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In t r oduc ti C2.!}, ._ 

Let C be . the ca t a g or y of p a irs (X, BX ) where X is a C.W. 

complex and BX is a C.W. complex with .a.BX~X.A ,Illo rphism 

betv;leen ob jects (X , EX) ~ (Y, BY) i s a con tinuous f1Lnction 

BX .~ BY . Vie wi l l assume that X i s simply conn ected and t ake 

X to be a h omotopy cla s s rather t han a s ingle complex. The ca t­

agory C i s meanji to be a h omotopy vers i on of the ca t agor y of 

Li e g r oups and Lie homornorp.l.li sms . 

If G i s a compac t Li e e;rou'p and BG a clwJsification space 

as constructe CJ i n C 14 'J, then ( G , BG )C=: C.Ifh :G ~ H is al,ie 

homo"'norphism t hen Bh : BG'~ DH is a mornhism in C. On the other 

hand,a map f:BG· ... B1I corre sponds to an A~ - map G ~ H,sec, 

( 1 31 .There is 2. bijection ( G,n )A
co 

<-'- ( BG , BH ] , 1."here the first 

set i s t h e set of homotopy classes of A ~ -maps homotopic 

throue:h A.:x:; -homotopies , [ 13) • 

Our obje ct is to compare the sizes of the sets 

Hom(G,H ) C. [ G, H l
AgQ 

':';hen G=H, a compact, conne cted, si 'lply conne ct e d simple Lie 

g roup then for Bny map f:BG '~ BG , 'if-x,: 'i\ 4 ( DG ) ;> i s l1l1l1tirlic-

a tion by::,n integer,m.If G,iG
2

,F
4 

,it is proved in ( 9) that 

f-x':H1~ ( DG , Q )J is determined by one intee;er ( n) . .fe discuss the 

p os s ibilj.ty of c;enerc,li sc..ti ol1.s ·.of thi s re sult to m8:')S f:BG~ BII . 

In Chapter 1 the vlOrk i n [ 9) i s ex tended to cover G
2 

and F'4. 
In Chaptel' 2 the rna~Ds BSp (l) ......I). BH 8re discussed . 

In chap t er 3,a cohomlogica l descripti on of the ma~r)s 

BG '7 BII i s Ci Yen i n the liGht of s ome conje c tures 1'v.,rhile i n 

chapter 4 t he se conjectures are discussed. 



Chapter 1. and 

The work presented here complements [9J in that we show that any 

map BG ~BG, G = G2, F
4

, is determined in cohomology by one integer. 

The proofs are by explicit computation. 

and F 
4 

are respectively the exceptional compact simple 

(connected, simply-connected) Lie groups of rank 2 and 4. [See 11 page 84, 

and 19, page 268J. 

Before we give our cohomological description of maps BG2 ~BG2 ' 

we list some results which will be used later on. 

Theorem D. (Dirichlet ) • Let a,b be relatively prime integers. Then 

the set la + nb\n = 1,2 , ••• J contains an infinite number of prime integers. 

For the proof, see [18, vol. 11, page 217J. 
" 

Let (£) denote the Legendre symbol for an integer b 
p 

and a 

prime p 0 

Theorem R. If (£p) -- 1 for all but a finite number of primes p, then 

b is a square. 

For the proof, see [18, vol. I, page 75J , or [6J. 

equal 

Let 

Next a combinatorial result. 

In the graded polynomial ring Z [t1 

dimension and cons.ider the power s urns 

x. 
~ 

be the i-th elementary symmetric 
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' ... , t n ], let the 

Sk = I tl~ • ~ 

1~i~n 

function of the tj. 

t. have 
~ 

0 



If E = (e1 , ••• , en) is a sequence of non-negative integers, 
E e. 

L: e., IIEII = L: ie., x = n x. ~, and E ~ = ne. ~ , 
~ ~ ~ ~ 

define IEI = 

where both sums and products are over 1 ~ i ~ n 0 Then, from 

[10, page 5J, we find 

Theorem S. Sk = ~ (_1)IE I + k k[(I E I - 1)~J xE/E~ 
ItEII =k 

This expresses Sk as a poliynomial with integer coefficients in 

the x .• 
~ 

Note that every monomial which could occur inSk f or 

dimensional reasons, does occur wit h non-zero coefficient. We will 

mostly use the Theorem reduced modulo a large prime p, and the f orm of 

k will be such that all these coefficients remain non-zero when reduced 

mod p " 

Now let G be a compact, connected, simply connected simple 

Lie group, and t(G) the set of primes f or which H (G, Z) 
,~ 

has torsion. 

Thus t(G) C {2, 3,5~, see [20, 21 J • Let R be any subring of the 

rat ionals in which one can invert each of the primes in t (G) . Let 

i : Z ~R be the inclusion. 

I t is well known that BG is 3-connected and n
4

(BG) is isomorphic 

to z, [20J. Hence by the Hurewicz theorem, H
4

(BG,Z) ~ Z 0 Also 

by the universal coefficient theorem [12, page 243J, H4 (BG,Z) ~ Z and 

H4 (BG,R) ~ Hom (Z,R) ~ R, as abelian groups. 

Let x be a generator of ~(BG,Z ) , as a Z-module. 

Let x be a generator of H4 (BG,R) as an R-module. 

2. 



Lemma 1.10 Let f : BG -} BG * be",continuous function and f x = ax • 

Then a is an integer. 

~. Let f*x = bx • Then b is an integer. 

Consider the exact sequence 0 -} Z -} R -} R/Z -} 0 and the 

corresponding coefficient sequence [12, page 239J: 

o -} H4 (BG,Z) i..=; H4 (BG,R) -} ~(BG,R/Z) -} 0 •• 0 

We deduce that i,~x = ox , ex + 0 

exax=box o Hence a = b = integer. 

and since i 
* 

is .natural, 

Finally let T C G be a maximal torus, and j BT -}BG the 

inclusion. The Weyl group of G acts on H* (BT ,R). Let IG be 

the subring of Weyl group invariants. Then we easily deduce the following 

from Theorem 20.3 , page 67 of [4J 0 

Theorem W • There is a monomorphism j * * * H (BG,R) -} H (BT ,R) , with 

image IG. 

One can paraphrase this informally as "H'~ (BG,R) is the subring of 

Weyl group invariants in H:~ (BT ,R) " • 

Section 1 G2 0 

From [11, page 84J we find that we can choose a maximal torus 

T C G2 with H*(BT,Z) ~ Z[t(1),t(2),t(3)J/I where dim t(i) = 2 

and I is the ideal generated by t(1) + t(2) + t(3) 0 

We use Theorem W to describe H'~ (BG
2

) , so since t(G
2

) ~ , ,~, ; _ 

let R = Z [i J 0 



The Weyl group of G2 acts by permuting the t (i ) and the 

transformation ( t (1) , t (2), t (3) ) -> ~ (t (1) , t (2) , t (3) ) 0 Let y ( i) 

be the ith elementary symmetric function in t (j)2. Then 

in H* (BT, R) and H * (BG2,R) is t he subring generated by 

and xC-6) = y (3) • 

For more information on G2 , see [5, section 18J • 

With this notation, we will prove the following : 

1 2 
y (2) = 1;: y (1) 

x (2) = y (1 ) 

Proposition 102. For any map f BG2 ~BG2' t here is an integer k 

such that either 

(i ) f"'x (2) 2 = k x (2) , f*x (6) = k6
x (6) 

(ii ) f*x(2) = 3k
2
x (2) 

.~ 6 
1 6 ( ) 3 or , f~x( 6 ) = -27k x (6) + 2k x 2 0 

Notice that in (ii) * * () ( 2) 2 ( ) f f x 2 = 3k x 2 , f*f"~x ( 6 ) = (31/) 6x (6) • 

"-
We mruce a comment on whether a map s~tisfying (ii ) can actually exist. 

In [17, page 5.95J, Sullivan conjectures that if p is a prime 

there does not exist a map g: BSU (p) ~BSU (p ) with 

Explanation. Here KO is the complex K-theory funct or and ~ the 

cohomology operation defined in : J. F. Adams, "Vector fields on spheres" 

Arm. Maths. 1962, vol. 75. The induced map in KO 

SU (p) denotes the special uni,t ary group. 

, 
is denoted gO 

A generalization of Sullivan' s conjecture is the following: 

Let W be the "feyl group of G, with G as above. Then if p 

divides the order of W, there does not exist a map g: BG ~BG with 



Recall from [11, page 84J that the Weyl group of G2 has order 12 • 

By using [9J , we see that 

f~ 0 ft = 1/1
3k2 

: KO (BG
2

) ~KO (BG2 ) • (*) • 

Thus the generalization of Sullivan's conjecture is relevant to the 

existence of a map with the property (,:,) • 

We will prove 1.2 by writing down the condition that . f~' commutes 

wit h pi the 'teenrod reduced power [15J • 
p 

We therefore need to compute the action of on 

H*(BG2, zp) , p an odd prime. By abuse of notation, we will also denote 

the generators of H*(BG2, zp ) by x (2), x (6) • 

Let S. 
J 

= L t(i)2j. this can be expressed as By Theorem S , 

s-

a polynomiaL with integer coefficients in the y(i), hence also as a polynomial 

in x (2), x (6) with coefficients in R • 

Lemma 1.3. piS. = 2j ~ t(i)2 j +p-1 
J L 

i 

Proof - Clear from the fact that P1t(i) = t(i)P and the Cartan formula 

1 1 1 
P xy = xP Y + yP x, see [15J • 

We use this to identify some of the monomials in P1x (i ) 

Cor. 1 .If-. If f = 6t - 1 , then 

(i) t P
1
x (2) = 3x(6)t + (t2(2t - 1)/4)x (2)3x (6)t-1 + 

(ii) t P
1

x (6) = x (6)[«3t - 1)(2t - 1)/4)x (2)2x (6)t-1 

••• • 

+ 0.0 J 0 



Proof (i) By theorem S , 

L t(i)6t = 3y(3) t + *t
2
(t + 1)y(1)3Y(3)t-1_3t2Y(2)Y(1)Y(3)t-1+ 

•• 0 

1~i~3 

= 3x(6)t + 1 2 3 t-1 
4t (2t - 1)x(2) x(6) + ••• , 

since y(2) = b(1 )2 • 

(i) now follows since P 1 x ( 1) = 2:: ,1 t(i)2 = 2 2:: t(i)P+1 • 

(ii) Similar • 

Lemma 1.5. If p = 6t + 1 , then P1x (6); ix(6)t+1 + ••• , i + 0 

mod p • 

From 1.3 (ii ) P
1
x (6) = 2x(6)S3t 

= 2x(6) (3y(3)t + ••• ) = 6x(6)t+1 + •••• 

To start the proof of . Prop. 102, note that for dimensional reasons, 

f*x(2) = a(2)x(2), f*x(6) = a(6)x(6) + b(6)x(2)3 • 

Our task is to compute a(2), a(6) and b(6) 0 In the course of the 

proofs of lemma. 1.6 and lemma 1.8, we show that a(2) = 0 => r':< = 0 • 

Lemma 1.6. a (6) = ja(2)3, j = .±. 1 • 

Proof In p1f~< x (2) = f*p
1
X(2), with p = 6t - 1 , equate coefficients 

of x(6)t 0 Using the computation of P1x(2 ) in 1.4, this gives 

a(6)t = a (2) mod p, for infinitely many p, (by theorem D) • 

Thus a(2 ) = 0 => a (6) = 0 • 

If a(2) + 0, we have, a (6)6t = a(6 ) 2 = a(2)6 mod p and so 



263 
a (6) = a (2) and a (6) = Z a (2) 0 

By Lemma 1.1 at the begining of the Chapter, a (2) is an integer. 

Lemma 1.7. If a (2) = 0 then f* = 0 0 If a (2) + 0, then 

(i ) j = 1 => b (6) = 0 and a (2) = k2 
f or some integer k. 

(ii) j = -1 => a (2) = 3k2 , b (6) = t k6 for some integer k. 

7 

Proof With p = 6t - 1, in p1f *x(2) = f*p1X (2) and f>:'p1x (6) = p1f*x(6) 

respectively, equate coefficients of x (2) 3x (6) t-1 and x (2)2x(6)t. 

This gives 

1 - -
63 

, a = t (3t - 1)(2t - 1) 1 
= 12 · 

"-

If a(2 ) = 0 , ( 2) => b (6) = 0 and Lemma 1.6 => a (6) = 0 • 

Thus f* = 0 • 

Assume henceforth that a (2) + 0 • 

(i ) Putting j = 1 in (2) and (1) gives, after rearrangement and using 

the relation (~) 
p 

= a(2 ) 3t -:1 , 

9b (6) = a (2) 3a ((~) - 1) , 
P 

Hence b (6) = 0 and (a~2 ) ) = 1 , P = 6t - 1 0 

Now choose p = 6t + 1 

p1f* x (6) = f*P1x (6) t o get 

x (6) t+1 and equate coefficients of in 



a (6) = a (6) t+1 mod p i.e o (a~2 )) = 1 • 

Hence (a~2 )) = 1 for p > 3, so a(2) = k2 • 

(ii) Putting j = - 1 in (1) and (2) gives, after rearrangement 

- 2a ( 2 )3b ((_1)t(a~2 ) ) + 1) = b(6) 

a a(2)3(_1)t(a(~)) + 1) = 9b(6) • 

If we use the values of a and b, we see that both these equations become 

a (2)3( ( _1)t(a (~) ) + 1) = 108 b(6) • 

If (a~2 ) ) = _(_1)t f or p = 6t - 1 , then b(6) = 0 0 But if we 

equate coefficients of x(6)t+1 and x (2)3x(6)t respectively in 

p1f*x(6) = f~'p1 x(6) with p = 6t + 1 , we get 

a (6) = a (6)t+1 

a (6)b t = b ' a(2)3a (6)t 

Hence - 1 = 1 , contradiction. 

, 

So we must have (a;2)) = (_1)t with p = 6t - 1 , and 

a(2)3 = 54b (6) 0 Therefore a(2) = 3b (2) and b (2)3= 2b (6) • 

Now (;) = (_1)t if p = 6t ± 1 , hence 

(b ~2)) = 1 , P = 6t _ 1 , and from (3), 

(b~2 ) ) = 1 , p = 6t + 1 • 

Thus b(2) = k
2 

f or some integer k 0 

Proof of 1020 Tllicing j = 1 (respo j = - 1) in 1 0 6 and 1.7 shows that 
~, 

f has the f orm given in 1.2 (i) (resp. 102 (ii)) 0 

8 



*( ) >1' ( ) It is still possible that if amorphism h: H BG2 ~ W' BG
2 

has 

the form given in 1.2 (ii) , then h may not commute with pi for all 

large primes p 0 We will prove in Chapter 4 , Cor 4.12., that such an 

h ~ commute with pi • 

Section 2. F4 • 

We show in this section that in cohomology, maps f: BF4 ~ BF4 ' 

fall into two distinct types, just as for G2 0 These cohomology 

classifications can be best understood in terms of our general conjecture on 

maps BG ~ BH, formulated in Chapter 3. When G = H = F 4' this 

is proved as Corollary 1.22., below. The first step in this is 

Theorem 1,,8. For any map f : BF4 ~ BF4 ' there is an integer le, such 

that either (i) * 2n all x E H4n(BF 4) f x = le x , or 

CH) r':' r':'x = (21c2)2nx , all x E H4n(BF 4) • 

Before starting the proof of 1.8 , we quote the following result 

from [9J 0 

Lemma 1.90 [Hubbuck] If A is a polynomial algebra over the mod p 

Steenrod algebra , let x E A have dimension 2m 0 Then there is ayE A , 

with dim Y = 2q, q + p - 1 = tm, t > 0, such that if x and y are 

members of a basis for the indecomposables, so that the monomials in this bo.~;I.) 

form a Z - basis for A, then, 
p 

t 
= (XX + •• 0 , et + 0 mod p 0 



To begin the proof of 1.8, we need to describe H*(BF
4

) • 

note that since 

coefficients in 

: .' t.fF 41 :::. \ l.} '~1 
1 z [t, "3 ] = R • 

Let T C F4 be a maximal torus. Then 

~ we will take 

First 

.,t.. . i" 

H~(BT, R) ~ R[t (1) , t(2), t(3), t(4)] and H
e

(BF
4

, R) is the subring of 

Weyl group invariants. T will be chosen as in [5, page 534J • 

Let y(i) be the i th elementary symmetric function in the t(i)2, 

then the generators of H*(BF
4

) are polynomials in the y(i) , from the 

form of the Weyl group. 

