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This paper introduces a novel method to convert trimmed NURBS surfaces to untrimmed 
subdivision surfaces with Bézier edge conditions. We take a NURBS surface and its 
trimming curves as input, from this we automatically compute a base mesh, the limit 
surface of which fits the trimmed NURBS surface to a specified tolerance. We first construct 
the topology of the base mesh by performing a cross-field based decomposition in 
parameter space. The number and positions of extraordinary vertices required to represent 
the trimmed shape can be automatically identified by smoothing a cross field bounded 
by the parametric trimming curves. After the topology construction, the control point 
positions in the base mesh are calculated based on the limit stencils of the subdivision 
scheme and constraints to achieve tangential continuity across the boundary. Our method 
provides the user with either an editable base mesh or a fine mesh whose limit surface 
approximates the input within a certain tolerance. By integrating the trimming curve as 
part of the desired limit surface boundary, our conversion can produce gap-free models. 
Moreover, since we use tangential continuity across the boundary between adjacent 
surfaces as constraints, the converted surfaces join with G1 continuity.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/3.0/).

1. Introduction

Non-Uniform Rational B-Splines (NURBS) are the standard freeform surface representation in Computer-Aided Design 
(CAD) applications. Due to their limitation of a strict rectangular topology, trimming is an important operation to create 
complex objects. However, it introduces unavoidable gaps when stitching two trimmed NURBS patches together (Sederberg 
et al., 2008). Moreover, as the trimmed NURBS are only visually trimmed by skipping the evaluation of the trimmed part 
in parameter space (Fig. 1(a)), the rectangular NURBS topology is not altered although the geometric shape has changed. As 
a consequence, many operations on trimmed shapes may require a time-consuming re-evaluation process of the trimming 
curves (Farin, 2001), e.g., editing and deformation.

Instead, subdivision, because of its ability to handle arbitrary topology and ease of use, has become an attrac-
tive alternative to NURBS, especially for modelling in high-end animation productions (Pixar, DeRose et al., 1998;
Stam, 1998). The subdivision representations have the great advantage that if two subdivision surfaces share a boundary 
edge in base meshes, they both contain exactly that piece of boundary curve. This makes it possible to apply exactly the 
same trimming curves on two intersecting surfaces and thus provide gap-free models.
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Fig. 1. (a) Input data set. Left: the domain space with black knot lines and oriented trimming loops. Right: the rectangular control mesh of a trimmed 
NURBS surface. The original NURBS boundary curves marked in orange are referred to as remaining boundary curves (the partly trimmed ones can be 
obtained by knot insertion at the cut position) and the model-space trimming curves marked in yellow are referred to as B curves. They compose the final 
boundary of the target limit surface. (b) Output: the partition in domain space (left) and the resulting base mesh (right) for Catmull–Clark subdivision. (For 
interpretation of the colours in this figure, the reader is referred to the web version of this article.)

Although there has been great progress in NURBS-compatible subdivision schemes (Sederberg et al., 1998, 2003; Müller 
et al., 2006, 2010; Cashman et al., 2009a, 2009b, 2009c), there is little work addressing the conversion algorithms between 
trimmed NURBS surfaces and subdivision surfaces. The conversion from Catmull–Clark subdivision surfaces to NURBS sur-
faces can be achieved by viewing each quadrilateral face of the base mesh as a NURBS patch (Loop and Schaefer, 2008). 
However, conversion in the other direction is nontrivial. This is demanded, for example, in industry scenarios when the 
designer first converts a Catmull–Clark subdivision surface to NURBS patches and then performs trimming operations to 
get the desired shape (since trimming NURBS models is well developed in modelling software). The challenge is how to 
automatically convert the trimmed shape back to the Catmull–Clark representation.

The key motivation behind our work is to develop a framework that automatically converts trimmed NURBS surfaces to 
subdivision surfaces. The conversion objective is to keep the approximation error within a specified tolerance and maintain 
the original continuity across the boundary of adjacent surfaces.

1.1. Summary of our method

Given a NURBS surface S and a set of trimming curves B , the target is to represent the region of S inside the trimming 
curves as a Catmull–Clark subdivision surface C (see Fig. 1). We present a two-step algorithm to achieve the conversion. We 
first construct the topology of the base quad mesh M for the desired subdivision surface C and then calculate the control 
point positions in M based on limit stencils of the subdivision scheme.

Inspired by the cross field theory in recent quad remeshing techniques, we automatically identify the EVs (Extraordinary 
Vertices) required in the mesh M and decompose the trimmed domain region into quads by computing a boundary aligned 
cross field in parameter space. The control point positions in M are chosen to make their corresponding limit points lie 
exactly on the input NURBS surface. In order to maintain up to C2 continuity, Bézier edge conditions are applied when 
constructing the boundary of the base mesh M .

