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Abstract

Topics in symplectic Gromov–Witten theory

Amanda Hirschi

The main focus of this thesis is on the Gromov–Witten theory of general symplectic

manifolds. Mohan Swaminathan and I construct a framework to define a virtual funda-

mental class for the moduli space of stable maps to a general closed symplectic manifold.

Our construction, inspired by [AMS21], works for all genera and leads to a more straight-

foward definition of symplectic Gromov–Witten invariants as was previously available.

We prove a formula for the Gromov–Witten invariants of a product of two symplectic

manifolds, conjectured in [KM94].

I generalise the product formula to a formula for the Gromov–Witten invariants of

a suitable fibre product of symplectic manifolds. Our invariants satisfy the Kontsevich-

Manin axioms and are extended to descendent Gromov–Witten invariants. I show that

our definition of Gromov–Witten invariants agrees with the classical Gromov–Witten in-

variants defined by [RT97] for semipositive symplectic manifolds.

Given a Hamiltonian group action on the target manifold, I construct equivariant

Gromov–Witten invariants and prove a virtual Atiyah–Bott-type localisation formula, pro-

viding a tool for computations.

Together with Soham Chanda and Luya Wang, I construct infinitely many exotic La-

grangian tori in complex projective spaces of complex dimension higher than 2. We lift

tori in P2, constructed by Vianna, and show that these lifts remain non-symplectomorphic,

using an invariant derived from pseudoholomorphic disks.

Noah Porcelli and I use Ljusternik-Schnirelmann theory, applied to moduli spaces of

pseudoholomorphic curves, and homotopy theory to prove lower bounds on the number of

intersection points of two (possibly non-transverse) Lagrangians in terms of the cuplength

of the Lagrangian in generalised cohomology theories, improving previous lower bounds

by Hofer.
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Chapter 1

Introduction

. . . a moduli space is a treasure map that is itself a treasure.

anonymous

1.1 GW theory of general symplectic manifolds

Let pX,ωq be a closed symplectic manifold and J be an element of the space Jτ pX,ωq

of ω-tame almost complex structures. The fundamental object of study in GW theory,

as introduced in [KM94], is the moduli space Mg,npX,A; Jq of n-pointed stable maps of

genus g representing a class A P H2pM ;Zq. When pX,ωq is semipositive, [RT95] gave a

construction of GW invariants using pseudocycles. Due to issues with transversality and

smoothness of gluing, constructing the invariants in general requires the use of virtual

techniques. The last decades have seen the development of several virtual frameworks in

symplectic geometry, see [LT98, FO99, CM07, HWZ17, MW17, Par16, IP19b] for an inex-

haustive list. Most of these constructions begin by representing the moduli space locally

using Kuranishi charts and then employ delicate local-to-global arguments to extract from

this a global invariant called the virtual fundamental class. In this thesis we construct a

virtual framework based on a global Kuranishi chart introduced in [AMS21]. This allows

for a straightforward definition of symplectic GW invariants as it eliminates the need to

patch together local information.

Chapter 2 is devoted to the construction of such a global Kuranishi chart, while Chap-

ters 3 to 5 deal with (foundational) applications thereof in symplectic GW theory.

1.1.1 Global Kuranishi charts for GW theory

In [AMS21] the authors achieved a breakthrough by constructing a global Kuranishi chart

for the moduli space M0,npX,A; Jq, building on ideas from [Sie98]. A global Kuranishi

chart for a compact Hausdorff space Z consists of a finite-rank vector bundle E over a

manifold T together with a section s : T Ñ E , an almost free action by a compact Lie

group G on E and T such that s is equivariant, and a homeomorphism s´1p0q{G – Z. It
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carries a canonical invariant rZsvir P Ȟ˚pZ;Qq_ given by the composite

Ȟvdim`˚pZ;Qq
s˚τpE{Gq
ÝÝÝÝÝÝÑ HdimpT {Gq`˚

c pT {G;Qq

ş

T {G
ÝÝÝÑ Qr0s, (1.1.1.1)

called the virtual fundamental class of Z. Here vdimpZq :“ dimpT {Gq ´ rankpEq and

τpE{Gq is the Thom class of the orbibundle. In Chapter 2, we present the construc-

tion of a global Kuranishi chart for Mg,npX,A; Jq for arbitrary genus g, generalising the

construction of Abouzaid, McLean and Smith. Recently, they published an independent

construction in higher genus, [AMS23].

Theorem 1.1.1 ([HS22]). For integers g, n ě 0 and A P H2pX,Zq, the moduli space

of stable maps Mg,npX,A; Jq admits a global Kuranishi chart of the expected dimension,

depending on certain auxiliary data, but unique in the following sense.

(i) Different choices of auxiliary data result in global Kuranishi charts that are related

by certain equivalence moves, which do not affect the virtual fundamental class.

(ii) Given any other J 1 P Jτ pX,ωq, there exist auxiliary data such that the associated

global Kuranishi charts are cobordant.

In particular, Mg,npX,A; Jq admits a virtual fundamental class rMg,npX,A; Jqsvir.

The Gromov–Witten homomorphism

IX,ωg,n,A : H
˚pXn;Qq Ñ H˚pMg,n;Qq

is defined by

IX,ωg,n,Apαq “ PDpst˚pev˚α X rMg,npX,A; Jqsvirqq. (1.1.1.2)

where ev: Mg,npX,A; Jq Ñ Xn and st˚ : Mg,npX,A; Jq Ñ Mg,n are the evaluation and

stabilisation map respectively. The Gromov–Witten invariants of X are the images of

IX,ωg,n,A evaluated at classes on Mg,n.

Remark 1.1.2. The thickening T we construct is not smooth but it admits a topological

submersion π to a smooth manifold M (see Definition 2.1.4) and naturally carries the

structure of a rel–C8 manifold over M. In particular, we can use smoothing theory

as in [AMS21, §4.2] to upgrade our construction to a smooth global Kuranishi chart for

Mg,npX,A, Jq, allowing for the definition of a Morava K-theory valued virtual fundamental

class as in [AMS21, AMS23]. Also, as explained in [BX22], our global chart can be used

as an input for the construction of Z-valued GW type invariants in all genera.

As an application of the construction, we prove a product formula for the GW invari-

ants of a product symplectic manifold.

Theorem 1.1.3 ([HS22]). Suppose pX,ωq “ pX0, ω0q ˆ pX1, ω1q and Ai P H2pXi;Zq.

Then
ÿ

pri˚A“Ai

IX,ωg,n,Apα ˆ βq “ IX0,ω0

g,n,A0
pαq ¨ IX1,ω1

g,n,A1
pβq

for any α P H˚pXn
0 ;Qq and β P H˚pXn

1 ;Qq and pg, nq R tp1, 1q, p2, 0qu.1

1Using Theorem 1.1.5 we can extend the formula to the remaining two cases.

7



This result was conjectured in [KM94] and shown in [KM96, Beh99] and [RT95, Hyv12]

for projective varieties and semipositive symplectic manifolds respectively. As a conse-

quence of the product formula, we deduce a Künneth formula for quantum cohomology.

Corollary 1.1.4 ([HS22]). Suppose pXi, ωiq for i “ 0, 1 are closed symplectic manifolds

and set pX,ωq “ pX0, ω0q ˆ pX1, ω1q. Then the Künneth map induces an isomorphism

QHpX0q bΛ QHpX1q Ñ QHpXq

of Λ-algebras, where Λ is the universal Novikov ring.

1.1.2 A fibre-product formula

A natural generalisation of the product formula is a formula describing the GW invariants

of a suitable fibre product. This requires the definition of a fibre product of global Kuran-

ishi charts over a third global Kuranishi chart, see also [Joy12]. We show how the virtual

fundamental classes relate in §3.1. On the one hand this leads to a general fibre-product

formula in Theorem 3.1.15; on the other hand, this section will be used in §4.1.
In §3.2 we show how to adapt the global Kuranishi chart construction of §2 to be able

to apply Theorem 3.1.15. We obtain

Theorem 1.1.5. Let pB,ωBq be a closed symplectic manifold and πi : pXi, ωiq Ñ pB,ωBq

a Hamiltonian fibre bundle for i P t0, 1u. Then for any AB P H2pB;Zq and JB P Jτ pB,ωBq

such that Mg,npB,AB; JBq is smooth with obstruction bundle Ob, we have

ÿ

j˚A“A0`A1

j˚pπ˚epObq X rMg,npX0 ˆB X1, A; Jqsvirq

“ pπ0 ˆ π1q˚PDp∆Mg,npB,AB ;JBq
q X rMg,npX0, A0; J0q ˆ Mg,npX1, A1; J1qsvir.

where πi˚Ai “ AB and j : X0 ˆB X1 ãÑ X0 ˆ X1 is the inclusion and J is the restriction

of J0 ˆ J1 to T pX0 ˆB X1q for suitable almost complex structures.

Refer Theorem 3.2.1 for the statement in full generality, which requires more notation

than we want to introduce here. Furthermore, we show a similar relation in the case where

π0 : X0 Ñ B is a symplectic embedding, generalising the Quantum Lefschetz Hyperplane

Theorem of [KKP03]; see also [Man12, Zin11].

Remark 1.1.6. As the last step of the proof of Theorem 1.1.5 relies on the fact that

a certain map has degree 1, one should expect that a corresponding formula for GW

invariants, valued in generalised cohomology theories, contains correction terms similar to

the axioms shown in [AMS23].

Remark 1.1.7. Together with existing computations of the quantum cohomology ring of

projective bundles over Pk, [QR98, AM00], Theorem 1.1.5 should allow for the determi-

nation of the (small) quantum cohomology of fibre products of projective bundles over

Pk.
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Remark 1.1.8. A partial motivation for this formula is the question of Pandharipande,

[FP05], whether all projective smooth varieties have the property that the GW homo-

morphism IX,ωg,n,A : H
˚pXn;Qq Ñ H˚pMg,n;Qq take values in RH˚pMg,nq. The tauto-

logical rings tRH˚pMg,nqug,n are defined to be the smallest system of Q-subalgebras of

tH˚pMg,nqug,n that is closed under exceptional pushforward by the forgetful and gluing

maps. These rings are much better understood than the entire cohomology rings and have

been intensively studied,[GV01, JP19, PP21]. Except in genus 0, they need not capture

the whole cohomology by [GP03]. By the virtual localisation formula [GP99], all homoge-

neous projective varieties have this property. Janda proved it for surfaces in [Jan17]. By

the product formula, if X0 and X1 have this property, then so does X0 ˆ X1. The fibre-

product formula relies on more information than just the fundamental class but might be

useful in cases where we have a good knowledge of the thickening.

1.1.3 Kontsevich-Manin axioms and gravitational descendants

In [KM94], Kontsevich and Manin introduce the notion of a stable map and compile a

list of properties that invariants based on the moduli space of stable maps are supposed

to satisfy. Thereby, they essentially define GW invariants, before such constructions were

available for either smooth projective varieties or general symplectic manifolds. The ex-

pected properties reflect the rich geometry of the moduli spaces Mg,n of stable curves and

are a formalisation of the seminal paper [Wit91].

Remark 1.1.9. In [AMS23], the authors prove a version of the axioms adapted to GW

invariants valued in complex-oriented generalised cohomology theories. Pending a com-

parison of their construction with [HS22], this is a generalisation of the results below. We

hope our more elementary proofs might be of interest nonetheless.

The axioms are listed below; their proof can be found in §4.1.

(Effective) If xrωs, Ay ă 0, then IX,ωg,n,A “ 0.

(Homology) IX,ωg,n,A is induced by a homology class.

(Grading) IX,ωg,n,A has degree 2ppdimCX ´ 3qp1 ´ gq ` xc1pTXq, Ay ` nq.

(Symmetry) IX,ωg,n,A is equivariant with respect to the canonical Sn-actions given by

permuting the factors, respectively the marked points.

(Mapping to a point) If E denotes the Hodge bundle, then

IX,ωg,n,0pα1 ˆ ¨ ¨ ¨ ˆ αnq “ xα1 ¨ ¨ ¨ ¨ ¨ αn, ctoppTXq X rXsy cgpE˚q

for all αi P H˚pX;Qq.

(Fundamental class) If 1X denotes the unit of H˚pX;Qq and πn the map forgetting

the nth marked point, then

IX,ωg,n,Apα1 ˆ ¨ ¨ ¨ ˆ αn´1 ˆ 1Xq “ π˚
nI

X,ω
g,n´1,Apα1 ˆ ¨ ¨ ¨ ˆ αn´1q.
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for any αi P H˚pX;Qq.

(Divisor) If |αn| “ 2, then for any α1, . . . , αn´1 P H˚pX;Qq

πn! I
X,ω
g,n,Apα1 ˆ ¨ ¨ ¨ ˆ αnq “ xαn, Ay IX,ωg,n´1,Apα1 ˆ ¨ ¨ ¨ ˆ αn´1q.

(Splitting) Write PDp∆Xq “
ř

kPK

γk ˆ γ1
k with γk, γ

1
k P H˚pX;Qq. Given S Ă t1, . . . , nu,

let φS : Mg0,n0`1 ˆ Mg1,n1`1 Ñ Mg,n be the associated clutching map. Then

φ˚
SI

X,ω
g,n,Apα1ˆ¨ ¨ ¨ˆαnq “ p´1qϵpα;Sq

ÿ

A0`A1“A
kPK

IX,ωg0,n0`1,A0
p
ą

iPS

αi ˆ γkq IX,ωg1,n1`1,A1
pγ1
k ˆ

ą

jRS

αjq

where ϵpα;Sq “ |ti ą j | i P S, j R S, |αi|, |αj | P 1 ` 2Zu| and αi P H˚pX;Qq

(Genus reduction) If ψ : Mg,n Ñ Mg`1,n´2 denotes the map which creates a non-

separating node by gluing the last two marked points, then

ψ˚IX,ωg`1,n´2,Apαq “ IX,ωg,n,Apα ˆ PDp∆Xqq

for any α P H˚pXn´2;Qq.

Remark 1.1.10 (Quantum cohomology). The Splitting axiom together with (Mapping to

a point) shows that we can use the genus-0 3-pointed GW invariants to deform the cup

product on H˚pX;Qq. Due to convergence issues, this deformation is generally defined

only on QH˚pX,ωq :“ H˚pX;Qq bQ Λ, where we use the Novikov coefficients2 associated

to the universal Novikov ring

Λ “

#

ÿ

iPN
ait

λi | ai P Q, λi P R, @c P R :
ˇ

ˇti P N : λi ď c, ai ‰ 0u| ă 8

+

and ϕ : H2pX;Zq Ñ Λ given by ϕpAq “ tωpAq.

The GW invariants defined above capture only a small part of the cohomology of

Mg,npX,A; Jq. One possibility to obtain more information is to also consider the integrals

of natural cohomology classes on the moduli space itself. ψ-classes, first defined in [RT97,

KM96] for semipositive manifolds, respectively smooth projective varieties, provide one

such collection of cohomology classes. Integrating them corresponds to imposing tangency

conditions at the marked points. λ-classes are the Chern class of the Hodge bundle E and

appear naturally as in [GP99]. In §4.2, we define ψ- and λ-classes for general symplectic

manifolds. The resulting invariants are called gravitational descendants. We prove the

analogue of the Fundamental class and the Divisor axiom for gravitational descendants in

Propositions 4.2.8 to 4.2.10.

2There are several possible Novikov rings and the choice of coefficients influences such properties as
grading semisimplicity, see [MS12, Chapter 11], [BM04]. As we will not discuss Frobenius structures in
detail, we will simply work with the universal Novikov ring defined here.
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1.1.4 Comparison

While a symplectic geometer has a large choice of virtual frameworks by now, it is not

inherently clear (although expected) whether the resulting GW invariants agree. In par-

ticular, it is desirable to know whether they give the same counts as the invariants defined

in [RT97] for the class of semipositive symplectic manifolds since we have relatively many

computations of these invariants and their definition requires the least machinery. We

prove such a comparison in §5.1.

Theorem 1.1.11. The GW invariants defined by (1.1.1.2) agree with the GW invariants

defined via pseudocycles by [RT97] if the latter are defined.

This has the following consequence, which is not apparent from the global Kuranishi

chart construction itself.

Corollary 1.1.12. If pX,ωq is semipositive, then the GW invariants of X in genus 0 are

Z-valued.

It would be interesting to determine whether the invariants defined here agree with the

algebraic GW invariants, defined in [BM96, LT98], when X is a smooth projective variety.

1.1.5 Equivariant GW invariants

Equivariant GW invariants were first defined by Kim, [Kim96], for flag manifolds and in

[Giv96] for convex symplectic manifolds. They use the localisation formula of [AB84],

respectively a generalisation by [GP99], to prove mirror symmetry for toric complete in-

tersections, [Giv96], respectively to determine the quantum cohomology of flag manifolds,

[Kim99]. Kontsevich, [Kon95], first proposed to apply the localisation formula in GW

theory.

While symplectic toric manifolds are projective, [Del88], there are symplectic mani-

folds with Hamiltonian torus actions, which are not even Kähler, [Ler96, Tol98, Woo98].

Therefore, an equivariant GW theory in the symplectic setting is needed in order to treat

these cases. It could also allow for an extension of the quantum Kirwan map, [GW22], or

the equivariant Seidel morphism, [LJ21], to general symplectic manifolds.

In §5.2.3 we define equivariant GW invariants for symplectic manifolds with a Hamil-

tonian group action by extending (1.1.1.1) to an equivariant virtual fundamental class,

see Definition 5.2.2. Equivariant Kuranishi charts are constructed in [Fuk21], but the

associated virtual fundamental class is not defined.

Theorem 1.1.13. Given a Hamiltonian group action µ on pX,ωq by a compact connected

Lie group K, there exist equivariant GW homomorphisms

IX,ω,µg,n,A : H˚
KpXn;Qq Ñ H˚pMg,n;Qq bQ H

˚
Kppt;Qq

which satisfy properties analogous to the Kontsevich Manin axioms. Moreover, we can

recover the ordinary GW invariants from the equivariant ones.
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In particular, this allows for the definition of the equivariant quantum cohomology

QH˚
KpX,ωq of pX,ω, µq, which is a module over H˚

Kppt;Qq. The inclusion X ãÑ XK

induces a surjection QH˚
KpX,ωq Ñ QH˚pX,ωq of rings by Remark 5.2.4.

We prove a virtual localisation formula, analogous to the one of [GP99] in the setting

of global Kuranishi charts, see Theorem 5.2.10. A similar formula in the symplectic setting

appeared in the preprint [CL06]. Applied to the equivariant GW theory, it shows that

any contribution to these invariants comes from the fixed point locus of the moduli space

of stable maps, generalising [MT06, Proposition 4.10].

Remark 1.1.14. In [Giv01b], Givental used computations of equivariant GW invariants to

express the higher genus GW invariants in terms of invariants in genus 0. His computations

rely on the localisation formula of [GP99] and thus require the symplectic manifold to be

either a projective variety or convex. Theoerm 5.2.10 might be used to generalise his

results to all closed symplectic manifolds with a Hamiltonian torus action whosed fixed

points are isolated.

Remark 1.1.15. The localisation formula of Theorem 5.2.10 is phrased purely in terms of

global Kuranishi charts with a suitable group action. Thus it can be applied to any other

setting for which an equivariant global Kuranishi chart has been constructed.

1.2 Exotic tori in projective spaces

While the previous chapters put their focus squarely on pseudoholomorphic curves and

their moduli spaces, the next two chapters show how these curves can be used to investigate

symplectic manifolds, in particular, their Lagrangian submanifolds.

From now on, we will avoid the use of virtual techniques and instead require our

manifolds to be reasonably nice so that the moduli spaces of pseudoholomorphic curves

are sufficiently well-behaved.

In Chapter 6, the result of a collaboration with Soham Chanda and Luya Wang, we

study monotone Lagrangian tori in projective spaces. Recall that a Lagrangian L Ă M is

monotone if the area homomorphism Iω : π2pM,Lq Ñ R is positive scalar multiple of the

Maslov homomorphism µ : π2pM,Lq Ñ Z defined in [Arn67]. We call a Lagrangian torus

in Pn (or Cn) exotic if it is monotone and not symplectomorphic to the standard Clifford

(or product) torus. The earliest example of an exotic torus dates back to [Che96].

Recently, the use of almost toric fibrations has become an important tool in construct-

ing new examples of Lagrangian tori. For example, Vianna has constructed infinitely many

exotic tori in P2 [Via16] and in del Pezzo surfaces [Via17]. For more details on almost

toric fibrations, see [Sym01, LS10, Eva22]. For previous constructions of non-Hamiltonian

isotopic Lagrangian tori in higher dimensions, see for example [Aur15, PT20, Yua22] and

[Bre23].

Our exotic examples are lifts T pa,b,cq of the Vianna tori Tpa,b,cq in P2. Here pa, b, cq is

a triple of natural numbers satisfying the Markov equation a2 ` b2 ` c2 “ 3abc. These

12



tori are defined and reviewed in §6.1.2. Any exotic torus Tpa,b,cq can be obtained from the

Clifford torus in P2 by a sequence of mutations. We show that the lifted Vianna tori can

be obtained from the Clifford torus in Pn by a sequence of solid mutations, a generalisation

of mutations to higher dimension. We study how the disk potentials change under a solid

mutation, using as essential input a wall-crossing formula from [PT20]. Recall that the

disk potential of a closed monotone oriented spin Lagrangian Ln in a closed symplectic

manifold pM2n, ωq is a function

WL : Hompπ1pLq,C˚q Ñ C

mapping a local system ρ on L to

WLpρq “
ÿ

βPπ2pM,Lq

µpβq“2

|MpL, βq| ρpBβq, (1.2.0.1)

where p P L and J P J pM,ωq are generic, and MpL, βq is the (zero-dimensional) moduli

space of J-holomorphic disks representing β and passing through p.3 Choosing a basis of

H1pL;Zq we can write the disk potential as a Laurent polynomial; refer to Remark 6.2.1

for more details.

Similar to [Via16], we do not compute the disk potential explicitly. Instead, we show

that the associated Newton polytope, defined in §6.3.1, is uniquely determined by pa, b, cq.

As the Markov tree is infinite, we find

Theorem 1.2.1 ([CHW23]). Pn admits infinitely many distinct exotic Lagrangian tori

for any n ě 3.

1.3 Cuplengths and the degenerate Arnol’d conjecture

It is a classical problem in symplectic topology to find lower bounds on the number of

intersection points of two Lagrangian submanifolds L and L1 in a symplectic manifold

pX,ωq. In Chapter 7, the result of a collaboration with Noah Porcelli, we use generalised

cohomology theories to find stronger lower bounds.

This problem has been intensively studied, under various assumptions. When the

Lagrangians are assumed to intersect transversely, Floer homology provides lower bounds,

see [Flo88, Oh93, FOOO09] for an incomplete list of references.

The classical Arnol’d conjecture concerns a special case of this question, where pX,ωq

is the product symplectic manifold pY ˆY, σ‘ ´σq for some compact symplectic manifold

pY, σq, L is the diagonal and L1 is the graph of a Hamiltonian diffeomorphism of Y .

This case has been the subject of much study, both with and without the additional

assumption of transverse intersection. See [FO99, Rud99, Par16, AB21, Rez22, BX22]

and the references therein.

3As L is spin, each MpL, βq carries a canonical orientation and | ¨ | means that we count the points with
signs.
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We will not assume that L and L1 are transverse, but require X to be either closed or

a Liouville manifold, L and L1 to be Hamiltonian isotopic, and L to be relatively exact,

i.e., that ω ¨ π2pX,Lq “ 0.

Under these assumptions, Floer proved

Theorem 1.3.1 ([Flo88]). If L and L1 intersect transversely, there is a lower bound

#LX L1 ě
ÿ

i

RankpHipL;Z{2qq.

Without the transversality assumption, a version of the Arnol’d conjecture states that

Conjecture 1.3.2. If L is relatively exact and L1 is Hamiltonian isotopic to L, then

#LX L1 ě CritpLq

where CritpLq is the minimal number of critical points of any smooth map L Ñ R.

A standard application of the Weinstein neighbourhood theorem implies that if true,

this bound must be sharp.

Lusternik-Schnirelmann theory is a powerful tool for studying (numbers of) critical

points or intersection points without any transversality assumptions, in contrast to Morse

theory. It has been used in many fields other than symplectic geometry. For example,

Klingenberg proved in [Kli78, Theorem 5.1.1] that any metric on S2 admits at least three

closed geodesics. Another application is to show that any (not necessarily Morse) function

on a closed smooth manifold M has at least cZpMq critical points, where cZpMq is the

cuplength of M in singular cohomology with integer coefficients. Lusternik-Schnirelmann

theory has also been used in contact topology, e.g. by Ginzburg and Gürel in [GG20] to

find lower bounds for numbers of Reeb orbits. For a more comprehensive discussion and

further applications we refer to [CLOT03] or Chapter 11 in [MS17].

We use this technique to study Conjecture 1.3.2, generalising results of [Hof88]. Fix a

ring spectrum R, representing a multiplicative generalised cohomology theory R˚. Instead

of the rank of the cohomology groups we will use the cuplength as a lower bound for the

number of intersection points. Given a compact convex domain G Ă C with smooth

boundary, denote by MpGq the moduli space of (parametrised) pseudoholomorphic maps

pG, BGq Ñ pX,Lq.

Theorem 1.3.3 ([HP22]). Suppose L is relatively exact and the index bundle over MpGq

is R-orientable for any G. Then the number of intersection points between L and L1

satisfies

#LX L1 ě cRpLq.

This shows that refining standard techniques via stable homotopy theory can result in

stronger estimates.

Remark 1.3.4. Similar results have been obtained in the monotone setting by Lê-Ono

[LO96] and Gong [Gon21a].
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Remark 1.3.5. As we do not assume the transversality of L and L1, to our knowledge there

is no analogue of our strategy of proof using the setup in [CJS95, Coh09]. However, it

may be possible to use their setup to prove Theorem 1.3.3 using the strategy of [Gon21b]

instead.
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Chapter 2

Construction of a global Kuranishi

chart

2.1 Main construction

Convention 2.1.1. In this and the subsequent three chapters, we consistently use the

symbol b to mean tensor product over C unless explicitly indicated otherwise.

Let pX,ωq be a closed symplectic manifold, A P H2pX,Zq and g, n ě 0 be integers.

Given any J P Jτ pX,ωq, we will construct a rel–C8 global Kuranishi chart (in the sense

of Definition 2.1.2 below) for the Gromov–Witten moduli space Mg,npX,A; Jq using the

choice of an auxiliary datum (see Definition 2.1.11 for more details). The construction is

independent of this choice in a sense made precise in Theorem 2.1.18 below.

Definition 2.1.2 (Rel–C8 global Kuranishi charts). A rel–C8 global Kuranishi chart

K “ pG, T {M, E , sq consists of

(i) a rel–C8 manifold T Ñ M, called the thickening, where the base space M is a

smooth manifold;

(ii) a rel–C8 vector bundle E on T {M, the obstruction bundle, and a rel–C8 section s

of E , the obstruction section;

(iii) a compact Lie group G, called the symmetry group, which acts on T {M and E with

finite stabilizers so that s is G-equivariant. The action map

pGˆ T q{pGˆ Mq Ñ T {M (2.1.0.1)

and the analogous map for E are both required to be rel–C8 maps.

If, in addition, we are given a Hausdorff space Z and a homeomorphism s´1p0q{G
„
ÝÑ Z,

then we say K is a rel–C8 global Kuranishi chart for Z. The rel–C8 global Kuranishi

chart K is oriented if we are provided with the data of orientations on T and E which are

preserved by the G-action. We say that K is stably complex if we are given the data of a

G-invariant almost complex structure on M and a G-invariant stably complex lift of the
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virtual vector bundle TT {M ´ pE ‘ gq. Here, TT {M denotes the vertical tangent bundle of

T {M and g is the trivial bundle with fibre g “ LiepGq.

Remark 2.1.3. See Definition ?? for the explicit definition of a rel–C8 manifold and

[Swa21] for a discussion of their properties. In §2.3.1 we will show that our thicken-

ing is canonically a rel–C8 manifold. This relative smoothness will be used throughout

the later chapters as it allows for many differential-geometric operations.

We begin by introducing the smooth quasi-projective varieties which play the role of

M in Definition 2.1.2 in our construction of global Kuranishi charts for Mg,npX,A; Jq.

Definition 2.1.4 (Algebraic base space). Given integers N ě 2 and m ě 1, we define the

moduli space M˚

g pPN ,mq to consist of all C Ă PN with the following properties.

(i) C Ă PN is an embedded algebraic prestable genus g curve of degree m.

(ii) The restriction H0pPN ,OPN p1qq Ñ H0pC,OCp1qq is an isomorphism and we have

H1pC,OCp1qq “ 0.

In addition, when ℓ ě 0 is an integer, we define the moduli space M˚

g,ℓpPN ,mq to be the

preimage of M˚

g pPN ,mq under the forgetful map Mg,npPN ,mq Ñ MgpPN ,mq.

Remark 2.1.5. The moduli stack Mg,ℓpPN ,mq of stable maps carries an obvious action of

the Lie group PGLpN ` 1,Cq “ AutpPN q and M˚

g,ℓpPN ,mq Ă Mg,ℓpPN ,mq is an open,

PGLpN ` 1,Cq-invariant smooth quasi-projective subscheme of the expected C-dimension

pN ´ 3qp1 ´ gq ` pN ` 1qm` ℓ. An explanation is given in Definition 2.2.8.

Definition 2.1.6. A polarisation on X taming J is a Hermitian line bundle OXp1q Ñ

X equipped with a Hermitian connection ∇ with curvature form ´2πiΩ where Ω is a

symplectic form on X taming J .

Remark 2.1.7. Given any compact subset K Ă Jτ pX,ωq, there exists a polarisation on X

taming all the almost complex structures in K. This is shown in Lemma 2.2.1.

Definition 2.1.8 (Framed stable maps). Fix a polarisation OXp1q Ñ X taming J as in

Definition 2.1.6. An Ω-stable map (of genus g and class A) is a smooth map u : C Ñ X

satisfying the following conditions.

(i) C is a prestable curve of genus g and u˚rCs “ A.

(ii) For each irreducible (resp. unstable irreducible) component C 1 Ă C, we have
ş

C1 u
˚Ω ě 0 (resp. ą 0).

We will refer to Ω-stable maps of genus g and class A as just stable maps when Ω, g, A

are clear from the context. Given any stable map u : C Ñ X, we define the holomorphic

line bundle Lu Ñ C to be

Lu :“ ωC b pu˚OXp1qqb3 (2.1.0.2)
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where ωC denotes the dualizing line bundle of C and the holomorphic structure on the line

bundle u˚OXp1q is defined by pu˚∇q0,1. We say the stable map u : C Ñ X is framed if we

additionally have the data of a degree m holomorphic embedding C Ă PN corresponding

to a point of M˚

g pPN ,mq for some N ě 2 and m ě 1. The set of framed stable maps (for

a fixed choice of N and m) is equipped with a natural topology described in Definition

2.2.11.

Remark 2.1.9. The line bundle Lu defined in (2.1.0.2) is ample because of the stability

condition imposed on u : C Ñ X. This means that we can promote u : C Ñ X to a framed

stable map by choosing a complex basis ps0, . . . , sN q of the vector space H0pC,Lbp
u q for

an integer p " 1 and taking the associated projective embedding rs0 : ¨ ¨ ¨ : sN s : C Ñ PN .
Refer to Lemma 2.2.2 for more details.

Remark 2.1.10. For a fixed choice of N and m, there is a natural PGLpN `1,Cq-action on

the space of framed stable maps. The natural forgetful map to M˚

g pPN ,mq is equivariant

with respect to this action.

Before defining the auxiliary data needed for our construction of a global Kuranishi

chart, we need a few preliminary definitions.

Definition 2.1.11 (Auxiliary data). An auxiliary datum for the moduli spaceMg,npX,A; Jq

is a tuple p∇X ,OXp1q, p,U , kq where

(i) ∇X is a C-linear connection on the tangent bundle TX (with C-linear structure

induced by J),

(ii) OXp1q Ñ X is a polarisation taming J as in Definition 2.1.6. We set d :“ xrΩs, Ay,

(iii) p ě 1 is an integer. For later reference below, we introduce the following related

notation.

(a) m :“ pp2g ´ 2 ` 3dq “ p degpLuq and N :“ m´ g,

(b) G :“ PGLpN ` 1,Cq and G :“ PUpN ` 1q “ UpN ` 1q{S1,

Note that m “ p degpLuq while N “ dimH0pC,Lbp
u q ´ 1 by the Riemann-Roch

formula.

(iv) U is a good covering in the sense of Definition 2.2.12.

(v) k ě 1 is an integer.

Remark 2.1.12 (Motivation for the good covering). In the construction described below, we

need to pick out a class of unitarily framed stable maps from the space of all framed stable

maps. Morally, this can be done by choosing local slices for the G-action on the space

of framed stable maps followed by a partition of unity argument. The datum of a good

covering allows for the construction of a continuous G-equivariant map λU : T Ñ G{G,

which determines the class of unitarily framed stable maps, that is a desired slice. While

more details can be found in §2.2.2, the reader is advised to take the existence of λU on

good faith at first reading. See [AMS23, §4.3] for a different approach to this problem.
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In order to ensure that our thickening defined below is a manifold (and E is a vector

bundle), at least near s´1p0q, we will need to restrict to a special subclass of auxiliary

data.

Definition 2.1.13. We call an auxiliary datum p∇X ,OXp1q, p,U , kq unobstructed if the

following properties hold for any stable J-holomorphic map u : C Ñ X in MgpX,A; Jq.

(a) The line bundle Lbp
u Ñ C is very ample and H1pC,Lbp

u q “ 0.

(b) For every complex linear basis F “ ps0, ¨ ¨ ¨ , sN q of H0pC,Lbp
u q, we obtain a framed

stable map pιF : C ãÑ PN , uq, in the sense of Definition 2.1.8, satisfying the following.

(1) We have H1pC, T ˚0,1
PN |C b u˚TX b OCpkqq “ 0.

(2) If λU pιF , uq “ rIdes P G{G, then

DpB̄Jqu ‘ px¨y ˝ dιC̃,F q : Ω0pC, u˚TXq ‘ EpιF ,uq Ñ Ω0,1pC̃, ũ˚TXq (2.1.0.3)

is surjective. Here, DpB̄Jqu is the linearization of the non-linear Cauchy–Riemann

operator B̄J at the map u and the map x¨y is as in (2.1.0.6).

We can now describe the global Kuranishi chart associated to an unobstruced auxiliary

datum.

Construction 2.1.14. Having fixed an unobstructed auxiliary datum p∇X ,OXp1q, p,U , kq,

we define

(i) (Thickening) T consists of all tuples pu, ι, C, η, αq satisfying the following properties.

(a) pu, ι, Cq is a framed stable map lying in the domain of λU .

(b) η belongs to the finite dimensional C-vector space

Epι,uq :“ H0pC, T ˚0,1
PN |C b u˚TX b OCpkqq bH0pPN ,OPN pkqq (2.1.0.4)

where we use the complex linear identification T ˚0,1
PN » TPN (given by the Fubini–

Study metric) to endow the former with a holomorphic structure while we endow

u˚TX with the holomorphic structure given by pu˚∇Xq0,1. On the normalization

C̃ Ñ C, the equation

B̄J ũ` xηy ˝ dιC̃ “ 0 P Ω0,1pC̃, ũ˚TXq (2.1.0.5)

is satisfied. Here, ũ and ιC̃ denote the pullbacks to C̃ of the map u and the

inclusion C Ă PN respectively. The C-linear contraction operator

x¨y : Epι,uq Ñ Ω0pC, T ˚0,1
PN |C b u˚TXq (2.1.0.6)

is induced by the standard Hermitian metric on the line bundle OPN pkq.
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(c) α P H1pC,OCq is such that we have the identity

rOCp1qs “ p ¨ rLus ` α P PicpCq (2.1.0.7)

in the Picard group of C (the group of isomorphism classes of holomorphic line

bundles) with group operation (given by tensor product of line bundles) written

additively. Here, we are identifying H1pC,OCq with the (abelian) Lie algebra of

PicpCq and `α denotes translation by α using the exponential map of the group

PicpCq.

(d) H1pC, T ˚0,1
PN |C b u˚TX b OCpkqq “ 0,

(e) the linearised operator associated to Equation (2.1.0.5) is surjective when re-

stricted to C8pC, u˚TXq ‘ Eι,u.

The natural UpN ` 1q-action on T descends to a G-action. Moreover, the natural

forgetful morphism π : T Ñ M˚

g pPN ,mq is G-equivariant.

(ii) (Obstruction bundle) E Ñ T is the family of vector spaces over T whose fibre over

a given point pC Ă PN , u, η, αq P T is given by

supN ` 1q ‘ Epι,uq ‘H1pC,OCq (2.1.0.8)

and carries a natural (fibrewise linear) action of G which lifts the G-action on T .

(iii) (Obstruction section) The section s : T Ñ E is defined by the formula

spC Ă PN , u, η, αq “ pi log λU pC Ă PN , uq, η, αq. (2.1.0.9)

For the definition of the ‘polar decomposition’ map i log : G{G Ñ supN ` 1q, see

Definition 2.2.5. The section s is G-equivariant and there is a natural forgetful map

s´1p0q{G Ñ MgpX,A; Jq.

The associated global Kuranishi chart Kn “ pG, Tn, En, snq for Mg,npX,A; Jq is defined

by pulling back K along the forgetful map M˚

g,npPN ,mq Ñ M˚

g pPN ,mq.

Remark 2.1.15. When A “ 0, J-holomorphic stable maps are just stable curves mapping

to a point in X, Lu “ ωC , which does not have positive degree on each component. Hence

once has to use L1
u :“ ωCpx1 ` ¨ ¨ ¨ ` xnq in Construction 2.1.14 instead.

Remark 2.1.16. Note that Construction 2.1.14 defines only the points of the spaces T and

E and does not describe any additional structure on these (e.g. a rel–C8 structure, a

vector bundle structure). This additional structure is explained in §2.3.1 and §2.3.2.

Remark 2.1.17 (Comparison with the construction of [AMS21]). The construction of the

global Kuranishi chart in [AMS21] for moduli spaces of genus 0 stable maps depends on a

slightly different set of auxiliary data than the more general construction described above.

More precisely, to define the global Kuranishi chart in [AMS21], one needs to make a

choice of ∇X ,OXp1q and k (and a relatively ample line bundle L on the relevant universal
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curve; see the paragraph preceding [AMS21, Definition 6.11] for further details). It is easy

to show, using a slight variant of the argument which proves Theorem 2.1.18(3a), that the

construction of [AMS21] is equivalent to ours when g “ 0. We did not check whether the

construction in [AMS23] is equivalent to the one presented here.

We can now formulate our main result on global Kuranishi charts for Gromov–Witten

moduli spaces.

Theorem 2.1.18 (Global Kuranishi charts for GW moduli spaces). Fix pX,ωq and A, g, n

as before.

(1) Fix J P Jτ pX,ωq. Unobstructed auxiliary data, in the sense of Definition 2.1.13,

exist. Moreover, any choices of connection ∇X and polarisation OXp1q taming J can

be extended to an unobstructed auxiliary datum p∇X ,OXp1q, p,U , kq.

(2) Given J P Jτ pX,ωq and an unobstructed auxiliary datum p∇X ,OXp1q, p,U , kq, the

associated global Kuranishi chart Kn “ pG, Tn, En, snq from Construction 2.1.14 has

the following properties.

(a) The projection Tn Ñ M˚

g,npPN ,mq carries a natural rel–C8 structure of the ex-

pected dimension in a G-invariant neighborhood T reg
n of s´1

n p0q.

(b) Ereg
n :“ En|T reg

n
naturally carries the structure of a rel–C8 vector bundle of the

expected rank over T reg
n Ñ M˚

g,npPN ,mq for which the section sn is of class rel–

C8.

(c) The G-action on T reg
n and Ereg

n is rel–C8 and fibrewise locally linear in the sense

of [AMS21, Definition 4.20]. The stabilizer of every point of Tn in a neighborhood

of s´1
n p0q is finite.