We can choose generators xCi) as follows: 

x (1) = y(1) , x(3) = y(3) - i y(1)y(2) 

and 

1 ( . 2 3 2 x (6) = y(2)Y(4) - 36 y(2) y(2) - '2 y(1) y(2) 

The first three generators are taken from [5, section 19J • 

To see that x (6) is invariant under the Weyl group, we know from [5] , 

that we have to check that x (6) is invariant under 

(i) permutations of the t(i) and sign changes t(i) ~ - t(i) , 

(ii) the map t(i) ~ t(i) - i (t(1) + t(2 ) + t(3) + t(4)) • 

Now x (6) is clearly invariant under (i), whilst under (ii) 

1 (' 2 ) y(1) -> y(1) , y(2) ~ '8 5y(1) - 4y(2) + 24 X 

y(4) ~ 2~6(4Y(2) + 8X - Y(1)2)2, X = t(1)t(2)t(3)t(4) 0 

to 



Thus one checks that x (6) is invariant under (ii ) 0 

To prove 1.8 , we will compute f* in t erms of these generators. For 

dimensional reasons, f* has the following f orm 

f*x(1) = a (1) x(1), f*x (3) = a(3)x(3) + b(3)x(1)3 

f~x(4) = a (4) x (4) + b(4)x(1)4 + c(4)x(1)x(3) • 

l'x(6) = a (6)x (6) + b(6)x (1)6 + c(6) x (3)2 + d(6)x(4)x(1)2 + e(6)x(3)x(1)3 0 

We will assume a (1) + 0, otherwise it follows from t he arguments 

* below that f = 0 • 

Using Lemma 101, we see that a (1) is an integer. 

Our t ask now is to comjbute the coefficients in r'~. 

Lemma 1010 a(i) = j: 1 0 

Choose p = 12t - 1 , and in p1f*x(1) = f*p1x(1), equate 

coefficients ~f x (6)t : 

1 t -
p x (1) = px(6) + ... , , by Lemma 109 I ~., ~ 

= ~(a(6)x(6) + ••• )t + •• 0 0 

Hence t 
a(1) = a(6) mod p, , since the 2 12 

so a(6) = a(1) 

congruence is t,rue for infinitely many p. Similarly a (4) 2 = a(1)8 0 

Next choose p = 8t + 3, and equate coefficients of x (8)t+1 in 

p 1f * x (3) = f*P 
1 
x(3), to ge t a(3) = a(4) t+1 mod p , for infinitely 

many p 0 Hence a (3) = a(4)t+1a(1)4t+4 = a(4)t+1 a (1)3a (1) i (p-1) 0 

Thus a (3)2 = a (1)6 • 

\I 



Lemma 10110 

(~) = a (4)t mod p p = 8t - 1 (1 ) 

t 
8t - 5 (2) = a(3) a(4) = 

= a(4) t-1 = 8t - 7 (3) 
. t 

8t - 11 (4) = a(6)a(4) = 

= a (6)t = 12t - 1 (5) 

t (6) = a(3 )a(6) = 12t - 5 
t (7) = a(4)a( 6) = 12t - 7 

= a(6)t-1 = 12t - 11 (8) 

Proof If p = 12t - 1 , we know from the proof of 1 .10 that 

t 
a (1) = a(6) , mod p ; also 

6 
a (6) = a(6)a(1) • 

t 6t Hence a(6) a (1) = a(1 ) 

(
a (1' ) a(1 ) ~ (P-1 ). and since .~ = , (5) is proved 0 The rest of relations 

are similarly derived. 

Lemma 1.12" a(4) = 1, a(6) = a(3 ) • 

Proof Put t = 4s + 2 in (5) and t = 6s + 3 in (1) 0 This gives 

(a~ ) ) = 1 = a(4)6s+3 mod p, p = 48s + 23. Hence a(4) = 1 • 

l2 

mod p 

In (5) choose t = 4s + 1 , and in (2), t = 6s + 2 0 This gives 

a(6) = a(3 ) mod p ~ p = 48s + 11. Hence a(6) = a(3) 0 

We can now prove 1 0 8. 



1'3 

Proof of 1.8 0 

(i) If a(3) = 1 , then all the a(i) are 1 , and using the techniques 

of [9J one can easily prove 1.8 (i) 0 

(ii) Assume that a(3) = - 1 0 Lemma 1.11 then gives 

(~) = 1 mod p p = 8t - 1 

= -1 p = 8t - 5 

= 1 p = 8t - 7 

= -1 p = 8t - 11 

To"solve" this system for a(1) , we need 

Lemma 1013. If a(3) = - 1 , 2 then a(1) = 2k for some integer k 0 

Proof We have (a~)) = 1 (resp. - 1) for p = 1, 7 (resp. 3, 5) 

mod 8 Hence (2a; 1) ) = (~) (~) = 1 for all primes p > 3 0 0 

This implies that 2a(i) = } for some even j 0 Hence 

a(1) = 2(~ j)2 = 2k
2

• The proof of 1.8 (ii) Can now be completed using 

[9J by noting that f~f~x(i) =(2k2)2ix (i) , mod decomposables. 

To get a better idea of the form of f~' in this case, we need 

detailed computations of the action of p1 on H*(BF
4

) 0 

Proposition 1014. If a(3) = - 1 , then a( 1) = 2k2 , and 

(i) c(4) = 
_ 41<:8 , d(6) = 40k

12
, c(6) = 24]<:12 

(ii) bO) = - kr'3 

(iii ) e(6) = _ 4k12 , b(4) = 
__ 1 k8 

12 0 



This is the main computation of the section. 

Lemma 1.15. If P = 8t + 3, then 

Proof p1x(1) = 2 E t(i)4t+2 = a polynomial in the y(i) by Theorem S 0 

The coeffic~ent of Y(4)ty (1)2 is 2(-1)t(2t + 1)(t + 1) and 

y(4)ty(1) 2 can come only from x (1) 2X(4)t 0 

The coefficient of y(3)2y (4)t-1 is -2(-1)t(2t + 1)t and 

( ) 2 (L)t-1 f x (3)2x( L)t-1. Y 3 y ~ can come only rom ~ 

The coefficient of y( 2)Y(4)t is -2 (-1)t (4t + 2) and can come only from 

x (6)x(4) t-1 • 

Lemma 1016. If P = 8t - 1 , then 

1 t t 2 )t-1 P x(1) ~ 8(-1 ) (x(4) - t x(1)x(3 )x(4 + 000) 

Proof As in 1.15. 

Lemma 1017. If P = 8t + 5, and a = ~ (t + 1)(t + 2) then 

Proof As in 1015 , but one has to be careful to note that the term 

y(1)y(2)Y(4)t occurs in x(3)x(4)t and in x (1) x (6)x(4)t-1 , when 

computing the coefficient of x(1)x(6)x(4) C-1 0 

Armed with these computations, we can prove 1014 (i) • 

14-



'5 

Proposit ion 1 . 18. 8 12 12 
c (4) = - 4k , d ( 6 ) = LI-Ok , c ( 6 ) = 24k • 

Proof To find c(4), equate coefficients of X(1) x (3)x (4) t-1 in 

P 1 
{:< x( 1) = f*P 1 x ( 1) , with P = 8t - 1 in 1 01 6 

-a (1)t2 = tc(4) a (4)t-1 _ t 2a (1) a (3)a (4)t-1 • 

So , -a(1)a (4)t = a (1)(c(4) - t a (1) a(3 )) , since a (1)4t-1 = 1 , mod p , 

and hence 8 8 
-16tk = c(4) + 16t k • 

• (4) _ 1. ,,8 , •• c = '1""'- since 8t = 1 mod p 0 

To find d (6) and c(6) , using 1. 15, wit h p = 8t + 3, equate 

coefficient s of X(1) 2x(4)t and x(3)2x(4)t-1 , respectiv€ly in 

So, f or example , for d (6) , 
"-

(t + 1) a (1) 2a (1)4t - 2d(6) a (1) 4t-4 = (t + 1) a (1) , 

-C (t + 1) a ( 1 ) 6 - 2d ( 6) ) 

6 Therefore d(6) = (t + 1) a (1) 

Proof of 1 . 14 (ii) 

= et + 1) a (1) 6 , since (~) = - 1 0 

In' p1f*x (1) -- f~' p1 x(1) , 'th 8t 5 ' 7 Wl P = + , uS lng 101 . , 

equate coefficients of X(1) 3x(4)t : 

t a (1)( t+ 1)( t+2 ) = t (t + 1)(t+2 )a (1) 3a (4)t + b(3 )a (4)t 

- (t + ~) d ( 6 ) a ( 1 ) a (4)t-1 • 

Now note t hat (~) = - 1 , d(6) = 4Ok12 $ from 101 8 0 Hence we get 



= _1 k 6 
3 0 

For 1014 (iii) we need 

Lenuna 1.19. 

(i) 16k
6
b (4) + c(4)b( 3) = 0 , 

(ii) d ( 6) c (4) - 2a ( 1 ) ~-e ( 6) - ltl/ c ( 6) b 0) = 0 0 

Proof Using [~, we know that f*f*x(4) = a (1)8x (4) : and 

* ~( () ()12 (6) ( ) f f x 6 = a 1 x • So to prove ii for instance, we equate coefficients 

of X(1)3x (3) in the latter equation : 

3 26 
a(6)e(6) - 2c(6)bO)a(1) + d(6)c(4)a(1) - a(1) e(6) = 0, which simplifies 

to 1 01 9 (ii) • 

Proof of 1014 (iii) Substitute the values of c(4), b(3), d(6) and c(6) 

in 1.19 (i) and 1.19 (ii). This gives b(4) and e(6) • 

~~ 

Notice now that i n f only b(6) remains to be determined. To finish 

the determination of f't, we change t ack . 

Define a ring homornorphism 

f~ : H* (BT ) -l- H)~ (BT ) as follows : 

l& 

f;(t(1), t(2), t(3), t(4)) = k(t(1) + t(2), t(1) - t(2), t(3) - t(4), t(3) + t(4)), 

with k an integer. 

Lenuna 1020. 

(i) f~ commutes with pi 0 

(ii) f~ H* (BF 4) C H~' (BF 4) 0 



(7 

Proof (i) Clear. 

(ii) By obvious computation, 

f; y(1) = 2k
2
Y(1) 

f; y(2) = k4 [(t(1)2 - t(2)2)2 +(t(3)2 _ t(4)2)2 + 4(t(1)2 + t(2)2)(t(3)2 + t(4)2)] 

f~ y(3) = 2k
6

[(t(1)2 - t(2)2)2(t(3)2 + t(4)2) + (t(1)2 + t(2)2) 

(t(3)2 - t(4)2)2] 0 

If one computes f~ x (i) , one finds 

* 2 fO x(1) = 2k x(1) 

f'~ x(3) = - 23k6x(3) _1 k6x(1)3 o 3 

f; x(4) = k8
(24x (4) - 4x(1 )x(3) -112 x(1 )4) and 

* ) 12 6 1 6 (2 2 ( ) 3 fO x(6 = k ( -2 x(6) - 9 x(1) + 24 x 3) + 40 x(1) x 4 - 4 x(1) x(3)) 0 

So f~ H* (BF4) C H*(BF4) • 

re use this lemma to complete our determination of 
~, 

f . 0 

Lemma 1,,21. In case (ii) of Theorem 1.11, f'~ has b(6) = - ~ k12 
0 

Proof Note that (f* - f*) x Ci) = 0, i + 6 and 
11 0 * * k " , 6 (f - f~ ) x(6) = (b(6) + 9 ") x(1) • 

Also 

Hence 

f*p1 x(1) = p1f*x(1) = 2k2x(1) 

f;p1x (1) = p1f; x(1) = 2k2x (1) • 



t 8 

For p = 8t + 3, look at the computation of P1x (1) in 1.1 5. 

U sing that, equate coefficients of x ( 1) 6x (4-) t-1 in (~<) 0 From our 

previous de terminations of :.:< >::: 
fO and f , we see t hat .this leads to 

1 12 t-1 
+ (3=- 2(""9 k )a(4-) +(3, 

where (3 does not involve b (6) 

• b(6) = -~ k 12 
0 

• • 

This lemma enables us to give a cohomological description of maps 

f BF 4- - > BF 4-' namely 

Cor. 1022. For any map f: BF4- ~BF4-' there exists 

such that 

Proof In Theorem 1 0 8., we divided the maps r'~ into two cases. We find 

an f~ for each of the-se cases: 

(i) Clearly we take f;(t(1 ), t(2), to) , t(4-) ) = k(t(1) , t(2 ) , tU), t(4-)) • 

(ii) Again fro~ Lemma 1.20, 1.21, we find that we can take 

f~ (t(1) , t (2), t(3), t(4-)= k (t(1) + t(2), t(1) - t(2), t(3) - t(4-), t( 3) + t(4-)) 0 



ICf 

Chapter 2 Maps BSp( 1) -7 BH • 

Let H be a simple, connected, simply connected, compact Lie group, 

and f: BSp ( 1) -> BH a continuous function. We abbreviate "continuous 

function" to "map" • In this chapter we give a cohomological classification 

of the maps f 0 Our method requires that we deal with each group H 

individually and with specific generators for H*(BH). We will give the 

details of the classification when H = Sp (n), SU (n), Spin (n) or G2 • 

For a precise statement of the classificQtion for H = Sp(n), we 
~h(. :. ~ ','''I~yJ 

need more notation. Let T C Sp(n) be A maximal torus of the symplectic 

group Sp (n) . Then H*(BT ) ~Z[t(1) , ••• , ten)] since T has rankn, 

and from [11, page 82] we deduce that the Weyl group will act by permuting 

the t(i ) and changing signs. Hence by Theorem W of chapter 1 , 

H *(BSp (n)) ~ Z [xC 1) , ••• , x(ri) J, as a graded ring, where x Ci ) is the 

i th elementary pymmetric function in the t (i )2. Notice 'that since 

the dimens ion of t(i) is 2, dim xCi) = 4i • 

From above H>!'(BSp(1 )) ~ Z[x(1)]. Put x = x (1) '" 

Abbreviation e . (Z (i)) = j th elementary symmetric function of the variables 
J 

Z(i). Put e.(Z(i)) 
J 

So for example, 

= e. when the Z(i) 
J 

x (j) = e.(t(i)2) • 
J 

Let f : BSp (1) - >BSp (n) be a map 0 

are understood. 

is the induced homomorphism, assume that there exist integers m(1) , ••• , men), 

such that f>!x(j) = a(j)xj, a(j ) = e.(m(i)2) '" 
J 

Call fm(1) , ••• , men) J, the degree of f 0 

The main result of Section 1 is 



zo 

Theorem 2.1. Any map f: BSp (1) ~BSp (n) has a degree. 

In Section 3, we will use Sullivan's construction of maps 

BSp (1) ~BSp (1) to construct a map f : BSp(1) ~ BSp(n) of degree {m(i) 1, 

where each m(i), i = 1 , ••• , n, is odd 0 We also compute the degrees 

. r.ep:eesentations Sp( 1) -Sp (n) • 

In Section 2 we use symplectic K - theory to put mod 2 restrictions 

on the possible degrees of maps. 

In Section 4 we will give the analogue of 201. for H = SU(n), Spin (n) 

In Chapter 3 we make a conjecture on what the analogue should 

be for maps BG- -> BH, where G is any compact, connected simply connected 

simple Lie group. 