1.2. Advantage of the method

The advantage of our conversion is threefold. First, by specifying the number of refinement steps in the topology con-
struction step, we are able to provide the user with either a fully editable control mesh to manipulate the trimmed surface, 
or a fine control mesh whose limit surface approximates the input trimmed surface with high accuracy. Second, as an advan-
tage of subdivision representation, we can provide gap-free models after conversion. The converted Catmull–Clark surfaces 
of two intersecting NURBS surfaces will use the same trimming curve as their shared boundary. Third, the original continu-
ity across the boundary of two trimmed surfaces (tangentially intersecting) can be maintained by setting the near-boundary 
layers of control points to satisfy Bézier edge conditions on both sides.

2. Background and related work

In this section, we explain the related concepts and review prior work in converting trimmed NURBS to other forms of 
surface representations, trimming subdivision surfaces and quad remeshing.

2.1. Trimmed NURBS

A trimmed NURBS surface consists of a regular NURBS patch and a set of trimming curves. In the parameter space, 
a closed trimming loop identifies a region whose evaluation is skipped. Each trimming operation is defined with NURBS 
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curve descriptions both in the parameter domain (P curves) and in model space in R3 (B curves). In this work, we have 
assumed that both are given and are not concerned with the computation of surface–surface intersections and their projec-
tions in parameter space since most commercial geometric modelling programs can do this automatically (Farin et al., 2002;
Song and Wang, 2007; Sederberg et al., 2008).

As clearly pointed out by Sederberg et al. (2008), gaps are unavoidable when expressing the intersections of two NURBS 
surfaces using conventional trimmed NURBS representation. This is because the actual intersection curve in R3 is in general 
not rational. In practice, it is approximated using a B-spline curve, the model-space trimming curve B . This B curve is 
projected back into the parameter space of the two surfaces. These projected curves are then approximated using B-spline 
curves, which are referred to as the parametric trimming curves P . The evaluations of the P curves on the two surfaces 
are called images of the actual intersection curve. This results in three different curves in R3: the B curve and the images 
on two surfaces. None of them is exactly the true intersection. The gap between the surfaces is owing to the two surfaces 
being trimmed along these slightly different curves in R3. Because the calculations cannot produce exact matches, they are 
all, instead, performed to within a defined tolerance.

2.2. Conversion of trimmed NURBS

Because of the unavoidable gaps in conventional trimmed NURBS models and the complexity in manipulating trimmed 
surfaces, many approaches have been proposed to convert trimmed NURBS to other forms of surface representations.

One popular way is to decompose and represent trimmed NURBS surfaces with a group of regular surfaces, such as 
NURBS or Bézier surfaces. Hamann and Tsai (1996) proposed a decomposition method based on a Voronoi diagram in the 
parameter space. However, their method creates many degenerate patches. Hui and Wu (2005) alleviated this problem to 
some extent by taking the sharp features of the trimming curves and boundaries into consideration during the construc-
tion of the Voronoi diagram. After decomposition in the domain region, both methods then interpolate a group of regular 
B-spline surfaces, one for each decomposed region. However, as the interpolation is performed locally for each subregion, it 
is challenging to maintain the continuity of the original surface. Note that these Voronoi based methods split the original 
corners, which makes it difficult to enforce boundary conditions. They also result in poor global alignment of quads, which 
makes it inappropriate for the global fitting that we seek.

More recently, Li and Chen (2009) split the trimmed domain in a way that keeps unchanged the regions that are far away 
from the trimming curves, and then approximated the regions near the trimming curves with G1 continuity. Schmidt et al.
(2012) introduced a similar method to enable isogeometric analysis on trimmed NURBS surfaces. As the local approximation 
around trimming curves depends on the number and positions of intersections between the trimming curves and knot grids 
in domain space, both methods are restricted to simple intersecting configurations.

Sederberg et al. (2008) introduced a method to convert each trimmed NURBS to an untrimmed T-spline with approxi-
mation error confined to an arbitrarily narrow neighbourhood of trimming curves. However, their method cannot avoid EVs 
when it exactly matches all of the boundaries.

In contrast to prior conversion work, we propose to convert the trimmed NURBS surfaces to untrimmed subdivision 
surfaces.

2.3. Subdivision schemes

The existence of trimming operations in NURBS surfaces results in the need for careful patch layout and cross-boundary 
continuity management. This is one reason why subdivision schemes are preferred in the entertainment industry. By re-
peatedly applying subdivision rules to a base mesh with arbitrary topology, one can model smooth surfaces. For many 
applications, the limit surface is the preferred choice during the modelling process, rather than the approximated surface 
after performing the subdivision for several steps. Therefore, for subdivision schemes, the exact evaluation method (the limit 
stencil) is essential for practical use. Catmull–Clark subdivision (Catmull and Clark, 1978) is the most popular subdivision 
method used in industry. It can be viewed as midpoint knot insertion on a uniform bicubic B-spline surface (except at 
extraordinary vertices and faces, whose valency is not equal to four). The evaluation methods proposed by Stam (1998), 
Lacewell and Burley (2007), Zorin and Kristjansson (2002) are widely used.

