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Abstract

Topics in symplectic Gromov—Witten theory

Amanda Hirschi

The main focus of this thesis is on the Gromov—Witten theory of general symplectic
manifolds. Mohan Swaminathan and I construct a framework to define a virtual funda-
mental class for the moduli space of stable maps to a general closed symplectic manifold.
Our construction, inspired by [AMS21], works for all genera and leads to a more straight-
foward definition of symplectic Gromov—Witten invariants as was previously available.
We prove a formula for the Gromov—Witten invariants of a product of two symplectic
manifolds, conjectured in [KM94].

I generalise the product formula to a formula for the Gromov—Witten invariants of
a suitable fibre product of symplectic manifolds. Our invariants satisfy the Kontsevich-
Manin axioms and are extended to descendent Gromov—Witten invariants. I show that
our definition of Gromov—Witten invariants agrees with the classical Gromov—Witten in-
variants defined by [RT97] for semipositive symplectic manifolds.

Given a Hamiltonian group action on the target manifold, I construct equivariant
Gromov—Witten invariants and prove a virtual Atiyah—Bott-type localisation formula, pro-
viding a tool for computations.

Together with Soham Chanda and Luya Wang, I construct infinitely many exotic La-
grangian tori in complex projective spaces of complex dimension higher than 2. We lift
tori in P?, constructed by Vianna, and show that these lifts remain non-symplectomorphic,

using an invariant derived from pseudoholomorphic disks.

Noah Porcelli and I use Ljusternik-Schnirelmann theory, applied to moduli spaces of
pseudoholomorphic curves, and homotopy theory to prove lower bounds on the number of
intersection points of two (possibly non-transverse) Lagrangians in terms of the cuplength
of the Lagrangian in generalised cohomology theories, improving previous lower bounds
by Hofer.
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Chapter 1

Introduction

. a moduli space is a treasure map that is itself a treasure.

anonymous

1.1 GW theory of general symplectic manifolds

Let (X,w) be a closed symplectic manifold and J be an element of the space J(X,w)
of w-tame almost complex structures. The fundamental object of study in GW theory,
as introduced in [KM94], is the moduli space Mg, (X, A;.J) of n-pointed stable maps of
genus g representing a class A € Ho(M;Z). When (X,w) is semipositive, [RT95] gave a
construction of GW invariants using pseudocycles. Due to issues with transversality and
smoothness of gluing, constructing the invariants in general requires the use of virtual
techniques. The last decades have seen the development of several virtual frameworks in
symplectic geometry, see [LT98, FO99, CM07, HWZ17, MW17, Par16, IP19b] for an inex-
haustive list. Most of these constructions begin by representing the moduli space locally
using Kuranishi charts and then employ delicate local-to-global arguments to extract from
this a global invariant called the wvirtual fundamental class. In this thesis we construct a
virtual framework based on a global Kuranishi chart introduced in [AMS21]. This allows
for a straightforward definition of symplectic GW invariants as it eliminates the need to
patch together local information.

Chapter 2 is devoted to the construction of such a global Kuranishi chart, while Chap-
ters 3 to 5 deal with (foundational) applications thereof in symplectic GW theory.

1.1.1 Global Kuranishi charts for GW theory

In [AMS21] the authors achieved a breakthrough by constructing a global Kuranishi chart
for the moduli space My (X, A;J), building on ideas from [Sie98]. A global Kuranishi
chart for a compact Hausdorff space Z consists of a finite-rank vector bundle £ over a
manifold T together with a section s: T — &, an almost free action by a compact Lie

group G on € and T such that s is equivariant, and a homeomorphism s1(0)/G =~ Z. Tt



carries a canonical invariant [Z]V'" € H*(Z; Q)" given by the composite

s*7(E/G) Hgim(T/G)+*(T/G;Q) STi) QIo], (1.1.1.1)

fvdimts (7. Q)
called the virtual fundamental class of Z. Here vdim(Z) := dim(7/G) — rank(€) and
7(£/G) is the Thom class of the orbibundle. In Chapter 2, we present the construc-
tion of a global Kuranishi chart for M, (X, A;J) for arbitrary genus g, generalising the
construction of Abouzaid, McLean and Smith. Recently, they published an independent
construction in higher genus, [AMS23].

Theorem 1.1.1 ([HS22]). For integers g,n = 0 and A € Hs(X,Z), the moduli space
of stable maps My ,(X, A; J) admits a global Kuranishi chart of the expected dimension,

depending on certain auxiliary data, but unique in the following sense.

(i) Different choices of auxiliary data result in global Kuranishi charts that are related

by certain equivalence mowves, which do not affect the virtual fundamental class.

(ii) Given any other J' € J;(X,w), there exist auziliary data such that the associated

global Kuranishi charts are cobordant.

In particular, M, (X, A;J) admits a virtual fundamental class [Mg, (X, A; J)]"r.

The Gromov—Witten homomorphism

X,w n
Iooas HY(X™ Q) — H* (Mg n; Q)
is defined by

1%, (a) = PD(sty(ev*a  [Myn(X, 45 J)0)). (1.1.1.2)

where ev: My, (X, 4;J) — X" and sty: My, (X, A;J) — Mg, are the evaluation and

stabilisation map respectively. The Gromov-Witten invariants of X are the images of
X,w
Ig,n,A

evaluated at classes on ﬂg,n.

Remark 1.1.2. The thickening 7 we construct is not smooth but it admits a topological
submersion 7 to a smooth manifold M (see Definition 2.1.4) and naturally carries the
structure of a rel-C* manifold over M. In particular, we can use smoothing theory
as in [AMS21, §4.2] to upgrade our construction to a smooth global Kuranishi chart for
ﬂgm(X , A, J), allowing for the definition of a Morava K-theory valued virtual fundamental
class as in [AMS21, AMS23]. Also, as explained in [BX22], our global chart can be used

as an input for the construction of Z-valued GW type invariants in all genera.
As an application of the construction, we prove a product formula for the GW invari-
ants of a product symplectic manifold.
Theorem 1.1.3 ([HS22]). Suppose (X,w) = (Xo,wo) x (X1,w1) and A; € Hao(X;;Z).
Then
2 Lpaialax B) = I (a) - 105 (B)
pr A=A;

for any o € H*(X§;Q) and g € H*(XT; Q) and (g9,n) ¢ {(1,1), (2,0)}.1

!Using Theorem 1.1.5 we can extend the formula to the remaining two cases.



This result was conjectured in [KM94] and shown in [KM96, Beh99] and [RT95, Hyv12]
for projective varieties and semipositive symplectic manifolds respectively. As a conse-

quence of the product formula, we deduce a Kiinneth formula for quantum cohomology.

Corollary 1.1.4 ([HS22]). Suppose (X;,w;) for i = 0,1 are closed symplectic manifolds

and set (X,w) = (Xo,wo) x (X1,w1). Then the Kiinneth map induces an isomorphism
QH(Xo) @ QH(X1) — QH(X)

of A-algebras, where A is the universal Novikov ring.

1.1.2 A fibre-product formula

A natural generalisation of the product formula is a formula describing the GW invariants
of a suitable fibre product. This requires the definition of a fibre product of global Kuran-
ishi charts over a third global Kuranishi chart, see also [Joy12]. We show how the virtual
fundamental classes relate in §3.1. On the one hand this leads to a general fibre-product
formula in Theorem 3.1.15; on the other hand, this section will be used in §4.1.

In §3.2 we show how to adapt the global Kuranishi chart construction of §2 to be able
to apply Theorem 3.1.15. We obtain

Theorem 1.1.5. Let (B,wp) be a closed symplectic manifold and m;: (X;,w;) — (B,wp)
a Hamiltonian fibre bundle fori € {0,1}. Then for any Ap € Hy(B;Z) and Jg € J-(B,wp)
such that My ,.(B, Ag; Jg) is smooth with obstruction bundle Ob, we have

Z Js(me(0Ob) N [Mygn(Xo x5 X1, A; J)]'™)
e A=Ag+ A,

= (71'0 X ﬂ-l)*PD(Aﬂg,n(B,AB;JB)) (@ [ﬂgm(X(),A(); J()) X Mg,n(Xl,Al; Jl)]Vir.

where m;, A; = Ap and j: Xo xp X1 — Xo x Xy is the inclusion and J is the restriction

of Jo x J1 to T(Xo xp X1) for suitable almost complex structures.

Refer Theorem 3.2.1 for the statement in full generality, which requires more notation
than we want to introduce here. Furthermore, we show a similar relation in the case where
mo: Xog — B is a symplectic embedding, generalising the Quantum Lefschetz Hyperplane
Theorem of [KKPO03]; see also [Man12, Zinl1].

Remark 1.1.6. As the last step of the proof of Theorem 1.1.5 relies on the fact that
a certain map has degree 1, one should expect that a corresponding formula for GW

invariants, valued in generalised cohomology theories, contains correction terms similar to
the axioms shown in [AMS23].

Remark 1.1.7. Together with existing computations of the quantum cohomology ring of
projective bundles over P¥, [QRI8, AMO0], Theorem 1.1.5 should allow for the determi-
nation of the (small) quantum cohomology of fibre products of projective bundles over
P*.



Remark 1.1.8. A partial motivation for this formula is the question of Pandharipande,
[FP05], whether all projective smooth varieties have the property that the GW homo-
morphism I v HY(X™Q) - H*(My,; Q) take values in RH*(M,,,). The tauto-
logical rings {RH *(Mgn)}gn are defined to be the smallest system of Q-subalgebras of
{H*(Mgyn)}gn that is closed under exceptional pushforward by the forgetful and gluing
maps. These rings are much better understood than the entire cohomology rings and have
been intensively studied,[GV01, JP19, PP21]. Except in genus 0, they need not capture
the whole cohomology by [GP03]. By the virtual localisation formula [GP99], all homoge-
neous projective varieties have this property. Janda proved it for surfaces in [Janl7]. By
the product formula, if Xy and X7 have this property, then so does Xy x X;. The fibre-
product formula relies on more information than just the fundamental class but might be

useful in cases where we have a good knowledge of the thickening.

1.1.3 Kontsevich-Manin axioms and gravitational descendants

In [KM94], Kontsevich and Manin introduce the notion of a stable map and compile a
list of properties that invariants based on the moduli space of stable maps are supposed
to satisfy. Thereby, they essentially define GW invariants, before such constructions were
available for either smooth projective varieties or general symplectic manifolds. The ex-
pected properties reflect the rich geometry of the moduli spaces ﬂg,n of stable curves and

are a formalisation of the seminal paper [Wit91].

Remark 1.1.9. In [AMS23], the authors prove a version of the axioms adapted to GW
invariants valued in complex-oriented generalised cohomology theories. Pending a com-
parison of their construction with [HS22], this is a generalisation of the results below. We

hope our more elementary proofs might be of interest nonetheless.

The axioms are listed below; their proof can be found in §4.1.

(Effective) If (Jw], A) < 0, then I nA =0.
(Homology) I;ﬁfA is induced by a homology class.
(Grading) I nA has degree 2((dimc X — 3)(1 — g) +{c1(Tx), A) +n).

(Symmetry) I “ n.A 18 equivariant with respect to the canonical Sp-actions given by

permuting the factors, respectively the marked points.

(Mapping to a point) If E denotes the Hodge bundle, then

Io(an x -+ X an) = {an -+ - an, crop(Tx) N [X]) ¢g(B)
for all o; € H*(X;Q).

(Fundamental class) If 1x denotes the unit of H*(X;Q) and m, the map forgetting
the n'™ marked point, then

IX,w

vl XX am oy x 1x) = TR (an X X ).

ngn 1,A



for any a; € H*(X;Q).

(Divisor) If |ay,| = 2, then for any aq,...,an—1 € H*(X;Q)

IXW IX,w

Ty I oalon X xan) = o, A) I 0" qlon X oo X am1).

(Splitting) Write PD(Ax) = >} vk X v, with v, v, € H*(X;Q). Given S < {1,...,n},
keK
let pg: mgo,noﬂ X Mgl ni+l — Mg,n be the associated clutching map. Then

Xa 7S X7 X7
PEl g (arxxay) = (D)9 3T e (O x ) T (e x X ay)
AOJ’gA;(:A ieS J¢S
S

where e(a; S) = |{i > j|i€ S, j¢ S, |l |oj| €1+2Z}] and oy € H*(X;Q)

(Genus reduction) If v: ﬂg,n — m9+1,n_2 denotes the map which creates a non-
separating node by gluing the last two marked points, then

X, X,
O g ale) = I, (a x PD(Ax))

for any a € H*(X"2,Q).

Remark 1.1.10 (Quantum cohomology). The Splitting axiom together with (Mapping to
a point) shows that we can use the genus-0 3-pointed GW invariants to deform the cup
product on H*(X;Q). Due to convergence issues, this deformation is generally defined
only on QH*(X,w) := H*(X;Q) ®qg A, where we use the Novikov coefficients? associated

to the universal Novikov ring

A—{ZaitAi\aieQ, MeER, VeeR:|{ieN: )\ <g, a¢¢0}1<oo}
1€eN

and ¢: Hy(X;Z) — A given by ¢(A) = t*(4),

The GW invariants defined above capture only a small part of the cohomology of
ﬂgvn(X ,A; J). One possibility to obtain more information is to also consider the integrals
of natural cohomology classes on the moduli space itself. 1)-classes, first defined in [RT97,
KMO96] for semipositive manifolds, respectively smooth projective varieties, provide one
such collection of cohomology classes. Integrating them corresponds to imposing tangency
conditions at the marked points. A-classes are the Chern class of the Hodge bundle E and
appear naturally as in [GP99]. In §4.2, we define 1)- and A-classes for general symplectic
manifolds. The resulting invariants are called gravitational descendants. We prove the
analogue of the Fundamental class and the Divisor axiom for gravitational descendants in

Propositions 4.2.8 to 4.2.10.

2There are several possible Novikov rings and the choice of coefficients influences such properties as
grading semisimplicity, see [MS12, Chapter 11], [BM04]. As we will not discuss Frobenius structures in
detail, we will simply work with the universal Novikov ring defined here.

10



1.1.4 Comparison

While a symplectic geometer has a large choice of virtual frameworks by now, it is not
inherently clear (although expected) whether the resulting GW invariants agree. In par-
ticular, it is desirable to know whether they give the same counts as the invariants defined
in [RT97] for the class of semipositive symplectic manifolds since we have relatively many
computations of these invariants and their definition requires the least machinery. We

prove such a comparison in §5.1.

Theorem 1.1.11. The GW invariants defined by (1.1.1.2) agree with the GW invariants
defined via pseudocycles by [RT97] if the latter are defined.

This has the following consequence, which is not apparent from the global Kuranishi

chart construction itself.

Corollary 1.1.12. If (X,w) is semipositive, then the GW invariants of X in genus 0 are
Z-valued.

It would be interesting to determine whether the invariants defined here agree with the

algebraic GW invariants, defined in [BM96, LT98], when X is a smooth projective variety.

1.1.5 Equivariant GW invariants

Equivariant GW invariants were first defined by Kim, [Kim96], for flag manifolds and in
[Giv96] for convex symplectic manifolds. They use the localisation formula of [AB84],
respectively a generalisation by [GP99], to prove mirror symmetry for toric complete in-
tersections, [Giv96], respectively to determine the quantum cohomology of flag manifolds,
[Kim99]. Kontsevich, [Kon95], first proposed to apply the localisation formula in GW
theory.

While symplectic toric manifolds are projective, [Del88], there are symplectic mani-
folds with Hamiltonian torus actions, which are not even Kéhler, [Ler96, Tol98, Woo098].
Therefore, an equivariant GW theory in the symplectic setting is needed in order to treat
these cases. It could also allow for an extension of the quantum Kirwan map, [GW22], or
the equivariant Seidel morphism, [LJ21], to general symplectic manifolds.

In §5.2.3 we define equivariant GW invariants for symplectic manifolds with a Hamil-
tonian group action by extending (1.1.1.1) to an equivariant virtual fundamental class,
see Definition 5.2.2. Equivariant Kuranishi charts are constructed in [Fuk21], but the

associated virtual fundamental class is not defined.

Theorem 1.1.13. Given a Hamiltonian group action p on (X,w) by a compact connected

Lie group K, there exist equivariant GW homomorphisms
LS4 HE(XQ) — H* (M5 Q) @g Hi (08 Q)

which satisfy properties analogous to the Kontsevich Manin axioms. Moreover, we can

recover the ordinary GW invariants from the equivariant ones.

11



In particular, this allows for the definition of the equivariant quantum cohomology
QHj (X, w) of (X,w, ), which is a module over H}:(pt; Q). The inclusion X — Xg
induces a surjection QH (X, w) — QH*(X,w) of rings by Remark 5.2.4.

We prove a virtual localisation formula, analogous to the one of [GP99] in the setting
of global Kuranishi charts, see Theorem 5.2.10. A similar formula in the symplectic setting
appeared in the preprint [CL0O6]. Applied to the equivariant GW theory, it shows that
any contribution to these invariants comes from the fixed point locus of the moduli space

of stable maps, generalising [MT06, Proposition 4.10].

Remark 1.1.14. In [Giv01b], Givental used computations of equivariant GW invariants to
express the higher genus GW invariants in terms of invariants in genus 0. His computations
rely on the localisation formula of [GP99] and thus require the symplectic manifold to be
either a projective variety or convex. Theoerm 5.2.10 might be used to generalise his
results to all closed symplectic manifolds with a Hamiltonian torus action whosed fixed

points are isolated.

Remark 1.1.15. The localisation formula of Theorem 5.2.10 is phrased purely in terms of
global Kuranishi charts with a suitable group action. Thus it can be applied to any other

setting for which an equivariant global Kuranishi chart has been constructed.

1.2 Exotic tori in projective spaces

While the previous chapters put their focus squarely on pseudoholomorphic curves and
their moduli spaces, the next two chapters show how these curves can be used to investigate
symplectic manifolds, in particular, their Lagrangian submanifolds.

From now on, we will avoid the use of virtual techniques and instead require our
manifolds to be reasonably nice so that the moduli spaces of pseudoholomorphic curves

are sufficiently well-behaved.

In Chapter 6, the result of a collaboration with Soham Chanda and Luya Wang, we
study monotone Lagrangian tori in projective spaces. Recall that a Lagrangian L < M is
monotone if the area homomorphism I,,: mo(M, L) — R is positive scalar multiple of the
Maslov homomorphism p: mo(M, L) — Z defined in [Arn67]. We call a Lagrangian torus
in P" (or C") ezotic if it is monotone and not symplectomorphic to the standard Clifford
(or product) torus. The earliest example of an exotic torus dates back to [Che96].

Recently, the use of almost toric fibrations has become an important tool in construct-
ing new examples of Lagrangian tori. For example, Vianna has constructed infinitely many
exotic tori in P? [Vial6] and in del Pezzo surfaces [Vial7]. For more details on almost
toric fibrations, see [Sym01, LS10, Eva22|. For previous constructions of non-Hamiltonian
isotopic Lagrangian tori in higher dimensions, see for example [Aurl5, PT20, Yua22| and
[Bre23].

Our exotic examples are lifts T(a’b’c) of the Vianna tori T{4 ) in P2, Here (a,b,c) is

a triple of natural numbers satisfying the Markov equation a® + b?> + ¢> = 3abc. These

12



tori are defined and reviewed in §6.1.2. Any exotic torus T{, ;) can be obtained from the
Clifford torus in P? by a sequence of mutations. We show that the lifted Vianna tori can
be obtained from the Clifford torus in P™ by a sequence of solid mutations, a generalisation
of mutations to higher dimension. We study how the disk potentials change under a solid
mutation, using as essential input a wall-crossing formula from [PT20]. Recall that the
disk potential of a closed monotone oriented spin Lagrangian L™ in a closed symplectic

manifold (M?",w) is a function
Wp: Hom(m(L),C*) —» C
mapping a local system p on L to

Wilp) = Y, |M(L,B) p(0B), (1.2.0.1)
Bemz(M,L)
n(B8)=2

where p e L and J € J(M,w) are generic, and M (L, 3) is the (zero-dimensional) moduli
space of J-holomorphic disks representing 3 and passing through p.?> Choosing a basis of
Hy(L;Z) we can write the disk potential as a Laurent polynomial; refer to Remark 6.2.1

for more details.
Similar to [Vial6], we do not compute the disk potential explicitly. Instead, we show
that the associated Newton polytope, defined in §6.3.1, is uniquely determined by (a, b, c).

As the Markov tree is infinite, we find

Theorem 1.2.1 ([CHW23]). P" admits infinitely many distinct exotic Lagrangian tori

for any n = 3.

1.3 Cuplengths and the degenerate Arnol’d conjecture

It is a classical problem in symplectic topology to find lower bounds on the number of
intersection points of two Lagrangian submanifolds L and L’ in a symplectic manifold
(X,w). In Chapter 7, the result of a collaboration with Noah Porcelli, we use generalised
cohomology theories to find stronger lower bounds.

This problem has been intensively studied, under various assumptions. When the
Lagrangians are assumed to intersect transversely, Floer homology provides lower bounds,
see [Flo88, Oh93, FOOO09] for an incomplete list of references.

The classical Arnol’d conjecture concerns a special case of this question, where (X, w)
is the product symplectic manifold (Y x Y, 0@ —0o) for some compact symplectic manifold
(Y,o0), L is the diagonal and L’ is the graph of a Hamiltonian diffeomorphism of Y.
This case has been the subject of much study, both with and without the additional
assumption of transverse intersection. See [FO99, Rud99, Parl6, AB21, Rez22, BX22]

and the references therein.

3As L is spin, each M(L, B) carries a canonical orientation and |- | means that we count the points with
signs.
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We will not assume that L and L’ are transverse, but require X to be either closed or
a Liouville manifold, L and L’ to be Hamiltonian isotopic, and L to be relatively exact,
i.e., that w-m(X, L) = 0.

Under these assumptions, Floer proved

Theorem 1.3.1 ([Flo88]). If L and L' intersect transversely, there is a lower bound

#L L' > Rank(H;(L:Z/2)).

Without the transversality assumption, a version of the Arnol’d conjecture states that

Conjecture 1.3.2. If L is relatively exact and L' is Hamiltonian isotopic to L, then
#L n L' > Crit(L)

where Crit(L) is the minimal number of critical points of any smooth map L — R.

A standard application of the Weinstein neighbourhood theorem implies that if true,
this bound must be sharp.

Lusternik-Schnirelmann theory is a powerful tool for studying (numbers of) critical
points or intersection points without any transversality assumptions, in contrast to Morse
theory. It has been used in many fields other than symplectic geometry. For example,
Klingenberg proved in [Kl1i78, Theorem 5.1.1] that any metric on S? admits at least three
closed geodesics. Another application is to show that any (not necessarily Morse) function
on a closed smooth manifold M has at least c¢z(M) critical points, where cz(M) is the
cuplength of M in singular cohomology with integer coefficients. Lusternik-Schnirelmann
theory has also been used in contact topology, e.g. by Ginzburg and Giirel in [GG20] to
find lower bounds for numbers of Reeb orbits. For a more comprehensive discussion and
further applications we refer to [CLOT03] or Chapter 11 in [MS17].

We use this technique to study Conjecture 1.3.2, generalising results of [Hof88]. Fix a
ring spectrum R, representing a multiplicative generalised cohomology theory R*. Instead
of the rank of the cohomology groups we will use the cuplength as a lower bound for the
number of intersection points. Given a compact convex domain G < C with smooth
boundary, denote by M(G) the moduli space of (parametrised) pseudoholomorphic maps
(G,0G) — (X, L).

Theorem 1.3.3 ([HP22]). Suppose L is relatively exact and the index bundle over M(G)
is R-orientable for any G. Then the number of intersection points between L and L’
satisfies

#L L = cg(L).

This shows that refining standard techniques via stable homotopy theory can result in

stronger estimates.

Remark 1.3.4. Similar results have been obtained in the monotone setting by Lé-Ono
[LO96] and Gong [Gon21a].
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Remark 1.3.5. As we do not assume the transversality of L and L', to our knowledge there
is no analogue of our strategy of proof using the setup in [CJS95, Coh09]. However, it
may be possible to use their setup to prove Theorem 1.3.3 using the strategy of [Gon21b]

instead.
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Chapter 2

Construction of a global Kuranishi
chart

2.1 Main construction

Convention 2.1.1. In this and the subsequent three chapters, we consistently use the

symbol ® to mean tensor product over C unless explicitly indicated otherwise.

Let (X,w) be a closed symplectic manifold, A € Ho(X,Z) and g,n > 0 be integers.
Given any J € J-(X,w), we will construct a rel-C* global Kuranishi chart (in the sense
of Definition 2.1.2 below) for the Gromov-Witten moduli space M, (X, 4;J) using the
choice of an auxiliary datum (see Definition 2.1.11 for more details). The construction is

independent of this choice in a sense made precise in Theorem 2.1.18 below.

Definition 2.1.2 (Rel-C® global Kuranishi charts). A rel-C* global Kuranishi chart
K= (G, T/M,E,s) consists of

(i) a rel-C'*® manifold 7 — M, called the thickening, where the base space M is a

smooth manifold;

(ii) a rel-C* vector bundle € on T /M, the obstruction bundle, and a rel-C™ section s

of £, the obstruction section;

(iii) a compact Lie group G, called the symmetry group, which acts on 7 /M and € with

finite stabilizers so that s is G-equivariant. The action map
(GxT)(GxM)—>T/M (2.1.0.1)

and the analogous map for £ are both required to be rel-C'® maps.

If, in addition, we are given a Hausdorff space Z and a homeomorphism s 1(0)/G — Z,
then we say K is a rel-C® global Kuranishi chart for Z. The rel-C* global Kuranishi
chart IC is oriented if we are provided with the data of orientations on 7 and £ which are
preserved by the G-action. We say that IC is stably complex if we are given the data of a

G-invariant almost complex structure on M and a G-invariant stably complex lift of the
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virtual vector bundle T/ — (€ ® g). Here, T'r/o¢ denotes the vertical tangent bundle of
T /M and g is the trivial bundle with fibre g = Lie(G).

Remark 2.1.3. See Definition 7?7 for the explicit definition of a rel-C*® manifold and
[Swa2l] for a discussion of their properties. In §2.3.1 we will show that our thicken-
ing is canonically a rel-C* manifold. This relative smoothness will be used throughout

the later chapters as it allows for many differential-geometric operations.

We begin by introducing the smooth quasi-projective varieties which play the role of
M in Definition 2.1.2 in our construction of global Kuranishi charts for Mg, (X, A; J).

Definition 2.1.4 (Algebraic base space). Given integers N > 2 and m > 1, we define the

moduli space ﬂ; (PN, m) to consist of all C = PV with the following properties.
(i) C < PV is an embedded algebraic prestable genus g curve of degree m.

(ii) The restriction HO(PN, Opn (1)) — HO(C,O¢(1)) is an isomorphism and we have
HY(C,0c(1)) = 0.

In addition, when ¢ > 0 is an integer, we define the moduli space ﬂ;’g(PN, m) to be the
preimage of ﬂ;(PN, m) under the forgetful map Mg, (PN, m) — My(PN,m).

Remark 2.1.5. The moduli stack ﬂgj(IP’N ,m) of stable maps carries an obvious action of
the Lie group PGL(N + 1,C) = Aut(PV) and HZI(]P’N,m) < Mgy (PN, m) is an open,
PGL(N + 1, C)-invariant smooth quasi-projective subscheme of the expected C-dimension
(N =3)(1—g)+ (N +1)m+ £ An explanation is given in Definition 2.2.8.

Definition 2.1.6. A polarisation on X taming J is a Hermitian line bundle Ox (1) —
X equipped with a Hermitian connection V with curvature form —27i{) where 2 is a

symplectic form on X taming J.

Remark 2.1.7. Given any compact subset K < J.(X,w), there exists a polarisation on X

taming all the almost complex structures in K. This is shown in Lemma 2.2.1.

Definition 2.1.8 (Framed stable maps). Fix a polarisation Ox (1) — X taming J as in
Definition 2.1.6. An Q-stable map (of genus g and class A) is a smooth map u : C' — X

satisfying the following conditions.
(i) C is a prestable curve of genus g and u,[C] = A.

(ii) For each irreducible (resp. unstable irreducible) component C' < C, we have
§or u =0 (vesp. > 0).

We will refer to 2-stable maps of genus g and class A as just stable maps when €, g, A
are clear from the context. Given any stable map u : C' — X, we define the holomorphic
line bundle £, — C to be

L= we ® (u*Ox(1))®3 (2.1.0.2)
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where we denotes the dualizing line bundle of C' and the holomorphic structure on the line
bundle u*Ox (1) is defined by (u*V)%!. We say the stable map u : C — X is framed if we
additionally have the data of a degree m holomorphic embedding C' = PV corresponding
to a point of M; (PN, m) for some N > 2 and m > 1. The set of framed stable maps (for
a fixed choice of N and m) is equipped with a natural topology described in Definition
2.2.11.

Remark 2.1.9. The line bundle £, defined in (2.1.0.2) is ample because of the stability
condition imposed on u : C' — X. This means that we can promote v : C' — X to a framed
stable map by choosing a complex basis (s, ...,sy) of the vector space HY(C, o%r ) for
an integer p » 1 and taking the associated projective embedding [so: ---: sy]: C — PV,

Refer to Lemma 2.2.2 for more details.

Remark 2.1.10. For a fixed choice of N and m, there is a natural PGL(V + 1, C)-action on
the space of framed stable maps. The natural forgetful map to ﬂ;(PN ,m) is equivariant

with respect to this action.
Before defining the auxiliary data needed for our construction of a global Kuranishi

chart, we need a few preliminary definitions.

Definition 2.1.11 (Auxiliary data). An auziliary datum for the moduli space M, (X, A; J)
is a tuple (VX,0x (1), p,U, k) where

(i) VX is a C-linear connection on the tangent bundle Ty (with C-linear structure
induced by J),

(ii) Ox(1) — X is a polarisation taming J as in Definition 2.1.6. We set d := {[£2], 4),

(ili) p = 1 is an integer. For later reference below, we introduce the following related

notation.

(a) m:=p(29 — 2+ 3d) = pdeg(Ly) and N :=m — g,
(b) G := PGL(N +1,C) and G := PU(N + 1) = U(N + 1)/S",

Note that m = pdeg(&£,) while N = dim H(C, £5”) — 1 by the Riemann-Roch

formula.
(iv) U is a good covering in the sense of Definition 2.2.12.
(v) k> 1is an integer.

Remark 2.1.12 (Motivation for the good covering). In the construction described below, we
need to pick out a class of unitarily framed stable maps from the space of all framed stable
maps. Morally, this can be done by choosing local slices for the G-action on the space
of framed stable maps followed by a partition of unity argument. The datum of a good
covering allows for the construction of a continuous G-equivariant map Ay: T — G/G,
which determines the class of unitarily framed stable maps, that is a desired slice. While
more details can be found in §2.2.2, the reader is advised to take the existence of Ay on
good faith at first reading. See [AMS23, §4.3] for a different approach to this problem.
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In order to ensure that our thickening defined below is a manifold (and £ is a vector
bundle), at least near s~ 1(0), we will need to restrict to a special subclass of auxiliary
data.

Definition 2.1.13. We call an auxiliary datum (VX,Ox(1),p,U, k) unobstructed if the
following properties hold for any stable J-holomorphic map u : C' — X in M, (X, 4;J).

(a) The line bundle £ — C is very ample and H(C, £2) = 0.

(b) For every complex linear basis F = (so,--- ,sn) of H(C, £5P), we obtain a framed
stable map (17: C < PN, u), in the sense of Definition 2.1.8, satisfying the following.

(1) We have H'(C,T*)xv|c ® u*Tx ® Oc(k)) = 0.
(2) If My(tr,u) = [Ide] € G/G, then

D(01)u® ((Yodig 5) : Q(C,u*Tx) ® By ) — Q¥H(C, @ Tx)  (2.1.0.3)

is surjective. Here, D(0y), is the linearization of the non-linear Cauchy-Riemann

operator 0y at the map u and the map ¢-) is as in (2.1.0.6).

We can now describe the global Kuranishi chart associated to an unobstruced auxiliary

datum.

Construction 2.1.14. Having fixed an unobstructed auxiliary datum (VX, Ox (1), p,U, k),

we define
(i) (Thickening) T consists of all tuples (u, ¢, C, n, ) satisfying the following properties.

(a) (u,t,C) is a framed stable map lying in the domain of A\y.

(b) n belongs to the finite dimensional C-vector space

E(,. = H°(C, T*%; lc@u*Tx @ Oc(k)) ® HO(PN, Opn (k)) (2.1.0.4)

where we use the complex linear identification T*I[F),}\l, ~ Tpn (given by the Fubini-
Study metric) to endow the former with a holomorphic structure while we endow
u*Tx with the holomorphic structure given by (u*V*)%!. On the normalization

C — O, the equation
Oyt + (nyodis =0e QONC,a*Tx) (2.1.0.5)

is satisfied. Here, 4 and tx denote the pullbacks to C of the map u and the

inclusion C' < PN respectively. The C-linear contraction operator
()t By = QC, T8 [c @ u*Tx) (2.1.0.6)

is induced by the standard Hermitian metric on the line bundle Opn (k).
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(c) a e HY(C,Oc) is such that we have the identity
[Oc(1)] =p - [Lu] + a € Pic(C) (2.1.0.7)

in the Picard group of C' (the group of isomorphism classes of holomorphic line
bundles) with group operation (given by tensor product of line bundles) written
additively. Here, we are identifying H'(C, O¢) with the (abelian) Lie algebra of
Pic(C) and + « denotes translation by « using the exponential map of the group

Pic(C).
(d) H'(C,T*%n

c®u*Tx ® Oc(k)) =0,
(e) the linearised operator associated to Equation (2.1.0.5) is surjective when re-
stricted to C*(C,u*Tx) ® E, 4.

The natural U(N + 1)-action on 7 descends to a G-action. Moreover, the natural

forgetful morphism 7 : 7 — ﬂ; (PN, m) is G-equivariant.

(ii) (Obstruction bundle) &€ — T is the family of vector spaces over 7 whose fibre over

a given point (C' < PV, u,n,a) € T is given by
su(N +1)® E(,,) ®H'(C,0c) (2.1.0.8)

and carries a natural (fibrewise linear) action of G which lifts the G-action on 7.

(iii) (Obstruction section) The section s : 7 — £ is defined by the formula
s(C c PN u,n,a) = (ilog \y(C = PV u),n, ). (2.1.0.9)

For the definition of the ‘polar decomposition’ map ilog : G/G — su(N + 1), see
Definition 2.2.5. The section s is G-equivariant and there is a natural forgetful map
s H0)/G — My (X, 4; ).

The associated global Kuranishi chart K,, = (G, Tn,En,5n) for Mg, (X, A; J) is defined

by pulling back K along the forgetful map m;,n(]P’N ,m) — Hz (PN, m).

