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Introduction.

Let C be. the catagory of pairs (X,BX) where X is a C.W.
complex and BX is a C.W. £ BX ¥ X, A morphism
between objects (X,BX) = (Y,BY) is a continuous function

complex with

BX =» BY.We will assume that X is simply connected and take

X to be a homotopy class
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p
prime D .
Theorem R, If (%) = 1 for all but a finite number of primes p , then

-

Chapter 1. G2 and F, o

The work presented here complements [9] in that we show that any
map BG - BG, G = G2, F4 s 1s determined in cohomology by one integer.
The proofs are by explicit computation.

G, and F are respectively the exceptional compact simple

2 L
(comected, simply-connected) Lie groups of rank 2 and 4. [See 11 page 8.,
and 19, page 268].

Beflore we give our cohomological description of maps BG2 —>BG2 ’

we list some results which will be used later on,

Theorem D, (Dirichlet)s Let a,b be relatively prime integers. Then
the set f{a + nb‘n = 1,2 ,eee} contains an infinite number of prime integers.
For the proof, see [18, vol. IL, page 217].

Let (h) denote the Legendre symbol for an integer b and a

b' is a square,
For the proof, see [18, vol. I, page 75] , or [6] .
Next a combinatorial result,
In the graded polynomial ring Z[t1 secey tn], let the ti have

equal dimension and consider the power sums Sk = zg: t? o

1<isn

Let x5 be the i=-th elementary symmetric function of the ?J °




If E= (e1 seeey en) is a sequence of non-negative integers,

e,

7 . B i
define lE‘ = Xe,, 2| = Elei, x =1 X7 and E! =1 eiL

where both sums and products are over 1 < i < n o Then, from

[10, page 5], we find

Theorem S, S, = Z: @ﬂwl+kﬂqm_1n]£m;‘

] = x

This expresses Sk as a polynomial with integer coefficients in
the Xy e Note that every monomial which could occur in .Sk for
dimensional reasons, does occur with non-zero coefficient.v We will
mostly use the Theorem reduced modulo a large prime p , and the form of
k  will be such that all these coefficients remain non-zero when reduced
mod P o

Now let G be a compact, connected, simply connected simple
Lie group, and +(G) +the set of primes for which H*(G,Z) has torsion,
Thus +(6) € {2,3,5}, see [20,21] « Let R be any subring of the
rationals in which one can invert each of the primes in t(G). Let
i :Z —-R be the inclusion.

It is well known that BG is 3-connected and H#(BG) is isomorphic
to 2, [20] + Hence by the Hurewicz theorem, HA(BG,Z) 27, Also
by the universal coefficient theorem [12, page 243] , Hh(BG,Z) ~ 7 and
H4(BG,R) = Hom(Z,R) X R , as abelian groups.

Let x be a generator of HA(BG,Z) s as a Z-module,

Let x be a generator of HA(BG,R) as an R-module,




®
Lemma 1.1, Let £ : BG - BG be'\continuous function and f£*x = ax .
Then a is an integer.
Proof'e Let f*x =DbX . Then b is an integer.

Consider the exact sequence 0 -2 =R -»R/Z -0 and the

corresponding coefficient sequence [12, page 239]:

0 —>H4(Bs,z):E§H4(BG,R) — HH(BG,R/Z) = oue o
We deduce that i*;c = 00X, o + 0 and since i* is natural,
aax = boqc o Hence a = b = integer,
Finally let T C G be a maximal torus, and J : BT - BG the
inclusion. The Weyl group of G acts on H*(BT,R) o Let IG De
the subring of Weyl group invariants, Then we easily deduce the following

from Theorem 20.3 , page 67 of [L4] &

Theorem W +  There is a monomorphism j* : H (BG,R) —H'(BT,R) , with

image IG ,
One can paraphrase this informally as ' (BG,R) is the subring of

eyl group invariants in H' (BT,R)",

Section 1 ¢ G2 o

From [11, page 84] we find that we can choose a maximal torus
T C G, with H'(BT,2) = 2[t(1),t(2),t(3)]/I where dim t(i) = 2
and I is the ideal generated by +t(1) + t(2) + t(3) .

We use Theorem W to describe H© (BGZ) s S0 since \:(Gz\‘% ilf g

let R = Z[%] o




The Weyl group of G2 acts by permuting the t(i) and. the
gransformation (t(1), €(2), t(3)) - = (+(1), t(2), t(3)) « TLet y(i)
1 2
7 v(1)
y(1)

1l

be the ith elementary symmetric function in t(j)2 o Then y(2)

i

in H'(BT, R) and H *(BGZ,R) is the subring generated by x(2)
and x(6) = y(3) .
For more information on G, , see [5, section 18] .

With this notation, we will prove the following :

Proposition 1.2. For any map £ : BG2 —>BG2 , there is an integer k

such that either
(1) £%%(2) = ¥x(2) , £°%(6) = k°x(6)

or (11) £*x(2)

o

3k2x(2) , £x(6) = —27k6x(6) + %kéx(2)3

Notice that in (41) £7*x(2) =(3c2)%x(2), £'*x(6) = (32)°x(6) .

We make a comment on whether a map satisfying (ii) can actually exist.
In [17, page 5.95], Sullivan conjectures that if p is a prime

there does not exist a map g : BSU(p) — BSU(p) with

gt = ¢ K0(msu(p)) —» XKO(BSU(D)) .

Explanation. Here Ko is the complex K-theory functor and ¢P the
cohomology operation defined in : J. F. Adams, "Vector fields on spheres"
Ann, Maths. 1962, vol. 75 The induced map in k¥ is denoted gL ;
SU(p) denotes the special unitary group.

A generalization of Sullivan's conjecture is the following:

Let W be the Weyl group of G , with G as above,. Then if p

divides the order of W , +there does not exist a map g : BG — BG with




]
gt = 42 : x08e) ~x°(za) .
Recall from [11, page 84] that the Weyl group of G, has order 12 ,

By-using [9] 5 we see that
£ o0 £ = ¢5k2 : KO(BGZ) —>KO(BG2) . (%) .

Thus the generalization of Sullivan's conjecture is relevant to the
existence of a map with the property (%) .

We will prove 1.2 by writing down the condition that £*  commutes
with P; the Steenrod reduced power [15] .

We therefore need to compute the action of P1 = P; on
H*(BGz, Zp) s P an odd prinme, By abuse of mnotation, we Will also denote
the generators of H*(BGz, Zp) by x(2), x(6) .

Let Sj = zz: t(i)2j o By Theorem S , +this can be expressed as

1<i<3

a polynomial with integer coefficients in the y(i), hence also as a polynomial

in x(2), x(6) with coefficients in R .

B e 1.3, (1) P1Sj =25 8(1) 2P (11) Plx(6) = 22(6)84 (1) °

i

Proof Clear from the fact that P1t(i) = t(i)®? and the Cartan formula

P1xy = xP1y + yP1x s see [15] .

We use this to identify some of the monomials in P1x(i) $

COI‘. 10)-l-o If F = 6t - 1 9 then
(1) 4 P'x(2)

(i1) 4 P'x(6)

3%(6) " + (£2(2t - 1)/W)x(2)°x(6) ¥ 4 ... .
x(6) [((3% = 1) (2t = 1)/1)x(2)%%(6) " + 0uo ] &

1




Proof (i) By theorem S ,
30T = G+ #20 + Or ) T 56 @y () P L

1<i<3

3x(6)Jc + it2(2t - 1)x(2)3x(6)t—1 + son s

1

1
since y(2) Zy(1)2 B
(i) now follows since P1x(1) = 3 fﬂt(i)z = 2 Et(i)p+1 .

(ii) Similar .

Lemma 1.5 If p=6t+1, then P1x(6) = ix(6)t+1 + seey 1 + 0

mOdP °

1}

Proof' From 1.3 (ii) P1x(6) 2x(6)83t

2x(6) Gy(3)® + .u0) = 6x(6)™ 4 ... .

]

To start the proof of - Prop. 1.2, note that for dimensional reasons,
£°%(2) = a(2)x(2) , £x(6) = a(6)x(6) + b(6)x(2)> .

Our task is to compute a(2), a(6) and b(6) » In the course of the
proof's of lemma 1,6 and lemma 1.8 » we show that a(2) =0 => £ = 0 o
5
)

Lemma 1,6, a(6) = ja(2)’ , ;= +1.

1p x(2) = f*P1x(2) s with p =6t -1, equate coefficients

Proof In P
t ] e 1 : % .
of x(6)" o Using the computation of P x(2) in 1.4, this gives

a.(6)JC = a(2) mod p , for infinitely many p , (by theorem D) ,

Thus a(2) = 0 => a(6) = 0 .

If a(2) + 0 , we have, a('6)6t = a(6)2 = a(2)6 mod p , and so




e .

a(6)? = a(2)® and a(6) = + a(2) .

By Lemma 1.1 at the begining of the Chapter, a(2) is an integer.

Lemma, 176 If a(2) =0 then £ =0, If a(2) 0, then
(1) d=1=>b(6) =0 and a(2) = ¥°. for some integer k .

(i1) j = -1 => a(2) = 3k2 s b(6) =% k6 for some integer k . :

Proof’ With p = 6t -1, in P1f*x(2) = f*P1x(2) and f*P1x(6) = P1f*x(6)
respectively, equate coefficients of x(2)3x(6)t—1 and x(2)2x(6)JG g
This gives

1

2
= 7t (2t =1) = ==

(1) a(2)b = 3%(5a(2)”)*"b(6) + va(2)3(ja(2)®)t! ,

(3t =1)(2t = 1) . T

(2) 2.a(2)%(3a(2)°)" = ja(2)%a + 9b(6) , a = 75

Tl

If a(2) =0 s (2) =>b(6) = 0 and Lemma 1.6 => a(6) =0 .

Thus £ =0 ,
Assume henceforth that a(2) $ 0

(i) ©Putting j =1 in (2) and (1) gives, after rearrangement and using

the relation (Eﬁgl ) = a(2)3t"1 .
b

siiye ([E4] - 1),

p

2ba(2)3((5132)- 1) .

9b(6)

1

b(6)

1

b

Hence b(6) = 0 and (Qﬁfl) 2 1, p=6E=1,

Now choose p = 6t + 1 and equate coefficients of x(6)t+1 in

ple* x(6) = f*P1x(6) to get




a®) = a@®™ moayp i, (M) - 4,

p

Hence (2&?1) = 1 for p>3, so a(2)

I
~
°

(ii) Putting j=-1 in (1) and (2) gives, after rearrangement

- 2a(2)%((-0) H(22) 4 1) < w(e)
» a(2?((«)*(2&) + 1) = 9n(6) .

If we use the values of a and b , we see that both these equations become
a(2)3((-1)t(éiil) " 1) = 108 b(6) .

i (3521) = -(-1)Jc for p=6t=-1, then b(6) =0 , But if we

P
¥ 5 s t+1
equate coefficients of x(6)

and X(Z)Bx(6)t respectively in
P1f*x(6) = £*P'x(6) with p =6t +1 , we get
' %

a(6) = a(6)™" 3) ,

a(6)b! bla(g)Ba(6)t 5

1}

Hence =1 =1, contradiction.
So we must have (2122) o (-1)JG with p =6t -1, and
p
a(2)3 = 54b(6) o Therefore a(2) = 3b(2) and b(2)3= 2b(6)

Now (g) = (-1)t if p=6t+ 1, hence

(Eégl) = 1 , p = 6t=1,and from (3) ,
(%}.) = 1 3 P = 6t + 1 °

Thus b(2) = X° fov ons integer k o

Proof of 1,2 Taking j =1 (respe j = =1) in 1.6 and 1.7 shows that

£° has the form given in 1.2 (i) (resp. 1.2 (ii)) .




] £
It is still possible that if a morphism h : H (BG2) - H (BG2) has
the form given in 1,2 (ii) s then h may not commute with P1 for all
large primes p o We will prove in Chapter 4 , Cor 4.12., that such an

h does commute with P1 %

Section 2, F4 .

R A A

We show in this section that in cohomology, maps f BFA.—’BFA ’
fall into two distinct types, just as for G2 o These cohomology
classifications can be best understood in terms of our general conjecture on
maps BG - BH , formulated in Chapter 3 + When G =H = F4 , this

is proved as Corollary 1.22., below., The first step in this is

Theorem 1o8e For any map f : BFA-->BF4 s there is an integer k , such
that either (i) fix=k"x, all xe H“n(BFa) or

% ok 2
(i1) 'z = (&), a1l xe th(BFh) "

Before starting the proof of 1.8 4 we quote the following result

from [9] o

Lemma 1690 [Hubbuck] If A is a polynomial algebra over the mod p
Steenrod algebra, let x € A have dimension 2m ., Then there is a y € A ,
with dimy =29, q+p=-1=tm, t>0, such that if x and y are
members of a basis for the indecomposables, so that the monomials in this basis

form a Zp - basis for A , then,

P1y = wct+ooo, a+0 mOdpo




(O

To begin the proof of 1.8, we need to describe H*(BFA) o First
note that since . h(FA‘ =%, 38 4 » we will take
coefficients in Z[%,~%] = R,

Let T C F4 be a maximal torus., Then
1 (Br, R) 2 R[t(1), t(2), t(3), t(4)] and H*(BFA, R) is the subring of
Weyl group invariants, T will be chosen as in [5, page 534] .

Let y(i) be the i th elementary symmetric function in the t(i)2 s
then the generators of H*(BFA) are polynomials in the y(i) , from the
form of the Weyl group.

We can choose generators x(i) as follows:
x(1) =y(1) ,  x03) =y(3) - Ty(y(2) ,

x(h) = y() + F55(% - 3 y(DF(2) ,

and.

x(6) = y(2y(4) - g y((v(2% = Zy(1)%(2) + Z y)* ),

The first three generators are taken from [5, section 19] .
To see that x(6) is invariant under the Weyl group, we know from [5] ,
that we have to check that =x(6) is invariant under
(i) permutations of the +(i) and sign changes t(i) - = 1) 4
(i1) the map +(i) - (1) = 4 (t(1) + £(2) + £(3) + t(4)) .

Now x(6) is clearly invariant under (i) , whilst under (ii)

y() 5 30) 5 3(2) > 5 (3w(1® - 4y(2) + 24 )

y@) - m(by(2) + 8% - y(1)Z)?, X = ()6(26(3)60) .




Thus one checks that x(6) is invariant under (ii) .
To prove 1.8, we will compute £* in terms of these generators., Ior

dimeénsional reasons, £* has the following form

P*x(1) = a(1)x(1) ,  £x(3) = a(3)x(3) + b(3)x(1)’
£'(4) = a()x() + b= + c(B)x(1)x(3) .
W) = 2(6)2(6) + b{6)=(1)® + 0 (6)x(3)? + a(6)=x(t)x(1)? + e(6)x(3)x(1)>

We will assume a(1) + 0 , otherwise it follows from the arguments
below that £ =0 .
Using Lemma 1.1, we see that a(1) is an integer.