As NURBS implementations have the flexibility of higher degrees and non-uniformity, in order to make NURBS-
compatible subdivision schemes, Sederberg et al. (1998, 2003) and Müller et al. (2006, 2010) introduced non-uniform 
subdivision schemes (subdivision surfaces with degree 2 or 3 only) based on the refinement of NURBS with extension 
to arbitrary topology. NURBS-like knot intervals are assigned to the corresponding vertices or edges of the base mesh. Go-
ing beyond degree 3, Cashman et al. (2009b, 2009a, 2009c) proposed a non-uniform subdivision scheme with arbitrarily 
high degree. Currently, most subdivision implementations in modelling systems are still limited to the uniform bicubic 
case.

We choose to use the Catmull–Clark subdivision scheme as the conversion target for the following reasons:

• Catmull–Clark is still the standard subdivision method (with crease-rules, DeRose et al., 1998) widely used in modelling, 
rather than any of the extended non-uniform subdivision methods.
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• It has been well studied and the limit stencils are known, although there are additional errors introduced by approxi-
mating the input non-uniform boundary curves with uniform curves in the first place.

• Even for the non-uniform case, the approximation is better if the knot intervals are as uniform as possible, especially 
around EVs, as implied by Cashman et al. (2009a).

2.4. Quadrangulation and cross field

We propose to construct a quadrilateral base mesh M which can topologically represent the shape of the trimmed 
surface. This is related to other methods for generating quad meshes.

In recent years, a wealth of quad remeshing techniques has been presented to generate high quality quad meshes from 
triangular meshes (Bommes et al., 2012, 2013; Liu et al., 2011; Campen et al., 2012; Zhang et al., 2013; Kobbelt, 2010). The 
most popular methods are based on periodic parameterisations (Ray et al., 2006), Morse–Smale theory (Dong et al., 2006;
Huang et al., 2008; Zhang et al., 2010) or mixed-integer optimisation (Kälberer et al., 2007; Bommes et al., 2009). Most 
of the parameterisation techniques are guided by vector or cross fields constructed from principal curvature directions or 
manually specified directions. Cross fields are promising since they can easily capture the positions and types of EVs during 
quadrangulation.

Our method constructs the topology of the base mesh M by performing a cross-field based partition in parameter space. 
The cross field is automatically computed and satisfies the boundary alignment constraints.

A cross field can be viewed as four coupled vector fields. Each cross can be represented as a single unit length vector (red 
arrows in Fig. 3) and three other directions by 90 degree rotations of this vector. Due to the 90 degree freedom, smoothing 
a cross field involves specifying which direction to follow for each cross. Recently, Zhang et al. (2006), Ray et al. (2008), 
Palacios and Zhang (2007) and Palacios and Zhang (2010) proposed a method to handle N-symmetry direction fields in 
a linear manner. It separates the direction field into an angle field and an integer period-jump field. Based on this work, 
Bommes et al. (2009, 2013) solved the quadrangulation problem as a two-step process: cross field generation and global 
parameterisation. Both can be formulated as mixed integer problems. They proposed an adaptive greedy solver for mixed 
integer problems. We utilise this solver to compute the cross field in this paper.

2.5. Trimming subdivision surfaces

An alternative approach to ours is to first convert the whole untrimmed NURBS surface to a subdivision surface via 
degree reduction or elevation, and then introduce trimming into the subdivision method (Reusche, 2005). While not directly 
related to our problem, it is useful to be aware of this alternative.

We emphasise that Reusche’s work focuses on how to trim a subdivision surface. While in contrast, this paper focuses 
on how to construct the base mesh for an untrimmed subdivision surface that fits the trimmed NURBS surface. Reusche’s 
method takes the rectangular control mesh of a NURBS surface as the base mesh of an extended subdivision surface (named 
ESub, published later by Müller et al., 2006), and attaches the trimming information into the subdivision process. The actual 
trimming of the faces is done when the complete subdivision is performed and desired level of accuracy is reached. The 
approximation error can be confined to arbitrary narrow regions around the trimming curves. However, this method cannot 
guarantee continuity between trimmed patches. More importantly, in the manufacturing industry, when interrogating the 
surface, instead of performing the subdivision to a finite number of steps, it is preferred to evaluate the limit surface 
exactly.

3. Overview

We propose a novel framework to convert trimmed bicubic NURBS surfaces to Catmull–Clark subdivision surfaces with 
Bézier edge conditions. The conversion will keep the approximation error within a specified tolerance and maintain tangen-
tial continuity across surface boundary. The input and output are illustrated in Fig. 1.

Input data set:

• A NURBS surface S : (u, v) → (x, y, z).
• A set of parametric trimming curves P : (t) → (u, v).
• A set of model-space trimming curves (also referred to as the intersection curves) B : (t) → (x, y, z).

Note that B(t) �= S(P (t)), but as discussed in Section 2.1, the difference is deemed acceptable and occurs in all commercial 
CAD systems. Note also that the NURBS representations of B and P have the same knot vector and the same degree 
(achieved by knot insertion and degree elevation if necessary).