Remark 2.1.15. When A = 0, J-holomorphic stable maps are just stable curves mapping
to a point in X, £, = we, which does not have positive degree on each component. Hence

once has to use £}, := weo(x1 + -+ + x,,) in Construction 2.1.14 instead.

Remark 2.1.16. Note that Construction 2.1.14 defines only the points of the spaces 7 and
& and does not describe any additional structure on these (e.g. a rel-C'* structure, a

vector bundle structure). This additional structure is explained in §2.3.1 and §2.3.2.

Remark 2.1.17 (Comparison with the construction of [AMS21]). The construction of the
global Kuranishi chart in [AMS21] for moduli spaces of genus 0 stable maps depends on a
slightly different set of auxiliary data than the more general construction described above.
More precisely, to define the global Kuranishi chart in [AMS21], one needs to make a

choice of VX, 0x(1) and k (and a relatively ample line bundle £ on the relevant universal
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curve; see the paragraph preceding [AMS21, Definition 6.11] for further details). It is easy
to show, using a slight variant of the argument which proves Theorem 2.1.18(3a), that the
construction of [AMS21] is equivalent to ours when g = 0. We did not check whether the

construction in [AMS23] is equivalent to the one presented here.

We can now formulate our main result on global Kuranishi charts for Gromov—Witten

moduli spaces.

Theorem 2.1.18 (Global Kuranishi charts for GW moduli spaces). Fiz (X,w) and A, g,n

as before.

(1) Fiz J € J-(X,w). Unobstructed auziliary data, in the sense of Definition 2.1.13,
exist. Moreover, any choices of connection VX and polarisation Ox (1) taming J can

be extended to an unobstructed auxiliary datum (VX,Ox(1),p,U, k).

(2) Given J € J-(X,w) and an unobstructed auxiliary datum (VX,0x(1),p,U, k), the
associated global Kuranishi chart K., = (G, Ty, En,5n) from Construction 2.1.14 has
the following properties.

(a) The projection T, — ﬂ;n(]P’N,m) carries a natural rel-C* structure of the ex-

pected dimension in a G-invariant neighborhood T,® of 5.,1(0).

(b) " 1= Enlpres naturally carries the structure of a rel-C® wvector bundle of the
expected rank over T,® — M;n(IP’N, m) for which the section s, is of class rel-
c*.

(c) The G-action on T,® and ;8 is rel-C® and fibrewise locally linear in the sense
of [AMS21, Definition 4.20]. The stabilizer of every point of T, in a neighborhood
of 5,1(0) is finite.

(d) The natural forgetful map s,(0)/G — Mgy, (X, A; J) is a homeomorphism.

(e) The virtual vector bundle given by
Tﬁeg/ﬂ;n(PN7m) - (g;;eg @g) (21010)

has a natural stably complex (virtual) vector bundle lift in a neighborhood of the
-1 . . .
zero locus s, (0) where Taneg/M;n(PN’m) is the vertical tangent bundle and g is

the trivial bundle with fibre g = Lie(G).

(3) The global Kuranishi charts of Construction 2.1.1/ have the following uniqueness prop-

erties.

(a) Piz J e J-(X,w). Then, the global Kuranishi charts for Mg, (X, A; J) associated
to any two unobstructed auziliary data are stably complex rel-C'* equivalent in
the sense of Definition 2./4.1.

(b) Given Jo, J1 € Jr(X,w), there exist unobstructed auziliary data (V¢ Ox (1), p,Us, k)
for i = 0,1 so that the associated global Kuranishi charts for My, (X, A; Jo) and
Mgy n(X,A; 1) are stably complex rel-C*® cobordant in the sense of Definition
2.4.3.
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We will prove Theorem 2.1.18(1), (2) and (3) in §2.2, §2.3 and §2.4 respectively.

Remark 2.1.19. Recall the equivalence moves relating global Kuranishi charts (namely
germ equivalence, stabilisation and group enlargement) described in [AMS21, §4]. In §2.4
we formulate a slight refinement of these moves in order to keep track of the natural rel-
C® structures yielded by our construction. The notion of rel-C* cobordism for global

Kuranishi charts is also formulated in the same section (see Definition 2.4.3).

Remark 2.1.20 (Virtual fundamental classes). The virtual fundamental class of an oriented
global Kuranishi chart for a compact space Z (lying in the dual of Cech cohomology of
Z with Q-coefficients) is invariant under equivalence and cobordism (see [AMS21, §5.1]).
Theorem 2.1.18 therefore provides a construction of virtual fundamental classes for the
Gromov—Witten moduli spaces of a closed symplectic manifold. The explicit definitions

are given in §2.5.1 and §2.5.2.

2.2 Transversality for auxiliary data

In this section, we will prove Theorem 2.1.18(1) by showing how to choose the parameters
p,U, k as in Definition 2.1.11 so that the auxiliary datum (VX,Ox(1),p,U, k) is unob-
structed. We may assume that we are already given choices of VX, Ox(1). Indeed, it is
obvious that J-linear connections on T'x exist, while the existence of polarisations on X

taming J is guaranteed by Lemma 2.2.1 below.

Lemma 2.2.1. There exists a complex line bundle Ox (1) — X with Hermitian metric
(-,+y and a Hermitian connection V with curvature given by —2mi), where Q is a symplectic
form taming J. In fact, given any compact subset F < J(X,w) containing J, we can
choose Ox (1) to be such that Q tames each J' € F.

Proof. By approximating [w] € H2(X,R) by an element of H?(X,Q) and multiplying by
a large positive integer to clear denominators, we first choose a symplectic form 2 taming
(each almost complex structure in) F such that [€2] has an integral lift h € H?(X,Z). This
is possible as being symplectic and taming F are both open properties of closed 2-forms.
Now, let £ be a complex line bundle on X with ¢;(£) = h. Choose any Hermitian metric
{-,-y on L and a compatible Hermitian connection V' on £ and write the curvature as
—2mi€Y. Since h is a common integral lift of [Q] and [€'], we can find a smooth (real)
1-form S such that Q' = Q + dB. The connection V = V' + 2733 now is also Hermitian for
{-,-) and has curvature given by —2mi€2. Thus, we may take Ox (1) to be the line bundle

L equipped with the metric (-, ) and compatible Hermitian connection V. ]

As in Definition 2.1.11, we set d := {[Q2], A).

2.2.1 Choosing the integer p

In this subsection, we will show how to choose the integer p.

Lemma 2.2.2 (Positivity). There exists a positive integer p depending only on g,d with
the following property. Following the notation of equation (2.1.0.2), for any stable map
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[u,C] and any integer q = p, the line bundle e2 ¢ s very ample and we have
HY(C, £3) = 0.
Proof. Given an irreducible component C’ of C, we have that degs/(we) = —2 and the
degree is non-positive if and only if C” is unstable. In this case u|cs is nonconstant, so
dego(u*Ox(1)) = 1. Thus dege(£,) > 0 and £, has total degree 29 —2 + 3d on C. It
follows that C has < 2g — 2 + 3d irreducible components, so the number of possibilities for
the dual graph of C', decorated by genus labels on the vertices, can be bounded in terms
of g and d. Hence it suffices to find a p for each possible decorated dual graph I' of C.
For each vertex v € I' of C, let C, be the normalization of the irreducible component
of C corresponding to v. Let g, be the genus of C,, D, < C, be the subset consisting of
the inverse images of the nodal points and L, be the pullback of £, to C,. For any two
points a,b € C,, Serre duality [Har77, Theorem II1.7.6] yields

HY(C,, L2 (=D, —a —b)) = H*(Cy,we, (Dy + a + b) @ LE®)* = 0 (2.2.1.1)

for ¢ = pr := 1 4+ max,er (29, + |Dy|) once we recall that degs, L, > 1. This cohomology
vanishing statement (for each v € I') implies that £ is very ample. To see that £57 has
vanishing H', denote by x(v, ) the point on C, corresponding to the node associated to

the edge e = {v,v'} of I'. Twisting the normalisation sequence

0— OC - @ OCU i @ Tx(v,e)Cv ®Tx(v/76)Cy/ —0
veV(T) e={v,v'}eE(T)

by £% and taking its long exact sequence in cohomology, we obtain that H*(C, ,Q%)q) = 0.
Since the lower bound pr on ¢ depends only on the decorated dual graph I', the proof is
complete. ]

We fix p > 1 to be the smallest integer which satisfies the conclusion of Lemma 2.2.2
above. Having fixed the choice of p, we define the associated quantities m, IV, G, G exactly

as in Definition 2.1.11(iii). The following observation will be useful.

Lemma 2.2.3 (Unobstructed projective embedding). Let [u, C] be a stable map as in Def-
inition 2.1.8. Then, any complex linear basis F = (so,--- ,sn) of HO(C, £LP) determines
a point of M;‘ (IP’N, m) wia the holomorphic projective embedding

woF=[so:-:sy]:C —PV. (2.2.1.2)

Moreover, the map tc,r is unobstructed, i.e., H*(C, Lé,]_—TPN) = 0.

Proof. Since (¢, is the map obtained from the complete linear system defined by the
very ample line bundle o%p , we obtain a point of ﬂ;n(PN ,m) once we note the identifi-
cation La 7O0pn (1) ~ £% 1o prove unobstructedness, pull back the Euler exact sequence
0 — Opy — Opn ()N - Tpn — 0 to C via 1o r and use the long exact sequence in

cohomology to obtain a surjective map

HYC, 1 70pn ()N — HY(C,1E 5 Tpw). (2.2.1.3)
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This shows that H'(C, v& 7Tpn) = 0 as desired since H(C, 15 7O0pn (1)) = 0. O

Remark 2.2.4. Observe that our choice of p is such that condition (a) of Definition 2.1.13

is satisfied.

2.2.2 Constructing a good covering / and the map )y

At the end of this subsection, we will show how to construct a good covering U, defined in
Definition 2.2.12, and the associated map Ay. We need a number of preparatory results

for this purpose which we now turn to.

Definition 2.2.5 (Logarithm for Hermitian matrices). Let H be the space of (N + 1) x
(N + 1) Hermitian positive definite matrices modulo the action of positive real scalars.
The group G has a left action on H as follows: an element [T] € G maps an element
[A] € H to [TAT*] € H. The Lie algebra su(N + 1) consisting of skew-Hermitian trace-
free (N+1)x (IN+1) matrices carries a natural adjoint G-action. With this, the exponential

map

su(N+1)—>H (2.2.2.1)
iM — [exp M] (2.2.2.2)

is a G-equivariant diffeomorphism. We let ilog : H — su(N + 1) denote its inverse. We
can identify this with a map G/G — su(N + 1), also denoted ilog, via the isomorphism
P :G/G — H provided by Lemma 2.2.6(iii) below.

Lemma 2.2.6 (Polar decomposition for G). We have the following assertions.
(i) The multiplication map H x G — G is a diffeomorphism.

(ii) If A is a finite set, then the linear combination map

en s (RAN\0}) x HA — H (2.2.2.3)
({ti}ie, {[Ailien}) = Dica til Ai (2.2.2.4)

is G-equivariant, where R3\{0} carries the trivial action.

(iii) The map G — H given by T +— TT* descends to a G-equivariant diffeomorphism
P :G/G — H. The identity G-coset is mapped to the class [Ide] € H of the identity

matriz under P.

Proof. The first assertion is an immediate consequence of the polar decomposition in
GL(N + 1,C). Note that G-equivariance in the second and third assertions are true
by definition. Using the first assertion, we can view the map P as the squaring map
[A] — [A?] on H, which shows that it is a diffeomorphism. O

Lemma 2.2.7 (Reduction of structure group). If M is a second countable smooth manifold

with a proper action of G with finite stabilisers, then there exists a smooth G-equivariant
map M — G/G.
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Proof. We first construct such a map in a G-invariant neighborhood of any point in M.
Given x € M, replace it by a point in its orbit to assume that its stabiliser I' is contained
in G. Using a I'-invariant tubular neighbourhood of x, choose a locally closed I'-invariant
submanifold S © M passing through x such that 7,5 is a complement to the linearized
action map g — T, M. Restricting the action map G x M — M gives a smooth G-

equivariant map
o:(Gx ST —>M (2.2.2.5)

where T' acts on G x S by v+ (g,8) = (g7 1,vs). As A1) 9@ TS — T M is an
isomorphism, we may shrink S to assume that ® is a G-equivariant local diffeomorphism.
Properness of the G-action implies that ® is injective after shrinking S further. Define a
G-equivariant map A := ®((G x S)/T') — G/G by applying ®~! followed by the obvious
projection. Thus, we have solved the problem in the G-invariant neighborhood N of z.
Further, any smooth I'-invariant compactly supported cutoff function y on S admits a
G-invariant smooth extension y to N and can be extended by zero to obtain a G-invariant
cutoff function y on M (we are using the fact that G -supp x is closed in M which follows
from properness of the action).

Therefore, the statement follows if we can cover M by a locally finite collection of
G-invariant open subsets, each admitting a smooth G-equivariant map to G/G and then
use a G-invariant smooth partition of unity to patch them. Here we use (ii),(iii) of Lemma
2.2.6 to make sense of convex combinations in G/G.

To obtain such a locally finite cover, it suffices to show that the quotient space N =
M /G is metrizable (and therefore paracompact). By properness of the G-action, we know
that N is Hausdorff. Since M is second countable, so is V. By the Urysohn metrization
theorem, it remains to show that N is a regular space (i.e., given y € N and a closed subset
C c N with y ¢ C, there exist open neighborhoods in N separating them). Equivalently,
given a closed G-invariant subset F' < M and a point z ¢ F', we need to find G-invariant
disjoint neighborhoods U, V of x, F respectively. As before, let I' be the stabiliser of x
and S be a local I'-invariant slice at x for the G-action. Then, x € S\F and thus, we can
choose a I'-invariant open neighborhood U of z in S\F such that U is compact and is
contained in S\F. Now, we can take Y = G -U and V = M\(G - U). Note that V = M is

open because the action is proper. O

Definition 2.2.8 (Algebraic base space and universal curve on it). For any integer ¢ > 0,
define M;@(IP’N ,m) exactly as in Definition 2.1.4. This is an algebraic scheme of finite
type over C by [FP97, §4.1]. By Lemma 2.2.3, all points of M;Z(PN, m) are unobstructed
and have no non-trivial automorphisms. By [RRS08], it is therefore a smooth manifold of
the expected complex dimension (N — 3)(1 — g) + m(/N + 1) + £. Denote by

1 Coo = M (PN, m) x PN — M (PN, m) (2.2.2.6)

the universal curve, which is also an algebraic scheme of finite type over C.
For £ > N + 1 define ﬂ;:zt(PN,m) c M;jg(PN,m) to be the open subset of maps
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[¢t,C,z1,...,2,] where
o (C,xy1,...,xy,) is stable,

e  is regular, has no automorphisms and is nondegenerate, i.e., does not lie in a

hyperplane.

Denote by ﬂ;:f;] (PN, m) the quotient of M;’zt(PN ,m) under the (free) action of the

permutation group Sy on the marked points.

Lemma 2.2.9. The G-action on ﬂgﬂjﬁ]t(IP’N, m) is proper and almost free for any integer
{>=N+1.

Proof. Since ﬂ;ft(IF’N ,m) — ﬂ;}z; (PN, m) is a finite unbranched covering map, it suf-
fices to consider the G-action on the former. Since the statement to prove concerns an
algebraic action of an algebraic group on a variety, we may use the Noetherian valuative
criterion [SPa22, Tag 0208] to test properness. To this end, let R be a discrete valuation
ring and K its fraction field. Given any three morphisms

a,d’ : Spec R — M;}St(PN,m) (2.2.2.7)

v :Spec K — G (2.2.2.8)

such that v - ag = o/, we need to extend 7 to a morphism Spec R — G. Lift v to an
element 6 € GL(N + 1, K) which is unique up to an element of K*. We will lift § to
GL(N + 1, R) up to an element of K*.

The morphism « yields a projective flat family nr : Cr < IP’% — Spec R of stable ¢-
pointed genus g curves with the marked points given by sections o1, ..., : Spec R — Cg

of mr. Moreover, the restriction
RY*! = HY(PR, Opy (1)) — H°(Cr, Ocy (1)) (2.2.2.9)

gives an isomorphism of R-modules where we use [Har77, Theorem II1.5.1(a)] to compute
the HY group on the left explicitly. Similarly, we get (7} : Cj < Pg — Spec R,01,...,0))
associated to /. The element § now yields an isomorphism ¢ : Cx — Cj over Spec K
(mapping o; to o] for 1 < i < /) of the two families and an isomorphism ® : O¢, (1) ~
©*Og; (1). Taking global sections of ® recovers d.

By the uniqueness of stable reduction [SPa22, Tag 0E97], we obtain a unique extension
¢ : Cr — Cj of ¢ to an isomorphism of families of stable ¢-pointed genus g curves over
Spec R. Since Spec K < Spec R is dense, we get O, (1) ~ @*(’)C%(l) from [FP97, Propo-
sition 1]. Taking global sections of this isomorphism now yields an element of GL(N +1, R)
whose restriction to K differs from § by an element of K*.

For the second assertion, suppose A € G fixesy = [¢,C, x1,...,x,]. Then the associated
biholomorphism ¢4 of PV preserves t(C) = C setwise and thus induces an automorphism
Pa: C — C. If A, B are two elements of the stabiliser such that ¢4 = v, then AB~!
fixes «(C) pointwise. This contradicts the assumption that ¢ is nondegenerate. Thus we

get an injection G, — Aut(C,x1,...,xy), the later of which is finite. O
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Corollary 2.2.10. For any integer £ = N + 1, there exists a smooth G-equivariant map
— *,5t

Mg7[£](]P)N,m) - G/G.
Proof. This is an immediate consequence of Lemmas 2.2.7 and 2.2.9. O

Definition 2.2.11 (Polyfolds of stable maps). We define Z = Z4 4(X) to be the polyfold
of 2-stable genus g maps to X in class A which are not necessarily J-holomorphic. For
the construction of the polyfold structure we refer to [HWZ17, Theorem 3.37]. Since the
polyfold Z is locally modeled on (retracts of sc-)Hilbert spaces, it admits (sc-)smooth
cutoff functions. (To see this, combine Proposition 5.5 and Theorem 12.6 in [HWZ21]
with the example of sc-Hilbert spaces discussed in the paragraph following Definition 5.13
therein.)

Similarly, define Z = Z A’g(}P’N x X)) to be the polyfold of Q-stable genus g maps to
PN x X in the class A = [pt] x A + m[P'] x [pt]. There is an obvious G-action on Z.
Observe that the set of framed stable maps, introduced in Definition 2.1.11(iii), acquires
a natural topology via its natural inclusion into Z as a subspace. Let w7 be the natural

projection from the space of framed stable maps to Z.

Definition 2.2.12. A good covering is a collection U = {(U;, 4;, D, Ai, xi) }ien of tuples
indexed by a finite set A such that we have the following properties.

1. For each i € A, U; € Z is an open subset, ¢; > N + 1 is an integer and D; ¢ X is a
codimension 2 submanifold-with-boundary satisfying the following properties for any
[u, C] eU;.

(i) The map w is transverse to D; with u(C) n 0D; = @.
(ii) u=t(D;) consists of exactly ¢; distinct non-nodal points of C.

(iii) The curve C equipped with the marked points u~1(D;) is stable.

As a result, there is a well-defined map sty, p, : 7, (U;) — Hgf[&] (PN, m) given by
including the intersections of a stable map with D; as £; unordered marked points. Set
(72- = ste_:Di (ﬂ;fz] (PN, m)).

2. Foreachie A, \; : ﬂ;iz] (PN, m) — G/G is a smooth G-equivariant map.

3. For each i € A, x; : Z — [0,1] is a nonzero sc-smooth function supported in U;.
Moreover, for every point [u,C] in My(X, A;J), there exists an index ¢ € A with
[u,C] € 72(U;) and x;[u, C] > 0.

Remark 2.2.13 (Existence of good coverings). By [Parl6, Lemma 9.2.7], we can find U, ¢, D

with properties 1(i)-(iii) in Definition 2.2.12 near any point [u,C] € My(X, A : J). Now,

using Corollary 2.2.10, the existence of sc-smooth cut-off functions on Z and the compact-

ness of My(X, A4;J), we deduce that good coverings exist.

With these preparations in place, we fix a good covering U as above and finally con-

struct the associated map My. Let VA], g C Z be the open subset where the sc-smooth
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function ),,_, x; is strictly positive. Now, define the function

A= ea({xi o mz}ien, {\i o ste; D, Yie) : WEI(V/{,g) - G/G (2.2.2.10)

where we are using the notation of Lemma 2.2.6. It is easy to deduce from Lemma 2.2.6

that Ny is indeed a G-equivariant map.

2.2.3 Choosing the integer k

At the end of this subsection, we will show how to choose the integer k. We begin by

investigating the cohomology of restrictions of Opy (k) to embedded curves in PV,

Lemma 2.2.14 (Extension of sections). There exists a positive integer ko with the fol-
lowing property. For any C < PN corresponding to a point ofﬂZ(PN, m) and any integer

k' = kg, the restriction map
HO(PN, Opn (K')) — H(C, Oc(K)) (2.2.3.1)

18 surjective.

Proof. Using the short exact sequence
0— Ic/PN — Opy > Oc — 0 (2.2.3.2)

of coherent sheaves on PV, where Z spn 18 the ideal sheaf of C' < PV it suffices to show
that we have HI(PN,Ic/PN (k")) = 0 for any C < PV in ﬂ;(PN,m) and any k' > kg for
some uniform constant k.

To this end, let us define the function &’ : ﬂ;(PN ,m) — Zs,, which assigns to any
C < PV the smallest k' > m for which H'(C,Z spn (k) = 0. This function is well-defined
by Serre’s vanishing theorem [Har77, Theorem II1.5.2]. By [Har77, Theorem III.12.8],
it is upper semicontinuous with respect to the Zariski topology on ﬂ; (PN, m). Being
an algebraic scheme of finite type, ﬂ; (PN, m) is quasi-compact in the Zariski topology.
Thus, the function k' achieves a maximum kg which has the desired property by Lemma
2.2.15 below. O

Lemma 2.2.15. Let C < PV be an embedded prestable genus g curve of degree m with ideal
sheaf Zeypn . Then, the function given by k' — dim HI(IPN,ZC/]pN(k’)) is monotonically

decreasing for k' = m.

Proof. After performing a generic linear change of coordinates, we may assume that the
linear hyperplane Y = PN~1 < PV (defined by the vanishing of the homogeneous coor-
dinate zp) meets C' in a set F' of m distinct non-singular points. Using local analytic
equations of C' and Y at their (transverse) intersection points, it is easy to verify that we

obtain a short exact sequence

0= Zeypn (=) =5 Topy —> Iy — 0 (2.2.3.3)
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of coherent sheaves on PV (with res denoting the natural restriction map from the ideal
sheaf of C' = PV to the ideal sheaf of F < Y"). Tensor (2.2.3.3) with Op~x (Y) ® Opn (k) =
Opn (K + 1) for some k' > m and observe that the long exact sequence in cohomology

contains
H' (PN, Zopn (K') — H' (PN, Iopn (K + 1)) > H' (Y, Zpjy (K + 1)). (2.2.3.4)

To obtain the desired inequality, it thus suffices to show that H(Y,Zp sy (K +1)) =0. To

this end, consider the tautological short exact sequence

on Y. Tensor this with Oy (k' +1) and observe that the long exact sequence in cohomology

contains

HO(Y,0y (K + 1)) == HY(F,Op(K + 1)) = H' (Y, Zpy (K + 1))
— HY(Y, Oy (K +1)). (2.2.3.6)

Now, H'(Y, Oy (k' + 1)) = 0 by [Har77, Theorem II1.5.1(b)] while the map res in (2.2.3.6)
is surjective since k' > m. This allows us to conclude that H'(Y,Zpy (K + 1)) = 0 as

desired. ]
Lemma 2.2.16. Let 6y,...,06n be an orthonormal basis of CNTL with respect to the
standard Hermitian inmer product and let og,...,on be the corresponding elements of

HO(PN, Opn (1)) under the obvious identification CN+1 = HO(PN Opn(1)). Then, using

the standard Hermitian metric on the line bundle Opn (1), we have the identity
N
D loj@)P =1
j=0

for all points z € PN

Proof. Let x € PV be given. Choose a unit vector & € CN*! spanning the complex line
corresponding to z. By the definition of the standard Hermitian metric on Opn (1), we
have |o;(z)| = |(Z,6;)| for each 0 < j < N (where we are using the standard Hermitian
inner product on CV*1 on the right side). It follows from the orthonormality of {5 }é-V:O
in CN*1 that we can write & = ijzo@,&p&j. Applying Pythagoras’ theorem to this

decomposition of the unit vector & now gives the desired result. O

Lemma 2.2.17 (Cohomology vanishing I). There exists a positive integer ki with the fol-
lowing property. For any point [u, C] in My(X, A;J), any complex basis F = (sg,...,SN)
of H°(C, 2&?”) and any integer k' > ki, we have

HY(C, s 7(T*n @ Opn (K) @ u*Tx) = 0 (2.2.3.7)

where voF : C — PN is the embedding appearing in Lemma 2.2.3.
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Proof. Observe that we may replace T *g)}\l, by Tpn because of the definition of the holo-

morphic structure on the former bundle. This has the effect of making (2.2.3.7) manifestly
independent of the particular choice of basis F and associated embedding tc . Thus, for
each point @& = [u, C], we can define the positive integer k'(%) to be the smallest &' > 1
for which (2.2.3.7) holds. The existence of such a £, i.e. the finiteness of k’'(a) follows
from Serre’s vanishing theorem [Har77, Theorem II1.5.2]. Since the vanishing of H' is an
open condition, it follows that &’ : Mg (X, A;J) — Z=1 is upper semicontinuous and thus,
attains a maximum k; on the compact space mg(X JA; ).

To show that k; defined this way satisfies the desired property, it will suffice to show
that if (2.2.3.7) holds at [u,C] for some k', then it does so even when £’ is replaced by
a larger integer. Suppose to the contrary that we have H!(C, 1o 7 (Tpy @ Opn (K +a)) @
u*Tx) # 0 for some a > 1. By Serre duality [Har77, Theorem II1.7.6] on C, we get a
nonzero holomorphic section o of (1& z(Tpy ® Opn (K + a)) @ u*Tx)* ® we, where we
denotes the dualizing line bundle of the curve C. Taking a suitable holomorphic section
s of Opn (1), we deduce that o ® s®¢ is a nonzero holomorphic section of (L& F(Tpn ®
Opn (K') ® u*Tx)* ® we. Applying Serre duality again, we see that this contradicts
(2.2.3.7). 0

Lemma 2.2.18 (Cohomology vanishing II). There exists a positive integer ko with the
following property. For any point [u,C| in My(X,A;J), any integer k' > ko and any
complex basis F of HY(C, S?p) such that Ay maps the associated framed stable map (C' <
PN ) to the identity coset in G/G, the map

(yodig z: HUC, 1 7 T* gy @ u*Tx ® 1 Opn (k') ® HO(C, 1 7Opn (')
— QYY(C,u*Tx) (2.2.3.8)

has image spanning the cokernel of the linearized Cauchy-Riemann operator D(0y),.

Proof. Let M c Z (see Definition 2.2.11) be the subset consisting of framed .J-holomorphic
stable maps (C' < PV, u) which are mapped by Ay to the identity coset in G/G and satisfy
Oc (1) ~ %P Since G is compact, Ny is G-equivariant and My(X, A;J) is compact, it
follows that M is compact. For each point & = (C < PV, u) in M, define k'() to be
the smallest positive integer &’ for which the map D(0;), ® ({-)o dig ) is surjective (the
existence of such a £/, i.e., the finiteness of £'(1), follows from [AMS21, Lemma 6.24 and
Proposition 6.26]). Since surjectivity is an open condition, it follows that the function
k' : M — Z=1 is upper semicontinuous and thus, it attains a maximum on the compact
space M.

Define ka = supgeaq k(). To see that ko defined this way satisfies the desired property,
it will suffice to show that if (2.2.3.8) maps onto the cokernel of D(d;), for some k’, then
it does so even when k’ is replaced by a larger integer. But this is an easy consequence
of Lemma 2.2.16. Indeed, for any element f ® g in the domain of (2.2.3.8), we may
put fj == f®f 705 and g; == g ® i, 505 (with o09,...,on as in Lemma 2.2.16) to get
SLo Fi®Tpy = Yt i 704X (f ®F) = (f ®F). But now 331 f;®7; lies in the domain
of (2.2.3.8) (but with &’ replaced by k' + 1) and has the same image as f ®g. O
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We now choose k to be the maximum of kg, k1, ko.

Remark 2.2.19. Observe that our choice of & is such that condition (b) of Definition 2.1.13
is satisfied. More precisely, we get condition (b1) from Lemma 2.2.17 while condition (b2)
follows from Lemmas 2.2.14 and 2.2.18.

2.2.4 Completing the proof of Theorem 2.1.18(1)

The preceding subsections show how to choose an unobstructed auxiliary datum. More
precisely, it is always possible to find a complex linear connection VX on Tx and a po-
larisation Ox (1) — X, the latter following from Lemma 2.2.1. Given V¥, 0x(1), §2.2.1,
§2.2.2 and §2.2.3 respectively show how to choose p,U and k while Remarks 2.2.4 and
2.2.19 respectively show that conditions (a) and (b) of Definition 2.1.13 are satisfied for
these choices. This completes the proof of Theorem 2.1.18(1).

2.3 Global Kuranishi chart

In this section, we will prove Theorem 2.1.18(2). Let (VX,0x(1),p,U, k) be an unob-
structed auxiliary datum. The case with n marked points is a formal consequence of the
case without marked points and so, we shall focus on the latter. We prove the (relative)
smoothness of the thickening, obstruction bundle, group action and obstruction section
in the subsections below. Except for the (relative) smoothness of the obstruction section,
treated in Lemma 2.3.16, these are all direct consequences of unobstructedness and some

basic results from [Swa21].

Remark 2.3.1 (Regular loci). To keep the notation readable, we use the same notation
for the thickening 7 and the open locus 7' < T where it is cut-out transversely (and
similarly for £). Thus, all the statements made in §2.3 are to be interpreted as being valid

only over a sufficiently small G-invariant open neighborhood of the zero locus s~ 1(0) < T.

2.3.1 Thickening

In this subsection, we consider the space T’ of tuples (C = PV, u : C — X,n) satisfying
conditions (ia) and (ib) of Construction 2.1.14. Specifically, we endow 7’ with a natural
structure of a rel-C® manifold over the algebraic base space ﬂ;(PN ,m) from Definition
2.1.4. Observing that the projection 7 — T is a local homeomorphism, this will define a
natural rel-C® structure on T as well. To this end, let us first introduce rel-C* manifolds

and their morphisms. A detailed exposition can be found in [Swa21].

Definition 2.3.2. Given a topological space S, an S-space Y /S = (Y, p) is a topological
space Y equipped with a map p: Y — S. An S-chart (¢,U) of dimension n consists of
an open subset U < Y so that p(U) is open and an open embedding ¢: U — p(U) x R"
with pryp = ply.

Definition 2.3.3. Let S and S’ be topological spaces and n,k,m > 0. Suppose U — S
and A c R} are open subsets. A continuous map ¢: U x A — S’ x R™ is of class rel-C*
for £ € Nu {oo} if
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e 1 :=pryp: U x A — S is continuous and only depends on the first variable,
e ©o(s,-) € CY(A,R™) for each s € U,
e the induced map U — C*(A,R™) is continuous with respect to the C*-topology.

If V < S xR} is an open subset, we say ¢: V' — § x R™ is of class rel-C* if it is locally
of class rel-C*. The relative derivative of ¢ is given by dp(s,z)v = (p1(s), dpa(s, z)v).

We call two charts for X /S compatible if the transition function is of class rel-C'®.

Definition 2.3.4. A rel-C®™ manifold with corners over S is an S-space X /S equipped

with a maximal atlas of S-charts with corners which are pairwise rel-C*® compatible.

Definition 2.3.5. A morphism of rel-C*-manifolds is a pair (F, f): X/S — X'/S’ where

f: S — S’ is continuous, p'F = fp, and F is of class rel-C® in local coordinates.

The compposition of two such morphisms is the obvious one.

Remark 2.3.6. While a rel-C'® manifold X /S (of dimension n) might not have a tangent
bundle, it always has a relative tangent bundle T’y /5 (of rank n) which is defined by letting
it be p*R™ over a local chart (U, ). A relative submersion is a morphism (F, f) whose
relative derivative T'x g — F*Tx: /g is surjective.

Now, to realize T’ over ﬂZ(PN ,m) as a rel-C®™ manifold, we will use the existence
result from [Swa21] after recasting 7’ as a holomorphic curve moduli space using Gromov’s
shearing trick as in [AMS21].

Define a complex vector bundle over X x PN by

E =Tx & (T*px ® Opn (k) ® HO(PN, Opw (k))). (2.3.1.1)

Using the evident connections on all of the bundles involved, we obtain a splitting of the
tangent bundle of F into the vertical E-direction and the horizontal X- and PV-directions.
At any point (z,y,n) € E, with z € X, y e PV and n € E(4,), use this splitting to define

the endomorphism
T ey (0w, C) 1= (Jov + (pw, T3 w, JFew (), (2.3.1.2)

where J, is the almost complex structure on X at x, Jstd is the standard complex structure
of PV at y, JF@v) denotes multiplication by i on the fibres of E and (-) denotes the evident
inner product pairing Opn (k) ® HO(PN, Opn (k)) — C. This defines an almost complex

structure J on E.

It is easy to verify that the projection E — X x PV is pseudo-holomorphic, with the
latter carrying the product almost complex structure. Clearly, a smooth map C' — FE is
J-holomorphic if and only if the corresponding map ¢ : ¢ — PV is holomorphic and the

corresponding map u : C — X and element

ne H(C,u*Tx ® *(T*)x ® Opn (k) ® HO(PN, Opn (k) (2.3.1.3)
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satisfy 0yu 4+ (n)|c = 0. Thus, 7" is realized a space of pseudo-holomorphic embedded
curves in I/, with the map to the base space MZ (IP’N ,m) induced by the natural projection
ppy : E — X x PN — PN, These curves are of genus g and lie in the class A =
A x [pt] + [pt] x m[P'] € Ho(X x PN,Z) = Hy(E, 7).

To apply [Swa2l, Corollary 3.7], we will realize T” /ﬂ; (PN, m) as the object repre-
senting the following sheaf of sets § on the category (C*/-) of rel-C* manifolds.