Section 2.10 Homomorphisms H *(BSp(n)) ~ H '~(BSp( 1)) • 

We need the following result from number theory: "If a polynomial i" u,,~ VMi .. i,I, 

with integer coefficients factors into linear factors modulo every large 

prime p then it factors into linear factors over the integers." See [6] • 

If the polynomial is of degree 2, this result is Theorem R from the 

o 
int)duction to Chapter 1 • 

We will prove Theorem 2.1 by giving necessary and sufficient conditions 

for graded ring homomorphisms H ~'(BSp (n)) ~ H ''\BSp( 1)) to commute wi th p i 

for all large ~rimes p. The idea behind the proof is that mod large p , 

has the stated form when we take coefficients in some extension of z 

The naturality of pt then tells us that 
)~ 

f has the stated form with 

coefficients. A use of the above number - theory result knits this mod p 

"nf t" t th t " f * the stated form '-·ve( Z • ~ orma lon oge er 0 glve _ 

Theorem 2010 is a corollary of 

p 

Z 
P 

• 



1.1 

* * A graded ring homomorphism h : H (BSp (n)) ~H (BSp (1)) Proposition 2.2 

commutes with pi for all large p iff there exist inte gers m(1) , ••• , men), 

such that hx(j ) = a(j)xj, a(j) = e.(m(i)2) 0 

J 

T f 
. ~~ 

~ he proof 0 2.1. f ollows by taklng h = f • 

We prove 2.2 by computing the action of p i on H\BSp (n)) and 

writing down t he condition that h commutes with p
i 

• 

To begin the proof, we introduce some notation. 

(ii) 2s = P + 1 • 

From one of the axioms for the Steenrod algebra, we have P1t( i ) = t(i)P 

since dim t(i) = 2 0 There is also the Cartan formula 

for ~L,V E H~"(BSp (n))o Thus -!P1t(i)2 = t(i)p+1 • 

Proposition 203. (i) 1 is - S 
"2P l-k k1 c s+ -

(ii) tP
1
x(i) = ~ 

1 ~j~i 

1 1 1 P uv = uP v + vP u , 

= ~ (-1 )j -1 x (i + j - 1)S ., where x (0) =10 
S- J 

1 ~j~n-i+1 

Proof (i) The Cartan formula and linearity give 

1~i~n 
1 

This is equivalent to tP Sk = kS s+k_1 • 

(ii) The Newton relation 

S - x (1)S 1 + ••• + ( -1)ix (i) S . + ••• + ( -1 )rrx(r) = 0 , So = n , r r- r-l (2 .~_) , 

shows that the two given expressions are equivalent. We prove the first 

one by induction on i. I t is true for i = 1 , since x (1) = Si 0 



Assume that it is true for i. Then 

*p1 t (1 ) 2 t ( . 1 ) 2 c.. •• 0 J. + = I t(1)2 ••• t(j)2s ••• t(i + 1)2 

1~j~i+1 

Hence, 

+II t(k
1

)2 ••• t(k.)p+3 ••• t(k.)2 , 
J J. 

j 

where the first summation is over all sets [kj 1 with 1 ~ k1 < ••• < ki ~ n 0 

So by the induction hypothesis, 

x(i)S s + I 

This completes the induction. 

If h is as in Proposition 2.2., then for dimensional reasons, 

hx(i) = b(i)xi , i = 1 , ••• , n, where the b(i) are integers and 

x E H4(BSp(1),Z) is the generator. 

If h commutes with p1 , 

i = 1 , ••• , n , 

We lose no generality if we assume that ben) ~ 0, for otherwise it 

is clear from the proof of 2.2. below, that we can work with the largest m 

such that b(m) + 0, and we would then be dealing essentially with a 

homomorphism H '~(BSp(m)) -t H ~'(BSp( 1») 0 

Assume henceforth that p > max [Ib(n) 1,2,nt 1 0 

Vfuen i = n, by using 2.3, we see that (2.5) becomes, 

Hence s-1 = nx • 

Recall from Chapter 1 that Sk is a polynomial~with integer 

coefficients, in the x Ci) 0 By abuse of notation we also denote 



Sk(b(1) , ••• , ben)) by Sk. Then with this notation, we have proved that 

S = n. s-1 

Lemma 2.6. S = s-1+k S1<: mod p , 

Proof We have proved the lemma for k = 0 0 Assume as an induction 

hypothesis that Si. = S. for 0 ~ j ~ k • s- +J J 

ThelJil. 

hX(k + 1) = b(k + 1)xk+1 c 

Hence from 2.3. and 2.5., 

(k + 1)b(k + 1)xk+s = h(x(.k)S - x(k - 1)S 1 + ••• ) • s s+ 

Using the induction hypothesis we ge t 

(k + 1)b(k + 1) = b(k)S1 - b(k - 1)S2 + ••• + (-1)k- 1b (1)Sk + (-1)kSS+k • 

However, we have the "Newton" relation, (2.4) 

S1<:+1 - b(1)Sk +0 •• + (_1)k+1(k + 1)b(k + 1) = 0 • 

The lerruna f ollows. 

We have to "solve" the system of equations Ss-1+k = Sk for b(i) 0 

For this purpose, choose a finite extension K 

2n () 2n-2 ()i.(.) 2n-2i x - b 1 x + ••• + -1 0 ~ x + ••• + 
~ rJ ,,,, 

of Z in which 
p 

(-1)~(n) = 0 (2.7), 

has 2n roots , namely let K be the splitting field of (2. 7) over Z 
P 

In particular, 

is a product of linear fac tors in K[z] , if we consider b(i) as being 

reduced mod p 0 

• 

If the roots of (2.8) are rei), i = 1 , ••• , n, and those of (2.7) 

m(j), j = 1 , ••• , 2n, then by renumbering if necessary, we can arrange that 



rei) = m(i)2, i = 1 , ••• , n. Then we have 

b(j) = e.(m(i)2) , 
J 

We show that (2.6) => m(i) E Z 
P 

m(i) E K • 

• 

Proposition 2.9. For each i = 1 , ••• , n , m(i) E Z • 
P 

Proof Our as sumption that p > /b(n) / ensures that m(i) + 0 for 

i = 1 , ••• , n 0 By elementary Galois theory, [see for instance: "Algebra" 

by S. Lang, page 205] we know that 

m(i) E Zp iff m(i)p-1 = 1 • 

Put m(i)p-1 = 1 + u (i) , u(i) E K. Then 

I m(i)2k+p-1 = I m(i)2k(U(i) + 1) , k = 0 , ••• , (n - 1) • 

1~i~n 

But (2 06) says that I m(i)2k+p-1 = I m(i)2k. Hence (2.10) gives 

Lemma 2012. 

I ' m(i)2ku (i) = 0, k = 0 , ••• , (n - 1) • 

1 ~i~n 

For each i = 1 , ••• , n, u(i) = 0 0 

Proof By induction on n. If n = 1 , (2.11 ) becomes 

m(1)2ku (1) = 0, k = 0 0 Hence u(1) = 0 • 

As an induction hypothesis assume that 

{I m(i)2kwi = 0, k = 0 , ••• , (n - 2), m(i)p-1 = 1 + wi ' wi E K } 

1 ~i~n-1 

implies that w. = 0 
J. 

for i = 1 , ••• , (n - 1) 0 

14 



25 

Treat (2011) as a system of linear equations for u(i) 0 If one of 

the u(i) is zero, we use the induction hypothesis to prove that the 

remaining u(i) are also o. 

Assume therefore that no u (i) is 0 0 

For a fixed n, consider the following statement: 

fat least r of the m(i)2 are equall • 

Assume ( *) true for r. Without loss of generality, we can in fact 

th t th 1 t of the m(~)2 are equal: 2 2 
men - r + 1) = .•• = men) 0 assume a e as r • 

Now put v = ru(n) and v. = u(j), j ~ n - r 0 (This is where n J 

we need the assumption that p > n~ ] 

Note that ~(i)2 = m(j)2 => m(i)p-1 = m(j)p-1 , hence 

and so we have u(n - r + 1) = u(n - r + 2) = ••• = u(n) • 

Hence (2011) gives 

L ( . )2k m ~ v. = 
~ 

1 ~i~n-r+1 

o , k = 0 , ••• , (n - r) • 

u(i) = u(j) 

Since not all the v. 
J 

are zero, we must have det A = 0, where 
2· 

Aij = m(i) J, and this is a Vandermonde determinant: 

det A = 11 (m(i)2 - m(j)2) = 0 0 

i<j 

Hence there exist distinct i and j with m(i)2 = m(j)2 , so 

that (r + 1) of the m(i)2 are equal • Hence by induction 

2 2 2 
m(1) = m(2) = .0. = men) , consequently u(1) = ••• = u(n) , which 

implies that n.u(1) = 0, so all the u(i) are o. 

This completes the proof of 2.12., hence of 209. 

, 



I 

I 
I 
I 

Theorem 2.13. The polynomial (2.7) factors into linear factors over 

the integers. 

Proof Pro position 2.9. tells us that (2.7) factors into linear factors 

mod p, for all l arge p. Hence 2.13 follows from the number theory 

result mentioned a t the begining of the section: see [6, page 22 9 J • 

Proof of ProEosition 2.2. From 2.13 we know that given an h , there 

are integers m(i) such that 

hx(j) = a(j)x
j

, a(j) = e . (m(i) 2) 
J • 

Conversely, it is obvious from (2.6) that such a homomorphism commutes 

with pi for all odd primes p. 

Section 202. Homomorphisms KSp(BSp(n)) ~ KSp(BSp( 1)) • 

Let f BSp(1) ~BSp(n) be a map 0 Then f * : H':'(BSp(n)) ~H*(BSp(1)) 

must have the form <l.t.:),-"j bI&.J in Proposition 2.2. 

Recall the ljJk operations in complex K - theory KUO (X) • The fact 

that '0 ° f· : KU (BSp(n)) ~ KU (BSp( 1)) must commute with 
~:, 

givesno further restrictions on the possible f orm of f· 

shall not use this result, we omit the proof 0 

ljJk for all k, 

but since we 

To obtain further information on the integers m (i) , we use the 

representation theory of Sp(n) • 

]'irst we describe KUO (BSp(n)) 0 

Let T C Sp(n) be .. \,emaximal torus. Then KUO(BT) ~ Z[[s(1) , ••• , s(n)JJ, 

see [2, theorem 4.8 J, and KUO(BSp(n)) is isomorphic to the subring of Weyl 



group invariants , [2, Theor em 4.8. and Theorem 4 .4J • 

Put Z(i ) = 1 + s ( i ) so that Z(i ) is the canonical (virtual ) line 

bundle over BS1 , 1 where S is the group of complex numbers of unit 

modulus. The action of the eyl group of Sp (n) is to permute the Z(i) 

and t o invert: Z(i ) -) Z(i ) - 1 . Hence 

KUO (BSp (n)) ~ Z[[y(1) , ••• , y (n) JJ, y (j) = e . (Z(i ) + Z(i ) - 1 - 2) • 
J 

All this follows from the Atiyah·Hirzebruch results in [2J relating 

the complex representation ring, R(G) ) of a compact connected Lie group G 

° t o KU (BG) 0 

KUO(BSp (1) ~ Z[[.v(1) JJ from above. Put y = y (1) 0 

17 

Let Ch: KUO( ) -) n H2m ( ,Q) be the Chern character, [2, section 1.10 J, 

m 

and l et Ch
2m 

be the m t h component. Ch is a natural ring homomorphism 0 

If fx (i ) ~ is the s et of generators of H*(BSp (n)) defined in 

---Section 2 01 . then Ch
4i

y (i ) = x (i ) . This is shown for instance in the 

proof of 2.17. below. The first non - zero component of c\"J ,i J 7 

Ch : KUO (BSp (n)) -) n H
2m

(BSp (n) , Q) , is Ch4i
y (i ) 0 

m 

Recall from Proposition 2.20 that f~x ( i) = a (i )x
i 

• 

Lemma 2014. With the above notation f or generators, 

, 
Proof Clearly f· has the form 

f ~Y ( l·) _- a (l·) t y
i + yi+1y, (0)' . t d Y KUO (BS (1) ) a 1 an ln eger an E p • 

, "-

By the naturality of Ch, Chf·y( i ) = f~Ch y (i ) . Equate coefficients 

i of x i n this equation : 



a(i)t xi = f >:'x ( i) = a (i)xi
• Hence a' ( i ) = a (i ) • 

Note 2015. General references for the structure of KUO(BG) are [3J and [2J • 

To get restrictions on the m(i ) , we will need to compute 
t 

f Oy(1), and for this purpose we describe the relation between R(G) and 

KUO(BG) in more detail. 

In [2J, page 29, an isomorphism is given: " ex 
/-... 

R(G) ~ KUO (BG) , where 
~ 
R(G) is the completion of R(G) under the augmentation topology. Again, 

/'.. 
in sec tion lj·.7. of [2 J, th ere is a monomorphism R (G.) -+ R (G) and a 

monomorphism ex: R(G) -+KUO (BG) • 

If Sp and U are the "big" symplectic and unitary groups, the 

standard inclusion Sp C U defines a transformation i : KSp ~' ( ) -+ KU *( ) 

of group valued functors, where KSp ~'() is the symplectic K - theory functor. 

An element of KUO (BSp(n)) is called symplectic if it is in the image of i 0 

Now y (1) is in the image of a symplectic representation under ex, 

and so is symplectic. 
t 

Consequently f·Y(1) is symplectic • Our 

restrictions on the m(i) arise from this fact o 

Lemma 2016. The subgroup of symplectic elements in KUO (BSp(1) ) is 

generated by 2 2i-1 2 2i 1 ,y, 2y , ••• , y ,y , • •• 0 

Proof Since an element of lCUO(BSp (1)) is a (formal ) power series in y, 

we have to decide which monomials in y are symplectic. 

Since y is symplectic, so is 

If " t 2y2i. I t" se conJuga e, ~s symp ec ~c. 

2i-1 
Y for i ~ 1 • Since 2i 

Y 

Finally we observe that y2i is 

is 

not symplectic. A proof of this fact can be based on page 144 of [11 J 0 



, 
So if ry(1) must be even. We note that 

by 2.14., ~(1 ) = a (1) 

Theorem 2.17 a(r ) = L m(i )(m(i ) + r - 1 ) 
r 2r - 1 ' 

where ( ) 

1 ~i~n 

binomial coefficient. 

Cor 2.18 m(i ) (m(i ) + 2r - 1 ) 
2r 4r - 1 is even. 

Proof This is just the condition that a (2r) is even, and puts 

2-primary restrictions on the m(i ) as we shall see below. 

The proof of 2. 17 requires the 

Theorem 2.17 is true f or n = 1 i.e o 

a (r ) = ~ (ffi + r - 1) 
r 2r - 1 m = m(1 ) 

Proof We have f: BSp (1) ~BSp (1) with 
, 2 

f"y = m y + 

Now l: KU
O

(BSp (1)) ~KUO(BSp (1)) is easily computed, since 

2 2 
if; y = 4y + y 0 

The naturali ty, 2 ~ ~ 2 
if;fy=fif;y, 

2 2 
m (4y + y ) + L a(i ) (4y + y2 ) i = 

i~2 

of l gives 

is the 

One can calculate the a(i ) inductively by equating coefficients in ( *) . 

~ .. __________________________ ~s 



, . 
We know a ' priori that r = Ij;m, so computing the a(r) amounts 

to writing Zm + Z-m - 2 as a polynomial in Z + Z-1 -2 • 

Proof of 2.17. Consider the 'hern character Ch. On KUO (BT) this 

can be defined on generators by Ch Z(i) = et(i) 

generator of H2 (BT ) and et(i) = 1 + t(i) + ••• 

where t(i) is a 

t(i)j 
+ ., + ••• 

J. 

Since Ch is a ring homomorphism, we can make the following 

calculations. 