Our task now is to compute the coefficients in f*.

Lemma 1,10 a(i) = o;(i)a(1):L 9 a(i) = # 1 &
Proof Choose p =12t =1 , and in P1f*x(1) = f*P1x(ﬁ) s equate

coefficients of x(6)'t :
P1x(1) = px(6)t + ees s B0, Dby Lemma 1,9 , and

Ple*x(1)

a(1) (px(6) + vu0 )

1]

£*B12(1) =' Bla(6)%(6) + ooe)® + vee o

Hence a(1) = a(6)t mod p , 80 a(6)2 = a(1)12 , since the

congruence is true for infinitely many p . Similarly a(4)2 = a(1)8 o

Next choose p =8t + 3 , and equate coefficients of x(8)t+1

P1f*x(3) = f*P1x(3) s, to get a(3) = a(@)t+1 mod p , for infinitely
1.( 5=
many p o Hence a(j) = a(ll_)t+1a(1 )lkt*’h = a(l,_)t+1a(1)3a(1 )F(P 1) o

Thus a(3)2 = a(1)6 .

u
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Lemma 1011,

{91%1) = ali)® mod. p p = 8t -1 (1)

= o(3)a()® = 8t -5 (2)

= afiy¥? = 8t -7 (3)

= @l)als)® = 8t - 11 (%)

= u(6)" = 12t -1 (5)

= a(3)a(6)" = 12t - 5 (6)

= a(t)a(6)® = 986 = 7 -

- e = 12t = 11 (8)

Proof If p=12t -1 , we know from the proof of 1,10 that

a(1) = a(6)t mod p ; also a(6) = a(6)a(1)6 o Hence a(6)ta(1)6t =a(1) mod p
L(p=
and since (Ei%l) = a(1)“(p 1) s (5) is proved , The rest of relations

are similarly derived.,

Lemma 1612, alk) =1,  a(6) = a(3) .
Proof Put t=4s+2 din (5) and t=6s+3 in (1) o This gives

(Eégl) = 1 = a(4)68+3 mod p , p=2L48s+ 23, Hence oa(f) =1 ,
In (5) choose t=1L4s +1, andin (2), t=6s+ 2 , This gives
a(6) = a(3) mod p, p=2L48s + 11 « Hence a(6) = a(3) »

We can now prove 1.8,

_



I3

Proof of 1.8,

(1) Ir o(3) =1 , then all the a(i) are 1 s and using the techniques

of [9] one can easily prove 1.8 (i) o

(ii) Assume that a(3) = =1 , Lemma 1.11 then gives

(Eill> = mod p p = 8t =1
P
= =1 p = 8t -5
= 1 p = 8t -7
= -1 p = 8t =11

To"solve" this system for a(1) , we need

Lemma, 1613 If a(3) ==-1, then a(1) = ok for some integer k o
; a(1)
Proof We have ( P ) = 1 (resps =1) for p = 1, 7 (resp. 3, 5)

mod 8 , Hence (gééll ) = (%) (Eéll) = 1 for all primes p > 3 ,

This implies that 2a(i) = j2 for some even j . Hence
a(1) = 2(% j)2 = 2k2 o The proof of 1.8 (ii) can now be completed using
[9] by noting that f£'f x(i) =(2k2)2ix(i) , mod decomposables,

To get a better idea of the form of £%  in this case, we need
detailed computations of the action of ' on H*(BFA) 0

2
Proposition 1.o1l., If a(3) = =1, then a(1) = 2k° , and

(1) o) =-u", a(6) =4ok'?,  o(6) = 22
-3
8

- Lhk12 9 b(Ll") = ’T1§k °

1

(ii)  b(3)
(iii) e(6)

1}

—



—

This is the main computation of the section,

Lemma 1615 If p=8t+ 3, then

plx(1) = 2(=1)%(26 + 1) [(6+1)x(1) %) ¥ = x(3) %) " -2x(6)x() ¥ 4 vou 7.

Proof P1x(1) = 2% t(i)4t+2 = a polynomial in the y(i) by Theorem S .
2
Yoy(1)® 18 2(-1)%(2t + 1)(t +1) end

y(h)ty(1)2 can come only from x(1)2x(4)t .

The coefficient of y(L

The coefficient of y(3)2y(4)t-1 is -2(-1)t(2t + 1)t and
y(3)2y(4)t-1 can come only from x(})zx(h)t—1 .
The coefficient of y(2)'y(4)t is -2(-1)t(ht + 2) and can come only from

x(6)x(s) ¥ .

Lemma 10166 If p=8t -1, then

Plx(1) = 8(=1)%(x()® - t%(1)x(3)x() ¥ & .00)

Proof As in 1.15.

Lemma, 10176 If p=8t+5, and a= % (t + 1)(t + 2) then

P'x(1) = 2(~1) "t + 3) [0 x(1)7x(1)® + x(3)x()® = (6+2)x(1)2(6)x() ¥ + 00 1.

Proof’ As in 1015 , but one has to be careful to note that the term
y(’l)y(Z)y(l,,)t occurs in x(})x(A)t and in x(1)x(6)x(4}t-1 , when
computing the coefficient of x(’l)x(6)x(4)bmll 5

Armed with these computations, we can prove 1,14 (i) .




. =

Proposition 1.18. c(y) = - 4k8 , da(6) = 30k 12 , ¢c(6) = ohe 12 .
Proof To find c(4) , equate coefficients of }((1)3{(3)}((2;4)@'1 in

P'e*x(1) = £*P'x(1) , with p =8t -1 in 1.16 :

a(1)t” = to(Wa@)®™ - tPa(1)a(3)a()* .
So, =a(1)a(l)t = a(1)(c(4) - ta(1)a(3)) , since .:—3,(1)#46_1 =1, mod p,
and hence —16tk8 =c(4) + 16% k8 .
... c(y) = - 4k8 s, sSince 8t =1 mod p o
To find d(6) and c(6) , using 1.15, with p = 8t + 3 , equate

b1

coefficients of x(1)2x(4)t and X(5)2x(4 , respectively in

P'e*x(1) = £'P'x(1) .

8o, for example, for d(6) ,

(t + 1)<':L(1)2<':1(’I)4JC - 2d(6)a(1)4t_lF (t +1)a(1) ,

]

£(t + 1)a(1)6 - 2d(6)) (t + 1)a(1)6 , since

S
Il
1
-

-]

N
Lol [\®

)6 = noet2 |

Therefore d(6) = (t + 1)a(4

Proof of 1,14 (ii)

In P1f*x(1) = f*P1x(1) s with p =8t + 5, using 1.17.,

equate coefficients of X(1)3x(4)t s

2a()(t+1)(5+2) = 2(t+1)(6+2)a(1)?a()® + b(3)a() "

- (6 + Da(e)a()a@)®" .

. 2
Now rote that (5) = =1, a(6) = 40k12 s from 1,18 o Hence we get

. R RRRRBRRRRESSBRBRRRRRERRRRRRRRR=.
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For 1014 (iii) we need

Lemmna 119
(i) 16%b(0) + c(Wb(3) =0 ,
(11) a(6)o(h) - 2a(1)*e(6) - wkc(6)b(3) = 0 .

Proof Using [9] 4 we know that £ %)) = a(1)8x(4) and
fkka(6) - a(1)12x(6) . So to prove (ii) for instance, we equate coefficients

of x(1)3x(3) in the latter equation :
2(6)6(6) - 20(6)b(3)a(1)” + a(6)e(w)a(1)? - a(1)%(6) = 0 , which simplifies

to 1.19 (i1) «

Proof of 1014 (iii) Substitute the values of c¢(4), b(3), a(6) and c(6)

in 1419 (1) and 1.19 (ii) . This gives b(4) and e(6) .
Notice now that in f* only b(6) remains to be determined. To finish
the determination of f*, we change tack.

Def'ine a ring homomorphism

fg : H(BT) - H'(BT) as follows :
£7(6(1), +(2), 5(3), $(4)) = k(6(1) + £(2), +(1) - £(2), £(3) - 6(4), $(3) + (),

with k an integer.

Lemma 1020,

(i) fg commutes with P1 o

(ii) fg H*(BFh) C H*(BFA) o




Proof gi} Clear,

(ii) By obvious computation,

£ y(1) = 2k°y(1)
y(2) = K17 - £(2)D2 +(t(3)? - 11?2 + 1EM2 + 12D GG)Z + 1(1)D)]

£5 5(3) = 28067 - 4@2H2(3)? + 402 + (612 + +(2))

| (+(3)2 - $(1)3)?] .
£ 31 = 10012 - 622 (5(3)2 - £(1)?) 2.

If one computes fg x(i) , one finds

% x(3) = - 22k6x(3) - % k6x(1)3

x(t) = 10(2%0) = 1x(1)x(3) - x(1)*)  ena

£ x(6) = K'2(-2%(6) - 3 x(1) 4 24 x(3)2 + 40 x(1)%(4) - & x(1)%x(3)) .

o

sof%H%ml)CH%mQ "

Wle use this lemma to complete our determination of f . o

Lemma 1621 In case (ii) of Theorem 1.11, £* has b(6) = - % k= s
Proof Note that (£* - fg) x(1) =0, 146 and
(£ - £)x(6) = (b(6) + %lg) x(1)° .
Also £p1 x(1) = P1E*x(1) = 2%%(1)
f§P1x(1) - P1fg x(1) = 2k%x(1) .

Hence f*P1 x(1) = ng1 x(1) (%)

IIi.IIIIIIIIIIIIIIIIIIIIIlIllllllllllllllllllllllll




For p=8t+ 3, Ikook at the computation of P1x(1) in 1415 e

Using that, equate coefficients of x(1)6x(4)t-1 in (%) o From our

e

previous determinations of fo and £ s we see that this leads to

- (6)a) ™ w p= - 23K 4 g,

where f does not involve b(6)

. b(6>=—'j9'k12°

This lemma enables us to give a cohomological description of maps

£ BFh_ - BFA_ s Thamely

Cor. 10,22, For any map f : BF4 ->BF4 s ‘there exists

fg : H'(BT) - H(BT)
such that
£ e £
o= folH (BFA) .
Proof In Theorem 1.8,, we divided the maps £ into two cases, We find

an fg for each of these cases:

(i) Clearly we take fz(t(1), £(2), t(3), (1)) = x(£(1), +(2), ©(3), t(x)) .

(ii) Agein from Lemma 1.20, 1.21, we find that we can take

£ (6(1), 5(2), 5(3), £ = k(6(1) + £(2), (1) = £(2), 6(3) = (), 6(3) + +(4)) .




Chapter 2 Maps BSp(1) - BH .

Let H be a simple, connected, simply connected, compact Lie group,
and f : BSp(1) - BH a continuous function. We abbreviate "continuous
function" to "map" . In this chapter we give a cohomological classification
of the maps f o Our method requires that we deal with each group H
individually and with specific generators for H*(BH) o We will give the
details of the classification when H = Sp(n), SU(n), Spin (n) or Gy

For a precise statement of the classificotion for H = Sp(n), we
need more notation, Let T C Sp(n) %: jfﬁgiimal torus of the symplectic
group Sp(n) « Then H'(BT) ZZ[t(1) ,eee, t(n)] since T has rank n ,
and from [11, page 82] we deduce that the Weyl group will act by permuting
the t(i) and changing signs. Hence by Theorem W of chapter 1 5
H*BSp(n)) = Z[x(1) ,ee., x(n)], as a graded ring, where =x(i) is the
ith elementary symmetric function in the t(i)2 o Notice that since
the dimension of (i) is 2, dim x(i) = 4i .

From above H*(BSp(1)) ~Z[x(1)] + Put x=x(1) .

Abbreviation ej(Z(i)) = jth elementary symmetric function of the variables
7z(i) . Put ej(Z(i)) = 8, when the 2(i) are understood.

So for example, x(j) = ej(t(i)z) .

Let f : BSp(1) - BSp(n) be amep o If ¥ H*(BSp(n)) - B (BSP(1))
is the induced homomorphism, assume that there exist integers m(1) ,¢.., m(n),
such that f£™*%(j) = a(j)xj , a(j) = ej(m(i)z) .

Call {m(1) ,eee, m(n)}, the degree of f ,

The main result of Section 1 is
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Theorem 2.1, Any map f : BSp(1) — BSp(n) has a degree.

In Section 3, we will use Sullivan's construction of maps
BSp(1) - BSp(1) to construct a map f : BSp(1) - BSp(n) of degree {m(i)},
where each m(i), i =1 ,eeey n , is 0dd o We also compute the degrees
oF Svme mops induced  feoe . .representations Sp(1) -8p(n) .

In Section 2 we use symplectic K = theory to put mod 2 restrictions
on the possible degrees of maps.

In Section 4 we will give the analogue of 2,1, for H = SU(n), Spin (n)
or G2 . In Chapter 3 we make a conjecture on what the analogue should
be for maps BG — BH , where G 1is any compact, connected simply connected

simple Lie group.

Section 241 Homomorphisms H ™ (BSp(n)) - H*(BSp(1)) .
We need the following result from number theory : "If a polynomial in ene variable
with integer coefficients factors into linear factors modulo every large

prime p then it factors into linear factors over the integers." See [6] .

If the polynomial is of degree 2 , this result is Theorem R from the
¢

intaguction to Chapter 1 .

We will prove Theorem 2,1 by giving necessary and sufficient conditions

: ” #* s . N

for graded ring homomorphisms H (BSp(n)) -»H*(BSp(1)) to commute with P
for all large primes D . The idea behind the proof is that mod large p ,
£* has the stated form when we take coefficients in some extension of ZP o
The naturality of F'  then tells us that £  has the stated form with Zp

coef'ficientse. A use of the above number = theory result knits this mod p

information together to give £™ the stated form overZ o

Theorem 2,1, is a corollary of




Proposition 2,2 A graded ring homomorphism h : H*(BSp(n)) —>H*(BSp(1))

comiites with ¥ for ail large p iff there exist integers m(1) ,e.., m(n),
such that hx(j) = a(j)xj, a(j) = ej(m(i)z) 5
Note The proof of 2.1. follows by taking h = £ .

We prove 2,2 by computing the action of P! on H¥(BSp(n)) and

writing down the condition that h commutes with P1 o

To begin the proof, we introduce some notation.
(1) 8 =y ()% (11) 2s=7p+1 .
1<ign

From one of the axioms for the Steenrod algebra, we have P1t(i) = t(i)p

since dim t(i) =2 o There is also the Cartan formula : P1uv = uP1v + vP1u )

for w,v & H(BSp(n))e Thus %P1t(i)2 = t(i)p+1 "

. T
Proposition 2.3 (i) 4p Sk = kss+k-1
.o _1_1 . - _j"1 s s
(i1) P'x(1) = E: (=) x(@ = 9)8, 5,4
1<j<i

> (1) V%1 + 3 - 1)8,_3 where x(0)=1.

