-like 202 

cartilage repair tissue had been produced (Figs. 6a-d). 203 

 204 

 205 
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Discussion 206 

This study demonstrates that a combination of microfracture and 32µg rhFGF-18 applied via 207 

a collagen membrane at the point of surgery in a ‘one step cartilage repair’ - results in 208 

significantly improved cartilage repair tissue compared to microfracture, in an ovine chondral 209 

defect model. The results seen were comparable to the administration of two cycles of intra-210 

articular 30µg rhFGF-18 in this study and those previously reported by our group [16]. 211 

In this study significant improvements were detected in weight bearing in the 2 and 4 week 212 

post-operative period and the modified O’Driscoll histology score. In addition, the tissue 213 

produced in the presence of rhFGF18 showed a repair tissue phenotype with features typical 214 

of hyaline cartilage, namely strong type II collagen immunoreactivity and little or no type I 215 

collagen immunoreactivity.  In addition, no adverse events were found either with 216 

administration of rhFGF-18 on the membrane or with the intra-articular administration of the 217 

growth factor, indicating that this treatment does not raise any safety concerns in the joint 218 

environment. 219 

Retention of intra-articular medication within the joint is a separate safety concern. Intra-220 

articular medication enters the circulation via both vascular and lymphatic routes and can 221 

have potentially significant effects [27,28].  In this study no rhFGF-18 was detected in the 222 

systemic circulation in a 12 week experimental period, indicating that the rhFGF-18 was 223 

retained within the joint. In contrast, rhFGF-18 was detected within the synovial fluid of the 224 

treated joint at 1 week post-surgery.  This finding compares favourably with studies of other 225 

intra-articular treatment modalities including hyaluronan [29], autologous conditioned serum 226 

[30] and interleukin-1 receptor antagonist [31], all of whom are detectable in the joint for less 227 

time than detected in this study.  This indicates that the collagen membrane vehicle is likely 228 
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to have retained the rhFGF-18 locally, providing sustained release of the drug, as has been 229 

reported with other growth factors applied to collagen membranes [32,33]. 230 

 231 

The concept of an‘augmented microfracture’ procedure as a one step cartilage repair is an 232 

active area of current research. Recently, enhancement of microfracture techniques by 233 

application of stem cells [25], collagen membranes [34], ECM biomembranes [35] and 234 

chitosan-based BST-CarGel [36] have all shown superior healing compared to microfracture 235 

alone. That the presence of a scaffold or membrane alone leads to increased healing has led to 236 

the suggestion that these additions are stabilising or protecting the blood clots formed by the 237 

microfracture procedure, supporting the healing of the damaged tissue [37].  In this study, in 238 

contrast, we found no difference in any healing outcomes between groups that had 239 

microfracture alone and microfracture plus membrane, indicating that, in this model, 240 

application of the membrane did not provide any protective effect to the repairing tissue.  241 

Significant increases in healing were only detected in the presence of 6.4 and 32µg rhFGF-242 

18.  243 

In this study, three components of healing were examined.  In addition to the standard gross 244 

findings (ICRS score) and histological analysis (modified O’Driscoll score, 245 

immunohistology), we used two functional measures of joint healing, weight bearing and 246 

durometer measurements. Durometer measurements indicate the stiffness of the healed 247 

cartilage relative to the undamaged cartilage.  In this study we did not find a statistically 248 

significant difference between treatment groups, similar to that observed by our group in a 249 

previous, similar study [16].  These results, taken together, indicate that durometer 250 

measurements in this model may be of little functional value perhaps due to the influence of 251 

the underlying bone.  252 
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In contrast, we have demonstrated that animals that received 32µg rhFGF-18, applied on a 253 

membrane at the point of surgery, had significantly increased weight bearing on the operated 254 

leg at weeks 2 and 4 post surgery compared to controls and had returned to pre-operative 255 

levels of weight bearing by week 8 post surgery. The timing of this increased weight bearing 256 

is likely to be too early to be attributed to enhanced healing of the defects and may, perhaps, 257 

indicate that rhFGF-18 might have analgesic actions post surgery.  However, it must be noted 258 

that the sample size used in the study (n=5 per experimental group) was determined using a 259 

power calculation designed to allow differences in histological features, not joint loading. 260 

Further work is needed in this area to establish the validity of the observation and the 261 

mechanisms underlying it.  262 

Improving the quantity and quality of microfracture repair tissue is a clear clinical need [8]. 263 

In this, and a previous study [16], we have observed that rhFGF18 significantly improves the 264 

quality of healing post defect creation, whether applied at the point of surgery or delivered 265 

via intra-articular injection. However, in this study the macroscopic ICRS healing score was 266 

not significantly different between rhFGF-18 i/a and controls, as we have demonstrated 267 

previously. Whilst the mean ICRS score was higher in animals that had received rhFGF-18 268 

i/a  compared to controls, there was a wide variance in the data (all animals were included).  269 

