
Extending old languages for new

architectures

Leo P. White

University of Cambridge

Computer Laboratory

Queens’ College

October 2012

This dissertation is submitted for

the degree of Doctor of Philosophy

Declaration

This dissertation is the result of my own work and includes nothing which is the outcome

of work done in collaboration except where specifically indicated in the text.

This dissertation does not exceed the regulation length of 60 000 words, including tables

and footnotes.

Extending old languages for new architectures

Leo P. White

Summary

Architectures evolve quickly. The number of transistors available to chip designers

doubles every 18 months, allowing increasingly complex architectures to be developed

on a single chip. Power dissipation issues have forced chip designers to look for new

ways to use the transistors at their disposal. This situation inevitably leads to new

architectural features on a fairly regular basis. Enabling programmers to benefit from

these new architectural features can be problematic.

Since architectures change frequently, and compilers last for a long time, it is clear that

compilers should be designed to be extensible. This thesis argues that to support evolving

architectures a compiler should support the creation of high-level language extensions. In

particular, it must support extending the compiler’s middle-end. We describe the design

of EMCC, a C compiler that allows extension of its front-, middle- and back-ends.

OpenMP is an extension to the C programming language to support parallelism. It

has recently added support for task-based parallelism, a dynamic form of parallelism

made popular by Cilk. However, implementing task-based parallelism efficiently requires

much more involved program transformation than the simple static parallelism originally

supported by OpenMP. We use EMCC to create an implementation of OpenMP, with

particular focus on efficient implementation of task-based parallelism.

We also demonstrate the benefits of supporting high-level analysis through an extended

middle-end, by developing and implementing an interprocedural analysis that improves

the performance of task-based parallelism by allowing tasks to share stacks. We develop

a novel generalisation of logic programming that we use to concisely express this analysis,

and use this formalism to demonstrate that the analysis can be executed in polynomial

time.

Finally, we design extensions to OpenMP to support heterogeneous architectures.

Acknowledgments

I would like to thank my supervisor Alan Mycroft for his invaluable help and advice. I

would also like to thank Derek McAuley for helpful discussions. I also thank Netronome

for funding the work. Special thanks go to Zoë for all her support.