Definition 2.3.7. Given a rel-C* manifold Y'/S, we define the set F(Y/S) to consist of

all commutative diagrams of the form

Y cy 2. F
JV i ip]pN
S c —h,pN

where

h,m
o C (), PN x S is a family of curves over S arising by pullback along a continuous

map S — ﬂ; (PN, m) and the square on the left is cartesian (and so, Cy /C acquires

a natural rel-C'® structure),
e (H,h):Cy/C — E/PY is of class rel-C*,

e for each y € Y with image s € S, the restriction H|, : 771(s) — E of the map
H to the fibre of Cy /Y over y is a transversely cut-out pseudo-holomorphic stable
embedding into E of genus g, class A, with the property that the projection map
from the kernel of the linearized operator of H|, : 7~1(s) — E to the kernel of the

linearized operator of ppn o (H|,) = hls : 771(s) — PV is surjective.

For rel-C® morphisms Y’/S” — Y/S, the associated functorial maps §F(Y/S) — F(Y'/S")

are given by pullbacks of such diagrams.

To show that the sheaf § is representable, we need the following simple observation

which was not explicitly stated in [Swa21].

Lemma 2.3.8 (Rel-C® submersions). Suppose Y'/S — Y /S is a rel-C* submersion
of rel-C® manifolds. Then, Y'Y is naturally a rel-C* manifold and is given by the

categorical fibre product
Y')Y = (Y'/S) x5y (Y/Y) (2.3.1.4)

in the category (C*/-) of rel-C* manifolds.
Proof. Straightforward. O

Proposition 2.3.9. The sheaf § is representable by a rel-C™® structure on an open subset
of transversely cut-out points in T’ /ﬂ; (PN, m). This open subset contains the zero locus

of the obstruction section s.
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Proof. By [Swa2l, Proposition 2.16], the representability of § is a local question on both
T’ and ﬂ; (PN, m). Near a given p € 7' (and the corresponding point p € ﬂ; (PN, m)),
defining an element of F(pt/pt), use the construction of [Swa2l, §6.3] to find a family
/M of stable pointed genus g curves, such that we can realize 7' (resp. ﬂ;(}P’N ,m))
near p (resp. p) as a space of pseudo-holomorphic stable maps from the fibres of €/ to
E (resp. PN ) with suitable divisor constraints imposed on the added marked points. For
more details, see [Swa2l, Proposition 6.8].

Using the functorial description of the space of pseudo-holomorphic maps from fibres
of €/M given in [Swa2l, Definitions 3.1, 3.2, 3.3] and applying [Swa21, Corollary 3.7] to
this functor now gives canonical rel-C* structures on 7' /9 near p (resp. M; (PN, m)/Mm
near p) and inspection of (vertical) tangent spaces shows that the natural projection
T /M — ﬂ;(PN,m)/fm is a rel-C® submersion near p (resp. p). Lemma 2.3.8 now
implies that we get a canonical rel-C'® structure on 7’ /ﬂ; (PN, m) near (p,p). Using the
explicit categorical fibre product description of this rel-C'* structure (given in Lemma
2.3.8), we check that this rel-C'* structure indeed represents the functor § of Definition
2.3.7.

The final assertion about the zero locus of s follows from the fact that the auxiliary

datum fixed in the beginning of this section was unobstructed. O

To complete the discussion of the thickening, we note that the natural projection
T — T’ has discrete fibres and is a local homeomorphism since, for any prestable curve
C of genus g, the exponential map H'(C,O¢) — Pic’(C) has this property. We use this

to endow T/ﬂ;(}P’N ,m) with a natural rel-C® structure.

Remark 2.3.10. Proposition 2.3.9 and the preceding paragraph complete the proof of The-
orem 2.1.18(2a).

2.3.2 Obstruction bundle

Recall from Construction 2.1.14 that the obstruction bundle £ has three summands. The
first summand is a trivial bundle with fibre su(/N + 1) and therefore has a natural rel-C®
vector bundle structure. The third summand acquires a natural rel-C® structure as it is

the pullback to 7 of an algebraic vector bundle on ﬂ; (PN, m) by the next lemma.

Lemma 2.3.11 (R'7,O has rank g). E* := Rlﬂ'*ch 1s a rank g algebraic vector bundle
on M; (PN, m) dual to the Hodge bundle E := myw, where wy is the relative dualizing line
bundle of m: Cy — ﬂ; (PN, m). The fibre of the bundle E* at a point C < PV is naturally
identified with H'(C, O¢).

Proof. The fact that E* defines a locally free sheaf follows from the theorem on cohomology
and base change [Har77, Theorem II1.12.11]. The assertion that it is dual to the Hodge

bundle is a consequence of Serre duality [Har77, Theorem II1.7.6] for the case of curves. [

It remains to consider the second summand of the obstruction bundle. This summand
is actually pulled back under the projection map 7 — T (recall the definition of 7' from
the previous subsection) and its fibre over (C' < PV, u : C — X, n) is given by the vector
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space E(ccpn ) of (2.1.0.4). As the auxiliary datum fixed in the beginning of §2.3 is
unobstructed, we may apply [Swa2l, Theorem 5.18] to endow this with the structure of a

rel-C'® vector bundle.
Remark 2.3.12. We have now completed the proof of the first half of Theorem 2.1.18(2b).

Remark 2.3.13 (Stable almost complex structure). To establish the assertion of Theorem
2.1.18(2e), we begin by observing that the bundle £ @ g is already a complex vector
bundle. Indeed, the second and third summand in (2.1.0.8) are complex vector spaces
and we have an obvious identification g @ su(N + 1) = sl(N + 1,C). It remains to find
a natural stable complex structure on the vertical tangent bundle T, 1 TR BN m)” This
comes from the identification of the vertical tangent bundle with bundle of kernels of
the associated (surjective) linearized real Cauchy—Riemann type operators. This is stably
equivalent to the index (virtual) bundle of the corresponding complex Cauchy—Riemann
type operators and the latter has an obvious stable complex structure. For more details,

see the orientation argument in the proof of [MS12, Theorem 3.1.6(i)].

2.3.3 Group action

Since the rel-C*® structure on T/ﬂ; (PN, m) is pulled back from ’T’/M; (PN, m), the

G-action defines a rel-C*™ map
(G x T)/(G x My(PN,m)) — T/M (BN, m) (2.3.3.1)

if the corresponding map with 7 replaced by 77 is of class rel-C®. But this is clear once
we observe that the corresponding natural transformation at the level of the functor §
(from Definition 2.3.7) is well-defined and is therefore represented by a rel-C* map by
the Yoneda lemma. The next lemma now establishes the fibrewise local linearity (in the
sense of [AMS21, Definition 4.20]) of the G-action.

Lemma 2.3.14. Let V be a finite dimensional vector space, 7 : M — V a rel-C'* manifold
and T a finite group. Assume that we are given a rel-C™ action of T' on M /V which covers
a linear T-representation § on V. Let x € m=1(0) be fived by T'. Then, M/V has a rel-C*

chart at x in which the I'-action is linear.

Proof. By shrinking to a I'-invariant coordinate neighborhood of z € M, we may assume
that M is an open subset of a product V' x W, with W another finite dimensional vector

space with z = (0,0). The action of any g € T is given, in these coordinates, by a rel-C*®
map (an) = (9(9)7)7909(1)711))) with

@g(0(h)v, on(v,w)) = pgn(v, w). (2.3.3.2)

Define the representation p : I' - GL(W) by p(g) = %(0,0). Define the map (v, w) —
(v, T'(v, w)) by

T(v,w)

|F| Loy (v, w) (2.3.3.3)
geF
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and observe that 2—5(0, 0) is the identity map. Using the implicit function theorem with
parameters, [Swa2l, Lemma 5.10], it follows that (v,w) — (v,T(v,w)) is a rel-C* coor-
dinate change on M /V near x. A direct check shows that in these new coordinates the

I'-action is given by 8 ® p. O

Remark 2.3.15. We have now completed the proof of the first half of Theorem 2.1.18(2c).

2.3.4 Obstruction section

Recall from Construction 2.1.14 that the obstruction section s has three components cor-
responding to the three summands of the obstruction bundle £. It is immediate from the
construction of the rel-C™ vector bundle structure on £ and the Yoneda lemma that the
second component of s is rel-C'®.

The first component of s, denoted M\y(C <= PV, u), is an su(N + 1)-valued function
which is defined using the good covering U (recall Definition 2.2.12). To see that this
is a rel-C® function on 7’ /M; (PN, m) (and therefore on ’T/ﬂ; (PN, m)), we need the
two following observations. The first is that the formula (2.2.2.10) defining Xy is sc-
smooth on the polyfold ng(ijll’ ;) since the cutoff functions x; : Z — [0, 1] were chosen
to be sc-smooth. The second is that the rel-C'* structure on T’/ﬂ;(PN ,m), defined via
Proposition 2.3.9, has local rel-C® charts given by (finite dimensional) submanifolds of
the polyfold Z of Definition 2.2.11 (for more details on the local charts see [Swa2l, §4.3
and §4.4], specifically Lemma 4.12-Theorem 4.16 therein). Putting these two observations
together, we find that Ay : ’T’/ﬂ; (PN, m) — su(N + 1)/pt is rel-C®.

We finally turn to the relative smoothness, near s 1(0) = 7T, of the third component
of s which we recall takes values in the (pullback of the) vector bundle E* specified by
Lemma 2.3.11. The desired assertion will follow from the next lemma once we recall that

the projection 7 — T is a local homeomorphism.

Lemma 2.3.16. Consider a transversely cut-out (C < PN, u,n) e T satisfying Oc(1) ~
L2 Then there is a rel C* section o, defined on T’/ﬂ; (PN, m) near (C < PN, u,n),
of the pullback of the bundle E* such that we have o(C = PN, u,n) = 0 and the identity

[0a(1)] = p- [La] + o(C = PN a,7) (2.3.4.1)

in Pic(C) holds for all points (C < PN 4,7) € T' at which o is defined.

Proof. Let C; < C4 be the set of smooth points in the fibres of the universal curve C;, —
ﬂ; (PN, m). We claim that it suffices to find an integer r > 1 and rel-C* maps

Tl T T T /M (BN m) — Co /M (PN m), (2.3.4.2)

defined on a neighborhood of ¢ := (C' = PV, u,7), such we have 7;(q) = 7/(q) for 1 <i <r
and, for all points § = (C’ c PN, 4,7) in this neighborhood, a holomorphic line bundle

isomorphism

Op(1) ~ L ® 04 (Dy) (2.3.4.3)
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where D; := Y7 7:(q) — i1 77(G). Indeed, in this case, we can define the desired section
/

o by the explicit formula o(§) := > _; p(73(¢), 7/(§)) where p denotes the (holomorphic)

) T
Abel-Jacobi map
p:Cy XK (BN m) c, —» E* (2.3.4.4)
which is defined near the diagonal ACS and has the property that for any C < PN in
ﬂ; (PN, m) and any two points z,y € C, the element p(z,y) € H'(C, O ) satisfies

[0a(@)] = [0a(w)] + pla.y) € Pic(C) (2.3.4.5)

and p(z,y) =0if z = y.
To complete the proof, we will now show how to construct an integer r and maps 7;, 7/

as above. We first choose an integer ¢ » 1 such that the (isomorphic) holomorphic line
bundles on C'

Li:=0c(f+1)® (wi)®P (2.3.4.6)
Ly := Oc(f) ® (u*Ox/(1))®% (2.3.4.7)

are very ample and have vanishing first cohomology. Let r := deg(L1) = deg(L2) and s;
(resp. s2) be a holomorphic section of Ly (resp. Lg) such that the sections s, s2 have the
same vanishing locus on C' consisting of r distinct non-singular points z1, ..., z. € C.

Let ﬂ; (PN, m) < C, £, PN be the universal map on M;‘ (PN, m) and let w, be the

relative dualizing line bundle of 7. Define the coherent sheaf
L1 := T (F*Opn (L + 1) ® w,®P) (2.3.4.8)

on ﬂ; (PN, m) and observe, using H'(C, L1) = 0, that £ is locally free near the point
C < PY by the theorem on cohomology and base change [Har77, Theorem I11.12.11]. Thus,
we can find a local holomorphic section o1 of £ with o1(C = PV) = 51 € H*(C, Oc({ +
1) ®w5®p). Using this, for ¢ = (C’ c PN 4,7) close to ¢ = (C < PN, u,n), we define
71(q),...,7(4) € C to be the unique zeros of o1(C < PV) close to z,...,2 € C. The
functions 7,..., 7. are obviously rel-C®, since they are pullbacks to 7’ of continuous
(even holomorphic) sections of .

Finally, we need to construct 77, ..., 7. For this, we consider the space &’ parametriz-
ing all tuples (C' = PN, 4,4, %), where (C' = PN, 4,5%) € 71 and 35 € H(C,04(0) ®
(0*Ox(1))®3). By regarding such tuples as pseudo-holomorphic maps (with respect to
a suitable almost complex structure as in §2.3.1) into the total space of the line bundle
Ox(1)®% X Opy(f) — X x PV pulled back to the space E from (2.3.1.1), we argue
exactly as in Proposition 2.3.9 to conclude that, near the point (C' < PV, u,n,ss), the
space S’ /ﬂ;(IP’N ,m) carries a natural rel-C® structure representing a functor analogous
to §. Further, H'(C,Ly) = 0 implies that the natural forgetful map S’/ﬂ; (PN, m) —
T’/ﬂ; (PN, m) is a rel-C*® submersion near (C' = PV, u,n, s3). This last assertion allows
us to produce a rel-C® local section oy : T’/ﬂ; (PN, m) - & /ﬂ; (PN, m) of the forgetful
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map which is defined near ¢ = (C' = PV, u, ) and maps it to (C = PV, u,n, s3). This local

section o9 yields, for ¢ = (C’ c PN 4,7) e T’ sufficiently close to ¢, a section

o2(q4) € HY(C,04(0) ® (0*Ox (1))®%) (2.3.4.9)

with unique zeros 7{(§),...,7.(¢) € C close to z1,...,2, € C. Using the fact that oy is

ror
rel-C'* and the holomorphicity of each o2(§), it follows that the functions 7{,...,7, are

also rel-C'*. This completes the construction of 7, 7;, 7/ and concludes the proof. ]

Remark 2.3.17. We have now completed the proof of the second half of Theorem 2.1.18(2b).

Remark 2.3.18 (Zeros of the obstruction section). To see that the natural continuous map
s 1(0)/G — M, (X, A; J) (2.3.4.10)

is a homeomorphism, and therefore establish Theorem 2.1.18(2d), we argue as follows.
Bijectivity follows by noting that s1(0) exactly parametrizes .J-holomorphic stable maps
(C,u) in Mgy(X, A; J) together with a choice of projective embedding C' = PV given by
the holomorphic sections of £ such that Ay(C' = PV, u) is the identity coset in G/G.
Using the G-equivariance of Ay and the fact that the projective embeddings in question
correspond to a choice of basis for H%(C, e ), it follows that the preimage of each point
under the projection s~ 1(0) — M, (X, A4;J) is a G-orbit. It now follows that s~1(0)
is compact and thus, the continuous bijection between s~ (0)/G and M,(X, A;J) is a

homeomorphism since the latter space is known to be Hausdorff.

Remark 2.3.19 (Finite stabilizers). The stabilizer I' = G of any point (C < PV, u) of
571(0) is naturally identified with the automorphism group of the stable map (C, ) and
is therefore finite. This implies that the action of G on 7 also has finite stabilizers in
a neighborhood of the compact set s~ (0). This establishes the second half of Theorem
2.1.18(2c).

2.3.5 Completing the proof of Theorem 2.1.18(2)

The preceding subsections show that if we fix an unobstructed auxiliary datum, then the
output of Construction 2.1.14 has all the properties claimed in the statement of Theorem
2.1.18(2) and, in particular, is of class rel-C*. Refer to Remarks 2.3.10, 2.3.12, 2.3.13,
2.3.15, 2.3.17, 2.3.18 and 2.3.19. This completes the proof of Theorem 2.1.18(2).

2.4 Uniqueness up to equivalence and cobordism

In this section, we will prove Theorem 2.1.18(3). We begin by formulating the notions of
equivalence and cobordism for rel-C*® global Kuranishi charts. These are slight variations
on the definitions presented in [AMS21, §5.1] that allow us to keep track of the rel-C®

structures involved.

Definition 2.4.1 (Rel-C* equivalence). Let K = (G,T/M,&,s) be a rel-C* global

Kuranishi chart as in Definition 2.1.2. Consider the following moves applied to K.
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(i) (Germ equivalence) Given a G-invariant open neighborhood U = T of s71(0), replace
Kby (G, U/M,E\u,slu).

(ii) (Stabilization) Given a rel-C'® vector bundle p : W — T /M carrying a compatible
rel-C'* action of G, replace K by (G,W/M,p*E @ p*W,p*s ® Aw ). Here, Ay

denotes the tautological diagonal section of p*W — W.

(iii) (Group enlargement) Given a compact Lie group G’ and a rel-C* principal G'-
bundle ¢ : P — T /M carrying a compatible rel-C* action of G, replace K by
(G x G',P/M,q*E,q*s).

(iv) (Base modification) Given a smooth manifold M’ (equipped with a smooth submer-
sion to M) and a rel-C® submersion 7 /M — M’/ M (covering the identity map of
M), replace K by (G, T/M' &, s).

We say that two rel-C® global Kuranishi charts IC, K" are rel-C® equivalent if there
exists a finite sequence of rel-C® global Kuranishi charts K = Ko,...,Ky = K’ such
that for each 0 < i < N, the chart K; is obtained from K;y; (or K;41 is obtained from
K;) by applying one of the moves (i)—(iv) above. There is an obvious refinement of this
notion of equivalence when IC, K’ are stably complex (resp. oriented) by allowing only G-
equivariant stably complex (resp. oriented) W in (Stabilization) and pseudo-holomorphic

(resp. oriented) submersions M’ — M in (Base modification).

Remark 2.4.2. The move (Base modification) is not present in [AMS21] since the definition
of global Kuranishi charts therein does not make explicit reference to the base space of

the thickening.

Definition 2.4.3. Let ’C(] = (G,%/M,&),Eo) and /Cl = (G, 7—1/./\/1,51,51) be rel-C*®
global Kuranishi charts having the same symmetry group G and base space M. We say
that Ky and Ky are rel-C™® cobordant if there exists Ko1 = (G, To1/ M, Eop1, $01) with the

following properties.
(i) To1 — M is a rel-C™ manifold-with-boundary with (791/M) = (To/M) 1 (T1/M).
(i1) &1 — To1/M is a rel-C'* vector bundle which restricts on the boundary to & u &;.

(iii) so1 is a rel-C™ section of y; with compact zero locus and it restricts on the boundary

to $o U 51

(iv) There is a rel-C* G-action on &y — To1/M which makes s a G-equivariant section

and is compatible with the given actions on the boundary.

There is an obvious refinement of this notion of cobordism when Ky, K are stably complex
(resp. oriented) by requiring the cobordism to carry compatible stable complex structures

(resp. orientations).

We will prove the uniqueness of the global Kuranishi charts of Construction 2.1.14 up
to stably complex rel-C'® equivalence and cobordism in the subsections below. The case
with n marked points is a formal consequence of the case with no marked points and so,

we shall focus on the latter.
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2.4.1 Equivalence

Fix J € J-(X,w) and let (VX% Ox;(1),p;,Us, k;) for i = 0,1 be any two choices of
unobstructed auxiliary data for My(X, 4;J) and let K; = (G;, Ti/M;, &, s;) for i = 0,1
be the associated rel-C'® global Kuranishi charts from Construction 2.1.14. Consider the
doubly thickened rel-C'* global Kuranishi chart

K = (Go x G1,Tor/ Mo, €01, 501) (2.4.1.1)

which is defined as follows.

(i) Moy is the space of embedded algebraic prestable genus g curves C = PNo x PNt such
that applying the coordinate projections PNo x PNt — PNi yields a point ¢; : C' < PV
of M; for i = 0,1. As in Definition 2.2.8, My is a smooth quasi-projective variety
of the expected dimension and the natural forgetful maps My, — M; are algebraic

submersions.

(ii) To1 comsists of tuples (C' < PNo x PM oy : C — X, 19, 0,7m1,01) satisfying the
following properties.
(a) C <= PNo x PM lies in My;.

(b) (C — PYi,u: C — X) is a framed stable map lying in the domain of ), for
1=0,1.

(c) m; belongs to the finite dimensional vector space E’(LCHPNi,u) from (2.1.0.4) for

1 = 0,1 and on the normalization C — C, we have the equation
Oyt + (o) o dig + (m > odiy = 0e Q"Y(C,a*Tx) (2.4.1.2)
with Z; is the pullback of ¢; along C — C for i = 0, 1.
(d) a; € HY(C, O¢) satisfies the analogue of (2.1.0.7) for i = 0, 1.

(iii) The fibre of £y over a point (C' < PNo x PNt v : C — X, no, g, 1, 1) is given by

D (5u(Ni + 1)@ Bl pn, ) ® H'(C, Oc)> (2.4.1.3)
i=0,1
and sp; = 50 @ 51 at this point is given by s; = (ilog Ay, (C' — PNi ), n;, ;) for
1 = 0,1. By abuse of notation, we denote the vector bundle summands for ¢ = 0,1
from (2.4.1.3) by &;.

(iv) The group Gy x G1 acts on Tp1 — Moy and &y in the evident way.

Arguing as in §2.3, we conclude that K is a stably complex rel-C'® global Kuranishi
chart for My (X, A;J) and that To1, £ and so1 are actually rel-C® with base Mg or M
(and therefore also with base My1). By symmetry, it suffices to show that Ky and K are
stably complex rel-C® equivalent. To see this, we first apply (Base modification) K and
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the submersion Mgy — Mg to obtain
’C(/J = (GO X G1,761/M0,501,501). (2.4.1.4)

The next observation is the key to showing that K{, and Iy can be related by the moves
(Germ equivalence), (Stabilization) and (Group enlargement). The explicit use of (Germ
equivalence) will be hidden as we will always work in a sufficiently small (G x G} )-invariant

neighborhood of 5,"(0).

Lemma 2.4.4. At any & = (C < PMo x PM v : C — X,0,0,0,0) € 5511(0), the vertical

linearization
dsils : Ty /Mol = E1la (2.4.1.5)

18 surjective.

Proof. Write ds1|z = L1 @ Lo @ L3 using the direct sum decomposition of &;|; from
(2.4.1.3). Since the auxiliary datum (VX0 Ox (1), po,Uo, ko) is unobstructed, it follows
that the restriction

Ly : Trpyjmton e = Eoupm (2.4.1.6)

is surjective. It therefore suffices to argue that (L1 @® L3)|ker L, is surjective. The projection
ker Lo — Tagg, /mole = HO(C, i Tpny) (2.4.1.7)

has a natural splitting o corresponding to taking n; = 0, keeping
(tg: C > PN u:C — X, n9,ap) (2.4.1.8)

constant and infinitesimally deforming the embedding ¢; : C < PN1 (observe that the
infinitesimal deformation of oy is determined by that of ¢; and the fact that w is fixed).
The description of o makes it clear that the operator L3|ker 1., actually factors through the
projection (2.4.1.7). The resulting map

L3 : Tatoy /ol = H°(C, i Tpny ) — H'(C, O¢) (2.4.1.9)

is identified with the connecting map of the long exact sequence in cohomology obtained
by pulling back the Euler exact sequence 0 — Opn, — Opn, (1)1 +!
This shows that (2.4.1.9) is surjective and that ker L is identified with sl(N; + 1, C), cor-
responding to the infinitesimal action of PGL(N1+1,C) = PSL(N1+1,C) on Ty, /a1, 2-

It remains to show that L1|ker( L.®Ls) 18 surjective. For this, we use the splitting o, re-

— Tpn, — 0 along ¢1.

stricted to ker L and observe that PSL(N; + 1, C)-equivariance of the map Xy, gives us

the desired surjectivity statement. O

From Lemma 2.4.4, it is immediate that K} := (Gg x G1,51_1<0)/M0, &o,50) is arel-C™

global Kuranishi chart related to Koy by (Group enlargement). To conclude, we need to
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show that K and K[, are related by (Stabilization) with the role of W in Definition 2.4.1
played by &;. This readily follows from Lemma 2.4.4 and a rel-C'® tubular neighborhood

argument.

Remark 2.4.5. We have now established Theorem 2.1.18(3a).

2.4.2 Cobordism

Fix Jo, J1 € J-(X,w). We first connect them by a smooth path v : [0,1] — J-(X,w)
and write J; := (t). Choose a smooth family of Js-linear connections VX on Tx. By
Lemma 2.2.1, we can find a polarization Ox (1) with associated symplectic form 2 taming
the image of . Choose p as in §2.2.1, depending only on g and d = {[Q2], A). Using the
compactness of the parametrized moduli space HQ(X , A;7), we can now choose U and k as
in §2.2.2 and §2.2.3 such that, for each ¢ € [0, 1], the auxiliary datum (VX*, Ox (1), p,U, k)
is unobstructed for J;. This yields a stably complex rel-C'® global Kuranishi chart /C; for
My(X, A; Jy) for each t € [0, 1]. Repeating the arguments of §2.3 with the parameter ¢, we
see that the family {K;}cj0,1] fits together to exhibit a stably complex rel-C'* cobordism
between Ky and K.

Remark 2.4.6. We have now established Theorem 2.1.18(3b).

2.4.3 Completing the proof of Theorem 2.1.18(3)

The preceding subsections show that, for fixed J, different choices of unobstructed aux-
iliary data lead to global Kuranishi charts related by stably complex rel-C*® equivalence
(see Remark 2.4.5) and that for different choices of J, it is possible to find auxiliary
data for which the resulting global Kuranishi charts are related by stably complex rel-C'®
cobordism (see Remark 2.4.6). This completes the proof of Theorem 2.1.18(3).

2.5 Product formula for GW invariants

In this section, we prove the product formula for Gromov-Witten invariants (Theorem
2.5.9) as an application of the global Kuranishi chart construction. We begin by briefly
recalling the construction of the virtual fundamental class associated to an equivalence
class of global Kuranishi charts and the definition of Gromov—Witten invariants coming
from Theorem 2.1.18. We then discuss stable map moduli spaces of a product of symplectic

manifolds and derive the product formula as a consequence.

2.5.1 Virtual fundamental classes

Let K = (G, T/M,E,s) be an oriented rel-C* global Kuranishi chart as in Definition
2.1.2 for a compact Hausdorff space Z. The virtual dimension of Z with respect to K is

defined to be

vdimg Z = dim 7 — dim G — rank € (2.5.1.1)
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where all dimensions are understood to be over R. Abbreviating d = vdimg Z and r =
dim 7 — dim G, the virtual fundamental class [Z]}" € HY(Z,;Q)" of Z with respect to K

is defined to be the composite

s*r S/G’ ST/G

H(Z;Q) ——> H{(T/G;Q) == Q

where the first map is given by

Az = lm Q) Y i B T(0)/G5Q)

W2s—1(0)/G W2s—1(0)/G

~ H*(T/G,(T\s '(0))/G;Q) — H}(T;Q). (25.1.2)

We take the direct limit over neighbourhoods of s71(0)/G in T /G, while 7(£/G) is the
Thom class of the orbibundle. The second map is integration over the homology Q-
manifold 7/G. The number vdimg Z and the class [Z]{" are unchanged if we replace K
by an equivalent oriented global Kuranishi chart (see [AMS21, §5] for more details).

2.5.2 Gromov—Witten classes

We now specialize to the case of Gromov—Witten theory. Asin §2.1, let (X,w) be a closed
symplectic manifold, A € Ho(X,Z) and g,n = 0 be integers. For any J € J-(X,w), we

have a natural map

Mn(X, A;J) <25 X My, (2.5.2.1)
(Cyx1y. .y Ty u) = (u(mr), .. ulzn), (C 21, .. 20)™) (2.5.2.2)

defined on the moduli space of stable J-holomorphic maps given by evaluation at the
marked points and stabilization of the domain. We adopt the convention of taking ﬂgyn =
pt when 2g — 2+ n < 0. Using §2.5.1, we may define the virtual fundamental class of the

moduli space
My (X, A N = [Myn(X, A D e HY9™ (M, (X, A;7); Q)Y (2.5.2.3)

by choosing any K from the set of equivalent global Kuranishi charts provided by Theorem
2.1.18. Define the associated Gromov—Witten class to be

GW )= (v x st)4 [My,n (X, A; )" € Hygina(X™ x Myg,n,; Q) (2.5.2.4)

where K is any global Kuranishi chart for ﬂg,n(X , A; J) provided by Theorem 2.1.18.
We are justified in omitting J from the notation for the Gromov—Witten class since the
global Kuranishi charts of Theorem 2.1.18 are unique up to equivalence and cobordism.
Pairing the Gromov-Witten class with cohomology classes ay,...,a, € H*(X,;Q) and
Be H*(Mgyn,;Q) yields Gromov-Witten invariants. Specializing to g = 0 and n = 3, we
obtain the small quantum cohomology ring QH*(X,w) over the universal Novikov ring Ag
as in [MS12, Chapter 11].
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2.5.3 Gromov—Witten invariants of a product

Let (X;,w;) be closed symplectic manifolds for ¢ = 0,1 and set (X,w) := (Xo,wp) X
(X1,w1). Given homology classes A; € Ho(X;,Z) for i = 0,1, let A < Hs(X,Z) denote
the set of classes A which project to A; under the coordinate projection pr; : X — X; for
i=0,1. Fix g,n > 0 and J; € J-(X;,w;) and set J := Jy x J;. Define the moduli space

Mon(X,2,7) = [ [ Mgn(X, 4;.7). (2.5.3.1)

Ae
All the non-empty components of this finite disjoint union have the same virtual dimension.
Using Theorem 2.1.18 and polarizations Ox; (1) on X; taming J; for i = 0, 1, choose a single
unobstructed auxiliary datum (V~,0x(1),p,U, k) with Ox(1) = Ox, (1) X Ox,(1). We

obtain a global Kuranishi chart
K= (G, T/M,E,s) (2.5.3.2)

for the whole of M, (X,%;.J) by taking the disjoint union over A € 2 of the resulting
charts K4 for M, ,,(X, A; J). There is a natural map

D My (X, 2 ) = Myn(Xo, Ao; Jo) X Mgn (X1, Ar; J1). (2.5.3.3)

Theorem 2.1.18(1) yields unobstructed auxiliary data (VXi, Ox, (1), p;,Us, k;) for the
moduli spaces ﬂg,n(Xi, Ai; Ji). Let K; = (G;, Ti/M;, Ei,8;) be the associated global Ku-
ranishi charts provided by Theorem 2.1.18(2) for ¢ = 0, 1. Recall that M; = m;n(PN imj).
Define N to be the inverse image of My x M;j under the natural morphism

My (PN x PV (mg,my)) — Myn(PNO mg) x My, (PN, my). (2.5.3.4)
We let
TN > My x M (2.5.3.5)

denote the morphism induced by the restriction. It naturally factors through Mg v
M;.

Lemma 2.5.1. N is a smooth quasi-projective scheme of the expected dimension. More-
over, when we have 2g — 2 + n > 0, the natural morphism N — M XMy My is proper

and birational.

Proof. Let (C,x1,...,2p,u : C — PNo x PM) be a point of A/ and, for i = 0,1, let
(Ci 2ty . 2w 0 Cf — PYi) be the corresponding point of M;. Let x; : C — C;
be the natural morphism. Any component of C' which is contracted by both kg and
k1 must be a sphere with > 3 special points. Since Aut(Cy, %, ..., x%, u;) is trivial for
i = 0,1, it follows that Aut(C,z1,...,z,,u) is also trivial. Finally, we observe that
HY(C,u*Tpn,) = HY(Ci,ufTpn,) = 0 for i = 0,1 where the first equality comes from
the fact that C; is obtained from C by sequentially contracting spheres with < 2 special
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points on which the map w is constant. Thus, N is a smooth quasi-projective scheme of
the expected dimension.

Let us now assume that 2g — 2 + n > 0 and show that N' — M XMy M7 is proper
and birational. Properness is clear since the source and the target of the map are proper
over Mgy x Mj. To argue that the map is birational (i.e. of degree 1), it suffices, thanks

to the fact that all spaces are unobstructed, to show that the induced map
N s MEP 5y, M

is an isomorphism. To this end, consider a point of the target given by (1;, C;, x%,. .., 2%)
in M; for i = 0,1 and an isomorphism ¢ : (Co,z9,...,29)s — (C1,x1,...,zL)*. As C; is
smooth, ¢ : Cy — C is an isomorphism. But in this case it is obvious that the lift to A/5™

of this point of Mg x a4, ,, M1 is unique and is given by (Co, 29,20 u = (ug,urop)). O

Remark 2.5.2. Tt is crucial in Lemma 2.5.1 that the fibre product is taken in the sense of
orbifolds (or stacks) and not over the underlying coarse moduli space M, ,,. Indeed, when
(g,m) is (1,1) or (2,0), the corresponding map N — M, XM yom My is still proper but of
degree 2.

Lemma 2.5.3. The natural map
(59(0) x 571(0)) X gty N — My (X, ;) (2.5.3.6)

descends to a homeomorphism on the (Go x Gi)-quotient.

Proof. Continuity of the map is evident. Since the source is compact and the target is
Hausdorff, it suffices to argue that we get a bijection after passing to the (Go x G1)-
quotient. Suppose we are given a point (C,z1, ..., 2n,u: C — Xox X1) of My, (X,2;.J).
We get points (Cj, zt,...,2%,u; : C — X;) of M (X, Ai; J;) and associated contraction
maps k; : C — C; for i = 0,1 by applying the map ® from (2.5.3.3). Since K; is a
global Kuranishi chart for i = 0,1, we can lift (C;,z%,..., 2%, u; : C — X;) to a point
(Ci, 2, .. @t w0 0 Cp — PNi) € 571(0) which is unique up to the action of G;. The
contraction maps C' — C; and the maps ¢; : C; — PN now uniquely determine a map
C — PNo x PVt whose stability follows from that of u. Thus, each point in M, (X, 2; J)
has an inverse image in (55 (0) x 57 (0)) X A49x M, N which is unique up to the action of
Go x Gi. O

Remark 2.5.4. Lemma 2.5.3 shows that
Ky = U*(Kg x K1) (2.5.3.7)

defines a rel-C® global Kuranishi chart for M, ,,(X,2;.J).
Lemma 2.5.5. Ky is stably complex rel-C'* equivalent to KC from (2.5.3.2).

Proof. Straightforward adaptation of the argument used in §2.4.1 to prove Theorem 2.1.18(3a).
O
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Remark 2.5.6. Lemma 2.5.5 corresponds to the comparison of obstructions theories in
[Beh99, Proposition 6].

The following fact will be crucial for our proof of the product formula.

Lemma 2.5.7. Assume 2g — 2+ n > 0 and (g,n) is neither (1,1) nor (2,0). Then, we

have
U, [N] = (st x st)*PD(A) n [Mg x Mj] (2.5.3.8)

in the Borel-Moore homology of Mo x My over Q, where A : My, — My, x Mg, is
the diagonal map.