Target:

• a base mesh M for Catmull–Clark subdivision surface C with Bézier edge conditions.
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Fig. 2. Illustration of quad partition in the domain space. (a) Knot lines (black) and the trimming loop (red). (b) Directional constraints set by the tangent 
along trimmed domain boundary. (c) Smooth cross field with an EV (marked in red) and traced rays from the EV (blue). (d) Additional rays (black lines) 
added from original boundary knots (black dots). Note that the intersections of blue rays are snapped to the original boundary knots if they are close 
enough (marked in blue circles). (e) The final as uniform as possible quad partition (Md). (For interpretation of the colours in this figure, the reader is 
referred to the web version of this article.)

Main workflow:

Step 1. Build the topology of the base mesh M for Catmull–Clark subdivision surface by performing a cross-field based 
decomposition in parameter space, as illustrated in Fig. 2.

• Generate a cross field at a selected resolution with boundary constraints in the trimmed domain region.
• Identify the EVs and perform quad partition (referred to as Md) in the trimmed domain region.
• Optimise and refine Md to make the quad partition uniform and to keep EVs at least two edges away from the boundary 

in domain space (required for Bézier edge conditions, see Fig. 4(a)).

Step 2. Calculate the control point positions in the base mesh M .

• Evaluate Md on the input NURBS surface to get a mesh consisting of limit points that correspond to the control points 
(referred to as Ml).

• Construct an additional layer of control points along boundaries in base mesh M for Bézier edge condition (the orange 
layer in Fig. 4(b)).

• Compute the control points in M by solving a linear system built from both the limit stencils of the subdivision scheme 
and the constraints put by tangential continuity requirement across boundary.

The limit stencils of the subdivision scheme specify the linear relation between the limit points and the control points. 
The tangential continuity constrains control point positions in the near-boundary layer, which can also be formulated as 
linear equations. Therefore, the control point positions (except the ones at the boundary, which are set up to represent the 
boundary curves) can be calculated by inverting a linear system.

4. Quad partition in trimmed domain region

The domain space of an untrimmed NURBS patch is defined as [0, 1] ×[0, 1]. The cross field is defined on a 2D grid with 
user-specified cell size s inside the trimmed domain region (see Fig. 2(c)). The more tightly curved the trimming curves are, 
the smaller the cell size should be used; s = 0.025 is small enough for all examples in this paper. As shown in Fig. 2(b-c), 
after putting the tangent along the boundary of the trimmed domain as directional constraints, a smooth cross field can 
be computed inside the bounded region (Bommes et al., 2009). EVs with valency 3 (EV3) and 5 (EV5) are automatically 
identified by local cross field distortions. The coarse quad partition is generated by adding tracing rays from EVs. It is 
further refined by adding interpolation rays for original boundary knots. Each tracing ray is a set of line segments following 
the flow of the cross field (blue curves in Fig. 2(c)). The interpolation rays are added proportionally to the knot spacings 
on boundary (black line segments in Fig. 2(d)). Since the number of boundary knots indicates the number of control points 
needed to represent the NURBS shape to some extent, refining the partition according to the boundary knots can ensure 
that we use a reasonable number of control points in the base mesh for the target subdivision surface.

4.1. Cross field and EVs

The cross field can be viewed as an angle field plus an integer period-jump field. Each cell Fi has an angle θi and each 
edge ei j has an integer value pij that represents the number of 90 degree jumps between the two cells that share this edge, 
as illustrated in Fig. 3(a).

After putting directional constraints, a smooth cross field is calculated by minimising total distortion. The distortion 
between two adjacent cells is defined by the angle difference of the two crosses:

Dij = θi − θ j + π
pij,
2
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Fig. 3. (a) Illustration of the cross field on a 2D grid, represented as an angle field in cells (θ value) and an integer jump field on edges (non-zero jump 
marked in red). (b) The cross field around an EV with a non-zero jump edge. (c) Illustration of finding a tracing direction (arrows in black) from the EV 
(red lines) and then finding a tracing direction from a position inside the cell (blue lines). (For interpretation of the colours in this figure, the reader is 
referred to the web version of this article.)

where pij is the integer chosen from [0,1,2,3] that minimises Dij .
The smoothing problem is then reduced to a mixed integer problem. The total distortion energy is expressed as:

Esmooth =
∑

ei j∈Γ

(
θi − θ j + π

2
pij

)2

,

where Γ is the set of edges shared by cells in the trimmed domain region.
The cross field index of a vertex can be computed by the sum of the jumps on neighbouring edges:

I(vi) =
∑

eik∈N(vi)

pik

4
.

Only the EV has a nonzero index, which is always a multiple of 1/4 (Ray et al., 2008). In particular, −1/4 for valency 5
and 1/4 for valency 3.