Contents

1 Introduction 9

1.1 Evolving architectures require extensible

compilers . 9

1.2 Extensibility and compilers . 10

1.2.1 The front-, middle- and back-ends 11

1.2.2 Declarative specification of languages 11

1.2.3 Preprocessors and Macros . 13

1.3 Extending old languages for new architectures 14

1.4 Compilers for multi-core architectures . 15

1.5 OpenMP: Extending C for multi-core . 16

1.6 Contributions . 16

1.7 Dissertation outline . 17

2 Technical background 19

2.1 The OCaml programming language . 19

2.1.1 The module system . 19

2.1.2 The class system . 20

2.1.3 Generalised Algebraic Datatypes 20

2.2 Task-based parallelism . 23

2.2.1 Support for task-based parallelism 24

2.3 OpenMP . 25

2.4 Models for parallel computations . 27

2.4.1 Parallel computations . 27

2.4.2 Execution schedules . 28

2.4.3 Execution time and space . 29

2.4.4 Scheduling algorithms and restrictions 30

2.4.5 Optimal scheduling algorithms . 30

2.4.6 Efficient scheduling algorithms . 31

2.4.7 Inherently inefficient example . 32

2.5 Logic programming . 33

5

2.5.1 Logic programming . 33

2.5.2 Negation and its semantics . 34

2.5.3 Implication algebra programming 36

3 EMCC: An extensible C compiler 39

3.1 Related Work . 40

3.1.1 Mainstream compilers . 40

3.1.2 Extensible compilers . 41

3.1.3 Extensible languages . 43

3.2 Design overview . 44

3.3 Patterns for extensibility . 46

3.3.1 Properties . 46

3.3.2 Visitors . 47

3.4 Extensible front-end . 49

3.4.1 Extensible syntax . 49

3.4.2 Extensible semantic analysis and translation 50

3.5 Extensible middle-end . 50

3.5.1 Modular interfaces . 50

3.5.2 CIL: The default IL . 52

3.6 Conclusion . 54

4 Run-time library 57

4.1 Modular build system . 58

4.2 Library overview . 59

4.2.1 Thread teams . 59

4.2.2 Memory allocator . 59

4.2.3 Concurrency primitives . 59

4.2.4 Concurrent data structures . 60

4.2.5 Worksharing primitives . 60

4.2.6 Task primitives . 60

4.3 Atomics . 60

4.4 Conclusion . 63

5 Efficient implementation of OpenMP 65

5.1 Efficiency of task-based computations . 66

5.1.1 Execution model . 66

5.1.2 Memory model . 68

5.1.3 Scheduling tasks efficiently . 68

5.1.4 Scheduling OpenMP tasks efficiently 69

5.1.5 Inefficiency of stack-based implementations 70

6

5.1.6 Scheduling overheads . 71

5.2 Implementing OpenMP . 71

5.2.1 Efficient task-based parallelism . 71

5.2.2 Implementing OpenMP in EMCC 74

5.2.3 Implementing OpenMP in our run-time library 75

5.3 Evaluation . 76

5.3.1 Benchmarks . 76

5.3.2 Results . 77

5.4 Related work . 80

5.5 Conclusion . 81

6 Optimising task-local memory allocation 83

6.1 Model of OpenMP programs . 85

6.1.1 OpenMP programs . 85

6.1.2 Paths, synchronising instructions and the call graph 86

6.2 Stack sizes . 87

6.3 Stack size analysis using implication programs 88

6.3.1 Rules for functions . 89

6.3.2 Rules for instructions . 90

6.3.3 Optimising merged and unguarded sets 91

6.3.4 Finding an optimal solution . 93

6.3.5 Adding context-sensitivity . 94

6.4 The analysis as a general implication program 95

6.4.1 Stack size restrictions . 95

6.4.2 Restriction rules . 95

6.4.3 Other rules . 97

6.4.4 Extracting solutions . 97

6.5 Stratification . 100

6.6 Complexity of the analysis . 101

6.7 Implementation . 101

6.8 Evaluation . 102

6.9 Conclusion . 105

7 Extensions to OpenMP for heterogeneous architectures 107

7.1 Heterogeneous architectures and OpenMP 107

7.2 Related work . 109

7.3 Design of the extensions . 112

7.3.1 Thread mapping and processors . 112

7.3.2 Subteams . 113

7

7.3.3 Syntax . 113

7.3.4 Examples . 114

7.4 Implementation . 115

7.5 Experiments . 116

7.6 Conclusion . 118

8 Conclusion and future work 119

8.1 Conclusion . 119

8.2 Future work . 120

A Inefficient schedule proof 121

A.1 Size lower-bound . 121

A.2 Time lower-bound . 121

A.3 Combining the bounds . 122

A.4 Efficient schedules . 122

B Task-based space efficiency proof 125

B.1 Definitions . 125

B.1.1 Task-local variables . 125

B.1.2 Spawn descendents . 125

B.1.3 Sync descendents . 125

B.2 Pre-order scheduler efficiency . 126

B.3 Post-order scheduler efficiency . 127

C Stack-based inefficiency proof 129

C.1 Restrictions on sharing stacks . 129

C.2 An inefficient example . 129

8

Chapter 1

Introduction

1.1 Evolving architectures require extensible

compilers

The number of transistors available to chip designers doubles every 18 months, allowing

increasingly complex architectures to be developed on a single chip. Power dissipation

issues force chip designers to look for innovative ways to use the transistors at their

disposal.

This situation inevitably leads to new architectural features on a fairly regular basis.

Recent changes have lead to multi-core chips with a greater variety of cores and increas-

ingly complex memory systems. Allowing programmers to benefit from such features can

be problematic.