Ch y(1) = Ch ~ (Z(i) + Z(i)-1 - 2) 

Ch y( 1) = 2 

= ~ (et(i) + e-t(i) _ 2), so 

1 ~i~n 

I Sr where S L t(i)2r 
(2r H ' = r 

r 1 ~i~n 

• 

• 

"" = A(r)xr A(r) I m(i)2r It is easy to see that f'S where = r 

and x E H*(BSp (1)) is the usual generator. 

Hence f~~ Ch y(1) and 

r~1 

= L 2 
t = x • 

r~1 

From the special case n = 1 in 2.19, we have 

r 
x 

(2rH 

for i = 1,2 , •• , n • 

= L m~i) (m(i) + r - 1 ) (et + e -t _ 2)r 
2r - 1 r 

i 

30 



, 
If we combine this with f~~ Ch y (1) = Ch f·Y (1) we get 

2 I A(r )xr 

L [ I m(i) (m(i ) + r - 1 ) ] (et -t _ 2)r = + e 
( 2r ) ~ r 2r - 1 

r r i 

L a(r ) 
t -t _ 2)r • = (e + e 

r 

Hence a (r) = L m(i ) (m(i ) + r - 1 ) 
r 2r - 1 • 

1 ::;i::;n 

We now come to exactly what restrictions the condition that a (2r) 

must be even puts on the m(i ) • First a lemma and definitions 0 

Lemma 2.20 0 

m = L i 
a.p , 
~ 

For ~ integers m and n, and a prime p let 

n = I b jp .j be their p-adic expansions with 

o ::; ai' b j ::; 1>' - 1. Then 

_
_ IT. (ai ) 

~ b i 
mod p • 

Proof See [15, page 5]. We need the lemma only for the case p = 2 0 

Definition 20210 (i ) 

odd and define ~ (m ) = s • 

For any integer m, 2s , write m = n , n t 

(ii ) Divide the set {m(1) , ••• , men) 1 into disjoint subsets I o' 11 , ••• , 

such that if a,b E I s then ~ (a) = ~(b ) = s • 
I 

(iii ) In the factorisation of (2.8 ) consider the factor ( z _ m(i ) 2)d( i ) , 

d ( t ) ~ 1. Assume that I contains the distinct elements 
s 

and define Card I to be 
s 

Note that w1der this definition, ICard Is = n 

s 

+ ••• + d ( j .) • 
~ 

• 



( iv) Write C.(r) = m(i ) (m(i ) + r - 1) 
~ r 2r -1 t 

Proposition 2.22. (i) C. (r ) 
~ 

= ~ (m( i ) + r) . 
~r 2r 

(ii) If ~( r) = ~ and ~(m ( i» f s + 1 , then C. ( 2r) 
~ 

(m(i ) + r - 1 H 
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is even • 

Proof C. (r ) 
~ 

= 1!W. 
r (2r-1)t (m(i ) -r)! 

= 2m (i ) 
(m(i ) +r ) (2r)! (m(i) - r)! • 

(ii) Note that ~(mn) = ~ (m) + ~(n) . Hence 

~ (m ( i )/ (m ( i ) + 2r» = ~(m ( i » - ~ (m ( i) + 2r) 

= ~ (m ( i » - ( s + 1) ~ 0 if ~(m ( i» > s + 1 

= ~ (m ( i» - ~ (m ( i » ~ 0 . . • • < s + 1 • 

Combining this with (i) gives (ii) • 

We can now state what restrictions symplectic K - theory puts on the 
"-

rn (i ) . Wi th the above notation, 

Theorem 202,3 0 

Card Is is even • 

(i ) If I is not empty, then s > 0 implies that 
s 

(ii) Again let s > 0 , and let the elementsof I for which d ( ) s 

odd be the first 2t of the rn's, [there has to be an even number of 

such m's by (i ) ] m(. 1) , ••• , m(2t) 0 

and C. with C. = 0 or 1 such that 
~ ~ 

m(2i) = 2s ( 1 + 4w. + 2C: , ) 
~ " 

m(2i -1) = 2s (1 + 4w. + 2(; .. 
~ 2l- I 

Then there exist integers w. 
1 

) , for i = 1 , ••• , t • 

is 



Cor 2.24. If all the m(i)2 2 are equal to m say, then 

(i) n odd implies that m is odd or zero 

(ii) n even implies that a(2r) is even. 

Proof (i) We are given that m E I for some s s ~ 0 and Card I = n 0 s 

If s > 0, 2023 (i) tells us that n is even. 

(ii ) This is obvious since C.(2r) = C(2r) , say, and 
~ 

a(2r) = nC(2r) • 

Notes (a) Vlhen n = 1 , part (i) of the corollary has been known for 

several years. See "Proceeding of a conference on algebraic topology", 

University of I+linois at Chicago cir cle, 1968, page 293, conjecture 38 0 

(b) It is clear from 2024 (ii) that in Theorem 2.23 (ii) , we cannot 

get any information on th ose m(i) for which dei) is even. 

(c) There is a precise formula for C. and w. given below in terms of the 
~ ~ 

2-adic expansi~ns of the m(i) • 

(d) With 2023. and 2.24., we have a necessary and sufficient condition 

f or a(2r) to be even. 

Proof of 2023. c(i) First, we may assume that the distinct elements 

in I are the first t' s out of m(1), m(2) , ••• , men) • 

Write m(i) as 

m(i) = L a. 2u+s , aiO = 1 , a. = 0 or 1 and 1 ~ i "" t' , so that 
~u ~u 

u;:O 

m(i) E Is • 

Let r = 2s - 1 + b(1)2s + b(2)2s+1 
+ •••• Then 2022. implies that 

c.(2r) is even if M(j lE$ l :>~ and hence 2.18 becomes 
J 

d(i)C.(2r) = 0 mod 2 0 
~ 
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I 

Since ~(m(i)/2r) = 0 , we see that 

i 

d(i)(m(i) + 2r - 1) = 0 mod 2 • 
4r - 1 

From lemma 2.20., we have 

If we choose b(j) = 0 for each j, all the binomial coeff icients 

in the above line become 1 , hence 

L d (i) = 0 mod 2 .. 

i 

Thi s proves (i), since the left hand side is Card Is 0 

(i~ . Again we assume for the sake of notational simplicity that the 

m(i) are the first 2t out of m(1) , ••• , men) • 

From th ~ proof of (i) , it is clear that the information we have is 

2:: d(i)aik ... aik = 0 , r > 0 , k1 < k2 < ••• < k • r 
1 ~i~2t 1 r 

Since we are assuming that the dei) are odd, this becomes 

L aik ••• aik = 0 mod 2, 2 ~ k1 < ••• < kr' r ~ 1. (** ) 
1 ~i~2t 1 r 

Notice that this does not involve When t = 1 , t ake r = 1 

in (** ) to 'get , for all u > 1 • 

In general, to solve the system (** ), we need the following! 

~ ________________________ ""d 



Lemma. 

Consider the f ollowing system of equations over Z2 : 

'\' a. k 
L ~'1 

1 ~i~2t 

This system is 

each i , 1 ~ 

0 •• a. k 
~, 

= 0 
r 

satisfied iff the 

i ~ 2t, there is 

a. k = a' l k 1., ~ , 

a 'k are equal in 

an i l , i l + i , 

for all k ~ 2 • 

r ~ 1 • 

pairs ioe. for 

such that 

Proof (1). Obviously, if ai,k = ai' ,k' the system is satisfied. 

( ii). We solve ( *>~) by induction on t. The system has been solved 

when t = 1 • 

Assume that the solution has the stated form for systems, 

L 
1~i~2t" 

••• a'. k = 0 , 
~, r 

t" < t , < ••• < k • r 

If in E ~~*) the a's are all 0 or all 1 , we are finished. 

Assume therefore that not all the a. 2 ' 1., 
for instance, are equal 0 

Without loss of generality, we can assume in fact that 

In 

0." = a = 1 , 2q,2 

( ,c,'.) .... ~ "-,' if we take 

a = 0 = 2q+1,2 

we get 

••• = a2t 2 = 0 , , 

a. k 
~, 2 

00. a. k = 0 , 
1., r 

3 ~ k2 < 0 •• < k • r 

f or some 

By the induction hypothesis, for each i, there is an i', + i , 

with 1 ~ i, i' ~ 2q, such that 

a. k = a., k' for all k ~ 3 0 
1., ~ , 
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Putting this information into ( *~ reduces the system to, 

••• a. k = 0 , 
l, r 

3 ::; k2 < ••• < k 
r 

and again by the induction 

hypothesis applied to this system, we get: for each i , there is an 

i', + i, 2q + 1 ::; i , i' ~ 2t such that 

for each k ~ 3 • 

So finally, for each i, there is an i t , 1 ~ i , i' ::; 2t , 

such that a. 1 = a., 1 for all k ~ 2 0 
l, Cl, C 

This completes the proof of the 

lemma 0 

To complete the proof of 2.23 (ii), using the len,ma just proved, we 

can renumber the m(i) so that for each i, 1 ::; i ::; t , 

a2i ,k = a2i- 1 ,k for all k ~ 2 • 

We can define C. to be a
i1 

, 1 ~ i ~ 2t and 
l 

w. to be I a2j _1 ,u 2
U+S 

J 
, 1 ~ j ::; t • 

u~2 

It is easy to see that 

so we don't 

need to worry about the signs of the m(i) 0 

Section 2.3. Construction of maps BSp (1) ~BSp (n) • 

In this section we realise geometrically those maps whose degrees 

contain only odd integers, and also compute the degrees of \Sa~~ ~Ap ~ 

First, some notation. 

t 



~7 

Let H denote the quaternions and M (H) . the ring of n x n matrices, 
n 

with entries in H • If A E Mn(H) denote by A the quaternion conjugate 

(A) .. 
~J 

= A .. 
~J 

where the second bar denotes quaternion conjugation. 

Vii th this notation, Sp (n) = fA E Mn (H) I At A = I 1, where I is the 

n x n identity matrix, and At the tra~pose of A 0 

Let T C Sp(n) be a quaternionic torus i.e. 

T = fA E M (H) lA .. = ° , i ~ j , A .. A .. = 11, so that n ~J ~~ ~~ 

T = S~( 1 ) x "0 x Sp (1) , n factors • 

Theorem 2.25. If fm(i) , ••• , men) 1 is a sequence of odd integers, 

there is a map f BSp (i) -+BSp (n) of degree hn(1) , ••• ,m(n)l . 

Proof ( ) ( ) ( ) (m2 ";n Let f m : BSp 1 -+BSp 1 be a map of odd degree m_ ~ 

Sullivan'.s sense) as constructed in [17, Corollary 5.10]. 

By [14]' , BT ~ BSp(1) x ••• x BSp(i) 0 Hence we can define 

11 = 11 f(m(i)): BT -+ BT to be the cartesian product. 

i ~i~n 

Define f: BSp (1) -+ BSp(n) to be the composite, 

BSp (1) 
11 B' -+ BT .!l BT ~ BSp(n) , where 11 is the diagonal and i the 

the inclusion T -> Sp(n) 0 

It is clear that f has degree fm(1) , ••• , men) 1 • 

We now come to maps induced, by Lie group homomorphisms, 

Sp (1) -+Sp (n) , in cohomology • 

The only Lie groupmapsSp (1) -+ Sp (1) are isomorphisms,"" C. O(\~r"o1t~ . 

To describe representations of Sp(n) , it is useful to have 

the following alternative description of Sp(n) : 



Sp(n) ={A E GL(2n., 0:) I xl = I , 

[7, page 21 ] • 

At [ 0 
-I 

n 

The (virtual) complex representation ring of Sp(1) is 

RSp(1) ~ ~[aJ, where a: Sp(1) ~Sp(1) is the identity, see [1] , 

last chapter. The tensor power 

. 2r+1 determine t he actlon of Ba 

a homomorphism Sp(1) ~ Sp(22r) • 

2r+1 a is symplectic and we want to 

in cohomology. For r ~ 0 , 2r+1 
a 

see 

is 

Proposition 2.26. Let A be the diagonal matrix diag ( Z,~) in Sp(1), 

BE = 1 , so that A is in a maximal (complex) torus. Then 

2r+1A d· (E2r+1 2r-1 2r-3 -2r-3 -2r-1 
a = lag , g , ••• , 2 , ••• , 53 , ... , B 

where the number of entries g2 (r-i)+1 (or -2(r-i)+1 since B , 
equal numbers 'Of them) is (2r ~ 1) , o ~ i ::; r • 

Proof a
2r+1A is the (2r + 1) - st tensor power of A, 

A2r+1 0 This is defined inductively by 

A 
r = BA:J , r ~ 2 • 

, ... , ~2r+1) 
there are 

call it 

The number of entries of the form g2(r-i)+1 is easily calculated: 

one uses the relation (1 + 1)2r+1 = 2 ~ (2r ~ 1) • 
O~i~r 

Proposition 2.270 The integers m(i) corresponding to 

are as follows: 

, 

~ __________________________ ~1 



m(k) = 2i + 1 , I (2: + ~ ) < k ~ I (2~ + ~) , 1 ~ i ~ r 
J 

O~ j<i O~j~i 

m(k) = 1 , (2r + 1 ~ k ~ r 1 ) • 

Proof In 2026., we computed the action of 2r+1 
0; in the maximal torus 

of Sp(1) 0 The integers m(i) are the exponents of B. 

To determine the action of a sum of representa tions, note that if 

o;,~ are two r epresentations of Sp(1) , then 

L 

o 
~(g) J for g E Sp (1) • 

Hence we can state, 

Proposition 2.28. If no; is the sum of n copies of the identity 

representation of Sp(1) , then each integer in the degree of Bno; is 1 0 

Proof Under no;, diag(Z,Z) in Sp (1) goes to diag(Z,Z ,.0., 3,3) in 

sp (n) so the proposition follows. 

From 20280 and 2.27. we can compute the effect in cohomology, of any 

polynomial in 0; with non-negative integer coefficients. 

I t is interesting to note that all the maps we have constructed have 

only odd integers in their degrees. In the light of this, we make the 

following conjecture. Let f : BSp(1) ~BSp(n) be a map and 

x (n) E H4n (BSp (n)) the usual generator. Then if f *x(n) f 0, each integer 

in the degree of f is odd. 

The requirement that f *x(n) + 0 is essential, otherwise the degree 



may have even integers in it see 3.19. in Chapter 3 • 

Note that this cannot be proved using symplectic K - theory, with the 

methods we have used. See the note (b) after Cor. 2.24. 

Section 20 4. Homomorphisms H *(BH) ~ H *(BSp( 1)) • 

In this section we give a cohomological classification of maps 

BSp(1) ~BH for some groups H other than Sp(n) 0 So let 

f : BSp(1) ~BH be a map and consider the following particular cases for H 

(a) H = SU (m) , the special unitary group. 

First we describe the cohomology of BSU(m) • 

H*(BT, Z) ~ Z[t(1) , ••• , t(m)] where I t(i) = 0 0 

Hence by Theor~m W of Chapter 1 

of Weyl group invariants. Since 

([11 page 7 9J, [4, last chapter]) 

H *(BSU(m)) C H ~« BT, Z) 
'l4 

thisAacts by permuting the 

H*(BSU(m), Z) ~ Z[x(1) , ••• , x(m)], xCi) = e.(t(j)) , 
~ 

is the subring 

t(i) , 

x( 1) = 0 0 

Since the dimension of x(m) is 2m, f~x(m) = 0, if m is 

odd, so we may as well assume that m is even, = 2n and f*x(m) + 0 0 

Vihen H = SU(m) , it is convenient to reg~rd Sp(1) as SU(2) and 

choose the generator of ~(BSU(2)) accordingly i.e o if S C SU(2) is ,~e 

. maximal torus, then H *(BS) ~ Z ['si's 2]' si + s2 = 0 and 

H (BSU(2), Z) ~ Z[x], x = s182 • 

For dimensional reasons, f *x( 2i) = a(i)xi , and f >.'< x(2i + 1) = 0 0 

'f. 