Proof. Since (g,n) is neither (1,1) nor (2,0), the forgetful map M,, — M,, is an
*

g7n
follows that ¥ maps A onto the closed subscheme Mg := M XMy My c My x My

birationally.

isomorphism over a Zariski open subset M, < Mg,n- From this and Lemma 2.5.1, it

Let N7 © M be the maximal Zariski open subset for which N7 — M, has image
contained in szn, U~H(N’) — N is an isomorphism and the Mg x My — My, x My,
is a submersion at the points of N'. The set F' := My \N’ is then Zariski closed in
Moy x Mj and dimc¢ F' < dim¢ N/ — 1. By construction, it follows that (2.5.3.8) holds
over the complement of F' in My x M;. To conclude that (2.5.3.8) holds over all of
Mo x My, use the excision exact sequence in Borel-Moore homology and the fact that

the Borel-Moore homology of F' is supported in degrees < dimg N — 2. O

Remark 2.5.8. By interpreting the Poincaré dual class of the diagonal map A in the sense
of orbifolds, it is possible to extend Lemma 2.5.7 to cover the cases when (g,n) is (1,1) or

(2,0). We do not pursue this generalisation here.

Theorem 2.5.9 (Product formula for GW classes). Using the notation of this subsection,

we have

By [My (X, 2, )"
= (st x st)*PD(A) N ([My.n(Xo, Ao; Jo) ™" x [Myn( X1, Ar; J1)]') (2.5.3.9)

whenever 2g —2 +n >0 and (g,n) ¢ {(1,1),(2,0)}.

Proof. The left side is a priori defined using the global Kuranishi chart I, but by virtue
of Lemma 2.5.5 we can replace K by Ky. Let 7'//\/ be the thickening of Ky and let
U : T — Ty x 71 be the natural map. Denote by W < Mg, the complement of the

automorphism free smooth locus /\/lgr?f This has real codimension > 2, so the map
39—3+n A 4 Vi . 39—3+n free free .
HY75 (Mg x Mg | A3Q) — HY 72T (MGSE x M5t | A e Q)

is an isomorphism mapping PD(A) to PD(A Mgrene). Since the restriction of the stabilisation

map to stfl(./\/lgry’if) is a submersion, this implies

U [T/(Go x G1)] = (st x st)*PD(A) n [(To/Go) x (T1/G1)] (2.5.3.10)
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in the Borel-Moore homology of To/Go x T1/G1 over Q. As the obstruction bundle of Ky
is given by the pullback of the obstruction bundle of Ky x K1, the definition of the virtual
fundamental class implies (2.5.3.9). O

Specialising to the case g = 0 and n = 3, we obtain the following consequence.

Corollary 2.5.10 (Kiinneth formula for quantum cohomology). The canonical Kinneth

map

QH(Xo,wO) ®A0 QH(Xl, wl) - QH(X,Q)) (25311)
s an isomorphism of Ag-algebras.

Corollary 2.5.11. Suppose w and w' are symplectic forms on a closed manifold X such
that

QWi = awigs) (2.5.3.12)

for some A € Hy(X,Z) and n = 3. Then, for any k = 1 and any o € Diff(X x (S?)¥)
isotopic to the identity, it is impossible to connect p*(w @ o) and W' ® o®* by a path of
symplectic forms on X x (S?)k.
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Chapter 3

A fibre product formula

3.1 Virtual fundamental classes of cut-down moduli spaces

This section is the technical backbone of §4.1 and §3.2. Readers more interested in appli-

cations are advised to skip this section and refer to it as needed.

3.1.1 Embeddings of global Kuranishi charts

We investigate how geometric relations between global Kuranishi charts translate into

relations between their virtual fundamental classes.

Definition 3.1.1. A morphism of global Kuranishi charts f: K' = (G',T",£',8') - K =
(G, T,E,s) consists of a group morphism a: G — G’, an a-equivariant map f: 7 — T’
and an a-equivariant vector bundle morphism f: & — f*& so that tildefs = &' f. We call
f an embedding if o = id, f is an embedding of manifolds and tildef is an injection of
vector bundles.

If K and K’ are rel-C'* over base spaces M respectively M’, we say the morphism is
of class rel-C® if « is smooth and f and f are rel-C® covering a smooth morphism
M — M.

Remark 3.1.2. If § = («, f, f) is such that a, f and F are embeddings in the respective
category, we can replace (G, T",&’,s') with (G,G xg T',G xg &',id x §).

If T/M is a rel-C* manifold with smooth base, its tangent microbundle has a canonical
(equivariant) vector bundle lift given by T := ¢*Ta ® T/pq, where q: T — M is the
structural map. Given a rel-C® embedding j: 7'/M’ — T /M, where M’ is a smooth
submanifold of M, we define the normal bundle of T'/M' inside T/M to be

NT’/T = q*NM’/M (—B N%}-I/TM”
where N;’-,/TS, 1= 3*Tr, /a0 /T p s the vertical normal bundle with Ty := T x pm M’

Definition 3.1.3. Suppose j: K' — K = (G, T/M,E,s) is a rel-C* embedding. We call
Ny /i := Ny — D its virtual normal bundle, where D = coker (7).
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Throughout, we assume our global Kuranishi charts to be oriented in the following
sense, equivalent to [AMS21, §5.4]. Clearly, if both £ and K’ are oriented, then so is

N’C//’C .
Definition 3.1.4. A (Borel equivariant) orientation of a Kuranishi chart K = (G, T, &, s)
consists of a Q-orientation of the virtual vector bundle (7T)¢ — g and Eg over Tg.

We need orientations of both 7 /G as well as € in order to define the virtual fundamental
class. By [AMS21, Lemma 5.11], this is equivalent to a Q-orientation of (T'7T)g —g — &.
Notation. Given A < B, we write Hy(B | A;Q) := H.(B,B\A;Q) and similarly for

cohomology.

Ezxample 3.1.5. If T and the action on it are smooth, there exists an embedding 7 x g —
TT, where g = Lie(G). Taking a G-invariant complement D of this distribution, any
choice of equivariant Thom class 7 € H glm(T/ =2 (D | T,Q) defines a Q-orientation of 7 —g.

Given an oriented orbifold 7 and an oriented suborbifold 77 < T of codimension k,

we have the Poincaré duality isomorphisms
Hy(T | T5Q = BH™T'NT | T5Q) = Ho(T 5 Q)

Thus H*(T | TJ;@) ~ Q‘”O(TJ” and taking the sum of all generators, we obtain the
Poincaré dual PD(77J) of T'in T. The composite

gi*s H(T; Q) — H*™*(T; Q)

is given by multiplication with the image of PD(T") in H*(T; Q).
Remark 3.1.6. In the case of thickenings as above, we can give an explicit description of
the Poincaré dual in terms of the normal bundle. Factor the inclusion j: 7' — T as

T ST =T xuM—T,

where we equip 7 with the canonical G-orientation. A relative version of the equivariant
tubular neighbourhood theoerem shows that PD:F(T’/G) corresponds to the equivariant
Thom class of N, T under Athe canonical isomorphism induced by the tubular neighbour-
hood. Meanwhile, PD1 /(7T /G) = ¢*PD y)q(M’'/G), which corresponds to the equivari-
ant Thom class of ¢* N /rg. Thus,

PD7/(T'/G) = PD7/(T/G) - PD(T'/G). (3.1.1.1)

Proposition 3.1.7. Let j: K' — K be a rel-C* embedding of oriented rel-C® global
Kuranishi charts, covering a smooth embedding M’ — M of oriented base spaces. If
NIC’/IC @D = N’T’/T? then

je(ec(D) A [V]) = PD(T7/G) r []'. (3.1.1.2)
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Here we identify eq(D) € HE:(T'; Q) with the corresponding element in H*(7/G; Q).
Equip D with the unique orientation satisfying eq(&' @ D) = eq(E)|7.

Proof. Suppose first j¥*€ = £’. The equality
G« [V = PD(T'/G) n [90]" (3.1.1.3)

follows from the commutativity of

s*r(€/G)

Hvdim(ﬂﬁ’)+*(M/; @) HSim(T’/G)Jr*(T//G | MI; Q)

| !

H’vdim(ﬁ)ﬁ’)—i—*(M; Q)’PD(T//G)H'vdim(fm)—i-* (M, Q) s*7(£/G) Hgim(T/G)+* (T/G, Q)

where we need the convention

{a n [, B) = ([M]*™, B - o).

Now assume rank(D) > 0. Let K := (G,7’,j*€,s'). This is also a global Kuranishi
chart for M’, albeit with a larger obstruction bundle. By the definition of the virtual
fundamental class,

ea(D) n [T = [P
This completes the proof. O

Remark 3.1.8. For Proposition 3.1.7 it suffices to assume that the map 7'/G — T /G since

the Poincaré duality statement we use is on the level of coarse moduli spaces.

Proposition 3.1.7 is not quite ideal, since one might have & = j*& @ Ny /7 in which
case we would expect that the virtual fundamental classes agree, at least under certain

assumptions.

Lemma 3.1.9. Let K' and K be rel-C® smooth global Kuranishi charts over M for
M. Suppose there exists a rel-C* embedding j: K' — K over M, inducing a quasi-
isomorphism

Ds’ D
[Tr/mls-10) = Elo-10)) = [Trimls—10) = Els1(0)] (3.1.1.4)

of complexes of vector bundles. Then [M]{F = [M]yr.

Proof. Using a relative tubular neighbourhood, we may assume that 7 admits a vector
bundle structure p: T — T'. Fix a splitting £l = & @ D. Using [tD08, Theorem |,
we may assume without loss of generality that £ = p*&’ @ p*D, where p: T — T is the
bundle map. Write s = 51 @ 5.

As K' — K, we have T/ c s;(0). Given z € Z := &' '(0) = s '(0) we have an

associated commutative diagram of vertical derivatives
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dUﬁ/ (x)

TT//M,SC Eé
T’T’/M,a} ® %dvﬁl(x)@dU52 (:f )ga/c @ D

Since coker(dVs(x)) = coker(d's’(x)) is a quotient of £, it follows that coker(d’s2(x)) = 0.
Replacing 7 by a neighbourhood of Z, we may assume soM0. Set S := 52_1(0). As
dim(S) = dim(7”), the two global Kuranishi charts Ky := (G, S,p*E'|s,s1|s) and K are
related by (Germ equivalence).

Finally, [M]}f = [M]}", since the Poincaré dual of S in T is §37pp. O

In other words, the virtual fundamental class only depends on the global Kuranishi

chart up to quasi-isomorphism, similar to [BF97, Proposition 5.3].

Ezample 3.1.10. Both the embedding condition and (3.1.1.4) are necessary for this to hold.
To see this, consider 7 = R = 7’ and £ = R% = & with s(¢t) = t? and s(t) = t3. Or
T' =R x {0} =T =R? with & =R and £ = R? and s(t,r) = (t3,7?) and 5/(t) = 2.

3.1.2 Fibre products of global Kuranishi charts

In this section we construct a fibre product of global Kuranishi charts over another global
Kuranishi chart. In the previous section we considered embeddings of global Kuranishi
charts with the same covering group. Here we require a more general notion of morphism.

Suppose we are given a morphism
(p1, mi, 1) : Ky = (G x Gy, Ti/ My, Ei,5:) — K = (G, T/M,E,5)

of oriented global Kuranishi charts for i € {0, 1}. Set Gi =G x G; and G := Gy x Gy.
Assumption 3.1.11. We assume that

a) o is a relative submersion covering a smooth submersion py: Mo — M and Iy is

fibrewise surjective.
b) We have Gy = Gy (z) for any x € Tj and j € {0,1}. Moreover, (G x Gj)y = Gy % (Gj)s-

Definition 3.1.12. The fibre product chart is Ko xx K1 := (CNJO X él,’?’, g,g), where

~

T :={(z0,9,21) € To x G x T | g-mo(x0) = m1(z1)}

while

~

E:={(en,9,€1) €& x G x & | g-Tp(eg) =TI (e1)}

on which G acts by

((90, ho); (g1, 71)) - (Yo, 9, 1) = (((90: ho) - y0, 9199 ' (91, h1) - y1)

for y; € T;, respectively &;. The obstruction section is given by § = 59 x idg X §1.
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In this fibre product of global Kuranishi charts we use the orbifold fibre product applied
instead of the naive fibre product of thickenings and obstruction bundles. It is a rel-C'®
manifold over M := {(wo,g,w1) € My x G x My | g-po(wy) = p1(w1)}. Assumption
3.1.11(b) implies that the canonical map T — To x 71 descends to an embedding on the

level of orbit spaces.

Remark 3.1.13. Assumption 3.1.11(a) is more than enough to ensure that this is a well-
defined global Kuranishi chart. Explicitly, it would suffice to require that mghm; and that
Mo @1l & @ E — £ is a surjective vector bundle morphisms. This is essentially the
notion of d-transversality in [Joy12, §4.6]. For our main application we can arrange the

stronger assumptions above and thus work with them.

Moreover, Assumption 3.1.11(b) ensures that it defines a global Kuranishi chart for

Mo xon M. It admits a canonical orientation.

Lemma 3.1.14. We have PD(T/G) = (7o x 71)*PD(A7/c) where 7;: T)Gi — T)G is
the map induced by ;.

Proof. Note that A/ is the coarse moduli space of the orbifold [T/G x G], where
T ={(z,9,2) e TxGxT|g-z=a'}

Then 7 =7 X1x7 (To X T1), so the claim follows from Corollary A.1.5. O

By Proposition 3.1.7 and Remark 3.1.6, we therefore obtain the following fibre-product

formula.
Theorem 3.1.15. Given global Kuranishi charts K, Ko, K1 as above, we have
j*(eé(ﬂ'*(‘:) N [gﬁo Xom SJtl]Vir) = (77'0 X ﬁl)*PD(AT/G) N [Dﬁo X Dﬁl]m.

Remark 3.1.16 (Fibre products along embeddings). In the case where G; = G and
m1: T1 — 7T is an embedding and II; is fibrewise injective, the induced map w1: 9 — M
is an embedding as well. Thus 9 := My xgm M’ embeds into My and the canonical
morphism Ky xx K1 — Ko is an embedding of global Kuranishi charts (with the same
covering group). By Proposition 3.1.7,

pox(eg, (P1D) N [Mo xan M V") = 7fPD(T1/G) N [ ]V (3.1.2.1)

where p;: To x7 T1 — 7T is the projection and D = 7FE/&;.
Ezample 3.1.17. Suppose we have a global Kuranishi chart K = (G, T/M, &, s) for M and

f: M' - M is a G-equivariant submersion. Then
[/ = (f x 7)*PD(Apqye) * (M/G] @ []7),

where w: T — M is the structural map.
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3.2 GW invariants of a fibre product

In this section we establish a formula for the GW invariants of a fibre product of closed
symplectic manifolds, stated in Theorem 3.2.1. The first step is phrased in terms of
abstract global Kuranishi charts and was carried out in the previous section.The second
step consists of lifting for a strongly Hamiltonian fibre bundle 7: X — B, the map 7 to a
morphism between global Kuranishi charts, shown in Proposition 3.2.5.

Here, a strongly Hamiltonian fibre bundle 7: (X,wyx) — (B,wp) is a smooth submer-
sion, so that ker(dm) is a symplectic subbundle of TX. Suppose mx: (X,wx) — (B,wp)
and my: (Y,wy) — (B,wp) are two strongly Hamiltonian fibre bundles over a closed

symplectic manifold with compact fibres. We fix symplectically orthogonal splittings
Tx = Hx @ ker(drx) Ty = Hy @ ker(dmy)
identifying Hx with 7%7Tp and similarly for Y. Let
7 =X xgY

be the fibre product with bundle map nz: Z — B and inclusion j: Z — X x Y. Fix
Jp € J-(B,wp) and extend it via the above splitting to fibred almost complex structures
Jx € Jr(X,wx) and Jy € J-(Y,wy). In particular, 7x and 7y are pseudoholomorphic,

so they induce maps
Tx: Mgn(X, Ax,Jx) = Mygn(B,nxAx, JB)

and
Ty : Mgn(Y, Ay, Jy) = Mg (B, 7y Ay, JB).

The almost complex structure Jx @ Jy restricts to an wz-tame almost complex structure
JZ on Z. Given AX € HQ(X, Z) and Ay € HQ(Y,Z) with WX*AX = AB = Wy*Ay, define

B :={A€ H(Z,Z) | px+A = Ax, py A = Ay}.

We have the following generalisation of Theorem 2.5.9.

Theorem 3.2.1. For any g,n = 0 we have

2, Jslec(m3ER) N [Mgn(Z, A; J2)™)
Ae®B

= (mx x Ty )*PD(A7;,6) N [Myn(X, Ax; Jx) x Mg (Y, Ay; Jy)]'".

Proof. The key ingredient of the proof is Proposition 3.2.5. It constructs oriented global
Kuranishi charts Kx,Ky,Kp for the moduli spaces of stable maps, which satisfy As-
sumption 3.1.11. Moreover, they are equivalent to global Kuranishi charts given by the

construction of §2.
Abbreviate M(W) := M, ,,(W, Aw; Jw) for W € {X,Y, B, Z}. By Theorem 3.1.15,
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we thus see that M(X) X JA(B) M(Y) admits a global Kuranishi chart K which is rel-C®

over M := My X pm; MYy and whose virtual fundamental class satisfies

Jelea(TE) N [M(X) Xz MY)]'™) = (nx x mv) "PD(A7;,6) 0 [M(X) x M(Y)]'™.

(3.2.0.1)
To relate M(X) “F(B) M(Y) with M(Z), we use a similar argument as in §2.5. Let M/,
be the preimage of M under

ﬂg,n(PNX x PN x PNy (mx,m,my))

|

Mg,n(]P’NX x PN, (mx,m)) x ﬂg,n(}P’NY x PN (my,m))

and let U: M, — M be the induced map. By the same reasoning as in the proof of
Lemma 2.5.1, we show that M/, is a smooth quasi-projective variety of the expected
dimension and W is a proper birational equivalence.
Set K, := T*K. As in §2.5.3, we see that K, defines a rel-C* global Kuranishi chart
for || Myn(Z,A; Jz), which is equivalent to the disjoint union of global Kuranishi charts
AeB

given by Construction 2.1.14. Thus

U ) [Myn(Z, A3 J2)] = [M(X) %0 MY,
AeB

so Theorem 3.2.1 follows from (3.2.0.1).

Corollary 3.2.2. If My, (B, Ap; Jg) is unobstructed, then

Z Jx [ﬂg,n(za 4 JZ)]Vir
AeB

= (7TX X TrY)*PD(Aﬂg,n(B,AB;JB)) M [ﬂg,n(X, Ax; Jx) X Mg,n(x Ay; Jy)]Vir.

Ezample 3.2.3. By [MS12, Proposition 7.4.3], Mo (B, Ap; Jp) is unobstructed if (B, wg, Jp)
is Kahler and there exists a transitive compact Lie group action by biholomorphisms on
B.

Remark 3.2.4. Taking B = * in Corollary 3.2.2 we can extend Theorem 2.5.9 to the two
cases (g7n) € {(17 1)7 (27 O)}

Proposition 3.2.5. We can choose an unobstructed auziliary datum (VE,0p(1),p,U, k)
(resulting in a global Kuranishi chart Kg) for My, (B, Ap; Jg) such that there exists a
global Kuranishi chart K'y = (G x G, Ty, Ex,8') for My n(X, Ax; Jx) with the following

properties.
a) K’y is equivalent to the global Kuranishi chart given by Construction 2.1.14.

b) We have for any x € Ty that Gz = Gz (2) and (G x G’y )z = Gy x (G’ )z
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c) There exists an isomorphism £y =~ 75%Ep @ Ex of rel-C® (G x G")-vector bundles, so

that the projection £ — Ep intertwines s’y with sp.

There exists a topological submersion T3, — M’y := ﬂ;n(]}”N x PNX (m,mx)) and K’
is a rel-C'* global Kuranishi chart over M'y. If Mp denotes the base space of K, then

there exists a relatively smooth equivariant submersion Tx: T, /M’y — Tp/Map.

Proof. We assume that either g = 2 or Agp # 0. In this case we can assume n = 0.
Otherwise one has to adapt the following construction as in Remark 2.1.15. Given a
stable map u: C'— X we denote by up: Cp — B the map induced by 7xu with stabilised
domain. If ¢ is a function from C' to some manifold M so that ¢ descends to C'p, we denote
the induced map Cp — M by tp as well.

Fix V& and a polarisation Op(1). Let V be any complex linear connection on ker(dmx)
and set VX := 74 VB @ V. Let Ox(1) — X be any polarisation as in Definition 2.1.6.

Given a smooth stable map u: C' — X define
£, 1= we @u*Ox (1)® £ 1= we ® (mxu)* Op(1)® = ki,

where k,: C — Cpg is the contraction map. Choose p > 1 so that the conclusion of
Lemma 2.2.2 holds for any £, with u € M, ,(X,4;Jx) or u € My, (B, Ap;Jg). Set
myx = p® deg(Ly,) and m = p - deg(fﬁu) = p-deg(£y,) and let Ny = mx — g and
N=m-—g.

A choice of basis of H(C, £,) respectively H(C, £,) induces maps tx: C < PNx
and i: C — PV where 1y is an unobstructed nondegenerate embedding and i descends
to an unosbtructed nondegenerate embedding tp: Cp — PV, induced by a choice of
basis of H%(Cp, £45). Denote by Mp = M, (PN, m) the space of nondegenerate regular
embeddings. Let M’y < M, (PN x PNX (m,mx)) be given by those curves which py,
maps to ﬂ;(}P’N ,m) and py, maps to ﬂ; (PNX my), and where pa, does not contract
irreducible components of the domain. By Lemma 2.5.1, M’ is unobstructed and has
no isotropy. Denote G := PU(N + 1). The map pi,: My, — Mp is a G-equviariant
submersion and invariant with respect to the action by Gx := PU(Nx + 1), and (b) is
satisfied.

Complete (VB,0p(1),p) to an unobstructed auxiliary datum (VZ, Op(1), p,U, k) where
we might have to increase k depending on the following construction. Define T3 to be the

set of tuples (u, C, ¢, a, aex,m,nx) (modulo reparametrisations of the domain) where
e u: C — X is a smooth stable map of type (g,0) with u.[C] = Ax,
o L= (11,12): C — PN x PN defines an element of My,
e a,ax € H(C,O¢) are such that
[1f0pn (1)] = p-[£] + @ [130pnx ()] = p - [€u] + ax

in Pic(C),
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e neEF = HY(C,iTgy” @ (mxu)*TB ® 1} Opx (k) @ HO(PN, Opn (k)) and
nx € By = H(C,iiT" oy ® u* ker(drx) ® 150pn (k) ® HO(BPVX, Opny (k)
satisfy

5]12+<’I7>Od51 +<’I7x>od52 =0
on the normalisation C of C.

Choose a good covering V of the polyfold of stable maps to X x PVX in the sense of
Definition 2.2.12 and let Ay : Ty, — PGL(Nx +1)/G x be the induced (G x G x )-equivariant
map. Define the vector bundle £% — T by letting its fibre over (u,C, ¢, o, ax,n,mx) be
given by

su(N + 1) @su(Nx + 1)@ H'(C,00) @ H'(C,00) ® EL ) ® B,
and define the obstruction section s: T3 — &% by
le(ua 07 Lo, e x, 1), 77X) = (’L IOgO\M(UBa Ll,B))v [ log()‘V(ua L2))7 a, xx,1, 77X)'

This map is clearly equivariant under the canonical action of G x Gx on Ty and &%.

By the arguments of §2.2, we can choose k sufficiently large (and shrink 7% ) such that

K’ = (G x G, Ty /My, EX, ') is a global Kuranishi chart for Mg (X, Ax; Jx) with the

properties listed in Theorem 2.1.18. By the same reasoning as in §2.4.1 K’y satisfies (a).
Define 7x: T, — Tp by

ﬁX(beaCaOZvaXﬂlaT}X) = (qubl,BaCBaa7nB)

where we identify H*(C, O¢) with H*(Cp, Ocy) via k. This is well-defined, since for any
irreducible component Z which is contracted by x, we have g(Z) = 0 and 7|z has to be
constant.

Thus it defines a rel-C* map T /M’y — Tp/Mp, which is a rel-C* submersion as
can be seen by considering the induced map between the relative tangent bundles. Clearly,
there exists an isomorphism II: &% =~ 7%Ep @ Ex where

(Ex)y = su(Nx + 1)@ H(C,0c) @ EEX

u,L)

for y = (u,C,t,o,ax,m,nx) € T. U II: £ — Ep is the induced (G x Gx)-equivariant

surjective map covering 7y, then Hs’X = sp7Tx as claimed. O

Corollary 3.2.6. If Ag =0, then

3 GW s = (" PD(Ap) x PD(Agy, ) 0 (GWS) @ GWir)).
AeB

o6



Restriction of fibre bundles

If j: Y — B is the inclusion of a symplectic submanifold instead, let J be an almost

complex structure on B which preserves TY. Abbreviate

MoV Apidy) = || Mea(Y, Ayv; Jy).

7TY*Ay=AB

Lemma 3.2.7. We can choose Kp in Proposition 3.2.5 so that there exists a global Ku-
ranishi chart (G, Ty /Mg, Ey,sy) for Mgy, (Y, Ap; Jy) which embeds relatively smoothly
mto Kp.

Proof. Choose a Jp-linear connection V that restricts to a connection VY on 7Y and pick
any polarisation Op(1). Extend to an unobstructed auxiliary datum (VEZ, Op(1),p,U N
Z(Y,A), k), where the choice of U has to be done compatible with Y and & has to be cho-
sen sufficiently large. Then (VY,0p(1)|y,p,U n Z(Y, A), k) is an unobstructed auxiliary
datum for Mg,n(Y, Ap; Jy). To obtain the embedding 7y < Tp, we increase k (on both

sides) so that the operator
D0j(u) +(-yode: C*(C,u*Ny,x)® Ng — Q%L(C, u* Ny /x)

is surjective for (u, C, x4, t) with A(u,¢) = [1d].
Here Ng = Homc (¢*Tpn, u* Ny /x) ® t*O(k) @ HO(PN, O(k)). O

Combining Proposition 3.2.5 with (3.1.2.1) we deduce that

o deleaxay, (7€) 0 [Myn(X|y, A; Jx)"™) = 75 PDa(Ty ) n[Myn(X, Ax; Jx)]'™.
px s A=Ax
(3.2.0.2)
Ezample 3.2.8. Suppose (B,wp, Jp) is a convex Kahler manifold and Y the zero locus of a
transverse holomorphic section of a convex holomorphic vector bundle p: V' — B. Denote
V = Mon(V,pz'Ap; Jr). Then Y := 7 (V) < X satisfies

D G Mon(Y, A4 Tx)]T = mwke(V) A [Mon(X, Ax; Jx)]™ (3.2.0.3)

px s A=Ax

Proof. The reasoning of the first step was used in [Kon95] and [KKP03] to outline a proof
of, respectively prove the Quantum Lefschetz Hyperplane Theorem. By the conditions
on B and V, ﬂg,n(B, Ap; Jp) is unobstructed and V is a smooth vector bundle over it.

The section p defines a section p of V with zero locus given by | | Mo, (Y, Ay; Jy).
JxAy=Ap
As V is convex, a long exact sequence arguemnt shows that p intersects the zero section

transversely. Hence,

D G Mon(Y, Ays Iy = e(V) A [Mon(B, Ap; Jp)'™ (3.2.0.4)
JxAy=Ap
Thus (3.2.0.3) follows from Lemma 3.1.9 and (3.2.0.2). O
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Chapter 4

Relations between GW invariants

4.1 Kontsevich—Manin axioms

The Kontsevich-Manin axioms are a catchphrase used to describe the properties in [KKM94]
that GW invariants are expected to satisfy. In contrast to the introduction, we will consider

here the Gromov—Witten classes

GW. ) 1= (ev x st)u[Myn (X, A; J)]"

where J € J.(X,w) is arbitrary. While the axioms are less elegant in terms of the GW
classes, their proof is slightly more transparent.

The Effective, Homology, and Grading axioms follow directly from the construction.

Lemma 4.1.1 (Symmetry). The GW invariants GW;th satisfy

{Og(1) X+ X () X PD(0:8), GW ) = (=1)@ay x -+ x oy, x PD(8), GW

for any permutation o € Sy, and classes o; € H*(X;Q) and B € Hy(Mgyn; Q), where
e(o,0) = {i > j|o(i) <o(j), |ail,|a;| € 2Z + 1}].

Proof. Given a global Kuranishi charts IC,, as in Construction 2.1.14, the holomorphic
Sp-action on the base space M,, < ﬂgm(]P’N ,m) lifts to a continuous action by rel-C®
diffeomorphisms on the thickening and the obstruction bundle. As the equivariant Thom

class of the obstruction bundle is S,-invariant, so is the virtual fundamental class. O

Lemma 4.1.2 (Mapping to a point). We have

[ﬂgm(X, O; '])]Vir = cgdimC(X) (TX Ev) N [X X Mg,n]

in Hy (X x ﬂgm; Q), where E denotes the Hodge bundle over ﬂg,n.

Proof. Given a constant stable map u: C' — X with image x, we have

HY(C,u*Tx) = HY(C,0c) T, X.
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Thus the cokernel of Dd;(u) has rank 2¢g dim(X) and the obstruction bundles of M, (X, 0; J) =
X x Mg, is given by Ob := Tx X E*. Let so denote its zero section. Fix a global Ku-
ranishi chart IC,, = (G,T,&,s) as given by Construction 2.1.14 with base space M <
M;n(]}”N,m). Denote by C — M the universal curve and set £ := R!'7,Oc. Then
Kob := (G, Top, Ob, §) with

Tob =X x {([t,C,x1,...,2n) ) € L|[L*OQ)] =p- [we(x1 + -+ + xn)] + }

is a global Kuranishi chart for M, ,(X,0;J) of the expected virtual dimension. The
obstruction bundle is
Ob = ObEHL @ su(N + 1)

and s is given by the zero section in the first summand, the obvious map in the second
one and ilog(A) in the last. Let j: 7o, <> T be the inclusion. There exists a natural
equivariant morphism ®: j*& — Ob of complex vector bundles; it is given by the identity
on su(N + 1) and £ and maps the perturbation term n to the image of (n) o dv under
the quotient map QOJ’l(C',iL*TX) — HY(C,u*Tx). By the construction of K, the map ®
is surjective. Moreover, its kernel agrees with the normal bundle Nx, r¢/7 of X x M in
T (as rel-C'*° manifolds over M). Fixing a splitting L: Ob — £|7+ of & we obtain that
the two-term complexes associated to Kgp, and IC,, respectively are quasi-isomorphic in the

sense of Lemma 3.1.9 whence the claim follows. O

Remark 4.1.3. This argument can be applied in any situation where M, (X, 4;J) is
smooth with obstruction bundle Ob to see that [M,,,, (X, 4; J)]'F = e(Ob)n[My (X, 4; J)]
under the identification of the dual of Cech cohomology with singular homology.

We observe the following vanishing statement, alluded to in [KM94] and corresponding

to [RT97, Proposition 2.14(3)].
Lemma 4.1.4. If (1 — ¢g)(dimc(X) — 3) + 2{c1(Tx), A) < 0, then ngnA =0 for any

n = 0.

Proof. Let (G, T,E,s) be a global Kuranishi chart for M, (X, A;J) and let (G, Tp, En, $n)
be the induced global Kuranishi chart for ﬂg(X,A; J). By construction, there exist
equivariant maps m,: T, — T and 7,: &, = i€ — & satisfying 7,5, = s,m,. As

’5*7'5/0’ > dlm(T/G), it follows that EZTSH/G = WZS*Tg/G = 0. O

4.1.1 Fundamental class axiom

Suppose n > 1 and A # 0. Let K be a global Kuranishi chart for My(X,A;J) as
given by Construction 2.1.14. Let K, and K,_1 be the induced global Kuranishi charts

for My, (X, A; J), respectively Mg ,—1(X, A;J). Denote by M,, and M,,_; their bases
spaces.

Proposition 4.1.5 (Fundamental class). Foraq,...,a,—1 € H*(X™; Q) and 8 € H,(Mgy,; Q)

we have

{ap x -+ X ay_1 x 1x x PD(B),G WXA> {ag X -+ X ap_1 x PD(m,.0), GW;(HA 2
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where 1x € H(X;Q) is the unit.

Proof. Let m,: T, — Tn—1 be the forgetful map. By construction, &, = 7*&,-1 and
Sp = M 6,—1. We will construct a principal H-bundle 771_1 — T,_1 for some compact Lie

group H so that the pullback 7/, : ’7; = Tn XM, 4 771_1 — 7~§1_1 satisfies
(T )1 st™ = st™ m, L.

This proves the claim since the global Kuranishi chart ]%g determined by 7~Z is equivalent
to Ky and the obstruction bundle and section of /En are obtained by pullback from l%n_l.

Let thus P,_1/H be a presentation of ﬂg,n,l as a global quotient. Let P, = P,,_1 be
the pullback of P,,_; along the representable morphism 7,,. Then P, /H is a presentation of
My . The canonical map 7). : P, — P,_1 is the pullback of 7, and satisfies 7/, st* = st*m,,,
by Corollary A.1.3. By Lemma A.1.7, Ny := M, X, . Py is a principal H-bundle over
My for £ =n—1,nand N;, = N1 xm,,_, Mp. Then Ty := Ty x pq, Np is a principal
H-bundle over 7; and (G x H, ’72, p;Ee, v} s¢) is a global Kuranishi chart equivalent to K, for
¢ € {n,n —1}. The induced map 7,,: T — T, is the pullback of 7/ along p,—1: T 1 —
P,_1. The map p,,_1, factoring through N,,_1, is G-invariant and a submersion away from
a subset of real codimension at least 2. By Lemma A.1.6 combined with the functoriality
of the exceptional pushforward, it follows that (7)1 st* = st*m,. The case of A = 0

meanwhile follows from Lemma 4.1.2. O

Remark 4.1.6. If 2g — 2+ n — 1 < 0, we can repeat the argument by replacing ﬂgm_l

(and possibly M, ;) by a point. This shows that
{ag X+ X ap_1 X 1x,evye[Mg (X, A; J]"ir> =0
for any g,n = 0.

4.1.2 Divisor axiom

Suppose n = 1 and that A # 0. The Divisor axiom is the second recursion relation satisfied
by the GW invariants of X.

Proposition 4.1.7 (Divisor). Forai,...,a, € H*(X;Q) with |ay| = 2 and B € Hy(Mgpn_1;Q)

we have

{ag x -+ X ap x TiPD(B), Gng;lA> = {ap, Ay{aq X -+ X Qp_1 X PD(3), GWXA ).

g,n—1

The first, crucial observation is that we can construct our global Kuranishi chart in

such a way that the evaluation maps become relative submersions.