Compilers have very long lifetimes. The most popular C/C++ compilers in the

world today are arguably Microsoft Visual C++ [44] and the GNU Compiler Collec-

tion (GCC) [68], which are 29 and 25 years old respectively. Compilers are very complex

systems with large codebases. There are also very few economic incentives for creating a

new compiler. This means that there is little competition from new compilers, and so old

compilers are rarely replaced. The only notable exception in the last 20 years has been

the arrival of the LLVM compiler framework.

Since architectures change frequently, and compilers last for a long time, it is clear

that compilers should be designed to be extensible. Computer architectures can be com-

plicated, esoteric and notoriously poorly specified: producing efficient machine code for

them requires specialist knowledge. This makes it very important that a compiler’s ex-

tensibility is both exposed and simple to use, in order that the extensions may be written

by experts in the architecture, rather than experts in the compiler.

9

10 Chapter 1 Introduction

1.2 Extensibility and compilers

A system is said to be extensible if changes can be made to the existing system function-

alities, or new functionalities added, with minimum impact to the rest of the system. In

software engineering extensibility is often considered a non-functional requirement : a re-

quirement that is a quality of the system as a whole rather than part of the system’s actual

behaviour. From this perspective extensibility refers to the ease with which developers

can extend their software with additional functionalities. For example, software quality

frameworks, such as ISO/IEC 9126 [35], include extensibility as a sub-characteristic of

maintainability.

Extensibility can also be part of the functional requirements of a system. Such systems

allow their users to add additional functionality to them, and ensure that such extensions

will continue to work across multiple releases of the system. In this thesis we will mostly

consider non-functional extensibility, although most of the ideas and tools described could

also be applied to functional extensibility.

Extensibility is closely related to modularity, which is the degree of separation between

the components of a system. The more autonomous the modules the more likely that an

extension will only affect a small number of modules, rather than requiring changes across

the entire system. Extensibility can also be considered a form of code reuse: rather than

write a new system for our new problem we can reuse the code from a previous system.

An important aspect of extensibility and modularity is the minimisation and explicit

tracking of dependencies. Dependencies between the different components of a system

decrease the modularity of that system: changes to one component may require changes

in another. Where dependencies cannot be avoided they should be explicit in the sys-

tem. If dependencies are not explicit then changing one component requires checking all

other components for possible dependencies on the part of the component that has been

changed, a difficult and error prone task. By making dependencies explicit the amount

of the system that must be checked is minimised, decreasing the difficulty and risk in

extending the system.

The purpose of a compiler is to translate from an input language to an output language.

Extending a compiler means extending this translation, by either changing how the input

language is translated or extending the input or output languages. For example, a compiler

could be extended by adding a new syntactic form to the input language, or by adding a

new optimisation.

In practise, compilers translate through a series of intermediate languages. In order

to extend the input and output languages, it is important to also be able to extend these

intermediate languages. Otherwise, analyses and optimisations that operate on these

intermediate languages cannot be applied to the language extensions.

1.2 Extensibility and compilers 11

1.2.1 The front-, middle- and back-ends

A typical compiler is divided into three stages (Fig. 1.1):

Front-end The front-end is divided into three phases:

i) Lexical analysis

ii) Syntactic analysis

iii) Semantic analysis

Lexical analysis converts the source code into a stream of tokens. Syntactic analysis

builds an Abstract Syntax Tree (AST) from the stream of tokens. Semantic analysis

collects semantic information from the AST and then translates the AST into a more

“semantic” form, called an Intermediate Language (IL). During these three phases,

the front-end also checks the program for errors.

Middle-end The middle-end optimises the program. In order to decide what optimi-

sations should be applied, the middle-end performs analyses to deduce additional

semantic information about the program. This new semantic information may also

be used to translate the program into other ILs that are more suited to performing

optimisations.

Back-end The back-end takes the program from the middle-end and generates the final

output, typically machine code. It may also perform some machine-dependent low-

level optimisations.