---------------=-=======~-~.~---. 

We have to determine the a (i). Just as in Section 1 , we first have to 

compute pi and then write down the c ondi tion tha t f'~ should commute 

with p i • 

Proposition 2.29. P1x(i) = L (-1)j -1 x (i - j)S "1 , where 
P+J-

j>O 

x (O) = 1 , x ( 1 ) = 0 and Sk = L t(i)k • 

1::::i::::m 

We need only know the Cartan formula 
1 1 · 1 

P xy = xP Y + yP x for Proof 

x,y E H~' ( BSU (m)) and the f act that P1t(i) = t(i)P 

We can now state what form the a(i) take. 

Theorem 2.30. ' If f : BSU(2) -+ BSU (2n) is a map and 

then there exist integers m(1) , ••• , men) , such that 

Proof 

so that 

Hence, 

First note that from 2.29, if 2s = p + 1 , 

P
1xi -_ 21." ( - 1 )s-1 xs+i - 1 d"f 2 an 1. m = n, 

1 
P x (m) = x (m)S 1 p-

f'~P 1 x(m) = a(n)xnf*S 1 ' 
p-

p i f* x (m) = 2na(n)x.s+n- 1 ( - 1) s-1 • 

f;~S = 2n( - x) s-1 • 
p-1 

r'~x(2i) = a(i)xi , 

a(i) = e"(m(j)2) 0 1. 

(2.31 ) 

4\ 

• 



Now by Theorem C of Chapter 1 , 

s = '\' (_1)IEI 
p-1-1-2k L 

11E 11 =p-1+2k 

(p - 1 + 21c)( I E I - 1) ~ xE 

E ~ 

where if 

Hence, 

f*S = xs - 1+k '\' 
p-1+2k L 

since 

Let 

••• =s-1+k 

eel 
a (1) 2 a (2) 4 ••• J 

f*x(2i + 1) = ° . 

(s - 1 + k )( IF I - 1 H aF 

F ~ 

Now, Lt. + 1; f2 . = s - 1 + k mod 2 0 
~ J 

Hence by comparing (*) and (M ) , we have 

f'~ S = 2 ( _ x ) s - 1 + kS I 
p-1+2k s-1+k • 

e , 
m· 

, 

In particular, if we take k = ° and look at 2 031 , we get SI = n 0 s-1 

Similarly, we prove t hat 

S~_1 +k = Sk' k = 0 , 1 , ••• , (n - 1) , with So = n 0 

We are now formally in the same position as in Section 2.1. Namely 

we factor, 

2n () 2n-2 () 2n-4 () n ( ) Z - a 1 Z + a 2 Z + ••• + - 1 a n 

1\ 
I 



in some extension of Z , then show the factoring to be in Z and 
p p 

finally , show that the polynomial factors over Z 0 The m(i) are 

the roots of this polynomial. 

* Note that we have not used the fact that f' comes from a 

geometric map , but merely that it commutes with p1 • 

We have made the central theme of this work, the conjecture to be 

formulated iR Chapter 3 • For maps BSU(2) ~BSU(m) , the conjecture 

amounts to the following! 

Corollary 2,,32. Let S ,T be maximal tori in SU (2) and SU (m) , 

2 
and let W E H (BS ) 

previous notation. 

be the generator so that w = s1 = - s2 in our 

Then if hI : H'~ ( BSU (m)) ~H* (BSU (2)) is a graded 

ring homomorphism which commutes with p1 for all large p, there is 

an extension h : H'~ (BT) ~ H'~ (BS ) • In fact, 

ht (2i - 1) = m(i)w, ht(2i) = - m(i)w, i = 1 , ••• , n • 

We have to check that (i) hx(2i + 1) = 0 and 

(ii) hX(2i) = a(i)xi • For (i) note that hS 2i+1 = ~ h t(j)2i+1 = 0 , 

j 

so hx(2i + 1) = 0, for each i ~ 0 0 

The proof of (ii) again involves manipulating symmetric functions. 

Assume by induction that k hx(2k) = a(k)x for k ~ i 0 

induction note that hS 2 = 2 ~ m(j)2w
2 = 2a(1) w

2 
0 

1~j:::;n 

To start the 

Since i 
x = = a( 1)x 0 and S2 = - 2x(2) , we have hx(2) 

4l 



For the inductive step we have hS 2i+2 I ( .) 2i+2 
m J , 

j 

and 11 applied to the Newton relation gives 

hS 2i+2 + a (1) xhS2i + --_ + a(i)xi hS2 + (2i + 2)hx(2i + 2) = 0 _ 

~ence, if we define Si' = ~ m(j) 2i, we have 

j 

2(- 1 ) i+1xi+1S~' + 2a(1) xi +1( _1 )is .'' + 0 .. + (2i +2)hx(2i + 2) = 0 _ 
~+1 ~ 

Using a Newton relation again, this gives 

(2i + 2)hx(2i -}- 2) = 2 ( - 1 ) ixi+1 ( S~+1 - a( 1 )Si' + a(2)S~~1 + ___ + • __ ) . 

= 2 ( - 1fxi+1[( a (1) S~'-_._+ (i+1)( _1 ) ia (i+1 )) _ 
~ 

( ) " ()" a 1 S. + a 2 S. 1 + __ 0 ] 

~ ~-

= 2(i + 1) a (i + 1)xi+1 0 

Hence hx(2i + 2) = a(i + 1)xi+1 0 This completes the inductive step 0 

Next we consider the case H = Spin (m) 

(b) H = Spin (m) • 

H* (BSpin (m) , Z) has only 2 - torsion, see [16, page 290] _ 

So H~' (BSpin (2n + 1) ,R) ~ H"~ (BSp (n) ,R), if R = Z [tJ 0 

Hence the classification of maps is the same a s f or BSp (n) , 

except that the m(i ) are in R • 

If m = 2n , let T C Spin (2n) be a maximal torus, then 

H* (BSpin (m), R) is isomorphic t o the subring of Weyl group invariants in 



H"" (BT,R) =R[t (1) , ••• , t(n) ] , by Theorem W • 

H* (B Spin ( 2n) ,R) ~ R[x(1) , ••• , x (n - 1),i], x Ci ) 

and 

z = t (1) t (2) ••• t en ) • 

1 
To classi fy induc ed homomorphisms, note first that P z = zS 1 s-

where Sk = L; t ( i ) 2k, 2s = p + 1 , and P 
1 

x Ci ) is the same as f or 

Sp (n ) . Then we can state 

Proposition 2.33. For any map f : BSp (1) ~ B Spin ( 2n) , there exist 

elements m(1) , ... , men) ER, such that if 

f* : H;~ (B Spin (2n) ,R ) ~ H* (BSp ( 1) ,R) then l 'x( i ) = a ( i )xi , l" z = axt n 
, 

where a ( i ) = e . (m (j) 2 ) and a
2 

= e (m( j ) 2) • 
l n [a = 0 if n is odd] 0 

Proof VIe have described the action of P 1 on H~' (B Spin (2n) ,Z ) 0 

p 

Fr om this we notic e that we can copy t he proof from the case H = Sp (n) 0 

If n is odd, a will have to be zero, and some m( i ) = 0 0 

. n 
The m( i ) are in R sinc e f'~x ( i ) = b (i)xl

, f* Z = bx'2' for some 

2n () 2n-2 )n. b,b ( i ) E R and the m(i ) are roots of t - b 1 t + ••• + ( - 1 D(n ) = 0 , 

b en ) 
2 

= b 0 

Finally we clas sify maps f~' : H* (BG
2

,R) ~ H* (BSp ( 1) ,R) where G
2 

is t he exc eptional group of rank 2, and R = ~[~], ( H~" ( G2 ' ~ ) has 

2 - torsion), so if T C G2 is t-hf!maxima l torus, H* ( BG2 ,R) will be 

isomorphic to the Weyl group invariants in 

H"" (BT,R) ~ R[t (1) ,t (2 ) ,t ( 3) J, t (1) + t (2) + to) = 0 • [~ (~o.tLk e.( 1.1 
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and there 

is a relation y(2) = i y(1)2 corresponding to t(1) + t(2) + t(3) = 0 • 

For more information on G2 , see [5J • 

With this notation we can state 

Proposition 2.34. Let f: BSp(1) ~ BG2 be a map 0 Then there are 

elements m(1), m(2), m(3) ER, satisfying m(1) ± m(2) ± m(3) = 0 

(for some choice of signs) such 'that fi,': H>:'(BG2,R) ~H* (BSp(1),R) 

has the form, f*y(i) = a(i)xi, i = 1,2,3, a(i) = e.(m(j)2) • 
~ 

Proof The action of P 1 in H* (BG2, ?lp) is the same as in 

H>:'(BSp(3), Zp) apart from the relution y(2) = i y(1)2. Hence 

f*y(i) = a(i)x
i 

and we can find the elements m(i) E R with the stated 

properties, from the work on sp(3) 0 

" 1 2 
a(2) = 4 a(1) and this is equivalent 

The latter equals 

The relation y(2) = i y(1)2 gives, 

to 0 = m(1)4 + m(2)4+ m(3)4 - 2a(2) 0 

(m( 1) + m(2) + m(3)) (m( 1) + m(2) - m(3)) (m( 1) - m(2) + mU)) (m( 1) - m(2) - m(3)), ' 

By now it is clear that we seem to be ge tting the same sort of 

classification for maps BSp(1) ~BH. Using our methods, we have to 

work with a specific set of generators and this entails a separate 

calculation for each group 0 A technique which deals with all groups at 

once,is required. 

We make conjectures on the cohomological classification of maps 

BG ~BH in Chapter 3 0 



Chapter 3 • The maps BG ~ BH • 

In this chapter we discuss a cohomological description of the 

maps BG -> BH 0 Henceforth G and H will be compact, connected, 

simply connected simple Lie groups. 

We first formulate the conjecture alluded to at the end of the last 

chapter. 

Let A(p) be the mod p Steenrod algebra. 

Choose maximal tori T,S in G and H respectively. 

Conjecture A' • Given any morphism f : H* (BH,Zp) ~H* ( BG,Zp) of 

graded rings and A(p) - modules, f or p sufficiently large, then there 

f' to make the following diagram commute : 

(Bi)*j 

H* (BH,Zp) 

f' 
~ 

where i is the appropriate inclusion. 

Remarks (i ) One would hope to be able to knit together the mod p 

information as in section 2.1. 

(ii ) Proposition 2.9 and the results in the last section of chapter 2 prove 

the conjecture when G = Sp (1) , and H f F~.,E6,E7,E8' the exceptional 

groups 0 

We will illustrate the implications of the conj ecture A' by 

4-7 

I I 

I 

I I 
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discussing the maps H'~ (BSp(n)) -7 H* (BSp(r)) in detail. For this 

purpose it is convenient to give another formulation of At which 
J 

.is equivalent to A when G ::: Sp(r) , H ::: Sp(n) • 

So let T,S be maximal tori in Sp(r) and Sp(n) respectively 

and let fy(i) l (resp. {x(i)l) be the corresponding set of generators 

of H*(BSp(r)) (resp. H*(BSp(n)) defined in Chapter 2. For brevity 

put We shall abuse notation by using the same symbol 

to denote mod p cohomology where convenient. 

Let f: C -7 C be any morphism of graded rings and define n r 

g(i) by the formula 

fx(i) ::: g(i)(Y(1) , ... , y(r)) • 

Choose a transcendental, t over Cr and form the polynomial 

F(t) 

F(t) 

::: 1 - g(1)t + ••• + (_1)ig(i)ti 
+ 

E Cr[t] C Z[t(1) , ••• , t(r), tJ • 

••• + Thus 

Assumption A. If f is a morphism of graded rings and A(p) modules 

for a suff iciently large prime p, then F(t) factors into linear 

factors, over Zp[t(1) , ••• , t(r)] , as 

n 
1::;i::;n 

(1 - th(i)) where Z 
p 

is the algebraic closure of Z 
p 

With this particular set of generators for C and C , n r 

is true, so is A since the linear factors of F(t) will be 

o 

if At 

. 2 
is a generator of H (BS) 0 Also A implies 

At : see 309 below, ur.rl ~'IO, 

At the moment we are unable to prove At in complete generality, 

4s 



but we will give the proof in special cases, essentia l l y when G and H 

are "about the same size" 0 For a ful ler statement of what can be proved , 

see the end of Chapter 4 • 

We also make th e fo l lowing conjecture, which we t ake to be a 

homotopy ver sion of AI • 

Conj ecture B. For any map g: BG ~ BH, there is a map 

g : BT ~ re to make the following diagram homotopy commute: 

BG BH 

BT BS 

A summary of the chapter follows. 

In section 3.1, we shall construct many maps between cohomology 

rings 
w i ~l\ 1 

which commute /\ P for all l arge p. The statement of A amounts 

to saying that these are all the maps which wil l commute with p1 0 

In section 302, we reali~e some cohomology ma ps geometrically, and 

in section 3. 3 we prove that if f : H* (BH) ~H* (BG) is a morphism commuting 

with p1 for all lar ge p and G is "bigger" than H, then f = 0 0 

The term "bigger" is explained there. 

Section 3010 Morphisms C - ) C 
n r • 

Our programme will be to obtain a complete list of morphisms 

Cn ~ Cr which commute with P 1 , under the assumption A. The 

generalization to other groups is mentioned in Chapter 40 

Recall that for a graded ring morphism f : C ~ C n r we defined 

I 
I 



fx(i) = g(i)(Y(1) , ... , y(r)) • If f satisfies assumption A, we 

can identify some terms in the polynomials g(i). For example, 

Lemma 3.1. If we take integer coefficients and the coefficient of the 

monomial y(1)i in g(i) is a(i) then there exist integers m(j) 

such that a (i) = e.(m(j)2) • 
]. 

Proof We have + •••• 

y(1) s-1 +i • equate coeff icients of We are then essentially dealing with 

morphisms, en ~ C1 0 Now use Proposition 2.2. 

Assume henceforth that fx(n) + 0, otherwise it will be clear 

that we could work with the largest n' such that fx(n') ~ 0 • 

Assume also that p > maxfm(i)2J 0 

Vii th Z' coefficients, we have 
p 

F( t) =TI (1 - h(i)t) • 

1::::i::::n 

g(i)(t(1)2 2 e.(h(j)) , Hence , ••• , t(r) ) = ]. 
a symmetric function 

in the t(i)2 of degree i (in the t(i)2) • 

The fact that f commutes with p1 enables us to prove that 

Assumption A => Conjecture A' , see lemma 3.7. To begin the proof 

of this lemma we need, 

Lemma 3.3. 

Proof 

Each h(i) is a quadratic form over Z 
p 

in the t(i) 0 

First, ~ h(i)j is for each j a polynomial im the 

i 
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ek(h(i)), hence a polynomial in the g(i), so homogeneous of degree 

2k in the t(i), i.e. 

L h(i) j = homogeneous polynomial in the t(i)2, of de gree 2j. ( ,:, ) 

1 ~i~n 

Step 1. Let h(i) = k(i) + l (i,1)t(1) + • •• + l(i,r)t(r) + higher degr ee 

terms, where t he k's and l's 

Equate constants in (*) : 

are in Z 
p • 

L k(i)j = 0 for j = 1, 2 , ••• , n • 

i 

Hence k(i) = 0 for all i 0 One way to see this is to note that 

each elementary symmetric function of the k(i) must be O. Hence the 

k (i) are roots of the polynomial with all but the leading coeff icient 

zero. 

Next, equate coefficients of t(q)j in ( ~e ) 

L l(i,q)j = 0 for all j • 
i 

Hence l (i,q) = 0 for each i and q • 

We prove that h(i) contains no terms of degree three -or higher. 

Step 2. Write all monomials in the t's 

Order them as follows: 
e e

1 
f 

t(r) r 0 •• t(1) > t(r) r ••• 

and e. 1 > f. 1 f or some i ~ 2 • 
1.- 1.-

if 

e e
1 in the form t(r) r ••• t(1) 0 

e = f r r , ... , e. = f. 
1. 1. 