1< jsn=i+1

Proof’ (i) The Cartan formula and linearity give
p! > t(1)% = % > (1) Z1+P
1<isn

o i g 1
This is equivalent to 4P'S, = kS g o

(ii) The Newton relation

Sr - x(’l)Sr_1 +eoet (-1)ix(i)Sr_i +ooet (-1)rrx(r) =0 S0 =n , (244) 9

shows that the two given expressions are equivalent., We prove the first

one by induction on i , It is true for i =1, since x(1) = S1 o
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Assume that it is true for i . Then

#Hm? vt 107 = Y 7 e 8Dt + 1)
1<J<iH

Hence,

x(i)SS

#lx 1)+ DY 8)? e 80P Ll w07,
j

where the first summation is over all sets {k

cj} with 1 sk < eee <k, 1o

1
So by the induction hypothesis,

()8, = ¥lx(@+1) + Y (-1)3 N x(1 - 98,5 -

1€ J%d ‘
This completes the induction,
If h is as in Proposition 2.2., then for dimensional reasons, ‘
hx(i) = b(i)xi s 1=1 5000, n , where the b(i) are integers and
X € HA(BSP(1),Z) is the generator.

If h commutes with P p

Phx(i) = hP'x(i) , 4 =1 yees, n, (2.5) «
We lose no generality if we assume that b(n) + 0 4, for otherwise it
is clear from the proof of 2,2, below, that we can work with the largest m
such that‘ b(m) + 0 4, and we would then be dealing essentially with a
homomorphism H*(BSp(m)) ->HxXBSp(1)) °
Assume henceforth that p > max {[b(n)|,2,n1} o

When i =n, by using 2.3 , we see that (2.5) becomes,

nb(n)anS_ = b(n)xnhSS

1 -1

Hence  hS = nx 5
s=1
Recall from Chapter 1 that Sk is a polynomial,with integer

coefficients,in the x(i) o By abuse of notation we also denote
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Sk(b(1) seees b(n)) by Sk e Then with this notation, we have proved that

Souf = B
Lemma 2.6, Sq g4k = S, mod p, Sy =mn.
Proof We have proved the lemma for k =0 Assume as an induction
hypothesis that Ss-1+j = Sj for 0< js<sko
Then
hx(k + 1) = bk + )2,
Hence from 2.3, and 2.5.,
k+s
(x + )bk + 1)x = h(x(k)Ss - x(k - 1)sS+1 e
Using the induction hypothesis we get
- k-1 k
x + bk +1) = b(k)s1 - bk - 1)s2 + eoe + (=1) b(1)sk + (=1) Sk

However, we have the "Newton" relation, (2.4) :
Sipq = DS Fouet (=) % + )bk +1) =0 .
The lemma follows.

We have to "solve" the system of equations S__, ., =8  for b(i) »
For this purpose, choose a finite extension K of ZP in which

2% = b wevwr ()B@EH wis (()(@) =0 (2.7)

has 2n roots, namely let KX be the splitting field of (2.7) over Zp N

In particular,

2% = b(1)2 weeer (+1)(n)  (2.8) ,

is a product of linear factors in K[z] , if we consider b(i) as being
reduced mod P o

If the roots of (2.8) are r(i), i =1 se.e, n , and those of (2.7)

m(j), J =1 seeey 2n , then by renumbering if necessary, we can arrange that

.
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r(i) = m(i)2 s 1 =1 yeeey n o« Then we have

b(3) = e;m(®)%) , m3) €K .

We show that (2.6) => m(i) € Zp .

Proposition 2.9, For each i =1 ,eee, n, m(i) e zp .
Proof Our assumption that p > ,b(n)l ensures that m(i) $ 0 for

i =1 5eees N o By elementary Galois theory, [see for instance : "Algebra"

by S. Lang, page 205] we know that
m(i) € Zp iff m(i)p_1 =1

put m(1)® ' =1+ u@), uw(@) eK. Then

> afa) TP o > n(1)7FE) +1) , k=0 yeeey (n=1) «  (210)

1<ign
But (2.6) says that ZE: m(i)2k+p_1 = Z{: m(i)2k . Hence (2.,10) gives
ZZ: m(i)2ku(i) =20, k=0 yeeey (n=-1) . (2,11)
1<ign
Lemma 2,12 For each i =1 yeee, n, u(i) =0,
Proof By induction on n . If n =1, (2.11) becomes

m(1)2ku(1> =0, k=0, Hence u(1) =0.
As an induction hypothesis assume that

{ Z m(i) 2kwi

1<ign=1

n

0, k=0 ,0ee, 0=2), n@)P" =1 4w, w, €K }

1

O fOI‘ i=1 secey (n-1) o

implies that Wy




25

Treat (2,11) as a system of linear equations for u(i) » If one of
the u(i) dis zero, we use the induction hypothesis to prove that the
remaining u(i) are also 0 .
Assume therefore that no u(i) is 0 o
For a fixed n , consider the following statement:
fat least r of the m(i)2 are equal} . (%) This(%) is true for r =1
Assume (*) true for r . Without loss of generality, we can in fact
assume that the last r of the m(i)2 are equal: m(n - r + 1)2 2 sos B m(n)2 o
Now put v = ru(n) and vy o= u(j), j<n-r, [ This is where
we need the assumption that p > n!
Note that m(1)% = m(3)% => m(1)? = n(5)P1 , nence u(i) = u(jy) ,

and so we have u(n = r + 1) =u(n =r + 2) = 4ee = u(n) .

Hence (2,11) gives

ZE: m(:'L)ka:.L

1<igsn=-r+1

O,k:O,..-,(n—r).

1}

Since not all the vj are zero, we must have det A =0 , where

Aij = m(i)2J s and this is a Vandermonde determinant:

dget & =[] (@()? - n(5)%) =0 .

i<
Hence there exist distinct i and j with m(i)2 = m(j)2 s SO
that (r + 1) of the m(i)2 are equal o Hence by induction
m(1)2 = m(2)2 = g B m(n)2 , consequently u(1) = ee. = u(n) , which

implies that nou(1) =0 ,» 5o all the u(i) are 0 .

This completes the proof of 2,12., hence of 2,9,




Theorem 2,135, The polynomial (2.7) factors into linear factors over

the integers.

Proof’ Proposition 2,9, tells us that (2.7) factors into linear factors
mod p , for all large p o Hence 2,15 follows from the number theory |

result mentioned at the begining of the section: see [6, page 22 9 ] o

Proof of Proposition 2,2 From 2,13 we know that given an h , there

are integers m(i) such that

; Y ) : 2
hx(j) = a(3)x?, a(j) = e (m(1)%) .
Conversely, it is obvious from (2.6) that such a homomorphism commutes

with P1 for all odd primes p

Section 2,2, Homomorphisms  KSp(BSp(n)) — KSp(BSp(1)) .

Let £ : BSp(1) —BSp(n) be a map o Then £ : H*(BSp(n)) - H*(BSp(1))
must have the form descvibed in Proposition 2.2,

Recall the ¢k operations in complex K = theory KUO(X) o The fact ;
that f" : KUO(BSp(n)) - KUO(BSp(1)) must commute with ¢k for all k , |
givesno further restrictions on the possible form of f% s but since we
shall not use this result, we omit the proof

To obtain further information on the integers m (i) , we use the
representation theory of Sp(n) .

First we describe KUO(BSp(n)) "

Let T C Sp(n) berhe maximal torus. Then KUO(BT) 2Z[[s(1) yeees s(n)]1],

see [2, theorem 4,8] , and KUO(BSp(n)) is isomorphic to the subring of Weyl
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group invariants, [2, Theorem 4.8, and Theorem L..] .

Put Z(i) =1 + s(i) so that Z(i) is the canonical (virtual) line
bundle over BS1 s Where S1 is the group of complex numbers of unit
modulus. The action of the Weyl group of Sp(n) is to permute the Z(i)

and to invert: 4(i) —>Z(i)—1 « Hence

x0(BSp(n)) 2 Z[[7(1) seees y@) 115 3(3) = 5(2Q) + 2()7 - 2) .

A1l this follows from the Atiyah-Hirzebruch results in [2] relating

| the complex representation ring, R(G), of a compact connected Lie group G
0

| to KU (BG) o

KUO(BSp(1) =~ Z[[y(1)]] from above + Put y =y(1)

Let Ch 3 KUO( ) —aI]: H2m( ,Q) be the Chern character, [2, section 1.10],

m

and let Ch be the mth component . Ch is a natural ring homomorphism .

om
Tf fx(i)] is the set of generators of H™(BSp(n)) defined in

Section 2.1. then Chhiy(i) = x(i) . This is shown for instance in the
‘ proof of 2.17. below. The first non - zero component of chyii),

| Ch : KUO(BSp(n)) —aII: H2m(BSp(n), Q), is ChAiY(i) -

Recall from Proposition 2.2, that f£'%(i) = a(i)x" .

Lemma 201l With the above notation for generators,

‘ . .
oy(i) = a(i)y” + yl+1Y for some Y € KUO(BSp(1)) "

f
Proof Clearly f° has the form

Y, a(i) an integer and Y e XUO(BSp(1)) .

o . i i+
£'y(d) =a(i)y + vy
1 st
By the naturality of Ch , che'y(i) = £Ch y(i) « Equate coefficients

1 5 : <
of x in this equation :

—
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a(i)'xi = £*%(i) = a(:'L)x:’L . Hence a'(i) = a(i) .
Note 2,15. General references for the structure of KUO(BG) are [3] and [2] .
To get restrictions on the m(i), we will need to compute
fgy(1), and for this purpose we describe the relation between R(G) and
KUO(BG) in more detail .,
In [2], page 29, an isomorphism is given: ¢ : ﬁkd) —>KUO(BG) , where
e
ﬁ(;) is the completion of R(G) under the augmentation topology. Again,
in section L4e7e of [2] , there is a monomorphism R(G) —>R(é) and a
monomorphism « : R(G) ->KUO(BG) §
If Sp and U are the "big"  symplectic and unitary groups, the
standard inclusion Sp C U defines a transformation i : KprK ) —)KU*( )
of group valued functors, where KSpﬁY ) is the symplectic K = theory functor.
An element of KUO(Bsp(n)) is called symplectic if it is in the image of i o
Now y(1) dis in the image of a symplectic representation under o s

g ]
and so is symplectic, Consequently f’y(1) is symplectic o Our

restrictions on the m(i) arise from this fact,

Lemma 2,16, The subgroup of symplectic elements in KUO(BSp(1)) is

2i= 21
generated by J‘,y,zyz secey Y * 1, 2y * geee o

Proof Since an element of KUO(BSp(1)) is a (formal) power series in y ,
we have to decide which monomials in y are symplectic,
Since y dis symplectic, so is y21-1 for i>1 . Since y21 is

self conjugate, 2y21 is symplectic. Iinally we observe that y2l is

not symplectic, A proof of this fact can be based on page 144 of [11] o




. )
So if f£'y(1) = :E: a(r)y", «(2r) must be even. We note that
rz1
382
by 2elke, a(1) = a(1) = Z m(i) o
1<isn

Theorem 2¢17 a(r) = 2{: ﬂéil(m(i)zz f ; L ) s where () is the

1<ign

binomial coefficient.

Cor 2,18 zz: Eé%l (m(i) b G = 1 ) is even,

hr =1
1<igsn

Proof’ This is just the condition that a(2r) is even, and puts
2-primary restrictions on the m(i) as we shall see below.

The proof of 2,17 requires the

Proposition 2,19, Theorem 2,17 is true for n =1 i.e.

o) = 2("57%") m= m)

]
Proof We have £ : BSp(1) - BSp(1) with f°y = m2y + zz: a(r)y" o

Now ¢2 : KUO(BSp(1)) —>KUO(BSp(1)) is easily computed, since
¢2Z(i) = Z(i)2 and so ¢2y = Ly + y2 2
. 2,4 ! 2 2 .
The naturality, ¢ fy=1£f"¢y , of ¢ gives
2 2 ; 241 LS L \2
w (y +37) + > ald) (w+y) = My o+ (£%) (%) .
iz2

One can calculate the o(i) inductively by equating coefficients

29

in (%),




i s
We know a priori that f£° = ¢m s so computing the «(r) amounts

to writing 20 + 2™ - 2 as a polynomial in 2 + Z | =2 .

Proof of 2.17. Consider the Ghern character Ch, On KUO(BT) this
S5(1)

can be defined on generators by Ch %(i) = where t(i) is a

. A J
generator of HZ(BT) and et(l) =1 + t(1) + eee + B(1)- + oo "

Je

Since Ch is a ring homomorphism, we can make the following

calculations,
Ch y(1) = Ch Z{: (1) + 2(1)77 - 2)
ZZ: (et(i> + e-t(l) -2), so
1<ign
Sr <\ 2D
Ch y(1) = 2 ZE: (5;)! s Where Sr = 2{: t(1) .
r 1<isn
It is easy to see that fﬂﬁr = A(r)x" where A(r) = ZE: m(i)2r

i
and x e H¥(BSp(1)) 4is the usual generator .

r
Hence f£™ Ch y(1) = 2 ZE: é{g%§7 and.

rz1
t - -
Ch £° y(1) = Zf a(r)(et + e B 2)r where t2 =X .
rz1
From the special case n =1 in 2,19 , we have

5 ifj n(i)2* (%;): _ zz:.gﬁil (m(i) + T - 1) (eF 4 o7t = 2)T

r
- - 2r = 1

for i=1,2 ,oo,no
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r £

o ]
If we combine this with f£¥ Ch y(1) = Ch £°y(1) we get

ey M e Y T RO )y e
r i
- ZE: a(r) (et b &% & 2)" .
Hence alr) = ij: E%%l (m(i)2: i : 1) ‘
1<isn

We now come to exactly what restrictions the condition that «(2r)

must be even puts on the m(i) . First a lemma and definitions .

Lemma 2,20, For any integers m and n , and a prime p let
m = Yj‘ a.pl s n = 5?‘ b.pd be their p=adic expansions with
p A 1 b J

0O<a,, b, sp=1, Then

£t
my _ I [(2i
(n) - | (b.) mod p .
i
Proof’ See [15, page 5] « We need the lemma only for the case p = 2 ,
Definition 2,21, (i) For any integer m , write m = 2%n1 , n'

add and def'ine ﬁ(m) =8 .