The greedy mixed-integer solver (Bommes et al., 2009) is adopted to solve this minimisation problem. The problem is 
reduced from quadratic to linear by setting the gradient of the energy to zero:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂ Esmooth

∂θi
=

∑
eik∈N(Fi)

2

(
θi − θk + π

2
pik

)
=̇0

∂ Esmooth

∂ pij
= π

(
θi − θ j + π

2
pij

)
=̇ 0

The mixed-integer solver first calculates the exact non-integer solution to this problem and then adaptively rounds the 
integer variables to integers. Therefore, =̇ is used in the above equations, rather than =.

The result is a smooth cross field where the integer jumps define the types and positions of all EVs (see Fig. 2(c) and 
Fig. 3(b)).

4.2. Tracing rays

The coarse quad partition is generated by tracing rays from EVs following the flow of the cross field (blue curves in 
Fig. 2(c)). The flow direction at each position in this discrete field is chosen by averaging the flow in its surrounding cells.

• Start from the cell centre, there are two tracing rays (crossed lines shown in orange and green in Fig. 3(b)).
• Start from a point on an edge, the directions of the tracing rays are calculated by taking the average of the centre

tracing rays of the cells that share this edge.
• Start from an EV, the number of unique tracing rays is equal to the valency of the EV. These tracing rays are found in 

the following way (see Fig. 3(c)). For each pair of adjacent cells (Fi, F j) around the EV, consider the EV as a point on 
the edge shared by (Fi, F j) and find the two ray candidates. If pij is not zero, there is a jump in the following direction 
between Fi and F j .

• Start from a point inside a cell, choose the closest edge and calculate the tracing direction as if the point was on this 
edge (the blue line in Fig. 3(c)).

In order to keep the tracing as accurate as possible, middle lines are inserted to the grid (dashed lines in Fig. 3(c)). In 
each tracing step, after choosing the tracing direction, the ray will follow this direction until it hits a middle line. It will 
then use this intersection as a new start position for tracing (the black arrows in Fig. 3(c)). The tracing process is repeated 
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Fig. 4. (a) Illustration of layers in the domain partition with EV placement condition satisfied and (b) the corresponding layers in the base mesh with Bézier 
edge condition. The control points in the first (boundary), second and third are shown in red, orange and purple circles respectively. The control points in 
the orange layer are introduced by the multiple knots on the boundary, and they have no corresponding knot points in the domain space. The corners of 
this layer are shown as solid dots. The standard limit stencils are not applicable for these three layers. (c) Illustration of subdivision rules to obtain Bézier 
end-conditions for a cubic subdivision curve. The control points are shown as black squares and the new points after one step of subdivision are shown as 
red circles. (For interpretation of the colours in this figure, the reader is referred to the web version of this article.)

until the ray hits the boundary or becomes close enough to snap with another EV (distance less than the cell size s). The 
tracing rays are snapped to each other if their distance is less than s. The final ray is a set of line segments with segment 
length less than s.

This coarse quad partition in domain space is then refined according to the knot vectors of the boundary curves (black 
lines in Fig. 2(c)). These refined lines are added by interpolation according to the knot spacings on boundary.

Instead of applying global parameterisation as in MIQ (Mixed Integer Quadrangulation) algorithms (Bommes et al., 2009), 
we chose to construct the coarse quad partition by adding tracing rays from EVs. This is mainly because the global param-
eterisation may fail to find a valid solution when a coarse quad mesh is required (specified by edge length, which is an 
input parameter for MIQ algorithms). Even though this problem is further solved in Bommes et al. (2013), as their input is 
a dense triangular mesh in 3D, the algorithms to achieve reliable quad meshing are complicated. In contrast, as we work on 
the cross field on a 2D grid, finding the coarse quad partition by tracing the flow is reliable and much simpler.

4.3. Uniform knot spacings

Since Catmull–Clark subdivision is a uniform scheme, the knot spacings in the domain partition Md should be as uniform 
as possible. For each boundary edge, this can be done by adjusting the vertices on it to have uniform spacings. If the original 
input is a non-uniform B-spline surface, the curves B are non-uniform or the trimming curves P cut the original boundary 
arbitrarily, the knot spacings on the boundary are inevitably non-uniform. After moving the positions of original boundary 
knots (black dots in Fig. 2(a) and (d)) to make the knot spacings uniform for Catmull–Clark subdivision, we cannot reproduce 
the exact surface boundary curve. In fact, the boundary curve is approximated using the uniform knot vector defined by the 
boundary vertices of Md . This approximation is due to the limitation of Catmull–Clark subdivision scheme.

For interior edges, a simple Laplacian smoothing process is performed. Each vertex is iteratively moved to the average 
position of its neighbours. The number of steps applied in all our examples is 40.