(d) The natural forgetful map s´1
n p0q{G Ñ Mg,npX,A; Jq is a homeomorphism.

(e) The virtual vector bundle given by

TT reg
n {M˚

g,npPN ,mq
´ pEreg

n ‘ gq (2.1.0.10)

has a natural stably complex (virtual) vector bundle lift in a neighborhood of the

zero locus s´1
n p0q where TT reg

n {M˚

g,npPN ,mq
is the vertical tangent bundle and g is

the trivial bundle with fibre g “ LiepGq.

(3) The global Kuranishi charts of Construction 2.1.14 have the following uniqueness prop-

erties.

(a) Fix J P Jτ pX,ωq. Then, the global Kuranishi charts for Mg,npX,A; Jq associated

to any two unobstructed auxiliary data are stably complex rel–C8 equivalent in

the sense of Definition 2.4.1.

(b) Given J0, J1 P Jτ pX,ωq, there exist unobstructed auxiliary data p∇X,i,OXp1q, p,Ui, kq

for i “ 0, 1 so that the associated global Kuranishi charts for Mg,npX,A; J0q and

Mg,npX,A; J1q are stably complex rel–C8 cobordant in the sense of Definition

2.4.3.
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We will prove Theorem 2.1.18(1), (2) and (3) in §2.2, §2.3 and §2.4 respectively.

Remark 2.1.19. Recall the equivalence moves relating global Kuranishi charts (namely

germ equivalence, stabilisation and group enlargement) described in [AMS21, §4]. In §2.4
we formulate a slight refinement of these moves in order to keep track of the natural rel–

C8 structures yielded by our construction. The notion of rel–C8 cobordism for global

Kuranishi charts is also formulated in the same section (see Definition 2.4.3).

Remark 2.1.20 (Virtual fundamental classes). The virtual fundamental class of an oriented

global Kuranishi chart for a compact space Z (lying in the dual of Čech cohomology of

Z with Q-coefficients) is invariant under equivalence and cobordism (see [AMS21, §5.1]).
Theorem 2.1.18 therefore provides a construction of virtual fundamental classes for the

Gromov–Witten moduli spaces of a closed symplectic manifold. The explicit definitions

are given in §2.5.1 and §2.5.2.

2.2 Transversality for auxiliary data

In this section, we will prove Theorem 2.1.18(1) by showing how to choose the parameters

p,U , k as in Definition 2.1.11 so that the auxiliary datum p∇X ,OXp1q, p,U , kq is unob-

structed. We may assume that we are already given choices of ∇X , OXp1q. Indeed, it is

obvious that J-linear connections on TX exist, while the existence of polarisations on X

taming J is guaranteed by Lemma 2.2.1 below.

Lemma 2.2.1. There exists a complex line bundle OXp1q Ñ X with Hermitian metric

x¨, ¨y and a Hermitian connection ∇ with curvature given by ´2πiΩ, where Ω is a symplectic

form taming J . In fact, given any compact subset F Ă Jτ pX,ωq containing J , we can

choose OXp1q to be such that Ω tames each J 1 P F .

Proof. By approximating rωs P H2pX,Rq by an element of H2pX,Qq and multiplying by

a large positive integer to clear denominators, we first choose a symplectic form Ω taming

(each almost complex structure in) F such that rΩs has an integral lift h P H2pX,Zq. This

is possible as being symplectic and taming F are both open properties of closed 2-forms.

Now, let L be a complex line bundle on X with c1pLq “ h. Choose any Hermitian metric

x¨, ¨y on L and a compatible Hermitian connection ∇1 on L and write the curvature as

´2πiΩ1. Since h is a common integral lift of rΩs and rΩ1s, we can find a smooth (real)

1-form β such that Ω1 “ Ω`dβ. The connection ∇ “ ∇1 ` 2πiβ now is also Hermitian for

x¨, ¨y and has curvature given by ´2πiΩ. Thus, we may take OXp1q to be the line bundle

L equipped with the metric x¨, ¨y and compatible Hermitian connection ∇.

As in Definition 2.1.11, we set d :“ xrΩs, Ay.

2.2.1 Choosing the integer p

In this subsection, we will show how to choose the integer p.

Lemma 2.2.2 (Positivity). There exists a positive integer p depending only on g, d with

the following property. Following the notation of equation (2.1.0.2), for any stable map
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ru,Cs and any integer q ě p, the line bundle Lbq
u Ñ C is very ample and we have

H1pC,Lbq
u q “ 0.

Proof. Given an irreducible component C 1 of C, we have that degC1pωCq ě ´2 and the

degree is non-positive if and only if C 1 is unstable. In this case u|C1 is nonconstant, so

degC1pu˚OXp1qq ě 1. Thus degC1pLuq ą 0 and Lu has total degree 2g ´ 2 ` 3d on C. It

follows that C has ď 2g´2`3d irreducible components, so the number of possibilities for

the dual graph of C, decorated by genus labels on the vertices, can be bounded in terms

of g and d. Hence it suffices to find a p for each possible decorated dual graph Γ of C.

For each vertex v P Γ of C, let Cv be the normalization of the irreducible component

of C corresponding to v. Let gv be the genus of Cv, Dv Ă Cv be the subset consisting of

the inverse images of the nodal points and Lv be the pullback of Lu to Cv. For any two

points a, b P Cv, Serre duality [Har77, Theorem III.7.6] yields

H1pCv, L
bq
v p´Dv ´ a´ bqq “ H0pCv, ωCvpDv ` a` bq b L˚

v
bq

q˚ “ 0 (2.2.1.1)

for q ě pΓ :“ 1 ` maxvPΓp2gv ` |Dv|q once we recall that degCv
Lv ě 1. This cohomology

vanishing statement (for each v P Γ) implies that Lbq
u is very ample. To see that Lbq

u has

vanishing H1, denote by xpv, eq the point on Cv corresponding to the node associated to

the edge e “ tv, v1u of Γ. Twisting the normalisation sequence

0 Ñ OC Ñ
à

vPV pΓq

OCv Ñ
à

e“tv,v1uPEpΓq

Txpv,eqCv b Txpv1,eqCv1 Ñ 0

by Lbq
u and taking its long exact sequence in cohomology, we obtain that H1pC,Lbq

u q “ 0.

Since the lower bound pΓ on q depends only on the decorated dual graph Γ, the proof is

complete.

We fix p ě 1 to be the smallest integer which satisfies the conclusion of Lemma 2.2.2

above. Having fixed the choice of p, we define the associated quantities m,N,G, G exactly

as in Definition 2.1.11(iii). The following observation will be useful.

Lemma 2.2.3 (Unobstructed projective embedding). Let ru,Cs be a stable map as in Def-

inition 2.1.8. Then, any complex linear basis F “ ps0, ¨ ¨ ¨ , sN q of H0pC,Lbp
u q determines

a point of M˚

g pPN ,mq via the holomorphic projective embedding

ιC,F “ rs0 : ¨ ¨ ¨ : sN s : C Ñ PN . (2.2.1.2)

Moreover, the map ιC,F is unobstructed, i.e., H1pC, ι˚C,FTPN q “ 0.

Proof. Since ιC,F is the map obtained from the complete linear system defined by the

very ample line bundle Lbp
u , we obtain a point of M˚

g,npPN ,mq once we note the identifi-

cation ι˚C,FOPN p1q » Lbp
u . To prove unobstructedness, pull back the Euler exact sequence

0 Ñ OPN Ñ OPN p1qN`1 Ñ TPN Ñ 0 to C via ιC,F and use the long exact sequence in

cohomology to obtain a surjective map

H1pC, ι˚C,FOPN p1qqN`1 Ñ H1pC, ι˚C,FTPN q. (2.2.1.3)
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This shows that H1pC, ι˚C,FTPN q “ 0 as desired since H1pC, ι˚C,FOPN p1qq “ 0.

Remark 2.2.4. Observe that our choice of p is such that condition (a) of Definition 2.1.13

is satisfied.

2.2.2 Constructing a good covering U and the map λU

At the end of this subsection, we will show how to construct a good covering U , defined in

Definition 2.2.12, and the associated map λU . We need a number of preparatory results

for this purpose which we now turn to.

Definition 2.2.5 (Logarithm for Hermitian matrices). Let H be the space of pN ` 1q ˆ

pN ` 1q Hermitian positive definite matrices modulo the action of positive real scalars.

The group G has a left action on H as follows: an element rT s P G maps an element

rAs P H to rTAT ˚s P H. The Lie algebra supN ` 1q consisting of skew-Hermitian trace-

free pN`1qˆpN`1q matrices carries a natural adjointG-action. With this, the exponential

map

supN ` 1q Ñ H (2.2.2.1)

iM ÞÑ rexpM s (2.2.2.2)

is a G-equivariant diffeomorphism. We let i log : H Ñ supN ` 1q denote its inverse. We

can identify this with a map G{G Ñ supN ` 1q, also denoted i log, via the isomorphism

P : G{G Ñ H provided by Lemma 2.2.6(iii) below.

Lemma 2.2.6 (Polar decomposition for G). We have the following assertions.

(i) The multiplication map H ˆG Ñ G is a diffeomorphism.

(ii) If Λ is a finite set, then the linear combination map

cΛ : pRΛ
ě0zt0uq ˆ HΛ Ñ H (2.2.2.3)

pttiuiPΛ, trAisiPΛuq ÞÑ
ř

iPΛ tirAis (2.2.2.4)

is G-equivariant, where RΛ
ě0zt0u carries the trivial action.

(iii) The map G Ñ H given by T ÞÑ TT ˚ descends to a G-equivariant diffeomorphism

P : G{G Ñ H. The identity G-coset is mapped to the class rIdes P H of the identity

matrix under P .

Proof. The first assertion is an immediate consequence of the polar decomposition in

GLpN ` 1,Cq. Note that G-equivariance in the second and third assertions are true

by definition. Using the first assertion, we can view the map P as the squaring map

rAs ÞÑ rA2s on H, which shows that it is a diffeomorphism.

Lemma 2.2.7 (Reduction of structure group). IfM is a second countable smooth manifold

with a proper action of G with finite stabilisers, then there exists a smooth G-equivariant
map M Ñ G{G.
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Proof. We first construct such a map in a G-invariant neighborhood of any point in M .

Given x P M , replace it by a point in its orbit to assume that its stabiliser Γ is contained

in G. Using a Γ-invariant tubular neighbourhood of x, choose a locally closed Γ-invariant

submanifold S Ă M passing through x such that TxS is a complement to the linearized

action map g ãÑ TxM . Restricting the action map G ˆ M Ñ M gives a smooth G-
equivariant map

Φ : pG ˆ Sq{Γ Ñ M (2.2.2.5)

where Γ acts on G ˆ S by γ ¨ pg, sq “ pgγ´1, γsq. As dΦp1,xq : g ‘ TxS Ñ TxM is an

isomorphism, we may shrink S to assume that Φ is a G-equivariant local diffeomorphism.

Properness of the G-action implies that Φ is injective after shrinking S further. Define a

G-equivariant map N :“ ΦppG ˆ Sq{Γq Ñ G{G by applying Φ´1 followed by the obvious

projection. Thus, we have solved the problem in the G-invariant neighborhood N of x.

Further, any smooth Γ-invariant compactly supported cutoff function χ on S admits a

G-invariant smooth extension χ̃ to N and can be extended by zero to obtain a G-invariant
cutoff function χ̃ on M (we are using the fact that G ¨ supp χ is closed in M which follows

from properness of the action).

Therefore, the statement follows if we can cover M by a locally finite collection of

G-invariant open subsets, each admitting a smooth G-equivariant map to G{G and then

use a G-invariant smooth partition of unity to patch them. Here we use (ii),(iii) of Lemma

2.2.6 to make sense of convex combinations in G{G.

To obtain such a locally finite cover, it suffices to show that the quotient space N “

M{G is metrizable (and therefore paracompact). By properness of the G-action, we know

that N is Hausdorff. Since M is second countable, so is N . By the Urysohn metrization

theorem, it remains to show that N is a regular space (i.e., given y P N and a closed subset

C Ă N with y R C, there exist open neighborhoods in N separating them). Equivalently,

given a closed G-invariant subset F Ă M and a point x R F , we need to find G-invariant
disjoint neighborhoods U , V of x, F respectively. As before, let Γ be the stabiliser of x

and S be a local Γ-invariant slice at x for the G-action. Then, x P SzF and thus, we can

choose a Γ-invariant open neighborhood U of x in SzF such that U is compact and is

contained in SzF . Now, we can take U “ G ¨ U and V “ MzpG ¨ Uq. Note that V Ă M is

open because the action is proper.

Definition 2.2.8 (Algebraic base space and universal curve on it). For any integer ℓ ě 0,

define M˚

g,ℓpPN ,mq exactly as in Definition 2.1.4. This is an algebraic scheme of finite

type over C by [FP97, §4.1]. By Lemma 2.2.3, all points of M˚

g,ℓpPN ,mq are unobstructed

and have no non-trivial automorphisms. By [RRS08], it is therefore a smooth manifold of

the expected complex dimension pN ´ 3qp1 ´ gq `mpN ` 1q ` ℓ. Denote by

π : Cg,ℓ Ă M˚

g,ℓpPN ,mq ˆ PN Ñ M˚

g,ℓpPN ,mq (2.2.2.6)

the universal curve, which is also an algebraic scheme of finite type over C.
For ℓ ě N ` 1 define M˚,st

g,ℓ pPN ,mq Ă M˚

g,ℓpPN ,mq to be the open subset of maps
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rι, C, x1, . . . , xns where

• pC, x1, . . . , xnq is stable,

• ι is regular, has no automorphisms and is nondegenerate, i.e., does not lie in a

hyperplane.

Denote by M˚,st
g,rℓspPN ,mq the quotient of M˚,st

g,ℓ pPN ,mq under the (free) action of the

permutation group Sℓ on the marked points.

Lemma 2.2.9. The G-action on M ˚,st
g,rℓspPN ,mq is proper and almost free for any integer

ℓ ě N ` 1.

Proof. Since M ˚,st
g,ℓ pPN ,mq Ñ M ˚,st

g,rℓspPN ,mq is a finite unbranched covering map, it suf-

fices to consider the G-action on the former. Since the statement to prove concerns an

algebraic action of an algebraic group on a variety, we may use the Noetherian valuative

criterion [SPa22, Tag 0208] to test properness. To this end, let R be a discrete valuation

ring and K its fraction field. Given any three morphisms

α, α1 : Spec R Ñ M ˚,st
g,ℓ pPN ,mq (2.2.2.7)

γ : Spec K Ñ G (2.2.2.8)

such that γ ¨ αK “ α1
K , we need to extend γ to a morphism Spec R Ñ G. Lift γ to an

element δ P GLpN ` 1,Kq which is unique up to an element of Kˆ. We will lift δ to

GLpN ` 1, Rq up to an element of Kˆ.

The morphism α yields a projective flat family πR : CR Ă PNR Ñ Spec R of stable ℓ-

pointed genus g curves with the marked points given by sections σ1, . . . , σℓ : Spec R Ñ CR
of πR. Moreover, the restriction

RN`1 “ H0pPNR ,OPN
R

p1qq Ñ H0pCR,OCRp1qq (2.2.2.9)

gives an isomorphism of R-modules where we use [Har77, Theorem III.5.1(a)] to compute

the H0 group on the left explicitly. Similarly, we get pπ1
R : C1

R Ă PNR Ñ Spec R, σ1
1, . . . , σ

1
ℓq

associated to α1. The element δ now yields an isomorphism φ : CK Ñ C1
K over Spec K

(mapping σi to σ
1
i for 1 ď i ď ℓ) of the two families and an isomorphism Φ : OCK p1q »

φ˚OC1
K

p1q. Taking global sections of Φ recovers δ.

By the uniqueness of stable reduction [SPa22, Tag 0E97], we obtain a unique extension

pφ : CR Ñ C1
R of φ to an isomorphism of families of stable ℓ-pointed genus g curves over

Spec R. Since Spec K Ă Spec R is dense, we get OCRp1q » pφ˚OC1
R

p1q from [FP97, Propo-

sition 1]. Taking global sections of this isomorphism now yields an element of GLpN`1, Rq

whose restriction to K differs from δ by an element of Kˆ.

For the second assertion, suppose A P G fixes y “ rι, C, x1, . . . , xns. Then the associated

biholomorphism ϕA of PN preserves ιpCq – C setwise and thus induces an automorphism

ψA : C Ñ C. If A,B are two elements of the stabiliser such that ψA “ ψB, then AB´1

fixes ιpCq pointwise. This contradicts the assumption that ι is nondegenerate. Thus we

get an injection Gy ãÑ AutpC, x1, . . . , xnq, the later of which is finite.
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Corollary 2.2.10. For any integer ℓ ě N ` 1, there exists a smooth G-equivariant map

M ˚,st
g,rℓspPN ,mq Ñ G{G.

Proof. This is an immediate consequence of Lemmas 2.2.7 and 2.2.9.

Definition 2.2.11 (Polyfolds of stable maps). We define Z “ ZA,gpXq to be the polyfold

of Ω-stable genus g maps to X in class A which are not necessarily J-holomorphic. For

the construction of the polyfold structure we refer to [HWZ17, Theorem 3.37]. Since the

polyfold Z is locally modeled on (retracts of sc-)Hilbert spaces, it admits (sc-)smooth

cutoff functions. (To see this, combine Proposition 5.5 and Theorem 12.6 in [HWZ21]

with the example of sc-Hilbert spaces discussed in the paragraph following Definition 5.13

therein.)

Similarly, define Z̃ “ ZÃ,gpPN ˆ Xq to be the polyfold of Ω-stable genus g maps to

PN ˆ X in the class Ã “ rpts ˆ A ` mrP1s ˆ rpts. There is an obvious G-action on Z̃.

Observe that the set of framed stable maps, introduced in Definition 2.1.11(iii), acquires

a natural topology via its natural inclusion into Z̃ as a subspace. Let πZ be the natural

projection from the space of framed stable maps to Z.

Definition 2.2.12. A good covering is a collection U “ tpUi, ℓi, Di, λi, χiquiPΛ of tuples

indexed by a finite set Λ such that we have the following properties.

1. For each i P Λ, Ui Ă Z is an open subset, ℓi ě N ` 1 is an integer and Di Ă X is a

codimension 2 submanifold-with-boundary satisfying the following properties for any

ru,Cs P Ui.

(i) The map u is transverse to Di with upCq X BDi “ ∅.

(ii) u´1pDiq consists of exactly ℓi distinct non-nodal points of C.

(iii) The curve C equipped with the marked points u´1pDiq is stable.

As a result, there is a well-defined map stℓi,Di
: π´1

Z pUiq Ñ M ˚

g,rℓispP
N ,mq given by

including the intersections of a stable map with Di as ℓi unordered marked points. Set

rUi :“ st´1
ℓi,Di

pM ˚,st
g,rℓis

pPN ,mqq.

2. For each i P Λ, λi : M
˚,st
g,rℓis

pPN ,mq Ñ G{G is a smooth G-equivariant map.

3. For each i P Λ, χi : Z Ñ r0, 1s is a nonzero sc-smooth function supported in Ui.

Moreover, for every point ru,Cs in MgpX,A; Jq, there exists an index i P Λ with

ru,Cs P πZprUiq and χiru,Cs ą 0.

Remark 2.2.13 (Existence of good coverings). By [Par16, Lemma 9.2.7], we can find U, ℓ,D

with properties 1(i)–(iii) in Definition 2.2.12 near any point ru,Cs P MgpX,A : Jq. Now,

using Corollary 2.2.10, the existence of sc-smooth cut-off functions on Z and the compact-

ness of MgpX,A; Jq, we deduce that good coverings exist.

With these preparations in place, we fix a good covering U as above and finally con-

struct the associated map λU . Let V J
A,g Ă Z be the open subset where the sc-smooth
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function
ř

iPΛ χi is strictly positive. Now, define the function

λU :“ cΛptχi ˝ πZuiPΛ, tλi ˝ stℓi,Di
uiPΛq : π´1

Z pV J
A,gq Ñ G{G (2.2.2.10)

where we are using the notation of Lemma 2.2.6. It is easy to deduce from Lemma 2.2.6

that λU is indeed a G-equivariant map.

2.2.3 Choosing the integer k

At the end of this subsection, we will show how to choose the integer k. We begin by

investigating the cohomology of restrictions of OPN pkq to embedded curves in PN .

Lemma 2.2.14 (Extension of sections). There exists a positive integer k0 with the fol-

lowing property. For any C Ă PN corresponding to a point of M˚

g pPN ,mq and any integer

k1 ě k0, the restriction map

H0pPN ,OPN pk1qq Ñ H0pC,OCpk1qq (2.2.3.1)

is surjective.

Proof. Using the short exact sequence

0 Ñ IC{PN Ñ OPN Ñ OC Ñ 0 (2.2.3.2)

of coherent sheaves on PN , where IC{PN is the ideal sheaf of C Ă PN , it suffices to show

that we have H1pPN , IC{PN pk1qq “ 0 for any C Ă PN in M˚

g pPN ,mq and any k1 ě k0 for

some uniform constant k0.

To this end, let us define the function k1 : M˚

g pPN ,mq Ñ Zěm which assigns to any

C Ă PN the smallest k1 ě m for which H1pC, IC{PN pk1qq “ 0. This function is well-defined

by Serre’s vanishing theorem [Har77, Theorem III.5.2]. By [Har77, Theorem III.12.8],

it is upper semicontinuous with respect to the Zariski topology on M˚

g pPN ,mq. Being

an algebraic scheme of finite type, M˚

g pPN ,mq is quasi-compact in the Zariski topology.

Thus, the function k1 achieves a maximum k0 which has the desired property by Lemma

2.2.15 below.

Lemma 2.2.15. Let C Ă PN be an embedded prestable genus g curve of degreem with ideal

sheaf IC{PN . Then, the function given by k1 ÞÑ dimH1pPN , IC{PN pk1qq is monotonically

decreasing for k1 ě m.

Proof. After performing a generic linear change of coordinates, we may assume that the

linear hyperplane Y “ PN´1 Ă PN (defined by the vanishing of the homogeneous coor-

dinate x0) meets C in a set F of m distinct non-singular points. Using local analytic

equations of C and Y at their (transverse) intersection points, it is easy to verify that we

obtain a short exact sequence

0 Ñ IC{PN p´Y q
x0
ÝÑ IC{PN

res
ÝÝÑ IF {Y Ñ 0 (2.2.3.3)
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of coherent sheaves on PN (with res denoting the natural restriction map from the ideal

sheaf of C Ă PN to the ideal sheaf of F Ă Y ). Tensor (2.2.3.3) with OPN pY q bOPN pk1q “

OPN pk1 ` 1q for some k1 ě m and observe that the long exact sequence in cohomology

contains

H1pPN , IC{PN pk1qq Ñ H1pPN , IC{PN pk1 ` 1qq Ñ H1pY, IF {Y pk1 ` 1qq. (2.2.3.4)

To obtain the desired inequality, it thus suffices to show that H1pY, IF {Y pk1 ` 1qq “ 0. To

this end, consider the tautological short exact sequence

0 Ñ IF {Y Ñ OY Ñ OF Ñ 0 (2.2.3.5)

on Y . Tensor this with OY pk1 `1q and observe that the long exact sequence in cohomology

contains

H0pY,OY pk1 ` 1qq
res
ÝÝÑ H0pF,OF pk1 ` 1qq Ñ H1pY, IF {Y pk1 ` 1qq

Ñ H1pY,OY pk1 ` 1qq. (2.2.3.6)

Now, H1pY,OY pk1 ` 1qq “ 0 by [Har77, Theorem III.5.1(b)] while the map res in (2.2.3.6)

is surjective since k1 ě m. This allows us to conclude that H1pY, IF {Y pk1 ` 1qq “ 0 as

desired.

Lemma 2.2.16. Let σ̂0, . . . , σ̂N be an orthonormal basis of CN`1 with respect to the

standard Hermitian inner product and let σ0, . . . , σN be the corresponding elements of

H0pPN ,OPN p1qq under the obvious identification CN`1 “ H0pPN ,OPN p1qq. Then, using

the standard Hermitian metric on the line bundle OPN p1q, we have the identity

N
ÿ

j“0

|σjpxq|2 “ 1

for all points x P PN .

Proof. Let x P PN be given. Choose a unit vector x̂ P CN`1 spanning the complex line

corresponding to x. By the definition of the standard Hermitian metric on OPN p1q, we

have |σjpxq| “ |xx̂, σ̂jy| for each 0 ď j ď N (where we are using the standard Hermitian

inner product on CN`1 on the right side). It follows from the orthonormality of tσ̂ju
N
j“0

in CN`1, that we can write x̂ “
řN
j“0xx̂, σ̂jyσ̂j . Applying Pythagoras’ theorem to this

decomposition of the unit vector x̂ now gives the desired result.

Lemma 2.2.17 (Cohomology vanishing I). There exists a positive integer k1 with the fol-

lowing property. For any point ru,Cs in MgpX,A; Jq, any complex basis F “ ps0, . . . , sN q

of H0pC,Lbp
u q and any integer k1 ě k1, we have

H1pC, ι˚C,F pT ˚0,1
PN b OPN pk1qq b u˚TXq “ 0 (2.2.3.7)

where ιC,F : C ãÑ PN is the embedding appearing in Lemma 2.2.3.
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Proof. Observe that we may replace T ˚0,1
PN by TPN because of the definition of the holo-

morphic structure on the former bundle. This has the effect of making (2.2.3.7) manifestly

independent of the particular choice of basis F and associated embedding ιC,F . Thus, for

each point û “ ru,Cs, we can define the positive integer k1pûq to be the smallest k1 ě 1

for which (2.2.3.7) holds. The existence of such a k1, i.e. the finiteness of k1pûq follows

from Serre’s vanishing theorem [Har77, Theorem III.5.2]. Since the vanishing of H1 is an

open condition, it follows that k1 : MgpX,A; Jq Ñ Zě1 is upper semicontinuous and thus,

attains a maximum k1 on the compact space MgpX,A; Jq.

To show that k1 defined this way satisfies the desired property, it will suffice to show

that if (2.2.3.7) holds at ru,Cs for some k1, then it does so even when k1 is replaced by

a larger integer. Suppose to the contrary that we have H1pC, ι˚C,F pTPN b OPN pk1 ` aqq b

u˚TXq ‰ 0 for some a ě 1. By Serre duality [Har77, Theorem III.7.6] on C, we get a

nonzero holomorphic section σ of pι˚C,F pTPN b OPN pk1 ` aqq b u˚TXq˚ b ωC , where ωC

denotes the dualizing line bundle of the curve C. Taking a suitable holomorphic section

s of OPN p1q, we deduce that σ b sba is a nonzero holomorphic section of pι˚C,F pTPN b

OPN pk1qq b u˚TXq˚ b ωC . Applying Serre duality again, we see that this contradicts

(2.2.3.7).

Lemma 2.2.18 (Cohomology vanishing II). There exists a positive integer k2 with the

following property. For any point ru,Cs in MgpX,A; Jq, any integer k1 ě k2 and any

complex basis F of H0pC,Lbp
u q such that λU maps the associated framed stable map pC Ă

PN , uq to the identity coset in G{G, the map

x¨y ˝ dιC̃,F : H0pC, ι˚C,FT
˚0,1
PN b u˚TX b ι˚C,FOPN pk1qq bH0pC, ι˚C,FOPN pk1qq

Ñ Ω0,1pC̃, ũ˚TXq (2.2.3.8)

has image spanning the cokernel of the linearized Cauchy–Riemann operator DpB̄Jqu.

Proof. LetM Ă Z̃ (see Definition 2.2.11) be the subset consisting of framed J-holomorphic

stable maps pC Ă PN , uq which are mapped by λU to the identity coset in G{G and satisfy

OCp1q » Lbp
u . Since G is compact, λU is G-equivariant and MgpX,A; Jq is compact, it

follows that M is compact. For each point û “ pC Ă PN , uq in M, define k1pûq to be

the smallest positive integer k1 for which the map DpB̄Jqu ‘ px¨y ˝ dιC̃,F q is surjective (the

existence of such a k1, i.e., the finiteness of k1pûq, follows from [AMS21, Lemma 6.24 and

Proposition 6.26]). Since surjectivity is an open condition, it follows that the function

k1 : M Ñ Zě1 is upper semicontinuous and thus, it attains a maximum on the compact

space M.

Define k2 “ supûPM k1pûq. To see that k2 defined this way satisfies the desired property,

it will suffice to show that if (2.2.3.8) maps onto the cokernel of DpB̄Jqu for some k1, then

it does so even when k1 is replaced by a larger integer. But this is an easy consequence

of Lemma 2.2.16. Indeed, for any element f b g in the domain of (2.2.3.8), we may

put fj :“ f b ι˚C,Fσj and gj :“ g b ι˚C,Fσj (with σ0, . . . , σN as in Lemma 2.2.16) to get

x
řN
j“0 fj b gjy “

řN
j“0 |ι˚C,Fσj |

2xf b gy “ xf b gy. But now
řN
i“0 fj b gj lies in the domain

of (2.2.3.8) (but with k1 replaced by k1 ` 1) and has the same image as f b g.
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We now choose k to be the maximum of k0, k1, k2.

Remark 2.2.19. Observe that our choice of k is such that condition (b) of Definition 2.1.13

is satisfied. More precisely, we get condition (b1) from Lemma 2.2.17 while condition (b2)

follows from Lemmas 2.2.14 and 2.2.18.

2.2.4 Completing the proof of Theorem 2.1.18(1)

The preceding subsections show how to choose an unobstructed auxiliary datum. More

precisely, it is always possible to find a complex linear connection ∇X on TX and a po-

larisation OXp1q Ñ X, the latter following from Lemma 2.2.1. Given ∇X ,OXp1q, §2.2.1,
§2.2.2 and §2.2.3 respectively show how to choose p,U and k while Remarks 2.2.4 and

2.2.19 respectively show that conditions (a) and (b) of Definition 2.1.13 are satisfied for

these choices. This completes the proof of Theorem 2.1.18(1).

2.3 Global Kuranishi chart

In this section, we will prove Theorem 2.1.18(2). Let p∇X ,OXp1q, p,U , kq be an unob-

structed auxiliary datum. The case with n marked points is a formal consequence of the

case without marked points and so, we shall focus on the latter. We prove the (relative)

smoothness of the thickening, obstruction bundle, group action and obstruction section

in the subsections below. Except for the (relative) smoothness of the obstruction section,

treated in Lemma 2.3.16, these are all direct consequences of unobstructedness and some

basic results from [Swa21].

Remark 2.3.1 (Regular loci). To keep the notation readable, we use the same notation

for the thickening T and the open locus T reg Ă T where it is cut-out transversely (and

similarly for E). Thus, all the statements made in §2.3 are to be interpreted as being valid

only over a sufficiently small G-invariant open neighborhood of the zero locus s´1p0q Ă T .

2.3.1 Thickening

In this subsection, we consider the space T 1 of tuples pC Ă PN , u : C Ñ X, ηq satisfying

conditions (ia) and (ib) of Construction 2.1.14. Specifically, we endow T 1 with a natural

structure of a rel–C8 manifold over the algebraic base space M˚

g pPN ,mq from Definition

2.1.4. Observing that the projection T Ñ T 1 is a local homeomorphism, this will define a

natural rel–C8 structure on T as well. To this end, let us first introduce rel–C8 manifolds

and their morphisms. A detailed exposition can be found in [Swa21].

Definition 2.3.2. Given a topological space S, an S-space Y {S “ pY, pq is a topological

space Y equipped with a map p : Y Ñ S. An S-chart pφ,Uq of dimension n consists of

an open subset U Ă Y so that ppUq is open and an open embedding φ : U Ñ ppUq ˆ Rn

with pr1φ “ p|U .

Definition 2.3.3. Let S and S1 be topological spaces and n, k,m ě 0. Suppose U Ă S

and A Ă Rnk are open subsets. A continuous map φ : U ˆ A Ñ S1 ˆ Rm is of class rel–Cℓ

for ℓ P N Y t8u if
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• φ1 :“ pr2φ : U ˆA Ñ S1 is continuous and only depends on the first variable,

• φ2ps, ¨q P CℓpA,Rmq for each s P U ,

• the induced map U Ñ CℓpA,Rmq is continuous with respect to the Cℓ-topology.

If V Ă S ˆ Rnk is an open subset, we say φ : V Ñ S ˆ Rm is of class rel–Cℓ if it is locally

of class rel–Cℓ. The relative derivative of φ is given by dφps, xqv “ pφ1psq, dφ2ps, xqvq.

We call two charts for X{S compatible if the transition function is of class rel–C8.

Definition 2.3.4. A rel–C8 manifold with corners over S is an S-space X{S equipped

with a maximal atlas of S-charts with corners which are pairwise rel–C8 compatible.

Definition 2.3.5. A morphism of rel–C8-manifolds is a pair pF, fq : X{S Ñ X 1{S1 where

f : S Ñ S1 is continuous, p1F “ fp, and F is of class rel–C8 in local coordinates.

The compposition of two such morphisms is the obvious one.

Remark 2.3.6. While a rel–C8 manifold X{S (of dimension n) might not have a tangent

bundle, it always has a relative tangent bundle TX{S (of rank n) which is defined by letting

it be φ˚Rn over a local chart pU,φq. A relative submersion is a morphism pF, fq whose

relative derivative TX{S Ñ F ˚TX 1{S1 is surjective.

Now, to realize T 1 over M˚

g pPN ,mq as a rel–C8 manifold, we will use the existence

result from [Swa21] after recasting T 1 as a holomorphic curve moduli space using Gromov’s

shearing trick as in [AMS21].

Define a complex vector bundle over X ˆ PN by

E “ TX b pT ˚0,1
PN b OPN pkq bH0pPN ,OPN pkqqq. (2.3.1.1)

Using the evident connections on all of the bundles involved, we obtain a splitting of the

tangent bundle of E into the vertical E-direction and the horizontal X- and PN -directions.
At any point px, y, ηq P E, with x P X, y P PN and η P Epx,yq, use this splitting to define

the endomorphism

J̃px,y,ηqpv, w, ζq :“ pJxv ` xηyw, J std
y w, JEpx,yqζq, (2.3.1.2)

where Jx is the almost complex structure on X at x, J std
y is the standard complex structure

of PN at y, JEpx,yq denotes multiplication by i on the fibres of E and x¨y denotes the evident

inner product pairing OPN pkq b H0pPN ,OPN pkqq Ñ C. This defines an almost complex

structure J̃ on E.

It is easy to verify that the projection E Ñ X ˆ PN is pseudo-holomorphic, with the

latter carrying the product almost complex structure. Clearly, a smooth map C Ñ E is

J̃-holomorphic if and only if the corresponding map ι : C Ñ PN is holomorphic and the

corresponding map u : C Ñ X and element

η P H0pC, u˚TX b ι˚pT ˚0,1
PN b OPN pkqqq bH0pPN ,OPN pkqq (2.3.1.3)
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satisfy B̄Ju ` xηy|C “ 0. Thus, T 1 is realized a space of pseudo-holomorphic embedded

curves in E, with the map to the base space M˚

g pPN ,mq induced by the natural projection

pPN : E Ñ X ˆ PN Ñ PN . These curves are of genus g and lie in the class Ã :“

Aˆ rpts ` rpts ˆmrP1s P H2pX ˆ PN ,Zq “ H2pE,Zq.

To apply [Swa21, Corollary 3.7], we will realize T 1{M˚

g pPN ,mq as the object repre-

senting the following sheaf of sets F on the category pC8{¨q of rel–C8 manifolds.

Definition 2.3.7. Given a rel–C8 manifold Y {S, we define the set FpY {Sq to consist of

all commutative diagrams of the form

Y CY E

S C PN

H

pPN

h
π

where

• C ph,πq
ÝÝÝÑ PN ˆ S is a family of curves over S arising by pullback along a continuous

map S Ñ M˚

g pPN ,mq and the square on the left is cartesian (and so, CY {C acquires

a natural rel–C8 structure),

• pH,hq : CY {C Ñ E{PN is of class rel–C8,

• for each y P Y with image s P S, the restriction H|y : π´1psq Ñ E of the map

H to the fibre of CY {Y over y is a transversely cut-out pseudo-holomorphic stable

embedding into E of genus g, class Ã, with the property that the projection map

from the kernel of the linearized operator of H|y : π´1psq Ñ E to the kernel of the

linearized operator of pPN ˝ pH|yq “ h|s : π
´1psq Ñ PN is surjective.

For rel–C8 morphisms Y 1{S1 Ñ Y {S, the associated functorial maps FpY {Sq Ñ FpY 1{S1q

are given by pullbacks of such diagrams.

To show that the sheaf F is representable, we need the following simple observation

which was not explicitly stated in [Swa21].

Lemma 2.3.8 (Rel–C8 submersions). Suppose Y 1{S Ñ Y {S is a rel–C8 submersion

of rel–C8 manifolds. Then, Y 1{Y is naturally a rel–C8 manifold and is given by the

categorical fibre product

Y 1{Y “ pY 1{Sq ˆpY {Sq pY {Y q (2.3.1.4)

in the category pC8{¨q of rel–C8 manifolds.

Proof. Straightforward.

Proposition 2.3.9. The sheaf F is representable by a rel–C8 structure on an open subset

of transversely cut-out points in T 1{M˚

g pPN ,mq. This open subset contains the zero locus

of the obstruction section s.
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Proof. By [Swa21, Proposition 2.16], the representability of F is a local question on both

T 1 and M˚

g pPN ,mq. Near a given p̃ P T 1 (and the corresponding point p P M˚

g pPN ,mq),

defining an element of Fppt{ptq, use the construction of [Swa21, §6.3] to find a family

C{M of stable pointed genus g curves, such that we can realize T 1 (resp. M˚

g pPN ,mq)

near p̃ (resp. p) as a space of pseudo-holomorphic stable maps from the fibres of C{M to

E (resp. PN ) with suitable divisor constraints imposed on the added marked points. For

more details, see [Swa21, Proposition 6.8].

Using the functorial description of the space of pseudo-holomorphic maps from fibres

of C{M given in [Swa21, Definitions 3.1, 3.2, 3.3] and applying [Swa21, Corollary 3.7] to

this functor now gives canonical rel–C8 structures on T 1{M near p̃ (resp. M˚

g pPN ,mq{M

near p) and inspection of (vertical) tangent spaces shows that the natural projection

T 1{M Ñ M˚

g pPN ,mq{M is a rel–C8 submersion near p̃ (resp. p). Lemma 2.3.8 now

implies that we get a canonical rel–C8 structure on T 1{M˚

g pPN ,mq near pp̃, pq. Using the

explicit categorical fibre product description of this rel–C8 structure (given in Lemma

2.3.8), we check that this rel–C8 structure indeed represents the functor F of Definition

2.3.7.

The final assertion about the zero locus of s follows from the fact that the auxiliary

datum fixed in the beginning of this section was unobstructed.

To complete the discussion of the thickening, we note that the natural projection

T Ñ T 1 has discrete fibres and is a local homeomorphism since, for any prestable curve

C of genus g, the exponential map H1pC,OCq Ñ Pic0pCq has this property. We use this

to endow T {M˚

g pPN ,mq with a natural rel–C8 structure.

Remark 2.3.10. Proposition 2.3.9 and the preceding paragraph complete the proof of The-

orem 2.1.18(2a).

2.3.2 Obstruction bundle

Recall from Construction 2.1.14 that the obstruction bundle E has three summands. The

first summand is a trivial bundle with fibre supN ` 1q and therefore has a natural rel–C8

vector bundle structure. The third summand acquires a natural rel–C8 structure as it is

the pullback to T of an algebraic vector bundle on M˚

g pPN ,mq by the next lemma.

Lemma 2.3.11 (R1π˚O has rank g). E˚ :“ R1π˚OCg is a rank g algebraic vector bundle

on M˚

g pPN ,mq dual to the Hodge bundle E :“ π˚ωπ where ωπ is the relative dualizing line

bundle of π : Cg Ñ M˚

g pPN ,mq. The fibre of the bundle E˚ at a point C Ă PN is naturally

identified with H1pC,OCq.