(ii) Divide the set {m(1) ,eee, m(n)} dinto disjoint subsets Iys Iy seees
such that if a,b & I_ then p(a) = p(b) = s . ’
(iii) In the factorisation of (2.,8) consider the factor (z - m(f)z)d(i),
d(f) 21 o Assume that IS contains the distinct elements

m(j1) S m(ji) and define Card I_ to be d(j1) + eee + d(ji) .

Note that under this definition, Z{?ard Is =n .,

S

.




(iv) Write C (r) = m(3) (m(i) = 1) "

r 2r =1

o . _om(i)  /m(i) +r
Proposition 2,22, (i) Ci(r) “"ni) + r ( op )

(i1) If B(r) = s and p(m(i)) + s +1, then Ci(2r) is even .

3t

Proof 1) ¢, (x) = m(i) _(m(d) +r-1)% _ 2m(di) (m(i) +2)t

(ii) Note that ﬁ(mn) = ﬁ(m) o+ ﬁ(n) o Hence

p(m(1)) - p(m(i) + 2r)
B(m(i)) - (s + 1) > 0 if B(m(i)) > s + 1

B(m(i)/(m(1) + 2r))

1l

|}

plm(i)) = p(m(i)) > 0 os  es <841
Combining this with (i) gives (ii) .
We can now state what restrictions symplectic K = theory puts on the

m(i) o VWith the above notation,

Theorem 2,23 (1) 1If I, is not empty, then s > 0 implies that
Card I is even .

(ii) Again let s > 0 , and let the elementsof I, for which a( ) is
odd be the first 2t of the m's , [there has to be an even number of
such m's by (i) ] m(1) gioboy m(2t) o Then there exist integers ws

and Ci with Ci =0 or 1 such that

n(2i) = 2°(1 + b, o+ 2@5)

m(2i—1> - 28(1 + )—}-Vfi + 2CIZ(-' ) s fOI‘ i = 1 9geocey t °

r (2r=1)! (m(i)-7r)!  (m(i)+r) (2r)! (m(i)-r)! °




Cor 242k If all the m(i)2 are equal to e say, then
(i) n odd implies that m is odd or zero

(ii) n even implies that a(2r) is even.

Proof' (i) We are given that m € I, for some s3>0 and Card I_ =n ,
If s>0, 2,23 (i) tells us that n is even.

(ii) This is obvious since Ci(2r) = C(2r) , say, and a(2r) = nC(2r) .

Notes (a) When n =1 s part (i) of the corollary has been known for
several years., See "Proceeding of a conference on algebraic topology",
University of Illinois at Chicago circle, 1968, page 293, conjecture 38 o

(b) It is clear from 2,24 (ii) that in Theorem 2.23 (ii) , we cannot

get any information on those m(i) for which d(i) dis even.

(¢) There is a precise formula for C, and w, given below in terms of the
2-adic expansions of the m(i) .

(d) With 2,23, and 2,24., we have a necessary and sufficient condition

for a(2r) to be even,

Proof of 2,23. (i) PFirst, we may assume that the distinct elements

in Is are the first +t' out of m(1), m(2) yasey TAE) o

Write m(i) as

. ‘- u+s ;
mn(i) = ), aiuZ s 8;0=1,8, =0 or 1 and 1 <icx t' , so that
uz0
m(i) € IS °

Let r =214+ b(1)2® + b(2)2*" + ... « Then 2.22. implies that

Cj(2r) is even if m(i¢ L,, and hence 2,18 becomes

zi: a(i)c(2r) = 0 mod 2 .

1gigt?
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Since pB(m(i)/2r) =0 , we see that
Z{‘ d(i)(m(i) + 2r - 1) = 0 med @
i =

From lemma 2,20, we have

(m(i) + 21‘-0) - f (b(J) i a'i,j) mod 2 .

hr - 1 P b(j - 1)

If we choose b(j) =0 for each j , all the binomial coefficients

in the above line become 1 , hence

ZT‘ a(i) = 0 mod 2 ,

i
This proves (i) , since the left hand side is Card I_ o

(ég), Again we assume for the sake of notational simplicity that the

m(i) . are the first 2t out of m(1) yeee, m(n) «

From the proof of (i) , it is clear that the information we have is

\m . B
,24 d(l)aik1 coe aikr =0, r>0, k1 < k2 Z e & kr .
1 1<ig2t

Since we are assuming that the a(i) are odd, this becomes

N

/ aj—.k PP aik =0 mod 2 9 2 < kj' < e0e < kr 9 r:=>1 ™ (**)
1sE;2t % "

Notice that this does mot involve a When t =1, take r =1

g ®

in (%x) to get, a,, = 8y, forall u>1.
. . Y U+ 5 B
Define W= ) a1u2 , and C1 = 84 02 = 8gy and we have
uz2

S S
m, = 2°(1 + 26, + ), my = 2 (1 4 2C, + 4w1) .

In general, to solve the system (#%), we need the following!

-
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Lemma ,
Consider the following system of equations over Z2 :

Z a. cee . =0 (**) 2 <k, < see < kI' s 21 4

i,k i,k 1
1¢ic2t | &

This system is satisfied iff the a s are equal in pairs di.e., for

each i, 1 < i< 2t, there is an i' , i' 4 i, such that

Proof’ (i)i Obviously, if a; the system is satisfied,

kT vk e
(ii). We solve (%) by induction on t . The system has been solved
L when t =1 o

; Assume that the solution has the stated form for systems,

T ] — "
z: a ik, *°° a ik 0, thet, 2% k1 < eoe < kr .
1<i<2t" ! d

If in (%) the a's are all O or all 1 , we are finished.

Assume therefore that not all the a

y f'or instance, are equal ,
1’2 9 ]

Without loss of generality, we can assume in fact that

8 =

1,2 = o = a2q,2 =1 5 a2Q+1’2 =0 = ¢00 = a2t,2 =0, for some q < t=1,

In (%) if we take k, =2, we get

—
2. %ok

| 1<i<2q

ocoe ai,k =0, 3Skz<ooc<kro
é T

By the induction hypothesis, for each i , there is an 1i', + S
with 1 < i, i' € 29 , such that

a for all k = 3% o

o B Beg on 0§
ik itk

-
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Putting this information into (%) reduces the system to,

eoo . = < coe k i i i
zz: ai,k al’k 0, 3=« k2 < <k and again by the induction

2q+1<is2t .

hypothesis applied to this system, we get: for each i , there is an

it, 4, 2g+1<i,i' <2t such that

ai,k = ai',k for each k 2 3 .

So finally, for each i , there is an i' , 1 <1, 1i' <2%,
such that a. , = a., for all k > 2 o This completes the proof of the
i,k 1tk

lemma o

To complete the proof of 2.23 (ii), using the lemma just proved, we

can renumber the m(i) so that for each i, 1 <is<t,

a for all k = 2 .

2i,k ~ 2241,k

We can define Ci to be a5y 1<1i<2t and

Wy to be > azj_1’u2u+s YTy

uz2
Note It is easy to see that
o (m il 1) = 2m2(m2 N § P (m2 - (r - 1)2)/(2r)% , so we don't
r 2r =1

need to worry about the signs of the m(i)

Section 243 Construction of maps BSp(1) - BSp(n) .

In this section we realise geometrically those maps whose degrees
contain only odd integers, and also compute the degrees of seme maps "

induced From .. representations. TFirst, some notation.

-
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Let H denote the quaternions and Mn(H) the ring of n x n matrices,
withven’cries in H . If Ae Mn(H) denote by A +the quaternion conjugate
ie€e (K’)ij = Kij s Where the second bar denotes quaternion conjugation,
With this notation, Sp(n) = {A e Mn04)|.AtK =TI}, where I is the
n x n identity matrix, and At the traﬁpose of A .

Let T C Sp(n) be a quaternionic torus i.es

T={A€ Mn(H)]Aij =0 4493, As s Kii =1}, so that

T = 8p(1) X eeo x Sp(1) , n factors .

Theorem 2425, If m(1) yeee, m(n)} is a sequence of odd integers,

there is a map f : BSp(1) — BSp(n) of degree {m(1) seee, m(n)},

Proof Let f£(m) : BSp(1) - BSp(1) be a map of odd degree m (m2 in
Sulliven's sense) as constructed in [17, Corollary 5.10].
By [14], BT o BSp(1) X ese x BSp(1) o Hence we can define

| 1’_‘{ = 1;_[ f(m(i)) : BT - BT +to be the cartesian product, |
 gisn
Define f : BSp(1) — BSp(n) +to be the composite,
A I Bi . : .
BSp(1) S BT BT = BSp(n) s where A 1is the diagonal and i the
. .. the inclusion T - Sp(n) »
It is clear that f has degree [m(1) seee, m(n)}
We now come to maps induced, by Lie group homomorphisms,
Sp(1) »8p(n) , in cohomology .

The only Lie group maps Sp(1) —» 8p(1) are isomorphisms,cv consrants.

To describe . representations of Sp(n) , it is useful to have

the following alternative description of Sp(n) :
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Sp(n) ='{A € GL(2n, G)‘KAF: i M 0 InJA = EM 0 In} } , see P

| =T =L r
=~ n

[7, page 217,

The (virtual) complex representation ring of Sp(1) is

RSp(1) = %[a] , where a : Sp(1) —Sp(1) is the identity, see [1] , ‘

last chapter. The tensor power a2r+1 is symplectic and we want to
[
[ determine the action of Ba2r+1 in cohomology. For r 2> 0 , a2r+1 is
|
! a homomorphism Sp(1) —>Sp(22r) %
|
: Proposition 2,26, Let A Dbe the diagonal matrix diag (Z,E) in Sp(1),
£Z =1 , so that A is in a maximal (complex) torus . Then
2r+1 . 21+ 2r=1 2r=3 =27 = =2r=] =21+
o A = dlag(z 9 A 9000y # 9000y % 3 secey % 9000y % ) 9
where the number of entries ZZ(r_l)+1 (or 52(r—1)+1 , since there are

equal numbers of them) is (2r T 1) s O<sis<sr.
i

Proof a2r+1A is the (2r + 1) - st tenmsor power of A , call it
A2r+1 o This is defined inductively by :
BA_, 0 |
A = A 9 A = 3 r > 2 °
1 T =
0 %A
i =1
The number of entries of the form Z2(r—1)+1 is easily calculated: J
. 2r+1 2r + 1
one uses the relation (1 + 1) = 2 j;j ( N ) .
Ogisr
Proposition 227, The integers m(i) corresponding to
2 3 t3 2 N
(Ba r+1) s H (BSp(2 r)) - H (BSp(1)) are as follows:

-,



m(k) = 2i +1 , :E: (2; t ;) < k = :E: (2: i ;) s 1sisr

Ogj<i Osj<i
n(k) =1 , 1sks(2r+1) .
r
Proof In 2.26., we computed the action of a?r+1 in the maximal torus

of Sp(1) o The integers  wm(i) are the exponents of 2 .
To determine the action of a sum of representations, note that if

asB are two representations of Sp(1) , then

(a + B)g = (“gg) p(Z)_J for g e Sp(1) .

Hence we can state,

Proposition 2,28, If ng is the sum of n copies of the identity

representation of Sp(1) s then each integer in the degree of Bng is 1

Proof Under na , diag(Z,Z) in Sp(1) goes to diag(Z,2 ,ece, %,5) in
Sp(M) so the proposition follows,

From 2,28, and 2,27, we can compute the effect in cohomology, of any
polynomial in ¢ with non - negative integer coefficients.

It is interesting to note that all the maps we have constructed have
only odd integers in their degrees. In the light of this, we make the

following conjecture, Let £ : BSp(1) —» BSp(n) be a map and

in the degree of f dis odd.

The requirement that f *(n) 3 0 is essential, otherwise the degree

B o m T TRmSS Tﬁ

x(n) € g (BSp(n)) +the usual generator. Then if f 'x(n) # 0 , each integer




may have even integers in it : see 3,19, in Chapter 3 .
Note that this cannot be proved using symplectic K - theory, with the

methods we have used., See the note (b) after Cor.2.2l4,

Section 2ol Homomorphisms H*(BH) — H™(BSp(1)) .

In this section we give a cohomological classification of maps
BSp(1) -» BH for some groups H other than Sp(n) » So let
f : BSp(1) - BH be a map and consider the following particular cases for H
(a) H = 8U(m) , the special unitary group.

First we describe the cohomology of BSU(m) .

Let T C SU(m) be the srandavd meximel gouns ,  so that

H*(BT, %) = Z[t(1) ,ees, t(m)] where S1 (i) = 0 »
1;zém

Hence by Theorem W of Chapter 1 , H*(BSU(m)) C H*(BT, %) is the subring

P

of Weyl group invariants. Since thisAacts by permuting the +t(i) ,

([11 page 7 9], [4, last chapter])
H*(BSU(m), 2) = Z2[x(1) yeee, x(m)], =x=(i) = ei(’c(j)) , x(1) =0,
Since the dimension of x(m) is 2m , f£'x(m) =0, if m is
odd, so we may as well assume that m is even, = 2n and f%x(m) + 0,
When H = SU(m) , it is convenient to regard Sp(1) as SU(2) and
choose the generator of HA(BSU(Z)) accordingly i.e, if S C SU(2) is vhe

. maximal torus, then H¥(BS) = Z[s1,32] s 8yt 8, = 0 and

H (BSU(2), 2) 2Z[x] , x= 8,8, o

For dimensional reasons, f x(2i) = a(i)x" , and f*x(2i+1) =0,




|

We have to determine the a(i). Just as in Section 1 , we first have to

compute P1 and then write down the condition that f£* should commute ‘

with P1 "
1 j |
Proposition 2,29, Px(i) = 2;: (-1)J—1x(i - j)Serj_,l , Where |
J>0
K
X(O) =1, X(1) = 0 and Sk — Z ‘t(l) .
1<is<m
Proof We need only know the Cartan formula P1xy = xP1y + yP1x for
x,y € H*(BSU(n)) and the fact that Plt(1) = $(1)P
We can now state what form the a(i) take ,
Theorem 2,30, If £ : BSU(2) — BSU(2n) is a map and £ x(2i) = a(i)x" ,

then there exist integers m(1) ,e.., m(n) , such that a(i) = ei(m(j)z) 5

Proof First note that from 2,29, if 2s =p + 1 ,
plet = 2i(-1)"x** and if m=2n,
Plx(mn) = x(m)S
p=1

so that

f*P1x(m) = a(n)x:nf*Sp_1 .

1% s+n=1 s=1
P £ x(m) = 2na(n)x (-1) "

Hence,

f*sp_1 = on(~-x)*"1 ., (2.31)




Now by Theorem C of Chapter 1 ,

> (-1l e=tv2)(B]-1)1 m

Sp-1+2k EL

el Zp-te2i

where if

5 % °m
E = (e“...,em), X = X(1) eeo0 x(m) o

Hence,

£ _ L 5-14k Zi: [(_1)|El(p-1+2k)(e2+e4¢...+em—1)£

p=1+2k -
€t26) + eee =5=14k 8y swe Gyl
s 2a@ ¥ e |, ()
since
P x(2i +1) =0 .