In order to utilise Bézier edge conditions to guarantee continuity across boundary, the first four layers (counting from 
boundary, each layer is a chain of vertices) in the base mesh M should form a topologically rectangular array. Thus in the 
base mesh, the outermost layer in which EVs can exist is the fourth layer (Fig. 4(b)). As multiple knot lines (multiplicity 
4 for bicubic surface) are applied, topologically the EVs should be at least two edges away from the boundary in parame-
ter space (Fig. 4(a)). This EV placement condition is satisfied by two simple steps in our algorithm. First, when generating 
the cross field, we put more directional constraints in near-boundary cells to keep the singularity away from the bound-
ary. This is done by first computing an offset of the boundary curves inside the trimmed region, and then setting these 
new crossed cells with tangent direction of the associated offset curve segment. A proper offset distance is twice the grid 
size in cross field. Second, after making the partition uniform in domain space, a refinement step is applied to make the 
EVs two edges away from the boundary. Note that this might lead to a denser mesh if the trimming curves are highly 
curved.

Fig. 4(a) illustrates the definition of a strip: the quads covered in blue form a quad strip. Similarly, the edges inside this 
strip form an edge strip. Refining the partition Md once will insert a middle line in each edge strip. The user can use the 
number of refinement steps to control the density of the partition and thus achieve the desired approximation accuracy.
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Fig. 5. The resulting subdivision surfaces with approximation error plots (relative to the bounding box diagonal of the surface): without satisfying the EV 
placement condition (left), without uniforming step (middle) and with uniforming and EV placement condition satisfied (right).

Fig. 5 illustrates the resulting base meshes and their approximation errors in the following cases. Fig. 5(a) is the result 
with EVs placed in the third layer of the control mesh. Fig. 5(b) is the result without uniforming the domain partition. 
Fig. 5(c) is the result with uniforming and EV placement condition satisfied. It has the smallest approximation error.

5. Base mesh for Catmull–Clark subdivision

The limit point mesh Ml is calculated by evaluating Md on the input NURBS surface. For Catmull–Clark subdivision 
scheme, the mesh Ml and the target base mesh M have the same topology (except the special orange layer marked in 
Fig. 4(b), which is introduced by the multiple knot lines on the boundary). Each point in Ml can be viewed as the limit 
position of the corresponding control point in M , formulated by the limit stencils of the subdivision scheme. The control 
points in base mesh M can be calculated by solving a square linear system set by

Vl = LVc,

where Vl is the vector that contains the limit points in Ml , Vc is the vector that contains the control points in the base 
mesh M , and the matrix L is built from the coefficients in the equations which link limit point positions to control point 
positions. For Catmull–Clark subdivision with Bézier edge conditions, the equations are defined by the limit stencils and the 
tangential continuity requirement across the boundary, which are fully explained in following sections. If the matrix L is 
singular (we have not encountered singular matrices in our examples), a least-squares solution can be adopted (Halstead et 
al., 1993).

5.1. Catmull–Clark subdivision with Bézier edge conditions

In order to create Bézier edge conditions for the subdivision surface C , special rules need to be used for boundary 
(or near boundary) elements, which are naturally derived from multiple knots at the end of the B-splines (Sabin, 2010, 
Ch. 32). Fig. 4(c) illustrates the special rules at the end of a cubic subdivision curve. To obtain a Catmull–Clark subdivision 
surface with Bézier edge conditions, these end conditions are applied in a tensor-product manner across all boundary pieces 
(separated by corners). More specifically, special subdivision stencils are used to calculate the new points in the first four 
rows during subdivision. Fig. 6 illustrates this process and shows the stencil for c′

3,4.

5.2. Limit stencils for Catmull–Clark with Bézier edge condition

Each subdivision step can be viewed as multiplying the subdivision matrix with the current mesh points once to get a 
new set of points. The limit surface can be obtained by iteratively multiplying the matrix infinitely. Thus, the standard limit 
stencil for Catmull–Clark subdivision can be found by analysing the eigenstructure of its subdivision matrix. It corresponds 
to the dominant left eigenvector of its subdivision matrix (Halstead et al., 1993; Loop et al., 2009). For a control point c
with arbitrary valency n, the limit position l is then given by (Loop et al., 2009)

l(c) = l = n

n + 5
c + 4

n(n + 5)

n−1∑
k=0

ek + 1

n(n + 5)

n−1∑
k=0

fk,

where ek is the edge vertex touching c and fk is the diagonal vertex on the face touching c. Due to the use of special 
subdivision rules for Bézier edge condition in near-boundary layers, this linear relation is only valid to the points that are 
not in the first three layers in the base mesh (marked in red, orange and purple in Fig. 4(b)).

Using the subdivision curve for illustration (Fig. 4(c)), the limit stencil of the third control point P3 can be derived by 
first subdividing the control polygon once and then applying l(P3) = l(p4). Since the standard rule will be used to calculate 
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Fig. 6. Illustration of Catmull–Clark subdivision with Bézier edge conditions. The mesh after one step of subdivision is shown in dashed lines. The special 
subdivision stencils are used to calculate the new points in the first four rows along each boundary piece. The subdivision matrices involved in the tensor 
product calculation are those for univariate Bézier end conditions, and are shown in the upper right. An example of the derived stencil for c′

3,4 is shown 
at the bottom. The old control points involved in this stencil are marked by black circles.

the new point for p4 in following subdivision steps, the standard limit stencil can be used to compute l(p4). Therefore, the 
linear relation can be formulated as l(P3) = l(p4) = (p3 + 4p4 + p5)/6 = (1.5P2 + 3.5P3 + P4)/6.