Proof. The fact that E˚ defines a locally free sheaf follows from the theorem on cohomology

and base change [Har77, Theorem III.12.11]. The assertion that it is dual to the Hodge

bundle is a consequence of Serre duality [Har77, Theorem III.7.6] for the case of curves.

It remains to consider the second summand of the obstruction bundle. This summand

is actually pulled back under the projection map T Ñ T 1 (recall the definition of T 1 from

the previous subsection) and its fibre over pC Ă PN , u : C Ñ X, ηq is given by the vector
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space EpCĂPN ,uq of (2.1.0.4). As the auxiliary datum fixed in the beginning of §2.3 is

unobstructed, we may apply [Swa21, Theorem 5.18] to endow this with the structure of a

rel–C8 vector bundle.

Remark 2.3.12. We have now completed the proof of the first half of Theorem 2.1.18(2b).

Remark 2.3.13 (Stable almost complex structure). To establish the assertion of Theorem

2.1.18(2e), we begin by observing that the bundle E ‘ g is already a complex vector

bundle. Indeed, the second and third summand in (2.1.0.8) are complex vector spaces

and we have an obvious identification g ‘ supN ` 1q “ slpN ` 1,Cq. It remains to find

a natural stable complex structure on the vertical tangent bundle TT {M˚

g pPN ,mq
. This

comes from the identification of the vertical tangent bundle with bundle of kernels of

the associated (surjective) linearized real Cauchy–Riemann type operators. This is stably

equivalent to the index (virtual) bundle of the corresponding complex Cauchy–Riemann

type operators and the latter has an obvious stable complex structure. For more details,

see the orientation argument in the proof of [MS12, Theorem 3.1.6(i)].

2.3.3 Group action

Since the rel–C8 structure on T {M˚

g pPN ,mq is pulled back from T 1{M˚

g pPN ,mq, the

G-action defines a rel–C8 map

pGˆ T q{pGˆ M˚

g pPN ,mqq Ñ T {M˚

g pPN ,mq (2.3.3.1)

if the corresponding map with T replaced by T 1 is of class rel–C8. But this is clear once

we observe that the corresponding natural transformation at the level of the functor F

(from Definition 2.3.7) is well-defined and is therefore represented by a rel–C8 map by

the Yoneda lemma. The next lemma now establishes the fibrewise local linearity (in the

sense of [AMS21, Definition 4.20]) of the G-action.

Lemma 2.3.14. Let V be a finite dimensional vector space, π :M Ñ V a rel–C8 manifold

and Γ a finite group. Assume that we are given a rel–C8 action of Γ onM{V which covers

a linear Γ-representation θ on V . Let x P π´1p0q be fixed by Γ. Then, M{V has a rel–C8

chart at x in which the Γ-action is linear.

Proof. By shrinking to a Γ-invariant coordinate neighborhood of x P M , we may assume

that M is an open subset of a product V ˆW , with W another finite dimensional vector

space with x “ p0, 0q. The action of any g P Γ is given, in these coordinates, by a rel–C8

map pv, wq ÞÑ pθpgqv, φgpv, wqq with

φgpθphqv, φhpv, wqq ” φghpv, wq. (2.3.3.2)

Define the representation ρ : Γ Ñ GLpW q by ρpgq “
Bφg

Bw p0, 0q. Define the map pv, wq ÞÑ

pv, T pv, wqq by

T pv, wq “
1

|Γ|

ÿ

gPΓ

ρpgq´1φgpv, wq (2.3.3.3)
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and observe that BT
Bw p0, 0q is the identity map. Using the implicit function theorem with

parameters, [Swa21, Lemma 5.10], it follows that pv, wq ÞÑ pv, T pv, wqq is a rel–C8 coor-

dinate change on M{V near x. A direct check shows that in these new coordinates the

Γ-action is given by θ ‘ ρ.

Remark 2.3.15. We have now completed the proof of the first half of Theorem 2.1.18(2c).

2.3.4 Obstruction section

Recall from Construction 2.1.14 that the obstruction section s has three components cor-

responding to the three summands of the obstruction bundle E . It is immediate from the

construction of the rel–C8 vector bundle structure on E and the Yoneda lemma that the

second component of s is rel–C8.

The first component of s, denoted λU pC Ă PN , uq, is an supN ` 1q-valued function

which is defined using the good covering U (recall Definition 2.2.12). To see that this

is a rel–C8 function on T 1{M˚

g pPN ,mq (and therefore on T {M˚

g pPN ,mq), we need the

two following observations. The first is that the formula (2.2.2.10) defining λU is sc-

smooth on the polyfold π´1
Z pV J

A,gq since the cutoff functions χi : Z Ñ r0, 1s were chosen

to be sc-smooth. The second is that the rel–C8 structure on T 1{M˚

g pPN ,mq, defined via

Proposition 2.3.9, has local rel–C8 charts given by (finite dimensional) submanifolds of

the polyfold Z̃ of Definition 2.2.11 (for more details on the local charts see [Swa21, §4.3
and §4.4], specifically Lemma 4.12–Theorem 4.16 therein). Putting these two observations

together, we find that λU : T 1{M˚

g pPN ,mq Ñ supN ` 1q{pt is rel–C8.

We finally turn to the relative smoothness, near s´1p0q Ă T , of the third component

of s which we recall takes values in the (pullback of the) vector bundle E˚ specified by

Lemma 2.3.11. The desired assertion will follow from the next lemma once we recall that

the projection T Ñ T 1 is a local homeomorphism.

Lemma 2.3.16. Consider a transversely cut-out pC Ă PN , u, ηq P T 1 satisfying OCp1q »

Lbp
u . Then there is a rel–C8 section σ, defined on T 1{M˚

g pPN ,mq near pC Ă PN , u, ηq,

of the pullback of the bundle E˚ such that we have σpC Ă PN , u, ηq “ 0 and the identity

rOĈp1qs “ p ¨ rLûs ` σpĈ Ă PN , û, η̂q (2.3.4.1)

in PicpĈq holds for all points pĈ Ă PN , û, η̂q P T 1 at which σ is defined.

Proof. Let C˝
g Ă Cg be the set of smooth points in the fibres of the universal curve Cg Ñ

M˚

g pPN ,mq. We claim that it suffices to find an integer r ě 1 and rel–C8 maps

τ1, . . . , τr, τ
1
1, . . . , τ

1
r : T 1{M˚

g pPN ,mq Ñ C˝
g{M˚

g pPN ,mq, (2.3.4.2)

defined on a neighborhood of q :“ pC Ă PN , u, ηq, such we have τipqq “ τ 1
ipqq for 1 ď i ď r

and, for all points q̂ “ pĈ Ă PN , û, η̂q in this neighborhood, a holomorphic line bundle

isomorphism

OĈp1q » Lbp
u b OĈpDq̂q (2.3.4.3)
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where Dq̂ :“
řr
i“1 τipq̂q´

řr
i“1 τ

1
ipq̂q. Indeed, in this case, we can define the desired section

σ by the explicit formula σpq̂q :“
řr
i“1 ρpτipq̂q, τ 1

ipq̂qq where ρ denotes the (holomorphic)

Abel–Jacobi map

ρ : C˝
g ˆM˚

g pPN ,mq
C˝
g Ñ E˚ (2.3.4.4)

which is defined near the diagonal ∆C˝
g
and has the property that for any Ĉ Ă PN in

M˚

g pPN ,mq and any two points x, y P Ĉ, the element ρpx, yq P H1pĈ,OĈq satisfies

rOĈpxqs “ rOĈpyqs ` ρpx, yq P PicpĈq (2.3.4.5)

and ρpx, yq “ 0 if x “ y.

To complete the proof, we will now show how to construct an integer r and maps τi, τ
1
i

as above. We first choose an integer ℓ " 1 such that the (isomorphic) holomorphic line

bundles on C

L1 :“ OCpℓ` 1q b pω˚
Cqbp (2.3.4.6)

L2 :“ OCpℓq b pu˚OXp1qqb3p (2.3.4.7)

are very ample and have vanishing first cohomology. Let r :“ degpL1q “ degpL2q and s1

(resp. s2) be a holomorphic section of L1 (resp. L2) such that the sections s1, s2 have the

same vanishing locus on C consisting of r distinct non-singular points z1, . . . , zr P C.

Let M˚

g pPN ,mq
π

ÐÝ Cg
F
ÝÑ PN be the universal map on M˚

g pPN ,mq and let ωπ be the

relative dualizing line bundle of π. Define the coherent sheaf

L1 :“ π˚pF ˚OPN pℓ` 1q b ω´bp
π q (2.3.4.8)

on M˚

g pPN ,mq and observe, using H1pC,L1q “ 0, that L1 is locally free near the point

C Ă PN by the theorem on cohomology and base change [Har77, Theorem III.12.11]. Thus,

we can find a local holomorphic section σ1 of L1 with σ1pC Ă PN q “ s1 P H0pC,OCpℓ `

1q b ω´bp
C q. Using this, for q̂ “ pĈ Ă PN , û, η̂q close to q “ pC Ă PN , u, ηq, we define

τ1pq̂q, . . . , τrpq̂q P Ĉ to be the unique zeros of σ1pĈ Ă PN q close to z1, . . . , zr P C. The

functions τ1, . . . , τr are obviously rel–C8, since they are pullbacks to T 1 of continuous

(even holomorphic) sections of π.

Finally, we need to construct τ 1
1, . . . , τ

1
r. For this, we consider the space S 1 parametriz-

ing all tuples pĈ Ă PN , û, η̂, ŝ2q, where pĈ Ă PN , û, η̂q P T1 and ŝ2 P H0pĈ,OĈpℓq b

pû˚OXp1qqb3pq. By regarding such tuples as pseudo-holomorphic maps (with respect to

a suitable almost complex structure as in §2.3.1) into the total space of the line bundle

OXp1qb3p bC OPN pℓq Ñ X ˆ PN pulled back to the space E from (2.3.1.1), we argue

exactly as in Proposition 2.3.9 to conclude that, near the point pC Ă PN , u, η, s2q, the

space S 1{M˚

g pPN ,mq carries a natural rel–C8 structure representing a functor analogous

to F. Further, H1pC,L2q “ 0 implies that the natural forgetful map S 1{M˚

g pPN ,mq Ñ

T 1{M˚

g pPN ,mq is a rel–C8 submersion near pC Ă PN , u, η, s2q. This last assertion allows

us to produce a rel–C8 local section σ2 : T 1{M˚

g pPN ,mq Ñ S 1{M˚

g pPN ,mq of the forgetful
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map which is defined near q “ pC Ă PN , u, ηq and maps it to pC Ă PN , u, η, s2q. This local

section σ2 yields, for q̂ “ pĈ Ă PN , û, η̂q P T 1 sufficiently close to q, a section

σ2pq̂q P H0pĈ,OĈpℓq b pû˚OXp1qqb3pq (2.3.4.9)

with unique zeros τ 1
1pq̂q, . . . , τ 1

rpq̂q P Ĉ close to z1, . . . , zr P C. Using the fact that σ2 is

rel–C8 and the holomorphicity of each σ2pq̂q, it follows that the functions τ 1
1, . . . , τ

1
r are

also rel–C8. This completes the construction of r, τi, τ
1
i and concludes the proof.

Remark 2.3.17. We have now completed the proof of the second half of Theorem 2.1.18(2b).

Remark 2.3.18 (Zeros of the obstruction section). To see that the natural continuous map

s´1p0q{G Ñ MgpX,A; Jq (2.3.4.10)

is a homeomorphism, and therefore establish Theorem 2.1.18(2d), we argue as follows.

Bijectivity follows by noting that s´1p0q exactly parametrizes J-holomorphic stable maps

pC, uq in MgpX,A; Jq together with a choice of projective embedding C Ă PN given by

the holomorphic sections of Lbp
u such that λU pC Ă PN , uq is the identity coset in G{G.

Using the G-equivariance of λU and the fact that the projective embeddings in question

correspond to a choice of basis for H0pC,Lbp
u q, it follows that the preimage of each point

under the projection s´1p0q Ñ MgpX,A; Jq is a G-orbit. It now follows that s´1p0q

is compact and thus, the continuous bijection between s´1p0q{G and MgpX,A; Jq is a

homeomorphism since the latter space is known to be Hausdorff.

Remark 2.3.19 (Finite stabilizers). The stabilizer Γ Ă G of any point pC Ă PN , uq of

s´1p0q is naturally identified with the automorphism group of the stable map pC, uq and

is therefore finite. This implies that the action of G on T also has finite stabilizers in

a neighborhood of the compact set s´1p0q. This establishes the second half of Theorem

2.1.18(2c).

2.3.5 Completing the proof of Theorem 2.1.18(2)

The preceding subsections show that if we fix an unobstructed auxiliary datum, then the

output of Construction 2.1.14 has all the properties claimed in the statement of Theorem

2.1.18(2) and, in particular, is of class rel–C8. Refer to Remarks 2.3.10, 2.3.12, 2.3.13,

2.3.15, 2.3.17, 2.3.18 and 2.3.19. This completes the proof of Theorem 2.1.18(2).

2.4 Uniqueness up to equivalence and cobordism

In this section, we will prove Theorem 2.1.18(3). We begin by formulating the notions of

equivalence and cobordism for rel–C8 global Kuranishi charts. These are slight variations

on the definitions presented in [AMS21, §5.1] that allow us to keep track of the rel–C8

structures involved.

Definition 2.4.1 (Rel–C8 equivalence). Let K “ pG, T {M, E , sq be a rel–C8 global

Kuranishi chart as in Definition 2.1.2. Consider the following moves applied to K.
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(i) (Germ equivalence) Given a G-invariant open neighborhood U Ă T of s´1p0q, replace

K by pG,U{M, E |U , s|U q.

(ii) (Stabilization) Given a rel–C8 vector bundle p : W Ñ T {M carrying a compatible

rel–C8 action of G, replace K by pG,W {M, p˚E ‘ p˚W,p˚s ‘ ∆W q. Here, ∆W

denotes the tautological diagonal section of p˚W Ñ W .

(iii) (Group enlargement) Given a compact Lie group G1 and a rel–C8 principal G1-

bundle q : P Ñ T {M carrying a compatible rel–C8 action of G, replace K by

pGˆG1, P {M, q˚E , q˚sq.

(iv) (Base modification) Given a smooth manifold M1 (equipped with a smooth submer-

sion to M) and a rel–C8 submersion T {M Ñ M1{M (covering the identity map of

M), replace K by pG, T {M1, E , sq.

We say that two rel–C8 global Kuranishi charts K,K1 are rel–C8 equivalent if there

exists a finite sequence of rel–C8 global Kuranishi charts K “ K0, . . . ,KN “ K1 such

that for each 0 ď i ă N , the chart Ki is obtained from Ki`1 (or Ki`1 is obtained from

Ki) by applying one of the moves (i)–(iv) above. There is an obvious refinement of this

notion of equivalence when K, K1 are stably complex (resp. oriented) by allowing only G-

equivariant stably complex (resp. oriented) W in (Stabilization) and pseudo-holomorphic

(resp. oriented) submersions M1 Ñ M in (Base modification).

Remark 2.4.2. The move (Base modification) is not present in [AMS21] since the definition

of global Kuranishi charts therein does not make explicit reference to the base space of

the thickening.

Definition 2.4.3. Let K0 “ pG, T0{M, E0, s0q and K1 “ pG, T1{M, E1, s1q be rel–C8

global Kuranishi charts having the same symmetry group G and base space M. We say

that K0 and K1 are rel–C8 cobordant if there exists K01 “ pG, T01{M, E01, s01q with the

following properties.

(i) T01 Ñ M is a rel–C8 manifold-with-boundary with BpT01{Mq “ pT0{Mq \ pT1{Mq.

(ii) E01 Ñ T01{M is a rel–C8 vector bundle which restricts on the boundary to E0 \ E1.

(iii) s01 is a rel–C
8 section of E01 with compact zero locus and it restricts on the boundary

to s0 \ s1.

(iv) There is a rel–C8 G-action on E01 Ñ T01{M which makes s01 a G-equivariant section

and is compatible with the given actions on the boundary.

There is an obvious refinement of this notion of cobordism when K0,K1 are stably complex

(resp. oriented) by requiring the cobordism to carry compatible stable complex structures

(resp. orientations).

We will prove the uniqueness of the global Kuranishi charts of Construction 2.1.14 up

to stably complex rel–C8 equivalence and cobordism in the subsections below. The case

with n marked points is a formal consequence of the case with no marked points and so,

we shall focus on the latter.
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2.4.1 Equivalence

Fix J P Jτ pX,ωq and let p∇X,i,OX,ip1q, pi,Ui, kiq for i “ 0, 1 be any two choices of

unobstructed auxiliary data for MgpX,A; Jq and let Ki “ pGi, Ti{Mi, Ei, siq for i “ 0, 1

be the associated rel–C8 global Kuranishi charts from Construction 2.1.14. Consider the

doubly thickened rel–C8 global Kuranishi chart

K “ pG0 ˆG1, T01{M01, E01, s01q (2.4.1.1)

which is defined as follows.

(i) M01 is the space of embedded algebraic prestable genus g curves C Ă PN0 ˆPN1 such

that applying the coordinate projections PN0 ˆPN1 Ñ PNi yields a point ιi : C ãÑ PNi

of Mi for i “ 0, 1. As in Definition 2.2.8, M01 is a smooth quasi-projective variety

of the expected dimension and the natural forgetful maps M01 Ñ Mi are algebraic

submersions.

(ii) T01 consists of tuples pC Ă PN0 ˆ PN1 , u : C Ñ X, η0, α0, η1, α1q satisfying the

following properties.

(a) C Ă PN0 ˆ PN1 lies in M01.

(b) pC ãÑ PNi , u : C Ñ Xq is a framed stable map lying in the domain of λUi for

i “ 0, 1.

(c) ηi belongs to the finite dimensional vector space Ei
pCãÑPNi ,uq

from (2.1.0.4) for

i “ 0, 1 and on the normalization C̃ Ñ C, we have the equation

B̄J ũ` xη0y ˝ dι̃0 ` xη1y ˝ dι̃1 “ 0 P Ω0,1pC̃, ũ˚TXq (2.4.1.2)

with ι̃i is the pullback of ιi along C̃ Ñ C for i “ 0, 1.

(d) αi P H1pC,OCq satisfies the analogue of (2.1.0.7) for i “ 0, 1.

(iii) The fibre of E01 over a point pC Ă PN0 ˆ PN1 , u : C Ñ X, η0, α0, η1, α1q is given by

à

i“0,1

´

supNi ` 1q ‘ Ei
pCãÑPNi ,uq

‘H1pC,OCq

¯

(2.4.1.3)

and s01 “ s0 ‘ s1 at this point is given by si “ pi log λUipC ãÑ PNi , uq, ηi, αiq for

i “ 0, 1. By abuse of notation, we denote the vector bundle summands for i “ 0, 1

from (2.4.1.3) by Ei.

(iv) The group G0 ˆG1 acts on T01 Ñ M01 and E01 in the evident way.

Arguing as in §2.3, we conclude that K is a stably complex rel–C8 global Kuranishi

chart for MgpX,A; Jq and that T01, E01 and s01 are actually rel–C8 with base M0 or M1

(and therefore also with base M01). By symmetry, it suffices to show that K0 and K are

stably complex rel–C8 equivalent. To see this, we first apply (Base modification) K and

40



the submersion M01 Ñ M0 to obtain

K1
0 :“ pG0 ˆG1, T01{M0, E01, s01q. (2.4.1.4)

The next observation is the key to showing that K1
0 and K0 can be related by the moves

(Germ equivalence), (Stabilization) and (Group enlargement). The explicit use of (Germ

equivalence) will be hidden as we will always work in a sufficiently small pG0ˆG1q-invariant

neighborhood of s´1
01 p0q.

Lemma 2.4.4. At any x̂ “ pC Ă PN0 ˆ PN1 , u : C Ñ X, 0, 0, 0, 0q P s´1
01 p0q, the vertical

linearization

ds1|x̂ : TT01{M0
|x̂ Ñ E1|x̂ (2.4.1.5)

is surjective.

Proof. Write ds1|x̂ “ L1 ‘ L2 ‘ L3 using the direct sum decomposition of E1|x̂ from

(2.4.1.3). Since the auxiliary datum p∇X,0,OX,0p1q, p0,U0, k0q is unobstructed, it follows

that the restriction

L2 : TT01{M01
|x̂ Ñ E1

pCãÑPN1 ,uq
(2.4.1.6)

is surjective. It therefore suffices to argue that pL1‘L3q|kerL2 is surjective. The projection

kerL2 Ñ TM01{M0
|x̂ “ H0pC, ι˚1TPN1 q (2.4.1.7)

has a natural splitting σ corresponding to taking η1 “ 0, keeping

pι0 : C ãÑ PN0 , u : C Ñ X, η0, α0q (2.4.1.8)

constant and infinitesimally deforming the embedding ι1 : C ãÑ PN1 (observe that the

infinitesimal deformation of α1 is determined by that of ι1 and the fact that u is fixed).

The description of σ makes it clear that the operator L3|kerL2 actually factors through the

projection (2.4.1.7). The resulting map

L̂3 : TM01{M0
|x̂ “ H0pC, ι˚1TPN1 q Ñ H1pC,OCq (2.4.1.9)

is identified with the connecting map of the long exact sequence in cohomology obtained

by pulling back the Euler exact sequence 0 Ñ OPN1 Ñ OPN1 p1qN1`1 Ñ TPN1 Ñ 0 along ι1.

This shows that (2.4.1.9) is surjective and that ker L̂3 is identified with slpN1 ` 1,Cq, cor-

responding to the infinitesimal action of PGLpN1`1,Cq “ PSLpN1`1,Cq on TM01{M0
|x̂.

It remains to show that L1|kerpL2‘L3q is surjective. For this, we use the splitting σ, re-

stricted to ker L̂3 and observe that PSLpN1 ` 1,Cq-equivariance of the map λU1 gives us

the desired surjectivity statement.

From Lemma 2.4.4, it is immediate that K2
0 :“ pG0ˆG1, s

´1
1 p0q{M0, E0, s0q is a rel–C8

global Kuranishi chart related to K0 by (Group enlargement). To conclude, we need to
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show that K2
0 and K1

0 are related by (Stabilization) with the role of W in Definition 2.4.1

played by E1. This readily follows from Lemma 2.4.4 and a rel–C8 tubular neighborhood

argument.

Remark 2.4.5. We have now established Theorem 2.1.18(3a).

2.4.2 Cobordism

Fix J0, J1 P Jτ pX,ωq. We first connect them by a smooth path γ : r0, 1s Ñ Jτ pX,ωq

and write Jt :“ γptq. Choose a smooth family of Jt-linear connections ∇X,t on TX . By

Lemma 2.2.1, we can find a polarization OXp1q with associated symplectic form Ω taming

the image of γ. Choose p as in §2.2.1, depending only on g and d “ xrΩs, Ay. Using the

compactness of the parametrized moduli spaceMgpX,A; γq, we can now choose U and k as

in §2.2.2 and §2.2.3 such that, for each t P r0, 1s, the auxiliary datum p∇X,t,OXp1q, p,U , kq

is unobstructed for Jt. This yields a stably complex rel–C8 global Kuranishi chart Kt for

MgpX,A; Jtq for each t P r0, 1s. Repeating the arguments of §2.3 with the parameter t, we

see that the family tKtutPr0,1s fits together to exhibit a stably complex rel–C8 cobordism

between K0 and K1.

Remark 2.4.6. We have now established Theorem 2.1.18(3b).

2.4.3 Completing the proof of Theorem 2.1.18(3)

The preceding subsections show that, for fixed J , different choices of unobstructed aux-

iliary data lead to global Kuranishi charts related by stably complex rel–C8 equivalence

(see Remark 2.4.5) and that for different choices of J , it is possible to find auxiliary

data for which the resulting global Kuranishi charts are related by stably complex rel–C8

cobordism (see Remark 2.4.6). This completes the proof of Theorem 2.1.18(3).

2.5 Product formula for GW invariants

In this section, we prove the product formula for Gromov–Witten invariants (Theorem

2.5.9) as an application of the global Kuranishi chart construction. We begin by briefly

recalling the construction of the virtual fundamental class associated to an equivalence

class of global Kuranishi charts and the definition of Gromov–Witten invariants coming

from Theorem 2.1.18. We then discuss stable map moduli spaces of a product of symplectic

manifolds and derive the product formula as a consequence.

2.5.1 Virtual fundamental classes

Let K “ pG, T {M, E , sq be an oriented rel–C8 global Kuranishi chart as in Definition

2.1.2 for a compact Hausdorff space Z. The virtual dimension of Z with respect to K is

defined to be

vdimK Z “ dim T ´ dimG´ rank E (2.5.1.1)
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where all dimensions are understood to be over R. Abbreviating d “ vdimK Z and r “

dim T ´ dimG, the virtual fundamental class rZsvirK P ȞdpZ, ;Qq_ of Z with respect to K
is defined to be the composite

ȞdpZ;Qq
s˚τpE{Gq
ÝÝÝÝÝÝÑ Hr

c pT {G;Qq

ş

T {G
ÝÝÝÑ Q

where the first map is given by

Ȟ˚pZ;Qq – lim
ÝÑ

WĚs´1p0q{G

Ȟ˚pW ;Qq
s˚τpE{Gq
ÝÝÝÝÝÝÑ lim

ÝÑ
WĚs´1p0q{G

Ȟ˚pW,W zs´1p0q{G;Qq

– Ȟ˚pT {G, pT zs´1p0qq{G;Qq Ñ Ȟ˚
c pT ;Qq. (2.5.1.2)

We take the direct limit over neighbourhoods of s´1p0q{G in T {G, while τpE{Gq is the

Thom class of the orbibundle. The second map is integration over the homology Q-

manifold T {G. The number vdimK Z and the class rZsvirK are unchanged if we replace K
by an equivalent oriented global Kuranishi chart (see [AMS21, §5] for more details).

2.5.2 Gromov–Witten classes

We now specialize to the case of Gromov–Witten theory. As in §2.1, let pX,ωq be a closed

symplectic manifold, A P H2pX,Zq and g, n ě 0 be integers. For any J P Jτ pX,ωq, we

have a natural map

Mg,npX,A; Jq
evˆst
ÝÝÝÑ Xn ˆ Mg,n (2.5.2.1)

pC, x1, . . . , xn, uq ÞÑ pupx1q, . . . , upxnq, pC, x1, . . . , xnqstq (2.5.2.2)

defined on the moduli space of stable J-holomorphic maps given by evaluation at the

marked points and stabilization of the domain. We adopt the convention of taking Mg,n “

pt when 2g ´ 2 ` n ď 0. Using §2.5.1, we may define the virtual fundamental class of the

moduli space

rMg,npX,A; Jqsvir :“ rMg,npX,A; JqsvirK P ȞvdimpMg,npX,A; Jq;Qq_ (2.5.2.3)

by choosing any K from the set of equivalent global Kuranishi charts provided by Theorem

2.1.18. Define the associated Gromov–Witten class to be

GW
pX,ωq

A,g,n :“ pev ˆ stq˚rMg,npX,A; Jqsvir P HvdimpXn ˆ Mg,n, ;Qq (2.5.2.4)

where K is any global Kuranishi chart for Mg,npX,A; Jq provided by Theorem 2.1.18.

We are justified in omitting J from the notation for the Gromov–Witten class since the

global Kuranishi charts of Theorem 2.1.18 are unique up to equivalence and cobordism.

Pairing the Gromov–Witten class with cohomology classes α1, . . . , αn P H˚pX, ;Qq and

β P H˚pMg,n, ;Qq yields Gromov–Witten invariants. Specializing to g “ 0 and n “ 3, we

obtain the small quantum cohomology ring QH˚pX,ωq over the universal Novikov ring Λ0

as in [MS12, Chapter 11].
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2.5.3 Gromov–Witten invariants of a product

Let pXi, ωiq be closed symplectic manifolds for i “ 0, 1 and set pX,ωq :“ pX0, ω0q ˆ

pX1, ω1q. Given homology classes Ai P H2pXi,Zq for i “ 0, 1, let A Ă H2pX,Zq denote

the set of classes A which project to Ai under the coordinate projection pri : X Ñ Xi for

i “ 0, 1. Fix g, n ě 0 and Ji P Jτ pXi, ωiq and set J :“ J0 ˆ J1. Define the moduli space

Mg,npX,A; Jq “
ž

APA

Mg,npX,A; Jq. (2.5.3.1)

All the non-empty components of this finite disjoint union have the same virtual dimension.

Using Theorem 2.1.18 and polarizationsOXip1q onXi taming Ji for i “ 0, 1, choose a single

unobstructed auxiliary datum p∇X ,OXp1q, p,U , kq with OXp1q “ OX0p1q b OX1p1q. We

obtain a global Kuranishi chart

K “ pG, T {M, E , sq (2.5.3.2)

for the whole of Mg,npX,A; Jq by taking the disjoint union over A P A of the resulting

charts KA for Mg,npX,A; Jq. There is a natural map

Φ : Mg,npX,A; Jq Ñ Mg,npX0, A0; J0q ˆ Mg,npX1, A1; J1q. (2.5.3.3)

Theorem 2.1.18(1) yields unobstructed auxiliary data p∇Xi ,OXip1q, pi,Ui, kiq for the

moduli spaces Mg,npXi, Ai; Jiq. Let Ki “ pGi, Ti{Mi, Ei, siq be the associated global Ku-

ranishi charts provided by Theorem 2.1.18(2) for i “ 0, 1. Recall thatMi “ M˚

g,npPNi ,miq.

Define N to be the inverse image of M0 ˆ M1 under the natural morphism

Mg,npPN0 ˆ PN1 , pm0,m1qq Ñ Mg,npPN0 ,m0q ˆ Mg,npPN1 ,m1q. (2.5.3.4)

We let

Ψ : N Ñ M0 ˆ M1 (2.5.3.5)

denote the morphism induced by the restriction. It naturally factors through M0 ˆMg,n

M1.

Lemma 2.5.1. N is a smooth quasi-projective scheme of the expected dimension. More-

over, when we have 2g ´ 2 ` n ą 0, the natural morphism N Ñ M0 ˆMg,n
M1 is proper

and birational.

Proof. Let pC, x1, . . . , xn, u : C Ñ PN0 ˆ PN1q be a point of N and, for i “ 0, 1, let

pCi, x
i
1, . . . , x

i
n, ui : Ci Ñ PNiq be the corresponding point of Mi. Let κi : C Ñ Ci

be the natural morphism. Any component of C which is contracted by both κ0 and

κ1 must be a sphere with ě 3 special points. Since AutpCi, x
i
1, . . . , x

i
n, uiq is trivial for

i “ 0, 1, it follows that AutpC, x1, . . . , xn, uq is also trivial. Finally, we observe that

H1pC, u˚TPNi q “ H1pCi, u
˚
i TPNi q “ 0 for i “ 0, 1 where the first equality comes from

the fact that Ci is obtained from C by sequentially contracting spheres with ď 2 special
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points on which the map u is constant. Thus, N is a smooth quasi-projective scheme of

the expected dimension.

Let us now assume that 2g ´ 2 ` n ą 0 and show that N Ñ M0 ˆMg,n
M1 is proper

and birational. Properness is clear since the source and the target of the map are proper

over M0 ˆ M1. To argue that the map is birational (i.e. of degree 1), it suffices, thanks

to the fact that all spaces are unobstructed, to show that the induced map

N sm Ñ Msm
0 ˆMg,n Msn

1

is an isomorphism. To this end, consider a point of the target given by pιi, Ci, x
i
1, . . . , x

i
nq

in Mi for i “ 0, 1 and an isomorphism φ : pC0, x
0
1, . . . , x

0
nqst Ñ pC1, x

1
1, . . . , x

1
nqst. As Ci is

smooth, φ : C0 Ñ C1 is an isomorphism. But in this case it is obvious that the lift to N sm

of this point ofM0ˆMg,nM1 is unique and is given by pC0, x
0
1, . . . , x

0
n, u “ pu0, u1˝φqq.

Remark 2.5.2. It is crucial in Lemma 2.5.1 that the fibre product is taken in the sense of

orbifolds (or stacks) and not over the underlying coarse moduli space Mg,n. Indeed, when

pg, nq is p1, 1q or p2, 0q, the corresponding map N Ñ M0 ˆMg,n
M1 is still proper but of

degree 2.

Lemma 2.5.3. The natural map

ps´1
0 p0q ˆ s´1

1 p0qq ˆM0ˆM1 N Ñ Mg,npX,A; Jq (2.5.3.6)

descends to a homeomorphism on the pG0 ˆG1q-quotient.

Proof. Continuity of the map is evident. Since the source is compact and the target is

Hausdorff, it suffices to argue that we get a bijection after passing to the pG0 ˆ G1q-

quotient. Suppose we are given a point pC, x1, . . . , xn, u : C Ñ X0 ˆX1q of Mg,npX,A; Jq.

We get points pCi, x
i
1, . . . , x

i
n, ui : C Ñ Xiq of Mg,npXi, Ai; Jiq and associated contraction

maps κi : C Ñ Ci for i “ 0, 1 by applying the map Φ from (2.5.3.3). Since Ki is a

global Kuranishi chart for i “ 0, 1, we can lift pCi, x
i
1, . . . , x

i
n, ui : C Ñ Xiq to a point

pCi, x
i
1, . . . , x

i
n, ui, ιi : Ci Ñ PNiq P s´1

i p0q which is unique up to the action of Gi. The

contraction maps C Ñ Ci and the maps ιi : Ci Ñ PNi now uniquely determine a map

C Ñ PN0 ˆPN1 whose stability follows from that of u. Thus, each point in Mg,npX,A; Jq

has an inverse image in ps´1
0 p0q ˆ s´1

1 p0qq ˆM0ˆM1 N which is unique up to the action of

G0 ˆG1.

Remark 2.5.4. Lemma 2.5.3 shows that

KΨ :“ Ψ˚pK0 ˆ K1q (2.5.3.7)

defines a rel–C8 global Kuranishi chart for Mg,npX,A; Jq.

Lemma 2.5.5. KΨ is stably complex rel–C8 equivalent to K from (2.5.3.2).

Proof. Straightforward adaptation of the argument used in §2.4.1 to prove Theorem 2.1.18(3a).
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Remark 2.5.6. Lemma 2.5.5 corresponds to the comparison of obstructions theories in

[Beh99, Proposition 6].

The following fact will be crucial for our proof of the product formula.

Lemma 2.5.7. Assume 2g ´ 2 ` n ą 0 and pg, nq is neither p1, 1q nor p2, 0q. Then, we

have

Ψ˚rN s “ pst ˆ stq˚PDp∆q X rM0 ˆ M1s (2.5.3.8)

in the Borel–Moore homology of M0 ˆ M1 over Q, where ∆ : Mg,n Ñ Mg,n ˆ Mg,n is

the diagonal map.

Proof. Since pg, nq is neither p1, 1q nor p2, 0q, the forgetful map Mg,n Ñ Mg,n is an

isomorphism over a Zariski open subset M
˚

g,n Ă Mg,n. From this and Lemma 2.5.1, it

follows that Ψ maps N onto the closed subscheme M01 :“ M0 ˆMg,n
M1 Ă M0 ˆ M1

birationally.

Let N 1 Ă M01 be the maximal Zariski open subset for which N 1 Ñ Mg,n has image

contained in M
˚

g,n, Ψ
´1pN 1q Ñ N 1 is an isomorphism and the M0 ˆ M1 Ñ Mg,n ˆMg,n

is a submersion at the points of N 1. The set F :“ M01zN 1 is then Zariski closed in

M0 ˆ M1 and dimC F ď dimCN 1 ´ 1. By construction, it follows that (2.5.3.8) holds

over the complement of F in M0 ˆ M1. To conclude that (2.5.3.8) holds over all of

M0 ˆ M1, use the excision exact sequence in Borel–Moore homology and the fact that

the Borel–Moore homology of F is supported in degrees ď dimRN ´ 2.

Remark 2.5.8. By interpreting the Poincaré dual class of the diagonal map ∆ in the sense

of orbifolds, it is possible to extend Lemma 2.5.7 to cover the cases when pg, nq is p1, 1q or

p2, 0q. We do not pursue this generalisation here.

Theorem 2.5.9 (Product formula for GW classes). Using the notation of this subsection,

we have

Φ˚rMg,npX,A; Jqsvir

“ pst ˆ stq˚PDp∆q X prMg,npX0, A0; J0qsvir ˆ rMg,npX1, A1; J1qsvirq (2.5.3.9)

whenever 2g ´ 2 ` n ą 0 and pg, nq R tp1, 1q, p2, 0qu.

Proof. The left side is a priori defined using the global Kuranishi chart K, but by virtue

of Lemma 2.5.5 we can replace K by KΨ. Let T̃ {N be the thickening of KΨ and let

Ψ̃ : T̃ Ñ T0 ˆ T1 be the natural map. Denote by W Ă Mg,n the complement of the

automorphism free smooth locus Mfree
g,n . This has real codimension ě 2, so the map

H3g´3`npMg,n ˆ Mg,n | ∆;Qq Ñ H3g´3`npMfree
g,n ˆ Mfree

g,n | ∆Mfree
g,n

;Qq

is an isomorphism mapping PDp∆q to PDp∆Mfree
g,n

q. Since the restriction of the stabilisation

map to st´1pMfree
g,n q is a submersion, this implies

Ψ̃˚rT̃ {pG0 ˆG1qs “ pst ˆ stq˚PDp∆q X rpT0{G0q ˆ pT1{G1qs (2.5.3.10)
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in the Borel–Moore homology of T0{G0 ˆ T1{G1 over Q. As the obstruction bundle of KΨ

is given by the pullback of the obstruction bundle of K0 ˆK1, the definition of the virtual

fundamental class implies (2.5.3.9).

Specialising to the case g “ 0 and n “ 3, we obtain the following consequence.

Corollary 2.5.10 (Künneth formula for quantum cohomology). The canonical Künneth

map

QHpX0, ω0q bΛ0 QHpX1, ω1q Ñ QHpX,ωq (2.5.3.11)

is an isomorphism of Λ0-algebras.

Corollary 2.5.11. Suppose ω and ω1 are symplectic forms on a closed manifold X such

that

GW
pX,ωq

A,0,n ‰ GW
pX,ω1q

A,0,n (2.5.3.12)

for some A P H2pX,Zq and n ě 3. Then, for any k ě 1 and any φ P DiffpX ˆ pS2qkq

isotopic to the identity, it is impossible to connect φ˚pω ‘ σ‘kq and ω1 ‘ σ‘k by a path of

symplectic forms on X ˆ pS2qk.
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Chapter 3

A fibre product formula

3.1 Virtual fundamental classes of cut-down moduli spaces

This section is the technical backbone of §4.1 and §3.2. Readers more interested in appli-

cations are advised to skip this section and refer to it as needed.

3.1.1 Embeddings of global Kuranishi charts

We investigate how geometric relations between global Kuranishi charts translate into

relations between their virtual fundamental classes.

Definition 3.1.1. A morphism of global Kuranishi charts f : K1 “ pG1, T 1, E 1, s1q Ñ K “

pG, T , E , sq consists of a group morphism α : G Ñ G1, an α-equivariant map f : T Ñ T 1

and an α-equivariant vector bundle morphism f̃ : E Ñ f˚E 1 so that tildefs “ s1f . We call

f an embedding if α “ id, f is an embedding of manifolds and tildef is an injection of

vector bundles.

If K and K1 are rel–C8 over base spaces M respectively M1, we say the morphism is

of class rel–C8 if α is smooth and f and f̃ are rel–C8 covering a smooth morphism

M Ñ M1.

Remark 3.1.2. If f “ pα, f, f̃q is such that α, f and F are embeddings in the respective

category, we can replace pG1, T 1, E 1, s1q with pG,GˆG1 T 1, GˆG1 E 1, id ˆ s1q.

If T {M is a rel–C8 manifold with smooth base, its tangent microbundle has a canonical

(equivariant) vector bundle lift given by TT :“ q˚TM ‘ TT {M, where q : T Ñ M is the

structural map. Given a rel–C8 embedding j : T 1{M1 ãÑ T {M, where M1 is a smooth

submanifold of M, we define the normal bundle of T 1{M1 inside T {M to be

NT 1{T :“ q˚NM1{M ‘Nv
T 1{TM1

,

where Nv
T 1{TS1

:“ j˚TTM1 {M1{TT 1{M1 is the vertical normal bundle with TM1 :“ T ˆM M1.