For the sruce of notational simplicity, drop r eferences to the index i 

I 

I 

1 
I 



.... ~~:;::;;;;....~-----======~==-===---===-==---.--~.-,----: ~6"-2.-1 

for the moment.Let Vi ' be the l a r ze st mon omi a l of degree~ 3 , 'shich 

occurs in 8.ny h.Thus . . I 
e l e if 

w '=Wt(jl) ••• t(js) s, jl:> •. • )js' where i f 1'1=1, 0.11 the -c's in 1,:/ 

are larger than t ( jl) ,so that if any rnonorni a l, T,] , of de Gree ec:u e.l to 
f ' 

d '1/" '. t (. )' 1 ; th f < 'I rr ., ' . e gv lS dlV'l s ible by J1 ' ; en 1 el,lxn .. es s ',.= '.' : . 

We show t hat the coefficient of W' in h(i) i s O. 
I . je

l 
. 

L 1 t th ' ' ff, ·H ·. , . f 11/ J t (' ) t(· )Je . 
00 c a e , coe __ :Lcnen 't 0 - ~ Jl ••• Js s in h(i) J a s 

i v a ries.Such a coefficient can ari se on l y from (Tif ') j s i nce in a ny 

case it comes only from monomi a ls of deGree equa l to de g~:;i ' and 8.11 

these except , VI ' , have fl < el. S ence they c annot contribute t h e f2.ctor 

Wjt(jl)jel . , ' 

Le~ the coeffrcient of W' in h(i) be f1 .• 
1 

Then equa ting coeff ic:ients of (W,)j in (*) g ives 

L ~ ~ =0 for j=l, ••• ,n. 
l~i~ n 1 

Hence ~.=O for e a ch i=l, ••• ,n. 
1 

We assumed that ~ .=0 for some i.This cont'r adictiOl'l s ho':,s th8.t 1 ' 

there i s no moncmial of degr ee ~ 3 in a ny h(i). 

This completes the proof of lem, a 3.3. 

We will prove that each ,h(j) is a square~in lemma 3 .7. No te the 

following: 
n 

( , ) B th f 0' f F ( t) f' (. ) 2 - . ~ f- ' '1 - ~ fe" -" h ( .) i 1 Y e -ac'Gorlng 0 , s J lS o,e lne c. 8.rlCl , 0 i - l...j =l - J • 

(ii)The conclusion (and the pro of ) of lem .a 3 .11 <::1. is v a lid i f :6 is 

replaced by Z ,namelY:Lf wE.. W(r) ,and l'fi*n,then 1.'ih(i ) =h (j) for some j. 
. p , 

(i:1.i)Since fx(n)=O,no h(j) is z ero. 

(3.4). Assume that in8a ch, h(j) the coeff icient of s ome t (lt) 2 i s 

not O. 
'(' 

We prove (3.4) in the course of provine 3.7.It then follo~s : 

from lemma 3.lla,by the above remal"lr ,tha t g iven le the coefficient of 

t(k)~in somi h(j) is =0. 



Our aim is to show that h(i) = (a(i1)t(1) + ••• + a(ir)t(r»2 , 

and since this requires the assumption t hat r commutes with pi we 

rirst indicate how this information is to be used. 

Recall the following identity : 

10g(1 - x (1)t + ••• + ( _i)ix ( i )t
i 

+ ••• ) = - ~ Siti/i (3.4) 
i 

where Si = ~ t(j)2i • 

j 

gives 

express 

This identity can be proved by noting that the left hand side is 

log IT (1 _ t(j)2t) = - ~ ~ t(j)2it i/i 

j j h i 

= - ~ S.ti/i • ~ 

i 

Apply f to (3.4) : 

Since 

i~1 

Hence fS . 
~ 

= 

= 

= 

= 

PiS. = 24S .... l' ~ ~+s-

10g(1 - fx(1)t + ••• 

log IT (1 - h(j)t) 

j 

~ 10g(1 - h(j)t) 

j 

~ h(j)i 0 

1 ::; j ~n 

2s = P + 1 , 

p1fS. = 2ifS. 1 = 2i """' h(j)i+s-i 
~ ~+s- L.., 

j 

) 

• 

Now if P is large enough, for each i, 1 ~ i ~ n, we can 

fS. 
~ 

as a polynomial in the S. , 
J 

so that 
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fS i = a(i)S~ + other monomials, for some a(i) E Zp • 

Hence 

••• , and we arrive at 

2· (')Si-1S la 1 1 s + ••• + ••• = 2i I 

Lemma 307. For each j = 1,2, ••• , n, h(j) = (a(j1)t(1) + ••• + a(jr)t(r))2 0 

Proof. By induction. on r : true for r = 1 0 

Assume true for r - 1 , when 1 ~ i ~ n. If we work modulo 

the ideal generated by t(r), the induction hypothesis gives 

= 

h(j) = (a(j1)t(1) + ••• + a(j,r - 1)t(r - 1))2 + t(r) I p(k)t(k) 

1 ~k~r 

(a(j1)t(1) + ••• + a(jr)t(r»)2 + (b(j2)t(2) + ••• + b(jr)t(r»)2 + • •• 0 

By looking at the coeff icient of t(i)t(r) and t(i)2, 1 ~ i < r , 

in this we see that 

h(j) = (a (j1)t(1) + ••• + a(jr)t(r»)2 + y(j)t(r)2 for some y(j) • 

So combining this with (3.6) we get, 

f h(j)S+i-1 

j=1 

= L [(a(j1)t(1) + ••• + a(jr)-t(r»P-1+2i + (s+i- 1)(a(j1)t(1)+ ••• 

••• + a(jr)t(r»)p-3+2i y(j)t(r)2 + •• 0 ] 

= 



Ler l t l"' . 
In (3.8) equate coefficients of t(r)2it (1)P-1 for i = 1 , ••• , rn 0 

Th ' . '\' ~)(J.)i 0 f 1 . 1.S gJ.ves L f = or ::; 1. ::; tn • Hence y(j) = 0 for 5j ':' \ . 

. j eM 

completes the induction and the proof of the lemma. 

We can now prove that Asswnption A => Conjecture AI • 

Cor. 309. There is an "extension" of f defined by 

fts(i) = a(i1)t(1) + ••• + a(ir)t(r) [z- c. ,,~ (.fi("'I ' S . J 
for 1 ::; i ~ n " 

Proof We know from the factoring of F(t) that fs(i)2 =h(i) , 

renwnbering the s(i) if necessary. The corollary follows since each 

h(i) is a square. 

Next, we identif y the a(ij)2 in terms of the integers m(i) defined 

in Lemma 301 • . , 

Lemma 30 10. 

are equal for each j = 1 , ••• , r 0 

Proof 

gives: 

We have fx(i) = e.(h(k». Equating coeff icients of t(j)2i 
1. 

a(i) 

a(i) 

2 = e. (m(k) ) 
1. 

for 1 ::; j ::; r 0 But 

from 301. The lemma follows. 

From 3010 0 we see that in fact h(i) E Zp[t(1) , ••• , t(r)] for 

each i and F (t) f actors over the integers i.e. the h(i) are mod p 

reductions of elements in Z[t(1) , ••• , t(r.) J. The f actorisation of 



F(t) puts even more restrictions on the a(ij) • In particular, 

e. (h(j)) = fx(i) must be invariant under the Weyl group of Sp(r) 0 
~ 

We are now ready for the main part of the chaptero 

Recall that for any graded ring morphism foe ->C, 
o n r 

assume that fx(n) ~ 0 0 This involves no loss of generality. 

we always 

Under the assumption A, we are able to give a complete list of 

those f which will commute with p1 for all large p. First some 

definitions. 

Definition 3011. Choose an integer U, 1 ~ U ~ r 0 Let 

P = fU1 , ••• , u~l be a partition of U so that U = ~ u. , with 
~ 

1 ~ u. ~ U 0 
~ 

Given P choose a set, B, of non-zero integers Ib(1) , ••• , b(~) 1 

with the b(i)2 distincte P and B depend on U • Now define 

where the product is taken over all possible signs ±, over all subsets 

of f1,2 , ••• , rl containing U elements and all partitions 

of these subsets into ~ parts 

containing u1 , ••• , u~ elements. 

The nunilier of factors in r(U,p,B) is therefore 

n(U,P,B) 
U! the U-1 2 enumerates the signs, 



( rU) the subsets of f1 , ••• , rl and the remaining factor the partitions 

of these subsets. 

Notice that I(U,P,B) is uniquely defined by U,P and B. We 

will abbreviate I (U,P,B) to I when the U,P and B are understood. 

We show that I represents an "irreducible" morphism into C 
r 

which commutes wi th p
i 

f or all odd primes p ' . For a precise statement 

57 

see Proposition 3.12. below. In preparation for this, we need the following 

discussion. 

Let W(r) be the Weyl group of Sp(r) j 

the t(i) and changing their sighs. 

For a graded ring morphism f:C -7C, n r 

it acts on 

let F(t) 

C by permuting 
r 

factor as 

F (t) =I1 (1 - th(i)) with h(i) E Z [t(1) , ••• , t(r)]. Denote this 

1 ::>i::>n 

latter ring by, Z(r) • Then if w E W(r) , wh(i) E Z(r) • 

Since Z is a unique factorisation domain, so is Z(r)[t]. 

Lemma}. II ". For any W E VI (r ) and i E f1 , ••• , rl, wh(i) = h (j) for 

some j E f1 , .. , rl • 

Proof It is easy to see from the definition of F(t) that wF (t) = F(t) • 

By renumbering the hIs assume that i = 1 0 Then 

(1 - wh( 1) t) ••• (1 - wh (n)t) = (1 - h(1 )t) ••• (1 - h(n)t) 0 

Clearly (1 - wh (1)t) E Z(r)[t] is an irreducible polynomial, hence 

prime since Z(r) [t] is a unique factorisation domain. Therefore 



(1 - wh (1)t) divides some (1 - h(j)t) which is irreducible. Since 

the only units in Z(r) [tJ are + 1 this can only mean that 

1 - wh(1)t = 1 - h(j)t, which proves our lemma . 

We paraphr ase this lemma as f ollows Given f : C -t C , form n r 

F(t) = 11 (1 - h(j)t) 0 Then fh(j) J is invariant under W(r) • 

If G(t) =I1 (1 - k(i)t) E Z(r)[ t] , and G(t) E C [t], we 
r 

define amorphism g: Cn -t Cr by s~.nding x(j) 

that G( t) ~esponds to g. 

to e.(k(i)) • 
J 

We say 

We are now ready to state 

Proposition 3.12 0 

G( t) nor H( t) 

H( t) = 1 • 

(a) If I f ac tors as G(t).H(t), then neither 

corresponds to amorphism C -t C unless G(t) = 1 n r 

(b) I corresponds to a morphism 

or 

which commute s with p i f or add primes 

Proof (a ) If some product 0(1 - h(i)t) corresponds to a morphism 

into C , we have proved in the above lemma that the set fh(i) J is 
r 

invariant under W(r). I was defined so t hat it contained exactly the 

p • 

f actors needed to make it invariant: if any factor is omitted, it won't be. 

(b) If we take any linear f actor of I E Z(r) [t], and apply W(r.) to it, 

we find that it goes into another factor of I. Hence 

so we have a morphism f : C -t C n r o W(r)I C Cr[t] C Z(r)[t] , 

' e know that fs(j)2 is defined and equals h(j) , say. 

Also [c.f Q 3.9. and 3.5.] , 

fP1S
i 

= 2i ~ h(j)i+s-1 , and 

j 



Now, 

p1fS . = p1 L fS (j) 2i = p1 L h ( j ) i 
~ 

= i L h i r:; p 1 h ( j ) • 

p 1 h(j ) = p1 (L a ( jk) t (k)) 2 = 2(L a ( jk) t (k)) p1 L a ( jk) t (k ) 

= 2( •• ) L a ( jk)t (k)P 

= 2( · ·)(I a ( jk) t (k)) P 

= 2h ( j ) s • 

p1fS. = 2i I h ( j ) s+i-1 and 
~ 

p1fS. 1 = fP S. 0 
~ ~ 

This implies that p1fx = fP1x f or all x E C 0 Thus f commutes 
n 

with p1 for all odd p • 

Remark 3.1}0 ' In view of 3012 (a) , we may say t hat I (U;P,B) corresponds 

t o an "irreducible" morphism C - > C. • n r 

We are now ready for the main result of the chapter. 

Notice that we have established t he f ol l owing : i f f : C -7 C n r 

satisfies Assumption A, then there is a 1 - 1 correspondence 

Theorem 3.14. 

f 4-> F (t ) = n(1 - h (i ) t ) E Z(r ) [t] 0 

(i ) If f: C -7C satisfies assumption A, and n r 

fx (n) t o, then F ( t ) E Z(r ) [t] factors as follows: 

There exist for each U E f1,2 , ••• , r 1, 



(a) Sets, P of positive integers u1 , ••• , u~ with 

U = I U i 
i 

(b) for each U and P, some sets, B of non-zero integers 
t:he 2 

fb(1) , ••• , b(~)l with,A b(i) distinct j 

(c) for each U,P,B a unique integer a(U,P,B) ~ 0, such that 

F(t) = n (I(U,p,B))a(U,p,B) • 

U,P,B,a(U,P,B) 

(ii) Conversely each such F(t) defines amorphism C -+ C commuting n r 

with pi for all odd primes. 

Let us use the abbreviation a(U) = I 
P,B,a(U,P,B) 

with each a(U,P,B) > 0 0 

Cor. 3.'15. 

Proof 

1 ~U~r 

With the usual notation, fx(n) = n h(i). 

1~i~ n 

U~ du.p ,B) 

U t . U t 1· ••• ~. 

no h(i) is zero so n is the degree of F(t) E Z(r)[tJ 0 This degree 

is the number of factors (1 - th(i)). The corollary now follows by 

counting these factors. 

Cor 3.16. (Hubbuck) 0 

Let f C -+ C satisfy Assumption A (and fx(n) 1 0) • n r T Then 
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(i ) if' r = n + 2 , t her e is an int eger le such t hat f'or any 

x E Jtm (BSp (n)) 2m , fx = k x; 

(ii) if 2 , there is a le with 
2m 

r = n = fx = k x or 

fx (i ) = 2k
2
x (1) 

fx (2) = -4lc4x (2) + k4x ( 1) 2 • 

Proof' (i ) Put r = n in 

n = a (1)n + 2a ( 2 ) (~) + ••• 

3.1 5 : 

+ a (n) 2n- 1 
0 Hence a (U) = 0 , 1 < U < n , 

s ince in this range (~) > n 0 So n = a(1)n + a(n) 2n- 1 
0 

n-1 ) If n > 2 ,2 > n hence a(n = 0 • So, a(1) = 1 and 

a(U) = 0 , 1 < U ~ n • 

Theref'or e 1 = L 
p,B,a(U,P,B) 

and t here is only one 
u , , 

1 · ••• u 13· 

set P, only one integer b( i ) = k say, and only one a (U ,P , B) which is 

+ 0 it is 1 • 

Hence F ( t ) = I1 (1 - t(kt( i ))2) and f'x ( i ) = k2i
x (i ) • 

1 ~i~n 

If' n = 1 = r, 1 = a(1) .1 so a(i) = 1 and again F(t) = 1 - t k
2
t(1) 2 0 

This completes the proof of ( i ) 0 

For the proof' of' (ii) , we have n = r = 2 and 2 = 2a(1) + 2a(2) 0 

Thus 

a( 1) = 1 , a(2) = 0 

or a( 1 ) = 0 a( 2) = 1 0 
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If' one constructs t he corresponding F( t ) , one gets the stated result. 