Let

s, (-1)f2+f4+..o (s=t+K)(|F|=1)t F i)

|| FlEs=1+k ¥4

Now, zfi + zf2j= s =1+%k mod 2,

Hence by comparing (%) and (s%) , we have

i — oo+ Y3=1+Kq,
84 = 2(-%) 8514k

n
la]

o

In particular, if we take k = 0 and look at 2,31, we get S;_1

Similarly, we prove that

Sl

S x 2

& i = k = 0,1 yeeey (n =1) , with S{=m.

We are now formally in the same position as in Section 2.1, Namely

we factor,

82 _ (11222 4 (22 4 vue # (= 1)%(n)

#2




in some extension of ZP s then show the factoring to be in ZP and
finally, show that the polynomial factors over Z . The m(i) are
the roots of this polynomial,

Note that we have not used the fact that £  comes from a
geometric map, but merely that it commutes with P1 .

We have made the central theme of this work, the conjecture to be
formulated in Chapter 3 . For maps BSU(2) - BSU(m) , the conjecture

amounts to the followings

Corollary 2.3%2. Let S,T bemaximal tori in SU(2) and SU(m) ,

= = 3 in our
1 2

previous notation. Then if h' : H (BSU(m)) — H*(BSU(2)) is a graded

and let w € HZ(BS) be the generator so that w = s

ring homomorphism which commutes with P1 for all large p , there is

an extension h : H (BT) —»H*(BS) . In fact,

ht(2i = 1) =m(i)w , ht(2i) = =m(i)w , L =1 ,eee, N
Proof We have to check that (i) hx(2i + 1) =0 and
55 & g & . _ 2141
(i1) hx(2i) = a(i)x" . For (i) note that hS,; , = Z h t(3) =0 ,
3

so hx(2i +1) =0, for each i3> 0 o
The proof of (ii) again involves manipulating symmetric functions.
Assume by induction that hx(2k) = a(k)xk for k< i, To start the

induction note that hS, = 2 Z al§) %" = 2a{A)n"

1<jsn

Since % = (- 1)1»112:L and S, = - 2x(2) , we have hx(2) = a(1)x »

s |
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2i+2 .\ 2142
For the inductive step we have hSp;, o, = 2W 5;‘ m(j) ’

J
and h applied to the Newton relation gives
sy 1 : 2
hS,; 0 * a(1)xh32i + eee + a(i)x hS,, + (21 + 2)hx(2i + 2) =0 .
Hence, if we define 8." = zz: m(j)21 s we have
i
J

2(-1)* sy v 2a()x(<1) T80 4 aee + (20 42)nx(21 4 2)

1]
o

Using a Newton relation again, this gives

(21 + 2)hx(2i + 2)

1

2(=1)"%" (5, - a(1)8)" + a(2)8,, 4 veu + )

= 2(- 1) [(@()8) = vee + (L4 1) (1) a3 4 1)
a(1)s] + a(2)s]_, + oo ]

= 2(i + Nai + 1)
Hence hx(2i + 2) = a(i + 1)xl+1 o This completes the inductive step ,

Next we consider the case H = Spin (m) .

(b) H = Spin (m) .

H* (BSpin (m), %) has only 2 - torsion, see [16, page 290] .
So H'(BSpin (2n + 1),R) = H*(BSp(n),R) , if R = z2[4] »
Hence the classification of maps is the same as for BSp(n) 3
except that the m(i) are in R .

If m=2n, let T C Spin (2n) be a maximal torus, then

H*(BSpin (m), R) is isomorphic to the subring of Weyl group invariants in
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H*(BT,R) = R[t(1) seee, t(n)] , by Theorem W .

Hence for rhe srandard 1,

H*(B Spin (2n),R) 2 R[x(1) ,eee, x(n = 1),2], =(i) = ei(t(j)z)

and
z = t(1)t(2) oee t(n) «

To classify induced homomorphisms, note first that P1z = st_1

E : where 8§ = Et(i)zk, 2s=p+1, and P1x(i) is the same as for

Sp(n) « Then we can state

elements m(1) yeee, m(n) € R , such that if

|
J
_ !
| Proposition 2433. For any map £ : BSp(1) — B Spin (2n) , lthere exist
|
|

s 1
£ ¢ (B Spin (2n),R) - H*(BSp(1),R) then £ x(i) = a(i)x® , f*z = ax®®

where a(i) = ei(m(j)z) e en(m(j)z) . [@=0 if n is o0dd] o

Proof We have described the action of P' on H*(B Spin (2n),ZP) 5 i

From this we notice that we can copy the proof from the case H = Sp(n) o k
If n is odd, a will have to be zero, and some m(i) = 0 ,
The m(i) are in R since £ x(i) = b(i)xé , £z ='hx§ for some
b,b(i) € R and the m(i) are roots of - b(1)t2n-2 + eee + (=1)(n) =0,
b(n) = 5 4
Finally we classify maps £ @ H*(BGZ,R) > H (BSp(1),R) where G,
is the exceptional group of rank 2 , and R = Z[%],(H*(Gz, 7Z) has

isomorphic to the Weyl group invariants in

H*(BT,R) 2 R[6(1),4(2),4(3)], $(1) + £(2) + $(3) = 0 o [ See Chopres 1.

|

4 ,

| 2 = torsion), so if T C G, isthemaximal torus, H (BG2,R) will be
|

\

|

|
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S0, H'(3e,R) = R[y(1),9(2),5(3)], ¥(3) = o, (4(1)?) ana there
is a relation y(2) = % y(1)2 corresponding to t(1) + t(2) + t(3) =0 .
For more information on G, , see [5] «

With this notation we can state

Proposition 2 3k.e Let £ : BSp(1) — BG, be a map o Then there are

elements m(1), m(2), m(3) e R , satisfying m(1) + m(2) + m(3) = 0
(for some choice of signs) such that £ : H*(BGQ,R) - H*(BSp(1),R)

has the form, £'y(1) = a(i)x’, i=1,2,3, a(i) = e, (n(3)?) .

Proof The action of P1 in H*(BGZ, Zp) is the same as in

1" (BSp(3), ZP) apart from the relation y(2) = % y(1)2 . Hence

£y (i) = a(i)xi and we can find the elements m(i) € R with the stated
properties, from the work on Sp(3) o The relation y(2) = % y(1)2 gives,
a(2) = % a(1)2 and this is equivalent to 0 = m(1)4 + m(2)4 + m(})LF - 2a(2) .

The latter equals

(m(1) + m(2) + m(3))(m(1) + m(2) - n(3))@(1) - n(2) +n(3))@(1) -n(2) -n3)),.
By now it is clear that we seem to be getting the same sort of
classification for meps BSp(1) - BH . Using our methods, we have to
work with a specific set of generators and this entails a separate
calculation for each group o A technique which deals with all groups at
once, is required,
We make conjectures on the cohomological classification of maps

BG — BH in Chapter 3




Chapter 35 » The maps BG — BH .

In this chapter we discuss a cohomological description of the
maps BG — BH , Henceforth G and H will be compact, connected,
simply connected simple Lie groups.

We first formulate the conjecture alluded to at the end of the last
chapter,

Let A(p) be the mod p Steenrod algebra.

Choose maximal tori T,S in G and H respectively.

Conjecture A' , Given any morphism f : H' (BH,Zp) — H' (B&,%Zp) of

graded rings and A(p) =modules, for p sufficiently large, then there

is a morphiem f'  to make the following diagram commute :
. ]
w(es,2p) 5 w(er,zp)
(1)*] 1 (mi)*
B (BH,Zp) &  H'(BG,Zp)

where i is the appropriate inclusion,

Remarks (1) One would hope to be able to knit together the mod p

information as in section 2.1,

(ii) Proposition 2,9 and the results in the last section of chapter 2 prove

the conjecture when G = Sp(1) , and H # FA’EG’E7’E8’ the exceptional

groups.

We will illustrate the implications of the conjecture A' by
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discussing the maps H (BSp(n)) - H'(BSp(r)) in detail. For this
purpose it is convenient to give another formulation of A' , which
is equivalent to A" when G = Sp(r) , H = Sp(n) .

So let T,S be maximal tori in Sp(r) and Sp(n) respectively
and let {y(i)} (resp. {x(i)}) be the corresponding set of generators
of H (BSp(r)) (resp. H*(BSp(n)) defined in Chapter 2 o For brevity
put C = H*(BSp(n),%). We shall abuse notation by using the same symbol
to denote mod p cohomology where convenient,

Let £ : Cn ->Cr be any morphism of graded rings and define
g(i) by the formula

£x(1) = g(1) (y(1) seeey y(x)) &

Choose a transcendental, t over Cr and form the polynomial

F(t) =1 = g(1)t + eo0 + (—1)ig(i)ti + ees (-1)ng(n)tn o Thus

P(t) € C,[t] CBIH(1) suses Blr)y ] &

Assumption A, If £ is a morphism of graded rings and A(p) modules

for a sufficiently large prime p , then F(t) factors into linear
factors, over Zp[t(1) gesey t(r)] , as
II (1 = th(i)) where Zp is the algebraic closure of Zp o
1<isn
With this particular set of generators for Cn and Cr 5y Af A
is true, so is A since the linear factors of F(t) will be
(1 - f's(i)2t) where s(i) is a generator of H2(BS) o Also A implies
A' ¢ see 309 below , and 310.

At the moment we are unable to prove A' in complete generality,

43
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but we will give the proof in special cases, essentially when G and H
are "about the same size" . For a fuller statement of what can be proved,

see the end of Chapter 4

We also make the following conjecture, which we take to be a

homotopy version of A' .

Conjecture B For any map g : BG - BH , there is a map

g : BT — BS to make the following diagram homotopy commute:

BG & BH

T T

BT & BS ,

A summary of the chapter follows,.

In section 3.1, we shall construct many maps between cohomology
wirh
rings which commute , P for all large p o The statement of A amounts |

to saying that these are all the maps which will commute with P1 ° J;
5 :‘

In section 3,2, we realize some cohomology maps geometrically, and

|

% sk ‘
in section 3,3 we prove that if £ : H (BH) — H (BG) is a morphism commuting ‘ ‘

with P1 for all large p and G dis "bigger" than H , then £ =0 , [

|

The term "bigger" is explained there.,

Section 3.1, Morphisms Cn —»Cr °

OQur programme will be to obtain a complete list of morphisms

< —)Cr which commute with P1 s under the assumption A . The

Recall that for a graded ring morphism £ ¢ Cn —>Cr we defined

generalization to other groups is mentioned in Chapter L. ‘




£x(i) = g(1)(y(1) seees y(r)) « If £ satisfies assumption A , we

can identify some terms in the polynomials g(i). For example,
Lemma 3.1 If we take integer coefficients and the coefficient of the

monomial y(1)* in g(i) 4is a(i) then there exist integers m(j)

such that a(i) = ei(m(j)z) .

Proof' We have g(i) = a(i)y(1)i + eee o In P1fx(i) = fP1x(i)
equate coefficients of y(‘l)s-1+l . We are then essentially dealing with

morphisms, Cn - C Now use Proposition 2,2,

1 e

Assume henceforth that fx(n) + 0 , otherwise it will be clear
that we could work with the largest n' such that fx(n') + 0
Assume also that p > max{m(i)2} o

With 2; coefficients, we have

F(t) =[] (1 -n@%) . (3.2)
1<isn

Hence g(i)(t(1)2 yoeey t(r)z) = ei(h(j)) , a symmetric function
in the t(i)2 of degree i (in the t(i)z) g

The fact that f commutes with P1 enables us to prove that

Assumption A => Conjecture A' , see lemma 3.7, To begin the proof

of this lemma we need,

Lemma 343, Fach h(i) dis a quadratic form over ZP in the (i)
. ’ Y. - : N
Proof First, zzzh(l) is for each j a polynomial in the

i
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ek(h(i)), hence a polynomial in the g(i) , so homogeneous of degree
2k in the (i) , i.e.

ZE: n(i)? = homogeneous polynomial in the t(i)2 , of degree 2j . (%)

1<isn

Step 1. Let h(i) = k(i) + £(i,1)6(1) + eee + £(i,r)t(r) + higher degree
terms, where the k's and ¢{'s are in ZP P
Equate constants in (%) :

Z k(i)J =0 for j = 1,2 seeey I o
i

Hence k(i) = 0 for all i . One way to see this is to note that
each elementary symmetric function of the k(i) must be 0 . Hence the

k(i) are roots of the polynomial with all but the leading coefficient

e

ZEero.
Next, equate coefficients of +(q)? in (%) :
:E: £(1,9)Y =0 for all j .
i
Hence £(i,q) = 0 for each i and q .
We prove that h(i) contains no terms of degree three or higher,
e, e,
Step 2. Virite all monomials in the t's in the form +t(r) © ... (1) ' o

Order them as follows:
f

r e1 fr 1 s
t(r) cee t(1) > t(r) eoe t(1) ) if er = fr 9000y ei = fi

and ei__.1 > fi-1’ for some i3> 2 ,

For the sake of mnotational simplicity, drop references to the index i




for the moment.Let W' be the largest monomial of degree¥? 2,which
occurs in sny h.Thus
e et ;
AR A e Pheal ERE 7 R VS 0 B ROURE, where if W#l,all the t's in W
15 ']S ’ Jl o
are larger than t(jl),so that if any monomial,li,of degree ecuzl to

La
degh' is divisible by t(j;) Tithen £ < ey ,unlese E=ii'.

1
We show that the coefficient of W' in h(i) is O.

) : je .
Look at the coeffiient of Wit(j)" T...t(j )% . e

i varies.Such a coefficient can arise only from (w')d since in any
case it comes only from monomials of degree ecual to degi' and 211
these except. V' have fﬁf<el.Hence they cannot conitribute the factor
Wit (4.) 9%

1 .

Let the coefficient of W' in h(i) be B, .

Then equeting coefficlients of (W')?d in (*) gives

Z— B:-IJ- :O fOl" j=l,...,1’1.

AR Era)

Hence Bi=0 forieachil=13%¢ s slle

We assumed that Bi¢0 for some i.This contradiction shows %

there is no momomial of degree Z 3 in any h(i).

This completes the proof of lemia 3.3.

We will prove that each.h(j) is a scuare,in lemma 3.7.HNote the
followings
5 ! _
(1)By the factoring of F(t),f's(j)2 igs defined and ﬂifzzj:l h(j)*.

(i1)The conclusion (and the proof) of lem.a 3.1la is valid if % is

replaced by Zb,namely if we Vi(r),and lei=n,then wh(i)=h(j) for some j.