Lemma 4.1.8. We can choose the auxiliary datum in the construction of Ky, 4 in The-

orem 2.1.18 so that the evaluation map ev: T, — X" is a relative submersion.

Proof. Given an unobstructed auxiliary datum (VX, Ox (1), p,U, k), fix a point [u, C, 1, . .., ,]
in My, (X, A;J), and let F be a basis of HO(C, L&) with Ay(u, tc.r) = 0. By [AMS21,
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Proposition 6.26], using [AMS21, Lemma 6.24] with the divisor consisting of the nodal
and marked points, there exists an integer k/, > k so that the linearisation of 0; + {-) at

(u, ) restricted to

H(C, Homg (18 7Tpn , u*Tx) @ 185 7Opn (K') ® Oc(—x)) @ HO(C, v& 7Opn (')
surjects onto the cokernel of D(d)u restricted to
Via;y = 1§ € C(C,u*Tx) | V5 : &(x;) = 0}.

As surjectivity is an open condition, the claim follows from the compactness of s1(0). O

Let now Y = X be a smooth hypersurface Poincaré dual to a class v € H?(X,Z). Let
Kgn,a be a global Kuranishi chart for ﬂgyn(X , A; J) satisfying the conclusion of Lemma
4.1.8. Let Ky be the global Kuranishi chart with thickening 7y := ev, !(Y) and all other
data given by restriction. Denote My := s,'(0)/G and let j: 7y /G — T,/G be the

inclusion. By Proposition 3.1.7,
G My ] = eviy 0 [Mgn(X, A; T)IT

The forgetful map m, restricts to a proper map Ty — 7,_1 of manifolds of the same

dimension.
Lemma 4.1.9. m,, [My " = (v, A) [My,—1(X, 4; J)]V".

Proof. We show that Ty — 7,1 has degree {7y, A). It suffices to check the claim for a
generic point in each connected component of 7,_1. Since 7,_1 is a covering of a space
of regular stable maps, we may choose each such point to have smooth domain. Fix thus
y=|u,t,C,x1,...,2n-1,a,1n] € Tp—1 with uhY. By the definition of 7, and 7,,—1 we can
find a neighbourhood U,,—1 so that U,_1 = V,,_1 x By where B, Tnfl/Mnfhy is an open
neighbourhood of the origin and V,—y < M,_;. Then U, = 7 1(Un_l) is canonically
isomorphic to W;_ll(Vn,l) x B, = V,_1 x C x By; the latter is guaranteed by shrinking
Vip—1. Shrinking V,,_; further if necessary, U, n Ty =~ V,,_1 x W, where W is smooth with

tangent space
T(;U,O)W ={(v,§) e T,C x By | du(z)v —€&(x) € Tu(y)Y}'

for x € u=1(Y). The forgetful map U, n Ty — U,_1 is identified with id x v, where
P(2,§) =& As

ToyW ———— T,C

ldw(x,m ldu(x)

Tr My = Tu@) X/ Tu@)Y

is cartesian for any z € u=!(Y), we have deg(¢, (x,0)) = ind(u, Y, x). This completes the
proof. O
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The Divisor axiom is an immediate consequence.

4.1.3 Splitting axiom

Fix g =go+ g1 and n = ng +ny with 2g; —2+mn; +1 > 0. Let S < {1,...,n} be a subset
with |S| = ng. The clutching map

Ps: Mgo,no-&-l X Mgoﬂlo—&-l - Mg,n

given by gluing two curves together at the (ng + 1)* and first marked point and renum-
bering according to the partition induced by S is a closed local embedding. This map lifts

to maps
©s.x: Mgy ng+1(X, Aoy J) xx Mgy ny41(X, A1; J) = Mg (X, Ag + As; J).

Together with the clutching maps described in the next subsection, the images of the maps
¢s form the boundary divisor of M, ,,. The same is true for moduli spaces of stable maps
where one has an additional choice of how to ‘split’ the homology class. The Splitting
axiom is an algebraic reflection thereof.

Proposition 4.1.10 (Splitting). Write PD(X) = > v x v, for vi,~vi € H*(X;Q). We

L iel

have for az,...,an € H*(X;Q) and p; € Hi(Mg, n,+1; Q) that

o1 x -+ x ap x PD(0g,(Bo ® 1)), GW 5

e(a XA
= (-1 (25) 2 Z<af0(1) KXo X Qfy(ng) X Vi X PD(BO)’GWQO,VL8+1>
Ag+A1=A i

X,A
<’Yz{ Xy (2) X XQAfy (g 1) X PD(B1), ngo’n;+1>

where e(a,S) :=[{i <j|je S, i ¢85, |ail,|a;| € 2Z + 1}].

By Lemma 4.1.1, we may assume S = {1,...,ng} and omit it from the notation. The
domain of px admits a global Kuranishi chart Ky ;041,40 X x Kg; ni+1,4, of the expected
virtual dimension by Lemma 4.1.8, which embeds into Ky no+1,40 X K¢, ni+1,4,- For the
sake of brevity, we denote the base space of Ky, 4 by M. For 0 < mg < m, let -/(/l\gomo,mo
be the preimage of M under

PPN - Mgo,noJrl(PN?mO) XpN mgl,”1+1(PNam1) - Mgﬁ(PNvm)

and set

Mgono = |_| Mgo,no,mo-

0<mo<m
Lemma 4.1.11. ./(/l\g(mo,,n0 is a complex manifold of the expected dimension.

Proof. Suppose opn ([t, C, z4], [/, C", 2,]) = [u, X, y«] € M. As the normalisation of ¥ is

> = C' 1 C’ and u is unobstructed, so are ¢ and ¢/. If p is an automorphism of (¢, C,z4),
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it can be extended by the identity to an automorphism of (u,>,ys). Hence p = idc.
Similarly, we see that (//, C”,/,) has no isotropy. Thus we may conclude by [RRS08]. [

Denote by ¢: M\go,no — M the map induced by pp~. It is a PGL¢ (N + 1)-equivariant
immersion whose image has normal crossing singularities.

Let [u, C, 2] € Mg, (X, A4;J) lie in the image of ¢x. Any splitting of the domain into
two curves of the prescribed genus and prescribed set of points defines (via the restriction
of a framing coming from £,) a unique element in the image of ¢. Conversely, any
decomposition of the domain of the framing leads to a corresponding splitting of [u, C, x,],
where the degree of the restrictions of u may vary. This shows that Ky n, := ¢*Kgpn A is

a global Kuranishi chart for

Mgovno(X) = |_| Mgoyno-*-l(Xv Ap; J) XXMgl,m-‘rl(Xv Ag; J).
Apg+A1=A
: /
as 1s ICg,n,A = LI Kgonot1,40 X x Kgymy+1,4; -
Ag+A1=A

Lemma 4.1.12. Ky, and K ,, 4 are equivalent.
Proof. This follows from a double-sum construction as in §2.4.1. O

We can now prove Proposition 4.1.10. The strategy of proof is the same as in Propo-

sition 4.1.5 with the additional complication that ¢ is not the pullback of .

Proof. We first sketch the proof in the case of genus zero. In higher genus, the fact that
we have to take fibre product of orbifolds adds a layer of complexity, however the strategy
is the same.

We factor ¢: ./T/l\go,nO — M as

—~ ,19 R - (p,
Momo — ./\/l Xﬂon (M07n0+1 X Mo,nﬁ_l) —> M.

Then M X, (Mo,ng+1 X Mon,+1) is a quai-projective variety over C but not necessarily

smooth. However, it is a homology Q-manifold. As ¢’ is the pullback of the clutching

\n

map on the level of moduli space of stable curves, it is a closed immersion of schemes. We
will show below that ¥ has degree 1. Lifting this factorisation to the level of thickenings,
we obtain that ¢y st* = st* ¢ as maps H* (Mo ng+1 X Mo, +1; Q) — H*(T/G; Q) by the
results of §A.

For the general case, let P/H be a presentation of M,, as a global quotient. By
[ACG11], we may assume that P c ﬂgm(w,é + g) for some ¢ > 1. As ¢ is representable
by [ACG11, Proposition 12.10.11], P := P x5z (Mgpmo+1 X Mg, ny+1) is a G-smooth
manifold with P’/H representing Mg no+1 X Mg, n,+1. Moreover, N := P X My Mis a
principal G’-bundle over M, while

—~

L — . / . o
NgO,nO .= N XM MgO’nO — P XMgo,n0+1><Mg1,n1+l MgO’nO
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is one over M\go,no- Denote by st: N — M,,, and st: Ny ng — Mgy no+1 X Mgy n+1
the induced stabilisation maps. Let @: Ny, n, — N be the morphism of principal bundles

covering ¢. The diagram

Nyo o z N z N

X lst lSt
N N ) N
Mg,n0+1 X Mg17n1+1 E— Mg’n

commutes, where ¢ = ¢’ and N7 = P’/ x p N, so the square is cartesian. To see that 9 is
a birational equivalence, let 5™ N be preimage (under N/ — N — M) of the subset
of M consisting of curves with one node. As all elements of M are unobstructed, the
complement of N”'*™ is of codimension at least 2. It follows from a straightforward consid-
eration of the fibre product N that the induced map N;gflno — NS is an isomorphism.

Thus ¥ is a birational equivalence. In particular, it has degree 1.

Pull back I’C\go,no along Nyyny — ./T/l\go,no and change the covering group from G to
N

go,n0"
to obtain a global Kuranishi chart which is rel-C* over N and equivalent to K, . The

G x G’ to obtain an equivalent global Kuranishi chart K Define IC{Xn analogously
pullback of ¢ to a map between thickenings descends to ¢x when restricted to the zero
locus of the obstruction section. It factors as @ = @' 5, which are lifts of ¢’ respectively 1.

Then 9 has degree 1, so @ satisfies
P st™ = st™ oy

as maps H*(Mgy no+1 X Mgy ny+1;Q) — H*(TV /G x H; Q) by Lemma A.1.3 and Lemma
A.1.6. As the obstruction bundle of l@g\gm is the pullback of the obstruction bundle of
KN, this shows that

g7n?

Z Px(st"y N [ﬂgo,noﬁ-l(Xv Ao; J) xx Mgl,nﬁ-l(X’ Ay J)]Vir)
Ag+A1=A

= st*(ory) N [Myn(X, A; )", (4.1.3.1)

/

g, A> We obtain

for any v € H*(Mgyng+1 X Mg, ni+1; Q). Applying Proposition 3.1.7 to K
an expression for the left hand side that exact gives the Splitting axiom. O
4.1.4 Genus reduction axiom

Fix g and n > 2 and let ev,,_1, be the evaluation at the (n — 1)"" and n'® marked point.
Given an almost complex manifold (Y, Jy) and B € Hy(Y,Z), define

ﬂg,n(Y, B;Jy)p—1n = ev ! (Ay) c Mgm(Y, B; Jy).

n—1,n

Let
¢Y : Mg,n(yv B; JY)n—l,n - mg—i—l,n—Q(Y? B; JY)
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be given by gluing the (n — 1)™" and the n™" marked point of the domain together. It

covers the corresponding smooth map ¢: Mgy, — Myi1n_2.

Proposition 4.1.13 (Genus reduction). We have for any ai,...,an—2 € H*(X;Q) and

fe Hy(Mgn;Q) that

{a1 % -+ X 4y x PD(Ax) x PD(8), GW XA
= <011 X o X Op—2 X PD(¢*6)7 GW;(41?,n—2>‘

Lemma 4.1.14. The preimage
M := %,_ez% (M;Ln—z(PN’ m)) & Mgn(PY,m)
1s a smooth manifold of the expected dimension. The induced map
Ypn M — M;+1,n—2(PN7m)

is smooth and G-equivariant. It factors as the composition of a double cover with a map

which is generically an embedding.

Proof. Suppose ¥([t,C,xz.]) = [/,C", 2] and let p € Aut(t,C,z4). Then p descends
to an automorphism of (//,C’,x)), which has to be the identity. As the gluing map
k: C — (' is injective on a dense subset, p = idc. We have a short exact sequence
0 — k*/*Opn (1) = 1*Opn (1) — C, — 0 where C, denotes the skyscraper sheaf over x
and the last map is given by s — s(x,—1) — s(zy) (using a trivialisation of Opn~ (1) near

t(xy)). Part of its long exact sequence is
0=HYC,/*Opn (1)) = HYC,1*Opn (1)) - H'({z},C) = 0.

Hence ¢ is unobstructed.
Z,)2 acts freely and smoothly on M by permuting the last two points and yp~ factors
through M/(Z/2). As tpn is an immersion and MV/(Z/2) — ﬂzﬂm_Q(PN, m) is injective

over the locus of curves with smooth domain, the claim follows. ]

Let K4n.4 be a global Kuranishi chart for M, (X, 4;J) satisfying the conclusion of
Lemma 4.1.8. Let K’ be the global Kuranishi chart with thickening 7' = ev;ilm(A X)
and whose other data are given by restriction from K, 4. Similar reasoning as in §2.4.1
can be used to show that K’ and YpnKg+1,n—2 are equivalent global Kuranishi charts for
Mg (X, A; J)p—1n-

Pulling back ¢y /Kyy1,n—2 along N — ﬂ;_ﬂjn_z(PN,m) and taking the product of
the covering group with G’, we obtain an equivalent global Kuranishi chart Kg41,—2 for
Myn(X, A; J)n—1,. The proof of Proposition 4.1.10 now carries over in a straightforward

manner.
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4.2 Gravitational descendants

The theory of GW invariants can be enriched by additionally integrating natural classes on
the moduli space of stable maps itself over the virtual fundamental class. This extension
is motivated by theoretical physics, [Wit91, EHX97]. In the symplectic setting, these
generalised GW invariants were first defined in [RT97, §6] and in [KM98] for projective
varieties. In the general symplectic setting the definition is not as immediate. This can
already seen from the case where X is a point. While there are natural vector bundles on
the moduli stack of stable curves, they do not descend to the coarse moduli space Hg’n.
Refer [ACG11, Chapter 13] for a discussion and the definition of a vector bundle on a
stack. We will simply define the necessary objects as we need them rather than in full

generality.

Definition 4.2.1. Given an n-pointed family (7: C — V,01,...,0y,) of stable curves and
i < n, we define the i tautological line bundle of V to be LY := o (ker(dr)*). We define
the i*" 1-class to be

Y = (LY) e H*(V; 7).

(2

The Hodge bundle of C — V is the complex rank-g vector bundle EV := m.we sv- The
A-classes are

)\}} = ¢;(EY).

These vector bundles patch together to form the i** tautological line bundle, respec-
tively the Hodge bundle, on the Deligne-Mumford stack M, ,. In this case, or if the
family V is clear from the context, we omit the superscripts. See [HKK™03, Chapter 25]
and [FP00] for context and relations satisfied by the integrals of these classes of M, ,, and

moduli stacks of stable maps.

Fix a closed symplectic manifold (X,w) with J € J,(X,w) and A € Hy(X;Z). Let
Kn = (G, T/ My, En, 5n) be a global Kuranishi chart for M, ,, (X, A; J) as given by Con-
struction 2.1.14. Recall that M,, is a G-invariant open subset of the automorphism free
locus of regular maps ﬂ;n (IP’N ,m) in ﬂgvn(IP’N ,m), admitting a quasi-projective smooth
universal family U,, € M, on which G acts almost freely. Let IL,: 7, — M, be the

structure map and define
L := Ly := I (LM") E := IT* (EMn).

They are, by definition, relatively smooth vector bundles over 7,. The G-action on T,

lifts to a fibrewise linear G-action on LL; and E. Define
Vi = = c1(ly)a Aj=c¢j(E)a

in H%(T;Q) ~ H*(T/G;Q). They restrict to classes on My, (X, A;J), also denoted
and A.
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Lemma 4.2.2. The ¢- and A-classes on ﬂg,n(X, A; J) are independent of the choice of

unobstructed auziliary datum.

Proof. AsE =~ st*E is isomorphic to the pullback of the Hodge bundle on My ,,, this is clear
for the Hodge classes. Given two unobstructed auxiliary data, we obtain global Kuranishi
charts KC,, ; with base space Ny < ﬂ;n(]}”N",mo). By §2.4.1 there exists a double-sum
global Kuranishi chart of Mg, (X, 4; J) with covering group Gy x G and base Ny;. Here
Noi © H;H(IP’NO x PN (my,mq)) is the preimage of Ny x N7 under the product map ®.
The induced map ®;: No1 — Nj is a principal Gj-bundle (for {j,j'} = {0,1}), so

LMo = L ENot = orRN,

In particular, L?/m is a principal G j-bundle over Lé\/j, SO €1 (I[Jévm)goxgl = &7y (]Lévj)gj.
Similarly for the Hodge bundle. Pulling these relations back to the thickening of the

double-sum Kuranishi chart, we obtain the claim. ]

In particular, if ﬂgm(X , A; J) is unobstructed, we recover the standard definition of

- and A-classes.

Definition 4.2.3. The gravitational descendant (or descendent Gromov-Witten invari-

ant) of (X,w) associated to (A,g,n) is

Ty Q1 -+ oy Thy, O O'>1)4(:;n = YFeviag - Prrevia, - st*PD(0), [Myn (X, A; J)VT

for ki,...,kn =0, a1,...,a, € H*(X;Q) and 0 € Hy(My;Q). The Hodge integrals of

X are the numbers
<)\l{1 .. )\29 SpMeviar - PFreviay, - st*PD(o), [Myn(X, A; )],

where bq,...,b; = 0 are integers.

Remark 4.2.4. The construction in §2.4.2 shows that the gravitational descendants of X

do not depend on the choice of w-tame almost complex structure.

Remark 4.2.5. The 1)-classes in [RT97] are defined to be 9; := st*i);. These (respectively
a slightly modified definition thereof) are called gravitational descendents in [GivOla] and
differ from our definition of ¢-classes, called gravitational ancestors by Givental. In [KM98]
(whose definition agrees with ours) the exact relationship between the two definitions is
elucidated. In [KKP03], modified v-classes 1; are defined, which satisfy 7, 1; = ;.

Remark 4.2.6. The fact that the 1-classes and A-classes on M (X, A; J) can be defined
as pullbacks of the respective classes on moduli spaces of stable maps to projective space
allows us to lift relations shown for the the gravitational descendants of projective space

to those of arbitrary symplectic manifolds.

Fix now a global Kuranishi chart IC,, with base space M,, and structure map Il,,: 7, —

M.,,. By construction, the forgetful map restricts to a proper smooth maps M, 1 — M,
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. . . n .
with canonical sections o; := az( ), We abbreviate

Dyyq:= im(U(n)) Dyi1i = Dny1i/G

and

Dyi1i(A) := T, (Dps1,) Dpi14i(A) :== Dpt14(A)/G).

Dy41,i(A) is an oriented suborbifold of T,+1/G, Poincaré dual to 8,41, 4 = II* (PD(Dj41,))-

Lemma 4.2.7. Let m11: Mg pi1(X, A;J) = Mg o (X, A;J) be the forgetful map. Then

Unt1,i = WfLHl/Jm‘ + Ont1,4,4 (4.2.0.1)

in Hf\(Mps1,Q). Moreover, ¥py1; - Opy1,i,4 = 0.

Proof. This is an immediate corollary of the previous remark and classical arguments.
Let U := My +1\Dp41,. Given [¢,C,z1,...,2p41] € U, the forgetful map m,41 does not
change the irreducible component of C' containing x;. Thus L; := L; ® 7 L.~ 1 is trivial
over U. Set p := JZ-(nH)aZ(") and V :=1im(p). Then

(Uz‘(n))*(l‘i ®7T;§+1Li_1) = P*wﬂn+2 ® <U§n+l))*wﬂn+1'

As the normal bundle of D;,;1; is (UZ(”H))*wwn 1, it remains to see that p*wy, ., is equiv-
ariantly trivial. Let 7: M,,4+1 — My be the map which forgets all marked points except

the first, the ¢ and the last two. Then 7 is G-equivariant and maps D pyo to
Mn,Q XpN ([PN X MOA) ~ My x HOA

and V to Ma x {*} under this identificaton. Hence p*ou;nl+
If t: Dyy1i <> Mpt1/G is the inclusion, then

o s o
, =T TM074’*|V equivariantly.

Y106 - PD(Dnt1,) = vei(p*wn,.0)a = 0,

implying the last claim by Lemma A.1.4. O

There are three further relations for the generalised GW invariants, the first two spe-
cialising to the Fundamental class axiom and the last to the Divisor axiom if we have no
y-insertions. Denote by 1x the unit of H*(X;Q).

Proposition 4.2.8 (String equation). We have

k k . \X
<¢ 1a1> s 711) " Qip, 1X70—>A,;n+1

n
= Nwha, . R g W s T, 00 (4.20.2)
=1

for any aq,...,an € H*(X;Q) and 0 € Hy(Mgpt1; Q).
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Proof. Write @ := a; X -+ X i, and 3 := PD(0). By (4.2.0.1),

k k X,
<w 1a17 v 7¢ " O, 1X;O'>A7;),n+1

= (] [ + Gnsria) - m (v a x st (e, 8), [Mgansa (X, A5 )]

=1

so the claim follows from the Fundamental class axiom (Proposition 4.1.5), the last asser-
tion of Lemma 4.2.7, the fact that D, 11; N Dy41; = & for i # j and the equality

7Tn+1*(6n+1,i,A N [Mg,n+1(X7 A; J)]Vir) = [mg,n+1(X7 A; J)]Vir~

Proposition 4.2.9 (Dilaton equation). We have

X X
<1ﬂk1041, .- 7¢knana ¢11X§ U>A:;n+1 = (29 -2+ n) <¢k1a17 cee wknan;ﬂn+1*U>A:;n

for any ai,...,a, € H*(X;Q) and 0 € Hy(Mgrni1;Q).

Proof. By the proof of [Man99, Lemma VI.3.7.2],

n
s ~ (n)
On+1Wmnye = Wrpgg g;
i=1

as G-equivariant line bundles, so we can express ¥, 11 in terms of ¢ (wy,+1) and the canon-

ical sections of m,11. As deg(wr, ,|c) = 29 — 2 for any fibre C of 7,41,

7rn+1*('¢n+1 N [Mn+1]) = (29 -2+ n) [Mn]

By Corollary A.1.3, the same equality holds for the corresponding classes on the quotient.

All other terms vanish because

Vn11,6 - On+1,5,6 = €1 (Wr, 1 (Dnt1,5))G - Onv1j,6 + Z On+1,i,G  Onst14a = 0.
i2j

O]

Proposition 4.2.10 (Divisor equation). If (A, g,n) ¢ {(0,0,2),(0,1,0)} and vy € H*(X;Q),
then

X’ n . X7
<¢k1a17 v 7¢knanv s J>A7;J7n+1 = <’77 A> <77/)k10517 ceey ¢k Qn; 7Tn+1*0—>A7;n

n
1 X,
+ Z@Jklozl, oyt (i) ¢k"an;ﬂn+1*J>A,;n
i=1

for any aq,...,an € H*(X;Q) and 0 € Hy(Mg 415 Q).

Proof. Set 8 :=PD(0) and o := vy X -+ - X . By Lemma 4.2.7, the right hand side splits
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into a sum of terms where one is of the form

n
(i (ovta x [ Tl ). (5t%(8) - eviia) o My (X, 400
i=1
= <¢k1ala o ’¢knan; 7Tn+1*0'>§:;n
by Proposition 4.1.7. The other terms are given by

n i —3; Wi vir
(mi1(evia x wam 7)) On+1,4,4 €511, 867(B) 0 [Mg 1 (X, A )
i=1

" ]Cif(;i' A vir
= (mh (v x [ [uny ") - eviv - dnrja,st™(8) 0 [Mynia (X, 43 )™)
=1

o X
= <¢k1a17 v 71/]]% 1(062' : /7)7 e 71/}knan; 7rn+1*0->A:;J7n

for 1 < j < n, where the second equality holds because evn+1\5n+1j( A = er\ﬁnHj (4)

and the last because D,,11;(A) is the image of a section of 7, 41. O
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Chapter 5

A comparison and equivariant

extensions

5.1 A comparision to the GW invariants of Ruan—Tian

5.1.1 Definition of GW invariants via pseudocycles

The first construction of Gromov-Witten invariants in the symplectic setting was given
by Ruan and Tian in [RT95, RT97], where they restrict to semipositive symplectic mani-
folds. For this class of manifolds, the moduli space of stable maps which satisfy a perturbed
Cauchy-Riemann equation admits a stratification by smooth manifold, where the top stra-
tum is orientable and of the expected dimension, while all other strata are of codimension
at least 2. Hence one can define an intersection theory, respectively define a pseudocy-
cle. In genus 0, one can even avoid perturbing the Cauchy-Riemann equation by allowing
the almost complex structure to be domain-dependent, as was done in [MS12, Chapter
6]. Another advantage is the fact that in genus 0 the GW invariants are Z-valued by
construction.

To our knowledge, save for the relative virtual fundamental class defined in [[P19a], it
is not known whether the GW invariants obtained via a virtual framework agree with the
invariants of Ruan-Tian for a semipositive symplectic manifold.

A symplectic manifold (X, w) is semipositive if for any A € mo(X)
w(A)>0,c1(A)=23—-n = c1(4)=0. (5.1.1.1)

In particular, any symplectic manifold of complex dimension at most 3 is semipositive.
Let us recall the definition of GW invariants in [RT97] for (X,w) satisfying (5.1.1.1).

A good cover p,: M;n — M, of the (coarse) moduli space of stable curves is a finite
cover such that M;n admits a universal family that is a projective normal variety. Such
good covers can be constructed using level-m structures; refer to [ACG11, Chapter XVI]
or [Mums83] for the details. Let §,: ng’n — ﬂ;n be the universal curve. Fix a closed
embedding ¢: Hg,n — P*.

Given J € J,(X,w) we will consider perturbations v € C®(P* x X, Homc (p¥ Tpr, p3Tx ).
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Let ﬂ;n(A; J,v) be the space of equivalence classes of stable (J,v)-maps of type (g,n)
(’U,, ja C) j) l’*) where

1. (C,j, ) is of type (g,n),

2. j:C - U"

g7n
C' — F of nodal surfaces,

is a holomorphic map onto a fibre F of U’

gn» nducing a contraction
bl

3. u: C'— X is a stable smooth map, representing A and satisfying

0yu = v(¢j,u) o d(¢j).
We say that (u,j,C,x) is equivalent to (v, j',C’, 2%) if there exists a biholomorphism
v (Cyxy) — (C')2),) with *u' = v and ¥*j" = j. A stable (J,v)-map is simple if

1. for each irreducible component Z — C on which u is nonconstant, u|z is a simple

map, i.e., does not factor through a branched holomorphic covering,

2. w(Z) # u(Z') for any two irreducible components Z # Z’ of C' on which u is

nonconstant.

The space of simple (J, v)-maps is denoted by MZ: (A; J,v). It admits a canonical forgetful
map ﬂg,n(A; J,v) — ﬂ;n through which the stabilisation map Hgm(A; Jov) > Mgn
factors.

ﬂ;n(A; J,v) can be stratified by the topological type of the domains together with the
distribution of the homology class: To each stable (J,v)-map we can associate a marked
graph ~y consisting of a n-marked graph G together with a maps 9: V(G) — Hy(X,Z) and
g: V(G) — Ny so that

dim(H'(G) + Y g(v) = g PIOE

veV (G) veV (G)

and for any v € V(G) the stability condition 2¢g(v) + |{f € FI(G) : s(f) = v}| = 3 holds,
where FI(G) is the set of flags of G. We denote by M‘;(A; J,v) the stratum of stable maps
whose dual graph is given by v and by ﬂg’*(A; J,v) its intersection with the space of
simple maps. We denote by M4 (A; J,v) the locus of simple maps with smooth domain.

By [RT97, Proposition 2.3, Theorem 3.1], respectively [Zinl17, Theorem 3.3] (whose

arguments simplify to our setting), the following holds for generic (J,v).

1. M;"*(A; J,v) is a smooth oriented manifold of dimension
2(1 — g) dime(X) + 2e1 (Tx), A) + dimg (MY).

2. The maps ev and st, define a pseudocycle ev x st,,: Myn(4; J,v) > X x ﬂ;n.

We use the following definition of a pseudocycle from [IP19a]; see also [MS12, Chapter
6.1] or [Zin08].
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Definition 5.1.1. A d-dimensional pseudocycle f: M — N is a continuous map from
a d-dimensional oriented manifold to a locally compact space so that f(M) has compact

closure and

Q= ] FONK)
cggncpje\a/ét

has Lebesgue covering dimension < d — 2.

Given a d-dimensional pseudocycle f: M — N, we can define a class [f] € HEM(N, Z)
as follows. Let M° := f~}(N\Q). Then MP° is an oriented d-dimensional manifold and
fo: M° — N\Q; is proper. We define [f] € HPM(N,Z) to be the image of [M°] under

MM, z) B BN (N0, ) ~ HPM(N, Z).

Here the isomorphism is an immediate consequence of dim(2¢) < d—1 and the long exact

sequence in Borel-Moore homology. Refer to [IP19a, §3, §A.3] for more details.

Definition 5.1.2. [RT97] The pseudocycle Gromov-Witten class of (X,w) associated to
(g,m, A) is

1 _
T = ?(id X pu)xlev x stu] € Ho(X™ x Mgn; Q).
o

Theorem 5.1.3. Suppose (X,w) is semipositive. Then the pseudocycle GW classes agree
with the GW classes defined in Chapter 2. Explicitly,

U;‘,n = (ev x st)«[Mgn(X, 4; IV (5.1.1.2)

for any g,n = 0 with 29 —2 4+ n > 0.

5.1.2 Proof of Theorem 5.1.3

Fix (g,n) with 29 —2 +n > 0 and let p,: Hg,n — M, be a good finite cover. Set
d, := deg(py). Define

te[0,1], j: (Cras) Ul ,,, ux[C]=A,
0 ju=t (¢jxu)*v

W;n’A = {(t7u7 Cv x*?])

u: (C,xg)—X smooth stable of type (g,n),}
b

where j is a contraction onto a fibre of st,n'

Lemma 5.1.4. W;L,n,A is compact and Hausdorff when endowed with the topology induced

by Gromov convergence.

Proof. Compactness follows from [RT95, Proposition 3.1], while the uniqueness of the
limit follows by the arguments of the proof of [MS12, Theorem 5.5.3]. O

Remark 5.1.5. Denote by HZ}’Zing the nodes and marked points of the universal curve. In
order to apply [Swa2l] later on, we restrict to perturbations v that are supported away

from ¢(ﬁg,’,img). By elliptic regularity, such perturbations v suffice to achieve transversality.
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We will construct a global Kuranishi chart with boundary for W; nA> which restricts
to a cover of the previously constructed global Kuranishi chart for M, ,, (X, A; J) over one
fibre and to a global Kuranishi chart for ﬂ;n (X, A; J,v) on the other boundary fibre. By
Lemma 5.1.9 and Lemma A.2.7, this will imply that

dy (v x 5t) i [Mgn (X, A3 )] = (ev x st)5[My . (X, A; J )"

in Hy(X"™ x Mg ; Q). Finally we compare (ev x st)*[ﬂgjn(X, A; J,0)]Y" with o,

Fix an unobstructed auxiliary datum (VX,Ox(1),p,U, k) where
1. p > 0 is sufficiently large that £3” is very ample for any (t,u) € W; n A

2. U is a good covering in the sense of Definition 2.2.12 where we take the image of

WZn,A in the polyfold of smooth maps to X instead of Mg, (X, A;J) in the third

condition;
3. k € N will be determined later.
Define 7 to be the set {(t,u,C,xy,j,t,a,n)} / ~ so that
e u: (C,zy) > X is a smooth stable map of genus g representing A.

e j: (C,zy) — Uy, is a contraction of nodal surfaces onto a fibre of the universal

curve,

v: (C,z4) — PV is an element of ﬂ;n(ﬂ”N,m),

a € HY(C,O¢) satisfies [1*Opn (1)] = p - [£4] + a in Pic(C),

o ne B, =H(C,*TiH" @u*Tx @ *O(k)) ® HO(PN,O(k)) is such that
Oyt +{(nyodi—tv(p], i) =0 (5.1.2.1)

on the normalisation C of C.

We quotient by reparametrisations of the domain. Let P: T — [0,1] be the obvious
projection and 7; := P~1({t}).

Set M := ﬂ;n ST ﬂ;n(PN, m) and let 7: 7 — M be the forgetful map. Define
E — T by letting its fibre over y = (t,u, C, x4, j,¢,c,n) be

gy = 5Ll(N + ].) (—BHI(C’, OC) @E(L,u)a

while the obstruction section § is given by §(y) = (ilog(A(u,¢)), a,n). Let G := PU(N +1)
acting via post-composition on the framings and the perturbation terms . For i € {0, 1},
denote

I%i = (G,ﬁ,gz’%ﬂﬁ)-
Lemma 5.1.6. We can choose k sufficiently large so that the linearisation of (5.1.2.1)
restricted to C*(C,u*Tx) ® E(, ) is surjective for any element in 571(0).
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Proof. This follows from the proof of Lemma 2.2.18. O

Proposition 5.1.7. For k » 0, T™8 is naturally a rel-C* manifold over [0,1] x M and
the structure map is a topological submersion. The restriction Eree = g|7~,reg is a rel-C™®
vector bundle and the restriction of 5 is of class rel-C*. Moreover, ev: T > X" is a

rel-C® submersion.

Proof. Forgetting the a-parameter and using Gromov’s shearing trick, we can consider T
as a subset of the moduli space of embedded regular perturbed holomorphic maps to the
total space of a vector bundle £ — PV x X. Fixing a splitting Tp = 7*Tpn , x ®T*E, we

define the family of almost complex structures on E by
J (i, v,€) = (Joz, Ju + (e)(&), JEE)

for (Z,v) € Tpn x X 7y (e) and € € E.

By Remark 5.1.5, we can use [Swa2l] as in Proposition 2.3.9 to deduce the relative
smoothness of 7~ over [0,1] x M. The structural map is a submersion since we obtain
transversality without variation of the domain or the t-parameter. The other claims follow

from the same reasoning as in §2.3. O
As the arguments in §2.4 carry over word by word, we obtain the first step of our proof.

Corollary 5.1.8. W; A admits an oriented global Kuranishi chart K, with boundary of

the expected dimension.