As a final cor ollary, we list the possible h(i) for amorphism 

Cor. 3.17. For amorphism Cn ~ C2 the possible h(i) have the form 

( i ) a
2
t(i)2, i = 1, 2 

(ii) b2(t(1) ~ t(2))2 

Proof The h(i) are squares of homogeneous polynomials of degree 1 , 

so must have the given form. The significant fact is that each of the 

three types will give us amorphism Cn ~ C2 • 

With regard to these corollaries, it should be noted that we will not 

prove Conjecture At here. The corollaries are meant to illust rate the 

usefulness of the conjecture, (if true) • 

We now come to the 

Proof of 3.140 (i) Take a particular h(j) from F(t). Under the 

stated assumptions, we have already proved that h(j) is a square in Z(r) 

with 

t(i )) + ••• + b(j~)(t(L. 1) + ••• + t(L.))) 2 • u u-u + u 
1 ~ 

This determines an integer U E f1 , ... , rl , a set 

I 
i 

u::. = U and integers b(ji) + 0 • 
~ 

Apply VI (r ) t he Weyl group of Sp (r) to h(j) : the hIs which 

arise as images of h(j) under W(r) f orm a unique I (U,P,B) which 

must be a factor of F(t) • 

If this exhausts all the hts, stop. If not, thenh(j) may 

sti ll be one of the remaining factors of F(t) and will give another copy 



of r (U,p,B) • Contlinuing in this way, we break off a(U,P,B) copies 

of r (U,p,B) from F(t) • If this exhausts the hIs in F(t), stop. 

If not, talce an h(k) not in I(U,P,B) and form another I, etc. 

Since F (t) has only a finite number of factors, this process stops. 

Each h in F(t) must be in some I, since F (t) is invariant under 

W(r) there are no hIs left over. 

(ii) This follows from 3012. 

Section 3.20 Construction of maps BSp(r) ~BSp (n) • 

We show that some of the morphisms C ~ C listed in 3.14. n r 

are induced from m&ps BSp(r) ~ BSp(n). For this purpose we compute 

the induced homomorphisms of some representations. 

Example 3.18. There is a map ~ BSp (r) ~BSp (rm) such that if 

* ~ = f : C ~ C , then rm r 

F (t ) = n (1 - t t(Jo)2)m, h 1 were r, m ~ 0 

Proof Let BSp (r)m be the m-fold cartesian product 

BSp(r) x ••• x BSp(r) , and J : BSp (r)m ~BSp (r)m the identity. Then 

take ~ to be the composite 

BSp (r) ~ BSp(r)m ~ BSp(r)m j BSp(rm) , 

where 6 is the diagonal and i the inclusion • 

Next we compute the induced morphism of a particular representation 



Sp (3) ~ Sp(~ 63) , using the (alternative) description of Sp(n) given 

in section 2.30 

Lemma 3.19. Let a: Sp(3) ~Sp(3) be the identity and a3 the third 

tensor powero Then the h(i) corresponding to ( B~)*: Cn ~ C3 

(n = ~ 63) are d ~\,e f .. 'ell 

Proof Take the diagonal matrix diag(Z1' Z1' Z2' Z2' Z3' Z3) = D , 

3 3 in the maximal torus of Sp(3 ) . aD = D , the third tensor power. 

We defined tensor powers of such matrices in the _?)"UQ t of 

Proposition 2.26. 

and 

3 . 3 2 2- 2 2- -
D = d1ag(z1,Z1'Z1 Z2' Z1Z2' Z1 Z3'Z1 Z3'Z1'Z1,Z2 , ••• , Z1 Z2Z3' ••• • ) 

with 63 entries on the diagonal. 

From the exponents of the Z's in D3 we see that the h(i) must 

have the stated f orm • 

~. Let i1 : Sp (1) ~Sp(1) 3 = T be inclusion into the first factor 

and j : T ~Sp ( 3 ) the diagonal inclusion of section 2.3. If we take 

ji1 : Sp ( 1) ~ sp(3 ) and follow by a3 , we construct a map 

BSp(1) ~ BSp (t 63) with an even integer (namely 2) in its degree. 

The "2" arises from h(i) = (2t ( j ) .± t (k » 2 in the notation of 3.19. 



This does not affect our conjecture on degrees of maps f BSp(1) ~ BSp(n) 

since in this case f'~x(n) = 0 • 

Next we clarify our notion of a map BSp(r) ~ BSp(n) being 

irreducible by an example. 

Take again a sp(3) ~ Sp(3) and consider its exterior power 

A3a Sp(3) ~ Sp(10) • 

Lemma 3.20 0 The h(i) corresponding to BA3a: BSp(3) ~BSp(10) 

~re of the f orm t(i)2 and (t(1) ± t(2) ± t(3))2, 1 ~ i ~ 3 • 

Proof Again we calculate A3a on the maximal torus 

Take e1 , ••• , e
6 

as a basis f~r (t6. 

. . 6' . f 3~6 ~ ~20 1 ~ ~ < J<k ~ ~s a basls or A ~ = ~ , 

this basis is 

A
3
a(g)(eil,e j f1 ek) = 

If g is in the maximal torus then 

Then ei 1\ ej 1\ ek ' 

and the action of A3 a 

for g ~ Sp(3) • 

3 
A a(g) e1 /I. e2 1\ e3 = z'1 e1 f\ £1 e2 1\ 'l2e3 = ~e1" e2 (\ e3 and 

3 
A a(g)e1 " e3 f\. e5 = Z1 e1 1\ ~e3" Z:3e5 = Z1~2Z)e1 "e311 e5 etc. 

on 

Thus one calculates A3 a on the maximal torus. The h(i) follow 

from this calculation. For example, for the two calculations just made, 

the corresponding h(i) would be t(2)2 and (t(1) + t(2) + t(3))2 0 

Remark a: 20 with the given action of Sp(3) is reducible see 

[8, page 23 3 J 0 
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< Now in cohomology, we have a commutative diagram 

(BA\~) ~~ 
----------~7 C3 

/<Bi)* x (Bi)* xf 

where the i t s are inclusions and f C
4 
~ C

3 
is the morphism whose hIs 

are (t(i) + t(2) + t(3))2 • - -

Question 3021. Can one make a homotopy commutative diagram 

Sp (3) 

~ 

~a 
----i» Sp (10) 

Sp (3) x Sp (3) x Sp (4) 
" 

of A - maps and spaces? 
00 

Section 3030 Maps BG ~ BH 0 

We take care not to use Assumption A in this section, and prove that 

if G is "bigger than" H, then for any map f: BG ~BH, f* = 0 0 

The phrase "bigger than" is clarified below : see 3022. and 3.25. 

"" Let R be~subring of the rationals in which one can invert each of 

the primes for which H* (G, Z) has torsion. Then H* (BG,R) ~ R [Y e 1) ,.0 0, y en) ] 

by theorem W. Similarly, 

H 1t (BH , R ,) ~ R' [x ( 1) , ••• , x (~) ] 0 

We will use the same notation fx(i) 1 , fy(j) 1 f or mod p generators, 

if p is a large prime and assume that dim x (i) = dim y (1) = 4 0 



Let a (G) be the set of half dimensions of the generators of 

H* (BG,Q ) 0 For example 

a (Sp (n)) = {2,4 , ••• , 2n l • 

Having established notation we can begin. Let f BG ~ BH be 

a map. 

Lemma 3022. (i ) If there is a generator y E H* (BG) such that i.L- J 4-<>< [1-1) 

, i (dim y + 4) $ a(G), dim y > max a(H)lJo!-((;;),then f *x( 1) = 0 • 

(ii) If · in addition there is a map i: BH -+ BG with 

. * J. H"' (BG) ~H* (BH) surjective, then f~~ = 0 • 

Remark The conditions in (i ) are designed to ensure that for a priori 

dimensional reasons, no power of y can occur, in the image of f* 0 

Proof of 3,,22. (i) If f*x(1) = a (1) y (1) for some a (1) , then by 

Since i (dim y + 4 ) $ a(G) and dim y > max a(G) , lemma 1.~ gives 

us the following: for infinitely many primes, 

+ ••• , b + 0 mod p • 

Since no power of y is in the image of f*, equating coefficients 

in (*) gives a (1)b = 0 0 Hence a (1) = 0 modulo infinitely many primes, 

so a ( 1) = 0 • 

We have if: BG ~ BG, with r'~i*j : (1 ) = 0 • Hence from [9J 

and Chapter 1 , is epi, we must have f* = 0 • 
... 

and since i~ 

Recall that the groups G were classified by Cartan. See [8 ] 

for this classification. 



I 
I 
I 
I., 

If G and H are in the same class in Cart an ' s classification 

and rank G > rank H , then for any map f : BG ~BH , * f = 0 0 

Proof We can take. i BH ~BG to be the inclusion induced from 

H C G , The hypotheses of 3.22. are then satisfied since for y we 

can take the generator of maximum dimension in H~< (BG) , and .* 
J. is epi. 

Assume noVl that G and H are classical groups i.e. SU (n) , Sp(n) 

or Spin Cn) • Then we can strengthen ,Lemma 3.22 by showing that if G 

is "bigger" than H, then any map BG ~BH is zero in cohomology. 

We have found no simple condition to define the term "bigger". ' The 

condition is neither "rank G > rank H" nor "dimension G > dimension H" , 

as we shall see. Of course, if G and H belong to the same Cartan class, 

then the condition ~ "rank G > rank H" and then 3.23. is the best poss ible 

in the sense that if rank G = rank H, then G = H and the identity 

map BG ~BH is not zero in cohomology. 

Remark 3022.1-. There follows a rather mot l ~~ collection of results. The 

idea behind the proof in each case is to find conditions on G and H so 

that there is a generator y E H* (BG), no power of which can occur in the 

image of f* 0 re defined generators for H* (BG) , when G is a classical 

group, in Chapter 2 e We will always use those generators. 

So for maps f BG ~ BH, we discuss various cases. 

Ca) G = SU (m) , the special unitary group, (rI'/ 1- . 

Proposition 3.25. If f BSU Cm) ~ BSp (n) is a map with m odd and n ~ ~; 

m ~ n + 1 , * then f = 0 0 



Remark No t e that rank SU (m) = m - 1 , rank Sp (n) = n • 

Take generators {x Ci)j and {y(j)j f or H* (BSp (n) ana 

H* (BSU(m» as in Chapter 2 • 

In the proof of 3.25., we will neea 

Lemma 3.26. For any integer m ~ 2, let Y E H* (BSU (m» be a 

monomial. Then there is a l arge prime, p = 1 + mt, such that 

1 P Y = BY y(m) + ... , B + 0 • 

Proof By 2.29., f or any r, 

p1y (r) = y(r - 1)S + ••• + (_1) r-1S 1 ,p = 1 + mt • 
p p- +r 

By the Cartan f ormula , f or any monomial X E H'~ (BSU (m») , 

p1Xy(r) a = y (r)~1 X + aXy(r)a-1(y(r - 1) S + ••• + 
P 

If r + m' , the coefficient of y(r)y(m)t in 

by Theorem C • 

t Then the coefficient of Y y(m) in 

••• • 

t 
B = ( - 1) (mam + a1 (r1 - 1) + a2(r2 - 1) + ••• ). This is non-zero moa p , 

if P is large enough. 

Before we begin the proof of 3.25. note that our choice of m ensures 

that no power of y(m) can occur in the image of f* : y(m) can't occur 

because m is oaa ana y(m)i, i ~ 2, because m ~ n + 1 0 

Lemma 3.27. f~< is zero moa aecomposables. 

Proof Let f*x (i) = a(i)y(2i) + •••• 



Since dim x Ci) = 4i and dim y(j) = 2j a (i) = 0 if i > t m , 

so we need only prove that a(j) = 0 if ~m > j ~ 1 • 

Choose a large prime p = 1 + mt. Then 

• • • , (31 f 0, by 3.26 • 

By na turali ty, ' 

f'~p1x(i) = p1f*x(i) 

= p1(a(i)Y(2i) + decomposables ) 

= a(i)(~(2i)y(m)t + ••• ) + •••• 

Equating coefficients of Y(2i)y(m)t gives a(i) (3 = O. Hence 

a(i) = 0 • 

To proceed further , we need some more notation. 

Defini tion 3.28: The length of a monomial 

Order the monomials as follows: write all monomials as 
e1 e 

y (j) 
s 

y(j1 ) . . . , j1 > j2 > ••• > js • Then 

e
1 

e f1 f 
y(js) 

s 
y(js) 

s 
y(j1 ) ••• > y(j1) if e1 = f , ... , e. = f. 

1 J. 1 

and e. 1 > f. 1 ' for some i, 0 ~ i ~ s - 1 • 
J.+ J.+ 

Lemma 3.29. Each term in l' has length ~ 3 • 

Proof Let r'~x (i) = «(3(m)y(m)Y( 2i - m) + (3(m - 1 )y(m - 1 )y(2i -m + 1) 

+ ••• ) + v(i) , 



where each term in v(i) has length ~ 3 • 

By 3.26., 

p1y(m)Y(2i - m) = ay(2i _ m)y(m)t+1 + ••• , a + 0 • 

The coefficient of y(2i - m)y(m)t+1 in p1f*X(i) is a~(m) , 

but in f*P1x(i) it is zero. Hence ~(m) = 0 • 

Assume by induction that ~(m) , ... , ~(m - j) = 0 0 Then the 

coefficient of y(m) ty(m - j - 1 )y(2i - m + j + 1) in p i f'~ xCi) is 

at~(m - j + 1), for some at + 0, but in f*P
1
x(i) it is zero 0 Hence 

~(m - j + 1) = 0 • This finishes the inductive step • 

The proofs of the previous two lemmas are meant to motivate ! 

degree with 

Assume that if y(i) divides W3 , then i > j1 0 

(with P = 1 + mt ) is zero 0 

Then the coefficient 

in P\Y 
2 

Proof Assume that this coeff icient is not zero. Then by the Cartan 

formula applied to we see that except for possibly one 

we must have f. ~ e. (and f ~ e + 1) 0 
~ ~ r r 

Now equate dimensions of the W. 
~ 

to assumption. 

+ j f + ••• + j f , 
r r s s 

e (say 

so , 

f l 



Hence 

e1 - f1 < 1 , contrary to assumption. 

The coefficient of w
1
y(m)t in p1 W2 must therefore be zero. 

Proof of 3. 25. If f>~x(i) + 0, let W be the largest monomial in 

f*x(i) with a non-zero coefficient: f *x(i) = aW + ... , a + 0 0 

NoVT it is clear that if p = 1 + mt, t large, no monomial 

W ( ) t 0 f*p1 (0) y m can occur ln Xl. 

By 30 26., 
1 t 1 

P W = (3Wy(m) +..., (3 to. 

S ( ) t l°n p1f*x(l°) o by 3030., the coeff icient of Wy m 

,~ 1 (0) This coefficient is zero in f P Xl, 

contradiction shows that f*x(i) = 0 0 

hence a = 0 , This 

is (3 a 0 

Cor. 3.310 

m ~ n + 2 

If f: BSU(m) ~BSp (n) is a map and m is even with 

then f * = 0 • 

Proof Let f *x(t m) = ay(m) + ••• 0 

There are infinitely many primes satisfying p - 1 = (m - 1)t, and 

p1y (m) = y(m)Sp_1 = ,By(m)y(m - 1)t + 0 .. , ,B + 0, by Theorem C of 

Chapter 1 0 

( ) ( ) t p1f*x( -12 m) The coeff icient of y m y m - 1 in is a(3 0 

Since ' 4(m - 1) > 4n, no power of y(m - 1) can occur in the image 

i1 



of f* and hence the coefficient of y(m)y(m - 1) t in f*p1x(~m) is 

o 0 Therefore a = 0 • 

We conclude that no power of y(m) appears in The proof 

now proceeds as for 3.25. 