This is likely due to biological variance between animals and reflects the lower number of 270 

animals used in this study (5 compared to 16 per group in the previous study [16],), as noted 271 

for the weight bearing data. Previous data from in vivo damage/repair models [22] and FGF-272 

18 over-expression models [38,39], support the observation that rhFGF-18 drives the 273 

formation of increased and higher quality cartilage in vivo. FGF18 is has ‘anabolic’ effects in 274 

cartilage [40] and work in our group has shown that rhFGF-18 alters ECM metabolism and 275 

also reduces apoptosis in response to damage [41].   FGF-18 has also been shown to have a 276 
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potential chondroprotective role, possibly via regulation of Tissue Inhibitor of 277 

Metalloproteinases -1 (TIMP-1) [24].  278 

 279 

In conclusion, the administration of rhFGF18 on a collagen membrane significantly enhances 280 

the healing of a microfracture treated cartilage defect. This augmented microfracture 281 

technique should be considered as a potential novel therapy for articular cartilage repair. 282 

Within a clinical setting administration of rhFGF-18 via a membrane to a microfracture 283 

treated lesion would allow a ‘point of service’ application of a novel biological factor that has 284 

demonstrable capacity to enhance cartilage healing. 285 

 286 
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 289 

Table Legends 290 

Table 1: Eight treatment groups were used, with all animals undergoing the microfracture 291 

procedure (n=40 total). Groups C was the control i.e. microfracture only, Groups A and B 292 

had microfracture plus intra-articular injections, Groups D to H had microfracture plus 293 

membrane +/- recombinant human fibroblastic growth factor (rhFGF18).  Duration of 294 

experiment for Groups A to G 6m, Group H, 3m 295 

Table 2: ICRS macroscopic scoring system 296 

Table 3: Modified O’Driscoll scoring system 297 

 298 



14 
 

Figure Legends 299 

Fig. 1 Weight bearing in the operated limb as measured using an Accugait force plate. The 300 

results presented are the mean +/- SD of the values for 5 animals per group pre surgery and 301 

2,4,8,12,16 and 20 weeks post surgery. Fig 1A. Weight bearing in animals that had a 302 

microfracture treated chondral defect combined with rhFGF-18 delivered via a collagen 303 

membrane at the point of surgery. There is a significant difference in the weight bearing in 304 

animals that received 32g rhFGF-18 compared to lower concentrations of rhFGF-18 and the 305 

control (0g rhFGF-18) at weeks 2 and 4 post surgery. Fig 1B. Weight bearing in animals 306 

that received 0 or 30g rhFGF18 injected into the medial femoro-tibial joint once a week for 307 

3 weeks at 4, 5 and 6 weeks post-operatively and 16, 17 and 18 weeks post-operatively. 308 

There is no significant difference between the two groups. * = significant difference at this 309 

time point. 310 

 311 

Fig. 2 The effect of rhFGF18 on the total modified ICRS macroscopic score. There is no 312 

statistically significant difference between groups. 313 

 314 

Fig. 3 The effect of rhFGF19 on the stiffness of the repaired cartilage as a percentage of the 315 

contalateral limb. There is no difference between the groups. 316 

 317 

 Fig. 4 The effect of rhFGF18 on the Modified O’Driscoll score. There was a statistically 318 

significant increase in modified O’Driscoll score in the animals treated with intra-articular 319 

30g rhFGF18 (*) and those treated with 6.4g and 32g rhFGF-18 (*) applied on a collagen 320 

membrane at the point of surgery compared to controls and lower doses of rhFGF-18. 321 

 322 
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Fig. 5. Safranin O stained sections. A Control – membrane + 0g rhFGF18.  No hyaline 323 

cartilage is present at the lesion site. B Membrane + 32g rhGFG-18 applied via a membrane 324 

showing good hyaline cartilage production at the lesion site. C Intra-articular 30g rhFGF-18 325 

showing good hyaline cartilage production similar to that seen in B. 326 

 327 

Figure 6. Immunohistochemistry.  Collagen was visualised using a DAB (brown) stain. Figs. 328 

6a and b 2 cycles rhFGF18 at 6 months. Immunohistochemistry of type I and type II 329 

collagen Figs. 6c and d 32g rhGFG applied on bilayer membrane at 6 months. 330 

Immunohistochemistry of type I and type II collagen. In both treatments the repair cartilage is 331 

strongly positive for type II collagen and weakly positive for type I collagen indicating that 332 

the cartilage is similar to hyaline cartilage. 333 

 334 
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