In particular, l%n,() is an oriented global Kuranishi chart for My = ﬂgvn(X JA; ) Xy
M;n with
(ev x st) [MXTE = dyu (ev x st)o[Myn(X, A; )] (5.1.2.2)

due to

Lemma 5.1.9. Suppose K = (G,T,E,s) is an oriented global Kuranishi chart of a space
M and T admits a degree-d cover p: T' — T. If p is G-equivariant with respect to
some G-action on T, then K' := (G, T',p*E,p*s) is a global Kuranishi chart for M' :=
(p*s)~1(0)/G. The canonical map p: M’ — M is a degree-d cover and

P MY = a (M

Proof. The first part is straightforward. The relation between the virtual fundamental
classes follows from the functoriality of Thom classes and because the map 75 — Tg of

homotopy quotients has degree d. O

It remains to show that
dyof = (ev x st,)«[M . (A; J. 1/)]~‘ir
K~ g,n w* g,m\t K1’

This is a consequence of the following general result. It is the analogue of [IP19a,

Theorem 5.2] in our setting. Compare also with Lemma 3.6 op. cit..
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Lemma 5.1.10. Let M be an oriented manifold of dimension d inside a compact space M
that admits a global Kuranishi chart K = (G, T, E,s) of dimension d. Suppose s intersects
the zero section transversely over the preimage of M and G acts freely on that locus. Let
f: M — N be a continuous map to (the orbit space of) a smooth compact oriented orbifold,
so that f|yr is a pseudocycle. Then f[M]"" = [f|ar] in Hye(N;Q).

Proof. Set P := f(M\M) and M° := f~1(N\P). Then M® is an open submanifold of M
and f: M° — N\P is proper. In particular, [f] = f.[M°] € H?M(N\P;Q) =~ HEM(N; Q).
Let j: M <> M be the inclusion inducing j,: H*(M°;Q) — H*(M;Q). By assumption
on the Kuranishi section s, the class (j))*[M]""" in H¢(M®; Q)" corresponds to evaluation

at the fundamental class [M°]. This implies that the diagram

ad(N\P; @) L5 faar; Q) 22 Ho(M; Q)

! b

AN Q) — m0T;Q) 1, g

commutes. Hence, f,[M]'"" agrees with the evaluation at [f|s/] and thus the two define

the same class in homology. O

5.2 Virtual localisation and equivariant GW theory

In this section, we define global Kuranishi charts endowed with a compatible group action
and construct an equivariant virtual fundamental class. We prove a localisation formula,
analogous to [AB84], in the setting of global Kuranishi charts, see Theorem 5.2.10 and
show that it applies to the equivariant GW invariants of Hamiltonian symplectic manifolds

constructed in §5.2.3.

5.2.1 Equivariant virtual fundamental classes

We define what it means for a global Kuranishi chart to carry a compatible group action
and construct the associated equivariant virtual fundamental class. The technical back-
ground for this can be found in §A.2. The construction can be considered a special case

of parameterised virtual fundamental classes.

Definition 5.2.1. Suppose K is a compact Lie group acting on a space M. A global
Kuranishi chart £ = (G, T,&,s) for M is K-compatible if

e 7 admits a K-action that commutes with the G-action,
e £ admits a K-linearisation that commutes with the given G-action, so that
e 5 is K-equivariant.

We say it is rel-C™ K-compatible if it is rel-C® over a base space S so that 7 — S is

K-invariants and K acts relatively smoothly.
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Definition 5.2.2. Let £ = (G, T,&,s) be an oriented global Kuranishi chart for 9t with
a locally linear compatible T-action. The equivariant virtual fundamental class [IN]WF is
the element of HomH;(H}";’Vdim(im; Q), H};) given by the composite

# K , K
ArEvdin o ) * e H;declmﬁ (T /G; Q) e, H (5.2.1.1)

where the subscript fc denotes cohomology with fibrewise compact support (of the fibration
(T/G)k — BK) and Hj; := Hj;(pt; Q).

Here we use that
H(M:Q) = lim H*(B,W;Q)
7,—00
Wom
where we take the direct limit over n and open neighbourhoods of 9t in 7/G. The first
map in (5.2.1.1) is induced by the composition

E*TgG‘W.

H;<<+rank(5) (W | m; Q) =, H}“(Jrrank(g) (T/G | m; Q)
— H MO(T/6,0)

H*(Wk; Q)

while the second map is the trace map of (7/G)x — BK defined in §A.2.
Lemma 5.2.3. If K acts freely on 9 and K is a K-compatible global Kuranishi chart,
then [9M]¥r = 0.

Proof. Write K = (G, T,E,5). As K acts freely in a neighbourhood of 9 in 7 /G, we may

shrink to assume it acts freely on all of 7/G. Then H?QT(T/GH*(T/G; Q) — Hj:(pt; Q)

vanishes and thus so does [90T]}. O

Remark 5.2.4. By Corollary A.2.3 we have a commutative square

o @) P Ay (ot:Q)

l l (5.2.1.2)

frerdm(an; Q) 5 HO(pt: Q)

allowing us to recover [DN]V" (partially) from [9)?]}?

The arguments of §3.1.1 can be carried over to the equivariant setting, using Lemma

A.2.5. We obtain the analogous statement for equivariant virtual fundamental classes.

Proposition 5.2.5. Suppose j: K' — K is a rel-C® embedding of oriented global Ku-
ranishi charts as in Proposition 3.1.7 and that K acts relatively smoothly on each global

Kuranishi chart. If the embedding is K -equivariant, then
Julex (75 (€/€)/G) n [MEF) = PD(T'/G) n [N

Remark 5.2.6. Suppose 91 is a moduli space parameterised by a topological space B.

Using the obvious definition of a parameterised global Kuranishi chart, the results in §A.2
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allow for the definition of a parameterised virtual fundamental class of the form
[(M]5": HF* (M Q) — H*(B; Q).

In particular, by Lemma A.2.2 and Lemma A.2.4, the results of §3.1.1 carry over. The
equivariant virtual fundamental class defined here is just a special case of this construction.

This is also discussed (for smooth parameter spaces) in [AMS23, §4.7].

5.2.2 Virtual localisation

Let 9 be a moduli space with an oriented global Kuranishi chart K = (G, T, &, s). Suppose
9 admits a continuous T-action which lifts to a compatible T-action on K. Here T = (S1)*
for some k£ > 1. The aim of the localisation statement is to reduce the computation of the
virtual fundamental class of 9 (and any invariants arising from it) to a computation on
the fixed point locus MT. To see that IMMT admits a global Kuranishi chart, we need the

following preliminary lemma.

Lemma 5.2.7. Suppose H is a compact connected Lie group and T x H acts locally linearly
on an oriented topological manifold Y. If the action of H is additionally almost free, then
(Y/H)" is an oriented homology Q-manifold.

Proof. Let gy: Y — Y := Y /H be the quotient map and set Y9/ := ¢,;'((Y/H)T).Then
x € Y9 if and only if for any t € T, we have t-2 = h -z for some h € H. As H acts almost

freely,
Y = {yeY |dim((T x H),) = dim(T)}.

Each path component of Y%/ is a topological manifold of Y and consists of elements
whose stabilisers lie in the same conjugacy class. Given I' < T x H, let Ajr) be the set
of path-components of Y4/ with stabiliser group in the conjugacy class of I'. Then the
path-components of V" are indexed by A =JAr) and q{,l(?A) is path-connected, since
H is connected. As the right hand side is an oriented manifold on which H acts almost

freely and locally linearly, the claim follows. O

By Lemma 5.2.7, the preimage of (7/G)T in T is given by 7% = | | T, where each T,
)

is a G-invariant submanifold. Note that the dimension of 7, might depend on A. For each

A we have a splitting £|7; = 5{ @ &Y', where

(<‘i’f\c)gC ={ve& |Vhe (TxG)o:h-v=0v} (EV')y:= {v—f( h-vdm(h) ’veé’z}

TXG)x’o

for x € Ty, where (T x G)z,0 is the identity component of the stabiliser group and m the
normalised Haar measure. Since s is (T x G)-equivariant, s(7) E/]\c . Moreover, the rank

of £ )Jf is constant along 7. This shows that

Lemma 5.2.8. ) := (G,7}\,5>{,5|7—A) is a global Kuranishi chart for My := s~ 1(0)nT,/G
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and
m’ = | |,
A

The proof of [AB84, Theorem (3.5)] relies on the existence of local equivariant maps
U — T/T" where I' < T is a closed subgroup and U is an open T-invariant subset of
M\MT™. One can construct such sets U using equivariant tubular neighbourhoods of T-
orbits. Given a global Kuranishi chart (G, 7T, €&,s) with a compatible T-action, we want
to emulate this argument for 7/G. We do require relative smoothness of 7 over a base

space; note that we do not show relative smoothness for the submanifolds 7.

Lemma 5.2.9. Let X/S be a rel-C* manifold with S a smooth manifold. Suppose G
is a compact Lie group acting continuously on X and smoothly on S so that the map
G x X — X 1is relatively smooth over G x S — S. Then for each x € X there exists an

equivariant retraction v: W — G - x defined on a G-invariant neighbourhood of x.

Proof. Let 7 be the structural map X — S. By Lemma 2.3.14 and [AMS21, Proposition
4.25], there is a G-equivariant fibre submersion ¢: U < X x X — X in the sense of
[AMS21, Definition 4.22].! Fix z € X and set s := 7(x). Let Z be a G-slice through z so
that {} x Z cU. Let V:=G-Z =~ G xg, Z. Then we can define ro: Z — X, by ro(z) =
¢(x,z). This map is G -equivariant, so we can extend it to r1: V — X' := 771(G - 5)
by r1(g-z) = g-ro(z). As ro(z) = = by assumption on ¢, r; fixes G - x pointwise. The
induced action by H := G5 on X, is smooth. Using an H-invariant Riemannian metric,
we can define an H-equivariant retraction ro: W/ — H - x. As before we can extend ry to
a G-equivariant retraction r3: W := G- W' — G - x by setting r3(g-y) = g-r2(y). By the
compactness of G, W is open. Shrinking Z we may assume im(r;) < W. Then r := rgor;

is the desired map. O

Theorem 5.2.10 (Virtual localisation). Let K = (G,T/S,&,s) be a rel-C* global Ku-
ranishi chart for M. Assume K is endowed with a compatible rel-C™ action by a torus

T. Suppose each path-component of the fized point locus T is a rel-C® manifold over a
submanifold of S.?> Then,

vir _ N\, er(EY/G) 0 [
[m]’]l‘ _ZA:J/\* €T(N’5/T/G)

(5.2.2.1)

in (HF (9 Q) @p Frac(H7))"

Proof. Using the compactness of s '(0), we may assume 7% has finitely many path
components. By Lemma 5.2.9 we can find for each z € 7 a (T x G)-invariant open
neighbourhood W, and a (T x G)-equivariant retraction W, — (T x G) - z. The pullback
Hf — Hi(W,/G; Q) factors through H%mi = H(*T/TE)O’ where 7 is the image of x in W, /G.
As Hip oy is torsion over Hf for x ¢ T4/, the same is true for Hi(W,/G;Q). Covering
s 1(0)\T% by finitely many such neighbourhoods, it follows that H (77'\7-T | T Q)

IThat is, U is a neighbourhood of the diagonal that is invariant under the diagonal G-action, ¢ is open
and equivariant so that ¢|Ur\{z}><X7r(m) is the inclusion, and 7¢ = @pr;.
2We impose this condition so each path-component has a well-defined normal bundle.
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is a torsion Hi-module by the Mayer-Vietoris sequence, where 7 := 7/G. In contrast to
the case where 7 is a smooth manifold and T x G acts smoothly, we do not have global
tubular neighbourhoods. However, we have them locally, so we can use again induction

and the Mayer-Vietoris sequence to see that

J*: BE(T | Q) — HE(T | W%:Q)
admits an inverse up to torsion given by

g HE(T | 90%5Q) — HA(T | M Q).

As jniji¥ = PDrxg(7y)- by (A.1.0.1), the sum o := Y PDy.g(7)) is invertible in the
A
localised module H(T; Q) ®p Frac(Hj). By Proposition 5.2.5

PD1(7,/G) 0 [ = ja.(en(EX/G) n [D]F).

Taking the sum over the path-components of 9T and inverting o, we obtain (5.2.2.1). O

Corollary 5.2.11. Suppose K and M are as in Theorem 5.2.10. If € = E' @V, where V
18 a trivial bundle on which T acts trivially, then we only have to consider path-components
T of T with stabiliser group T.

Proof. Indeed, if H < T x G is the stabiliser group of some y € 7, with H # T, then
Vim 0. Thus e(£™/G) = 0 and so there is no contribution of [907,]"" O

5.2.3 Equivariant GW invariants

Suppose (X,w) is a closed symplectic manifold equipped a Hamiltonian action by a com-
pact connected Lie group K with moment map p. Let A € Ho(X;7Z). We first note the

following compatibility with our construction of a global Kuranishi chart.
Lemma 5.2.12. If J € J;(X,w) is K-invariant, the following holds.

1. There exists an unobstructed auziliary datum (VX,Ox(1),p,U, k) such that VX is

K -invariant, Ox (1) admits a unitary K -linearisation, and Ny is K-invariant.

2. The resulting global Kuranishi chart obtained by Construction 2.1.14 using this aux-

wiary datum admits a relatively smooth compatible K-action.

3. If (VX' 0x:/(1),p, U, k) is another unobstructed auziliary datum satisfying the con-
ditions of (1), then the associated global Kuranishi charts are equivalent via K-
compatible charts such that the moves respect the K-actions. If J' is another w-
compatible almost complex structure such that the K-action is J'-holomorphic, then

the cobordism constructed in §2.4.2 can be chosen to be K-compatible.

Proof. By [Rie01, Corollary 1.4] we can find a polarisation Ox (1) as in Definition 2.1.6
such that the K-action on X lifts to a fibrewise linear unitary K-action on Ox(1). If
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VX is a J-linear connection on Ty, then so is the connection VX obtained by averaging
VX over K. Given these two data, Theorem 2.1.18 asserts that we can complete them
to an unobstructed auxiliary datum (VX,Ox (1), p,U, k). Averaging the cut-off functions
in U over K and possibly increasing k to k, we obtain an unobstructed auxiliary datum
(VX,0x(1),p,U, k) as claimed. By Construction 2.1.14, the associated global Kuranishi
chart is K-compatible. The statements about relative smoothness follow from the descrip-
tion of its universal property in §2.3.1. Finally, (3) can be seen by noting that the proofs

of §2.4.1 carry over verbatim to the equivariant setting. O

Definition 5.2.13. The equivariant Gromov—Witten invariants of (X,w, u) are the maps

GWEA = ((ov x 5t) s [Mon (X, A0 IR HEN™(X7 x M3 Q) — i (5.23.)

where J is any K-invariant w-tame almost complex structure on X.

Remark 5.2.14. By [Kir84, Proposition 5.8], (X, u) is equivariantly formal. This allows
us to recover the non-equivariant GW invariants from the equivariant ones by (5.2.1.2)
as follows. Given oo = a1 x -+ X a, € H*(X™;Q), we can find & € Hj-(X™; Q) so that
*a = «, where t: X — X is the canonical inclusion. Then

(an, o)y = e, GW“t(@),

where ¢: BK — pt is the constant map. In particular, if the equivariant GW invariants

of X vanish, then so do the non-equivariant GW invariants.

Proposition 5.2.15. The invariants GW gnf satisfy the equivariant analogue of the

Kontsevich—Manin axioms.

Proof. By the equivariant Kontsevich-Manin axioms we mean the generalisation of the
relations listed in the introduction to equivariant cohomology. The arguments of §4.1 carry
over, using Proposition 5.2.5 instead of Proposition 3.1.7. As an example, we discuss the
Fundamental class axiom; it says

{ag X -+ X ap X 1x % B;GWﬁhw4ﬁ7A> ={a1 X -+ X ap X 7rn+1!ﬁ;GW;f;l°ff (5.2.3.2)

as elements of Hj.. Let K, be a global Kuranishi chart for Mg,_1(X, A4;J) equipped
with a compatible K-action and let IC,n + 1 be its pullback along the forgetful map m,+1.
By the proof of Proposition 4.1.5, we may replace them with global Kuranishi charts l%n
and KC,, which are still compatible with the group action and where the forgetful map
Tnad: 7~;1+1/C~? — ’771/(? satisfies

(7~Tn+1)! st™ = st* Tn+11

in ordinary cohomology. Now we may conclude by using the straightforward generalisation
of Lemma A.1.6 to equivariant cohomology. The other axioms are left to the interested

reader. O
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Set QH}(X,w) := Hj;(X;Q) ®g A and endow it with the product

axf= > (axp)at’?,

A€eHo (X;Z)

where

K
L (axB)a-v =GWosf(a, 8,7) (5.2.3.3)

for any v € Hj; (X;Q). By the equivariant Symmetry and Splitting axiom, this is graded-
commutative and associate. Note that (5.2.3.3) determines (« * [3) 4 uniquely since (X, )

is equivariantly formal.
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Chapter 6

Exotic tori in higher projective

spaces

In this chapter we prove Theorem 1.2.1. It is an immediate consequence of the following
result about the Newton polytope of the disk potential of a lifted Vianna tori, defined in

§6.1.2. More precisely, we prove the following refinement.

Theorem 6.0.1. The Newton polytope of the disk potential of T(a’b’c) is a nondegenerate
simplex in R™. One 2-dimensional face is a triangle with affine edge lengths a, b and c,
while the affine length of any other edge is 1. In particular, if {a,b,c} # {a’, V', '}, then
there is no symplectomorphism of P™ that maps the lifted Vianna torus T(a,b,c) to T(a/7b/70/).

6.1 Geometric preliminaries

In this section we define the necessary geometric constructions in order to apply [PT20,
Theorem 1.1] in §6.2. We introduce the notion of a solid mutation configuration and solid
mutations, generalising mutations of a 2-dimensional Lagrangian torus along a disk to
higher dimensions. Subsequently, we define the lifts of the Vianna tori and show that they

are related by solid mutations.

6.1.1 Solid mutation configurations

We generalise the results of [PT20, §4.4, §4.5] to higher dimensions. Compare with [PT20,
§5.3], where the ambient manifolds are required to be toric. In particular, the definition
of solid mutation matches the definition of higher mutation in [PT20] with mutation

configuration (F,w) where F' is an (n — 1)-dimensional face of a moment polytope.

Definition 6.1.1. Let (M?",w) be a symplectic manifold. A pair (L, T) is a solid mutation
configuration (SMC) in M if

e L is a Lagrangian torus;
e T is a Lagrangian solid torus, i.e. ¥ is diffeomorphic to D x T"~2;

e [ and ¥ intersect cleanly along the boundary of ¥;
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e the pair (L, T n L) is diffeomorphic to the standard pair (T", T"~!) for some n.

Here two submanifolds Ny and Ny of M intersect cleanly if K = Ny n N7 is a smooth
submanifold of M and T, K = T,Ny nT,N; for any z € K.

Let us make the following observation, which is the higher dimensional analogue of
[PT20, Corollary 3.4].

Lemma 6.1.2. Suppose (L, %) is a SMC in (M,w) and L is monotone. Then there exists
a divisor D < M\(L u ¥) Poincaré dual to dci(M) for some d » 1, so that L is exact in
M\D.

Proof. The assertion follows by the same argument as in [PT20, Corollary 3.4] from [PT20,
Theorem 3.3]. We sketch the argument. Since L is monotone, we can replace w by w’ = 1w
and thus assume that w(ma(M, L)) < Z. Hence we can find a Hermitian line bundle £ — M
with Hermitian curvature FV = —2riw. Then L]y, is flat, as is the restriction of £L&* for
any k > 1. Now construct for each k sections sy, k2, Sks of L& which are bounded away
from 0 on L, T and on L n ¥ respectively and show that their sum is bounded away from

zero. Also, choose the sections si; so that they are covariantly constant over L. O

As in [PT20] we will construct a model neighbourhood for SMCs, which will allows us
to define solid mutations. The key ingredient is a Weinstein neighbourhood theorem for

SMCs (compare to [PT20, Lemma 4.11)), for which we need the following technical result.

Lemma 6.1.3. Suppose 1: [1,1] x T" — [3,1] x T" is a diffeomorphism with ¢(1,z) =
(1,2) for x € T". Then there exists ¢ > 0 and a diffeomorphism ¥: D x T?~! — D x T 1
which agrees with ¥ on [1 — €, 1] x T™. If ¢ is equivariant with respect to a torus action

on T™, then we can choose W to be equivariant as well.

Here we identify [%, 1] x S with the corresponding annulus inside the closed unit disk
Dc C.

Proof. Write ¢ = (¢/,4") and define ¥,.(z) := 9" (r, z) for x € T™. Then there is 0 < € < %
so that v, is a diffecomorphism for |1 — r| < 3e. In particular, ¢, defines an (equivariant)
isotopy from 11 _9 to the identity. Let p: [0,1] — [0, 1] be a smooth cutoff function with
p(t)y =tfort>1—¢ p=1—2eo0n [0,1 — 2] and p'(t) > 0 on (1 — 2¢,1]. Similarly,
let 3: [5,1] — [0,1] be a smooth cutoff function so that 5(t) = it near 1, 8 < 3 on
[3.1—2€], 8 =1o0n [l —¢1] and f is strictly increasing on [1 — 2¢,1 — ¢]. Define
P [3,1] x T" — (0,1] x T by

YO (t,x) = (B (p(t), ), 0" (p(t), ).

This is a diffeomorphism by the choice of p and § and agrees with 1 near {1} x T™.
It suffices thus to extend the closed embedding

PO [ x T = [0,1] % T ((r,1]) x T7)
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for some r < 1 — 2e. We can write it as

YO (t,) = (th(z), ¢(x))

for ¢t € [, 7], where ¢ € Diff(T") is (equivariantly) isotopic to the identity and h: T" —
(0,1] is smooth. Note that im(4h) x T™ is the inner boundary of ¥ ([1 — 2¢,1] x T™).
Given an (equivariant) isotopy {¢s}se[o,1] from the identity to ¢, let x: [0,1/3] — [0,1]
be a smooth cutoff function, so that x = 0 near 0 and x = 1 near % Fix also a smooth
cutoff function n: [0,r] — [0,1] so that n = 0 near £, n =1 on [3,7] and /() > 0. Set
a := min h. Then define ¥: [0,1] x T* — [0,1] x T by

P (t, x) r<t<l1
(t,a) =4 (at (M0, o(@))  S<i<r
(ta, oy () 0<t<3

This descends to the desired diffeomorphism of the solid torus. If we start with an equiv-

ariant ¢, then U is equivariant by construction, and thus so is W. ]

Lemma 6.1.4 (Weinstein neighbourhood theorem for solid mutation configurations). Sup-
pose (L;,T;) < (M;,w;) is a solid mutation configuration for i € {0,1} with dim(My) =
dim(My). Then there exist neighbourhoods U; < M; of L; U T; and a symplectomorphism
Y: Uy — U mapping (Lo, %o) to (L1,%4).

Proof. By definition there exists a diffeomorphism ¢: Ly — L; which maps Lo n %y to
Li n¥;. Extend ¢ to a symplectic bundle isomorphism ®: T'My|r, — TMi|r,, which
maps T'Tplaz, to TT1|st,. Now the proof proceeds along the lines of [PT20, Lemma 4.11].
By the Weinstein neighbourhood theorem, ® defines a symplectomorphism ¢': Uy — Uj
for neighbourhoods U/, and Uj of Ly, respectively Li. Then ¢/’ maps U} T to a manifold
tangent to U; nT; with the same boundary. As cleanly intersecting submanifolds admits a
normal form near their intersection, we may post-compose 1)’ with a Hamiltonian isotopy
to assume ¢’ maps Uy N Ty to U] N T;. By Lemma 6.1.3 we can extend its restriction to
Uy Ty to a diffeomorphism ¢: Ty — 1, possibly shrinking U/. As ¢ is induced by ® near
0%, the standard lift of ¢ to a symplectic vector bundle isomorphism T' M|z, — T M=,
extends ®. Using the Weinstein neighbourhood theorem again, we obtain the desired

symplectomorphism ). O

Suppose a torus T embeds as subtorus of 0%y and 0%;. Multiplication by elements
of T induces a torus action on L; and ¥; which extends to a Hamiltonian T-action on a
neighbourhood of L; U ¥;. Using the equivariant version of the Weinstein neighbourhood

theorem and Lemma 6.1.3, we can choose v in the previous statement to be equivariant.

We now construct our model neighbourhood, see also [PT20, §4.5]. Set X; := C?\{z122 =
1} and endow it with the Lefschetz fibration 7: X; — C\{1} defined by 7(z) = x1x2. Given
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a simple loop (or more generally an embedded path) v in C\{0, 1} define the Lagrangian

T, = {(z,y) € C* | |z| = |y, 7(z,y) € im(7)} . (6.1.1.1)

By [PT20, Lemma 4.13], there exists a primitive 6 of wgq|x, and A > 0 so that T is exact
with respect to 6 if and only if v encloses 1 and a disk of area A. Given such a loop v we
say T (or just y) is of Clifford type if v encloses 0 and of Chekanov type otherwise. If £ is
a line segment starting at 0, then 7} is a vanishing cycle, in particular, a Lagrangian disk.

Given n > 3, set X := X; x C"2 and endow it with the restriction of the standard
symplectic form on C". Denote 77 =T, x T2, This is exact, with respect to 6 :=
0 @ 0,,_o for the standard primitive 8,_s of wsq on C*2, if T, is exact. The following is

a straightfoward exercise.

Lemma 6.1.5. Suppose v is a loop enclosing both O and r and let £ be the line segment
from 0 to min({im(y) N iR}). Then (T, T) is an SMC.

We obtain the following corresponding generalisation of [PT20, Lemma 4.17] by ap-

plying Lemma 6.1.4 and the discussion afterwards.

Corollary 6.1.6. If (L,T) is an SMC in (M*",w), there exists a neighbourhood U = M
of L UT and an equivariant symplectic embedding ¢: U < X1 x C"~2 so that ¥(L,T) =
(T, T¢) for~ of Clifford type and { a line segment as above.

By [PT20, Lemma 4.14], 77 and Tw’ are isotopic through a compactly supported
Hamiltonian if and only if v and 7 (as above) are smoothly isotopic in C\{0, 1} and enclose
disks of the same area. Thus the following definition is well-defined up to Hamiltonian

isotopy.

Definition 6.1.7. Let (L,T) be an SMC in (M?",w) and let 1 be a symplectomorphism
as in Corollary 6.1.6. The solid mutation of L along T is Lg := ¢! (T.,) for any simple
loop v/ in ¥ (U) of Chekanov type.

Lemma 6.1.8. If (L, %) is an SMC in (M,w) and L is monotone, then so is Lz.

Proof. Using Corollary 6.1.6, the proof is analogous to the proof of [Cha23, Lemma 2.5].
O

6.1.2 Lifting Vianna tori

A Markov triple (a,b, c) is a triple of positive integers satisfying the Diophantine equation
a® + b? + ¢® = 3abc. The set of these triples forms the vertices of the Markov tree, which
is connected and infinite by [Aigl3, Chapter 3]. A triple (a,b, c) is connected to (a’,V', )
by an edge if and only if (d/,¥,c) is a Markov mutation of (a,b,c), i.e., of the form
(3bc — a, b, c), (a,3ac —b,c) or (a,b,3ab — c).

For any Markov triple (a, b, ¢), [Vial6] constructs a monotone Lagrangian torus 7 )
in P2, whose Hamiltonian isotopy class is uniquely determined by (a,b,c). To make this

precise, let P(a?,b?,c?) be the weighted projective space associated to a Markov triple
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(a,b,c) with associated degenerations from P2. By [Vial6], P? can be obtained from

P(a?,b%, c?) by performing at most three rational blow-downs.

Definition 6.1.9 (Vianna tori). The Vianna torus T(ap,c) associated to a Markov triple
(a,b,c) is the central fiber of the almost toric fibration of P? obtained from the rational
blow-down of P(a?, b2, ¢?).!

In [PT20], the authors relate Vianna’s construction to local mutations, which are a spe-
cial case of our solid mutations. In particular, they show that each T, ) admits canon-
ical mutation configurations (74 ), Do pr,)), indexed by the Markov triples (a’,b’, )
obtained from (a,b,c) by a Markov mutation. The mutation along D,y ) results in a
torus that is Hamiltonian isotopic to T4 p ory-

We will lift these tori to monotone Lagrangian tori in P” for n > 3 using symplectic
reduction. In Lemma 6.1.12, we show that a mutation of T, 3, ) along D4y ) corresponds
to a solid mutation of its lift to P" along the lift of D,y o).

Fix n > 3 and let

f: P RY2 2] |Zl|2(|z3|2, L)
be the moment map of the standard Hamiltonian T" 2-action acting on the last n — 2
homogeneous coordinates. In particular, the action is free on F, := p,, ! ({n%rl 2?2_12 ei}>,
where eq,...,e,_o is the standard basis of R*72. A computation in local coordinates
shows that F},/T"2 equipped with the reduced symplectic form is symplectomorphic to
P2. Let q: F,, — P? be induced by the quotient map. A straightforward computation
shows that the preimage of the Clifford torus in P? under ¢ is the Clifford torus in P".

Definition 6.1.10. Given a Markov triple (a,b,c), we define the lifted Vianna torus to
be

T((c:??,c) = q_l(T(a,b,c))'

We see that ™ is a Lagrangian torus by the definition of the symplectic structure

(a7b7c) I
on the symplectic reduction. If n is clear from the context, we write T, ) instead of
(a7b7c) ’

Remark 6.1.11. As we can also do the reduction inductively, at each step reducing by an
Sl-action, we see that for each (a,b,c), we obtain a tower T((:g7 o = T, —Th1— - —
Ty := T(qp,c), where Tj11 — T} is the restriction of a principal Sl-bundle on PJ. As the

Euler class of this S-bundle is a multiple of [wrs], its restriction to T; vanishes. Thus

T((:)b7c) - T(a,b,c) is a trivial T" 2-bundle.
Lemma 6.1.12. If (d/,V',c) is a Markov mutation of (a,b,c), then T((:z) o and T((ﬁ)b' )

are solid mutations of each other. In particular, each 7

18 monotone.
(a7b7c)

Proof. By Vianna’s construction and [PT20, Lemma 4.21], there exists a mutation con-

figuration (T{4p.¢), D) in P2, so that the associated mutation of Tape) 18 Tiarp ). Let

!'Note that Vianna denotes T(a,b,c) by T(a?,b?, ¢*) instead.
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T = ¢ (D). As q is the quotient map of a free T" 2-action, (T((Z:?) o)’

tation configuration in P™. It follows from the local model in [PT20], respectively §6.1.1

that the solid mutation of T((;% o)

thus Hamiltonian isotopic to T((:ﬁ)b, )

T) is a solid mu-

along T is the lift of the mutation of T{q ) along D, and

The last assertion follows from Lemma 6.1.8. O

6.2 A wall-crossing formula for the lifted Vianna tori

In this section, we explain how to obtain the wall-crossing formula for the disk potential
under a solid mutation. This is a variation of [PT20, Theorem 5.7], where we do not
require the toric assumption due to our Weinstein neighbourhood theorem for general
solid mutation configurations.

Let X := C?\{x122 = 1} be as in the previous section and let v be a loop of Clifford
type in X7. Suppose £ is a straight line segment in C* joining the origin to a point p € ~
and only intersecting v at p. Set Lo := T, and Dy := T} as defined in (6.1.1.1). By [PT20,
Lemma 4.15], there is a small neighbourhood Uy of Ly u Dy such that Uy is Liouville and
the Liouville completion of Uy (which we can take to be a Liouville domain) agrees with
Xj. Let L; denote a Chekanov type torus in Uy.

Set L; := L; x T" 2. This is an exact Lagrangian in (Uy x (A)""2,0)) for i € {0,1},
where A, := {z € C||z—1| < €} for € > 0 and 6 was defined in §6.1.1. Let U; be a Liouville
domain obtained by smoothing the corners in Uy x (A¢)"~2. Since the completion of A, is
C*, the completion of U is X1 x (C*)"~2, see [0an06, §3.d.].

Remark 6.2.1. Suppose L is a monotone Lagrangian torus in a symplectic manifold (M?", w).
Its disk potential W} can be considered as a Laurent polynomial as follows. Let p :
Hy(L;Z) — C* be a local system on L. Fix a basis v1,...,v, of Hi(L;Z) = Z" and let
(z1,...,2y) be the image of (vy,...,v,) under the holonomy map p. This tuple specifies
the holonomy of a flat C* line bundle over L uniquely. Thus, one can identify (C*)" with
the space of flat line bundles over L. We can then write the disk potential W, defined in
(1.2.0.1), as

W : (C)" - C
Wiy, ) = Y, IM(L,B)| 2,
Bema(M,L)
n(p)=2

where M(L, ) is the moduli space of J—holomorphic discs in the class 5 such that the
boundary of the disk lies on L and passes through a generic (but throughout fixed) p € L.

We identify 08 with a point in Z™ via the chosen basis and use multi-index notation.

We now extract a local wall-crossing formula from [Seil3]. This requires the choice of
a certain basis of Hy(L;;Z). Write Lo = T, x T"2? with m: T, — im(v) the restriction of
the Lefschetz fibration. Note that Ly and L; intersect cleanly in two circles, so Lo and L

intersect cleanly in two tori T 1.

Definition 6.2.2 (Admissible pair of bases). We call any two bases of Hj(Lo;Z) and
H1(Lo; Z) admissible if they are obtained via the following construction. We have LonL; =
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C; uC_, where Cy are circles lying in a fibre of 7: X; — C. Let ag = —[C4]. Choose 5y
to be the circle in T’, given by a lift of v to X and let o ; be the class of the ith factor of
T"=2 for 1 < i < n — 2. This forms a basis of Hy(Lg;Z) with respect to which we denote
the coordinates of the disk potential by xo, o, 20,1, - - -, 20,n—2. Given any smooth isotopy
from Lg to L1 which preserves ag and which is the identity on the last (n — 1)-factors, we

denote by a1, f1,71,1, - - -, V1,n—2 the induced basis of H; (Ly;Z).

Given any basis of Hy(L;,Z), we can and will identify a local system p; on L; with a

point (z;,y;, z;j) € (C*)™ using these coordinates. Abbreviate L; := (L;, p;).