Returning to the situation of maps f : BSU(m) ~ BH, if n 7/2. I 

H = Spin (2n + 1), the proof of 3.25. applies to give 

Cor. 3.32. If f : BSU(m) ~BSpin (2n + 1) i s a map with m even 

(resp. odd) and m~ n + 1 (resp. m ~ n + 2) , * then f = 0 G 

Now let H = Spin (2n) ~17, 4. Then 

Lemma 3.330 If f : BSU(m) ~BSpin (2n) with m odd (resp. m even) 

and m ~ n + 1 (resp. m ~ n + 2), then f'~ = 0 • 

Proof H* (BSpin (2n), Zp) = Zp [x (1) , ••• , x (n - 1), z], dim z = 2n , 

dim xCi) = 4i, where the generators are as in 2.31. 

When m is odd, we are assured that there is no power of y(m) in 

the image of f* because it can't be in f*z, since m + n, and it 

can't be in 
~, 

f x Ci) , because 202 m > 4(n - 1) • 

( ) * 1 When m is even y m can't occur in f z because m f n • 

If r'~x(.~m) = ay(m) + ••• , we can prove that a = 0 as in 

Corollary 30310 

We can now use the proof of 3.25. to prove 3.33. 

(12) For maps BG -+ BH, G = Sp ( ) , Spin (2m) , Spin (2m + 1) , we 

will give less details. First, we need an analogue of Lemma 3.26. 



Lemma 3.34. For any monomial X E H* (BSpin (2m)) , there is a large 

prime p = 1 + 2mt, such that the coefficient of Xz2t in p1X is 

non-zero • 

Proof ~ P
1
x(i ) = L: 

1::;j:d 

( - 1 ) j - 1 x ( i - j) S 0 1 ' 2s = P + 1 S+J-

1 and P z = zS 1 ' S = k L: s-
j 

The coefficient of (0) 2t x J. z in is 

The 2t 0 p1 0 (1)S- 1+t coefficient of z.z J.n z J.S m - • 

o a ( ) em -1 ( ) e 1 2 t Hence, J.f X = z x m - 1 ••• x 1 ,the coefficient of Xz 

in p1X is (_1) S-1+t (e
1

(2_1 ) + e
2

(4- 1) + ••• + e
m

_
1

(2m-2-1) + a.m) , 

which is non - zero mod p if p is large • 

Similar results can be pr oved for Sp (m) and Spin (2m + 1) • 

Using Lemma 3034., we can prove 

Lemma 3.35 .. 

then f* = 0 0 

If f BSpin (2m) ~BSU (n) is any map and 2m ~ n + 3 , 

Proof We want z .to play the role of y(m) in the case G = SU e ) 0 

But we could have f*y (m) = a1 z + a2x(i m) + decomposables. 

We prove that a1 ' a2 = 0 0 

Now, ~ p1x(t m) = xCi m - 1) Ss + 0 •• + S 1 l' 2s = P + 1 0 - s~-

If s + i m - 1 = (m - 1) t + t m , then p = 2 (m - 1) t + 1 , f or 

infinitely many t. 



1 The coeff icient of t x (t m)x(m - 1) in P x Ci m) .is by 

Theorem C 0 

Since 2m ~ n + 3, no power of x (m - 1) can appear in the image 

of f* 0 Hence the coefficient of t x (i m)xCm - 1) is o • 

p = 

The coefficient of 

So, 

l'y(m) = 

By Theorem C , p1z 

t 
x Ci- m)x(m - 1) in P 1f * y(m) is 

a
1

z + decomposables. 

t + 0 , = ,81 zx(m - 1) + ••• , ,81 

2(m - 1) t + 1 , sufficiently large. 

The coefficient of zxCm 1)t in P 1f *y(m) is a1,81 

The coefficient of zx(m 1)t in f*p1y(m) is o • 

for 

• 

Hence a
1 = 0 

Thus we have established that no power of z can appear in the image 

of f~' 0 

We comment on the analogue of 3.20. for BSpin (2m) : order the 

monomials so that z > xCi) > x(j) if 

a (i. )b+1 z x :f m , a,b ~ 1 0 

but our condition 2m ~ n + 3 

i > j • Let M1 = za+1 x(i m)b , 

t:' 
and M

1
, could appear in 

ensures that M. 
~ 

can't appear in 

Lemma 30350 can therefore be proved by using z in place of y(m) 

in the case G = SU e ) • 

One can prove similar vanishing results for maps BG ~BH for all 

other pairs of (classical) groups. 

15 

0 
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Remark 3.36 0 Lemmas 3.35. and 3.25. show that the concept of IIsize of 

Gc" needed in this context is neither dimension nor rank. 

Notice that we did not use the fact that f* was induced from a 

geometric map, but only that it was a map of A(p) - modules. 

We believe that the proper statement to prove is 

Conjecture 3.37. If y,x are the 4 - dimensional generators for 

H* (BGc) , H':' (BH) respectively and h : H*(BH) ->H* (BGc) a morphism of 

graded rings and A(p) - modules for all large p, then h = 0 iff 

hx = 0 • 

A decent proof of this conjecture would we believe, require use 

of Assumption A • 

One would use 3.37. (if true) as follows: first use Lemma 3.22 (i) 
-.... 

to prove hx = 0 and then use 3.37. to conclude h = 0 0 



Chapter lj_. The Assumption A • 

We give evidence for "A" in this chapter and discuss when it can be 

proved. 

Section 10 Morphisms C4 -t C
3 

• 

Choose the usual generators lX(i) 1 , ly(j) 1 for CL~ and C
3 

respectively, with the notation of Chapter 3, Section 1. Then for any 

morphism of graded rings, 

fx(1 ) 

fx(3) 

fx(4) 

= a (1)y(1), fx(2) = a(2)y(1)2 + b(2)y(2) 

= a(3)y(1)3 + c(3)y(1)y(2) + b(3)y(3) , 

= a(4)y(1)4 + b(4)y(2)2 + c(4)y(1)2y (2) + ~(1)y(3) • 

, 1 
Assume further that f commutes wi th P for all large p, and 

that a (1) + 0 0 

that f = 0.) 

(otherwise it will be clear from the arguments below 

Lemma 401. ex = 0 • 

Proof Choose p = 1 + 6t. Then the coefficient of y(3)t in p1Y(1) 

is [3 + 0 0 The coefficient of Y(3)t+1 in p
1
fx (4) is ex[3 • 

p i x (4) = x (lj-)S s-1 0 Hence the coefficient of y(3) t+1 in 

fP1x(4) is zero. 

Hence ex [3 = 0 and ex = 0 0 

We will show that all other coefficients in f can be non-zero. 



Theorem 4020 "A" is true for morphisms f ~ C
4 

-+ C
3 

• 

The proof consists of a series of lemmas. We will actually prove 

that the conclusion of Theorem 3.14. holds, without assuming "A" 0 

Most of what follows involves computing coefficients using 

Theorem C., For example 

Lemma 4030 t 2 t-1 2 3 t 1 S3t = 3x(3) - 3t x (1) x (2)x (3) + ~ t (t + 1)x(1) x (3) -

•• 0 • 

Proof Just use the formula in Theorem C • 

Proposition 404 • If p + 1 = 2s = 6t, then 

. (i) b(3)t = a (1) , (ii) 6c(3) = a(1)b(2) - b(3) , 

(iii ) 63a(3) - 6
2
a(1)a(2) + 7a(1)3 = 7b(3) • 

Cor. 4.5. 

Proof From 40~-. (i) , i.e. 

Proof of 404. 111 
~ P X(1) = S3t 0 In P fX(1) = fP x (1) , equate 

coefficients of Y(3)t, y(1)y(2)y(3)t-1 and y(1)3y (3)t-1 respectively. 

This gives 

(i) 

(ii)t -ta(1) = bU)t-1(c(3) - ta(1)b(2)) and 

(iii~ i t(t + 1)a(1) = b(3)t-1(3a(3) - 3ta(1)a(2) + . t(t + 1)a (1)3) • 

(ii)t and (iii)t give 



(ii) -b(3) = 6c(3) - a(1)b(2) and 

(iii) 7b(3) = 63a(3) - 62a(1)a(2) + 7a(1)3 0 

Note that strictly speru(ing , some of the equations in 4-04-. should 

be over Zp e.g. (i) and some over Z. But since we are working modulo 

a large prime, any equation not explicitly involving p can be trucen 

over Z. 

Lemma 4-.6. (i) b(2) = a(1)2 - 4-a(2) , (ii) 8a(4-) = - c(4-) , 

(iii) 2c(4-) = - b(4-) • 

Proof 

and ~ p1x(4-) = x(4-)SS_1 0 

(i) Equate coefficients of y(1)y(3)t in p1fx(2) = fP1x(2) • 

For (ii) and (iii), equate coeff icients of y(1)3Y(3)t (resp. y(1)y(2)y(3)t) 

in p1fx(4-) = fP1x(4-) 0 

Lemma 4-07. If P = 6t + 1 then (i) 1 = b(3)t , 

(ii) -2b(3) = 6c(3) + a(1)b(2) and 

(iii) 22b (3) = 63a(3) - 5a(1)3 + 62a(1)a(2) 0 

Proof We assume that a(4-):j= O. Otherwise the arguments below show 

that f = 0 • 

If P = 6t + 1 , by using 4-.3. and 4-.6 0 «ii) and (iii)) we see 

that p1 fx (4-) = fP
1

x(4-) gives 

4-(2S3t+2 - Y(1)S3t+1) = 

(Y(1)2 - 4-y(2))f(3x(3)t - 3t2x(1)x(2)x(3)t-1 + 12 t 2(t+1)x(1)3x(3)t-1 + .. 0) • 



in this gives 

(i ) 1 = b(3) t 

(ii) 4t = -4(3t c(3)b(3)t-1 - 3t 2a (1)b( 2)b(3)t-1) and 

(iii) t (t + 1}(t + 2) = 5b(3)t-1(3ta(3) + t t 2(t + 1) a(1) 3 - 3t2a(1) a(2)) • 

The l emma follows from these relations. 

We collect together the i nformation needed for the next lemma 

- b(3) = 6c(3) - a (1)b(2) 

7b (3) = 63a(3) - 62a (1) a(2) + 7a (1) 3 
2 

b(2) = a(1) - 4a (2) 

22b (3) = 63a (3) - 5a(1) 3 + 62a(1)a (2) 

-2b (3) = 6c(3) + a (1)b(2) 

These come respectively from 4.40 (( ii ) and (iii)) , 4.6. (i ) , 

~- . 7. (( iii) and (ii )) • 

Lemma 4.8. 

Proof (1) and (5) above give 2a (1) b(2) = -b (3) and (3) with 

this gives 2a (1)(a(1) 2 - 4a (2)) = - b(3) (6) • 

(2) and (Lf- ) give 4a (1) 3 - 2~.a (1 )a(2) = - 5b(3) (7) • 

(6) and (7) give 3a(1) 3 = 8a(1)a (2) (8) 0 

By 4.5., b(3) = + a (1)3. If b(3) = - a (1) 3 , 

(6) becomes a(1)3 = 8a(1)a(2) , which contradicts (8) , so b(3) = a(1)3 • 

go 



Lemma 4. 9. 

2 
a(1) =4k 

There is an integer k such that 

(ii) (iii) 6 
a(3) = 4k • 

Proof b(3) = a(1)3. With 4.4(i) and 4.7. (i) this gives , 

(ill) = 1 for all primes p = 6t .± 1 0 Hence a( 1) = k12 for some 
p 

integer k1 • 

From (8) above, we see that a(1) is even, 2 
so a(1) = 4k for 

some k 0 

Parts (ii) and (iii) follow from (8) and (2) above. 

Lemma 4.10. 

Proof· With P + 1 = 6t, equate coefficients of y(2)3y (3)t-2 in 
Fi 

fp1x (1) = p1
fx(1). After simp17fation, this gives 

- b(3)2 = b(2) (36b(4) - b(2)2) , from which we get b(4) = 42k8 , since 

b(3) , and b(2) are known in terms of a(1) and a(2) • 

Hence , from 4.6 (ii) and (iii ) , 8 = k • 

We are now ready to prove 4.2. 

Proof of LI-.2. This is completed with lj . • 10., since, we have found that, 

2 
fx(1) = 4k y(1) , 424 fx(2) = 6k y(1) - 8k y(2) , 

fx (3) = 4k
6
Y(1)3 _ 16k6Y(1 )y(2) + 43k6y(3) , 

fx (4) = k8
(Y(1)2 - 4y(2))2, which is exactly what 3.14. gives. 

Remark Notice that the only monomial which doesn't appear in f, 

S} 



namely y(1)Y(3), is the one excluded by 4.1. 

explains why we could assume a (1), a(4) + 0 • 

The form of f also 

We now comment on when conjecture AI can be proved. 

Let p ~ 7 and T C G- a maximal to rus • 

Recall that A(p) , the mod p Steenrod algebra, is generated by 

the pi and ~, together with the Aaem relations. 

If t. E H2 (BT, Zp) is a generator, then 
J 

pit . = 0 i ~ 2 
J 

= t~ i = 1 and 
J 

~t. = 0 
J 

If j : BT ~BG- is the inclusion, then .* J 

(~, ) 

H"~ (BG-,Z ) -> H* (BT ,Z ) 
P P 

is i,njective, onto the Weyl group invariants by [4, Theorem 20.,3-J , 

since H~ (G-, Z) " has no p - torsion. 
>j-

Thus the action of A(p) on H* (BG,Zp) is completely determined 

by the conditions (*) and the Cartan formula. 

is determined by the action of p1 • 

In particular this action 

After these preliminary remarks, we make the following observations 

on the Conjecture AI 0 

(i) The above r ather tedious method for morphisms C4 ~ C3 will 

generalize to the case c ~ C , n r 2r > n ~ r , and probably to any 

situation H* (BH) ~ H~' (BG-) , when 

2 max a (G) > max a(H) ~ max a(G-) , 

G and H classical groups or G-2 • 

But obviously one needs to look for a more efficient method which 



, \ 

doesntt waste effort on needless computation. 

Cii) The work in [9J and Chapter 1 proves AI when G = H 0 

For G2 the cohomology map which is not a I/1k does satisfy AI 0 As 

in the case C -7 C , can be described in terms of a n r 

polynomial F( t ) 0 

Lemma 4011. 

Proposition 1.20 (ii) 0 

,\< 
Then the corresponding F (t) is the following 

Proof Just expand F* (t ) and l ook at the coefficient s of -t and _t3 
0 

For example, the coefficient of - t is 

k2((t(1) _ ~(2»2 + (2t (1) + t(2»2 + (t(1) + 2t (2» 2) 

= 6k 2 
( t ( 1) 2 + t ( 2 ') 2 + t ( 1 ) t ( 2» = 3k 

2 
x ( 2) 0 

Cor. Lf-.12. The f* in Proposition 1 .2. (ii) commutes with pi f or all 

primes > 3 0 

Proof Clear: compare the proof of 3.12. (b ) 0 

( iii) Chapter 2 proves AI when G = Sp (i) , H t F4,E6,E7,ES' although 

the method could probably be extended to cover these remaining cases o 

(iv) The method used to prove l.j . • 2o wont t generali ze to the case 

C2 -tC 0 Nothing simple emerges from equating coefficents, and one 
r r 

realizes that one must try something diff erent. 



We feel that AI could be proved for C -tC (any n,r) by 
n r 

factoring F ( t) in a very large extension of Zp [t( 1) , ... , t(r)] 0 

restriction that f commutes with pi should then be enough to ensure 

that the factoring is in Z [t(i) , ••• , t(r)] 0 
p 

Finally, the concept of maximal symplectic torus makes sense 

e.g. amaximal symplectic torus in Sp(n) is Sp(i)n. 

The 

One explanation of our inability to construct maps BSp(i) -tBSp(n) 

with even degrees might be the following' wher~ G;Splll, tt ... 'i.pl>1 '.) 

Con,jecture If T ,S are maximal symplectic tori in G- and H, then 
w'I"~ 5~'((")"''' ) 

for any map g: BG- -tBH A there is a map g' : BT -tBS such that the 

following diagram homotopy commutes: 

BG-

i 
BT 

gl 
-t 

BH 

i 

BS • 

--' J 
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