(iii)Since fx(n)+0,n0 h(j) is zero.
(3.4). Assume that in. each 4H{(j) the coefficient of come (%)% is
not O.
We prove (3.4) in the course of proving 3.7.I1% then follows
from lemme 3.lla,by the above remarlk,that given k the coefficient of

t(k)g in some h(j) is =#0.
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Our aim is to show that h(i) = (a(i1)t(1) + eee + a,(:'Lr)t(r))2 i
and since this requires the assumption that f commutes with P1 we
first indicate how this information is to be used.

Recall the following identity :

1og(1 = x(1)t + eee + (-1)ix(i)ti + eee) = = Zsiti/i (3ek)

421
where S, = Z (3 .
J |
This identity can be proved by noting that the left hand side is

e[| (-6 = - 3 S w2
j j

J iz1

- Z Siti/i .
i

Apply £ to (3.4)
- > £s.t/1

X
L log [| (1 = n(i)e)

il

log(1 = £x(1)t + ees )

J
= > log(t - h(3)t) .
J
, 3

Hence fS, = Z h(j)™ o

1<j<n

" s R _ : 1 - el
Since P Si = 2lsi+s-1 s 28 =p+ 1, the equation P fSi = fP Si
gives

1 s _— .\ its-1
PfS, = 2ifS, ., =21 Z n(3) . (3.5)

J |

Now if p is large enough, for each i, 1 < i <n, we can |

express fSi as a polynomial in the Sj s So that
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fs; = a(i)Si + other monomials, for some a(i) € Zp .
Hence

1 . feNal=l .
P fSi = 21a(1)81 SS + eee 5 and we arrive at

210;(1)331'13S teve e =2y n(5)*e (3.6)

1<j<n

Lemma 3.7,  For each § =1,2, weuy n, h(3) = (a(31)4(1) +eeur a(ir)e(x))? .

Proof. By induction on r : true for r =1 ,
Assume true for r -1 , when 1 <is<n,. If we work modulo

the ideal generated by +t(r) , the induction hypothesis gives
2 g . 2
B(3) = (a(i)6(1) + cor v a(ir = N = 1)+ t(x) 5 pR)(k)
1<ksr

= (@) + eee + a(@E)6())% + 1(32)E(2) + eee + bGR)EE))Z + vne o

By looking at the coefficient of +(i)t(r) and t(i)2 s 1s€d<p,
in this we see that
< . . 2 ) 2 i
h(j) = (@(3N)t(1) + eeu + a(ir)t(r))” +  p(§)t(r)° for some y(j) .

So combining this with (3.6) we get,

h(j)S+l-1

LV

J

S L)1) teeut ()P L (54121)(a(31)5(1) ..

"

e + a(ir) ()PP () 8()2 + e ]

a(i)8$-1ss + °f. ° (308)

1

Ler €, be the smallest mreget  wirh ali, §5) 4 0.




Ler yjeM.
In (3.8) equate coefficients of ‘t(r)Zit(1)p_1 forr 1 =1 jeees™ »
This gives ZZ: y(j)i =0 for 1<ism. Hence y(j) =0 for gJ =i.
jeM
By taducrion on .*;;.\, we ?(‘u"{&l vhag Y{i).= o 35 L Zgan i et ThiB

completes the induction and the proof of the lemma,

We can now prove that Assumption A => Conjecture A' .

: Cor. 3.9. There is an extension of f defined by
|

£15(i) = a(i1)t(1) + e + a(ir)t(r) , mr1sisn£2p“”“”’J

)2 = n(i) ,

Proof We know from the factoring of F(t) that fs(i
renumbering the s(i) if necessary. The corollary follows since each
h(i) is a square.

Next, we identify the a(ij)2 in terms of the integers m(i) defined

in Lemma 3,1

Lemma, 3010. The sets {a(ij)zli =1 9ecey n} and im(i)zli = 9000y n}

are equal for each J =1 jeeey T o

Praof We have fx(i) = ei(h(k)) o Equating coefficients of t(j)Zi
gives:
a(i) = e,(aki)®) for 1<j<r. But

a(i) = ei(m(k)z) from 3.1, The lemma follows.

From 3010, we see that in fact h(i) € Zp[t(1) yansy Blz)] for
1 each i and F(t) factors over the integers i.e, the h(i) are mod p

reductions of elements in Z[t(1) ,eee, t(r) ] « The factorisation of

|liIIilllIIIIIIlllllllIllIlllIIIIIllIlllllllllllllllIIIlllIllllllllllllllllllllllllllllllllllllllll
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F(t) puts even more restrictions on the a(ij) « 1In particular,

ei(l(j)) = fx(i) must be invariant under the Weyl group of Sp(r) »
We are now ready for the main part of the chapter,
Recall that for any graded ring morphism £ : Cn —>Cr s We always

assume that fx(n) % 0 . This involves no loss of generality.

Under the assumption A , we are able to give a complete list of

those f which will commute with P1 for all large p . TFirst some

definitions.

P=fu, seee; uﬁ} be a partition of U so that U = Z‘ u; 5 with

1<igP

Given P choose a set, B , of non-zero integers {b(1) ,ee., b(B)}

Definition 3.11. Choose an integer U, 1 s Ugr ., Let
with the b(i)2 distinct, P and B depend on U , Now define ‘
|

1(0,P,8) =[ | [1 = s(b(1)(6(1,) 4 ous it(iu1)) * aue ¥ b(ﬁ)(t(iU_uﬁ‘H)_-»_-oooilt(iU)))2_'[

where the product is taken over all possible signs + , over all subsets
of §1,2 yeeey T} containing U elements and all partitions

e sevey B F pnnny fin yeees 1.1 of these subsets into p parts
1 u1 W a+1 U
containing Uy seeey uﬁ elements,

The number of factors in I(U,P,B) is therefore

- ' -
n(U,P,B) = oV 1(r) E—TE:-—:;g : the 21 emmerates the signs,
1 e o000 .

1%

U
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|

(E) the subsets of {1 ,eee, r] and the remaining factor the partitions
of these subsets.
Notice that I(U,P,B) is uniquely defined by U,P and B , We

will abbreviate I(U,P,B) to I when the U,P and B are understood.

We show that I represents an "irreducible" morphism into Cr
which commutes with P1 for all odd primes p' . For a precise statement
see Proposition 3.12. below, In preparation for this, we need the following

discussion,

el . e

Let W(r) be the Weyl group of Sp(r); it acts on Cr by permuting
the +t(i) and changing their signs.

For a graded ring morphism £ : C, —>Cr , let F(t) factor as
(%) QIE (1 - th(1)) with h(i) € Z [t(1) yeee, t(r)] « Denote this

1<igsn

latter ring by Z(r) . Then if w e W(r) , wh(i) € Z(z) .

Since Z is a unique factorisation domain, so is Z(r)[t] .

Lemmad.\a. For any w € W(r) and i€ {1 yees, r} , wh(i) = h(j) for

e . S s, A

some J € {1 yeey T'} o

Proof It is easy to see from the definition of F(t) that wF(t) = F(t) .

By renumbering the h's assume that i =1 o, Then
(1 = wh(1)t) eee (1 =wh(n)t) = (1 = h(1)t) oo (4 = R(n)t) »

Clearly (1 = wh(1)t) e Z(r)[t] is an irreducible polynomial, hence

prime since Z(r)[t] is a unique factorisation domain, Therefore

|

|

|
I‘IIliIIlllllllllIlllllllllIllIllllllllllllllllIllIllllllllllllllllllllllllllllllllllll




(1 = wh(1)t) divides some (1 = h(j)t) which is irreducible., Since

the only units in Z%(r)[t] are + 1 this can only mean that
1 = wh(1)t =1 - h(j)t , which proves our lemma.

We paraphrase this lemma as follows : Given f : Cn —>Cr , form

P () ='II (1 = n(j)t) « Then n(§)} is invariant under W(r) .

Ir  G(t) {[I (1 - k(1)) € z(r)[c] , and @(t) € C [t] , we

1<ign
define a morphism g : C —C . by sending x(j) to ej(k(i)) « We say

that G(t) corresponds to g .

e e e e e e e e e e

We are now ready to state

Proposition 3.12, (a) If I factors as G(t).H(t) , then neither

G(t) mnor H(t) corresponds to a morphism Cn —)Cr unless G(t) =1 or
H(t) =1 .

(b) I corresponds to a morphism

whi ) - 1 .
f: Cn(U,P,B) —>Cr s which commutes with P for edd primes p .

Proof (a) If some product T1(1 - h(i)t) corresponds to a morphism

into C, , we have proved in the above lemma that the set f{h(i)} is
invariant under W(r) o I was defined so that it contained exactly the
factors needed to make it invariant: if any factor is omitted, it won't be.
(b) If we take any linear factor of I € Z(r)[t] , and apply W(r) to it,
we find that it goes into another factor of I . Hence
W(r)T cc,[t]C Z(r)[t] , so we have a morphism f : C,~C. o

We know that fs(j)2 is defined and equals h(j) s 53y .

Also [cefe 3.9. and 3.5.] ,

fP1Si = 21 Y n(5)3*% | ana
J

" |
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1 1 1 2i 1 4
PfS, = P Z £3(3)" = P Z n(j)™*
= 1 Z hl(3}P1h(.]') .

Now,  P'h(§) = P'(3 a(i)t()? = 203 a(i)e0) P Y alik)se)
g Bfs ) Za(jk)t(k)P
= 2(+ )} a(ix)6)®
= 2n(j)° .
So, P1fSi = 24 Zh(j)s+i_1 —
P'rs, = fP's, .

This implies that P1fx = fP1x for all x € Cn o Thus f comnutes

with P1 for all odd p .

Remark 3.13. = In view of 3.12(a) , we may say that I(U,P,B) corresponds
to an "irreducible" morphism C, —>Cr o

We are now feady for the main result of the chapter,

Notice that we have established the following : if f Cn -—>Cr

satisfies Assumption A , +then there is a 1 = 1 correspondence

£>F(t) = (1 - h(i)t) € 2(x)[+] »

Theorem 3.1k, (1) 18 f : C, —C, satisfies assumption A , and

£x(n) £ 0 , then F(t) € z(r)[t] factors as follows:

There exist for each U € {1,2 yeee, r §,




(a) Sets, P of positive integers u, je.e, ug with

‘(b) for each U and P , some sets, B of non-zero integers
(1) yeees B(B)} witﬁj:b(i)z distinct ;
(¢) for each U,P,B a unique integer a(U,P,B) > 0 , such that
r(e) = [] (2(0,p,8)) XVoF>D)
U,P,B,a(U,P,B)
(ii) Conversely each such E(t) defines a morphism Cn —)Cr commuting

with P1 for all odd primes.

U4 o(U,P,B)

Let us use the abbreviation a(U) =
u '. eoe U :
P,B,a(U,P,B) 1 B

with each a(U,P,B) > 0 o

Core 3¢15. n = :Z: éU-1(E)a(U) .

Proof With the usual notation, fx(n) = II h(i) . S4nce fx(n) + 0,

1<isn
no h(i) is zero so n is the degree of F(t) € 4(r)[t] o This degree
is the number of factors (1 - th(i)) « The corollary now follows by

counting these factors,

Cor 3.16. (Hubbuck) o
Let f£ :C —C_  satisfy Assumption A (and £x(n) + 0) « Then

60
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(i) if r=n# 2, there is an integer k such that for any

X €E Hém(BSp(n)) , fx = W ;

(ii) if r=n=2, thereis a k with fx = kzmx or

£x(1) k%5 (1)

1]

£x(2) -4k4x(2) # klfx(1)2 N

It

Proof (i) Put r=mn in 3.15 :
n=oal1)n + 2a(2)(2) + eee a(n)2n-1 o Hence a(U) =0, 1<U<n,
since in this range (3) >no. So n=oa(1)n+ oc(n)2n'-1 5

T ns 2, 1 5 n hence a(n) =0 . So , a(1) = 1. and
a(U) =0, 1<Usgsn,

Therefore 1 = j;‘ EELQLH‘E*EL and there is only one

i u ¢ 1
P’B,a(U,P’B) 1. LN ) u‘B.

set P, only one integer b(i) = k say, and only one a(U,P,B) which is
0 :ditis,

Hence F(t) = 'II (1 - t(kt(i))z) and fx(i) = kZix(i) "

1<isn
If n=1=r, 1= a(1).1 so a(1) =1 and again F(‘t) =1 = ‘tkzt(1)2 °
This completes the proof of (i) »

For the proof of (ii) , we have n=1r =2 and 2 = 2a(1) + 2a(2) »

Thus

a(1)

or a(1)

1, af(2) = 0

0 a(2) =1 o

1

If one constructs the corresponding F(t) s one gets the stated result,




As a final corollary, we list the possible h(i) for a morphism
Cn —>Cz .
Core 317, For a morphism C_ —C, the possible h(i) have the form
2,7.02 s
: (1) a t(i) s A= 1,2
[
| (11) bP(8(1) & 6(2))%  (id1) (ot(1) 1 an(2))® o a® .
|
[
: Proof The h(i) are squares of homogeneous polynomials of degree 1 ,
l

so must have the given form, The significant fact is that each of the

i three types will give us a morphism Cn —>02 °

With regard to these corollaries, it should be noted that we will not »
prove Conjecture A' here o The corollaries are meant to illustrate the
usefulness of the conjecture, (if true) .

We now come to the

Proof of 3elle (i) Take a particular h(j) from F(t) « Under the

stated assumptions, we have already proved that h(j) is a square in 4(r) :

h(3) = (0(31) (6(5,) + wue (i, ) + eun + b(jﬁ)(t(iU_uﬁH) boeen + 8507
1

This determines an integer U € {1 ,ee., r} , a set {ui,..., uﬁ}

with ;?‘ u; = U and integers b(ji) 0.

| i |
Apply W(r) the Weyl group of Sp(r) to h(j) : the h's which
arise as images of h(j) wunder W(r) form a unique I(U,P,B) which
must be a factor of F(t) .
If this exhausts all the h's , stop « If not, then h(j) may

still be one of the remaining factors of F(t) and will give another copy

4
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of I(U,P,B) « Continuing in this way, we break off «(U,P,B) copies
of I(U,P,B) from F(t) « If this exhausts the h's in F(ﬁ) , stop .
If not, take an h(k) not in I(U,P,B) and form another I , etc.

Since F(t) has only a finite number of factors, this process stops.
Each h in P(t) must be in some I , since F(t) is invariant under
W(r) : there are no h's left over.