Definition 3.1.3. Suppose j : K1 ãÑ K “ pG, T {M, E , sq is a rel–C8 embedding. We call

NK1{K :“ NT 1{T ´ D its virtual normal bundle, where D “ cokerpj̃q.
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Throughout, we assume our global Kuranishi charts to be oriented in the following

sense, equivalent to [AMS21, §5.4]. Clearly, if both K and K1 are oriented, then so is

NK1{K.

Definition 3.1.4. A (Borel equivariant) orientation of a Kuranishi chart K “ pG, T , E , sq

consists of a Q-orientation of the virtual vector bundle pTT qG ´ g and EG over TG.

We need orientations of both T {G as well as E in order to define the virtual fundamental

class. By [AMS21, Lemma 5.11], this is equivalent to a Q-orientation of pTT qG ´ g ´ E .

Notation. Given A Ă B, we write H˚pB | A;Qq :“ H˚pB,BzA;Qq and similarly for

cohomology.

Example 3.1.5. If T and the action on it are smooth, there exists an embedding T ˆ g ãÑ

TT , where g “ LiepGq. Taking a G-invariant complement D of this distribution, any

choice of equivariant Thom class τ P H
dimpT {Gq

G pD | T ,Qq defines a Q-orientation of T ´g.

Given an oriented orbifold T and an oriented suborbifold T 1 ãÑ T of codimension k,

we have the Poincaré duality isomorphisms

HkpT | T 1
;Qq – HdimpT 1q

c pT | T 1
;Qq – H0pT 1

;Qq

Thus HkpT | T 1
;Qq – Q|π0pT 1

q| and taking the sum of all generators, we obtain the

Poincaré dual PDpT 1
q of T 1

in T . The composite

j!j
˚ : H˚pT ;Qq Ñ H˚`kpT ;Qq

is given by multiplication with the image of PDpT 1
q in HkpT ;Qq.

Remark 3.1.6. In the case of thickenings as above, we can give an explicit description of

the Poincaré dual in terms of the normal bundle. Factor the inclusion j : T 1 Ñ T as

T 1 i
ÝÑ pT :“ T 1 ˆM M1 Ñ T ,

where we equip pT with the canonical G-orientation. A relative version of the equivariant

tubular neighbourhood theoerem shows that PD
pT pT 1{Gq corresponds to the equivariant

Thom class of Nv
T 1{T under the canonical isomorphism induced by the tubular neighbour-

hood. Meanwhile, PDT {GppT {Gq “ q˚PDM{GpM1{Gq, which corresponds to the equivari-

ant Thom class of q˚NM1{M. Thus,

PDT {GpT 1{Gq “ PDT {GppT {Gq ¨ PD
pT pT 1{Gq. (3.1.1.1)

Proposition 3.1.7. Let j : K1 ãÑ K be a rel–C8 embedding of oriented rel–C8 global

Kuranishi charts, covering a smooth embedding M1 ãÑ M of oriented base spaces. If

NK1{K ‘ D “ NT 1{T , then

j˚peGpDq X rM1svirq “ PDpT 1{Gq X rMsvir. (3.1.1.2)
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Here we identify eGpDq P H˚
GpT 1;Qq with the corresponding element in H˚pT 1{G;Qq.

Equip D with the unique orientation satisfying eGpE 1 ‘Dq “ eGpEq|T 1 .

Proof. Suppose first j˚E “ E 1. The equality

j˚rM1svirK1 “ PDpT 1{Gq X rMsvirK (3.1.1.3)

follows from the commutativity of

ȞvdimpM1q`˚pM1;Qq H
dimpT 1{Gq`˚
c pT 1{G | M1;Qq

ȞvdimpM1q`˚pM;Qq ȞvdimpMq`˚pM;Qq H
dimpT {Gq`˚
c pT {G;Qq

s1˚τpE 1{Gq

j!j˚

¨PDpT 1{Gq s˚τpE{Gq

where we need the convention

xα X rMsvir, βy “ xrMsvir, β ¨ αy.

Now assume rankpDq ą 0. Let rK :“ pG, T 1, j˚E , s1q. This is also a global Kuranishi

chart for M1, albeit with a larger obstruction bundle. By the definition of the virtual

fundamental class,

eGpDq X rM1svirK1 “ rM1svir
rK .

This completes the proof.

Remark 3.1.8. For Proposition 3.1.7 it suffices to assume that the map T 1{G Ñ T {G since

the Poincaré duality statement we use is on the level of coarse moduli spaces.

Proposition 3.1.7 is not quite ideal, since one might have E 1 “ j˚E ‘ NT 1{T , in which

case we would expect that the virtual fundamental classes agree, at least under certain

assumptions.

Lemma 3.1.9. Let K1 and K be rel–C8 smooth global Kuranishi charts over M for

M . Suppose there exists a rel–C8 embedding j : K1 ãÑ K over M, inducing a quasi-

isomorphism

rTT 1{M|s1´1p0q

Ds1

ÝÝÑ E 1|s1´1p0qs Ñ rTT {M|s´1p0q
Ds
ÝÝÑ E |s´1p0qs (3.1.1.4)

of complexes of vector bundles. Then rM svirK1 “ rM svirK .

Proof. Using a relative tubular neighbourhood, we may assume that T admits a vector

bundle structure p : T Ñ T 1. Fix a splitting E |T 1 “ E 1 ‘ D. Using [tD08, Theorem ],

we may assume without loss of generality that E “ p˚E 1 ‘ p˚D, where p : T Ñ T 1 is the

bundle map. Write s “ s1 ‘ s2.

As K1 ãÑ K, we have T 1 Ă s´1
2 p0q. Given x P Z :“ s1´1

p0q “ s´1p0q we have an

associated commutative diagram of vertical derivatives
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TT 1{M,x E 1
x

TT 1{M,x ‘ Tx E 1
x ‘ Dx

dvs1pxq

dvs1pxq‘dvs2pxq

Since cokerpdvspxqq “ cokerpdvs1pxqq is a quotient of E 1
x, it follows that cokerpd

vs2pxqq “ 0.

Replacing T by a neighbourhood of Z, we may assume s2&0. Set S :“ s´1
2 p0q. As

dimpSq “ dimpT 1q, the two global Kuranishi charts K2 :“ pG,S, p˚E 1|S , s1|Sq and K1 are

related by (Germ equivalence).

Finally, rM svirK2
“ rM svirK , since the Poincaré dual of S in T is s˚

2τp˚D.

In other words, the virtual fundamental class only depends on the global Kuranishi

chart up to quasi-isomorphism, similar to [BF97, Proposition 5.3].

Example 3.1.10. Both the embedding condition and (3.1.1.4) are necessary for this to hold.

To see this, consider T “ R “ T 1 and E “ R2 “ E 1 with sptq “ t2 and sptq “ t3. Or

T 1 “ R ˆ t0u Ă T “ R2 with E 1 “ R and E “ R2 and spt, rq “ pt2, r2q and s1ptq “ t2.

3.1.2 Fibre products of global Kuranishi charts

In this section we construct a fibre product of global Kuranishi charts over another global

Kuranishi chart. In the previous section we considered embeddings of global Kuranishi

charts with the same covering group. Here we require a more general notion of morphism.

Suppose we are given a morphism

pp1, πi,Πiq : Ki “ pGˆGi, Ti{Mi, Ei, siq Ñ K “ pG, T {M, E , sq

of oriented global Kuranishi charts for i P t0, 1u. Set rGi :“ GˆGi and rG :“ rG0 ˆ rG1.

Assumption 3.1.11. We assume that

a) π0 is a relative submersion covering a smooth submersion p0 : M0 Ñ M and Π0 is

fibrewise surjective.

b) We have Gx “ Gπjpxq for any x P Tj and j P t0, 1u. Moreover, pGˆGjqx “ GxˆpGjqx.

Definition 3.1.12. The fibre product chart is K0 ˆK K1 :“ p rG0 ˆ rG1, rT , rE ,rsq, where

rT :“ tpx0, g, x1q P T0 ˆGˆ T1 | g ¨ π0px0q “ π1px1qu

while

rE :“ tpe0, g, e1q P E0 ˆGˆ E1 | g ¨ Π0pe0q “ Π1pe1qu

on which rG acts by

ppg0, h0q, pg1, h1qq ¨ py0, g, y1q “ pppg0, h0q ¨ y0, g1gg
´1
0 , pg1, h1q ¨ y1q

for yi P Ti, respectively Ei. The obstruction section is given by rs “ s0 ˆ idG ˆ s1.
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In this fibre product of global Kuranishi charts we use the orbifold fibre product applied

instead of the naive fibre product of thickenings and obstruction bundles. It is a rel–C8

manifold over ĂM :“ tpw0, g, w1q P M0 ˆ G ˆ M1 | g ¨ p0pw0q “ p1pw1qu. Assumption

3.1.11(b) implies that the canonical map rT Ñ T0 ˆ T1 descends to an embedding on the

level of orbit spaces.

Remark 3.1.13. Assumption 3.1.11(a) is more than enough to ensure that this is a well-

defined global Kuranishi chart. Explicitly, it would suffice to require that π0&π1 and that

Π0 ‘ Π1 : E0 ‘ E1 Ñ E is a surjective vector bundle morphisms. This is essentially the

notion of d-transversality in [Joy12, §4.6]. For our main application we can arrange the

stronger assumptions above and thus work with them.

Moreover, Assumption 3.1.11(b) ensures that it defines a global Kuranishi chart for

M0 ˆM M1. It admits a canonical orientation.

Lemma 3.1.14. We have PDprT { rGq “ pπ̄0 ˆ π̄1q˚PDp∆T {Gq where π̄i : Ti{ rGi Ñ T {G is

the map induced by πi.

Proof. Note that ∆T {G is the coarse moduli space of the orbifold rT̂ {GˆGs, where

T̂ “ tpx, g, x1q P T ˆGˆ T | g ¨ x “ x1u.

Then rT “ T̂ ˆT ˆT pT0 ˆ T1q, so the claim follows from Corollary A.1.5.

By Proposition 3.1.7 and Remark 3.1.6, we therefore obtain the following fibre-product

formula.

Theorem 3.1.15. Given global Kuranishi charts K,K0,K1 as above, we have

j˚pe
rG
pπ˚Eq X rM0 ˆM M1svirq “ pπ̄0 ˆ π̄1q˚PDp∆T {Gq X rM0 ˆ M1svir.

Remark 3.1.16 (Fibre products along embeddings). In the case where G1 “ G and

π1 : T1 Ñ T is an embedding and Π1 is fibrewise injective, the induced map π̄1 : M1 Ñ M

is an embedding as well. Thus M1 :“ M0 ˆM M1 embeds into M0 and the canonical

morphism K0 ˆK K1 Ñ K0 is an embedding of global Kuranishi charts (with the same

covering group). By Proposition 3.1.7,

p0˚pe
rG1

pp˚
1Dq X rM0 ˆM M1svirq “ π˚

0PDpT1{Gq X rM1svir. (3.1.2.1)

where pi : T0 ˆT T1 Ñ Ti is the projection and D “ π˚
1E{E1.

Example 3.1.17. Suppose we have a global Kuranishi chart K “ pG, T {M, E , sq for M and

f : M1 Ñ M is a G-equivariant submersion. Then

rf˚Msvir “ pf̄ ˆ π̄q˚PDp∆M{Gq ˆ prM1{Gs b rMsvirq,

where π : T Ñ M is the structural map.
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3.2 GW invariants of a fibre product

In this section we establish a formula for the GW invariants of a fibre product of closed

symplectic manifolds, stated in Theorem 3.2.1. The first step is phrased in terms of

abstract global Kuranishi charts and was carried out in the previous section.The second

step consists of lifting for a strongly Hamiltonian fibre bundle π : X Ñ B, the map π to a

morphism between global Kuranishi charts, shown in Proposition 3.2.5.

Here, a strongly Hamiltonian fibre bundle π : pX,ωXq Ñ pB,ωBq is a smooth submer-

sion, so that kerpdπq is a symplectic subbundle of TX. Suppose πX : pX,ωXq Ñ pB,ωBq

and πY : pY, ωY q Ñ pB,ωBq are two strongly Hamiltonian fibre bundles over a closed

symplectic manifold with compact fibres. We fix symplectically orthogonal splittings

TX “ HX ‘ kerpdπXq TY “ HY ‘ kerpdπY q

identifying HX with π˚
XTB and similarly for Y . Let

Z :“ X ˆB Y

be the fibre product with bundle map πZ : Z Ñ B and inclusion j : Z ãÑ X ˆ Y . Fix

JB P Jτ pB,ωBq and extend it via the above splitting to fibred almost complex structures

JX P Jτ pX,ωXq and JY P Jτ pY, ωY q. In particular, πX and πY are pseudoholomorphic,

so they induce maps

πX : Mg,npX,AX , JXq Ñ Mg,npB, πX˚AX , JBq

and

πY : Mg,npY,AY , JY q Ñ Mg,npB, πY ˚AY , JBq.

The almost complex structure JX ‘ JY restricts to an ωZ-tame almost complex structure

JZ on Z. Given AX P H2pX,Zq and AY P H2pY,Zq with πX˚AX “ AB “ πY ˚AY , define

B :“ tA P H2pZ,Zq | pX˚A “ AX , pY ˚A “ AY u.

We have the following generalisation of Theorem 2.5.9.

Theorem 3.2.1. For any g, n ě 0 we have

ÿ

APB

j˚peGpπ˚
ZEBq X rMg,npZ,A; JZqsvirq

“ pπX ˆ πY q˚PDp∆TB{Gq X rMg,npX,AX ; JXq ˆ Mg,npY,AY ; JY qsvir.

Proof. The key ingredient of the proof is Proposition 3.2.5. It constructs oriented global

Kuranishi charts KX ,KY ,KB for the moduli spaces of stable maps, which satisfy As-

sumption 3.1.11. Moreover, they are equivalent to global Kuranishi charts given by the

construction of §2.
Abbreviate MpW q :“ Mg,npW,AW ; JW q for W P tX,Y,B,Zu. By Theorem 3.1.15,
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we thus see that MpXq ˆMpBq
MpY q admits a global Kuranishi chart rK which is rel–C8

over ĂM :“ M1
X ˆMB

M1
Y and whose virtual fundamental class satisfies

j˚peGpπ̃˚Eq X rMpXq ˆMpBq
MpY qsvirq “ pπX ˆ πY q˚PDp∆TB{Gq X rMpXq ˆ MpY qsvir.

(3.2.0.1)

To relate MpXq ˆMpBq
MpY q with MpZq, we use a similar argument as in §2.5. Let M1

Z

be the preimage of ĂM under

Mg,npPNX ˆ PN ˆ PNY , pmX ,m,mY qq

Mg,npPNX ˆ PN , pmX ,mqq ˆ Mg,npPNY ˆ PN , pmY ,mqq

and let Ψ: M1
Z Ñ ĂM be the induced map. By the same reasoning as in the proof of

Lemma 2.5.1, we show that M1
Z is a smooth quasi-projective variety of the expected

dimension and Ψ is a proper birational equivalence.

Set K1
Z :“ Ψ˚

rK. As in §2.5.3, we see that K1
Z defines a rel–C8 global Kuranishi chart

for
Ů

APB

Mg,npZ,A; JZq, which is equivalent to the disjoint union of global Kuranishi charts

given by Construction 2.1.14. Thus

Ψ˚

ÿ

APB

rMg,npZ,A; JZqsvir “ rMpXq ˆMpBq
MpY qsvir,

so Theorem 3.2.1 follows from (3.2.0.1).

Corollary 3.2.2. If Mg,npB,AB; JBq is unobstructed, then

ÿ

APB

j˚rMg,npZ,A; JZqsvir

“ pπX ˆ πY q˚PDp∆Mg,npB,AB ;JBq
q X rMg,npX,AX ; JXq ˆ Mg,npY,AY ; JY qsvir.

Example 3.2.3. By [MS12, Proposition 7.4.3],M0,npB,AB; JBq is unobstructed if pB,ωB, JBq

is Kähler and there exists a transitive compact Lie group action by biholomorphisms on

B.

Remark 3.2.4. Taking B “ ˚ in Corollary 3.2.2 we can extend Theorem 2.5.9 to the two

cases pg, nq P tp1, 1q, p2, 0qu.

Proposition 3.2.5. We can choose an unobstructed auxiliary datum p∇B,OBp1q, p,U , kq

(resulting in a global Kuranishi chart KB) for Mg,npB,AB; JBq such that there exists a

global Kuranishi chart K1
X “ pGˆG1

X , T 1
X , E 1

X , s
1
Xq for Mg,npX,AX ; JXq with the following

properties.

a) K1
X is equivalent to the global Kuranishi chart given by Construction 2.1.14.

b) We have for any x P T 1
X that Gx “ Gπ̃Xpxq and pGˆG1

Xqx “ Gx ˆ pG1
Xqx.
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c) There exists an isomorphism E 1
X – π̃˚

XEB ‘ ÊX of rel–C8 pG ˆ G1q-vector bundles, so

that the projection E 1
X Ñ EB intertwines s1

X with sB.

There exists a topological submersion T 1
X Ñ M1

X :“ M˚

g,npPN ˆ PNX , pm,mXqq and K1

is a rel–C8 global Kuranishi chart over M1
X . If MB denotes the base space of KB, then

there exists a relatively smooth equivariant submersion π̃X : T 1
X 1{M1

X Ñ TB{MB.

Proof. We assume that either g ě 2 or AB ‰ 0. In this case we can assume n “ 0.

Otherwise one has to adapt the following construction as in Remark 2.1.15. Given a

stable map u : C Ñ X we denote by uB : CB Ñ B the map induced by πXu with stabilised

domain. If ι is a function from C to some manifoldM so that ι descends to CB, we denote

the induced map CB Ñ M by ιB as well.

Fix∇B and a polarisation OBp1q. Let ∇̃ be any complex linear connection on kerpdπXq

and set ∇X :“ π˚
X∇B ‘ ∇̃. Let OXp1q Ñ X be any polarisation as in Definition 2.1.6.

Given a smooth stable map u : C Ñ X define

Lu :“ ωC b u˚OXp1qb3 L̂u :“ ωC b pπXuq˚OBp1qb3 “ κ˚
uLuB

where κu : C Ñ CB is the contraction map. Choose p ě 1 so that the conclusion of

Lemma 2.2.2 holds for any Lu with u P Mg,npX,A; JXq or u P Mg,npB,AB; JBq. Set

mX :“ p b degpLuq and m “ p ¨ degpL̂uq “ p ¨ degpLuB q and let NX “ mX ´ g and

N “ m´ g.

A choice of basis of H0pC,Luq respectively H0pC, L̂uq induces maps ιX : C ãÑ PNX

and ι̂ : C Ñ PN where ιX is an unobstructed nondegenerate embedding and ι̂ descends

to an unosbtructed nondegenerate embedding ιB : CB ãÑ PN , induced by a choice of

basis of H0pCB,LuB q. Denote by MB Ă MgpPN ,mq the space of nondegenerate regular

embeddings. Let M1
X Ă MgpPN ˆ PNX , pm,mXqq be given by those curves which p1˚

maps to M˚

g pPN ,mq and p2˚ maps to M˚

g pPNX ,mXq, and where p2˚ does not contract

irreducible components of the domain. By Lemma 2.5.1, M1
X is unobstructed and has

no isotropy. Denote G :“ PUpN ` 1q. The map p1˚ : M1
X Ñ MB is a G-equviariant

submersion and invariant with respect to the action by GX :“ PUpNX ` 1q, and (b) is

satisfied.

Complete p∇B,OBp1q, pq to an unobstructed auxiliary datum p∇B,OBp1q, p,U , kq where

we might have to increase k depending on the following construction. Define T 1
X to be the

set of tuples pu,C, ι, α, αX , η, ηXq (modulo reparametrisations of the domain) where

• u : C Ñ X is a smooth stable map of type pg, 0q with u˚rCs “ AX ,

• ι “ pι1, ι2q : C Ñ PN ˆ PNX defines an element of M1
X ,

• α, αX P H1pC,OCq are such that

rι˚1OPN p1qs “ p ¨ rL̂us ` α rι˚2OPNX p1qs “ p ¨ rLus ` αX

in PicpCq,
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• η P E
1B
pu,ιq :“ H0pC, ι˚1T

0,1
PN

˚
b pπXuq˚TB b ι˚1OPN pkqq bH0pPN ,OPN pkqq and

ηX P E
1X
pu,ιq :“ H0pC, ι˚1T

0,1˚

PNX b u˚ kerpdπXq b ι˚2OPNX pkqq b H0pPNX ,OPNX pkqq

satisfy

BJ ũ` xηy ˝ dι̃1 ` xηXy ˝ dι̃2 “ 0

on the normalisation C̃ of C.

Choose a good covering V of the polyfold of stable maps to X ˆ PNX in the sense of

Definition 2.2.12 and let λV : T 1
X Ñ PGLpNX`1q{GX be the induced pGˆGXq-equivariant

map. Define the vector bundle E 1
X Ñ T 1

X by letting its fibre over pu,C, ι, α, αX , η, ηXq be

given by

supN ` 1q ‘ supNX ` 1q ‘H1pC,OCq ‘H1pC,OCq ‘ E
1B
pu,ιq ‘ E

1X
pu,ιq

and define the obstruction section s : T 1
X Ñ E 1

X by

s1
Xpu,C, ι, α, αX , η, ηXq “ pi logpλU puB, ι1,Bqq, i logpλVpu, ι2qq, α, αX , η, ηXq.

This map is clearly equivariant under the canonical action of G ˆ GX on T 1
X and E 1

X .

By the arguments of §2.2, we can choose k sufficiently large (and shrink T 1
X) such that

K1
X :“ pGˆG1

X , T 1
X{M1

X , E 1
X , s

1
Xq is a global Kuranishi chart for MgpX,AX ; JXq with the

properties listed in Theorem 2.1.18. By the same reasoning as in §2.4.1 K1
X satisfies (a).

Define π̃X : T 1
X Ñ TB by

π̃Xpu, ι, C, α, αX , η, ηXq “ puB, ι1,B, CB, α, ηBq

where we identify H1pC,OCq with H1pCB,OCB
q via κ˚

u. This is well-defined, since for any

irreducible component Z which is contracted by κu we have gpZq “ 0 and η|Z has to be

constant.

Thus it defines a rel–C8 map T 1
X{M1

X Ñ TB{MB, which is a rel–C8 submersion as

can be seen by considering the induced map between the relative tangent bundles. Clearly,

there exists an isomorphism Π: E 1
X – π̃˚

XEB ‘ ÊX where

pÊXqy “ supNX ` 1q ‘H1pC,OCq ‘ E
1X
pu,ιq

for y “ pu,C, ι, α, αX , η, ηXq P T 1
X . If Π: E 1

X Ñ EB is the induced pG ˆ GXq-equivariant

surjective map covering π̃X , then Πs1
X “ sBπ̃X as claimed.

Corollary 3.2.6. If AB “ 0, then

ÿ

APB

j˚GW
pZ,ωZq

A,0,n “ pπ˚PDp∆Bq ˆ PDp∆M0,n
qq X pGW

pX,ωXq

AX ,0,n
b GW

pY,ωY q

AY ,0,n
q.
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Restriction of fibre bundles

If j : Y Ñ B is the inclusion of a symplectic submanifold instead, let J be an almost

complex structure on B which preserves TY . Abbreviate

Mg,npY,AB; JY q :“
ğ

πY ˚AY “AB

Mg,npY,AY ; JY q.

Lemma 3.2.7. We can choose KB in Proposition 3.2.5 so that there exists a global Ku-

ranishi chart pG, TY {MB, EY , sY q for Mg,npY,AB; JY q which embeds relatively smoothly

into KB.

Proof. Choose a JB-linear connection∇B that restricts to a connection∇Y on TY and pick

any polarisation OBp1q. Extend to an unobstructed auxiliary datum p∇B,OBp1q, p,U X

ZpY,Aq, kq, where the choice of U has to be done compatible with Y and k has to be cho-

sen sufficiently large. Then p∇Y ,OBp1q|Y , p,U X ZpY,Aq, kq is an unobstructed auxiliary

datum for Mg,npY,AB; JY q. To obtain the embedding TY ãÑ TB, we increase k (on both

sides) so that the operator

DBJpuq ` x¨y ˝ dι : C8pC, u˚NY {Xq ‘NE Ñ Ω0,1pC̃, u˚NY {Xq

is surjective for pu,C, x˚, ιq with λpu, ιq “ rIds.

Here NE “ HomCpι˚TPN , u˚NY {Xq b ι˚Opkq bH0pPN ,Opkqq.

Combining Proposition 3.2.5 with (3.1.2.1) we deduce that

ÿ

pX˚A“AX

j˚peGˆG1
X

pπ˚EBq X rMg,npX|Y , A; JXqsvirq “ π˚
XPDGpTY qXrMg,npX,AX ; JXqsvir.

(3.2.0.2)

Example 3.2.8. Suppose pB,ωB, JBq is a convex Kähler manifold and Y the zero locus of a

transverse holomorphic section of a convex holomorphic vector bundle p : V Ñ B. Denote

V “ M0,npV, p´1
˚ AB; JLq. Then Ỹ :“ π´1

X pY q Ă X satisfies

ÿ

pX˚A“AX

j˚rM0,npỸ , A; JXqsvir “ π˚
XepVq X rM0,npX,AX ; JXqsvir (3.2.0.3)

Proof. The reasoning of the first step was used in [Kon95] and [KKP03] to outline a proof

of, respectively prove the Quantum Lefschetz Hyperplane Theorem. By the conditions

on B and V , Mg,npB,AB; JBq is unobstructed and V is a smooth vector bundle over it.

The section ρ defines a section rρ of V with zero locus given by
Ů

j˚AY “AB

M0,npY,AY ; JY q.

As V is convex, a long exact sequence arguemnt shows that rρ intersects the zero section

transversely. Hence,

ÿ

j˚AY “AB

j˚rM0,npY,AY ; JY qsvir “ epVq X rM0,npB,AB; JBqsvir. (3.2.0.4)

Thus (3.2.0.3) follows from Lemma 3.1.9 and (3.2.0.2).
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Chapter 4

Relations between GW invariants

4.1 Kontsevich–Manin axioms

The Kontsevich-Manin axioms are a catchphrase used to describe the properties in [KM94]

that GW invariants are expected to satisfy. In contrast to the introduction, we will consider

here the Gromov–Witten classes

GWX,ω
g,n,A :“ pev ˆ stq˚rMg,npX,A; Jqsvir

where J P Jτ pX,ωq is arbitrary. While the axioms are less elegant in terms of the GW

classes, their proof is slightly more transparent.

The Effective, Homology, and Grading axioms follow directly from the construction.

Lemma 4.1.1 (Symmetry). The GW invariants GWX,A
g,n satisfy

xασp1q ˆ ¨ ¨ ¨ ˆ ασpnq ˆ PDpσ˚βq,GWX,A
g,n y “ p´1qϵpσ,αqxα1 ˆ ¨ ¨ ¨ ˆ αn ˆ PDpβq,GWX,A

g,n y

for any permutation σ P Sn and classes αi P H˚pX;Qq and β P H˚pMg,n;Qq, where

ϵpσ, αq “ |ti ą j | σpiq ă σpjq, |αi|, |αj | P 2Z ` 1u|.

Proof. Given a global Kuranishi charts Kn as in Construction 2.1.14, the holomorphic

Sn-action on the base space Mn Ă Mg,npPN ,mq lifts to a continuous action by rel–C8

diffeomorphisms on the thickening and the obstruction bundle. As the equivariant Thom

class of the obstruction bundle is Sn-invariant, so is the virtual fundamental class.

Lemma 4.1.2 (Mapping to a point). We have

rMg,npX, 0; Jqsvir “ cg dimCpXqpTX b E_q X rX ˆ Mg,ns

in H˚pX ˆ Mg,n;Qq, where E denotes the Hodge bundle over Mg,n.

Proof. Given a constant stable map u : C Ñ X with image x, we have

H1pC, u˚TXq “ H1pC,OCq b TxX.
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Thus the cokernel ofDB̄Jpuq has rank 2g dimpXq and the obstruction bundles ofMg,npX, 0; Jq “

X ˆ Mg,n is given by Ob :“ TX b E˚. Let s0 denote its zero section. Fix a global Ku-

ranishi chart Kn “ pG, T , E , sq as given by Construction 2.1.14 with base space M Ă

M˚

g,npPN ,mq. Denote by C Ñ M the universal curve and set L :“ R1π˚OC . Then

Kob :“ pG, Tob, ĂOb, s̃q with

Tob :“ X ˆ tprι, C, x1, . . . , xns, αq P L | rι˚Op1qs “ p ¨ rωCpx1 ` ¨ ¨ ¨ ` xnqs ` αu

is a global Kuranishi chart for Mg,npX, 0; Jq of the expected virtual dimension. The

obstruction bundle is
ĂOb “ Ob ‘ L ‘ supN ` 1q

and s̃ is given by the zero section in the first summand, the obvious map in the second

one and i logpλq in the last. Let j : Tob ãÑ T be the inclusion. There exists a natural

equivariant morphism Φ: j˚E Ñ ĂOb of complex vector bundles; it is given by the identity

on supN ` 1q and L and maps the perturbation term η to the image of xηy ˝ dι under

the quotient map Ω0,1
J pC̃, ũ˚TXq Ñ H1pC, u˚TXq. By the construction of Kn, the map Φ

is surjective. Moreover, its kernel agrees with the normal bundle NXˆM{T of X ˆ M in

T (as rel–C8 manifolds over Mq. Fixing a splitting L : ĂOb Ñ E |T 1 of Φ we obtain that

the two-term complexes associated to Kob and Kn respectively are quasi-isomorphic in the

sense of Lemma 3.1.9 whence the claim follows.

Remark 4.1.3. This argument can be applied in any situation where Mg,npX,A; Jq is

smooth with obstruction bundle Ob to see that rMg,npX,A; Jqsvir “ epObqXrMg,npX,A; Jqs

under the identification of the dual of Čech cohomology with singular homology.

We observe the following vanishing statement, alluded to in [KM94] and corresponding

to [RT97, Proposition 2.14(3)].

Lemma 4.1.4. If p1 ´ gqpdimCpXq ´ 3q ` 2xc1pTXq, Ay ă 0, then GWX,ω
g,n,A “ 0 for any

n ě 0.

Proof. Let pG, T , E , sq be a global Kuranishi chart for MgpX,A; Jq and let pG, Tn, En, snq

be the induced global Kuranishi chart for MgpX,A; Jq. By construction, there exist

equivariant maps πn : Tn Ñ T and π̃n : En “ π˚
nE Ñ E satisfying π̃nsn “ snπn. As

|s˚τE{G| ą dimpT {Gq, it follows that s˚
nτEn{G “ π˚

ns
˚τE{G “ 0.

4.1.1 Fundamental class axiom

Suppose n ě 1 and A ‰ 0. Let K be a global Kuranishi chart for MgpX,A; Jq as

given by Construction 2.1.14. Let Kn and Kn´1 be the induced global Kuranishi charts

for Mg,npX,A; Jq, respectively Mg,n´1pX,A; Jq. Denote by Mn and Mn´1 their bases

spaces.

Proposition 4.1.5 (Fundamental class). For α1, . . . , αn´1 P H˚pXn;Qq and β P H˚pMg,n;Qq

we have

xα1 ˆ ¨ ¨ ¨ ˆ αn´1 ˆ 1X ˆ PDpβq,GWX,A
g,n y “ xα1 ˆ ¨ ¨ ¨ ˆ αn´1 ˆ PDpπn˚βq,GWX,A

g,n´1y,
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where 1X P H0pX;Qq is the unit.

Proof. Let πn : Tn Ñ Tn´1 be the forgetful map. By construction, En “ π˚
nEn´1 and

sn “ π˚
nsn´1. We will construct a principal H-bundle rTn´1 Ñ Tn´1 for some compact Lie

group H so that the pullback π1
n :

rTn :“ Tn ˆMn´1
rTn´1 Ñ rTn´1 satisfies

prπnq! st
˚ “ st˚ πn!.

This proves the claim since the global Kuranishi chart rKℓ determined by rTℓ is equivalent
to Kℓ and the obstruction bundle and section of rKn are obtained by pullback from rKn´1.

Let thus Pn´1{H be a presentation of Mg,n´1 as a global quotient. Let Pn “ Pn´1 be

the pullback of Pn´1 along the representable morphism πn. Then Pn{H is a presentation of

Mg,n. The canonical map π2
n : Pn Ñ Pn´1 is the pullback of πn and satisfies π2

n!st
˚ “ st˚πn!

by Corollary A.1.3. By Lemma A.1.7, Nℓ :“ Mℓ ˆMg,ℓ
Pℓ is a principal H-bundle over

Mℓ for ℓ “ n ´ 1, n and Nn “ Nn´1 ˆMn´1 Mn. Then rTℓ :“ Tℓ ˆMℓ
rNℓ is a principal

H-bundle over Tℓ and pGˆH, rTℓ, p˚
ℓ Eℓ, p˚

ℓ sℓq is a global Kuranishi chart equivalent to Kℓ for

ℓ P tn, n´ 1u. The induced map rπn : rTn Ñ rTn´1 is the pullback of π2
n along pn´1 : rTn´1 Ñ

Pn´1. The map pn´1, factoring through Nn´1, is G-invariant and a submersion away from

a subset of real codimension at least 2. By Lemma A.1.6 combined with the functoriality

of the exceptional pushforward, it follows that prπnq! st
˚ “ st˚πn!. The case of A “ 0

meanwhile follows from Lemma 4.1.2.

Remark 4.1.6. If 2g ´ 2 ` n ´ 1 ď 0, we can repeat the argument by replacing Mg,n´1

(and possibly Mg,n) by a point. This shows that

xα1 ˆ ¨ ¨ ¨ ˆ αn´1 ˆ 1X , ev˚rMg,npX,A; Jsviry “ 0

for any g, n ě 0.

4.1.2 Divisor axiom

Suppose n ě 1 and that A ‰ 0. The Divisor axiom is the second recursion relation satisfied

by the GW invariants of X.

Proposition 4.1.7 (Divisor). For α1, . . . , αn P H˚pX;Qq with |αn| “ 2 and β P H˚pMg,n´1;Qq

we have

xα1 ˆ ¨ ¨ ¨ ˆ αn ˆ π˚
nPDpβq,GWX,A

g,n y “ xαn, Ay xα1 ˆ ¨ ¨ ¨ ˆ αn´1 ˆ PDpβq,GWX,A
g,n´1y.

The first, crucial observation is that we can construct our global Kuranishi chart in

such a way that the evaluation maps become relative submersions.

Lemma 4.1.8. We can choose the auxiliary datum in the construction of Kg,n,A in The-

orem 2.1.18 so that the evaluation map ev: Tn Ñ Xn is a relative submersion.

Proof. Given an unobstructed auxiliary datum p∇X ,OXp1q, p,U , kq, fix a point ru,C, x1, . . . , xns

in Mg,npX,A; Jq, and let F be a basis of H0pC,Lbp
u q with λU pu, ιC,F q “ 0. By [AMS21,
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Proposition 6.26], using [AMS21, Lemma 6.24] with the divisor consisting of the nodal

and marked points, there exists an integer k1
u ě k so that the linearisation of BJ ` x¨y at

pu, ιq restricted to

H0pC,HomCpι˚C,FTPN , u˚TXq b ι˚C,FOPN pk1q b OCp´xqq bH0pC, ι˚C,FOPN pk1qq

surjects onto the cokernel of DpBJqu restricted to

Vtxju :“ tξ P C8pC, u˚TXq | @j : ξpxjq “ 0u.

As surjectivity is an open condition, the claim follows from the compactness of s´1p0q.

Let now Y Ă X be a smooth hypersurface Poincaré dual to a class γ P H2pX,Zq. Let

Kg,n,A be a global Kuranishi chart for Mg,npX,A; Jq satisfying the conclusion of Lemma

4.1.8. Let KY be the global Kuranishi chart with thickening TY :“ ev´1
n pY q and all other

data given by restriction. Denote MY :“ s´1
Y p0q{G and let j : TY {G ãÑ Tn{G be the

inclusion. By Proposition 3.1.7,

j˚rMY svir “ ev˚
nγ X rMg,npX,A; Jqsvir.

The forgetful map πn restricts to a proper map TY Ñ Tn´1 of manifolds of the same

dimension.

Lemma 4.1.9. πn˚rMY svir “ xγ,Ay rMg,n´1pX,A; Jqsvir.

Proof. We show that TY Ñ Tn´1 has degree xγ,Ay. It suffices to check the claim for a

generic point in each connected component of Tn´1. Since Tn´1 is a covering of a space

of regular stable maps, we may choose each such point to have smooth domain. Fix thus

y “ ru, ι, C, x1, . . . , xn´1, α, ηs P Tn´1 with u&Y . By the definition of Tn and Tn´1 we can

find a neighbourhood Un´1 so that Un´1 – Vn´1 ˆBy where By Ă TTn´1{Mn´1,y is an open

neighbourhood of the origin and Vn´1 Ă Mn´1. Then Un :“ π´1
n pUn´1q is canonically

isomorphic to π´1
n´1pVn´1q ˆ By – Vn´1 ˆ C ˆ By; the latter is guaranteed by shrinking

Vn´1. Shrinking Vn´1 further if necessary, Un X TY – Vn´1 ˆW , where W is smooth with

tangent space

Tpx,0qW “ tpv, ξq P TxC ˆBy | dupxqv ´ ξpxq P TupyqY u.

for x P u´1pY q. The forgetful map Un X TY Ñ Un´1 is identified with id ˆ ψ, where

ψpz, ξq “ ξ. As

Tpx,0qW TxC

TTn´1{Mn´1,y TupxqX{TupxqY

pr1

dψpx,0q dupxq

evx

is cartesian for any x P u´1pY q, we have degpψ, px, 0qq “ indpu, Y, xq. This completes the

proof.
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The Divisor axiom is an immediate consequence.

4.1.3 Splitting axiom

Fix g “ g0 ` g1 and n “ n0 ` n1 with 2gi ´ 2 ` ni ` 1 ą 0. Let S Ă t1, . . . , nu be a subset

with |S| “ n0. The clutching map

φS : Mg0,n0`1 ˆ Mg0,n0`1 Ñ Mg,n

given by gluing two curves together at the pn0 ` 1qth and first marked point and renum-

bering according to the partition induced by S is a closed local embedding. This map lifts

to maps

φS,X : Mg0,n0`1pX,A0; Jq ˆX Mg1,n1`1pX,A1; Jq Ñ Mg,npX,A0 `A1; Jq.

Together with the clutching maps described in the next subsection, the images of the maps

φS form the boundary divisor of Mg,n. The same is true for moduli spaces of stable maps

where one has an additional choice of how to ‘split’ the homology class. The Splitting

axiom is an algebraic reflection thereof.

Proposition 4.1.10 (Splitting). Write PDpXq “
ř

iPI

γi ˆ γ1
i for γi, γ

1
i P H˚pX;Qq. We

have for α1, . . . , αn P H˚pX;Qq and βi P H˚pMgi,ni`1;Qq that

xα1 ˆ ¨ ¨ ¨ ˆ αn ˆ PDpφS˚pβ0 b β1qq,GWX,A
g,n y

“ p´1qϵpα,Sq
ÿ

A0`A1“A

ÿ

i

xαf0p1q ˆ ¨ ¨ ¨ ˆ αf0pn0q ˆ γi ˆ PDpβ0q,GWX,A0
g0,n0`1y

xγ1
i ˆ αf1p2q ˆ ¨ ¨ ¨ ˆ αf1pn1`1q ˆ PDpβ1q,GWX,A1

g0,n0`1y

where ϵpα, Sq :“ |ti ă j | j P S, i R S, |αi|, |αj | P 2Z ` 1u|.