5.3. Continuity across boundary

In order to use the input model-space trimming curve B as part of the subdivision surface boundary (for a gap-free join) 
and maintain the first-derivative conditions across the boundary, the first two layers of the base mesh (the red and orange 
control points in Fig. 4(b)) are set up in the following way. We use ci, j to denote the jth control point in the ith layer 
locally along a boundary piece (separated by corners).

The boundary points c1, j of the base mesh (red points in Fig. 4(b)) are set to be the actual control points of the control 
polygons of the boundary curves of the trimmed NURBS surface. Note that these control polygons are not exactly the original 
input ones (as discussed in Section 4.3).

The second layer control points (orange points in Fig. 4(b)) c2, j are set to lie on the tangent plane along the boundary 
of the trimmed NURBS surface. For each boundary point d1, j = (u1, j, v1, j) in the domain partition Md , its tangent plane on 
the NURBS surface is decided by its neighbouring control points in the first two rows in the base mesh M (see Fig. 4(b)). 
Therefore, for control points in the orange layer which are not corners, we have

∇ S(u1, j, v1, j) · w = (c2, j−1 + 4c2, j + c2, j+1 − c1, j−1 − 4c1, j − c1, j+1)/2,

where the direction of vector w = (wu, w v) is chosen to follow the knot line emanating from d1, j in Md (see Fig. 4(a)). For 
corners (shown as solid orange dots), we have

w1HwT
2 = 9(c2,2 + c1,1 − c1,2 − c2,1),

where H is the Hessian matrix of input surface S at a new corner point (u1,1, v1,1) in the domain partition Md , and w1, 
w2 follow the directions of the two boundary knot lines emanating from this corner (see Fig. 4(a)). The left part of this 
equation is a generalisation of ∂2 S

∂u∂v for directions of (1, 0), (0, 1) to w1, w2.
The magnitude of vectors w, w1, w2 is related to the rescaling of the knot spacings of boundary curves before and after 

conversion. We observed that a good choice is the first non-zero knot interval along the new knot line, i.e., the magnitude 
of w is |d2, j − d1, j |. Note that, these vectors are chosen to make the control point positions vary smoothly along the surface 
boundary. The result is exactly G1 at those shared control points. This is also the typical way that NURBS modelling systems 
(e.g., Rhinoceros) approximate G1 in a simple way. Future research will consider where to put the second-layer control points 
on the local tangent planes to achieve G1 continuity at all points along the shared boundary curve (Che et al., 2005).

In this way, along each boundary of the subdivision surface, the boundary curve and the first derivative across the 
boundary are set up using both the original NURBS surface and intersection curves B as input data. If the same data is used 
on both sides along the boundary, there will be a G1 join between the adjacent surfaces.

6. Results

The evaluation of the conversion is performed by computing the mesh difference between the input trimmed NURBS 
surface S and the limit surface C of the output base mesh M (for Catmull–Clark subdivision with Bézier edge conditions). 
Two measurements are used. One is the distance error scaled by the bounding box diagonal of the surface S . The other 
is the normal-vector error using the angle difference in degrees. The mesh of surface S is obtained by tessellating the 
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Fig. 7. The conversion results. The first row shows different trimming loops and the corresponding decomposition in the trimmed domain region with 
EV5 marked in red and EV3 in blue. The second and third rows show the converted subdivision surfaces with NURBS surface S1 and S2 as input surface, 
respectively. Note that they use the same decomposition in parameter space (the first row). S2 has high curvature. The distorted knot lines highlighted in 
the black boxes in the first row are due to the requirement of uniform knot spacings for boundary curve. (For interpretation of the colours in this figure, 
the reader is referred to the web version of this article.)

Table 1
The refinement step used in the base mesh topology construction vs. maximum error (for examples in Fig. 8, 5th column).

Number of 
refinement steps

Number of 
control points

Max distance error Max normal error

S1 ratio S2 ratio S1 S2

0 718 2.01 × 10−3 – 5.63 × 10−3 – 1.783 9.628
1 2681 6.11 × 10−4 3.3 1.82 × 10−3 3.1 1.037 7.445
2 10 868 1.05 × 10−4 5.8 2.31 × 10−4 7.8 0.538 4.758
3 43 096 2.94 × 10−5 3.6 8.24 × 10−5 2.8 0.273 2.01

trimmed NURBS surface with a specified threshold (the largest edge length relative to the bounding box diagonal is less 
than 1.0 × 10−5 in our examples). The mesh of surface C is obtained by first subdividing the base mesh k times (k = 2
in all examples), and then applying limit-point rules to calculate the limit positions of the points in the subdivided mesh. 
The normal vector for each limit point is calculated using the tangent stencils described in Andersson and Stewart (2010, 
Ch. 6.1).