(ii) This follows from 3,12,

Section 3.2 Construction of maps BSp(r) — BSp(n) .
We show that some of the morphisms Cn —)Cr listed in 3%e1le. |
are induced from maps BSp(r) — BSp(n) « For this purpose we compute

the induced homomorphisms of some representations,

Example 3,18, There is a map ¢ : BSp(r) - BSp(rm) such that if N
*
¢ =L s Crm —>Cr s then

F(t) = II (1 -t t(j)2)m » where T, m3>1,

1<j<r

Proof' Let BSp(r)m be the m=fold cartesian product
BSp(r) X eee x BSp(r) , and J : BSp(r)" — BSp(r)™ +he identity. Then

take ¢ to be the composite
3 .
BSp(r) 3 BSp(r)™ S BSp(x)™ > BSp(rm) ,

where A is the diagonal and i +the inclusion .

Next we compute the induced morphism of a particular representation




i

4

Sp(3) - sp(d 63) , using the (alternative) description of Sp(n) given

in section 2.3,
Lemma 319 Let « : Sp(3) — Sp(3) be the identity and @ the third
tensor power. Then the h(i) corresponding to (Ba?)* 2 C —903

(n=1% 63) are of the form:

8(3)2, 96(3)2 , (26(3) = 02, (6(1) £ 6(2) £ N2 , 1 €4, k<3, d k.

Proof Take the diagonal matrix diag(z1, Z1, Zoy Zins Z3, 53) =D ,
in the maximal torus of Sp(3). oD =D’ , ‘the third tensor power. |
We defined tensor powers of such matrices in the ?ruaF of

Proposition 2,26,

2 . 2 - = ., -
So , D = dlag(Z1,1,Z122,Z1Z2,Z1Z3,Z1Z3,1,Z1,Z1Z2 seees Lyl yon) 3
and.
3 ; 3 2 2= 2 2= -
D -— LR N ] LN
dlag(Z1,Z1,Z1Z2,Z1 09 z1z3,z1z3,z1,z1,z2 . z1z2z3, )

with 65 entries on the diagonal.

From the exponents of the 2Z's in D3 we see that the h(i) must

have the stated form .

Note. Let i, : Sp(1) -—>Sp(1)3 = T be inclusion into the first factor

1

and j : T - Sp(3) the diagonal inclusion of section 2,3 If we take

ji1 b Sp(1) —>Sp(3) and follow by a3 s we construct a map l

BSp(1) — BSp(} 63) with an even integer (namely 2) in its degree. |
I |

in the notation of 3.19.

The "2" arises from h(i) = (2t(j) + t(k)




i i

.

This does not affect our conjecture on degrees of maps f : BSp(1) - BSp(n)

since in this case f*x(n) = @

Next we clarify our notion of a map BSp(r) —)BSp(n) being
irreducible by an example,

Take again a : Sp(3) — Sp(3) and consider its exterior power

A3a : 8p(3) - 8p(10) .

Lemma 36200 The h(i) corresponding to BABa : BSp(3) - BSp(10)

are of the form t(i)z and (t(1) + t(2) + (3))% y 122 s

>

Proof Again we calculate A a on the maximal torus

faiag(3, 5, 58,55,085,75) | 18;] = 1] .

. 6
Take ©) seess € as a basis for ¢ o Then ei’\ejl\ek 3
. . g : 35© o p20 s 3
1 <ic< j¢ck<6 is a basis for A0 =€ , and the action of A a
this basis is
3 -
INCICIICIN e 26 = algle; , a(g)ej ao(gle,  for g & Sp(3) .

If g 4is in the maximal torus then
Zze3 = ??e1 nCop 3 and

3
Aa(g)e1,\63,\e5 = Z|e1,\22e3,\‘z3e5 = 212223e1 /‘83" e5 etc,

|

3 . =
Male)eynpnes = %o aZe)a

Thus one calculates A:a on the maximal torus. The h(i) follow

from this calculation. For example, for the two calculations just made,

2
the corresponding h(i) would be t(2)2 and (t(1) + t(2) + t(3))" »

Remark 020 with the given action of Sp(3) is reducible : see

[8, page 25.3] o

és

on
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Now in cohomology, we have a commutative diagram

c (BA”a)*
| 10

N
W

(Bi)* L (Bi)* x (Bi)* x £

CBXCBXC4
where the i's are inclusions and f : CA-_)CB is the morphism whose h's
are  (8(1) 2 £(2) & 5(3))7 .
i So (BABa)* is reducible,
I
Question 3,21, Can one make a homotopy commutative diagram

3
sp(3) —E% 5 sp(10)

: 7

Sp(3) xSp(3) xSp(L)

of Ad;-maps and spaces?

| Section 3.3, = Maps BG - BH . #1

We teke care not to use Assumption A in this section, and prove that |
if G is "bigger than" H , then for anymap f : BG »BH , £ =0 .

The phrase "bigger than" is clarified below : see 3,22, and 3,25,

Let R be;subring of the rationals in which one can invert each of |
the primes for which H (G,Z) has torsion. Then H'(BG,R) ZR[y(1) yeoos y(n)] ‘
by theorem W , Similarly,

HY(BH,R') 2 R'[x(1) yeees x(0)] o

We will use the same notation {x(i)} , {y(j)} for mod p generators,

if p is a large prime and assume that dim x(1) = dim y(1) = 4k »
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|

l

[

| |

|

Let «(G) be the set of half dimensions of the generators of

H*(BG,Q) o TFor example
a(Sp(n)) = {2,4 yeee, 2n}

Having established notation we can begin, Let £ : BG —» BH be

a map.
Lemma 3022, (1) If there is a generator y € H*(BG) such that idwnddu(R)
» Haim y + 4) € aG) , dim y > max a(H)ua(Elthen £ *x(1) =0 .
| (ii) If in addition there is a map i : BH - BG with

' i e H*(BG) —>H*(BH) surjective, then 7 =0 .

Remark The conditions in (i) are designed to ensure that for a priori

dimensional reasons, no power of y can occur in the image of f

‘ Proof of 3,22, (1) 1 £*%(1) = a(1)y(1) for some a(1) , then by

the naturality of p’ 5 a(1)P1y(1) = £P'x(1). (%)
since 4(dim y + 4) § a(G) and dim y > max a(G) , lemma 1.9 gives

us the following: for infinitely many primes,

1 t
Py(1) = by

+ o003 D + 0 mod p »

in (%) gives a(1)b =0 o Hence a(1) = 0 modulo infinitely many primes,

l o
Since no power of y is in the image of f° , equating coefficients
so a(1) =0 . |

().  We have if : BG »BG , with £i'y(1) =0 .  Hence from [9]

7‘ and Chapter 1 , £*i* = 0 and since i* is epi, we must have £ =0,
I Recall that the groups G were classified by Cartan., See [8]

for this classification.

:
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Corz3.2§° If G and H are in the same class in Cartan's classification

i

and rank G > rank H , +then for any map f : BG -BH , £ =0,

Proof We can take i : BH — BG to be the inclusion induced from

HCG, The hypotheses of 3,22, are then satisfied since for y we

can take the generator of maximum dimension in H*(BG) s and i* is epi,
Assume now that G and H are classical groups i.e. SU(n), Sp(n)

or Spin (n) « Then we can strengthen Lemma 3,22 by showing that if G

is "bigger" than H , +then any map BG — BH is zero in cohomology.

We have found no simple condition to define the term "bigger" .  The

condition is mneither "rank G > rank H" nor "dimension G > dimension H" ,

as we shall see, Of course, if G and H belong to the same Cartan class,

then the condition is "rank G > rank H" and then 3,23, is the best possible

in the sense that if rank G = rank H , then G = H and the identity

map BG — BH dis not zero in cohomology.

Remark 3,24, There follows a rather motley collection of results. The
idea behind the proof in each case is to find conditions on G and H so
that there is a generator y € H*(BG) s 1o power of which can occur in the
image of £* o We defined generators for H*(BG) s Wwhen G 1is a classical
group, in Chapter 2 . We will always use those generators.

So for maps f : BG —» BH , we discuss various cases.

(a) & =8U(m) , the special unitery group, mz% -

Proposition 3.25. If £ : BSU(m) —» BSp(n) is a map with m odd and nz3;

mzn+ 1, then £ =0,




: "

Remark Note that rank SU(m) =m =1 , rank Sp(n) =n .

Take generators fx(i)} amd {y(j)} for H'(BSp(n)) and

H*(BSU(m)) as in Chapter 2 .

In the proof of 3.25.,, we will need

Lemma 3,26, For any integer m > 2 , let Y € H*(BSU(m)) be a
monomial, Then there is a large prime, p =1 + mt , such that

Ply = BY y(m) + eee s B0,

Proof By 2429., for any r ,
1 _ =1 _
Py(r) = y(r - 1)SP + oo + (=1) Sp_1+r s P=1+mt,
By the Cartan formula, for any monomial X € H'(BSU(m)) ,
Plxy(r)® = y(2)%P'X + axy(@)®  (y(r = 1)S_ 4 eee + (=1)"s . ),
P p=1+1
’ 5 o o2 t . 5
If r+m, the coefficient of y(r)y(m)” in Sp—1+r is
a
(-1)t+r+1(p -1+ 1r) by Theorem C , Now let Y = y(m)amy(r1)a1y(r2) 2 e

Then the coefficient of Y y(m)t in P'Y is
B = (-1)t(mam + a1(r1 -1) + a2(r2 = 1) + ees) o This is non-zero mod p ,
if p dis large enough.

Bef'ore we begin the proof of 3%.25. note that our choice of m ensures
that no power of y(m) can occur in the image of £ . y(m) can't occur

. i .
because m is odd and y(m)", 1 > 2 , because m2mn + 1 o

Lemma 3.27. £*  is zero mod decomposables,

Proof Let £%x(i) = a(i)y(2i) + s »
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Since dim x(i) = 4i and dim y(j) =2j , a(i) =0 if i > %m,
so we need only prove that a(j) =0 if im > j=1 .

Choose a large prime p =1 + mt . Then
ply(21) = gy(ei)ym)® + oo , B 0, by 3.26.

By naturality,

£l x(1) ple*x(1)

= P1(a(i)y(2i) + decomposables)
. . t
- )y @® ¢ ) ¢ e
Equating coefficients of y(2i)y(m)t gives oa(i)p =0 . Hence

a(i) =0 .

To proceed further, we need some more notation.

e
. % e
Definition 3.28, The length of a monomial y(J1) y(Jz) . e 3

is y‘ €. °
A 1
i

Order the monomials as follows: write all monomials as

e e
: 1 s s x .
Y(J/') LA A y(JS) : F] J1 2 J2 >.o'> JS ° Then
B, e f1 fs
y(J1) eoe y(JS) >Y(J1) eo o y(Js) 1f e1 =f1 ’EEXE) ei=fi

and. i1 > fi+1 , for some i, O0s<si<s=1,
Lemma 329, Bach term in f  has length 2 3 .
Proof Let £x(i) = (B(m)y(m)y(2i - m) + plm - 1)y(m =~ 1)y(2i=m+1)

+ oee ) + ¥w(i) ,

k.




T

! where each term in v(i) has length > 3 ,

By 3.26.,

P1y(m)y(2i - m) = ay(Zi - m)y(m)t+1 + o009 A + Q .

The coefficient of y(2i = m)y(m)t+1 in P1f*x(i) is ap(m) ,
but in f*P1x(i) it is zero ., Hence p(m) =0 .

Assume by induction that B(m) ,e.., B(m = j) = 0 o Then the
, ooefPictont of y(m) ¥(m = j = Dy(2i =m+ §+1) in P1f*x(i) is
a'f(m = j +1) , for some a' 4 0, butin £*Plx(i) it is zero » Hence
Bm = j +1) =0 o This finishes the inductive step .

The proof's of the previous two lemmas are meant to motivates

e

e
Lemma 3630, Let W, = W,y(3,) 1 ves ¥$3.) 5 and
1 ¢ 7 s

£
1 eoe y(js) ®  pe monomials of equal degree with e, > f1 o

Assume that if y(i) divides Vs then i > j, o Then the coefficient

W, = Wyy(3,)

of W1y(m)JG in P1W2 (with p =1+mt) is zero.

Proof Assume that this coefficient is not zero. Then by the Cartan

formula applied to P1W2 , we see that except for possibly one e (say

e.) , wemust have f, <e. (and f_<e_ + 1) o
r i i r r

Now equate dimensions of the Wi 3

j TR j eoe j = eeoe j £ eoe j
3191 o+ + Jrer + + Jses J1f1 + + Jr - + + Jsfs s SO ,

Jpleg=£1) = 3,8, = e)) wewer §(F, =€ Jreuwr §(F = e)) < §.(F - e) o
If r=1, this gives e - f1 < f1 - e, i.e« e, s f, , contrary

to assumption.

N



If »>1, we have j1(e1 - f1) < jr(fr - er) < J, » Hence

e1 - f1 <1 , contrary to assumption,

The coefficient of W1y(m)t in P1W2 must therefore be zero

Proof of 3.25. I £x(i) + 0, let W be the largest monomial in

f*x(i) with a non-zero coefficient: f*x(i) = all + eee 5 @ + 0 o
Now it is clear that if p =1 + mt , t large, no monomial
Wy(m)® can occur in £*P'x(i) .
B:V 30260,
1 t
PW = Aiy(m)” + eee s BF0 .
So by 3030., the coefficient of Wy(m)t in P£*x(1) is fa o

This coefficient is zero in f*P1x(i) , hence a =0, This

contradiction shows that £ x(i) = 0

Core 3631, If £ : BSU(m) — BSp(n) is a map and m is even with
m>n+ 2, then £ =0,

Proof Let £%(4m) = ay(m) + eee o

There are infinitely many primes satisfying p -1 = (m - 1)t , and
Ply(n) = y(m)Sp__1 = pymy@ - D%+ oo, p £ 0, by Theorem C of
Chapter 1 o

The coefficient of y(m)y(m - 1)t in P1f*x(% m) is af o

Since 4(m = 1) > L4n , no power of y(m - 1) can occur in the image




of f* and hence the coefficient of y(m)y(m - 1)t in f*P1x(%nO is

0 o Therefore a =0 ,

We conclude that no power of y(m) appears in £ .  The proof
now proceeds as for 3.25.

Returning to the situation of maps f : BSU(m) »BH , if nz2 ,

H = Spin (2n + 1) , the proof of 3.25. applies to give

Cor. 3432, If f : BSU(m) —» BSpin (2n + 1) is a map with m even
(resp. 0dd) and mz n + 1 (resp. m>n+ 2) , then f =0 .

Now let H = Spin (2n), nz4.Then

Lemma 3453 If £ : BSU(m) - BSpin (2n) with m odd (resp. m even)

and m>n+1 (resp. m>n+2) , then £ =0,

Proof H*(BSpin (2n), Zp) = Zp [x(1) ,eee, x(n = 1), 2], dimz=2n,
dim x(i) = 41 , where the generators are as in 2.31.

When m is odd, we are assured that there is no power of y(m) in
the image of £ because it can't be in £z s since m + n, and it
can't be in f*x(i) s because 2,2 m > b(n - 1) o

When m is even y(m) can't occur in f z because m +n .