Lemma 6.2.3 (Local Wall-Crossing). Given an admissible pair of bases, we have
HFx, (C#)n—2 (L1,Lg) # 0

if and only if (v1,y1,21,1,212 -+, 21;n—2) = (0, Yo(1 + 20), 20,1, - - -, 20,n—2)-

Proof. This is a generalisation of [Seil3, Proposition 11.8] which treats the case of n = 2.
Instead of using Morse-Blott Floer homology as in op. cit., one can also count strips
by hand. To this end, perturb L; slightly in the fibre direction so that it intersects L
transversely in two fibres of (x,7) — xy. Perturb the i*" S, denoted Sy;, in the T"2-
factor of L; so that it intersects the " circle Sy; of the T™ 2-factor of Ly transversely.
Let p; be the composition X; x (C*)"~2 — (C*)»~2 25, ¢x,

Suppose v: R +i[0,1] — X3 x (C*)""2 is a Floer strip of Maslov index one. Then,
by the open mapping theorem and the maximum principle mv as well as each v; := p;v
have to map onto the two lunes enclosed by v and 7/, respectively between Sp; and Sy;.
Since all factors are monotone Lagrangians, it follows that at most one of wv,vy,...,v,_9
can be nonconstant. The later n — 2 cases imply that we must have z1 ; = 2 ;, while the

study of mv was done in [Seil3], respectively [Sei97, Chapter 17]. O
Theorem 6.2.4. Given a pair of adimissible bases of Hq (T(a,b,c); Z) and Hy (T(a/7b/7c/);Z),
the disk potentials are related by

(T,y, 215y 2n—2) = W (x,y(1 + ), 21,...,2n-2). (6.2.0.1)

WT(a,b,c) T(u/,b’,c’)

Proof. We first reduce this to a computation in the local model described in §6.1.1. By
[PT20], we can find a disk D < P2so that (T(ap,c), D) is a Lagrangian seed whose mutation
is Hamiltonian isotopic to T(, y . Denote by T the lift of D to a solid torus in P". Fix
an equivariant symplectic embedding ¢ : Uy x (A)""2 — P" as in Corollary 6.1.6 and
Lagrangians Lo, Dy, L1 < Uy as above so that ¢(Lg) = T(a,b,c) and ¢(Dy x T"2) = T.
Then,

O(L1) = 6T r)

for some Hamiltonian diffeomorphism ¢ on P". Let D < P™ be a Donaldson divisor for
(T(ap,e)»T) as in Lemma 6.1.2. Choosing Uy and e sufficiently small, we may assume
d(Uy x (A)""2) < P\D. We claim that ¢(Uy x (4.)"2) is a Liouville subdomain of
P™\D, i.e., that A := 0 — ¢*0pn\p is exact, where Opn\p is a primitive of wrs|pm\ p. Let
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be any loop in Uy x (A)" 2. As Uy x (A.)" 2 deformation retracts onto Lo u Do x T2,

we may assume a = L, for some o € m1(Lo) and t: Ly < Uy x (A)" 2 the inclusion.

Thus
J )\:J A =0,

since Lo is exact with respect to both primitive 1-forms. Thus ) is exact, so by [PT20,
Theorem 3.1],

HFp\ p((T(ap,c)» £0)s (T(ar )5 1)) = HFx,  (cxyn—2((Los po), (L1, p1)).  (6.2.0.2)

for any local system p; on L; and the corresponding one on T(a,b,c) respectively T(al7b/7cl).

By Lemma 6.2.3 and our choice of bases,

HFx, ycxyn—2((Lo, po), (L1, p1)) # 0

if and only if pg = (z,y,21,...,2n—2) and p1 = (z,y(1 + x),21,...,2,—2). As the disk
potential is invariant under Hamiltonian isotopy, we see that WT( iy W¢(fl) as disk

potentials of Lagrangians in P". Therefore [PT20, Theorem 1.1] implies (6.2.0.1). O

Remark 6.2.5. The theorem holds for general solid mutation configurations since it only

uses the local models of §6.1.1.

Remark 6.2.6 (Algebraic mutations). Theorem 6.2.4 asserts that, given admissible bases
of the first homology, the Laurent polynomials WTW,,C) and WT(agb/,c/ are related by the
algebraic mutation (z,y,21,...,2n-2) — (x,y(1 + x),21,...,2,—2). Refer to [PT20, §4]
and [ACG™12, Definition 2] for the general definition of an algebraic mutation of a Laurent

polynomial.

6.3 Distinguishing the tori in P"

In order to distinguish the tori T, ), Vianna shows that the Newton polytope associated
to the disk potential of T{, . is a triangle with edges of affine length a, b and c. As the
Newton polytope of Wy, , . is an invariant of the symplectomorphism class of T, ), the
symplectomorphism class of T{, ) in P2 is therefore uniquely determined by (a, b, c).
We will use this result from [Vial6] to prove a similar result for the lifted Vianna tori.
The argument uses induction on the Markov tree and properties of the Vianna tori and

their Newton polytopes.

6.3.1 Newton polytopes

Given n > 3, let R := R[xfr, ..., 2] be the ring of Laurent polynomials in n variables.
We identify the set of monomials in R with Z™ in the obvious way. The Newton polytope

of a Laurent polynomial f = >’ akzrlfl = ~mﬁ" € R is the the closed convex hull
kez™

Newt(f) := Conv({k € Z" : aj, # 0}).
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This association is equivariant with respect to the GL(n, Z)-action on R, defined in [PT20,

Remark 4.2], and the standard action on R".

Ezample 6.3.1. Using the coordinates on Hy(7';11);Z) coming from the the standard
moment polytope of P scaled appropriately, the disk potential of the Clifford torus in P"

is

1
WT(lylyl)(ZL‘) =1+ +x,+ m (6311)
by [Aur07, Proposition 4.3]. Thus Newt(WTO’M)) = Conv(er,...,en,— i €) is an
n-simplex, where ey, ..., e, denotes the standard basis of R".

In particular, the Newton polytope of the Clifford torus is a Fano polytope as defined
in [ACG*12]; i.e.,

1. the polytope is convex;
2. it contains 0 in its interior;

3. its vertices are primitive in Z".

In §6.2 we show that a solid mutation of a suitable Lagrangian torus corresponds to a
specific algebraic mutation of its disk potential. By [ACGT12], an algebraic mutation of
f € R corresponds to a combinatorial mutation of Newt(f). Refer to [ACG™ 12, Definition
5] for a precise description and to Remark 5 op. cit. for a discussion of the relationship
between algebraic and combinatorial mutations. Note that we are only interested in alge-
braic mutations of the form (z1,...,z,) — (x1,22(1 + z1),x3,...,2,). See [PT20, §5] for
more general algebraic mutations that occur if one uses different geometric mutations of
Lagrangians.

FEzample 6.3.2. We obtain 7(1,172) by solid-mutating 7(17171) in P? along b(17172) = D(1,1,2) X
T™2. In the standard coordinates of T(1,1,1)7 the class [0D(y 1,9)] is given by (1,1,0,...,0)
by [PT20, Example 4.12]. Since the boundary of the disk in the local model corresponds
to the vector (1,0,...,0) in an admissible basis, it follows that we have to make the base

change

(V1,...,0p) — (V1,02 — V1, U3, ..., 0p).

If a local system is given by (x1,...,2,) in the previous basis, it corresponds to z’ =

/_IB/l / / 1

o1 ; a
(r2,$2, ...,Tp) in the new one. Then WT(L T

1,1)

hence .
1+ 2

() =ah+ah+-- 4, + (/2 ) -

/ /
$1$2 .%'3' ° '.I‘n

T1,1,2)

By [ACG™12, Proposition 2|, the combinatorial mutation of a Fano polytope is again

a Fano polytope. From Example 6.3.1 it follows that Newt(WT( ) is a Fano polytope

for any Markov triple (a,b,c). The proof of Theorem 6.0.1 reliéls’h}cl)eavﬂy on going back
and forth between Laurent polynomials and their associated Newton polytopes.

From now on we will use x,y, 21, ..., 2z,_o instead of 1, ..., z, to distinguish between
the variables which are involved in the algebraic mutation and those which are not. We
denote the associated coordinates of R™ by x,y,21,...,2Z,_o.

Now we prove some lemmas in preparation for the proof of the main theorem in §6.3.2.
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Lemma 6.3.3. a) Suppose the Newton polytope of

M

fla,y) = >y filx)

i=m

is Fano with fn, # 0 and fyr # 0. Then m < 0 < M. Moreover, if Newt(f) is a
triangle, then either fyr or fm is a monomial, and if f(x,y(1 + z)~') s a Laurent

polynomial, then fn, is a monomial.

b) Suppose the Newton polytope of

i 1 Fn—2)i
YA A g )

Mz

g(z,y,2) =

=m

is contained in the affine plane H = w + {(v,e1) for some v = (v1,...,v,) € Z" such

that vg # 0 and w € Z". Then j,; depends linearly on i for any r € {1,...,n—2}.

Proof. a) By (2), Newt(f) has nonempty interior, so the first property is immediate. To
see the second, suppose fj; is not a monomial. Then Newt(f) n {y = M} is an edge
of Newt(f); in particular it contains two vertices of Newt(f). As Newt(f) n {y = m}
is nonempty and only touches the boundary of Newt(f) it must therefore be a single
point and thus f,,, a monomial. If f(x,y(1 4+ 2)~!) is still a Laurent polynomial, then

(1 4+ )™ has to divide fus, so fus cannot be a monomial.

b) Any monomial in g is of the form :Uky’z{“ e zi(fgm where
(K, iy d1is - J(n—2)i) = wHav+ber = (w1+avy+b, ava+ws, avy +wi, ..., av, _o+w;, )

/

for some a,b e R. As vy # 0, we obtain j,; = (1 — wg)% + w.
]

We will use the following properties of the Newton polytopes associated to the Vianna

tori. The first result is a summary of [Vial6, Lemma 4.11] and the discussion loc. cit.

Lemma 6.3.4. The Newton polytope Newt(WT(aybyc)) is a triangle whose edges have affine
lengths a,b, and c. Moreover, the coefficients of the monomials in WTis.e cOTTESPONding
to the vertices of Newt(Wr,, ) are £1.

The following statement is probably known to experts, but we did not find a proof in

the literature. We provide a proof for completeness.

Lemma 6.3.5. Suppose (a,b,c) and (a',b',c) are Markov triples related by a Markov

mutation and

y'Cy(x)

M=

WT(Q,ZLC) (LL‘, y) =

=m

with respect to a pair of admissible basis for Hy(T(qpcy;Z) and Hy(T(q y ) Z). Then
Cr(z) = +2F(14+2)M for some k = 0. In particular, the monomials corresponding to the

vertices on Newt(Wr, , ) n{y = M} have the same coefficient.
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Proof. As Wr,,,, ., is mutable, we must have Cp, () = az®m for some k,, € Z by Lemma

6.3.3(a). Applying (a) to WT( ey WE deduce that (?fx() 13, is a monomial with the same co-

efficient as y™ Cy/(x) in Wi, By Lemma 6.3.4, the coefficient of % in WT(a’,b’,c’)
is £1, so Cy(x) = +aFM(1 + 2)™. This shows that the coefficients along the edge
e = Conv({(i, M) : ' € Cyps(x)}) corresponding to y™ Cys(x) are binomial. In particular,
the monomials corresponding to the vertices of e have exactly the same coefficients, i.e.,

both are either 1 or —1. O

6.3.2 Distinguishing tori by induction

To prove Theorem 6.0.1 , we use an induction based on the Markov tree. Explicitly, we
verify that (1,1,1) has the desired property P as the base step. Then, assuming P is
satisfied by any Markov triple (a, b, ¢) of (graph) distance d away from (1,1,1), we prove
that P holds for an elementary mutation of (a, b, c).

The following result is a more precise formulation of Theorem 6.0.1. Set z := Z?;f Zi-
Proposition 6.3.6. Let (a,b,c) be a Markov triple. Given a basis of Hl(T(mb,c);Z) as
constructed in Definition 6.2.2, the following holds.

i) Newt(WT( ,

)T z) 1is a triangle.

ii) W (z,y,1,...,1) =Wr,, (z,y) +n —2.

(a;b,c)
ii1) Newt(WT( , )) is a simplex with one 2-dimensional face given by Newt(WT(aybﬁ) —z)
and the other vertices being es, ..., e,. Moreover, they are at affine unit length from

all other vertices.

iv) The affine lengths of the edges of the triangle Newt(W=

Tlane) z) are a,b and c.

Proof. Abbreviate W, ) := Wr,,,, ., and Newt((a, b, c)) := Newt(Wr,,, /) and similarly
for T'(4p,c)- In Example 6.3.1 and Example 6.3.2, the disk potentials of the respect torus
have been explicitly computed. By a direct verification, one can show that the claims
hold for (1,1,1) and (1,1,2). Let (a/,V/,¢') be a Markov triple at a distance d + 1 from
(1,1,1) for d = 1. Assume it is connected to a triple (a, b, ¢) at distance d from (1,1,1).
Fix an admissible pair of bases for Hy (T(a,b,c);Z) and HH; (T(a/’b/’cx); Z). By the induction
hypothesis, (i)-(iv) hold for (a,b,c). Write

(abc) Z y :E y Rl .- a2n72)~

. .. . . . . s ks Kii(n—
By (i) and (ii), there exists for each monomial x'y’ in W(g ) a unique x'y’ z]f“ Loy WG
in W( bo) whose coefficient is given by the coefficient of z'y/ by (ii). Thus, by Lemma

6.3.5,

Mo k k
~ k i kit j(n—2
Cu(z, 21,y 2n—2) = tx Z <j )szlj "‘anfz :
§=0
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for some kj, := krjr. By (ii) and Lemma 6.3.3(a), Newt(WW—g) Nn{y = M} is a line.

In particular, k. depends linearly on j, i.e. kj. = £,j + ¢, for some /., c, € Q. Hence

~

Cr (@, 21,y Zna) = £aF28 - 22 (1 4 2 zf;"__;)M. (6.3.2.1)

By our choice of basis, W- is mutable, so (1+2z)M divides C)s. This implies that £ = 0

(a,b,c)

and ¢, € Z . Thus Newt(Wm

(v, e1) for some v € Z"\{0,e1}. Lemma 6.3.3(b) implies that the z,-coordinate of points

— z) is contained in the affine plane (k, M, cy,...,cn—2) +

in Newt(Wm — z) depends linearly on the y-coordinate. Hence
Wi (@0, 21, ) = 2+ 3 y'el 220 w) (6.3.2.2)
i=m

where W, .0\ (7,y) = Zi‘im y'C;(z), and each f, is a linear function. By Theorem 6.2.4,

i A6 faal) Cila)
Wy (@, 21, 2n2) = 2+ Z YA ED (6.3.2.3)
which immediately implies that (ii) holds for (a/,¥,¢). Since fi,..., fn—2 are linear func-

tions, (i) also holds for (a’, ¥, ¢’). Since

Newt (W

W) = Conv({es,...,en, Conv(Newt(WW —2))

is Fano, the points e, ..., e, are not contained in Conv(Newt(WW— z). This implies
the first claim of (iii). To see the second claim, note that the vertices of Newt(W s 1 )
are primitive in Z? as Newt(W (4 1)) is Fano. By (ii), this shows that any edge e between
e, and a vertex of Newt(Wm — z) is of the form e = {e, + t(v,v’) : t € [0,1]}, where
v is primitive in Z? and v’ € Z"2. Thus the affine length of e is 1, as is the affine length
of the edge between e, and e,..

Finally, by Lemma 6.3.5 and (ii), any lattice point on an edge of Newt (W, i »)) lifts
to a unique lattice point on an edge of Newt(Wm — z). Therefore, the affine lengths
of the edges of the two triangles agree. By Lemma 6.3.4, this proves (iv) and concludes
the induction. O

6.3.3 Proof of Theorem 6.0.1

The first two assertions of Theorem 6.0.1 are immediate from Proposition 6.3.6. We now
show the last assertion. The boundary Maslov-2 convex hull UT<a,b,c) of T(mb’C) is the convex
hull of {0[u]|u: (D,5') — (P, T(4,)) holomorphic with pu(u) = 2} < 71 (T(4p). By
[Vial6, Remark 4.5] and the simply-connectedness of P", we can identify the Newton
polytope of WT(a,b,c) with UT(a,b,@' As the latter is an invariant of the Lagrangian up to
symplectomorphism by [Vial6, Corollary 4.3], we obtain that 7' ¢y is not symplectomor-
phic to T gy for (a,b,c) # (a/,V,¢).
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Chapter 7

Cuplength and Lagrangian

intersections

Let (X,w) be a symplectic manifold and let L and L’ be two Hamiltonian isotopic La-
grangian submanifolds in X. We will not assume that L and L’ are transverse, but instead

make the following assumption in order to exclude disk and sphere bubbling.
Assumption 7.0.1. Throughout this paper, we will assume that
1. X is either closed or a Liouville manifold.

2. L is connected, closed and relatively exact, i.e.,

w-ma(X,L) =0.

We are interested in the degenerate Arnol’d conjecture:

Conjecture 7.0.2. Given Assumption 7.0.1, there is a lower bound
#L n L' > Crit(L)

where Crit(L) is the minimal number of critical points of any smooth map L — R.

It was recognised early on that Ljusternik-Schnirelmann theory, which was developped
to study critical points of non-Morse functions, might be useful to obtain (partial) answers
to this question. Its main invariant, the Ljusternik-Schnirelmann category provides a lower
bound for the critical number of a manifold. Refer to [CLOTO03] for the definition and
to §7.3 for a related invariant. However, the LS category is hard to compute and the

cuplength in any generalised cohomology theory bounds it from below. Thus
Crit(L) = cr(L)
for any ring spectrum R, where the R-cuplength of L is the natural number (or o)

cr(L) :=inf{ke N:Vay,...,ap € R*(L) :ay - ---- ay = 0}. (7.0.0.1)
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when L is connected and the sum of the cuplengths of its connected components otherwise.

Theorem 7.0.3 ([Hof88, Theorem 3], [Flo89, Theorem 1], [Hof85, Theorem 1]). Under

Assumption 7.0.1, there is a lower bound

#L L' > czp(L). (7.0.0.2)
If X =T*L is a contangent bundle with L the zero section, there is a lower bound

#L L = cy(L). (7.0.0.3)

Hofer’s proof uses Ljusternik-Schnirelmann theory, while Floer’s proof proceeds via
Conley indices. In general, (7.0.0.2) and (7.0.0.3) are weaker bounds than the one given
by Conjecture 7.0.2. There are examples in which it is a strictly weaker bound, such as
[Rud99, Example 3.7].

We replace cohomology with Z/2-coefficients in Theorem 7.0.3 with certain generalised
cohomology theories. In §7.4, we provide two examples where this leads to stronger lower
bounds. The proof uses that real K-theory captures more information than singular
cohomology.

Fix J € J(X,w). If X is Liouville, assume J is convex at infinity. Denote by
My ={ue CPR+i[0,1],X): dyu =0, E(u) <0, u(R) < L, u(R +1i) < L'}

the moduli space of pseudoholomorphic strips with Lagrangian boundary conditions. Let

7m: My 1 — L be the evaluation at 0. The key technical point is the injectivity of
’ﬂ'*: R*(L> —> R*(ML,L’)

for certain ring spectra R. The proof could go via a cobordism argument if our moduli
spaces were cut out transversely. As they are not, we use an approximation argument
and a very simple version of a Kuranishi chart. We crucially use a certain virtual vector
bundle, the index bundle associated to a Cauchy—Riemann operator.

We impose the following assumption on (X, L), respectively the chosen ring spectrum

R, throughout the paper. We require it in order to apply the Thom isomorphism later on.

Assumption 7.0.4. This index bundle of the moduli space of finite-energy pseudoholo-
morphic maps from a compact convex domain with smooth boundary in C to X, mapping

the boundary to L, is R-orientable.
[Por22] provides the following criteria for Assumption 7.0.4 to be satisfied.
Proposition 7.0.5 ([Por22, Proposition 1.13]). Assumption 7.0.4 holds when
1. R is the Filenberg-MacLane spectrum HZ/2.

2. R is the Eilenberg-MacLane spectrum HZ, and L is (relatively) spin.
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3. R* is complex K-theory, and L is spin.

4. R* is real K-theory, and TL admits a stable trivialisation over a 3-skeleton of L
which extends (after complezification) to a stable trivialisation of TX over a 2-

skeleton of X (as a complex vector bundle).

As in [Hof88], we combine the injectivity of 7* with standard Ljusternik-Schnirelmann

theory to obtain the following lower bound.

Theorem 7.0.6. Suppose L satisfies Assumption 7.0.1 and Assumption 7.0.4 for a ring

spectrum R. Then the number of intersection points between L and L' satisfies

#L L = cg(L).

Remark 7.0.7. If L is not connected, we may apply Theorem 7.0.6 to each path component

of L and the corresponding component of L’ to obtain the same inequality.

Suppose X is closed and symplectically aspherical. If 1 is a (possibly degenerate)
Hamiltonian diffeomorphism of X, we can apply Theorem 7.0.6 to the graph of % in

X x X to deduce the Hamiltonian version of this inequality.

Corollary 7.0.8. The number of fixed points of 1 satisfies

#Fix(4) > cp(X).

In this setting, Conjecture 7.0.2 (which implies Corollary 7.0.8) has already been ver-
ified; see [Rud99, Theorem A], [OR99, Corollary 4.2] and [CLOT03, Theorem 8.28].

7.1 Homotopy and Fredholm theory

7.1.1 Generalised cohomology and Thom spectra

For our purposes, it suffices to work with classical spectra as defined in [Rud98] or [Ada95].
However, our definitions require some care, as we will take the generalised (co)homology
of spaces which are not necessarily homotopy equivalent to a CW complex. A generalised
cohomology theory defined on CW complexes can always be extended to all spaces, but
this extension may not be unique. We need an extension that satisfies a certain continuity
property, namely the statement of [AMS21, Lemma 5.2].

Unless otherwise specified, we work with spectra whose level spaces are homotopy
equivalent to CW complexes. We denote by S the sphere spectrum. All our spaces are

assumed to be compactly generated and Hausdorff.

Given an Q-spectrum R, we define, for a pointed space X, the n'" R-homology and

R-cohomology groups to be

Ry (X) :=m(X A Ry) R"(X) :=[X, Ry«
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respectively, for n in Z, where [-, -], denotes the set of pointed homotopy classes of maps.
As R, ~ Q?R,,4 9, the sets R,(X) and R"(X) carry a natural abelian group structure for

all n.

We recall the definition of relative R-(co)homology.

Given an inclusion j: A — X of pointed spaces, we denote by
C)(A = CA Uj X

the (reduced) mapping cone of j, where Cy is the cone over A. We view this as a pointed
space, with basepoint the vertex of C'4 (or equivalently the basepoint of X).

The inclusion X — Cx A is a cofibration and collapsing X induces a natural map
CxA — Y A. By [tD08, Theorem 4.6.4] these maps fit into an h-coexact sequence

A-X->CxA—-3YA-3X — ...
In particular, there exists for any pointed space W a long exact sequence of pointed sets
o [EX W - [BA W] — [Cx A W], — [ X, W] — [A, W], (7.1.1.1)
The relative R-(co)homology of (X, A) is defined by
R.(X,A) = R.(CxA) R*(X,A) := R*(CxA).

We recover the usual long exact sequence of a pair in R-cohomology due to (7.1.1.1).
Similarly, there is a long exact sequence of a pair in R-homology.
In the case of a pair of unpointed spaces (X, A), one simply considers the pair (X, A),

where - denotes the addition of a disjoint basepoint.

A ring spectrum consists of an {2-spectrum R endowed with both a multiplication map
p: RAR— R and a unit t: S — R such that the usual associativity and unit diagrams

commute up to homotopy. In this case we can define a cup product
-t R*(X)® R*(X) —» R*(X)

by letting a - 8 be the composite

XA XAX 2 RyARy — (RAR)pir 2> Rusk (7.1.1.2)

for « € R"(X) and 3 € R*(X), where the map R, A R, — (R A R),,} comes from the
construction of the smash product.
When one works outside the setting of CW complexes, the cup product does not

necessarily descend to a map

R*(X,A)® R*(X,B) > R*(X,A U B).
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However, we can make the following two observations, which will be useful in §7.3.

Remark 7.1.1. Suppose a € R™"(X) and € R™(X) admit representatives & : X — R,
and B : X — R,, which send subspaces A,B < X to the basepoints # respectively.
Then, by construction, « - 5 admits a representative X — R,.,, sending A U B to =*.
Induction shows the same result for classes a1, ..., ar € R*(X) that admit representatives

d; mapping subspaces A; © X to * respectively. In particular,
ap-...-rap=0 in R*(A1u...uU Ag).

Lemma 7.1.2. Let (X,d) be a compact metric space, with an open cover Uy, ..., Uy. Let
a; € R"(X) be cohomology classes such that co;ly, = 0 in R™(U;) for all i. Then the

product o - ... - oy vanishes in R*(X).

Proof. Let V4,..., Vi be an open cover of X so that V; c U; for each i. Set d; := d(-, V;).
As A; := X\U; is disjoint from V; and compact, there exists ¢; > 0 so that di_l([O, gi]) < Us.
Pick maps &; : X — R,, representing each o; € R"(X). Since 4|y, = 0, we can
choose nullhomotopies
H; :U; x [0,1] —» Ry,

such that H;(-,0) = = and H;(+, 1) = &;|y,.
Define maps §; : X — R,,, by

&1(1‘) if g; < dz(.%)

ﬂz(l‘) = 1 )
Hi(z,e; "di(x)) if 0<di(z) <ey.

Then B; ~ &;, via the homotopy G; : X x [0,1] — Ry, given by

d,(l’) if g; < d,(x)

Gi(z,s) :=
Hi(z,s+ (1 —s)e;  di(z)) if 0 < di(z) < e

Hence f; is a representative of o; € R™(X). ; sends V; to the basepoint * so the
product aq - ... - ay is zero in R*(X) by Remark 7.1.1. O

Suppose now that X is a compact space and that £: F' — X is a vector bundle of rank
k. Let Fy be its fibrewise one-point compactification. This is a sphere bundle over X
with a canonical section so given by the point at infinity in every fibre. The Thom space

of £ is defined to be the pointed space
Th(§) := Cp,im(sx)

and its Thom spectrum, written X¢ or X', to be the spectrum £*Th(€). In particular, if
¢ is the trivial bundle of rank k, then Th(¢) = ¥¥X, and X¢ = X®+kX . Note that if X
is not a CW complex, Th(¢) might not be either. These are the only spectra whose level

spaces are not CW complexes that we will encounter.
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For a virtual vector bundle of the form n — RY, we let rank(n) — N be its rank and

define its Thom spectrum to be
X1 RY . wNxo,

All our virtual bundles will be of this form, so this definition is sufficient for our purposes.'

Let R be a ring spectrum and £ a virtual vector bundle over X of rank k. An R-
orientation of ¢ is an element u € RF(X¢) such that for any map j : £*¥S — X¢ which is

a (stable) homotopy equivalence to a fibre, we have
j*u = +[1] € R*(Z*S) = R°(S).

where [¢] is the homotopy class of the unit map. Any trivial bundle is R-orientable, and
if two out of £, n and £ @ n are R-oriented, then so is the third.
By the Thom isomorphism theorem, [Rud98, Theorem V.1.3] any R-orientation on a

virtual vector bundle £ over a compact CW complex X induces a natural isomorphism
R*TF(X%) = R*(X).

By [AMS21, Lemma 5.2], this also holds when X is a compact subset of a manifold M,
and both ¢ and its R-orientation are pulled back from M.
We will need the following form of Atiyah duality, which can be viewed as a form of

Poincaré duality for generalised cohomology theories.

Theorem 7.1.3 ([AMS21, Theorem 5.2]). Let M be a smooth (not necessarily compact)
manifold, possibly with boundary, and suppose Z < M is any compact subset. Then there

is a canonical isomorphism
R_,(M,M\Z) ~ R* (Z—TM |Z)

compatible with restriction to smaller closed subsets Z' < Z.

If M is R-oriented on a neighbourhood of Z and of dimension n, the Thom isomorphism

theorem then gives an isomorphism
R**™(Z) =~ R_.(M,M\Z).

for compact subsets Z < M. In this case, we define the fundamental class of M along Z
[M]z € R,(M, M\Z) to be the image of the unit in R(Z) under this isomorphism. The
class [M]z depends only on the choice of orientation of which there can be more than two.

We will need the following version of the fact that, given an (oriented) compact mani-

fold with boundary M, the fundamental class of 0 M has vanishing image in the homology

!The homotopy type of the Thom spectrum only depends on the stable isomorphism class of the virtual
vector bundle. Due to compactness, any virtual bundle on X is stably isomorphic to one of the considered
form, so it suffices for our applications.
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of M.

Lemma 7.1.4. Let W™+ be an R-oriented smooth manifold with boundary and K < W
a compact subset. Then the image of [OW ]k ~ow in Ry, (W, W\K) is 0.

Proof. Suppose first that W is compact. The map ¢ in the exact sequence of a pair
0
RnJrl(Wa 6W) - Rn(aw) - Rn(W)

sends [W] to [0W] - see [Rud98, Remark V.2.14.a)]. The claim with K = W then follows
from the exactness of this sequence.

Now assume W is non-compact and set C' = K n dW. By excision, we may modify W
away from K, and replace W with a compact smooth neighbourhood of K. Then [0W]¢
is the restriction of the fundamental class [0W] € R,,(0WW). We may deduce the claim now

from the first step and the commutativity of the following diagram.

Ry r(W,0W) —% 5 Ry (0W) —— R, (W)

J !

R (0W, 0W\C) —— Ry (W, W\K)

7.1.2 Index bundles

Let s: B — £ be a smooth Fredholm section of a Banach bundle over a Banach manifold
intersecting the zero section of £ transversely. By the infinite-dimensional implicit function
theorem [MS12, Theorem A.3.3], the zero locus s~1(0) is a smooth manifold of dimension
ind(Ds) = dim(ker(Ds)) with tangent bundle ker(Ds) — s~1(0). If Ds is not fibrewise
surjective, the zero locus is not necessarily smooth or may have excess dimension. The
natural replacement of ker(Ds) in this case is the index bundle, a virtual vector bundle

constructed below. It relies on the notion of the stabilisation of a Fredholm operator.

Definition 7.1.5. Let D: X — Y be a Fredholm operator between two Banach spaces.
We call an operator T: RN — Y a stabilisation of D if D+ T: X @RY — Y is surjective.

As T is compact, D + T is still a Fredholm operator and
ind(D +7T) =ind(D) + N

by [MS12, Theorem A.1.5(i)]. Given a smoothly varying family of Fredholm operators
we will show the existence of a smoothly varying family of stabilisations near a compact
subset in Lemma 7.1.6.

Let us fix our setting for the rest of this subsection. Let Y be a separable Hilbert
manifold, H a separable Hilbert space and A a compact finite-dimensional manifold with

boundary. We assume that ¢: V — H is a smooth Fredholm map with V < Y x A an
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open subset. Define the open subset
Ve .= {(z,\) € V : dytp(z, \) is surjective}

where d; is the derivative with respect to the first argument.

Lemma 7.1.6. For any closed subset A < V' and any compact subset K < V, there
exists a neighbourhood U <V of K and a smooth map T: V x R¥ — H which is linear in
the second variable, vanishes on (A U V\U) x R¥ and satisfies that

dip(z, N) + T(@, A, ) : T ) VeRF - H

is surjective for (z,\) € U.

Proof. For each z € K there exists an open neighbourhood U, c V of z, an integer k, > 0,

and an operator T, : R¥> — % such that
by, p) + To: T,Y ORM — X

is surjective for (y,u) € U,. Let Z < K be a finite subset such that U := | J U, contains

z€Z
K and set k := ) k,. Using a smooth partition of unity subordinate to {U,},ez v{V\K},
z€Z

we obtain an operator 77: V x RF — 7 satisfying all conditions save for the vanishing on
A x RF. Multiplying 7" with a smooth bump function which is identically one on V\V"8

and vanishes on A, we obtain the desired map. O

Definition 7.1.7. A family of operators T' as in Lemma 7.1.6 is said to be a stabilisation
of ¥ along K relative to A, of rank k. We call

Indg (¢; T) := ker(dytp + T)|y — RE;

the index bundle of ¢ along K (with respect to T ), defined over a neighbourhood U of K.

Lemma 7.1.8. Any two index bundles of ¥ along K are stably equivalent as germs near
K.

Proof. Suppose T and S are two stabilisations along K. We may assume without loss
of generality that div + T and dyy + S are surjective over the same subset. As we may
add factors of R to the domain of T', respectively S, without changing the index bundle,
we may assume that 7' and S are smooth maps V x R¥*¢ — 7 with T vanishing on
V x R* x {0} and S vanishing on V x {0} x Rf. Now we can linearly interpolate between
them and apply [tD08, Theorem 14.3.2]. O

Definition 7.1.9. We let Indg (¢)) denote the stable equivalence class of any Indg (¢;T)
and call it the index bundle of ¥ along K.

Definition 7.1.10. Given a ring spectrum R, the map 1 is R-orientable along K if
Indg () is R-orientable on a neighbourhood of K. We say that ¢ is R-orientable if it is

R-orientable along any compact subset.

102



7.1.3 Proof of Theorem 7.1.12

The following result generalises [Hof88, Theorem 5] to multiplicative generalised cohomol-

ogy theories.

Proposition 7.1.11. Let Y be a smooth separable Hilbert manifold and H be a separable
Hilbert space. Let 1 : Y x [0,1] — H be a smooth Fredholm map of index n + 1, and write

Wy for its restriction to Y x {t}. Given a ring spectrum R, assume
1. % is proper with respect to a neighbourhood of 0 in H and R-orientable along 1»~1(0),
2. g is submersive near wo_l(O),

3. there exists a smooth map w: Y — N to a connected closed manifold N such that

7r|¢51(0)3 wo_l(o) — N

s a diffeomorphism.
If N is R-oriented, then 7" : R*(N) — R* (17 1(0)) is injective.

Proof. Set K :=~1(0) and I := [0, 1]. By (1), K is compact. Given any subset W < Y x T
we denote by W; its fibre over ¢t € I. Let T be a stabilisation of v along K relative to
Ky x {0} of rank k. Set

S:=+T)"H0)cY x I xR

Then S is a smooth (non-compact) cobordism from Sy to S; with T'S = ker(dy + T).
Assumption (1) on 9 implies that S is R-oriented on a neighbourhood of K. By the
compactness of T'(v,t,-) for (v,t) € Y x I and [MS12, Theorem A.1.5.i],

dim(S) =n+k+ 1.
Note that K = {(z,t,2) € S: 2 =0} and Sy = Ky x R*. Set
7o=mxid x idge : § — N x I x R¥

and let 7; be the restriction to ) x {t} x R¥. This fits into a commutative diagram of pairs

(S0, So\Ko) ——2— (N x Rk, N x (R*\0))

I -

(S,5\K) —— (N x I x R¥ N x I x (RF\0))

g

(S1,81\K1) —=— (N x R¥, N x (R"\0))

Consider the composition

* s AD (m1)% k k AD s
R*(N) — R*(K1) —/> Rnyp—(51, 51\K1) — Rypp—s (N xR, Nx(R"\0)) — R*(N)

(7.1.3.1)
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where AD denotes the Atiyah duality isomorphism. Note that in the second map we use
the R-orientability assumption in (1).