We examine the behaviour of our algorithms on several kinds of trimming loops in domain space. The partitions in the 
trimmed domain region are shown in the first row of Fig. 7. We use two NURBS surfaces with the same parametric trimming 
curves as input surface S , referred to as S1 and S2. S2 has high curvature. The conversion results are shown in the second 
and third row of Fig. 7, respectively. These are the results if coarse base meshes are required and their approximation errors 
are of the order of 10−3. The unnatural alignment marked in black boxes in the left corner of Fig. 7 is caused by the fact 
that we move the boundary vertices around to get uniform knot spacings for the boundary curve. It will be improved if 
converting to non-uniform subdivision schemes.

The approximation error is totally dependent on the number of control points used to represent the subdivision surface. 
As shown in Table 1, the maximum error drops when increasing the number of refinements in the topology construction 
step. The ratio by which it drops from one step to the next is around 4. Since we measure the maximum of the error 
over the entire surface, we can expect only quadratic convergence because of EVs (the surface is only C1 and has only 
linear precision at EVs). There is a tradeoff between accuracy and number of control points. For entertainment applications, 
the designer will mostly opt for an editable coarse control mesh for Catmull–Clark subdivision. Our method can produce 



JID:COMAID AID:1438 /FLA [m3G; v 1.134; Prn:16/07/2014; 8:22] P.11 (1-13)

J. Shen et al. / Computer Aided Geometric Design ••• (••••) •••–••• 11
Fig. 8. The distance error plots of conversion results in Fig. 7. The error is scaled by the bounding box diagonal of the trimmed surface. The number of 
refinement steps is set to 3 to keep the approximation error below 1.0 × 10−4. The histograms in the last column explicitly illustrate the error distribution 
of the examples in the fifth column.

Fig. 9. The normal-vector error plots of the conversion results (angle difference measured in degrees).

an editable coarse mesh with the EV placement condition satisfied (Fig. 7). For applications with stringent accuracy re-
quirement, the approximation error should not be seriously worse than the error between the trimming curve B and its 
images on original NURBS surfaces. This mismatch can be used as the tolerance of the conversion. 1.0 × 10−4 is used as the 
conversion tolerance (the number of refinement steps is 3) in order to produce the evaluation results in Figs. 8 and 9.

We plot the approximation error over the limit surface C measured in distance (Fig. 8) and in normal-vector angle differ-
ence (Fig. 9). The error distribution histograms in the last column of Figs. 8 and 9 explicitly illustrate the error distribution of 
the examples in the fifth column. It can be seen that over 90% of approximation errors are below one fifth of the maximum 
value.

The conversion can be done in seconds when coarse base mesh is required (the number of control points is of the order 
of 103) and in minutes when accuracy is required (the number of control points is of the order of 104).

7. Conclusion and future work

This paper presents a novel approach for the conversion of trimmed NURBS surfaces to Catmull–Clark subdivision sur-
faces with Bézier edge conditions. We first construct the topology of the base mesh for subdivision by performing cross-field 
based decomposition in the parameter space. The control point positions are then calculated by inverting a linear system 
built from limit stencils and cross-boundary continuity constraints. Our method can achieve the conversion within a speci-
fied tolerance and maintain the tangential continuity of adjacent trimmed surfaces.

Although in this paper we only exhibit the conversion of trimmed bicubic NURBS surfaces to Catmull–Clark subdivision 
surfaces, the framework can be directly applied to non-uniform subdivision schemes, except that different limit stencils 
need to be applied in the second step. The ultimate goal of this work is to provide tools for both entertainment applications 
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Fig. 10. Limitations of our method. (a) Sharp corners become EVs with valency 3. (b) In domain space, the trimming curve with high curvature results in 
many EVs close to the trimming curve.

(Catmull–Clark subdivision) and CAD applications (trimmed NURBS and high-degree non-uniform subdivision) which require 
exactness. In future, we will further investigate the conversion of trimmed NURBS surfaces to the subdivision scheme of 
Cashman et al. (2009a), which is non-uniform and high degree.

As demanded for most industry applications, the original continuity across the shared boundary should be maintained 
when the information of the adjacent surface is provided. Currently, we use Bézier edge conditions and guarantee the 
tangent plane continuity across the boundary. Our future work will investigate the method to achieve up to C2 with 
Catmull–Clark subdivision and even higher continuity across the shared boundary of two NURBS patches with Cashman’s 
subdivision framework.

Moreover, the current decomposition is based on cross field, which is orthogonal. Corners become EV3 when the angle is 
small (as shown in Fig. 10(a)). A future challenge will be investigating the non-orthogonal cross field. With more degrees of 
freedom, better alignment could be achieved at sharp corners. Also as shown in Fig. 10(b), the parametric trimming curve 
with high curvature will result in many EVs around the trimming curve. The quad partition will be quite dense if we keep 
the uniformity of the knot spacings after satisfying the EVs placement condition. This problem could be improved by using 
non-orthogonal cross field to reduce the number of EVs around high curvature points on the trimming curves.
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