By Lemma 4.1.1, we may assume S “ t1, . . . , n0u and omit it from the notation. The

domain of φX admits a global Kuranishi chart Kg0,n0`1,A0 ˆX Kg1,n1`1,A1 of the expected

virtual dimension by Lemma 4.1.8, which embeds into Kg0,n0`1,A0 ˆ Kg1,n1`1,A1 . For the

sake of brevity, we denote the base space of Kg,n,A by M. For 0 ď m0 ď m, let xMg0,n0,m0

be the preimage of M under

φPN : Mg0,n0`1pPN ,m0q ˆPN Mg1,n1`1pPN ,m1q Ñ Mg,npPN ,mq

and set

xMg0,n0 :“
ğ

0ďm0ďm

xMg0,n0,m0 .

Lemma 4.1.11. xMg0,n0,m0 is a complex manifold of the expected dimension.

Proof. Suppose φPN prι, C, x˚s, rι1, C 1, x1
˚sq “ ru,Σ, y˚s P M. As the normalisation of Σ is

Σ̃ “ C̃ \ C̃ 1 and u is unobstructed, so are ι and ι1. If ρ is an automorphism of pι, C, x˚q,
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it can be extended by the identity to an automorphism of pu,Σ, y˚q. Hence ρ “ idC .

Similarly, we see that pι1, C 1, x1
˚q has no isotropy. Thus we may conclude by [RRS08].

Denote by φ̂ : xMg0,n0 Ñ M the map induced by φPN . It is a PGLCpN `1q-equivariant

immersion whose image has normal crossing singularities.

Let ru,C, x˚s P Mg,npX,A; Jq lie in the image of φX . Any splitting of the domain into

two curves of the prescribed genus and prescribed set of points defines (via the restriction

of a framing coming from Lu) a unique element in the image of φ̂. Conversely, any

decomposition of the domain of the framing leads to a corresponding splitting of ru,C, x˚s,

where the degree of the restrictions of u may vary. This shows that Kg0,n0 :“ φ̂˚Kg,n,A is

a global Kuranishi chart for

Mg0,n0pXq :“
ğ

A0`A1“A

Mg0,n0`1pX,A0; Jq ˆX Mg1,n1`1pX,A1; Jq.

as is K1
g,n,A :“

Ů

A0`A1“A

Kg0,n0`1,A0 ˆX Kg1,n1`1,A1 .

Lemma 4.1.12. Kg0,n0 and K1
g,n,A are equivalent.

Proof. This follows from a double-sum construction as in §2.4.1.

We can now prove Proposition 4.1.10. The strategy of proof is the same as in Propo-

sition 4.1.5 with the additional complication that φ̃ is not the pullback of φ.

Proof. We first sketch the proof in the case of genus zero. In higher genus, the fact that

we have to take fibre product of orbifolds adds a layer of complexity, however the strategy

is the same.

We factor φ : xMg0,n0 Ñ M as

xM0,n0

ϑ
ÝÑ M ˆM0,n

pM0,n0`1 ˆ M0,n1`1q
φ1

ÝÑ M.

Then MˆM0,n
pM0,n0`1ˆM0,n1`1q is a quai-projective variety over C but not necessarily

smooth. However, it is a homology Q-manifold. As φ1 is the pullback of the clutching

map on the level of moduli space of stable curves, it is a closed immersion of schemes. We

will show below that ϑ has degree 1. Lifting this factorisation to the level of thickenings,

we obtain that φ̂! st
˚ “ st˚ φ! as maps H˚pM0,n0`1 ˆM0,n1`1;Qq Ñ H˚pT {G;Qq by the

results of §A.
For the general case, let P {H be a presentation of Mg,n as a global quotient. By

[ACG11], we may assume that P Ă Mg,npPℓ, ℓ` gq for some ℓ ě 1. As φ is representable

by [ACG11, Proposition 12.10.11], P 1 :“ P ˆMg,n
pMg0,n0`1 ˆ Mg1,n1`1q is a G-smooth

manifold with P 1{H representing Mg0,n0`1 ˆ Mg1,n1`1. Moreover, N :“ P ˆMg,n
M is a

principal G1-bundle over M, while

Ng0,n0 :“ N ˆM xMg0,n0 “ P 1 ˆMg0,n0`1ˆMg1,n1`1
xMg0,n0

63



is one over xMg0,n0 . Denote by st : N Ñ Mg,n and st : Ng0,n0 Ñ Mg0,n0`1 ˆ Mg1,n1`1

the induced stabilisation maps. Let φ̃ : Ng0,n0 Ñ N be the morphism of principal bundles

covering φ̂. The diagram

Ng0,n0 N 1 N

Mg,n0`1 ˆ Mg1,n1`1 Mg,n

ϑ

st

φ1

st st

φ

commutes, where φ̃ “ φ1ϑ and N 1 “ P 1 ˆP N , so the square is cartesian. To see that ϑ is

a birational equivalence, let N 1sm Ă N 1 be preimage (under N 1 Ñ N Ñ Mq of the subset

of M consisting of curves with one node. As all elements of M are unobstructed, the

complement of N 1sm is of codimension at least 2. It follows from a straightforward consid-

eration of the fibre product N 1 that the induced map N sm
g0,n0

Ñ N 1sm is an isomorphism.

Thus ϑ is a birational equivalence. In particular, it has degree 1.

Pull back pKg0,n0 along Ng0,n0 Ñ xMg0,n0 and change the covering group from G to

G ˆ G1 to obtain an equivalent global Kuranishi chart pKN
g0,n0

. Define KN
g,n analogously

to obtain a global Kuranishi chart which is rel–C8 over N and equivalent to Kg,n. The

pullback of φ̂ to a map between thickenings descends to φX when restricted to the zero

locus of the obstruction section. It factors as rφ “ rφ1
rϑ, which are lifts of φ1 respectively ϑ.

Then rϑ has degree 1, so rφ satisfies

rφ! st
˚ “ st˚ φ!

as maps H˚pMg0,n0`1 ˆMg1,n1`1;Qq Ñ H˚pT N {GˆH;Qq by Lemma A.1.3 and Lemma

A.1.6. As the obstruction bundle of pKN
g0,n0

is the pullback of the obstruction bundle of

KN
g,n, this shows that

ÿ

A0`A1“A

φX˚pst˚γ X rMg0,n0`1pX,A0; Jq ˆX Mg1,n1`1pX,A1; Jqsvirq

“ st˚pφ!γq X rMg,npX,A; Jqsvir. (4.1.3.1)

for any γ P H˚pMg0,n0`1 ˆMg1,n1`1;Qq. Applying Proposition 3.1.7 to K1
g,n,A, we obtain

an expression for the left hand side that exact gives the Splitting axiom.

4.1.4 Genus reduction axiom

Fix g and n ě 2 and let evn´1,n be the evaluation at the pn´ 1qth and nth marked point.

Given an almost complex manifold pY, JY q and B P H2pY,Zq, define

Mg,npY,B; JY qn´1,n :“ ev´1
n´1,np∆Y q Ă Mg,npY,B; JY q.

Let

ψY : Mg,npY,B; JY qn´1,n Ñ Mg`1,n´2pY,B; JY q
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be given by gluing the pn ´ 1qnth and the nnth marked point of the domain together. It

covers the corresponding smooth map ψ : Mg,n Ñ Mg`1,n´2.

Proposition 4.1.13 (Genus reduction). We have for any α1, . . . , αn´2 P H˚pX;Qq and

β P H˚pMg,n;Qq that

xα1 ˆ ¨ ¨ ¨ ˆ αn´2 ˆ PDp∆Xq ˆ PDpβq,GWX,A
g,n y

“ xα1 ˆ ¨ ¨ ¨ ˆ αn´2 ˆ PDpψ˚βq,GWX,A
g`1,n´2y.

Lemma 4.1.14. The preimage

ĂM :“ ψ´1
PN pM˚

g`1,n´2pPN ,mqq Ă Mg,npPN ,mq

is a smooth manifold of the expected dimension. The induced map

ψPN : ĂM Ñ M˚

g`1,n´2pPN ,mq

is smooth and G-equivariant. It factors as the composition of a double cover with a map

which is generically an embedding.

Proof. Suppose ψprι, C, x˚sq “ rι1, C 1, x1
˚s and let ρ P Autpι, C, x˚q. Then ρ descends

to an automorphism of pι1, C 1, x1
˚q, which has to be the identity. As the gluing map

κ : C Ñ C 1 is injective on a dense subset, ρ “ idC . We have a short exact sequence

0 Ñ κ˚ι1˚OPN p1q Ñ ι˚OPN p1q Ñ Cx Ñ 0 where Cx denotes the skyscraper sheaf over x

and the last map is given by s ÞÑ spxn´1q ´ spxnq (using a trivialisation of OPN p1q near

ιpxnq). Part of its long exact sequence is

0 “ H1pC 1, ι1
˚OPN p1qq Ñ H1pC, ι˚OPN p1qq Ñ H1ptxu,Cq “ 0.

Hence ι is unobstructed.

Z{2 acts freely and smoothly on ĂM by permuting the last two points and ψPN factors

through ĂM{pZ{2q. As ψPN is an immersion and ĂM{pZ{2q Ñ M˚

g`1,n´2pPN ,mq is injective

over the locus of curves with smooth domain, the claim follows.

Let Kg,n,A be a global Kuranishi chart for Mg,npX,A; Jq satisfying the conclusion of

Lemma 4.1.8. Let K1 be the global Kuranishi chart with thickening T 1 “ ev´1
n´1,np∆Xq

and whose other data are given by restriction from Kg,n,A. Similar reasoning as in §2.4.1
can be used to show that K1 and ψ˚

PNKg`1,n´2 are equivalent global Kuranishi charts for

Mg,npX,A; Jqn´1,n.

Pulling back ψ˚
PNKg`1,n´2 along N Ñ M˚

g`1,n´2pPN ,mq and taking the product of

the covering group with G1, we obtain an equivalent global Kuranishi chart K̃g`1,n´2 for

Mg,npX,A; Jqn´1,n. The proof of Proposition 4.1.10 now carries over in a straightforward

manner.
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4.2 Gravitational descendants

The theory of GW invariants can be enriched by additionally integrating natural classes on

the moduli space of stable maps itself over the virtual fundamental class. This extension

is motivated by theoretical physics, [Wit91, EHX97]. In the symplectic setting, these

generalised GW invariants were first defined in [RT97, §6] and in [KM98] for projective

varieties. In the general symplectic setting the definition is not as immediate. This can

already seen from the case where X is a point. While there are natural vector bundles on

the moduli stack of stable curves, they do not descend to the coarse moduli space Mg,n.

Refer [ACG11, Chapter 13] for a discussion and the definition of a vector bundle on a

stack. We will simply define the necessary objects as we need them rather than in full

generality.

Definition 4.2.1. Given an n-pointed family pπ : C Ñ V, σ1, . . . , σnq of stable curves and

i ď n, we define the ith tautological line bundle of V to be LV
i :“ σ˚

i pkerpdπq˚q. We define

the ith ψ-class to be

ψV
i :“ c1pLV

i q P H2pV;Zq.

The Hodge bundle of C Ñ V is the complex rank-g vector bundle EV :“ π˚ωC{V . The

λ-classes are

λVj :“ cjpEVq.

These vector bundles patch together to form the ith tautological line bundle, respec-

tively the Hodge bundle, on the Deligne-Mumford stack Mg,n. In this case, or if the

family V is clear from the context, we omit the superscripts. See [HKK`03, Chapter 25]

and [FP00] for context and relations satisfied by the integrals of these classes of Mg,n and

moduli stacks of stable maps.

Fix a closed symplectic manifold pX,ωq with J P Jτ pX,ωq and A P H2pX;Zq. Let

Kn :“ pG, Tn{Mn, En, snq be a global Kuranishi chart for Mg,npX,A; Jq as given by Con-

struction 2.1.14. Recall that Mn is a G-invariant open subset of the automorphism free

locus of regular maps M˚

g,npPN ,mq in Mg,npPN ,mq, admitting a quasi-projective smooth

universal family Un Ă Mn`1 on which G acts almost freely. Let Πn : Tn Ñ Mn be the

structure map and define

Li :“ Ln,i :“ Π˚
npLMn

i q E :“ Π˚
npEMnq.

They are, by definition, relatively smooth vector bundles over Tn. The G-action on Tn
lifts to a fibrewise linear G-action on Li and E. Define

ψi :“ ψn,i :“ c1pLiqG λj :“ cjpEqG

in H˚
GpT ;Qq – H˚pT {G;Qq. They restrict to classes on Mg,npX,A; Jq, also denoted ψi

and λ.
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Lemma 4.2.2. The ψ- and λ-classes on Mg,npX,A; Jq are independent of the choice of

unobstructed auxiliary datum.

Proof. As E – st˚E is isomorphic to the pullback of the Hodge bundle onMg,n, this is clear

for the Hodge classes. Given two unobstructed auxiliary data, we obtain global Kuranishi

charts Kn,j with base space N0 Ă M˚

g,npPN0 ,m0q. By §2.4.1 there exists a double-sum

global Kuranishi chart of Mg,npX,A; Jq with covering group G0 ˆG1 and base N01. Here

N01 Ă M˚

g,npPN0 ˆ PN1 , pm1,m1qq is the preimage of N0 ˆ N1 under the product map Φ.

The induced map Φj : N01 Ñ Nj is a principal Gj1-bundle (for tj, j1u “ t0, 1u), so

LN01
i “ Φ˚

jL
Nj

i EN01 “ Φ˚
jENj .

In particular, LN01
i is a principal Gj1-bundle over LNj

i , so c1pLN01
i qG0ˆG1 “ Φ˚

j c1pLNj

i qGj .

Similarly for the Hodge bundle. Pulling these relations back to the thickening of the

double-sum Kuranishi chart, we obtain the claim.

In particular, if Mg,npX,A; Jq is unobstructed, we recover the standard definition of

ψ- and λ-classes.

Definition 4.2.3. The gravitational descendant (or descendent Gromov–Witten invari-

ant) of pX,ωq associated to pA, g, nq is

xτk1α1, . . . , τknαn;σy
X,ω
A,g,n :“ xψk11 ev˚

1α1 ¨ ¨ ¨ψknn ev˚
nαn ¨ st˚PDpσq, rMg,npX,A; Jqsviry

for k1, . . . , kn ě 0, α1, . . . , αn P H˚pX;Qq and σ P H˚pMg,n;Qq. The Hodge integrals of

X are the numbers

xλb11 ¨ ¨ ¨λ
bg
g ¨ ψk11 ev˚

1α1 ¨ ¨ ¨ψknn ev˚
nαn ¨ st˚PDpσq, rMg,npX,A; Jqsviry,

where b1, . . . , bg ě 0 are integers.

Remark 4.2.4. The construction in §2.4.2 shows that the gravitational descendants of X

do not depend on the choice of ω-tame almost complex structure.

Remark 4.2.5. The ψ-classes in [RT97] are defined to be ψi :“ st˚ψi. These (respectively

a slightly modified definition thereof) are called gravitational descendents in [Giv01a] and

differ from our definition of ψ-classes, called gravitational ancestors by Givental. In [KM98]

(whose definition agrees with ours) the exact relationship between the two definitions is

elucidated. In [KKP03], modified ψ-classes ψ̄i are defined, which satisfy π˚
n`1ψ̄i “ ψ̄i.

Remark 4.2.6. The fact that the ψ-classes and λ-classes on Mg,npX,A; Jq can be defined

as pullbacks of the respective classes on moduli spaces of stable maps to projective space

allows us to lift relations shown for the the gravitational descendants of projective space

to those of arbitrary symplectic manifolds.

Fix now a global Kuranishi chart Kn with base space Mn and structure map Πn : Tn Ñ

Mn. By construction, the forgetful map restricts to a proper smooth maps Mn`1 Ñ Mn
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with canonical sections σi :“ σ
pnq

i . We abbreviate

Dn`1,i :“ impσ
pnq

i q Dn`1,i :“ Dn`1,i{G

and

Dn`1,ipAq :“ Π´1
n pDn`1,iq Dn`1,ipAq :“ Dn`1,ipAq{Gq.

Dn`1,ipAq is an oriented suborbifold of Tn`1{G, Poincaré dual to δn`1,i,A “ Π˚
npPDpDn`1,iqq.

Lemma 4.2.7. Let πn`1 : Mg,n`1pX,A; Jq Ñ Mg,npX,A; Jq be the forgetful map. Then

ψn`1,i “ π˚
n`1ψn,i ` δn`1,i,A (4.2.0.1)

in H˚
GpMn`1,Qq. Moreover, ψn`1,i ¨ δn`1,i,A “ 0.

Proof. This is an immediate corollary of the previous remark and classical arguments.

Let U :“ Mn`1zDn`1,i. Given rι, C, x1, . . . , xn`1s P U , the forgetful map πn`1 does not

change the irreducible component of C containing xi. Thus Li :“ Li b π˚
n`1L

´1
i is trivial

over U . Set ρ :“ σ
pn`1q

i σ
pnq

i and V :“ impρq. Then

´

σ
pnq

i

¯˚

pLi b π˚
n`1L´1

i q “ ρ˚ωπn`2 b

´

σ
pn`1q

i

¯˚

ωπn`1 .

As the normal bundle of Dn`1,i is pσ
pn`1q

i q˚ωπn`1 , it remains to see that ρ˚ωπn`2 is equiv-

ariantly trivial. Let π̃ : Mn`1 Ñ M4 be the map which forgets all marked points except

the first, the ith and the last two. Then π̃ is G-equivariant and maps Di,n`2 to

Mn,2 ˆPN pPN ˆ M0,4q – M2 ˆ M0,4

and V to M2 ˆ t˚u under this identificaton. Hence ρ˚ω´1
πn`2

– π̃˚TM0,4,˚
|V equivariantly.

If ι : Dn`1,i ãÑ Mn`1{G is the inclusion, then

ψn`1,i,G ¨ PDpDn`1,iq “ ι!c1pρ˚ωπn`2qG “ 0,

implying the last claim by Lemma A.1.4.

There are three further relations for the generalised GW invariants, the first two spe-

cialising to the Fundamental class axiom and the last to the Divisor axiom if we have no

ψ-insertions. Denote by 1X the unit of H˚pX;Qq.

Proposition 4.2.8 (String equation). We have

xψk1α1, . . . , ψ
knαn, 1X ;σy

X,ω
A,g,n`1

“

n
ÿ

i“1

xψk1α1, . . . , ψ
ki´1αi, . . . , ψ

knαn;πn`1˚σy
X,ω
A,g,n (4.2.0.2)

for any α1, . . . , αn P H˚pX;Qq and σ P H˚pMg,n`1;Qq.
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Proof. Write α :“ α1 ˆ ¨ ¨ ¨ ˆ αn and β :“ PDpσq. By (4.2.0.1),

xψk1α1, . . . , ψ
knαn, 1X ;σy

X,ω
A,g,n`1

“ x

n
ź

i“1

pπ˚
n`1ψi ` δn`1,i,Aqki ¨ π˚

n`1pev˚α ˆ st˚pπn`1!βqq, rMg,n`1pX,A; Jqsviry

so the claim follows from the Fundamental class axiom (Proposition 4.1.5), the last asser-

tion of Lemma 4.2.7, the fact that Dn`1,i XDn`1,j “ H for i ‰ j and the equality

πn`1˚pδn`1,i,A X rMg,n`1pX,A; Jqsvirq “ rMg,n`1pX,A; Jqsvir.

Proposition 4.2.9 (Dilaton equation). We have

xψk1α1, . . . , ψ
knαn, ψ

11X ;σy
X,ω
A,g,n`1 “ p2g ´ 2 ` nq xψk1α1, . . . , ψ

knαn;πn`1˚σy
X,ω
A,g,n

for any α1, . . . , αn P H˚pX;Qq and σ P H˚pMg,n`1;Qq.

Proof. By the proof of [Man99, Lemma VI.3.7.2],

σ˚
n`1ωπn`2 – ωπn`1

´

n
ÿ

i“1

σ
pnq

i

¯

as G-equivariant line bundles, so we can express ψn`1 in terms of c1pωn`1q and the canon-

ical sections of πn`1. As degpωπn`1 |Cq “ 2g ´ 2 for any fibre C of πn`1,

πn`1˚pψn`1 X rMn`1sq “ p2g ´ 2 ` nq rMns.

By Corollary A.1.3, the same equality holds for the corresponding classes on the quotient.

All other terms vanish because

ψn`1,G ¨ δn`1,j,G “ c1pωπn`1pDn`1,jqqG ¨ δn`1,j,G `
ÿ

i‰j

δn`1,i,G ¨ δn`1,j,G “ 0.

Proposition 4.2.10 (Divisor equation). If pA, g, nq R tp0, 0, 2q, p0, 1, 0qu and γ P H2pX;Qq,

then

xψk1α1, . . . , ψ
knαn, γ;σy

X,ω
A,g,n`1 “ xγ,Ay xψk1α1, . . . , ψ

knαn;πn`1˚σy
X,ω
A,g,n

`

n
ÿ

i“1

xψk1α1, . . . , ψ
ki´1pαi ¨ γq, . . . , ψknαn;πn`1˚σy

X,ω
A,g,n

for any α1, . . . , αn P H˚pX;Qq and σ P H˚pMg,n`1;Qq.

Proof. Set β :“ PDpσq and α :“ α1 ˆ ¨ ¨ ¨ ˆαn. By Lemma 4.2.7, the right hand side splits
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into a sum of terms where one is of the form

xπ˚
n`1

´

ev˚α ˆ

n
ź

i“1

ψkin,i

¯

, pst˚pβq ¨ ev˚
n`1γq X rMg,n`1pX,A; Jqsviry

“ xψk1α1, . . . , ψ
knαn;πn`1˚σy

X,ω
A,g,n

by Proposition 4.1.7. The other terms are given by

xπ˚
n`1pev˚α ˆ

n
ź

i“1

ψ
ki´δij
n,i q ¨ δn`1,j,A ¨ ev˚

n`1γ, st
˚pβq X rMg,n`1pX,A; Jqsviry

“ xπ˚
n`1pev˚α ˆ

n
ź

i“1

ψ
ki´δij
n,i q ¨ ev˚

j γ ¨ δn`1,j,A, st
˚pβq X rMg,n`1pX,A; Jqsviry

“ xψk1α1, . . . , ψ
ki´1pαi ¨ γq, . . . , ψknαn;πn`1˚σy

X,ω
A,g,n

for 1 ď j ď n, where the second equality holds because evn`1|Dn`1,jpAq
“ evj |Dn`1,jpAq

and the last because Dn`1,jpAq is the image of a section of πn`1.

70



Chapter 5

A comparison and equivariant

extensions

5.1 A comparision to the GW invariants of Ruan–Tian

5.1.1 Definition of GW invariants via pseudocycles

The first construction of Gromov–Witten invariants in the symplectic setting was given

by Ruan and Tian in [RT95, RT97], where they restrict to semipositive symplectic mani-

folds. For this class of manifolds, the moduli space of stable maps which satisfy a perturbed

Cauchy-Riemann equation admits a stratification by smooth manifold, where the top stra-

tum is orientable and of the expected dimension, while all other strata are of codimension

at least 2. Hence one can define an intersection theory, respectively define a pseudocy-

cle. In genus 0, one can even avoid perturbing the Cauchy-Riemann equation by allowing

the almost complex structure to be domain-dependent, as was done in [MS12, Chapter

6]. Another advantage is the fact that in genus 0 the GW invariants are Z-valued by

construction.

To our knowledge, save for the relative virtual fundamental class defined in [IP19a], it

is not known whether the GW invariants obtained via a virtual framework agree with the

invariants of Ruan-Tian for a semipositive symplectic manifold.

A symplectic manifold pX,ωq is semipositive if for any A P π2pXq

ωpAq ą 0, c1pAq ě 3 ´ n ñ c1pAq ě 0. (5.1.1.1)

In particular, any symplectic manifold of complex dimension at most 3 is semipositive.

Let us recall the definition of GW invariants in [RT97] for pX,ωq satisfying (5.1.1.1).

A good cover pµ : M
µ
g,n Ñ Mg,n of the (coarse) moduli space of stable curves is a finite

cover such that Mµ
g,n admits a universal family that is a projective normal variety. Such

good covers can be constructed using level-m structures; refer to [ACG11, Chapter XVI]

or [Mum83] for the details. Let fµ : U
µ
g,n Ñ Mµ

g,n be the universal curve. Fix a closed

embedding ϕ : Uµg,n ãÑ Pk.
Given J P Jτ pX,ωq we will consider perturbations ν P C8pPkˆX,HomCpp˚

1TPk , p˚
2TXq.
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Let Mµ
g,npA; J, νq be the space of equivalence classes of stable pJ, νq-maps of type pg, nq

pu, j, C, j, x˚q where

1. pC, j, x˚q is of type pg, nq,

2. j : C Ñ Uµg,n is a holomorphic map onto a fibre F of Uµg,n, inducing a contraction

C Ñ F of nodal surfaces,

3. u : C Ñ X is a stable smooth map, representing A and satisfying

BJu “ νpϕj, uq ˝ dpϕjq.

We say that pu, j, C, x˚q is equivalent to pu1, j1, C 1, x1
˚q if there exists a biholomorphism

ψ : pC, x˚q Ñ pC 1, x1
˚q with ψ˚u1 “ u and ψ˚j1 “ j. A stable pJ, νq-map is simple if

1. for each irreducible component Z Ă C on which u is nonconstant, u|Z is a simple

map, i.e., does not factor through a branched holomorphic covering,

2. upZq ‰ upZ 1q for any two irreducible components Z ‰ Z 1 of C on which u is

nonconstant.

The space of simple pJ, νq-maps is denoted byMµ,˚
g,npA; J, νq. It admits a canonical forgetful

map Mµ
g,npA; J, νq Ñ Mµ

g,n through which the stabilisation map Mµ
g,npA; J, νq Ñ Mg,n

factors.

Mµ
g,npA; J, νq can be stratified by the topological type of the domains together with the

distribution of the homology class: To each stable pJ, νq-map we can associate a marked

graph γ consisting of a n-marked graph G together with a maps d : V pGq Ñ H2pX,Zq and

g : V pGq Ñ N0 so that

dimpH1pGqq `
ÿ

vPV pGq

gpvq “ g
ÿ

vPV pGq

dpvq “ A

and for any v P V pGq the stability condition 2gpvq ` |tf P FlpGq : spfq “ vu| ě 3 holds,

where FlpGq is the set of flags of G. We denote by Mµ
γpA; J, νq the stratum of stable maps

whose dual graph is given by γ and by Mµ,˚
γ pA; J, νq its intersection with the space of

simple maps. We denote by Mµ,˚
g,npA; J, νq the locus of simple maps with smooth domain.

By [RT97, Proposition 2.3, Theorem 3.1], respectively [Zin17, Theorem 3.3] (whose

arguments simplify to our setting), the following holds for generic pJ, νq.

1. Mµ,˚
γ pA; J, νq is a smooth oriented manifold of dimension

2p1 ´ gq dimCpXq ` 2xc1pTXq, Ay ` dimRpMµ
γq.

2. The maps ev and stµ define a pseudocycle ev ˆ stµ : Mµ,˚
g,npA; J, νq Ñ X ˆ Mµ

g,n.

We use the following definition of a pseudocycle from [IP19a]; see also [MS12, Chapter

6.1] or [Zin08].
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Definition 5.1.1. A d-dimensional pseudocycle f : M Ñ N is a continuous map from

a d-dimensional oriented manifold to a locally compact space so that fpMq has compact

closure and

Ωf :“
č

KĂM
compact

fpMzKq

has Lebesgue covering dimension ď d´ 2.

Given a d-dimensional pseudocycle f : M Ñ N , we can define a class rf s P HBM
d pN,Zq

as follows. Let Mo :“ f´1pNzΩf q. Then Mo is an oriented d-dimensional manifold and

fo : Mo Ñ NzΩf is proper. We define rf s P HBM
d pN,Zq to be the image of rMos under

HBM
d pMo,Zq

fo˚
ÝÑ HBM

d pNzΩf ,Zq – HBM
d pN,Zq.

Here the isomorphism is an immediate consequence of dimpΩf q ă d´1 and the long exact

sequence in Borel–Moore homology. Refer to [IP19a, §3, §A.3] for more details.

Definition 5.1.2. [RT97] The pseudocycle Gromov–Witten class of pX,ωq associated to

pg, n,Aq is

σAg,n “
1

dµ
pid ˆ pµq˚rev ˆ stµs P H˚pXn ˆ Mg,n;Qq.

Theorem 5.1.3. Suppose pX,ωq is semipositive. Then the pseudocycle GW classes agree

with the GW classes defined in Chapter 2. Explicitly,

σAg,n “ pev ˆ stq˚rMg,npX,A; Jqsvir (5.1.1.2)

for any g, n ě 0 with 2g ´ 2 ` n ą 0.

5.1.2 Proof of Theorem 5.1.3

Fix pg, nq with 2g ´ 2 ` n ą 0 and let pµ : M
µ
g,n Ñ Mg,n be a good finite cover. Set

dµ :“ degppµq. Define

Wµ
g,n,A :“

#

pt, u, C, x˚, jq

ˇ

ˇ

ˇ

ˇ

ˇ

u : pC,x˚qÑX smooth stable of type pg,nq,

tPr0,1s, j : pC,x˚qÑUµ
g,n, u˚rCs“A,

BJu“t pϕjˆuq˚ν

+

,

where j is a contraction onto a fibre of Uµg,n.

Lemma 5.1.4. Wµ
g,n,A is compact and Hausdorff when endowed with the topology induced

by Gromov convergence.

Proof. Compactness follows from [RT95, Proposition 3.1], while the uniqueness of the

limit follows by the arguments of the proof of [MS12, Theorem 5.5.3].

Remark 5.1.5. Denote by Uµ,singg,n the nodes and marked points of the universal curve. In

order to apply [Swa21] later on, we restrict to perturbations ν that are supported away

from ϕpUµ,singg,n q. By elliptic regularity, such perturbations ν suffice to achieve transversality.
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We will construct a global Kuranishi chart with boundary for Wµ
g,n,A, which restricts

to a cover of the previously constructed global Kuranishi chart for Mg,npX,A; Jq over one

fibre and to a global Kuranishi chart for Mµ
g,npX,A; J, νq on the other boundary fibre. By

Lemma 5.1.9 and Lemma A.2.7, this will imply that

dµ pev ˆ stq˚rMg,npX,A; Jqsvir “ pev ˆ stq˚rMµ
g,npX,A; J, νqsvir

in H˚pXn ˆ Mg,n;Qq. Finally we compare pev ˆ stq˚rMµ
g,npX,A; J, νqsvir with σAg,n.

Fix an unobstructed auxiliary datum p∇X ,OXp1q, p,U , kq where

1. p " 0 is sufficiently large that Lbp
u is very ample for any pt, uq P Wµ

g,n,A;

2. U is a good covering in the sense of Definition 2.2.12 where we take the image of

Wµ
g,n,A in the polyfold of smooth maps to X instead of Mg,npX,A; Jq in the third

condition;

3. k P N will be determined later.

Define rT to be the set tpt, u, C, x˚, j, ι, α, ηqu { „ so that

• u : pC, x˚q Ñ X is a smooth stable map of genus g representing A.

• j : pC, x˚q Ñ Ug,n is a contraction of nodal surfaces onto a fibre of the universal

curve,

• ι : pC, x˚q Ñ PN is an element of M˚

g,npPN ,mq,

• α P H1pC,OCq satisfies rι˚OPN p1qs “ p ¨ rLus ` α in PicpCq,

• η P Epι,uq :“ H0pC, ι˚T ˚
PN

0,1
b u˚TX b ι˚Opkqq bH0pPN ,Opkqq is such that

B̄J ũ` xηy ˝ dι̃´ t νpϕj̃, ũq “ 0 (5.1.2.1)

on the normalisation C̃ of C.

We quotient by reparametrisations of the domain. Let P : T̃ Ñ r0, 1s be the obvious

projection and rTt :“ P´1pttuq.

Set ĂM :“ Mµ
g,n ˆMg,n

M˚

g,npPN ,mq and let π : rT Ñ ĂM be the forgetful map. Define

rE Ñ rT by letting its fibre over y “ pt, u, C, x˚, j, ι, α, ηq be

rEy “ supN ` 1q ‘H1pC,OCq ‘ Epι,uq,

while the obstruction section rs is given by rspyq “ pi logpλpu, ιqq, α, ηq. Let G :“ PUpN`1q

acting via post-composition on the framings and the perturbation terms η. For i P t0, 1u,

denote

rKi :“ pG, rTi, rEi|
rTi ,
rs|

rTiq.

Lemma 5.1.6. We can choose k sufficiently large so that the linearisation of (5.1.2.1)

restricted to C8pC, u˚TXq ‘ Epι,uq is surjective for any element in rs´1p0q.
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Proof. This follows from the proof of Lemma 2.2.18.

Proposition 5.1.7. For k " 0, rT reg is naturally a rel–C8 manifold over r0, 1s ˆ ĂM and

the structure map is a topological submersion. The restriction rEreg :“ rE |
rT reg is a rel–C8

vector bundle and the restriction of rs is of class rel–C8. Moreover, ev: rT Ñ Xn is a

rel–C8 submersion.

Proof. Forgetting the α-parameter and using Gromov’s shearing trick, we can consider rT
as a subset of the moduli space of embedded regular perturbed holomorphic maps to the

total space of a vector bundle E Ñ PN ˆX. Fixing a splitting TE “ π˚TPNˆX ‘ π˚E, we

define the family of almost complex structures on E by

J̃ tepx̂, v, e
1q “ pJ0x̂, Jv ` xeypx̂q, JEe1q

for px̂, vq P TPNˆX,πEpeq and e1 P Ee.

By Remark 5.1.5, we can use [Swa21] as in Proposition 2.3.9 to deduce the relative

smoothness of rT over r0, 1s ˆ ĂM. The structural map is a submersion since we obtain

transversality without variation of the domain or the t-parameter. The other claims follow

from the same reasoning as in §2.3.

As the arguments in §2.4 carry over word by word, we obtain the first step of our proof.

Corollary 5.1.8. Wµ
g,n,A admits an oriented global Kuranishi chart rKn with boundary of

the expected dimension.

In particular, rKn,0 is an oriented global Kuranishi chart forMµ
X :“ Mg,npX,A; JqˆMg,n

Mµ
g,n with

pev ˆ stq˚rMµ
Xsvir

rK0
“ dµ pev ˆ stq˚rMg,npX,A; Jqsvir. (5.1.2.2)

due to

Lemma 5.1.9. Suppose K “ pG, T , E , sq is an oriented global Kuranishi chart of a space

M and T admits a degree-d cover p : T 1 Ñ T . If p is G-equivariant with respect to

some G-action on T 1, then K1 :“ pG, T 1, p˚E , p˚sq is a global Kuranishi chart for M 1 :“

pp˚sq´1p0q{G. The canonical map p : M 1 Ñ M is a degree-d cover and

p˚rM 1svirK1 “ d rM svirK .

Proof. The first part is straightforward. The relation between the virtual fundamental

classes follows from the functoriality of Thom classes and because the map T 1
G Ñ TG of

homotopy quotients has degree d.

It remains to show that

dµσ
A
g,n “ pev ˆ stµq˚rMµ

g,npA; J, νqsvir
rK1
.

This is a consequence of the following general result. It is the analogue of [IP19a,

Theorem 5.2] in our setting. Compare also with Lemma 3.6 op. cit..
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Lemma 5.1.10. Let M be an oriented manifold of dimension d inside a compact space M

that admits a global Kuranishi chart K “ pG, T , E , sq of dimension d. Suppose s intersects

the zero section transversely over the preimage of M and G acts freely on that locus. Let

f : M Ñ N be a continuous map to (the orbit space of) a smooth compact oriented orbifold,

so that f |M is a pseudocycle. Then f˚rM svir “ rf |M s in H˚pN ;Qq.

Proof. Set P :“ fpMzMq and Mo :“ f´1pNzP q. Then Mo is an open submanifold of M

and f : Mo Ñ NzP is proper. In particular, rf s “ f˚rMos P HBM
d pNzP ;Qq – HBM

d pN ;Qq.

Let j : M ãÑ M be the inclusion inducing j! : Ȟ
˚
c pMo;Qq Ñ Ȟ˚pM ;Qq. By assumption

on the Kuranishi section s, the class pj!q
˚rM svir in Ȟd

c pMo;Qq_ corresponds to evaluation

at the fundamental class rMos. This implies that the diagram

Ȟd
c pNzP ;Qq Ȟd

c pM ;Qq H0pM ;Qq

ȞdpN ;Qq ȞdpM ;Qq Q

pf |M q˚

i! j!

PD

f˚ rM̄svir

commutes. Hence, f˚rM svir agrees with the evaluation at rf |M s and thus the two define

the same class in homology.

5.2 Virtual localisation and equivariant GW theory

In this section, we define global Kuranishi charts endowed with a compatible group action

and construct an equivariant virtual fundamental class. We prove a localisation formula,

analogous to [AB84], in the setting of global Kuranishi charts, see Theorem 5.2.10 and

show that it applies to the equivariant GW invariants of Hamiltonian symplectic manifolds

constructed in §5.2.3.

5.2.1 Equivariant virtual fundamental classes

We define what it means for a global Kuranishi chart to carry a compatible group action

and construct the associated equivariant virtual fundamental class. The technical back-

ground for this can be found in §A.2. The construction can be considered a special case

of parameterised virtual fundamental classes.

Definition 5.2.1. Suppose K is a compact Lie group acting on a space M. A global

Kuranishi chart K “ pG, T , E , sq for M is K-compatible if

• T admits a K-action that commutes with the G-action,

• E admits a K-linearisation that commutes with the given G-action, so that

• s is K-equivariant.

We say it is rel–C8 K-compatible if it is rel–C8 over a base space S so that T Ñ S is

K-invariants and K acts relatively smoothly.
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Definition 5.2.2. Let K “ pG, T , E , sq be an oriented global Kuranishi chart for M with

a locally linear compatible T-action. The equivariant virtual fundamental class rMsvirK is

the element of HomH˚
K

pȞ˚`vdim
K pM;Qq, H˚

Kq given by the composite

Ȟ˚`vdim
K pM;Qq

s˚τKE{G
¨

ÝÝÝÝÑ H
˚`dimpT {Gq

K,fc pT {G;Qq

şK
T {G

ÝÝÝÑ H˚
K (5.2.1.1)

where the subscript fc denotes cohomology with fibrewise compact support (of the fibration

pT {GqK Ñ BK) and H˚
K :“ H˚

Kppt;Qq.

Here we use that

Ȟ˚
TpM;Qq “ lim

ÝÑ
nÑ8
WĚM

Ȟ˚pBnW ;Qq

where we take the direct limit over n and open neighbourhoods of M in T {G. The first

map in (5.2.1.1) is induced by the composition

Ȟ˚pWK ;Qq
s˚τKE{G

|W ¨

ÝÝÝÝÝÝÑ Ȟ
˚`rankpEq

K pW | M;Qq
»
ÝÑ Ȟ

˚`rankpEq

K pT {G | M;Qq

Ñ Ȟ
˚`rankpEq

K,c pT {G;Qq

while the second map is the trace map of pT {GqK Ñ BK defined in §A.2.

Lemma 5.2.3. If K acts freely on M and K is a K-compatible global Kuranishi chart,

then rMsvirK “ 0.

Proof. Write K “ pG, T , E , sq. As K acts freely in a neighbourhood of M in T {G, we may

shrink to assume it acts freely on all of T {G. Then H
dimpT {Gq`˚

K,c pT {G;Qq Ñ H˚
Kppt;Qq

vanishes and thus so does rMsvirK .

Remark 5.2.4. By Corollary A.2.3 we have a commutative square

Ȟ˚`vdim
K pM;Qq H˚

Kppt;Qq

Ȟ˚`vdimpM;Qq H0ppt;Qq

rMsvirK

rMsvir

(5.2.1.2)

allowing us to recover rMsvir (partially) from rMsvirK .

The arguments of §3.1.1 can be carried over to the equivariant setting, using Lemma

A.2.5. We obtain the analogous statement for equivariant virtual fundamental classes.