By construction, this map is given by multiplication by AD((71)+[S1]x,) € R%(N),
which is equal to AD((m0)«[So0]k,) by Lemma 7.1.4. As mp is a diffecomorphism, this
cohomology class is a unit. Hence (7.1.3.1) is an isomorphism. Because it factors through
the pullback 7§ : R*(N) — R*(K1), the latter must be injective. O

We apply this to our situation. Let G < C be a convex bounded domain smooth
boundary, and suppose {L.}.coc is a Hamiltonian family of Lagrangians in X. That is,
there exists a (relatively exact) Lagrangian L < X and a smooth family {¢%} ~e0G te[0,1] Of
Hamiltonian isotopies (which we can assume to be compactly supported) of X such that
L, = ¢(L) for all z. We can assume that L = L, for some zy € 0G.

Consider the following moduli space of pseudoholomorphic discs with moving La-

grangian boundary conditions:
P:={ueC?G,X):0u=0, E(u) <o, V2€0G :u(z) € L.} (7.1.3.2)

where 0 is the Cauchy-Riemann operator associated to J and E is the symplectic energy.

Let 7 : P — L be evaluation at zj.
Theorem 7.1.12. The pullback ©* : R*(L) — R*(P) is injective.

Remark 7.1.13. If the moduli space P were cut out transversely, this could be proved
using a cobordism argument as in [Por22]. On the other hand, following [Por22, Remark
4.6], Theorem 7.1.12 can be used to give a slightly different proof of [Por22, Corollary 1.9],

without using any transversality results.

Remark 7.1.14. Hofer [Hof88] proves Theorem 7.1.12 as well as Theorem 7.2.1, 7.0.6 and
Corollary 7.0.8 in the case where R* is Cech cohomology with coefficients in Z/2.

Using an extension of an associated family of Hamiltonians we may extend the family
of Hamiltonian isotopies {¢.}.coc to a smooth family {¢,}.cc of Hamiltonian isotopies,
parametrised by G.

Fix k > 3. Given t € [0, 1], we define v;: W*2(G, X) — Wk2(G, X) by setting

for z € G. By assumption, 9 is the identity. Let
A= {u e Wh(@, X) : u(0G) < L} .
The smooth Banach bundle & — A with fibre

Ey = WFHLHG W' TX).
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admits a smooth Fredholm section 0 : A — & given by
0yu = dsu + J(u)du.

The canonical evaluation map defines a map of pairs ev: A x (G,0G) — (X,L). By
pulling back, this defines a bundle pair

(F,F') := ev*(TX,TL) — A x (G, 0G).

Using a connection on TX, the linearisation of d; defines a real Cauchy-Riemann operator
on (F,F') by [MS12, Proposition 3.1.1]. Then Assumption 7.0.4 states exactly that its
index bundle is R-oriented. For u € 5;1(0) we have, by the Riemann-Roch theorem,
[MS12, Theorem C.1.10], that

ind(D,0;) = dim(L) + pu(F|u, F'lw), (7.1.3.3)

where p(F|y, F'|,) is the boundary Maslov index of the pullback of (F, F') to {u} x G.
Remark 7.1.15. If u € A is pseudoholomorphic, then p(F |, F’|,) = 0 as u must be constant

due to relative exactness. However, if u instead satisfies that v, (u) is pseudoholomorphic
for some ¢t > 0, u need not be constant and may lie in a non-trivial relative homotopy
class of discs. In this case, pu(F|y, F’|,) might not vanish.

By [Kui65, Theorem (3)] we can fix a smooth isometric trivialisation U: & — A x H,
where H is some separable Hilbert space. Define F: A x [0,1] — H by

Fi(u) := proy¥ (0,91 (u)) (7.1.3.4)

letting pr, denote the projection to the second factor. Note that F; 1(0) is diffeomorphic
via 11 to the space P of pseudoholomorphic maps from G to M which have finite energy
and map z € 0G to L,.

Proof of Theorem 7.1.12. Let

W= {(u>t) € Ax [07 1] : M(F|wt(u)7F/|¢t(u)) = 0} .

This is an open subset of A x [0,1]. We restrict to the subset where the Maslov index
is 0 in order to have control over the index of F, due to Remark 7.1.15. However, with
a little more care the entire argument could also be applied without this restriction. Let
m: W — L be the evaluation map at zg.

By [Hof88, Proposition 6] there exists a neighbourhood U < W of F~1(0) such that
Flv : U — H is a Fredholm map of index dim(L) + 1 and such that F|y is proper
with respect to a neighbourhood of 0 € H. We note that U and H are separable Hilbert
manifolds. Since pseudoholomorphic discs with boundary on L are constant, 7 defines a
diffeomorphism F;, *(0) — L. Moreover, Fy is submersive by the proof of [Hof88, Lemma
5], and F is R-orientable by Assumption 7.0.4. Thus the claim follows from Proposition
7.1.11. [
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7.2 Approximating pseudoholomorphic strips

We can now show the injectivity of the evaluation map from the moduli space of pseudo-

holomorphic strips.
Proposition 7.2.1. The map n*: R*(L) — R*(My 1) is injective.

The idea of the proof is to study a one-parameter family of moduli spaces of pseudo-
holomorphic discs Py with moving boundary conditions. They approximate the moduli
space of pseudoholomorphic strips My, 1/ as the parameter £ tends to co. Together with
[AMS21, Lemma 5.2], this allows us to infer Proposition 7.2.1 from Theorem 7.1.12.

Throughout this section, we fix a convex domain G in C with smooth boundary, such
that both (—n,n) and (—n,n) + i are contained in dG for some n > 0. For ¢ > 0, define
Zy = [—¢,0] +[0,1]3, and let

Gr=Zv(G+10)u(G—Y)

be a smoothing of the truncated strip. Note that G, is diffeomorphic to a disk.

Definition 7.2.2. For a domain W in C and a smooth map v : W — X, we define the

symplectic energy to be

whenever this integral is defined.

When u is pseudoholomorphic, the symplectic energy of u is defined and non-negative,
although not necessarily finite.

We consider the following moduli spaces. Recall from the introduction that L is a
closed, relatively exact Lagrangian in X and L’ is Hamiltonian isotopic to L. We denote
by Z := R + [0, 1]¢ the infinite strip.

Definition 7.2.3. We define
Dr={ueC®Z X):|E(u)| <o, u(R) < L, u(R+1i) < L'}.

It contains My, 1/ := {ueDp - ogu = 0} as the subspace of pseudoholomorphic maps.
Given £ > 0 and A > 0, we set

Foai={ueC®(Z,X):E(u) <A, dju=0, u([-¢,0]) < L, u([-0,4] +i) < L'}.

Given ¢ > 0 and a Hamiltonian family {Lt}te[o,l] of Lagrangians in X with Ly = L and

Ly = L', we define the moduli space
Pri={ueC®Gy, X): dyu=0, u(s +it) € Ly for s + it € IG,} .

All of these spaces are endowed with the weak C* Whitney topology. By the Nash
Embedding Theorem applied to the metric g5 = w(-, J-), this topology is metrisable. Hofer
showed in [Hof88, Theorems 1 and 2| that the moduli spaces P, and M, 1/ are compact.
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Evaluation at 0 € C defines a continuous map, denoted by m, from each of these spaces
to L.

Remark 7.2.4. Pick some Hamiltonian isotopy {t"},e[o1] such that ¢'(L) = Ly for all t.
Setting

Lyyiy =Ly and w;:+iy = ¢ty

for x + iy in 0G shows that Py, is the space of pseudoholomorphic maps Gy, — M of
finite energy which map z € dGy to L., i.e, of the form (7.1.3.2). This allows us to apply
Theorem 7.1.12 with P = P,.

We require the following uniform energy bound.

Lemma 7.2.5 ([Hof88, Lemma 2]). The symplectic energy is uniformly bounded on all
Py. More precisely, there exists a constant C = 0 such that for all £ > 0 and all u in Py,
we have E(u) < C.

Fix a smooth cutoff function p : R — [0, 1] with

—
~
N
lwo ol

0 t =

and define for £ > 0 the function ry : 7y 4 — Dr, 1/ by

re(u)(z + iy) == w(p(t~ |z])z + iy).

By construction, ry(u) agrees with v on Z.
2

Proposition 7.2.6 ([Hof88, Proposition 3]). For any neighbourhood U of My, 1/ in Dy, 1/
and any A = 0, there exists £y > 0 such that r¢(Fga) € U for all £ = {y.

Proof of Proposition 7.2.1. Let C be the uniform energy bound from Lemma 7.2.5. Any
v in any Py clearly satisfies E(u|z,) < C. Picking U an open neighbourhood of M, 1
in Dy 1/, and taking /o as in Proposition 7.2.6 with A = C, we obtain a commutative
diagram

.|Z€0 Teo
P[O — ]:60,0 — U

\f

L

By Theorem 7.1.12, the pullback 7* : R*(L) — R*(U) must be injective. Thanks to the
isomorphism
R*(MLyL/) = h_H)lR*(U),

taking the direct limit over open neighbourhoods of My, 1 in Dy, 1/, given by [AMS21,

Lemma 5.2] and the exactness of the direct limit functor, we may conclude. O
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7.3 Ljusternik-Schnirelmann theory

In this section we finish the proof of Theorem 7.0.6. Observe that there is a natural R-
action on My, 1/, by setting ¢ -u := u(- —t). The fixed points of this action are exactly the
constant maps to points in L n L’. Hence there is a bijection between these fixed points
and L n L.

Lemma 7.3.1 ([Hof88, Lemma 4]). There exists a continuous map o : My, » — R such
that for any u which is not a fized point of the R-action, the function t — o(t-w) is strictly

decreasing.

Sketch of the construction. One should think of ¢ as something akin to the Floer action
functional. Indeed, if X is Liouville and L is an exact Lagrangian, we can take o to be
the usual Floer action functional.

If not, for each path component @ in My, 1/, we fix a basepoint ug in @, and define

o(ug) := 0. Then for some other u; in @, we pick a path {u;},c[o 1] from ug to ug, and

define
o(uy) = j viw
[0,1]?

where v : [0,1]> — X is a smoothing (rel endpoints) of the map sending (s,t) to us(ti).

This is well-defined due to relative exactness. O

Fix some basepoint xo € L. For any subset S of My, 1, or Dy, 1/, we consider the map
of pairs
s : (S, ) — (L, xzg) : u— u(0),

as well as the pullback
g R*(L,zg) — R*(S).

Definition 7.3.2. To each subset S of My, 1/, we assign the non-negative integer
I(S) := min{k> 1:30y,...,U,c Mppopen : ScUyu---u U and 772'}1, =O}.

Note I has a uniform upper bound. Indeed, let N be the minimal number of con-

tractible open subsets of L required to cover L. Then I(S) < N for any S < My, 1.
Lemma 7.3.3. Fiz subsets S and T of My /.

1. If ST, then I(S) < I(T).

2. There is some open neighbourhood U of S such that I(S) = I(U).

3. 1(SUT)<I(S)+I(T).

BN

- Af {other s a flow on My, 1s, then I(S) = I(pi(S)) for all t € R.

v

I({ur, . un)) =1 for any uy, ... un € My .

Thus [ is an index function in the sense of [Rud99, Definition 4.2].
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Proof. If S < T, we take the minimum over a larger set, so the inequality is immediate.

If Uy, ...,Uys) are open subsets of My, 1 covering S with 7f; = 0 for all 7, set
U=Uiv...uUps)

Then I(U) < I(S), so equality holds by (1). The union of two suitable open covers for
S, respectively T' defines a suitable open cover for S U T which must have cardinality
at least I(S u T'). This shows 3. As ¢; is homotopic to the identity, it takes a suitable
cover for S to a suitable cover for ¢;(S). Thus I(p:(5)) < I(S), and equality follows from
applying the same argument to ¢_;(¢(S)). To see the last claim, denote {p1,...,pr} =
{u1(0),...,un(0)}. For each j < k choose a contractible open neighbourhood V; of p; in
L, such that V; n'V; = & for i # j. Then the preimage U = 7= *(Vj U --- U V}) defines a

suitable cover for {uj,...,up}. O

Lemma 7.3.4. I(Mp 1) = cr(L).

Proof. Fix an open cover Ui, ...,U, of My 1/ such that 7@1, = 0 for ¢ < k and let
at, ..., € R*(L,x0) be arbitrary. By Lemma 7.1.2 the product 7rj§4L CTRRR Trj‘wL e
vanishes in R*(Mp /). By Theorem 7.1.12, 7T}kvlL o is injective, so a3 - ... - ap = 0 in

R*(L,zp) and cr(L) < k. Taking the infimum over all such open covers completes the

proof. O

Given Lemma 7.3.4, the proof of Theorem 7.0.6 reduces to showing that
#L N L/ = I(ML}LI) (7301)

Since [ is an index function, this follows from [Rud99, Theorem 4.2]. For the sake
of exposition, we give a proof here, using standard Ljusternik-Schnirelman theory as in
[Hof88, Section V].

Definition 7.3.5. For 1 <i < I(Mp, 1), we define

d; := inf S
I(lél)%supa( )

where the infimum is taken over subsets of My, 1.

For any d € R, we denote
Cr(d):={ueMpp:ou)=d R-u=u}.

It follows that

DI#Cr(d) = #LA L

d

Lemma 7.3.6.
—0 <d1 < ... ng(MLL/) < 0.
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Proof. First observe that d; < dj41 for all j since we take the infimum over a smaller set.

The compactness of My, ;/ implies that —o0 < dy and dI(ML L) < . ]

Lemma 7.3.7. For any neighbourhood U of Cr(d), there exists some € > 0 such that
veo (o, d+e)\U = 1-ueo '((—0,d—¢]).

Proof. This follows from the compactness of 0~1((—o0,d])\U along with the continuity of
the R-action. O

Lemma 7.3.8. Cr(d;) is non-empty for all j.

Proof. Suppose Cr(d;) is empty. Applying Lemma 7.3.7 to U = & we obtain some € > 0
such that
107 (=00, dj +]) € o7 ((—0,d; —€]).

By definition of d;, there exists S & My, s such that I(S) > j and
dj <supo(S) <d;+e.

But then I(1-S) > j and supo(1-S) < d;, which is a contradiction. O
Lemma 7.3.9. Ifd; = djq1 for any j, then Cr(d;) is infinite.

Proof. 1f Cr(dy) is finite, then I(Cr(d;)) = 1 by Lemma 7.3.3.(5). So it suffices to show
that I(Cr(d;)) = 2. Suppose by contradiction I(Cr(d;)) < 1. Since Cr(d;) is non-empty,
we must have equality. Then there is some open neighbourhood U of Cr(d;) such that
7ir = 0. Given this U, fix € > 0 as in the statement of Lemma 7.3.7.

Choose S < My, 1/ such that I(S) > j + 1 and

dj < supa(S) < dj + €.

Then I(1-(S\U)) = j but o(1- (S\U)) < dj — ¢, a contradiction. O

The inequality in (7.3.0.1), and hence Theorem 7.0.6, follows from Lemmas 7.3.8 and
7.3.9.

7.4 Two examples

Let
Sp(n) := Sp(2n;C) n U(2n)

be the compact symplectic group. It is a compact simply-connected Lie group of dimension
n(2n + 1). The zero section defines a Lagrangian embedding Sp(n) < T™*Sp(n), where
we endow T*Sp(n) with the canonical symplectic structure. As this embedding is a ho-
motopy equivalence, Sp(n) is relatively exact. We will consider Sp(2) and Sp(3) since

their cuplength with respect to a certain generalised cohomology theory was computed
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in [IM04] (see also [Kis07]) and is strictly greater than their cuplength with respect to

integral cohomology.

Proposition 7.4.1 ([IMNO03, IMO04]). The mod-2 and integral cuplengths of Sp(2) are

cz/2(Sp(2)) = cz(Sp(2)) = 3,

while

cpx(Sp(2)) =4

where h* is the cohomology theory associated to the truncated sphere spectrum S|[0,2]. In

particular, [IM0/]] shows that its cuplength in real K-theory is

cxo(Sp(2)) = 4.

Similarly the cuplengths of Sp(3) in the same cohomology theories are given by

cz/2(Sp(3)) = cz(Sp(3)) = 4

and
cnx (Sp(3)) = cxo(Sp(3)) = 5.

Remark 7.4.2. We use Hofer’s convention in [Hof88] for cuplengths which differs by one
compared to that of [IM04].

Since Sp(2) and Sp(3) are Lie groups, they are parallelisable. By Proposition 7.0.5 we
can therefore apply Theorem 7.0.6 with real K-theory to either one as the zero section
lying inside its cotangent bundle. This gives a (strictly) stronger bound on the Arnol’d
number than Hofer’s cup length estimate, though this estimate was already known due to

work of Laudenbach and Sikorav [LS85], using finite-dimensional approximations.

Corollary 7.4.3. The minimum number of intersection points between a relatively exact
Lagrangian embedding of Sp(2) (satisfying Proposition 7.0.5.4) and its image under any
Hamiltonian diffeomorphism is at least 4. The same is true for Sp(3) with 5 instead of 4.

Proposition 7.4.4. The critical number of Sp(2) is 4.

Proof. The critical number of Sp(2) is bounded below by 4 by Proposition 7.4.1. On the
other hand, [Sma62, Theorem 6.1] combined with the computation of its integral homology
in Lemma 7.4.5 implies that the Morse number of Sp(2) is 4, which is an upper bound for

the critical number. O

The bound for Sp(2) (and a stronger bound for Sp(3)) were shown by [LS85] for the
respective zero section in the cotangent bundle. However, their methods are specifically
geared towards cotangent bundles while our bounds persist under Weinstein handle at-
tachments. As an example, one can plumb a copy of T*Sp(2) containing Sp(2) as the
zero section, with the cotangent bundle of any other 2-connected manifold of the same
dimension to obtain a new Weinstein manifold X. Since Sp(2) is 2-connected, the re-

sulting manifold admits the the same 2-skeleton (up to homotopy) as T*Sp(2), which is
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trivial. Therefore Proposition 7.0.54 still holds for the embedding Sp(2) < X. This gives
a stronger bound than Hofer’s estimate, in a case for which the estimate of [LS85] does

not apply.

We recap the computation of the integral cohomology rings of Sp(2) and Sp(3) here.

Lemma 7.4.5 ([IM04]). The integral cuplengths of Sp(2) and Sp(3) are given by
cz(Sp(2)) =3 and ¢z(Sp(3)) = 4.

Furthermore, H*(Sp(2)) and H*(Sp(3)) are free of rank 4 and 8 respectively, over both Z
and Z/2.

Proof. Given n we can identify H" with R*" to see the existence of a principal Sp(n — 1)-
bundle Sp(n) — S~ induced by the canonical action on the unit quaternions. Thus
we can apply the Leray-Serre spectral sequence to compute the cohomology of Sp(2) with

coefficients in A = Z or A = 7Z/2. The Es-page is given by
EyY = HP(S, H1(Sp(1); A))

which vanishes for p ¢ {0,7} and ¢ ¢ {0,3}. Hence the spectral sequence collapses for

degree reasons at the second page. As Sp(1) = S3, we obtain
H*(Sp(2); A) = H*(S™; A) @4 H*(S3; A). (7.4.0.1)

By the multiplicativity of the spectral sequence, (7.4.0.1) is an isomorphism of graded
rings. Therefore,
A n € {0,3,7,10},
H"(Sp(2); A) =
0 otherwise
and we can deduce the values of cz/5(Sp(2)) and cz(Sp(2)).

The same argument gives an isomorphism of graded rings

H*(Sp(3); A) = H*(S'; A) ®4 H*(Sp(2); A).

Therefore,
A ne{0,3,7,10,11,14, 18,21},
H™(Sp(2); 4) =
0 otherwise
from which we deduce the corresponding statements for Sp(3). O
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Appendix A

Intersection theory on orbifolds

In this appendix, we prove several results we needed in the previous chapters. They mainly
consist of projection formulas and the definition of a trace map in a quite general setting.
We found neither in the literature in the form, respectively, generality necessary for our
purposes.

For us, an orbifold is a tuple X = (X,[X]), where X is a topological space, called the
coarse moduli space of X, X is a (topological or smooth) proper étale Lie groupoid and | |
denotes its Morita equivalence class. X is called a presentation of X. Refer to [Beh04] for
more details. We will only consider smooth orbifolds, which can be represented by a global
quotient, that is, a Lie groupoid of the form [G x M =3 M| where G is a compact Lie
group acting almost freely and smoothly on the manifold M. By [ALR07, Theorem 1.23]
any effective orbifold is of this form, but we do not require our orbifolds to be effective.
We denote by [M/G] the stack presented by such a global quotient.

A Lie groupoid X = [X; =3 X] is orientable if Xy and X; are orientable and if the
source and target map from X; to Xy are orientation-preserving. We call an orbifold
orientable if each representing Lie groupoid is orientable. Thus, [M/G] is orientable if

and only if M is orientable and and G acts by orientation-preserving homeomorphisms.

Remark A.0.1. This notion of orientability is strictly stronger than orientability of the
coarse moduli space as the example of the Klein bottle (whose quotient by an S'-action

is St itself) shows.

By [Beh04, p.27], there is a canonical isomorphism
H*([M/G],Q) = H5(M, Q).

Let ¢: Mg — M/G denote the canonical map to the quotient; it defines by [Beh04,

Proposition 36] an isomorphism
H*(M/G,Q) — HE(M, Q).

As the coarse moduli space of an oriented orbifold is an oriented homology Q-manifold,
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it satisfies rational Poincaré duality
H(Z,Q) = Haim(z)—«(X,X\Z,Q)

by [Brel2].! Replacing singular homology with Borel-More homology, the same isomor-
phism holds with ordinary Cech cohomology on the left-hand side.

Remark A.0.2 (Orientation). Since G acts smoothly and almost freely, we have an inclusion
g < T'M of vector bundles, where g = Lie(G). Let D < T'M be a G-invariant complement.
For the sake of concreteness, we think of an orientation of X = [M/G] as a Thom class of
the vector bundle Dg — M.

A.1 Exceptional pushfoward

Let f: M™ — N™ be a G-equivariant map between smooth manifolds on which G acts
smoothly and almost freely. Suppose [M /G| and [N/G] are oriented. Then f induces a
morphism [M/G] — [N/G] and the ezceptional pushforward

fit HY(M/G,Q) — H*"""™(N/G, Q)

is defined by f, := PD f, PD. We clearly have g fi = (gf):.
By [Bre72, Theorem 4.1], we can factor f as a composite M 2> N x SV P, N, where
SV is the one-point compactification of a finite-dimensional orthogonal G-representation

V and j is an equivariant embedding. We can describe ji and pry, explicitly.

Ezample A.1.1 (Embedding). Suppose f is an embedding with Poincaré dual PD(M/G).
Then
fif*(a) = a-PD(M/G) (A.1.0.1)

for « € H*(N/G; Q). If there exists an equivariant retraction r: W — M, then fi(a) =
r*a-PD(M/G).

Ezample A.1.2 (Projection). Suppose M = N x SV, where V is a finite-dimensional
G-representation SV is its one-point compactification (to which the G-action extends triv-
ially) and f is the projection. Then fg: (N x SV)g — Ng is the sphere bundle of
(N x (V®R))g — Ng and

HE(N x SV,Q) —— HE (N x (VOR),N x (V@R)\0),Q)

—

HE (N, Q)

commutes by [Dua03, §3], where the vertical map comes from the Thom isomorphism.

In particular, we have the following observation.

Corollary A.1.3. Suppose we have a cartesian square

!The proof of [Par16, Lemma A.6.4] also generalises easily to this setting.
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P, p

[k

B, p

where q and ¢ are principal G-bundles for a compact Lie group G, B, B’ are oriented
smooth manifolds (and P, P’ are equipped with the corresponding G-orientation), f is

smooth and proper, a compact Lie group G’ acts on the whole square almost freely. Then

ha* =4" . (A.1.0.2)

Lemma A.1.4 (Projection formula). Suppose we have a cartesian square

x Ly

[l
x L.y

of oriented G-manifolds, where G acts almost freely. If f is proper and p is a submersion,
then

'q" = p*fi.
If the G-action on X' and Y’ extends to an almost G x G'-action with respect to which f’,
q and p are equivariant, then (7.1.3) holds as maps H*(X/G;Q) — H**(Y'/G x G'; Q).

Proof. If f is an embedding, so is f’ and the claim follows from (A.1.0.1). If f is a
projection Y x SY — Y for some finite-dimensional G-representation V, we can assume
f' is the projection Y’ x SV — Y”. Denoting the induced map Y/, — Y& by p as well,
we have (Y x (V@®R))gxa = p*(Y x (V@®R))g. Thus the claim follows from Example
(A.1.2) and the functoriality of the Thom class. O

Corollary A.1.5. Suppsoe we have a cartesian square as in Lemma A.1.4, where f is an
embedding. Then p*PD(X/G) = PD(X'/G x G').

Proof. Let Y’ and X’ denote the quotients and suppose & = codim(X’). Since both
p*PD(X/G) and PD(X'/G x G') live in H*(Y” | X7;Q) = QI™X))I they differ by multi-

plication with a locally constant function b. Thus p* fif*a = p*a - p*PD(X) on one hand,

while
p*fiffa = flg*ffa = flf"p*a == p*a - PD(X') = bp*a - p*PD(X).

As the same equality holds locally and p is admits local sections, it follows that b= 1. [

Lemma A.1.6. Let
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be a cartesian square of smooth manifolds, where f is proper. Suppose there exists an
open subset V. Y’ so that Y'\V has codimension at least 2 and ply: V — Y is a (not

necessarily surjective) submersion. Then
%3 %
1g- =p"f.

The same is true in equivariant cohomology if the square is cartesian in the category of

almost free G-manifolds.

Proof. Set U := X' xy» V and let i: U — X’ and j: V — Y’ be the inclusions. Let
f : U — V be the induced map. The fundamental classes appearing below are elements
of Borel-Moore homolgoy. By [Brel2, §V.10(57),Corollary V.10.2] and Lemma A.1.4, the
claim holds in the nonequivariant case.

Suppose now G and G’ are compact Lie groups so that G x G’ acts almost freely on
X" and Y/ and G acts almost freely on Y with f and f’ being equivariant and p, ¢ being
invariant under the G’-action and restricting to principal bundles over V,U. Since we can
check the equality f/q* = p*f! as maps H}(X,Q) — HEJ;’Z;,(Y’,Q) degree for degree, we
can use finite-dimensional approximations of the classifying space of G. To these, apply
Corollary A.1.3 to see that the projection formula holds for the pullbacks to U. Then use

the same argument as in the first step to conclude. O

Lemma A.1.7. Suppose f: X — Y is a smooth map of étale proper Lie groupoids and
[M/G] is a global resolution of Y. If X is a manifold, then the orbifold fibre product
M xy X is a principal G-bundle over X.

Proof. Since M and X are manifolds, so is Z := M xy X. Let qop: M — Yy be the
canonical map. Then Z = {(p,a,z) e M x Y1 x X : a: q(p) — f(z)} and 7: Z — X is
given by m(p, o, x) = x. Define a G-action on Z by setting

g-(p,o,x):=(g-p,aoq(g,p) ", z).

Clearly, 7 is G-invariant and ¢ - (p, o, x) = (p, o, x) implies that g-p = p and ¢1(g,p) = id.
Since ¢: [M/G] — Y is étale, we must have g = e. Thus G acts freely on Z. To see that
7 is locally trivial, it suffices to consider the case where Y = [V//T'] for some finite group
I' and M = [S/G,] for some slice S through p. In this case 7 is the pullback of a covering

map and thus a local diffeomorphism. This completes the proof. ]

A.2 Trace maps

In the definition of the equivariant virtual fundamental class, we make use of a trace map
H;‘(J”f?? (T;Q) — Hj:(pt; Q), which is a special case of integration along the fibre. While this
is classical for fibre bundles of closed smooth manifolds,[BT82], and has been generalised
in algebraic geometry, [Ive86, KS94], we found no results for the specific situation needed

in this paper. Thus we give a brief definition and show the required properties. To avoid
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any subtleties with families of supports, we will assume that all spaces are locally compact,

Hausdorff and paracompact.

Definition A.2.1 (Integration along the fibre). Suppose m: P — B is an oriented fibre
bundle over a paracompact base B with fibre an oriented topological orbifold X = [M/G].
Denote by H(X) the locally constant sheaf on B with stalks given by H}(X), = H(P; Q)
for b € B. By [Brel2, Theorem 6.1] there exists a spectral sequence {EX?} converging to
Hj.(P;Q) with
By = HP(BSHI(X)).
In particular, E5? = 0 for ¢ > n := dim(X), so EP'" < EP"| for any r > 2. We have a
canonical map {: H?(X) — Q of locally constant sheaves on B; it is given at the stalk
over b e B by
H (X = H (X, Q) 7> Q

We define the integration along the fibre my H}Lj*(P; Q) — H*(B;Q) to be the com-
posite

n—+* EN 0} *,Mn * n ( ) *
HI(P5Q) — B — By™ = H*(B; HE(X)) 2% (B Q).

By [Aue73], this agrees with the standard definition of integration along the fibre for
smooth fibre bundles.

Lemma A.2.2 (Base change). Suppose m: P — B is an orientable fibre bundle over a
paracompact base with fibre T an oriented orbifold and f: B' — B is a proper continuous

map from another paracompact space. Then

HP(P;Q) —— H*(B;Q)

b b

HI*(f*P;Q) —— H*(B;Q)
commutes.

Proof. This follows from the functoriality of the Leray-Serre spectral sequence associated
to a fibration, see [Brel2, §6.2]. O

Corollary A.2.3. Suppose T is an oriented topological orbifold of dimension m with a

continuous action by a compact connected Lie group G. Then
HE M (T5Q) —— He(pt; Q)

b

HI(T5Q) —— H*(pt; Q)
commutes, where Hf, (T;Q) = Hf (Te: Q).

Lemma A.2.4 (Functoriality). Suppose m: P — B and p: E — P are two oriented fibre
bundles with fibres X and Y the coarse moduli spaces of oriented orbifolds. Then

(Tp)x = Tuput,
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where 1 is the canonical map from cohomology with (mwp)-fibrewise compact support to

cohomology with m-fibrewise compact support.

Proof. We will assume both X and Y are compact, of dimension k, respectively £, in
order to simplify the notation. The general case can be obtained by restricting to coho-
mology with suitable support. Let 6 := 7p and set Zj, := §~1({b}) for b € B. The maps
Poi: H¥TH(Zy;Q) — HF(Py; Q) induce a morphism py: HET4(Z) — H¥(X) and 6, factors
as
HEH (B, Q) — HP (B,HE(2)) 222 1(B,HH (X)) 5 HY(5; Q).

By [Brel2, Corollary IV.7.3], the Leray sheaf #€(m; H*(Y')) of m with coefficients in H*(Y),
defined in [Brel2, §IV.4], is locally constant with stalks of the form H*(Py; H!(Y)).? Due
to the functoriality of the Serre spectral sequence, there exists a canonical morphism
H*H(Z) — % (m; HU(Y)) of locally constant sheaves on B, given stalkwise by

HH(Z)y = H (07 ({0 Q) —» ED)% — H* (P HA(Y)) = #6*(m: H'(Y))s.
where {E(b)7?} is the Leray-Serre spectral sequence of §~1({b}) — P,. This stalkwise

description shows that p,: H*+¢(Z) — H¥(X) factors through #*(m; H*(Y)). Thus

HEH44 (B;Q) ———— H*(ByH(2)) —22% 5 (B (X))

HEH(PyHAY)) —— H* (P76 (m 1Y)
commutes. By [Brel2, §6.2],

HEH(PyHAY)) —— H* (P76 (m 1Y)

|G |

H*"*(P;Q) ————— H*(B;H"(X))
commutes as well. The claim now follows by composing with 7. O

Lemma A.2.5. Let w: P — B be an oriented locally trivial fibration over a locally con-
tractible space with fibre the orbit space of [M/G]. Suppose P' = P is a subspace so that
the induced map ©': P' — B is an oriented fibre bundle with fibre given by the orbit space
of [M'/G], for a G-invariant submanifold M' < M. Assume the inclusion P' — P admits

a normal bundle and a tubular neighbourhood. Then

T

HP' ™ (PQ) —= H*(B;Q)

b =

H7™(P;Q)

commutes, where m = dim([M/G]) and m' = dim([M'/G]). Moreover, jij* = o- for a
class o € H*(P | P';Q) restricting to the Poincaré dual of X' over a fibre.

2We use here that the monodromy of H*(¢) is trivial in degree £ since we work with oriented fibre
bundles.
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Proof. Let p: N'— P’ be the normal bundle of the embedding and ¢: V. — W < N be a
tubular neighbourhood. Then o = ¥*7xr and j is given by the composite

~ *
H}(PQ) = HE (W | PLQ) 25 HEFH(W | P5Q) — HE(PQ).

It suffices thus to show that the above triangle commutes with P replaced by N. In this
case j) is an isomorphism with inverse given by ps. Thus the claim follows from Lemma
A.2.4. O

Lemma A.2.6. Suppose X is the orbit space of an oriented global quotient orbifold of
dimension n with boundary and w: P — B is a fibre bundle with fibre X. If j: P’ — P
denotes the subbundle with fibre 0X, then the composition

.* .
7 Y(P;Q) L HXY(P;Q) = H*(B;Q)
vanishes.

Proof. The homology Q-manifold X := X ugx 0X x [0,1) admits a proper deformation
retraction onto X, as does P := X Upr P’ x [0,1) onto P (where it is fibrewise proper).
The deformation retraction fixes P’ pointwise and is a map of fibre bundles over B. By
the long exact sequence in compactly supported cohomology, it suffices to show that
H**"=1(P':Q) — H*(B;Q) factors through H**"~1(P;Q) — H**"(P;Q).

The results of [Bro62] generalise directly to the setting of a topological manifolds with
boundary, on which a compact group G acts almost freely and locally linearly, and to
fibrations thereof. Hence ¢ X admits a collar inside X and P’ admits one inside P. Thus
we can find a neighbourhood U < P with U = P’ x (—1,1) and the claim reduces to

showing the commutativity of

HE (P Q) —— HF™(P' x (-1,1);Q)

/

which is an immediate consequence of the Kiinneth theorem. ]

lm
H*(B;Q)

Lemma A.2.7. Suppose two oriented global Kuranishi charts K; = (G, T;, i, si) for M
are cobordant via K = (G, T,E,s). If fi: M; — N is a continuous map so that fo u fi
extends over s~ (0)/G, then fo,[Mo]"" = fr [DU]" in H*(N;Q)Y. The same is true in

the equivariant setting.

Proof. Set 2 := s71(0)/G. The claim follows from Lemma A.2.6 and the commutativity
of

(N, Q) — Ly it Q) —TE s Ty /G L TG Q)

—a | |

HE (9 L M3 Q) 2 HIMH(To/G L T /G Q) —22 Q
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where d is the virtual dimension of My and M. The extension to the equivariant setting

is straightforward. O
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