If f*x(%nﬂ = ay(m) + eee s we can prove that o =0 as in
Corollary 3.%1,

We can now use the proof of 3.25. to prove 3.33.

(b) For maps BG —»BH , G =Sp( ) , Spin (2m) , Spin (2m+1) , we

will give less detailse. First, we need an analogue of Lemma 3,26,




|
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Lemma. 3635k For any monomial X € H*(BSpin (2m)) , Tthere is a large
prime p =1 + 2mt , such that the coefficient of Xzzt in P1X is
non=zero .
VotaN J=1_¢ : _

Proof L Px(i) = Z (=1)? " x(i - J)Ss+j~1 s 28 = p + 1

1¢j<i

1 .\ 2k
and Pz=128__, , 5 = Zi: (37 .
J

The coefficient of x(i)ZZt in % P1x(i) is (-1)8-1+t(i-+mt) = (-1)5-1+t(i-%).

2 -1+t
The coefficient of 2.z ¥ in P1z is m(-1)s L .

a -1 1 2%
Hence, if X = z x(m = 1) ees x(1) ', the coefficient of Xz

in P'X dis (-1)3-1+t(e1(2—1) + e2@+-1) + eee + em_1(2m-2-1) + a.m) ,

which is nonezero mod p if p is large .
Similar results can be proved for Sp(m) and Spin (2m+1) .

Using Lemma 3,34., we can prove

Lemna 3350 If £ : BSpin (2m) - BSU(n) is any map and 2m > n + 3 ,

then £ =0 o

Proof’ We want 2z 4o play the role of y(m) in the case G = SU( ) o
But we could have f y(m) = o,z + a?x(%nﬁ + decomposables.
Wle prove that o s Oy = 0 o
1
Now, +Px(4m)=x({m-1) Sy + oee Ss+%m-1 s 25 =D 41 o

If s+4m=1=m-=1)t+%m , then p=2m=1)t+1, for

infinitely many *t .
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The coefficient of x(% m)x(m - 1)t in P1x(% m) is B + 0, by
Theorem C
Since 2m > n + 3 , no power of x(m - 1) can appear in the image
of £* , Hence the coefficient of x(4 m)x(m - 1) 4in f*P1y(m) is 0 .
The coefficient of x(%t m)x(m - 1)t in P1f*y(m) is a,8=0,
.'¢a2=00
So,

£'y(n) = a,z + decomposables.

1
By Theorem C , Pla = ﬁ1zx(m - 1)t *eee s B 0, for
p=2m=1)t+1, sufficiently large.
The coefficient of zx(m = 1)t in P1f*y(m) is a1ﬁ1 o
The coefficient of zx(m - 1)t in f*P1y(m) is 0 o Hence o, = 0 o
Thus we have established that no power of z can appear in the image

of ¥,

We comnent on the analogue of 3,20, for BSpin (2m) : order the

monomials so that z > x(i) > x(j) 4if i > j « Let M, = za+1x(% m)b 3
M, = zax(% m)b+1 s ab =1, Then M, > M, , and M1f:could appear in
1

P M2 » but our condition 2m > n + 3 ensures that Mi can't appear in
£ 48,
Lemma 3,35, can therefore be proved by using 2z in place of y(m)

in the case G = SU( ) .

One can prove similar vanishing results for maps BG — BH for all

other pairs of (classical) groups.




Remark 3,36, Lemmas 3.35., and 3.25, show that the concept of "size of

G" needed in this context is mneither dimension nor rank,
Notice that we did not use the fact that f* was induced from a
geometric map, but only that it was a map of A(p) - modules,

We believe that the proper statement to prove is

Conjecture 3e¢37. If y,x are the 4 ~dimensional generators for

H*(BG) , H'(BH) respectively and h : H (BH) — H'(BG) a morphism of
graded. rings and A(p) - modules for all large p s then h =0 1iff
hit = 0 o

A decent proof of this conjecture would we believe, require use

of Assumption A .

One would use 3¢37. (if true) as follows: first use Lemma 3,22 (i)

to prove hx = 0 and then use 3,37, to conclude h = 0 ,
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Lemma o1 o

Chapter liy The Assumption A .

We give evidence for "A" in this chapter and discuss when it can be

proved.

Section 1. Morphisms C# —>C3 .
Choose the usual generators {x(i)} , {y(j)} for C)+ and C3

respectively, with the notation of Chapter 3, Section 1, Then for any

morphism of graded rings,

£ :C, >C;, we have
rx(1) = a(y(1) , £x(2) = a(2)y(1)? + p(2y(2) ,
ex(3) = a(3)y(1)? + c(3y()y(2) + b3B)y(3) ,
£x(h) = ay()" + pWy(2)% + Wy (2) + a(1)y() .

Assume further that f commutes with P1 for all large p , and
that a(1) 4 0 o  (Otherwise it will be clear from the arguments below

that £ = 0,)

Il
o

Proof Choose p =1 + 6t. Then the coefficient of y(})t in P1y(1)

" in Plex(h) is af .

P1x(4) = x(Lp)SS_1 o Hence the coefficient of y(})t+1 in

is B+ 0 o The coefficient of y(3)

fP1x(4) is zero.

Hence af = 0 and a = 0,

We will show that all other coefficientsin f can be non=zero.
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| Theorem 4.2, "A" is true for morphisms f : C, - C

Ly 3°

The proof consists of a series of lemmas. We will actually prove

that the conclusion of Theorem 3,14. holds, without assuming "A" ,
Most of what follows involves computing coefficients using

Theorem C, TFor example

Lomna kodo 854 = 3x(3)" = 36%x(1)x(2)x() ! 4 3 426 + 1)x(1)%x(3) >

2 t=2 t-
- 4 70 - 1)x(2)%%(3) "2 + 36(t - )x(@)x(W)x(3) 52 4 ... .
| Proof Just use the formula in Theorem C ,
Proposition Lol If p+1=2s=6t, then

(1) v =a(t), (1) 6e(3) = a(1)b(2) - b(3) ,
(ii1) 6%a(3) - 6%a(1)a(2) + 7a(1)° = 7(3) .

I

Cors he5.  a(1)? = 2 b(3) .

Proof' From loks (i) , we have b(3)6t = a(1)6 i.e, b(3)2 = a(1)6 .

Proof of Lokh. x P1X(1) = S In P1fx(1) = fP1x(1) s equate

3t °
coefficients of y(3)t 3 y(1)y(2)y(3)t_1 and y(1)5y(5)t-1 respectively.

This gives

(1)  a(1) =(3)"

(i1} -ta(1) = b(3) "1 (c(3) - ta(1)p(2)) and

(111} 4 56 + 1a@) = p(3) ¥ (Ga(3) - 3ta(1)a(2) + 4 £t + 1)a(1)?) .

(i1)* and (iii)' give




- | 79 WW

\
|
j (13)  -b(3) = 6(3) - a(1)b(2) and
1 (i11) 7b(3) = 6a(3) - 6%a(1)a(2) + 7a(1)” .
Note that strictly speaking, some of the equations in l..4. should
be over Zp e.8. (i) and some over 74 . But since we are working modulo
a large prime, any equation not explicitly involving p can be taken

over 74

Lemma Lo6. (1) »(2) = a,(1)2 - ha(2) , (ii) 8a(y) = = c(4) ,
(iii) 2c(k) = = b(d)

Proof With p+1=2s=6t, % P1x(2) = x(1)sS of R g x(1)x(3)t -

S+
and 4+ P1X(4) = X(h)ss_1 0

(1) Equate coefficients of y(1)y(5)t in P1fx(2) = fP1X(2) °

For (ii) and (iil), equate coefficients of y(1)3y(3)t (resp. y(1)y(2)y(5)t)

in Pex(h) = £Px(4) .

|
| Lemma lo7. If p=6t+1 thenm (i) 1 = b(3)t 3 f
| (11) -2b(3) = 6c(3) + a(1)b(2) and ‘
(iii) 22b(3) = 67a(3) - 5a(1)? + 6%a(1)a(2) .

Proof We assume that a(l) ¢ 0 . Otherwise the arguments below show
that £ =0,
If p=6t+1, by using he3. and 4.6, ((ii) and (iii)) we see

1
that P1fx(4) = fP x(4) gives
W25y 0 = 7(10854,) =

(r(1)? = uy(2)eGx(3) ¥ - 38%x(1)x(2)x(3) ¥ + 2 26+ 1)x(1)°x(3) ¥ 4 L) .

| |
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)Y, yMy@%G) ¥ ana y(1)2y ()t

Equating coefficients of y(2)y(3
in this gives
(1) 1 =10
(11)  ut = 4(3te(3)p(3) " - 3t%(1)(2)p(3)*™) ana

(iii) (s + Yt + 2) = 5b(3)t-1(3ta(3) " %t2(t + 1)a(1)3 - 3t2a(1)a(2)) "

The lemma follows from these relations,

We collect together the information needed for the next lemma

- b(3) = 6c(3) - a(1)p(2) (1)
(3) = 6%a(3) - 6%a(1)a(2) + 7a(1)’ (2)
b(2) = a(1)® - 4a(2) (3)
22b(3) = 6%a(3) - 5a(1)? + 6%a(1)a(2) (1)
-2b(3) = 6¢(3) + a(1)b(2) (5)

These come respectively from L.ho ((ii) and (iii)) , L.6. (i) ,

he7o ((iii) and (ii)) .

Lemma 1.8, b(3) = a(1)5 5

Proof (1) and (5) above give 2a(1)b(2) = =b(3) and (3) with

this gives 2a(1)(a(1)? - 4a(2)) = - b(3) (6) .
(2) and (4) give 4a(1)? - 24a(1)a(2) = - 5b(3) (7) .
(6) and (7) give 3a(1)° = 8a(1)a(2) 8) .

By 4e5ey b(3) = + a(1)3 e If Db(3) = - a(1)3 s

(6) becomes a(1)3 = 8a(1)a(2) , which contradicts (8) , so b(3) = a(1)3 3
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Lemma 4,9 There is an integer k such that

(1) a(1) =4k® (1) a(2) = &*  (1i1) a(3) = 1C .

Proof b(3) = a(1)3 o With L4.4(i) and 4.7. (i) this gives,

&1&11) = 1 for all primes p =6t *+1 o Hence a(1) = k12 for some
P

integer k1 o
From (8) above, we see that a(1) is even, so a(1) = 4k2 for
some k

Parts (ii) and (iii) follow from (8) and (2) above.

% Lemma 4610 If kX is asin 4.9., then a(l) = k8 .
i . —— 3 t-2
Proof - With p + 1 =6t , equate coefficients of y(2)7y(3)

1 1 ki
fP x(1) = P fx(1) « After simpl?eation, this gives

_ b(3)2 2.8

b(2)(36b(4) - b(2)2) , from which we get b(4) = 4%k

= , Since
b(3) , and b(2) are known in terms of a(1) and a(2) . |
|
Hence , from 4.6 (ii) and (iii) , a(4) = e .
We are now ready to prove 4.2,
Proof of 1.2, This is completed with 4.10., since, we have found that,
o 2 2
ex(1) = Wy(1) ,  £x(2) = & y(1)? - aly(2) ,
6 6 6
£x(3) = wy(1)° - 168y (1)y(2) + 1655 (3) ,
fx(h) = k8(y(1)2 - 4y(2))2 s which is exactly what 3.14. gives.
Remark Notice that the only monomial which doesn't appear in f ,

_



namely y(1)y(3) , is the one excluded by 4e1, The form of f also
explains why we could assume a(1), a(l) + 0 .

We now comment on when conjecture A' can be proved.,

Let p>7 and T CG a maximal torus.

Recall that A(p) , the mod p Steenrod algebra, is generated by
the Pi and [ 4 together with the Adem relations,

If tj S HZ(BT, Zp) is a generator, then

i

Pt., = 0 i22
3 _

ﬁ‘tj = 0 (*)

If j : BT »BG is the inclusion, then j : H*(BG,ZP) —>H*(BT,ZP)
is injective, onto the Weyl group invariants by [4, Theorem 20.3] ,
since H*(G,Z) has no p=torsion.

Thus the action of A(p) on H (BG,Zp) is completely determined
by the conditions (%) and the Cartan formula., In particular this action
is determined by the action of P1 o

After these preliminary remarks, we make the following observations
on the Conjecture A' ,

(1) The above rather tedious method for morphisms CA.—’Cj will

generalize to the case Cn —aCr s 2r >nzr , and probably to any

situation H' (BH) —H'(BG) , when

2 max a(G) > max a(H) > max o(G) ,

G and H classical groups or G2 °

But obviously one needs to look for a more efficient method which

{2
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doesn't waste effort on needless computation.
(ii) The work in [9] and Chapter 1 proves A' when G =H .

For G, the cohomology map which is not a.ﬁk does satisfy A' o As

2

in the case Cn —;Cr R the ‘extension’ f' can be described in terms of a

polynomial F(t) o

Lemma Lol Let £ * H%(BGZ) -ﬂf(BGZ) be the morphism of

Proposition 1.2, (ii) o Then the corresponding F (%) is the following

F*(4) = (1=k2(26(1) + 5(2))2) (1 = 52(6(1) = 6(2))2) (1 = 12 (6(1) + 26(2))2))

Procf Just expand F'(t) and look at the coefficients of =-% and =1 o
For example, the coefficient of =1 is
2 2 2 2
KT((6(1) = £(2))7 + (28(1) + £(2))7 + ($(1) + 28(2))7)

= bkz(t(1)2 + t(2)2 + t(1)6(2)) = 3k2x(2) g

Core lel2. The £  in Proposition 1.2. (ii) commutes with P! for all

primes > 3 .

Proof Clear : compare the proof of 3.12. (b) ,
(iii) Chapter 2 proves A' when G = Sp(1) , H # F) sBgsB,Bg, although

the method could probably be extended to cover these remaining cases,
(iv) The method used to prove L.2. won't generalize to the case

C2r —)Cr o Nothing simple emerges from equating coefficents, and one

realizes that one must try something different,.
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We feel that A' could be proved for C —C (any n,r) by
n r

factoring F(t) in a very large extension of Zp[t(1) sonsy BLB) s The
restriction that f commutes with P1 should then be enough to ensure
that the factoring is in Zp[t(1) gauey BE)] &

Finally, the concept of maximal symplectic torus makes sense :
€.8e amaximal symplectic tprus in Sp(n) is Sp(1)n o

One explanation of our inability to construct maps BSp(1) - BSp(n)

with even degrees might be the followingl where G=Spw, H=Spin)

Conjecture If T,5 are maximal symplectic tori in G and H , then
with §* A 40,
for any map g : BG — BH A there is a map g' : BT — BS such that the

following diagram homotopy commutes:

BG & BH
T T
BT 8 s,
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