Proposition 5.2.5. Suppose j : K1 ãÑ K is a rel–C8 embedding of oriented global Ku-

ranishi charts as in Proposition 3.1.7 and that K acts relatively smoothly on each global

Kuranishi chart. If the embedding is K-equivariant, then

j˚peKpj˚pE{E 1q{Gq X rM1svirK q “ PDKpT 1{Gq X rMsvirK .

Remark 5.2.6. Suppose M is a moduli space parameterised by a topological space B.

Using the obvious definition of a parameterised global Kuranishi chart, the results in §A.2
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allow for the definition of a parameterised virtual fundamental class of the form

rMsvirB : Ȟd`˚
fc pM;Qq Ñ H˚pB;Qq.

In particular, by Lemma A.2.2 and Lemma A.2.4, the results of §3.1.1 carry over. The

equivariant virtual fundamental class defined here is just a special case of this construction.

This is also discussed (for smooth parameter spaces) in [AMS23, §4.7].

5.2.2 Virtual localisation

LetM be a moduli space with an oriented global Kuranishi chart K “ pG, T , E , sq. Suppose

M admits a continuous T-action which lifts to a compatible T-action on K. Here T “ pS1qk

for some k ě 1. The aim of the localisation statement is to reduce the computation of the

virtual fundamental class of M (and any invariants arising from it) to a computation on

the fixed point locus MT. To see that MT admits a global Kuranishi chart, we need the

following preliminary lemma.

Lemma 5.2.7. Suppose H is a compact connected Lie group and TˆH acts locally linearly

on an oriented topological manifold Y . If the action of H is additionally almost free, then

pY {HqT is an oriented homology Q-manifold.

Proof. Let qY : Y Ñ Y :“ Y {H be the quotient map and set Y qf :“ q´1
Y ppY {HqTq.Then

x P Y qf if and only if for any t P T, we have t ¨x “ h ¨x for some h P H. As H acts almost

freely,

Y qf “ ty P Y | dimppT ˆHqyq “ dimpTqu .

Each path component of Y qf is a topological manifold of Y and consists of elements

whose stabilisers lie in the same conjugacy class. Given Γ ď T ˆ H, let ΛrΓs be the set

of path-components of Y qf with stabiliser group in the conjugacy class of Γ. Then the

path-components of Y
T
are indexed by Λ “

Ť

ΛrΓs and q
´1
Y pY λq is path-connected, since

H is connected. As the right hand side is an oriented manifold on which H acts almost

freely and locally linearly, the claim follows.

By Lemma 5.2.7, the preimage of pT {GqT in T is given by T qf “
Ů

λ

Tλ, where each Tλ
is a G-invariant submanifold. Note that the dimension of Tλ might depend on λ. For each

λ we have a splitting E |Tλ “ Efλ ‘ Emλ , where

pEfλ qx :“ tv P Ex | @h P pT ˆGqx,0 : h ¨ v “ vu pEmλ qx :“

#

v ´

ż

pTˆGqx,0

h ¨ v dmphq
ˇ

ˇ v P Ex

+

for x P Tλ, where pT ˆ Gqx,0 is the identity component of the stabiliser group and m the

normalised Haar measure. Since s is pTˆGq-equivariant, spTλq Ă Efλ . Moreover, the rank

of Efλ is constant along Tλ. This shows that

Lemma 5.2.8. Kλ :“ pG, Tλ, Efλ , s|Tλq is a global Kuranishi chart for Mλ :“ s´1p0qXTλ{G
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and

MT “
ğ

λ

Mλ.

The proof of [AB84, Theorem (3.5)] relies on the existence of local equivariant maps

U Ñ T{Γ where Γ ă T is a closed subgroup and U is an open T-invariant subset of

MzMT. One can construct such sets U using equivariant tubular neighbourhoods of T-
orbits. Given a global Kuranishi chart pG, T , E , sq with a compatible T-action, we want

to emulate this argument for T {G. We do require relative smoothness of T over a base

space; note that we do not show relative smoothness for the submanifolds Tλ.

Lemma 5.2.9. Let X{S be a rel–C8 manifold with S a smooth manifold. Suppose G

is a compact Lie group acting continuously on X and smoothly on S so that the map

G ˆ X Ñ X is relatively smooth over G ˆ S Ñ S. Then for each x P X there exists an

equivariant retraction r : W Ñ G ¨ x defined on a G-invariant neighbourhood of x.

Proof. Let π be the structural map X Ñ S. By Lemma 2.3.14 and [AMS21, Proposition

4.25], there is a G-equivariant fibre submersion ϕ : U Ă X ˆ X Ñ X in the sense of

[AMS21, Definition 4.22].1 Fix x P X and set s :“ πpxq. Let Z be a G-slice through x so

that txu ˆZ Ă U . Let V :“ G ¨Z – GˆGx Z. Then we can define r0 : Z Ñ Xs by r0pzq “

ϕpx, zq. This map is Gx-equivariant, so we can extend it to r1 : V Ñ X 1 :“ π´1pG ¨ sq

by r1pg ¨ zq “ g ¨ r0pzq. As r0pxq “ x by assumption on ϕ, r1 fixes G ¨ x pointwise. The

induced action by H :“ Gs on Xs is smooth. Using an H-invariant Riemannian metric,

we can define an H-equivariant retraction r2 : W
1 Ñ H ¨ x. As before we can extend r2 to

a G-equivariant retraction r3 : W :“ G ¨W 1 Ñ G ¨ x by setting r3pg ¨ yq “ g ¨ r2pyq. By the

compactness of G, W is open. Shrinking Z we may assume impr1q Ă W . Then r :“ r3 ˝ r1

is the desired map.

Theorem 5.2.10 (Virtual localisation). Let K “ pG, T {S, E , sq be a rel–C8 global Ku-

ranishi chart for M. Assume K is endowed with a compatible rel–C8 action by a torus

T. Suppose each path-component of the fixed point locus T T is a rel–C8 manifold over a

submanifold of S.2 Then,

rMsvirT “
ÿ

λ

jλ˚

eTpEmλ {Gq X rMλsvirT
eTpNTλ{T {Gq

(5.2.2.1)

in pȞ˚
TpM;Qq bH˚

T
FracpH˚

Tqq_.

Proof. Using the compactness of s´1p0q, we may assume T qf has finitely many path

components. By Lemma 5.2.9 we can find for each x P T a pT ˆ Gq-invariant open

neighbourhood Wx and a pT ˆGq-equivariant retraction Wx Ñ pT ˆGq ¨ x. The pullback

H˚
T Ñ H˚

TpWx{G;Qq factors throughH˚
T{Tx̄

“ H˚
pT{Tx̄q0

, where x̄ is the image of x inWx{G.

As H˚
pT{Tx̄q0

is torsion over H˚
T for x R T qf , the same is true for H˚

TpWx{G;Qq. Covering

s´1p0qzT qf by finitely many such neighbourhoods, it follows that H˚
TpT zT T

| MzMT;Qq

1That is, U is a neighbourhood of the diagonal that is invariant under the diagonal G-action, ϕ is open
and equivariant so that ϕ|UXtxuˆXπpxq

is the inclusion, and πϕ “ πpr1.
2We impose this condition so each path-component has a well-defined normal bundle.
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is a torsion H˚
T-module by the Mayer-Vietoris sequence, where T :“ T {G. In contrast to

the case where T is a smooth manifold and T ˆ G acts smoothly, we do not have global

tubular neighbourhoods. However, we have them locally, so we can use again induction

and the Mayer-Vietoris sequence to see that

j˚ : H˚
TpT | M;Qq Ñ H˚

TpT T
| MT;Qq

admits an inverse up to torsion given by

j! : H
˚
TpT T

| MT;Qq Ñ H˚
TpT | M;Qq.

As jλ!j
˚
λ “ PDTˆGpTλq¨ by (A.1.0.1), the sum σ :“

ř

λ

PDTˆGpTλq is invertible in the

localised module H˚
TpT ;Qq bH˚

T
FracpH˚

Tq. By Proposition 5.2.5

PDTpTλ{Gq X rMsvirT “ jλ˚peTpEmλ {Gq X rMλsvirT q.

Taking the sum over the path-components of MT and inverting σ, we obtain (5.2.2.1).

Corollary 5.2.11. Suppose K and M are as in Theorem 5.2.10. If E “ E 1 ‘ V , where V

is a trivial bundle on which T acts trivially, then we only have to consider path-components

Tλ of T qf with stabiliser group T.

Proof. Indeed, if H ď T ˆ G is the stabiliser group of some y P Tλ with H ‰ T, then
V m
λ ‰ 0. Thus epEm{Gq “ 0 and so there is no contribution of rMλsvir

5.2.3 Equivariant GW invariants

Suppose pX,ωq is a closed symplectic manifold equipped a Hamiltonian action by a com-

pact connected Lie group K with moment map µ. Let A P H2pX;Zq. We first note the

following compatibility with our construction of a global Kuranishi chart.

Lemma 5.2.12. If J P Jτ pX,ωq is K-invariant, the following holds.

1. There exists an unobstructed auxiliary datum p∇X ,OXp1q, p,U , kq such that ∇X is

K-invariant, OXp1q admits a unitary K-linearisation, and λU is K-invariant.

2. The resulting global Kuranishi chart obtained by Construction 2.1.14 using this aux-

iliary datum admits a relatively smooth compatible K-action.

3. If p∇X 1

,OX 1p1q, p1,U 1, k1q is another unobstructed auxiliary datum satisfying the con-

ditions of (1), then the associated global Kuranishi charts are equivalent via K-

compatible charts such that the moves respect the K-actions. If J 1 is another ω-

compatible almost complex structure such that the K-action is J 1-holomorphic, then

the cobordism constructed in §2.4.2 can be chosen to be K-compatible.

Proof. By [Rie01, Corollary 1.4] we can find a polarisation OXp1q as in Definition 2.1.6

such that the K-action on X lifts to a fibrewise linear unitary K-action on OXp1q. If
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∇̃X is a J-linear connection on TX , then so is the connection ∇X obtained by averaging

∇̃X over K. Given these two data, Theorem 2.1.18 asserts that we can complete them

to an unobstructed auxiliary datum p∇X ,OXp1q, p, Ũ , k̃q. Averaging the cut-off functions

in Ũ over K and possibly increasing k̃ to k, we obtain an unobstructed auxiliary datum

p∇X ,OXp1q, p,U , kq as claimed. By Construction 2.1.14, the associated global Kuranishi

chart is K-compatible. The statements about relative smoothness follow from the descrip-

tion of its universal property in §2.3.1. Finally, (3) can be seen by noting that the proofs

of §2.4.1 carry over verbatim to the equivariant setting.

Definition 5.2.13. The equivariant Gromov–Witten invariants of pX,ω, µq are the maps

GWX,ω,µ
g,n,A :“ ppev ˆ stqKq˚rMg,npX,A; qJsvirK : H˚`vdim

K pXn ˆ Mg,n;Qq Ñ H˚
K (5.2.3.1)

where J is any K-invariant ω-tame almost complex structure on X.

Remark 5.2.14. By [Kir84, Proposition 5.8], pX,µq is equivariantly formal. This allows

us to recover the non-equivariant GW invariants from the equivariant ones by (5.2.1.2)

as follows. Given α “ α1 ˆ ¨ ¨ ¨ ˆ αn P H˚pXn;Qq, we can find rα P H˚
KpXn;Qq so that

ι˚rα “ α, where ι : X Ñ XT is the canonical inclusion. Then

xα1, . . . , αny
X,ω
g,n,A “ c˚GWX,ω,µ

g,n,A prαq,

where c : BK Ñ pt is the constant map. In particular, if the equivariant GW invariants

of X vanish, then so do the non-equivariant GW invariants.

Proposition 5.2.15. The invariants GWX,ω,µ
g,n,A satisfy the equivariant analogue of the

Kontsevich–Manin axioms.

Proof. By the equivariant Kontsevich-Manin axioms we mean the generalisation of the

relations listed in the introduction to equivariant cohomology. The arguments of §4.1 carry
over, using Proposition 5.2.5 instead of Proposition 3.1.7. As an example, we discuss the

Fundamental class axiom; it says

xα1 ˆ ¨ ¨ ¨ ˆ αn ˆ 1X ˆ β; GWX,ω,µ
g,n`1,Ay “ xα1 ˆ ¨ ¨ ¨ ˆ αn ˆ πn`1!β; GWX,ω,µ

g,n,A y (5.2.3.2)

as elements of H˚
K . Let Kn be a global Kuranishi chart for Mg,n´1pX,A; Jq equipped

with a compatible K-action and let Knn` 1 be its pullback along the forgetful map πn`1.

By the proof of Proposition 4.1.5, we may replace them with global Kuranishi charts rKn

and rKn which are still compatible with the group action and where the forgetful map

rπn`1 : rTn`1{ rG Ñ rTn{ rG satisfies

prπn`1q! st
˚ “ st˚ πn`1!

in ordinary cohomology. Now we may conclude by using the straightforward generalisation

of Lemma A.1.6 to equivariant cohomology. The other axioms are left to the interested

reader.
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Set QH˚
KpX,ωq :“ H˚

KpX;Qq bQ Λ and endow it with the product

α ˚ β “
ÿ

APH2pX;Zq

pα ˚ βqAt
ωpAq,

where
ż K

X
pα ˚ βqA ¨ γ “ GWX,ω,µ

0,3,A pα, β, γq (5.2.3.3)

for any γ P H˚
KpX;Qq. By the equivariant Symmetry and Splitting axiom, this is graded-

commutative and associate. Note that (5.2.3.3) determines pα ˚ βqA uniquely since pX,µq

is equivariantly formal.
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Chapter 6

Exotic tori in higher projective

spaces

In this chapter we prove Theorem 1.2.1. It is an immediate consequence of the following

result about the Newton polytope of the disk potential of a lifted Vianna tori, defined in

§6.1.2. More precisely, we prove the following refinement.

Theorem 6.0.1. The Newton polytope of the disk potential of T pa,b,cq is a nondegenerate

simplex in Rn. One 2-dimensional face is a triangle with affine edge lengths a, b and c,

while the affine length of any other edge is 1. In particular, if ta, b, cu ‰ ta1, b1, c1u, then

there is no symplectomorphism of Pn that maps the lifted Vianna torus T pa,b,cq to T pa1,b1,c1q.

6.1 Geometric preliminaries

In this section we define the necessary geometric constructions in order to apply [PT20,

Theorem 1.1] in §6.2. We introduce the notion of a solid mutation configuration and solid

mutations, generalising mutations of a 2-dimensional Lagrangian torus along a disk to

higher dimensions. Subsequently, we define the lifts of the Vianna tori and show that they

are related by solid mutations.

6.1.1 Solid mutation configurations

We generalise the results of [PT20, §4.4, §4.5] to higher dimensions. Compare with [PT20,

§5.3], where the ambient manifolds are required to be toric. In particular, the definition

of solid mutation matches the definition of higher mutation in [PT20] with mutation

configuration pF,wq where F is an pn´ 1q-dimensional face of a moment polytope.

Definition 6.1.1. Let pM2n, ωq be a symplectic manifold. A pair pL,Tq is a solid mutation

configuration (SMC) in M if

• L is a Lagrangian torus;

• T is a Lagrangian solid torus, i.e. T is diffeomorphic to D ˆ Tn´2;

• L and T intersect cleanly along the boundary of T;
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• the pair pL,T X Lq is diffeomorphic to the standard pair pTn,Tn´1q for some n.

Here two submanifolds N0 and N1 of M intersect cleanly if K “ N0 XN1 is a smooth

submanifold of M and TxK “ TxN0 X TxN1 for any x P K.

Let us make the following observation, which is the higher dimensional analogue of

[PT20, Corollary 3.4].

Lemma 6.1.2. Suppose pL,Tq is a SMC in pM,ωq and L is monotone. Then there exists

a divisor D Ă MzpL Y Tq Poincaré dual to dc1pMq for some d " 1, so that L is exact in

MzD.

Proof. The assertion follows by the same argument as in [PT20, Corollary 3.4] from [PT20,

Theorem 3.3]. We sketch the argument. Since L is monotone, we can replace ω by ω1 “ τω

and thus assume that ωpπ2pM,Lqq Ă Z. Hence we can find a Hermitian line bundle L Ñ M

with Hermitian curvature F∇ “ ´2πiω. Then L|L is flat, as is the restriction of Lbk for

any k ě 1. Now construct for each k sections sk1, sk2, sk3 of Lbk which are bounded away

from 0 on L, T and on LX T respectively and show that their sum is bounded away from

zero. Also, choose the sections ski so that they are covariantly constant over L.

As in [PT20] we will construct a model neighbourhood for SMCs, which will allows us

to define solid mutations. The key ingredient is a Weinstein neighbourhood theorem for

SMCs (compare to [PT20, Lemma 4.11]), for which we need the following technical result.

Lemma 6.1.3. Suppose ψ : r12 , 1s ˆ Tn Ñ r12 , 1s ˆ Tn is a diffeomorphism with ψp1, xq “

p1, xq for x P Tn. Then there exists ϵ ą 0 and a diffeomorphism Ψ: DˆTn´1 Ñ DˆTn´1

which agrees with ψ on r1 ´ ϵ, 1s ˆ Tn. If ψ is equivariant with respect to a torus action

on Tn, then we can choose Ψ to be equivariant as well.

Here we identify r12 , 1s ˆS1 with the corresponding annulus inside the closed unit disk

D Ă C.

Proof. Write ψ “ pψ1, ψ2q and define ψrpxq :“ ψ2pr, xq for x P Tn. Then there is 0 ă ϵ ă 1
9

so that ψr is a diffeomorphism for |1 ´ r| ă 3ϵ. In particular, ψr defines an (equivariant)

isotopy from ψ1´2ϵ to the identity. Let ρ : r0, 1s Ñ r0, 1s be a smooth cutoff function with

ρptq “ t for t ě 1 ´ ϵ, ρ ” 1 ´ 2ϵ on r0, 1 ´ 2ϵs and ρ1ptq ą 0 on p1 ´ 2ϵ, 1s. Similarly,

let β : r12 , 1s Ñ r0, 1s be a smooth cutoff function so that βptq “ 1
2 t near 1

2 , β ă 1
2 on

r12 , 1 ´ 2ϵs, β ” 1 on r1 ´ ϵ, 1s and β is strictly increasing on r1 ´ 2ϵ, 1 ´ ϵs. Define

ψp1q : r12 , 1s ˆ Tn Ñ p0, 1s ˆ Tn by

ψp1qpt, xq “ pβptqψ1pρptq, xq, ψ2pρptq, xqq.

This is a diffeomorphism by the choice of ρ and β and agrees with ψ near t1u ˆ Tn.
It suffices thus to extend the closed embedding

ψp1q : r
1

2
, rs ˆ Tn Ñ r0, 1s ˆ Tnzψp1q

´

pr, 1sq ˆ Tn
¯
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for some r ă 1 ´ 2ϵ. We can write it as

ψp1qpt, xq “ pthpxq, φpxqq

for t P r12 , rs, where φ P DiffpTnq is (equivariantly) isotopic to the identity and h : Tn Ñ

p0, 1s is smooth. Note that imp4hq ˆ Tn is the inner boundary of ψpr1 ´ 2ϵ, 1s ˆ Tnq.

Given an (equivariant) isotopy tφsusPr0,1s from the identity to φ, let χ : r0, 1{3s Ñ r0, 1s

be a smooth cutoff function, so that χ ” 0 near 0 and χ ” 1 near 1
3 . Fix also a smooth

cutoff function η : r0, rs Ñ r0, 1s so that η ” 0 near 1
3 , η ” 1 on r12 , rs and η1ptq ě 0. Set

a :“ minh. Then define Ψ̃ : r0, 1s ˆ Tn Ñ r0, 1s ˆ Tn by

Ψ̃pt, xq “

$

’

’

’

&

’

’

’

%

ψp1qpt, xq r ď t ď 1
´

at p
hpxq

a qηptq, φpxq

¯

1
3 ď t ď r

pta, φχptqpxqq 0 ď t ď 1
3

This descends to the desired diffeomorphism of the solid torus. If we start with an equiv-

ariant ψ, then Ψ̃ is equivariant by construction, and thus so is Ψ.

Lemma 6.1.4 (Weinstein neighbourhood theorem for solid mutation configurations). Sup-

pose pLi,Tiq Ă pMi, ωiq is a solid mutation configuration for i P t0, 1u with dimpM0q “

dimpM1q. Then there exist neighbourhoods Ui Ă Mi of Li Y Ti and a symplectomorphism

ψ : U0 Ñ U1 mapping pL0,T0q to pL1,T1q.

Proof. By definition there exists a diffeomorphism ϕ : L0 Ñ L1 which maps L0 X T0 to

L1 X T1. Extend ϕ to a symplectic bundle isomorphism Φ: TM0|L0 Ñ TM1|L1 , which

maps TT0|BT0 to TT1|BT1 . Now the proof proceeds along the lines of [PT20, Lemma 4.11].

By the Weinstein neighbourhood theorem, Φ defines a symplectomorphism ψ1 : U 1
0 Ñ U 1

1

for neighbourhoods U 1
0 and U

1
1 of L0, respectively L1. Then ψ

1 maps U 1
0 XT0 to a manifold

tangent to U 1
1XT1 with the same boundary. As cleanly intersecting submanifolds admits a

normal form near their intersection, we may post-compose ψ1 with a Hamiltonian isotopy

to assume ψ1 maps U 1
0 X T0 to U 1

1 X T1. By Lemma 6.1.3 we can extend its restriction to

U 1
0XT0 to a diffeomorphism φ : T0 Ñ T1, possibly shrinking U 1

i . As φ is induced by Φ near

BT0, the standard lift of φ to a symplectic vector bundle isomorphism TM0|T0 Ñ TM1|T1

extends Φ. Using the Weinstein neighbourhood theorem again, we obtain the desired

symplectomorphism ψ.

Suppose a torus T embeds as subtorus of BT0 and BT1. Multiplication by elements

of T induces a torus action on Li and Ti which extends to a Hamiltonian T-action on a

neighbourhood of Li Y Ti. Using the equivariant version of the Weinstein neighbourhood

theorem and Lemma 6.1.3, we can choose ψ in the previous statement to be equivariant.

We now construct our model neighbourhood, see also [PT20, §4.5]. SetX1 :“ C2ztx1x2 “

1u and endow it with the Lefschetz fibration π : X1 Ñ Czt1u defined by πpxq “ x1x2. Given
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a simple loop (or more generally an embedded path) γ in Czt0, 1u define the Lagrangian

Tγ :“
␣

px, yq P C2
ˇ

ˇ |x| “ |y|, πpx, yq P impγq
(

. (6.1.1.1)

By [PT20, Lemma 4.13], there exists a primitive θ of ωstd|X1 and A ą 0 so that Tγ is exact

with respect to θ if and only if γ encloses 1 and a disk of area A. Given such a loop γ we

say Tγ (or just γ) is of Clifford type if γ encloses 0 and of Chekanov type otherwise. If ℓ is

a line segment starting at 0, then Tℓ is a vanishing cycle, in particular, a Lagrangian disk.

Given n ě 3, set X :“ X1 ˆ Cn´2 and endow it with the restriction of the standard

symplectic form on Cn. Denote T γ :“ Tγ ˆ Tn´2. This is exact, with respect to θ̃ :“

θ ‘ θn´2 for the standard primitive θn´2 of ωstd on Cn´2, if Tγ is exact. The following is

a straightfoward exercise.

Lemma 6.1.5. Suppose γ is a loop enclosing both 0 and r and let ℓ be the line segment

from 0 to minptimpγq X iRuq. Then pT γ , T ℓq is an SMC.

We obtain the following corresponding generalisation of [PT20, Lemma 4.17] by ap-

plying Lemma 6.1.4 and the discussion afterwards.

Corollary 6.1.6. If pL,Tq is an SMC in pM2n, ωq, there exists a neighbourhood U Ă M

of L Y T and an equivariant symplectic embedding ψ : U ãÑ X1 ˆ Cn´2 so that ψpL,Tq “

pT γ , T ℓq for γ of Clifford type and ℓ a line segment as above.

By [PT20, Lemma 4.14], T γ and T γ1 are isotopic through a compactly supported

Hamiltonian if and only if γ and γ1 (as above) are smoothly isotopic in Czt0, 1u and enclose

disks of the same area. Thus the following definition is well-defined up to Hamiltonian

isotopy.

Definition 6.1.7. Let pL,Tq be an SMC in pM2n, ωq and let ψ be a symplectomorphism

as in Corollary 6.1.6. The solid mutation of L along T is LT :“ ψ´1pT γ1q for any simple

loop γ1 in ψpUq of Chekanov type.

Lemma 6.1.8. If pL,Tq is an SMC in pM,ωq and L is monotone, then so is LT.

Proof. Using Corollary 6.1.6, the proof is analogous to the proof of [Cha23, Lemma 2.5].

6.1.2 Lifting Vianna tori

A Markov triple pa, b, cq is a triple of positive integers satisfying the Diophantine equation

a2 ` b2 ` c2 “ 3abc. The set of these triples forms the vertices of the Markov tree, which

is connected and infinite by [Aig13, Chapter 3]. A triple pa, b, cq is connected to pa1, b1, c1q

by an edge if and only if pa1, b1, c1q is a Markov mutation of pa, b, cq, i.e., of the form

p3bc´ a, b, cq, pa, 3ac´ b, cq or pa, b, 3ab´ cq.

For any Markov triple pa, b, cq, [Via16] constructs a monotone Lagrangian torus Tpa,b,cq

in P2, whose Hamiltonian isotopy class is uniquely determined by pa, b, cq. To make this

precise, let Ppa2, b2, c2q be the weighted projective space associated to a Markov triple
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pa, b, cq with associated degenerations from P2. By [Via16], P2 can be obtained from

Ppa2, b2, c2q by performing at most three rational blow-downs.

Definition 6.1.9 (Vianna tori). The Vianna torus Tpa,b,cq associated to a Markov triple

pa, b, cq is the central fiber of the almost toric fibration of P2 obtained from the rational

blow-down of Ppa2, b2, c2q.1

In [PT20], the authors relate Vianna’s construction to local mutations, which are a spe-

cial case of our solid mutations. In particular, they show that each Tpa,b,cq admits canon-

ical mutation configurations pTpa,b,cq, Dpa1,b1,c1qq, indexed by the Markov triples pa1, b1, c1q

obtained from pa, b, cq by a Markov mutation. The mutation along Dpa1,b1,c1q results in a

torus that is Hamiltonian isotopic to Tpa1,b1,c1q.

We will lift these tori to monotone Lagrangian tori in Pn for n ě 3 using symplectic

reduction. In Lemma 6.1.12, we show that a mutation of Tpa,b,cq alongDpa1,b1,c1q corresponds

to a solid mutation of its lift to Pn along the lift of Dpa1,b1,c1q.

Fix n ě 3 and let

µn : Pn Ñ Rn´2 : rzs ÞÑ
1

|z|2
p|z3|2, . . . , |zn|2q

be the moment map of the standard Hamiltonian Tn´2-action acting on the last n ´ 2

homogeneous coordinates. In particular, the action is free on Fn :“ µ´1
n

´!

1
n`1

řn´2
i“1 ei

)¯

,

where e1, . . . , en´2 is the standard basis of Rn´2. A computation in local coordinates

shows that Fn{Tn´2 equipped with the reduced symplectic form is symplectomorphic to

P2. Let q : Fn Ñ P2 be induced by the quotient map. A straightforward computation

shows that the preimage of the Clifford torus in P2 under q is the Clifford torus in Pn.

Definition 6.1.10. Given a Markov triple pa, b, cq, we define the lifted Vianna torus to

be

T
pnq

pa,b,cq :“ q´1pTpa,b,cqq.

We see that T
pnq

pa,b,cq is a Lagrangian torus by the definition of the symplectic structure

on the symplectic reduction. If n is clear from the context, we write T pa,b,cq instead of

T
pnq

pa,b,cq.

Remark 6.1.11. As we can also do the reduction inductively, at each step reducing by an

S1-action, we see that for each pa, b, cq, we obtain a tower T
pnq

pa,b,cq “: Tn Ñ Tn´1 Ñ ¨ ¨ ¨ Ñ

T2 :“ Tpa,b,cq, where Tj`1 Ñ Tj is the restriction of a principal S1-bundle on Pj . As the

Euler class of this S1-bundle is a multiple of rωFSs, its restriction to Tj vanishes. Thus

T
pnq

pa,b,cq Ñ Tpa,b,cq is a trivial Tn´2-bundle.

Lemma 6.1.12. If pa1, b1, c1q is a Markov mutation of pa, b, cq, then T
pnq

pa,b,cq and T
pnq

pa1,b1,c1q

are solid mutations of each other. In particular, each T
pnq

pa,b,cq is monotone.

Proof. By Vianna’s construction and [PT20, Lemma 4.21], there exists a mutation con-

figuration pTpa,b,cq, Dq in P2, so that the associated mutation of Tpa,b,cq is Tpa1,b1,c1q. Let

1Note that Vianna denotes Tpa,b,cq by T pa2, b2, c2q instead.
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T “ q´1pDq. As q is the quotient map of a free Tn´2-action, pT
pnq

pa,b,cq,Tq is a solid mu-

tation configuration in Pn. It follows from the local model in [PT20], respectively §6.1.1
that the solid mutation of T

pnq

pa,b,cq along T is the lift of the mutation of Tpa,b,cq along D, and

thus Hamiltonian isotopic to T
pnq

pa1,b1,c1q
. The last assertion follows from Lemma 6.1.8.

6.2 A wall-crossing formula for the lifted Vianna tori

In this section, we explain how to obtain the wall-crossing formula for the disk potential

under a solid mutation. This is a variation of [PT20, Theorem 5.7], where we do not

require the toric assumption due to our Weinstein neighbourhood theorem for general

solid mutation configurations.

Let X1 :“ C2ztx1x2 “ 1u be as in the previous section and let γ be a loop of Clifford

type in X1. Suppose ℓ is a straight line segment in C˚ joining the origin to a point p P γ

and only intersecting γ at p. Set L0 :“ Tγ and D0 :“ Tℓ as defined in (6.1.1.1). By [PT20,

Lemma 4.15], there is a small neighbourhood U0 of L0 YD0 such that U0 is Liouville and

the Liouville completion of U0 (which we can take to be a Liouville domain) agrees with

X1. Let L1 denote a Chekanov type torus in U0.

Set Li :“ Li ˆ Tn´2. This is an exact Lagrangian in pU0 ˆ pAϵq
n´2, θ̃qq for i P t0, 1u,

where Aϵ :“ tz P C| |z´1| ă ϵu for ϵ ą 0 and rθ was defined in §6.1.1. Let Us be a Liouville

domain obtained by smoothing the corners in U0 ˆ pAϵq
n´2. Since the completion of Aϵ is

C˚, the completion of Us is X1 ˆ pC˚qn´2, see [Oan06, §3.d.].

Remark 6.2.1. Suppose L is a monotone Lagrangian torus in a symplectic manifold pM2n, ωq.

Its disk potential WL can be considered as a Laurent polynomial as follows. Let ρ :

H1pL;Zq Ñ C˚ be a local system on L. Fix a basis v1, . . . , vn of H1pL;Zq – Zn and let

px1, . . . , xnq be the image of pv1, . . . , vnq under the holonomy map ρ. This tuple specifies

the holonomy of a flat C˚ line bundle over L uniquely. Thus, one can identify pC˚qn with

the space of flat line bundles over L. We can then write the disk potential WL, defined in

(1.2.0.1), as

WL : pC˚qn Ñ C

WLpx1, . . . , xnq “
ÿ

βPπ2pM,Lq

µpβq“2

|MpL, βq|xBβ,

where MpL, βq is the moduli space of J´holomorphic discs in the class β such that the

boundary of the disk lies on L and passes through a generic (but throughout fixed) p P L.

We identify Bβ with a point in Zn via the chosen basis and use multi-index notation.

We now extract a local wall-crossing formula from [Sei13]. This requires the choice of

a certain basis of H1pLi;Zq. Write L0 “ Tγ ˆ Tn´2 with π : Tγ Ñ impγq the restriction of

the Lefschetz fibration. Note that L0 and L1 intersect cleanly in two circles, so L0 and L1

intersect cleanly in two tori Tn´1.

Definition 6.2.2 (Admissible pair of bases). We call any two bases of H1pL0;Zq and

H1pL0;Zq admissible if they are obtained via the following construction. We have L0XL1 “
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C` \C´, where C˘ are circles lying in a fibre of π : X1 Ñ C. Let α0 “ ´rC`s. Choose β0

to be the circle in Tγ given by a lift of γ to X1 and let γ0,i be the class of the ith factor of

Tn´2 for 1 ď i ď n ´ 2. This forms a basis of H1pL0;Zq with respect to which we denote

the coordinates of the disk potential by x0, y0, z0,1, . . . , z0,n´2. Given any smooth isotopy

from L0 to L1 which preserves α0 and which is the identity on the last pn´ 1q-factors, we

denote by α1, β1, γ1,1, . . . , γ1,n´2 the induced basis of H1pL1;Zq.

Given any basis of H1pLi,Zq, we can and will identify a local system ρi on Li with a

point pxi, yi, zijq P pC˚qn using these coordinates. Abbreviate Li :“ pLi, ρiq.

Lemma 6.2.3 (Local Wall-Crossing). Given an admissible pair of bases, we have

HFX1ˆpC˚qn´2pL1,L2q ‰ 0

if and only if px1, y1, z1,1, z1,2 . . . , z1,n´2q “ px0, y0p1 ` x0q, z0,1, . . . , z0,n´2q.

Proof. This is a generalisation of [Sei13, Proposition 11.8] which treats the case of n “ 2.

Instead of using Morse-Blott Floer homology as in op. cit., one can also count strips

by hand. To this end, perturb L1 slightly in the fibre direction so that it intersects L0

transversely in two fibres of px, yq ÞÑ xy. Perturb the ith S1, denoted S1i, in the Tn´2-

factor of L1 so that it intersects the ith circle S0i of the Tn´2-factor of L0 transversely.

Let pi be the composition X1 ˆ pCˆqn´2 Ñ pCˆqn´2 pri
ÝÝÑ Cˆ.

Suppose v : R ` ir0, 1s Ñ X1 ˆ pCˆqn´2 is a Floer strip of Maslov index one. Then,

by the open mapping theorem and the maximum principle πv as well as each vi :“ piv

have to map onto the two lunes enclosed by γ and γ1, respectively between S0i and S1i.

Since all factors are monotone Lagrangians, it follows that at most one of πv, v1, . . . , vn´2

can be nonconstant. The later n´ 2 cases imply that we must have z1,j “ z0,j , while the

study of πv was done in [Sei13], respectively [Sei97, Chapter 17].

Theorem 6.2.4. Given a pair of adimissible bases of H1pT pa,b,cq;Zq and H1pT pa1,b1,c1q;Zq,

the disk potentials are related by

WT pa,b,cq
px, y, z1, . . . , zn´2q “ WT pa1,b1,c1q

px, yp1 ` xq, z1, . . . , zn´2q. (6.2.0.1)

Proof. We first reduce this to a computation in the local model described in §6.1.1. By

[PT20], we can find a disk D Ă P2so that pTpa,b,cq,Dq is a Lagrangian seed whose mutation

is Hamiltonian isotopic to Tpa1,b1,c1q. Denote by T the lift of D to a solid torus in Pn. Fix

an equivariant symplectic embedding ϕ : U0 ˆ pAϵq
n´2 Ñ Pn as in Corollary 6.1.6 and

Lagrangians L0, D0, L1 Ă U0 as above so that ϕpL0q “ T pa,b,cq and ϕpD0 ˆ Tn´2q “ T.

Then,

ϕpL1q “ ψpT pa1,b1,c1qq

for some Hamiltonian diffeomorphism ψ on Pn. Let D Ă Pn be a Donaldson divisor for

pT pa,b,cq,Tq as in Lemma 6.1.2. Choosing U0 and ϵ sufficiently small, we may assume

ϕpU0 ˆ pAϵq
n´2q Ă PnzD. We claim that ϕpU0 ˆ pAϵq

n´2q is a Liouville subdomain of

PnzD, i.e., that λ :“ θ̃ ´ ϕ˚θPnzD is exact, where θPnzD is a primitive of ωFS|PnzD. Let α
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be any loop in U0 ˆ pAϵq
n´2. As U0 ˆ pAϵq

n´2 deformation retracts onto L0 YD0 ˆ Tn´2,

we may assume α “ ι˚α
1 for some α1 P π1pL0q and ι : L0 ãÑ U0 ˆ pAϵq

n´2 the inclusion.

Thus
ż

α
λ “

ż

α1

ι˚λ “ 0,

since L0 is exact with respect to both primitive 1-forms. Thus λ is exact, so by [PT20,

Theorem 3.1],

HFPnzDppT pa,b,cq, ρ̂0q, pT pa1,b1,c1q, ρ̂1qq – HFX1ˆpC˚qn´2ppL0, ρ0q, pL1, ρ1qq. (6.2.0.2)

for any local system ρi on Li and the corresponding one on T pa,b,cq respectively T pa1,b1,c1q.

By Lemma 6.2.3 and our choice of bases,

HFX1ˆpC˚qn´2ppL0, ρ0q, pL1, ρ1qq ‰ 0

if and only if ρ0 “ px, y, z1, . . . , zn´2q and ρ1 “ px, yp1 ` xq, z1, . . . , zn´2q. As the disk

potential is invariant under Hamiltonian isotopy, we see that WT pa1,b1,c1q
“ WϕpL1q

as disk

potentials of Lagrangians in Pn. Therefore [PT20, Theorem 1.1] implies (6.2.0.1).

Remark 6.2.5. The theorem holds for general solid mutation configurations since it only

uses the local models of §6.1.1.

Remark 6.2.6 (Algebraic mutations). Theorem 6.2.4 asserts that, given admissible bases

of the first homology, the Laurent polynomials WT pa,b,cq
and WT pa1,b1,c1q

are related by the

algebraic mutation px, y, z1, . . . , zn´2q ÞÑ px, yp1 ` xq, z1, . . . , zn´2q. Refer to [PT20, §4]
and [ACG`12, Definition 2] for the general definition of an algebraic mutation of a Laurent

polynomial.

6.3 Distinguishing the tori in Pn

In order to distinguish the tori Tpa,b,cq, Vianna shows that the Newton polytope associated

to the disk potential of Tpa,b,cq is a triangle with edges of affine length a, b and c. As the

Newton polytope of WTpa,b,cq
is an invariant of the symplectomorphism class of Tpa,b,cq, the

symplectomorphism class of Tpa,b,cq in P2 is therefore uniquely determined by pa, b, cq.

We will use this result from [Via16] to prove a similar result for the lifted Vianna tori.

The argument uses induction on the Markov tree and properties of the Vianna tori and

their Newton polytopes.

6.3.1 Newton polytopes

Given n ě 3, let R :“ Rrx˘
1 , . . . , x

˘
n s be the ring of Laurent polynomials in n variables.

We identify the set of monomials in R with Zn in the obvious way. The Newton polytope

of a Laurent polynomial f “
ř

kPZn

akx
k1
1 ¨ ¨ ¨xknn P R is the the closed convex hull

Newtpfq :“ Convptk P Zn : ak ‰ 0uq.
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This association is equivariant with respect to the GLpn,Zq-action on R, defined in [PT20,

Remark 4.2], and the standard action on Rn.

Example 6.3.1. Using the coordinates on H1pT p1,1,1q;Zq coming from the the standard

moment polytope of Pn scaled appropriately, the disk potential of the Clifford torus in Pn

is

WT p1,1,1q
pxq “ x1 ` ¨ ¨ ¨ ` xn `

1

x1 ¨ ¨ ¨xn
. (6.3.1.1)

by [Aur07, Proposition 4.3]. Thus NewtpWT p1,1,1q
q “ Convpe1, . . . , en,´

řn
i“1 eiq is an

n-simplex, where e1, . . . , en denotes the standard basis of Rn.

In particular, the Newton polytope of the Clifford torus is a Fano polytope as defined

in [ACG`12]; i.e.,

1. the polytope is convex;

2. it contains 0 in its interior;

3. its vertices are primitive in Zn.

In §6.2 we show that a solid mutation of a suitable Lagrangian torus corresponds to a

specific algebraic mutation of its disk potential. By [ACG`12], an algebraic mutation of

f P R corresponds to a combinatorial mutation of Newtpfq. Refer to [ACG`12, Definition

5] for a precise description and to Remark 5 op. cit. for a discussion of the relationship

between algebraic and combinatorial mutations. Note that we are only interested in alge-

braic mutations of the form px1, . . . , xnq ÞÑ px1, x2p1 ` x1q, x3, . . . , xnq. See [PT20, §5] for
more general algebraic mutations that occur if one uses different geometric mutations of

Lagrangians.

Example 6.3.2. We obtain T p1,1,2q by solid-mutating T p1,1,1q in P2 alongDp1,1,2q “ Dp1,1,2qˆ

Tn´2. In the standard coordinates of T p1,1,1q, the class rBDp1,1,2qs is given by p1, 1, 0, . . . , 0q

by [PT20, Example 4.12]. Since the boundary of the disk in the local model corresponds

to the vector p1, 0, . . . , 0q in an admissible basis, it follows that we have to make the base

change

pv1, . . . , vnq ÞÑ pv1, v2 ´ v1, v3, . . . , vnq.

If a local system is given by px1, . . . , xnq in the previous basis, it corresponds to x1 “

px1x2
, x2, . . . , xnq in the new one. Then WT p1,1,1q

px1q “
x1
1
x1
2

` x1
2 ` ¨ ¨ ¨ ` x1

n ` 1
x1
1x

1
3¨¨¨x1

n
and

hence

WT p1,1,2q
px1q “ x1

2 ` x1
3 ` ¨ ¨ ¨ ` x1

n `
p1 ` x1

1q2

x1
1x

1
2
2x1

3 ¨ ¨ ¨x1
n

.

By [ACG`12, Proposition 2], the combinatorial mutation of a Fano polytope is again

a Fano polytope. From Example 6.3.1 it follows that NewtpWT pa,b,cq
q is a Fano polytope

for any Markov triple pa, b, cq. The proof of Theorem 6.0.1 relies heavily on going back

and forth between Laurent polynomials and their associated Newton polytopes.

From now on we will use x, y, z1, . . . , zn´2 instead of x1, . . . , xn to distinguish between

the variables which are involved in the algebraic mutation and those which are not. We

denote the associated coordinates of Rn by x,y, z1, . . . , zn´2.

Now we prove some lemmas in preparation for the proof of the main theorem in §6.3.2.
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Lemma 6.3.3. a) Suppose the Newton polytope of

fpx, yq “

M
ÿ

i“m

yifipxq

is Fano with fm ‰ 0 and fM ‰ 0. Then m ă 0 ă M . Moreover, if Newtpfq is a

triangle, then either fM or fm is a monomial, and if fpx, yp1 ` xq´1q is a Laurent

polynomial, then fm is a monomial.

b) Suppose the Newton polytope of

gpx, y, zq “

M
ÿ

i“m

yizj1i1 ¨ ¨ ¨ z
jpn´2qi

n´2 gipxq

is contained in the affine plane H “ w ` xv, e1y for some v “ pv1, . . . , vnq P Zn such

that v2 ‰ 0 and w P Zn. Then jri depends linearly on i for any r P t1, . . . , n´ 2u.

Proof. a) By (2), Newtpfq has nonempty interior, so the first property is immediate. To

see the second, suppose fM is not a monomial. Then Newtpfq X ty “ Mu is an edge

of Newtpfq; in particular it contains two vertices of Newtpfq. As Newtpfq X ty “ mu

is nonempty and only touches the boundary of Newtpfq it must therefore be a single

point and thus fm a monomial. If fpx, yp1 ` xq´1q is still a Laurent polynomial, then

p1 ` xqM has to divide fM , so fM cannot be a monomial.

b) Any monomial in g is of the form xkyizj1i1 ¨ ¨ ¨ z
jpn´2qi

n´2 where

pk, i, j1i, . . . , jpn´2qiq “ w`av`be1 “ pw1`av1`b, av2`w2, av
1
1`w1

1, . . . , av
1
n´2`w1

n´2q

for some a, b P R. As v2 ‰ 0, we obtain jri “ pi´ w2q
v1
r
v2

` w1
r.

We will use the following properties of the Newton polytopes associated to the Vianna

tori. The first result is a summary of [Via16, Lemma 4.11] and the discussion loc. cit.

Lemma 6.3.4. The Newton polytope NewtpWTpa,b,cq
q is a triangle whose edges have affine

lengths a, b, and c. Moreover, the coefficients of the monomials in WTpa,b,cq
corresponding

to the vertices of NewtpWTpa,b,cq
q are ˘1.

The following statement is probably known to experts, but we did not find a proof in

the literature. We provide a proof for completeness.

Lemma 6.3.5. Suppose pa, b, cq and pa1, b1, c1q are Markov triples related by a Markov

mutation and

WTpa,b,cq
px, yq “

M
ÿ

i“m

yiCipxq

with respect to a pair of admissible basis for H1pTpa,b,cq;Zq and H1pTpa1,b1,c1q;Zq. Then

CM pxq “ ˘xkp1`xqM for some k ě 0. In particular, the monomials corresponding to the

vertices on NewtpWTpa,b,cq
q X ty “ Mu have the same coefficient.
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Proof. As WTpa,b,cq
is mutable, we must have Cmpxq “ axkm for some km P Z by Lemma

6.3.3(a). Applying (a) toWTpa1,b1,c1q
, we deduce that CM pxq

p1`xqM
is a monomial with the same co-

efficient as yMCM pxq in WTpa,b,cq
. By Lemma 6.3.4, the coefficient of y

MCM pxq

p1`xqM
in WTpa1,b1,c1q

is ˘1, so CM pxq “ ˘xkM p1 ` xqM . This shows that the coefficients along the edge

e “ Convptpi,Mq : xi P CM pxquq corresponding to yMCM pxq are binomial. In particular,

the monomials corresponding to the vertices of e have exactly the same coefficients, i.e.,

both are either 1 or ´1.

6.3.2 Distinguishing tori by induction

To prove Theorem 6.0.1 , we use an induction based on the Markov tree. Explicitly, we

verify that p1, 1, 1q has the desired property P as the base step. Then, assuming P is

satisfied by any Markov triple pa, b, cq of (graph) distance d away from p1, 1, 1q, we prove

that P holds for an elementary mutation of pa, b, cq.

The following result is a more precise formulation of Theorem 6.0.1. Set z :“
řn´2
i“1 zi.

Proposition 6.3.6. Let pa, b, cq be a Markov triple. Given a basis of H1pT pa,b,cq;Zq as

constructed in Definition 6.2.2, the following holds.

i) NewtpWT pa,b,cq
´ zq is a triangle.

ii) WT pa,b,cq
px, y, 1, . . . , 1q “ WTpa,b,cq

px, yq ` n´ 2.

iii) NewtpWT pa,b,cq
q is a simplex with one 2-dimensional face given by NewtpW Tpa,b,cq

´ zq

and the other vertices being e3, . . . , en. Moreover, they are at affine unit length from

all other vertices.

iv) The affine lengths of the edges of the triangle NewtpWT pa,b,cq
´ zq are a, b and c.

Proof. Abbreviate Wpa,b,cq :“ WTpa,b,cq
and Newtppa, b, cqq :“ NewtpWTpa,b,cq

q and similarly

for T pa,b,cq. In Example 6.3.1 and Example 6.3.2, the disk potentials of the respect torus

have been explicitly computed. By a direct verification, one can show that the claims

hold for p1, 1, 1q and p1, 1, 2q. Let pa1, b1, c1q be a Markov triple at a distance d ` 1 from

p1, 1, 1q for d ě 1. Assume it is connected to a triple pa, b, cq at distance d from p1, 1, 1q.

Fix an admissible pair of bases for H1pT pa,b,cq;Zq and HH1pT pa1,b1,c1q;Zq. By the induction

hypothesis, (i)-(iv) hold for pa, b, cq. Write

W
pa,b,cq

“

M
ÿ

i“m

yi rCipx, z1, . . . , zn´2q.

By (i) and (ii), there exists for each monomial xiyj inWpa,b,cq a unique xiyjz
kij1
1 ¨ ¨ ¨ z

kijpn´2q

n´2

in W
pa,b,cq

whose coefficient is given by the coefficient of xiyj by (ii). Thus, by Lemma

6.3.5,

rCM px, z1, . . . , zn´2q “ ˘xk
M
ÿ

j“0

ˆ

M

j

˙

xjz
kj1
1 ¨ ¨ ¨ z

kjpn´2q

n´2
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for some kjr :“ kMjr. By (ii) and Lemma 6.3.3(a), NewtpW
pa,b,cq

´ zq X ty “ Mu is a line.

In particular, kjr depends linearly on j, i.e. kjr “ ℓrj ` cr for some ℓr, cr P Q. Hence

rCM px, z1, . . . , zn´2q “ ˘xkzc11 ¨ ¨ ¨ z
cn´2

n´2 p1 ` xzℓ11 ¨ ¨ ¨ z
ℓn´2

n´2 qM . (6.3.2.1)

By our choice of basis, W
pa,b,cq

is mutable, so p1`xqM divides rCM . This implies that ℓ “ 0

and cr P Z . Thus NewtpW
pa,b,cq

´ zq is contained in the affine plane pk,M, c1, . . . , cn´2q `

xv, e1y for some v P Znzt0, e1u. Lemma 6.3.3(b) implies that the zr-coordinate of points

in NewtpW
pa,b,cq

´ zq depends linearly on the y-coordinate. Hence

W
pa,b,cq

px, y, z1, . . . , zn´2q “ z `

M
ÿ

i“m

yiz
f1piq
1 ¨ ¨ ¨ z

fn´2piq
n´2 Cipxq (6.3.2.2)

where Wpa,b,cqpx, yq “
řM
i“m y

iCipxq, and each fr is a linear function. By Theorem 6.2.4,

W
pa1,b1,c1q

px, y, z1, . . . , zn´2q “ z `

M
ÿ

i“m

yiz
f1piq
1 ¨ ¨ ¨ z

fn´2piq
n´2

Cipxq

p1 ` xqi
(6.3.2.3)

which immediately implies that (ii) holds for pa1, b1, c1q. Since f1, . . . , fn´2 are linear func-

tions, (i) also holds for pa1, b1, c1q. Since

NewtpW
pa1,b1,c1q

q “ Convpte3, . . . , en,ConvpNewtpW
pa1,b1,c1q

´ zqq

is Fano, the points e3, . . . , en are not contained in ConvpNewtpW
pa1,b1,c1q

´ zq. This implies

the first claim of (iii). To see the second claim, note that the vertices of NewtpWpa1,b1,c1qq

are primitive in Z2 as NewtpWpa1,b1,c1qq is Fano. By (ii), this shows that any edge e between

er and a vertex of NewtpW
pa1,b1,c1q

´ zq is of the form e “ ter ` tpv, v1q : t P r0, 1su, where

v is primitive in Z2 and v1 P Zn´2. Thus the affine length of e is 1, as is the affine length

of the edge between er and er1 .

Finally, by Lemma 6.3.5 and (ii), any lattice point on an edge of NewtpWpa1,b1,c1qq lifts

to a unique lattice point on an edge of NewtpW
pa1,b1,c1q

´ zq. Therefore, the affine lengths

of the edges of the two triangles agree. By Lemma 6.3.4, this proves (iv) and concludes

the induction.

6.3.3 Proof of Theorem 6.0.1

The first two assertions of Theorem 6.0.1 are immediate from Proposition 6.3.6. We now

show the last assertion. The boundary Maslov-2 convex hull ℧T pa,b,cq
of T pa,b,cq is the convex

hull of
␣

Brus |u : pD, S1q Ñ pPn, T pa,b,cqq holomorphic with µpuq “ 2
(

Ă π1pT pa,b,cqq. By

[Via16, Remark 4.5] and the simply-connectedness of Pn, we can identify the Newton

polytope of WT pa,b,cq
with ℧T pa,b,cq

. As the latter is an invariant of the Lagrangian up to

symplectomorphism by [Via16, Corollary 4.3], we obtain that T pa,b,cq is not symplectomor-

phic to T pa1,b1,c1q for pa, b, cq ‰ pa1, b1, c1q.
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Chapter 7

Cuplength and Lagrangian

intersections

Let pX,ωq be a symplectic manifold and let L and L1 be two Hamiltonian isotopic La-

grangian submanifolds in X. We will not assume that L and L1 are transverse, but instead

make the following assumption in order to exclude disk and sphere bubbling.

Assumption 7.0.1. Throughout this paper, we will assume that

1. X is either closed or a Liouville manifold.

2. L is connected, closed and relatively exact, i.e.,

ω ¨ π2pX,Lq “ 0.

We are interested in the degenerate Arnol’d conjecture:

Conjecture 7.0.2. Given Assumption 7.0.1, there is a lower bound

#LX L1 ě CritpLq

where CritpLq is the minimal number of critical points of any smooth map L Ñ R.

It was recognised early on that Ljusternik-Schnirelmann theory, which was developped

to study critical points of non-Morse functions, might be useful to obtain (partial) answers

to this question. Its main invariant, the Ljusternik-Schnirelmann category provides a lower

bound for the critical number of a manifold. Refer to [CLOT03] for the definition and

to §7.3 for a related invariant. However, the LS category is hard to compute and the

cuplength in any generalised cohomology theory bounds it from below. Thus

CritpLq ě cRpLq

for any ring spectrum R, where the R-cuplength of L is the natural number (or 8)

cRpLq :“ inftk P N : @α1, . . . , αk P R̃˚pLq : α1 ¨ ¨ ¨ ¨ ¨ αk “ 0u. (7.0.0.1)
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when L is connected and the sum of the cuplengths of its connected components otherwise.

Theorem 7.0.3 ([Hof88, Theorem 3], [Flo89, Theorem 1], [Hof85, Theorem 1]). Under

Assumption 7.0.1, there is a lower bound

#LX L1 ě cZ{2pLq. (7.0.0.2)

If X “ T ˚L is a contangent bundle with L the zero section, there is a lower bound

#LX L1 ě cZpLq. (7.0.0.3)

Hofer’s proof uses Ljusternik-Schnirelmann theory, while Floer’s proof proceeds via

Conley indices. In general, (7.0.0.2) and (7.0.0.3) are weaker bounds than the one given

by Conjecture 7.0.2. There are examples in which it is a strictly weaker bound, such as

[Rud99, Example 3.7].

We replace cohomology with Z{2-coefficients in Theorem 7.0.3 with certain generalised

cohomology theories. In §7.4, we provide two examples where this leads to stronger lower

bounds. The proof uses that real K-theory captures more information than singular

cohomology.

Fix J P J pX,ωq. If X is Liouville, assume J is convex at infinity. Denote by

ML,L1 :“
␣

u P C8pR ` ir0, 1s, Xq : BJu “ 0, Epuq ă 8, upRq Ă L, upR ` iq Ă L1
(

the moduli space of pseudoholomorphic strips with Lagrangian boundary conditions. Let

π : ML,L1 Ñ L be the evaluation at 0. The key technical point is the injectivity of

π˚ : R˚pLq Ñ R˚pML,L1q

for certain ring spectra R. The proof could go via a cobordism argument if our moduli

spaces were cut out transversely. As they are not, we use an approximation argument

and a very simple version of a Kuranishi chart. We crucially use a certain virtual vector

bundle, the index bundle associated to a Cauchy–Riemann operator.

We impose the following assumption on pX,Lq, respectively the chosen ring spectrum

R, throughout the paper. We require it in order to apply the Thom isomorphism later on.

Assumption 7.0.4. This index bundle of the moduli space of finite-energy pseudoholo-

morphic maps from a compact convex domain with smooth boundary in C to X, mapping

the boundary to L, is R-orientable.

[Por22] provides the following criteria for Assumption 7.0.4 to be satisfied.

Proposition 7.0.5 ([Por22, Proposition 1.13]). Assumption 7.0.4 holds when

1. R is the Eilenberg-MacLane spectrum HZ{2.

2. R is the Eilenberg-MacLane spectrum HZ, and L is (relatively) spin.
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3. R˚ is complex K-theory, and L is spin.

4. R˚ is real K-theory, and TL admits a stable trivialisation over a 3-skeleton of L

which extends (after complexification) to a stable trivialisation of TX over a 2-

skeleton of X (as a complex vector bundle).

As in [Hof88], we combine the injectivity of π˚ with standard Ljusternik-Schnirelmann

theory to obtain the following lower bound.

Theorem 7.0.6. Suppose L satisfies Assumption 7.0.1 and Assumption 7.0.4 for a ring

spectrum R. Then the number of intersection points between L and L1 satisfies

#LX L1 ě cRpLq.

Remark 7.0.7. If L is not connected, we may apply Theorem 7.0.6 to each path component

of L and the corresponding component of L1 to obtain the same inequality.

Suppose X is closed and symplectically aspherical. If ψ is a (possibly degenerate)

Hamiltonian diffeomorphism of X, we can apply Theorem 7.0.6 to the graph of ψ in

X ˆX to deduce the Hamiltonian version of this inequality.

Corollary 7.0.8. The number of fixed points of ψ satisfies

#Fixpψq ě cRpXq.

In this setting, Conjecture 7.0.2 (which implies Corollary 7.0.8) has already been ver-

ified; see [Rud99, Theorem A], [OR99, Corollary 4.2] and [CLOT03, Theorem 8.28].

7.1 Homotopy and Fredholm theory

7.1.1 Generalised cohomology and Thom spectra

For our purposes, it suffices to work with classical spectra as defined in [Rud98] or [Ada95].

However, our definitions require some care, as we will take the generalised (co)homology

of spaces which are not necessarily homotopy equivalent to a CW complex. A generalised

cohomology theory defined on CW complexes can always be extended to all spaces, but

this extension may not be unique. We need an extension that satisfies a certain continuity

property, namely the statement of [AMS21, Lemma 5.2].

Unless otherwise specified, we work with spectra whose level spaces are homotopy

equivalent to CW complexes. We denote by S the sphere spectrum. All our spaces are

assumed to be compactly generated and Hausdorff.

Given an Ω-spectrum R, we define, for a pointed space X, the nth R-homology and

R-cohomology groups to be

RnpXq :“ πnpX ^Rnq RnpXq :“ rX,Rns˚
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respectively, for n in Z, where r¨, ¨s˚ denotes the set of pointed homotopy classes of maps.

As Rn » Ω2Rn`2, the sets RnpXq and RnpXq carry a natural abelian group structure for

all n.

We recall the definition of relative R-(co)homology.

Given an inclusion j : A ãÑ X of pointed spaces, we denote by

CXA :“ CA Yj X

the (reduced) mapping cone of j, where CA is the cone over A. We view this as a pointed

space, with basepoint the vertex of CA (or equivalently the basepoint of X).

The inclusion X ãÑ CXA is a cofibration and collapsing X induces a natural map

CXA Ñ ΣA. By [tD08, Theorem 4.6.4] these maps fit into an h-coexact sequence

A Ñ X Ñ CXA Ñ ΣA Ñ ΣX Ñ . . .

In particular, there exists for any pointed space W a long exact sequence of pointed sets

. . . Ñ rΣX,W s˚ Ñ rΣA,W s˚ Ñ rCXA,W s˚ Ñ rX,W s˚ Ñ rA,W s˚ (7.1.1.1)

The relative R-(co)homology of pX,Aq is defined by

R˚pX,Aq :“ R˚pCXAq R˚pX,Aq :“ R˚pCXAq.

We recover the usual long exact sequence of a pair in R-cohomology due to (7.1.1.1).

Similarly, there is a long exact sequence of a pair in R-homology.

In the case of a pair of unpointed spaces pX,Aq, one simply considers the pair pX`, A`q,

where ¨` denotes the addition of a disjoint basepoint.

A ring spectrum consists of an Ω-spectrum R endowed with both a multiplication map

µ : R ^ R Ñ R and a unit ι : S Ñ R such that the usual associativity and unit diagrams

commute up to homotopy. In this case we can define a cup product

¨ : R˚pXq bR˚pXq Ñ R˚pXq

by letting α ¨ β be the composite

X
∆
ÝÑ X ^X

α^β
ÝÝÝÑ Rn ^Rk Ñ pR ^Rqn`k

µ
ÝÑ Rn`k (7.1.1.2)

for α P RnpXq and β P RkpXq, where the map Rn ^ Rk Ñ pR ^ Rqn`k comes from the

construction of the smash product.

When one works outside the setting of CW complexes, the cup product does not

necessarily descend to a map

R˚pX,Aq bR˚pX,Bq Ñ R˚pX,AYBq.
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However, we can make the following two observations, which will be useful in §7.3.

Remark 7.1.1. Suppose α P RnpXq and β P RmpXq admit representatives α̃ : X Ñ Rn

and β̃ : X Ñ Rm which send subspaces A,B Ď X to the basepoints ˚ respectively.

Then, by construction, α ¨ β admits a representative X Ñ Rn`m sending A Y B to ˚.

Induction shows the same result for classes α1, . . . , αk P R˚pXq that admit representatives

α̃i mapping subspaces Ai Ď X to ˚ respectively. In particular,

α1 ¨ . . . ¨ αk “ 0 in R˚pA1 Y . . .YAkq.

Lemma 7.1.2. Let pX, dq be a compact metric space, with an open cover U1, . . . , Uk. Let

αi P RnipXq be cohomology classes such that αi|Ui “ 0 in RnipUiq for all i. Then the

product α1 ¨ . . . ¨ αk vanishes in R˚pXq.

Proof. Let V1, . . . , Vk be an open cover of X so that Vi Ă Ui for each i. Set di :“ dp¨, Viq.

As Ai :“ XzUi is disjoint from Vi and compact, there exists ϵi ą 0 so that d´1
i pr0, εisq Ă Ui.

Pick maps α̃i : X Ñ Rni representing each αi P RnipXq. Since αi|Ui “ 0, we can

choose nullhomotopies

Hi : Ui ˆ r0, 1s Ñ Rni

such that Hip¨, 0q ” ˚ and Hip¨, 1q “ α̃i|Ui .

Define maps βi : X Ñ Rni by

βipxq :“

$

&

%

α̃ipxq if εi ď dipxq

Hipx, ε
´1
i dipxqq if 0 ď dipxq ď εi.

Then βi » α̃i, via the homotopy Gi : X ˆ r0, 1s Ñ Rni given by

Gipx, sq :“

$

&

%

α̃ipxq if εi ď dipxq

Hipx, s` p1 ´ sqε´1
i dipxqq if 0 ď dipxq ď εi.

Hence βi is a representative of αi P RnipXq. βi sends Vi to the basepoint ˚ so the

product α1 ¨ . . . ¨ αk is zero in R˚pXq by Remark 7.1.1.

Suppose now that X is a compact space and that ξ : F Ñ X is a vector bundle of rank

k. Let F8 be its fibrewise one-point compactification. This is a sphere bundle over X

with a canonical section s8 given by the point at infinity in every fibre. The Thom space

of ξ is defined to be the pointed space

Thpξq :“ CF8
imps8q

and its Thom spectrum, written Xξ or XF , to be the spectrum Σ8Thpξq. In particular, if

ξ is the trivial bundle of rank k, then Thpξq “ ΣkX` and Xξ “ Σ8`kX`. Note that if X

is not a CW complex, Thpξq might not be either. These are the only spectra whose level

spaces are not CW complexes that we will encounter.
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For a virtual vector bundle of the form η ´ RN , we let rankpηq ´ N be its rank and

define its Thom spectrum to be

Xη´RN
:“ Σ´NXη.

All our virtual bundles will be of this form, so this definition is sufficient for our purposes.1

Let R be a ring spectrum and ξ a virtual vector bundle over X of rank k. An R-

orientation of ξ is an element u P RkpXξq such that for any map j : ΣkS Ñ Xξ which is

a (stable) homotopy equivalence to a fibre, we have

j˚u “ ˘rιs P RkpΣkSq – R0pSq.

where rιs is the homotopy class of the unit map. Any trivial bundle is R-orientable, and

if two out of ξ, η and ξ ‘ η are R-oriented, then so is the third.

By the Thom isomorphism theorem, [Rud98, Theorem V.1.3] any R-orientation on a

virtual vector bundle ξ over a compact CW complex X induces a natural isomorphism

R˚`kpXξq – R˚pXq.

By [AMS21, Lemma 5.2], this also holds when X is a compact subset of a manifold M ,

and both ξ and its R-orientation are pulled back from M .

We will need the following form of Atiyah duality, which can be viewed as a form of

Poincaré duality for generalised cohomology theories.

Theorem 7.1.3 ([AMS21, Theorem 5.2]). Let M be a smooth (not necessarily compact)

manifold, possibly with boundary, and suppose Z Ă M is any compact subset. Then there

is a canonical isomorphism

R´˚pM,MzZq – R˚
´

Z´TM |Z

¯

compatible with restriction to smaller closed subsets Z 1 Ď Z.

IfM is R-oriented on a neighbourhood of Z and of dimension n, the Thom isomorphism

theorem then gives an isomorphism

R˚`npZq – R´˚pM,MzZq.

for compact subsets Z Ă M . In this case, we define the fundamental class of M along Z

rM sZ P RnpM,MzZq to be the image of the unit in R0pZq under this isomorphism. The

class rM sZ depends only on the choice of orientation of which there can be more than two.

We will need the following version of the fact that, given an (oriented) compact mani-

fold with boundary M , the fundamental class of BM has vanishing image in the homology

1The homotopy type of the Thom spectrum only depends on the stable isomorphism class of the virtual
vector bundle. Due to compactness, any virtual bundle on X is stably isomorphic to one of the considered
form, so it suffices for our applications.
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of M .

Lemma 7.1.4. Let Wn`1 be an R-oriented smooth manifold with boundary and K Ă W

a compact subset. Then the image of rBW sKXBW in RnpW,W zKq is 0.

Proof. Suppose first that W is compact. The map B in the exact sequence of a pair

Rn`1pW, BW q
B
ÝÑ RnpBW q Ñ RnpW q

sends rW s to rBW s - see [Rud98, Remark V.2.14.a)]. The claim with K “ W then follows

from the exactness of this sequence.

Now assume W is non-compact and set C “ K X BW . By excision, we may modify W

away from K, and replace W with a compact smooth neighbourhood of K. Then rBW sC

is the restriction of the fundamental class rBW s P RnpBW q. We may deduce the claim now

from the first step and the commutativity of the following diagram.

Rn`1pW, BW q RnpBW q RnpW q

RnpBW, BW zCq RnpW,W zKq

B

7.1.2 Index bundles

Let s : B Ñ E be a smooth Fredholm section of a Banach bundle over a Banach manifold

intersecting the zero section of E transversely. By the infinite-dimensional implicit function

theorem [MS12, Theorem A.3.3], the zero locus s´1p0q is a smooth manifold of dimension

indpDsq “ dimpkerpDsqq with tangent bundle kerpDsq Ñ s´1p0q. If Ds is not fibrewise

surjective, the zero locus is not necessarily smooth or may have excess dimension. The

natural replacement of kerpDsq in this case is the index bundle, a virtual vector bundle

constructed below. It relies on the notion of the stabilisation of a Fredholm operator.

Definition 7.1.5. Let D : X Ñ Y be a Fredholm operator between two Banach spaces.

We call an operator T : RN Ñ Y a stabilisation of D if D`T : X ‘RN Ñ Y is surjective.

As T is compact, D ` T is still a Fredholm operator and

indpD ` T q “ indpDq `N

by [MS12, Theorem A.1.5(i)]. Given a smoothly varying family of Fredholm operators

we will show the existence of a smoothly varying family of stabilisations near a compact

subset in Lemma 7.1.6.

Let us fix our setting for the rest of this subsection. Let Y be a separable Hilbert

manifold, H a separable Hilbert space and Λ a compact finite-dimensional manifold with

boundary. We assume that ψ : V Ñ H is a smooth Fredholm map with V Ă Y ˆ Λ an

101



open subset. Define the open subset

V reg :“ tpx, λq P V : d1ψpx, λq is surjectiveu

where d1 is the derivative with respect to the first argument.

Lemma 7.1.6. For any closed subset A Ă V reg and any compact subset K Ă V , there

exists a neighbourhood U Ă V of K and a smooth map T : V ˆ Rk Ñ H which is linear in

the second variable, vanishes on pAY V zUq ˆ Rk and satisfies that

d1ψpx, λq ` T px, λ, ¨q : Tpx,λqV ‘ Rk Ñ H

is surjective for px, λq P U .

Proof. For each z P K there exists an open neighbourhood Uz Ă V of z, an integer kz ě 0,

and an operator Tz : Rkz Ñ H such that

d1ψpy, µq ` Tz : TyY ‘ Rkz Ñ H

is surjective for py, µq P Uz. Let Z Ă K be a finite subset such that U :“
Ť

zPZ

Uz contains

K and set k :“
ř

zPZ

kz. Using a smooth partition of unity subordinate to tUzuzPZ YtV zKu,

we obtain an operator T 1 : V ˆ Rk Ñ H satisfying all conditions save for the vanishing on

Aˆ Rk. Multiplying T 1 with a smooth bump function which is identically one on V zV reg

and vanishes on A, we obtain the desired map.

Definition 7.1.7. A family of operators T as in Lemma 7.1.6 is said to be a stabilisation

of ψ along K relative to A, of rank k. We call

IndKpψ;T q :“ kerpd1ψ ` T q|U ´ RkU

the index bundle of ψ along K (with respect to T ), defined over a neighbourhood U of K.

Lemma 7.1.8. Any two index bundles of ψ along K are stably equivalent as germs near

K.

Proof. Suppose T and S are two stabilisations along K. We may assume without loss

of generality that d1ψ ` T and d1ψ ` S are surjective over the same subset. As we may

add factors of R to the domain of T , respectively S, without changing the index bundle,

we may assume that T and S are smooth maps V ˆ Rk`ℓ Ñ H with T vanishing on

V ˆ Rk ˆ t0u and S vanishing on V ˆ t0u ˆ Rℓ. Now we can linearly interpolate between

them and apply [tD08, Theorem 14.3.2].

Definition 7.1.9. We let IndKpψq denote the stable equivalence class of any IndKpψ;T q

and call it the index bundle of ψ along K.

Definition 7.1.10. Given a ring spectrum R, the map ψ is R-orientable along K if

IndKpψq is R-orientable on a neighbourhood of K. We say that ψ is R-orientable if it is

R-orientable along any compact subset.
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7.1.3 Proof of Theorem 7.1.12

The following result generalises [Hof88, Theorem 5] to multiplicative generalised cohomol-

ogy theories.

Proposition 7.1.11. Let Y be a smooth separable Hilbert manifold and H be a separable

Hilbert space. Let ψ : Y ˆ r0, 1s Ñ H be a smooth Fredholm map of index n` 1, and write

ψt for its restriction to Y ˆ ttu. Given a ring spectrum R, assume

1. ψ is proper with respect to a neighbourhood of 0 in H and R-orientable along ψ´1p0q,

2. ψ0 is submersive near ψ´1
0 p0q,

3. there exists a smooth map π : Y Ñ N to a connected closed manifold N such that

π|ψ´1
0 p0q

: ψ´1
0 p0q Ñ N

is a diffeomorphism.

If N is R-oriented, then π˚ : R˚pNq Ñ R˚pψ´1
1 p0qq is injective.

Proof. SetK :“ ψ´1p0q and I :“ r0, 1s. By (1),K is compact. Given any subsetW Ă YˆI

we denote by Wt its fibre over t P I. Let T be a stabilisation of ψ along K relative to

K0 ˆ t0u of rank k. Set

S :“ pψ ` T q´1p0q Ă Y ˆ I ˆ Rk.

Then S is a smooth (non-compact) cobordism from S0 to S1 with TS “ kerpdψ ` T q.

Assumption (1) on ψ implies that S is R-oriented on a neighbourhood of K. By the

compactness of T pv, t, ¨q for pv, tq P Y ˆ I and [MS12, Theorem A.1.5.i],

dimpSq “ n` k ` 1.

Note that K “ tpx, t, zq P S : z “ 0u and S0 “ K0 ˆ Rk. Set

π̃ :“ π ˆ idI ˆ idRk : S Ñ N ˆ I ˆ Rk

and let π̃t be the restriction to Y ˆ ttu ˆRk. This fits into a commutative diagram of pairs

pS0, S0zK0q pN ˆ Rk, N ˆ pRkz0qq

pS, SzKq pN ˆ I ˆ Rk, N ˆ I ˆ pRkz0qq

pS1, S1zK1q pN ˆ Rk, N ˆ pRkz0qq

π̃0

i0 ι0

π̃

i1

π̃1

ι1

Consider the composition

R˚pNq
π˚
1

ÝÝÑ R˚pK1q
AD
ÝÝÑ

–
Rn`k´˚pS1, S1zK1q

pπ1q˚
ÝÝÝÑ Rn`k´˚pNˆRk, NˆpRkz0qq

AD
ÝÝÑ

–
R˚pNq

(7.1.3.1)
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where AD denotes the Atiyah duality isomorphism. Note that in the second map we use

the R-orientability assumption in (1).

By construction, this map is given by multiplication by ADppπ1q˚rS1sK1q P R0pNq,

which is equal to ADppπ0q˚rS0sK0q by Lemma 7.1.4. As π0 is a diffeomorphism, this

cohomology class is a unit. Hence (7.1.3.1) is an isomorphism. Because it factors through

the pullback π˚
1 : R˚pNq Ñ R˚pK1q, the latter must be injective.

We apply this to our situation. Let G Ă C be a convex bounded domain smooth

boundary, and suppose tLzuzPBG is a Hamiltonian family of Lagrangians in X. That is,

there exists a (relatively exact) Lagrangian L Ă X and a smooth family tϕtzuzPBG,tPr0,1s of

Hamiltonian isotopies (which we can assume to be compactly supported) of X such that

Lz “ ϕ1zpLq for all z. We can assume that L “ Lz0 for some z0 P BG.

Consider the following moduli space of pseudoholomorphic discs with moving La-

grangian boundary conditions:

P :“
␣

u P C8pG,Xq : BJu “ 0, Epuq ă 8, @z P BG : upzq P Lz
(

(7.1.3.2)

where BJ is the Cauchy-Riemann operator associated to J and E is the symplectic energy.

Let π : P Ñ L be evaluation at z0.

Theorem 7.1.12. The pullback π˚ : R˚pLq Ñ R˚pPq is injective.

Remark 7.1.13. If the moduli space P were cut out transversely, this could be proved

using a cobordism argument as in [Por22]. On the other hand, following [Por22, Remark

4.6], Theorem 7.1.12 can be used to give a slightly different proof of [Por22, Corollary 1.9],

without using any transversality results.

Remark 7.1.14. Hofer [Hof88] proves Theorem 7.1.12 as well as Theorem 7.2.1, 7.0.6 and

Corollary 7.0.8 in the case where R˚ is Čech cohomology with coefficients in Z{2.

Using an extension of an associated family of Hamiltonians we may extend the family

of Hamiltonian isotopies tϕzuzPBG to a smooth family tϕzuzPG of Hamiltonian isotopies,

parametrised by G.

Fix k ě 3. Given t P r0, 1s, we define ψt : W
k,2pG,Xq Ñ W k,2pG,Xq by setting

ψtpuqpzq :“ ϕtzpupzqq

for z P G. By assumption, ψ0 is the identity. Let

A :“
!

u P W k,2pG,Xq : upBGq Ă L
)

.

The smooth Banach bundle E Ñ A with fibre

Eu :“ W k´1,2pG, u˚TXq.
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admits a smooth Fredholm section BJ : A Ñ E given by

BJu “ Bsu` JpuqBtu.

The canonical evaluation map defines a map of pairs ev: A ˆ pG, BGq Ñ pX,Lq. By

pulling back, this defines a bundle pair

pF, F 1q :“ ev˚pTX, TLq Ñ A ˆ pG, BGq.

Using a connection on TX, the linearisation of BJ defines a real Cauchy-Riemann operator

on pF, F 1q by [MS12, Proposition 3.1.1]. Then Assumption 7.0.4 states exactly that its

index bundle is R-oriented. For u P B
´1
J p0q we have, by the Riemann-Roch theorem,

[MS12, Theorem C.1.10], that

indpDuBJq “ dimpLq ` µpF |u, F
1|uq, (7.1.3.3)

where µpF |u, F
1|uq is the boundary Maslov index of the pullback of pF, F 1q to tuu ˆG.

Remark 7.1.15. If u P A is pseudoholomorphic, then µpF |u, F
1|uq “ 0 as umust be constant

due to relative exactness. However, if u instead satisfies that ψtpuq is pseudoholomorphic

for some t ą 0, u need not be constant and may lie in a non-trivial relative homotopy

class of discs. In this case, µpF |u, F
1|uq might not vanish.

By [Kui65, Theorem (3)] we can fix a smooth isometric trivialisation Ψ: E Ñ A ˆ H,

where H is some separable Hilbert space. Define F : A ˆ r0, 1s Ñ H by

Ftpuq :“ pr2ΨpBJψtpuqq (7.1.3.4)

letting pr2 denote the projection to the second factor. Note that F´1
1 p0q is diffeomorphic

via ψ1 to the space P of pseudoholomorphic maps from G to M which have finite energy

and map z P BG to Lz.

Proof of Theorem 7.1.12. Let

W :“
␣

pu, tq P A ˆ r0, 1s : µpF |ψtpuq, F
1|ψtpuqq “ 0

(

.

This is an open subset of A ˆ r0, 1s. We restrict to the subset where the Maslov index

is 0 in order to have control over the index of F , due to Remark 7.1.15. However, with

a little more care the entire argument could also be applied without this restriction. Let

π : W Ñ L be the evaluation map at z0.

By [Hof88, Proposition 6] there exists a neighbourhood U Ă W of F´1p0q such that

F |U : U Ñ H is a Fredholm map of index dimpLq ` 1 and such that F |U is proper

with respect to a neighbourhood of 0 P H. We note that U and H are separable Hilbert

manifolds. Since pseudoholomorphic discs with boundary on L are constant, π defines a

diffeomorphism F´1
0 p0q Ñ L. Moreover, F0 is submersive by the proof of [Hof88, Lemma

5], and F is R-orientable by Assumption 7.0.4. Thus the claim follows from Proposition

7.1.11.
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7.2 Approximating pseudoholomorphic strips

We can now show the injectivity of the evaluation map from the moduli space of pseudo-

holomorphic strips.

Proposition 7.2.1. The map π˚ : R˚pLq Ñ R˚pML,L1q is injective.

The idea of the proof is to study a one-parameter family of moduli spaces of pseudo-

holomorphic discs Pℓ with moving boundary conditions. They approximate the moduli

space of pseudoholomorphic strips ML,L1 as the parameter ℓ tends to 8. Together with

[AMS21, Lemma 5.2], this allows us to infer Proposition 7.2.1 from Theorem 7.1.12.

Throughout this section, we fix a convex domain G in C with smooth boundary, such

that both p´η, ηq and p´η, ηq ` i are contained in BG for some η ą 0. For ℓ ą 0, define

Zℓ :“ r´ℓ, ℓs ` r0, 1si, and let

Gℓ :“ Zℓ Y pG` ℓq Y pG´ ℓq

be a smoothing of the truncated strip. Note that Gℓ is diffeomorphic to a disk.

Definition 7.2.2. For a domain W in C and a smooth map u : W Ñ X, we define the

symplectic energy to be

Epuq :“
1

2

ż

W
u˚ω

whenever this integral is defined.

When u is pseudoholomorphic, the symplectic energy of u is defined and non-negative,

although not necessarily finite.

We consider the following moduli spaces. Recall from the introduction that L is a

closed, relatively exact Lagrangian in X and L1 is Hamiltonian isotopic to L. We denote

by Z :“ R ` r0, 1si the infinite strip.

Definition 7.2.3. We define

DL,L1 :“
␣

u P C8pZ,Xq : |Epuq| ă 8, upRq Ă L, upR ` iq Ă L1
(

.

It contains ML,L1 :“ tu P DL,L1 : BJu “ 0u as the subspace of pseudoholomorphic maps.

Given ℓ ą 0 and A ě 0, we set

Fℓ,A :“
␣

u P C8pZℓ, Xq : Epuq ď A, BJu “ 0, upr´ℓ, ℓsq Ă L, upr´ℓ, ℓs ` iq Ă L1
(

.

Given ℓ ě 0 and a Hamiltonian family tLtutPr0,1s of Lagrangians in X with L0 “ L and

L1 “ L1, we define the moduli space

Pℓ :“
␣

u P C8pGℓ, Xq : BJu “ 0, ups` itq P Lt for s` it P BGℓ
(

.

All of these spaces are endowed with the weak C8 Whitney topology. By the Nash

Embedding Theorem applied to the metric gJ “ ωp¨, J ¨q, this topology is metrisable. Hofer

showed in [Hof88, Theorems 1 and 2] that the moduli spaces Pℓ and ML,L1 are compact.
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Evaluation at 0 P C defines a continuous map, denoted by π, from each of these spaces

to L.

Remark 7.2.4. Pick some Hamiltonian isotopy tψtutPr0,1s such that ψtpLq “ Lt for all t.

Setting

Lx`iy :“ Ly and ψtx`iy :“ ψty

for x ` iy in BG shows that Pℓ is the space of pseudoholomorphic maps Gℓ Ñ M of

finite energy which map z P BGℓ to Lz, i.e, of the form (7.1.3.2). This allows us to apply

Theorem 7.1.12 with P “ Pℓ.

We require the following uniform energy bound.

Lemma 7.2.5 ([Hof88, Lemma 2]). The symplectic energy is uniformly bounded on all

Pℓ. More precisely, there exists a constant C ě 0 such that for all ℓ ą 0 and all u in Pℓ,
we have Epuq ď C.

Fix a smooth cutoff function ρ : R Ñ r0, 1s with

ρptq “

$

&

%

1 t ď 1
2

0 t ě 3
2

and define for ℓ ą 0 the function rℓ : Fℓ,A Ñ DL,L1 by

rℓpuqpx` iyq :“ upρpℓ´1|x|qx` iyq.

By construction, rℓpuq agrees with u on Z ℓ
2
.

Proposition 7.2.6 ([Hof88, Proposition 3]). For any neighbourhood U of ML,L1 in DL,L1

and any A ě 0, there exists ℓ0 ą 0 such that rℓpFℓ,Aq Ď U for all ℓ ě ℓ0.

Proof of Proposition 7.2.1. Let C be the uniform energy bound from Lemma 7.2.5. Any

u in any Pℓ clearly satisfies Epu|Zℓ
q ď C. Picking U an open neighbourhood of ML,L1

in DL,L1 , and taking ℓ0 as in Proposition 7.2.6 with A “ C, we obtain a commutative

diagram

Pℓ0 Fℓ0,C U

L

¨|Zℓ0

π

rℓ0

π

By Theorem 7.1.12, the pullback π˚ : R˚pLq Ñ R˚pUq must be injective. Thanks to the

isomorphism

R˚pML,L1q – lim
ÝÑ

R˚pUq,

taking the direct limit over open neighbourhoods of ML,L1 in DL,L1 , given by [AMS21,

Lemma 5.2] and the exactness of the direct limit functor, we may conclude.
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7.3 Ljusternik-Schnirelmann theory

In this section we finish the proof of Theorem 7.0.6. Observe that there is a natural R-
action on ML,L1 , by setting t ¨u :“ up¨ ´ tq. The fixed points of this action are exactly the

constant maps to points in L X L1. Hence there is a bijection between these fixed points

and LX L1.

Lemma 7.3.1 ([Hof88, Lemma 4]). There exists a continuous map σ : ML,L1 Ñ R such

that for any u which is not a fixed point of the R-action, the function t ÞÑ σpt ¨uq is strictly

decreasing.

Sketch of the construction. One should think of σ as something akin to the Floer action

functional. Indeed, if X is Liouville and L is an exact Lagrangian, we can take σ to be

the usual Floer action functional.

If not, for each path component Q in ML,L1 , we fix a basepoint u0 in Q, and define

σpu0q :“ 0. Then for some other u1 in Q, we pick a path tututPr0,1s from u0 to u1, and

define

σpu1q “

ż

r0,1s2
v˚ω

where v : r0, 1s2 Ñ X is a smoothing (rel endpoints) of the map sending ps, tq to usptiq.

This is well-defined due to relative exactness.

Fix some basepoint x0 P L. For any subset S of ML,L1 or DL,L1 , we consider the map

of pairs

πS : pS,Hq Ñ pL, x0q : u ÞÑ up0q,

as well as the pullback

π˚
S : R˚pL, x0q Ñ R˚pSq.

Definition 7.3.2. To each subset S of ML,L1 , we assign the non-negative integer

IpSq :“ min
␣

k ě 1 : D U1, . . . , Uk Ă ML,L1 open : S Ă U1 Y ¨ ¨ ¨ Y Uk and π˚
Ui

“ 0
(

.

Note I has a uniform upper bound. Indeed, let N be the minimal number of con-

tractible open subsets of L required to cover L. Then IpSq ď N for any S Ă ML,L1 .

Lemma 7.3.3. Fix subsets S and T of ML,L1.

1. If S Ď T , then IpSq ď IpT q.

2. There is some open neighbourhood U of S such that IpSq “ IpUq.

3. IpS Y T q ď IpSq ` IpT q.

4. If tφtutPR is a flow on ML,L1, then IpSq “ IpφtpSqq for all t P R.

5. Iptu1, . . . , unuq “ 1 for any u1, . . . , un P ML,L1 .

Thus I is an index function in the sense of [Rud99, Definition 4.2].
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Proof. If S ď T , we take the minimum over a larger set, so the inequality is immediate.

If U1, . . . , UIpSq are open subsets of ML,L1 covering S with π˚
Ui

“ 0 for all i, set

U “ U1 Y . . .Y UIpSq

Then IpUq ď IpSq, so equality holds by (1). The union of two suitable open covers for

S, respectively T defines a suitable open cover for S Y T which must have cardinality

at least IpS Y T q. This shows 3. As φt is homotopic to the identity, it takes a suitable

cover for S to a suitable cover for φtpSq. Thus IpφtpSqq ď IpSq, and equality follows from

applying the same argument to φ´tpφtpSqq. To see the last claim, denote tp1, . . . , pku “

tu1p0q, . . . , unp0qu. For each j ď k choose a contractible open neighbourhood Vj of pj in

L, such that Vi X Vj “ H for i ‰ j. Then the preimage U = π´1pV1 Y ¨ ¨ ¨ Y Vkq defines a

suitable cover for tu1, . . . , unu.

Lemma 7.3.4. IpML,L1q ě cRpLq.

Proof. Fix an open cover U1, . . . , Uk of ML,L1 such that π˚
Ui

“ 0 for i ď k and let

α1, . . . , αk P R˚pL, x0q be arbitrary. By Lemma 7.1.2 the product π˚
ML,L1

α1 ¨ . . . ¨π˚
ML,L1

αk

vanishes in R˚pML,L1q. By Theorem 7.1.12, π˚
ML,L1

is injective, so α1 ¨ . . . ¨ αk “ 0 in

R˚pL, x0q and cRpLq ď k. Taking the infimum over all such open covers completes the

proof.

Given Lemma 7.3.4, the proof of Theorem 7.0.6 reduces to showing that

#LX L1 ě IpML,L1q (7.3.0.1)

Since I is an index function, this follows from [Rud99, Theorem 4.2]. For the sake

of exposition, we give a proof here, using standard Ljusternik-Schnirelman theory as in

[Hof88, Section V].

Definition 7.3.5. For 1 ď i ď IpML,L1q, we define

di :“ inf
IpSqěi

supσpSq

where the infimum is taken over subsets of ML,L1 .

For any d P R, we denote

Crpdq :“
␣

u P ML,L1 : σpuq “ d, R ¨ u “ u
(

.

It follows that

ÿ

d

#Crpdq “ #LX L1.

Lemma 7.3.6.

´8 ă d1 ď . . . ď dIpML,L1 q ă 8.
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Proof. First observe that dj ď dj`1 for all j since we take the infimum over a smaller set.

The compactness of ML,L1 implies that ´8 ă d1 and dIpML,L1 q ă 8.

Lemma 7.3.7. For any neighbourhood U of Crpdq, there exists some ε ą 0 such that

u P σ´1pp´8, d` εsqzU ñ 1 ¨ u P σ´1pp´8, d´ εsq.

Proof. This follows from the compactness of σ´1pp´8, dsqzU along with the continuity of

the R-action.

Lemma 7.3.8. Crpdjq is non-empty for all j.

Proof. Suppose Crpdjq is empty. Applying Lemma 7.3.7 to U “ H we obtain some ε ą 0

such that

1 ¨ σ´1pp´8, dj ` εsq Ď σ´1pp´8, dj ´ εsq.

By definition of dj , there exists S Ď ML,L1 such that IpSq ě j and

dj ď supσpSq ď dj ` ε.

But then Ip1 ¨ Sq ě j and supσp1 ¨ Sq ă dj , which is a contradiction.

Lemma 7.3.9. If dj “ dj`1 for any j, then Crpdjq is infinite.

Proof. If Crpdjq is finite, then IpCrpdjqq “ 1 by Lemma 7.3.3.(5). So it suffices to show

that IpCrpdjqq ě 2. Suppose by contradiction IpCrpdjqq ď 1. Since Crpdjq is non-empty,

we must have equality. Then there is some open neighbourhood U of Crpdjq such that

π˚
U “ 0. Given this U , fix ε ą 0 as in the statement of Lemma 7.3.7.

Choose S Ď ML,L1 such that IpSq ě j ` 1 and

dj ď supσpSq ď dj ` ε.

Then Ip1 ¨ pSzUqq ě j but σp1 ¨ pSzUqq ď dj ´ ε, a contradiction.

The inequality in (7.3.0.1), and hence Theorem 7.0.6, follows from Lemmas 7.3.8 and

7.3.9.

7.4 Two examples

Let

Sppnq :“ Spp2n;Cq X Up2nq

be the compact symplectic group. It is a compact simply-connected Lie group of dimension

np2n ` 1q. The zero section defines a Lagrangian embedding Sppnq ãÑ T ˚Sppnq, where

we endow T ˚Sppnq with the canonical symplectic structure. As this embedding is a ho-

motopy equivalence, Sppnq is relatively exact. We will consider Spp2q and Spp3q since

their cuplength with respect to a certain generalised cohomology theory was computed
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in [IM04] (see also [Kis07]) and is strictly greater than their cuplength with respect to

integral cohomology.

Proposition 7.4.1 ([IMN03, IM04]). The mod-2 and integral cuplengths of Spp2q are

cZ{2pSpp2qq “ cZpSpp2qq “ 3,

while

ch˚pSpp2qq “ 4

where h˚ is the cohomology theory associated to the truncated sphere spectrum Sr0, 2s. In

particular, [IM04] shows that its cuplength in real K-theory is

cKOpSpp2qq “ 4.

Similarly the cuplengths of Spp3q in the same cohomology theories are given by

cZ{2pSpp3qq “ cZpSpp3qq “ 4

and

ch˚pSpp3qq “ cKOpSpp3qq “ 5.

Remark 7.4.2. We use Hofer’s convention in [Hof88] for cuplengths which differs by one

compared to that of [IM04].

Since Spp2q and Spp3q are Lie groups, they are parallelisable. By Proposition 7.0.5 we

can therefore apply Theorem 7.0.6 with real K-theory to either one as the zero section

lying inside its cotangent bundle. This gives a (strictly) stronger bound on the Arnol’d

number than Hofer’s cup length estimate, though this estimate was already known due to

work of Laudenbach and Sikorav [LS85], using finite-dimensional approximations.

Corollary 7.4.3. The minimum number of intersection points between a relatively exact

Lagrangian embedding of Spp2q (satisfying Proposition 7.0.5.4) and its image under any

Hamiltonian diffeomorphism is at least 4. The same is true for Spp3q with 5 instead of 4.

Proposition 7.4.4. The critical number of Spp2q is 4.

Proof. The critical number of Spp2q is bounded below by 4 by Proposition 7.4.1. On the

other hand, [Sma62, Theorem 6.1] combined with the computation of its integral homology

in Lemma 7.4.5 implies that the Morse number of Spp2q is 4, which is an upper bound for

the critical number.

The bound for Spp2q (and a stronger bound for Spp3q) were shown by [LS85] for the

respective zero section in the cotangent bundle. However, their methods are specifically

geared towards cotangent bundles while our bounds persist under Weinstein handle at-

tachments. As an example, one can plumb a copy of T ˚Spp2q containing Spp2q as the

zero section, with the cotangent bundle of any other 2-connected manifold of the same

dimension to obtain a new Weinstein manifold X. Since Spp2q is 2-connected, the re-

sulting manifold admits the the same 2-skeleton (up to homotopy) as T ˚Spp2q, which is
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trivial. Therefore Proposition 7.0.54 still holds for the embedding Spp2q ãÑ X. This gives

a stronger bound than Hofer’s estimate, in a case for which the estimate of [LS85] does

not apply.

We recap the computation of the integral cohomology rings of Spp2q and Spp3q here.

Lemma 7.4.5 ([IM04]). The integral cuplengths of Spp2q and Spp3q are given by

cZpSpp2qq “ 3 and cZpSpp3qq “ 4.

Furthermore, H˚pSpp2qq and H˚pSpp3qq are free of rank 4 and 8 respectively, over both Z
and Z{2.

Proof. Given n we can identify Hn with R4n to see the existence of a principal Sppn´ 1q-

bundle Sppnq Ñ S4n´1 induced by the canonical action on the unit quaternions. Thus

we can apply the Leray-Serre spectral sequence to compute the cohomology of Spp2q with

coefficients in A “ Z or A “ Z{2. The E2-page is given by

Ep,q2 “ HppS7, HqpSpp1q;Aqq

which vanishes for p R t0, 7u and q R t0, 3u. Hence the spectral sequence collapses for

degree reasons at the second page. As Spp1q – S3, we obtain

H˚pSpp2q;Aq – H˚pS7;Aq bA H
˚pS3;Aq. (7.4.0.1)

By the multiplicativity of the spectral sequence, (7.4.0.1) is an isomorphism of graded

rings. Therefore,

HnpSpp2q;Aq “

$

&

%

A n P t0, 3, 7, 10u,

0 otherwise

and we can deduce the values of cZ{2pSpp2qq and cZpSpp2qq.

The same argument gives an isomorphism of graded rings

H˚pSpp3q;Aq – H˚pS11;Aq bA H
˚pSpp2q;Aq.

Therefore,

HnpSpp2q;Aq “

$

&

%

A n P t0, 3, 7, 10, 11, 14, 18, 21u,

0 otherwise

from which we deduce the corresponding statements for Spp3q.
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Appendix A

Intersection theory on orbifolds

In this appendix, we prove several results we needed in the previous chapters. They mainly

consist of projection formulas and the definition of a trace map in a quite general setting.

We found neither in the literature in the form, respectively, generality necessary for our

purposes.

For us, an orbifold is a tuple X “ pX, rXsq, where X is a topological space, called the

coarse moduli space of X, X is a (topological or smooth) proper étale Lie groupoid and r s

denotes its Morita equivalence class. X is called a presentation of X. Refer to [Beh04] for

more details. We will only consider smooth orbifolds, which can be represented by a global

quotient, that is, a Lie groupoid of the form rG ˆ M Ñ M s where G is a compact Lie

group acting almost freely and smoothly on the manifold M . By [ALR07, Theorem 1.23]

any effective orbifold is of this form, but we do not require our orbifolds to be effective.

We denote by rM{Gs the stack presented by such a global quotient.

A Lie groupoid X “ rX1 Ñ X0s is orientable if X0 and X1 are orientable and if the

source and target map from X1 to X0 are orientation-preserving. We call an orbifold

orientable if each representing Lie groupoid is orientable. Thus, rM{Gs is orientable if

and only if M is orientable and and G acts by orientation-preserving homeomorphisms.

Remark A.0.1. This notion of orientability is strictly stronger than orientability of the

coarse moduli space as the example of the Klein bottle (whose quotient by an S1-action

is S1 itself) shows.

By [Beh04, p.27], there is a canonical isomorphism

H˚prM{Gs,Qq – H˚
GpM,Qq.

Let q : MG Ñ M{G denote the canonical map to the quotient; it defines by [Beh04,

Proposition 36] an isomorphism

H˚pM{G,Qq Ñ H˚
GpM,Qq.

As the coarse moduli space of an oriented orbifold is an oriented homology Q-manifold,
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it satisfies rational Poincaré duality

Ȟ˚
c pZ,Qq – HdimpXq´˚pX,XzZ,Qq

by [Bre12].1 Replacing singular homology with Borel–More homology, the same isomor-

phism holds with ordinary Čech cohomology on the left-hand side.

Remark A.0.2 (Orientation). SinceG acts smoothly and almost freely, we have an inclusion

g ãÑ TM of vector bundles, where g “ LiepGq. Let D Ă TM be a G-invariant complement.

For the sake of concreteness, we think of an orientation of X “ rM{Gs as a Thom class of

the vector bundle DG Ñ MG.

A.1 Exceptional pushfoward

Let f : Mm Ñ Nn be a G-equivariant map between smooth manifolds on which G acts

smoothly and almost freely. Suppose rM{Gs and rN{Gs are oriented. Then f induces a

morphism rM{Gs Ñ rN{Gs and the exceptional pushforward

f! : H
˚pM{G,Qq Ñ H˚`n´mpN{G,Qq

is defined by f! :“ PD f˚ PD. We clearly have g!f! “ pgfq!.

By [Bre72, Theorem 4.1], we can factor f as a composite M
j

ÝÑ N ˆSV
pr1
ÝÝÑ N , where

SV is the one-point compactification of a finite-dimensional orthogonal G-representation

V and j is an equivariant embedding. We can describe j! and pr1! explicitly.

Example A.1.1 (Embedding). Suppose f is an embedding with Poincaré dual PDpM{Gq.

Then

f!f
˚pαq “ α ¨ PDpM{Gq (A.1.0.1)

for α P H˚pN{G;Qq. If there exists an equivariant retraction r : W Ñ M , then f!pαq “

r˚α ¨ PDpM{Gq.

Example A.1.2 (Projection). Suppose M “ N ˆ SV , where V is a finite-dimensional

G-representation SV is its one-point compactification (to which the G-action extends triv-

ially) and f is the projection. Then fG : pN ˆ SV qG Ñ NG is the sphere bundle of

pN ˆ pV ‘ RqqG Ñ NG and

H˚
GpN ˆ SV ,Qq H˚`1

G pN ˆ pV ‘ Rq, N ˆ ppV ‘ Rqz0q,Qq

H˚´k
G pN,Qq

f! –

commutes by [Dua03, §3], where the vertical map comes from the Thom isomorphism.

In particular, we have the following observation.

Corollary A.1.3. Suppose we have a cartesian square

1The proof of [Par16, Lemma A.6.4] also generalises easily to this setting.
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P P 1

B B1

f

q q1

f̄

where q and q1 are principal G-bundles for a compact Lie group G, B,B1 are oriented

smooth manifolds (and P , P 1 are equipped with the corresponding G-orientation), f̄ is

smooth and proper, a compact Lie group G1 acts on the whole square almost freely. Then

f!q
˚ “ q1˚f̄!. (A.1.0.2)

Lemma A.1.4 (Projection formula). Suppose we have a cartesian square

X 1 Y 1

X Y

f 1

q p

f

of oriented G-manifolds, where G acts almost freely. If f is proper and p is a submersion,

then

f 1
! q

˚ “ p˚f!.

If the G-action on X 1 and Y 1 extends to an almost GˆG1-action with respect to which f 1,

q and p are equivariant, then (7.1.3) holds as maps H˚pX{G;Qq Ñ Hk`˚pY 1{GˆG1;Qq.

Proof. If f is an embedding, so is f 1 and the claim follows from (A.1.0.1). If f is a

projection Y ˆ SV Ñ Y for some finite-dimensional G-representation V , we can assume

f 1 is the projection Y 1 ˆ SV Ñ Y 1. Denoting the induced map Y 1
GˆG1 Ñ YG by p as well,

we have pY 1 ˆ pV ‘ RqqGˆG1 “ p˚pY ˆ pV ‘ RqqG. Thus the claim follows from Example

(A.1.2) and the functoriality of the Thom class.

Corollary A.1.5. Suppsoe we have a cartesian square as in Lemma A.1.4, where f is an

embedding. Then p˚PDpX{Gq “ PDpX 1{GˆG1q.

Proof. Let Y 1 and X 1 denote the quotients and suppose k “ codimpX 1q. Since both

p˚PDpX{Gq and PDpX 1{G ˆ G1q live in HkpY 1 | X 1;Qq – Q|π0pX 1q|, they differ by multi-

plication with a locally constant function b. Thus p˚f!f
˚α “ p˚α ¨ p˚PDpXq on one hand,

while

p˚f!f
˚α “ f 1

! q
˚f˚α “ f 1

! f
1˚p˚α ““ p˚α ¨ PDpX 1q “ bp˚α ¨ p˚PDpXq.

As the same equality holds locally and p is admits local sections, it follows that b ” 1.

Lemma A.1.6. Let

X 1 Y 1

X Y

f 1

q p

f
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be a cartesian square of smooth manifolds, where f is proper. Suppose there exists an

open subset V Ă Y 1 so that Y 1zV has codimension at least 2 and p|V : V Ñ Y is a (not

necessarily surjective) submersion. Then

f 1
! q

˚ “ p˚f!.

The same is true in equivariant cohomology if the square is cartesian in the category of

almost free G-manifolds.

Proof. Set U :“ X 1 ˆY 1 V and let i : U Ñ X 1 and j : V Ñ Y 1 be the inclusions. Let

f̂ : U Ñ V be the induced map. The fundamental classes appearing below are elements

of Borel–Moore homolgoy. By [Bre12, §V.10(57),Corollary V.10.2] and Lemma A.1.4, the

claim holds in the nonequivariant case.

Suppose now G and G1 are compact Lie groups so that G ˆ G1 acts almost freely on

X 1 and Y 1 and G acts almost freely on Y with f and f 1 being equivariant and p, q being

invariant under the G1-action and restricting to principal bundles over V,U . Since we can

check the equality f 1
! q

˚ “ p˚f ! as maps H˚
GpX,Qq Ñ H˚`k

GˆG1pY 1,Qq degree for degree, we

can use finite-dimensional approximations of the classifying space of G. To these, apply

Corollary A.1.3 to see that the projection formula holds for the pullbacks to U . Then use

the same argument as in the first step to conclude.

Lemma A.1.7. Suppose f : X Ñ Y is a smooth map of étale proper Lie groupoids and

rM{Gs is a global resolution of Y . If X is a manifold, then the orbifold fibre product

M ˆY X is a principal G-bundle over X.

Proof. Since M and X are manifolds, so is Z :“ M ˆY X. Let q0 : M Ñ Y0 be the

canonical map. Then Z “ tpp, α, xq P M ˆ Y1 ˆ X : α : qppq Ñ fpxqu and π : Z Ñ X is

given by πpp, α, xq “ x. Define a G-action on Z by setting

g ¨ pp, α, xq :“ pg ¨ p, α ˝ q1pg, pq´1, xq.

Clearly, π is G-invariant and g ¨ pp, α, xq “ pp, α, xq implies that g ¨ p “ p and q1pg, pq “ id.

Since q : rM{Gs Ñ Y is étale, we must have g “ e. Thus G acts freely on Z. To see that

π is locally trivial, it suffices to consider the case where Y “ rV {Γs for some finite group

Γ and M “ rS{Gps for some slice S through p. In this case π is the pullback of a covering

map and thus a local diffeomorphism. This completes the proof.

A.2 Trace maps

In the definition of the equivariant virtual fundamental class, we make use of a trace map

H˚`m
K,fc pT ;Qq Ñ H˚

Kppt;Qq, which is a special case of integration along the fibre. While this

is classical for fibre bundles of closed smooth manifolds,[BT82], and has been generalised

in algebraic geometry, [Ive86, KS94], we found no results for the specific situation needed

in this paper. Thus we give a brief definition and show the required properties. To avoid
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any subtleties with families of supports, we will assume that all spaces are locally compact,

Hausdorff and paracompact.

Definition A.2.1 (Integration along the fibre). Suppose π : P Ñ B is an oriented fibre

bundle over a paracompact base B with fibre an oriented topological orbifold X “ rM{Gs.

Denote byH˚
c pXq the locally constant sheaf onB with stalks given byH˚

c pXqb “ H˚
c pPb;Qq

for b P B. By [Bre12, Theorem 6.1] there exists a spectral sequence tEp,qr u converging to

H˚
fcpP ;Qq with

Ep,q2 “ HppB;Hq
cpXqq.

In particular, Ep,q2 “ 0 for q ą n :“ dimpXq, so Ep,nr Ă Ep,nr´1 for any r ą 2. We have a

canonical map
ş

X : Hn
c pXq Ñ Q of locally constant sheaves on B; it is given at the stalk

over b P B by

Hn
c pXqb “ Hn

c pXb;Qq
pt!
ÝÝÑ Q.

We define the integration along the fibre π˚ : H
n`˚
fc pP ;Qq Ñ H˚pB;Qq to be the com-

posite

Hn`˚
fc pP ;Qq Ñ E˚,n

8 ãÑ E˚,n
2 “ H˚pB;Hn

c pXqq
p
ş

Xq#
ÝÝÝÝÑ H˚pB;Qq.

By [Aue73], this agrees with the standard definition of integration along the fibre for

smooth fibre bundles.

Lemma A.2.2 (Base change). Suppose π : P Ñ B is an orientable fibre bundle over a

paracompact base with fibre T an oriented orbifold and f : B1 Ñ B is a proper continuous

map from another paracompact space. Then

Hm`˚
c pP ;Qq H˚pB;Qq

Hm`˚
c pf˚P ;Qq H˚pB1;Qq

f̃˚ f˚

commutes.

Proof. This follows from the functoriality of the Leray-Serre spectral sequence associated

to a fibration, see [Bre12, §6.2].

Corollary A.2.3. Suppose T is an oriented topological orbifold of dimension m with a

continuous action by a compact connected Lie group G. Then

Hm`˚
G,c pT ;Qq H˚

Gppt;Qq

Hm`˚
c pT ;Qq H˚ppt;Qq

i˚

commutes, where H˚
G,cpT ;Qq “ H˚

fcpTG;Qq.

Lemma A.2.4 (Functoriality). Suppose π : P Ñ B and ρ : E Ñ P are two oriented fibre

bundles with fibres X and Y the coarse moduli spaces of oriented orbifolds. Then

pπρq˚ “ π˚ρ˚ι,
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where ι is the canonical map from cohomology with pπρq-fibrewise compact support to

cohomology with π-fibrewise compact support.

Proof. We will assume both X and Y are compact, of dimension k, respectively ℓ, in

order to simplify the notation. The general case can be obtained by restricting to coho-

mology with suitable support. Let θ :“ πρ and set Zb :“ θ´1ptbuq for b P B. The maps

ρb˚ : H
k`ℓpZb;Qq Ñ HkpPb;Qq induce a morphism ρ˚ : Hk`ℓpZq Ñ HkpXq and θ˚ factors

as

Hk`ℓ`˚pE;Qq Ñ H˚pB,Hk`ℓpZqq
pρ˚q#
ÝÝÝÝÑ H˚pB,HkpXqq

π˚
ÝÑ H˚pB;Qq.

By [Bre12, Corollary IV.7.3], the Leray sheaf Hpπ;HℓpY qq of π with coefficients in HℓpY q,

defined in [Bre12, §IV.4], is locally constant with stalks of the form H˚pPb;HℓpY qq.2 Due

to the functoriality of the Serre spectral sequence, there exists a canonical morphism

H˚`ℓpZq Ñ H˚pπ;HℓpY qq of locally constant sheaves on B, given stalkwise by

H˚`ℓpZqb “ H˚`ℓpθ´1ptbu;Qq ↠ Epbq˚,ℓ
8 ãÑ H˚pPb;HℓpY qq “ H˚pπ;HℓpY qqb.

where tEpbqp,qr u is the Leray-Serre spectral sequence of θ´1ptbuq Ñ Pb. This stalkwise

description shows that ρ˚ : H˚`ℓpZq Ñ HkpXq factors through H˚pπ;HℓpY qq. Thus

Hk`ℓ`˚pE;Qq H˚pB;Hk`ℓpZqq H˚pB;HkpXqq

Hk`˚
c pP ;HℓpY qq H˚pP ;H˚pπ;HℓpY qqq

pρ˚q#

commutes. By [Bre12, §6.2],

Hk`˚
c pP ;HℓpY qq H˚pP ;H˚pπ;HℓpY qqq

Hk`˚pP ;Qq H˚pB;HkpXqq

p
ş

Y q#

commutes as well. The claim now follows by composing with π˚.

Lemma A.2.5. Let π : P Ñ B be an oriented locally trivial fibration over a locally con-

tractible space with fibre the orbit space of rM{Gs. Suppose P 1 Ă P is a subspace so that

the induced map π1 : P 1 Ñ B is an oriented fibre bundle with fibre given by the orbit space

of rM 1{Gs, for a G-invariant submanifold M 1 Ă M . Assume the inclusion P 1 ãÑ P admits

a normal bundle and a tubular neighbourhood. Then

Hm1`˚
fc pP 1;Qq H˚pB;Qq

Hm`˚
fc pP ;Qq

π1
˚

j!
π˚

commutes, where m “ dimprM{Gsq and m1 “ dimprM 1{Gsq. Moreover, j!j
˚ “ σ¨ for a

class σ P HkpP | P 1;Qq restricting to the Poincaré dual of X1 over a fibre.

2We use here that the monodromy of H˚
pℓq is trivial in degree ℓ since we work with oriented fibre

bundles.
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Proof. Let ρ : N Ñ P 1 be the normal bundle of the embedding and ψ : V Ñ W Ă N be a

tubular neighbourhood. Then σ “ ψ˚τN and j! is given by the composite

H˚
fcpP

1;Qq
»
ÝÑ Hk`˚

fc pN | P 1;Qq
ψ˚

ÝÝÑ Hk`˚
fc pW | P 1;Qq Ñ Hk`˚

fc pP ;Qq.

It suffices thus to show that the above triangle commutes with P replaced by N . In this

case j! is an isomorphism with inverse given by ρ˚. Thus the claim follows from Lemma

A.2.4.

Lemma A.2.6. Suppose X is the orbit space of an oriented global quotient orbifold of

dimension n with boundary and π : P Ñ B is a fibre bundle with fibre X. If j : P 1 ãÑ P

denotes the subbundle with fibre BX, then the composition

H˚`n´1
c pP ;Qq

j˚

ÝÑ H˚`n´1
c pP 1;Qq

π˚
ÝÑ H˚pB;Qq

vanishes.

Proof. The homology Q-manifold X̃ :“ X YBX BX ˆ r0, 1q admits a proper deformation

retraction onto X, as does P̃ :“ X YP 1 P 1 ˆ r0, 1q onto P (where it is fibrewise proper).

The deformation retraction fixes P 1 pointwise and is a map of fibre bundles over B. By

the long exact sequence in compactly supported cohomology, it suffices to show that

H˚`n´1
c pP 1;Qq Ñ H˚pB;Qq factors through H˚`n´1

c pP 1;Qq Ñ H˚`n
c pP̃ ;Qq.

The results of [Bro62] generalise directly to the setting of a topological manifolds with

boundary, on which a compact group G acts almost freely and locally linearly, and to

fibrations thereof. Hence BX admits a collar inside X and P 1 admits one inside P . Thus

we can find a neighbourhood U Ă P̃ with U – P 1 ˆ p´1, 1q and the claim reduces to

showing the commutativity of

H˚`n´1
c pP 1;Qq H˚`n

c pP 1 ˆ p´1, 1q;Qq

H˚pB;Qq

π!
π!

which is an immediate consequence of the Künneth theorem.

Lemma A.2.7. Suppose two oriented global Kuranishi charts Ki “ pG, Ti, Ei, siq for Mi

are cobordant via K “ pG, T , E , sq. If fi : Mi Ñ N is a continuous map so that f0 \ f1

extends over s´1p0q{G, then f0˚rM0svir “ f1˚rM1svir in Ȟ˚pN ;Qq_. The same is true in

the equivariant setting.

Proof. Set W :“ s´1p0q{G. The claim follows from Lemma A.2.6 and the commutativity

of

Ȟd`npN ;Qq Ȟd`˚pW;Qq Hm`˚
c pT0{G\ T1{G;Qq

Ȟd`˚pM0 \ M1;Qq Hm`˚
c pT0{G\ T1{G;Qq Q

f˚

f˚
0 \´f˚

1

s˚τE

s˚τE pt!
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where d is the virtual dimension of M0 and M1. The extension to the equivariant setting

is straightforward.

120



Bibliography

[AB84] M. F. Atiyah and R. Bott, The moment map and equivariant cohomology,

Topology 23 (1984), no. 1, 1–28. MR 721448

[AB21] Mohammed Abouzaid and Andrew J. Blumberg, Arnold conjecture and

Morava K-theory, 2021, arXiv:2103.01507.

[ACG11] E. Arbarello, M. Cornalba, and P. A. Griffiths, Geometry of algebraic curves.

Volume II, Grundlehren der Mathematischen Wissenschaften [Fundamental

Principles of Mathematical Sciences], vol. 268, Springer, Heidelberg, 2011,

With a contribution by Joseph Daniel Harris. MR 2807457

[ACG`12] Mohammad Akhtar, Tom Coates, Sergey Galkin, Alexander M Kasprzyk,

et al., Minkowski polynomials and mutations, SIGMA. Symmetry, Integrability

and Geometry: Methods and Applications 8 (2012), 094.

[Ada95] Frank Adams, Stable homotopy and generalised homology, Chicago Lectures in

Mathematics, University of Chicago Press, Chicago, IL, 1995, Reprint of the

1974 original. MR 1324104

[Aig13] Martin Aigner, Markov’s theorem and 100 years of the uniqueness conjecture,

Springer, Cham, 2013, A mathematical journey from irrational numbers to

perfect matchings. MR 3098784

[ALR07] Alejandro Adem, Johann Leida, and Yongbin Ruan, Orbifolds and stringy

topology, Cambridge Tracts in Mathematics, vol. 171, Cambridge University

Press, Cambridge, 2007. MR 2359514

[AM00] Vincenzo Ancona and Marco Maggesi, On the quantum cohomology of Fano

bundles over projective spaces, arXiv preprint math/0012046 (2000).

[AMS21] M. Abouzaid, M. McLean, and I. Smith, Complex cobordism, Hamiltonian

loops and global Kuranishi charts, 2021, arXiv:2110.14320.

[AMS23] Mohammed Abouzaid, Mark McLean, and Ivan Smith, Gromov-Witten

invariants in complex-oriented generalised cohomology theories, 2023,

arXiv:2307.01883.

[Arn67] V. I. Arnol’d, Characteristic class entering in quantization conditions, Func-

tional Analysis and Its Applications 1 (1967), 1–13.

121



[Aue73] J. W. Auer, Fiber integration in smooth bundles, Pacific J. Math. 44 (1973),

33–43. MR 314065

[Aur07] Denis Auroux, Mirror symmetry and T -duality in the complement of an anti-

canonical divisor, J. Gökova Geom. Topol. GGT 1 (2007), 51–91. MR 2386535

[Aur15] , Infinitely many monotone Lagrangian tori in R6, Inventiones mathe-

maticae 201 (2015), 909–924.

[Beh99] K. Behrend, The product formula for Gromov-Witten invariants, J. Algebraic

Geom. 8 (1999), no. 3, 529–541. MR 1689355

[Beh04] Kai Behrend, Cohomology of stacks, Intersection theory and moduli, ICTP

Lect. Notes 19 (2004), 249–294.

[BF97] K. Behrend and B. Fantechi, The intrinsic normal cone, Invent. Math. 128

(1997), no. 1, 45–88. MR 1437495

[BM96] K. Behrend and Yu. Manin, Stacks of stable maps and Gromov-Witten invari-

ants, Duke Math. J. 85 (1996), no. 1, 1–60. MR 1412436

[BM04] Arend Bayer and Yuri I. Manin, (Semi)simple exercises in quantum coho-

mology, The Fano Conference, Univ. Torino, Turin, 2004, pp. 143–173. MR

2112573

[Bre72] G. E. Bredon, Introduction to compact transformation groups, Pure and Ap-

plied Mathematics, Vol. 46, Academic Press, New York-London, 1972. MR

0413144

[Bre12] Glen E Bredon, Sheaf theory, vol. 170, Springer Science & Business Media,

2012.
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Schnirelmann category, Mathematical Surveys and Monographs, vol. 103,

American Mathematical Society, Providence, RI, 2003. MR 1990857

[CM07] K. Cieliebak and K. Mohnke, Symplectic hypersurfaces and transversality in

Gromov-Witten theory, J. Symplectic Geom. 5 (2007), no. 3, 281–356. MR

2399678

[Coh09] Ralph L. Cohen, Floer homotopy theory, realizing chain complexes by module

spectra, and manifolds with corners, Algebraic topology, Abel Symp., vol. 4,

Springer, Berlin, 2009, pp. 39–59. MR 2597734

[Del88] Thomas Delzant, Hamiltoniens périodiques et images convexes de l’application

moment, Bull. Soc. Math. France 116 (1988), no. 3, 315–339. MR 984900

[Dua03] Haibao Duan, The degree of a Schubert variety, Advances in Mathematics 180

(2003), no. 1, 112–133.

[EHX97] Tohru Eguchi, Kentaro Hori, and Chuan-Sheng Xiong, Gravitational quantum

cohomology, Internat. J. Modern Phys. A 12 (1997), no. 9, 1743–1782. MR

1439892

[Eva22] Jonathan Evans, Lectures on Lagrangian torus fibrations, 2022,

arXiv:2110.08643.

[Flo88] Andreas Floer, Morse theory for Lagrangian intersections, J. Differential

Geom. 28 (1988), no. 3, 513–547. MR 965228

[Flo89] , Cuplength estimates on Lagrangian intersections, Comm. Pure Appl.

Math. 42 (1989), no. 4, 335–356. MR 990135

[FO99] Kenji Fukaya and Kaoru Ono, Arnold conjecture and Gromov-Witten invari-

ant, Topology 38 (1999), no. 5, 933–1048. MR 1688434

[FOOO09] Kenji Fukaya, Yong-Geun Oh, Hiroshi Ohta, and Kaoru Ono, Lagrangian in-

tersection Floer theory: anomaly and obstruction. Part I, AMS/IP Studies in

Advanced Mathematics, vol. 46, American Mathematical Society, Providence,

RI; International Press, Somerville, MA, 2009. MR 2553465

123



[FP97] W. Fulton and R. Pandharipande, Notes on stable maps and quantum coho-

mology, Algebraic geometry—Santa Cruz 1995, Proc. Sympos. Pure Math.,

vol. 62, Amer. Math. Soc., Providence, RI, 1997, pp. 45–96. MR 1492534

[FP00] C. Faber and R. Pandharipande, Hodge integrals and Gromov-Witten theory,

Invent. Math. 139 (2000), no. 1, 173–199. MR 1728879

[FP05] , Relative maps and tautological classes, J. Eur. Math. Soc. (JEMS) 7

(2005), no. 1, 13–49. MR 2120989

[Fuk21] Kenji Fukaya, Lie groupoids, deformation of unstable curves, and construction

of equivariant Kuranishi charts, Publ. Res. Inst. Math. Sci. 57 (2021), no. 3-4,

1109–1225. MR 4322009
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[LO96] Hông Vân Lê and Kaoru Ono, Cup-length estimates for symplectic fixed points,

Contact and symplectic geometry (Cambridge, 1994), Publ. Newton Inst.,

vol. 8, Cambridge Univ. Press, Cambridge, 1996, pp. 268–295. MR 1432466

[LS85] François Laudenbach and Jean-Claude Sikorav, Persistance d’intersection avec

la section nulle au cours d’une isotopie hamiltonienne dans un fibré cotangent,
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