Separating the compiler into these three stages allows the same compiler to accept mul-

tiple languages (through multiple front-ends) and target multiple architectures (through

multiple back-ends). The increased modularity provided by this three stage model also

improves the extensibility of the compiler: simple extensions may well be confined to a

single front- or back-end.

1.2.2 Declarative specification of languages

The division of the compiler into three stages means that we can extend an input or

output language by writing a new front- or back-end for the compiler. However, this is

a large and complex task, we would rather extend an existing front- or back-end. How

extensible are these front- and back-ends?

Both front- and back-ends are very complicated and interconnected systems, which

can make them difficult to extend. The traditional approach to improving the extensi-

bility of these stages is to implement them using declarative language specifications. This

enables developers to specify the properties of an input or output language which are then

mechanically converted into (parts of) the front- and back-ends.

12 Chapter 1 Introduction

Source

Code

Tokens

AST

IL0

Lexical Analysis

Syntactic Analysis

Semantic Analysis

Front-End1

Source

Code

Tokens

AST

IL0

Lexical Analysis

Syntactic Analysis

Semantic Analysis

Front-Endn

IL0

Lowering

ILk

Optimisation

Optimisation

Middle-End

ILk

Machine

Code

Code Generation

Back-End1

ILk

Machine

Code

Code Generation

Back-Endm

Figure 1.1: A Typical Compiler

1.2 Extensibility and compilers 13

The classic example of this is the use of regular expressions to specify the lexical analy-

sis and context-free grammars to specify the syntactic analysis of a front-end. Traditional

tools for this, such as Lex[49] and Yacc[38], make it easier to extend a front-end by ad-

justing the declarative specification of its input language. More recently, some compilers

(e.g. JustAdd [32]) have also supported declarative specification of the semantic analysis

of the input language using attribute grammars.

Similar techniques have also been very successful in specifying the output languages

of compilers. Different back-ends are built from machine descriptions, which are used to

derive rules for instruction selection, instruction scheduling and register allocation. This

makes it easy to define a new back-end for a new or updated architecture. The fast rate

of evolution of architectures and desire for portability has made this a necessity.

1.2.3 Preprocessors and Macros

An alternative to implementing a new front-end to extend the compiler’s input language

is to use a preprocessor. A preprocessor is itself a form of compiler, whose output language

is the input language of the main compiler. The classic example is the C preprocessor

which is used to expand simple text-based macros as part of the C language.

Most preprocessors are for low-level extensions. The translation is usually done with-

out performing any semantic analysis of the program, and often without any syntactic

analysis.

Preprocessors can be used to implement quite large high-level language extensions.

For example, the Cilk [70] language is implemented as a preprocessor for C. These pre-

processors implement a full syntactic and semantic analysis to produce an AST annotated

with semantic information. The extensions are then translated out of the AST and the

result is pretty-printed. Such preprocessors are very difficult to implement as they contain

most of a compiler’s front-end.

Another method of extending a compilers input language is to use macros. Macros

are procedures that are run before or during the compiler’s front-end. They might be

built into the compiler’s input language, as with Lisp, or part of a preprocessor, as with

C. Their capabilities vary widely, but since they are executed at compile-time, they can

be considered a mechanism for extending a compiler.

Macros are a form of functional extensibility: designed for use by a compiler’s users.

They are particularly popular for implementing Domain Specific Languages(DSLs). DSLs

are small languages for use in specific programming domains. An embedded DSL is a

DSL that exists within another programming language. Embedded DSLs are a form of

language extension, and they have become increasingly popular in recent years, coinciding

with the creation of increasingly powerful macro systems (e.g. Template Haskell [67], Scala

Macros [11]).

14 Chapter 1 Introduction

1.3 Extending old languages for new architectures

Architectures change frequently, and compilers must be extended to support the new

features of a new architecture.

For many low-level architectural features, extending the back-end is all that is re-

quired to enable programmers to exploit them. For example, adding a new instruction

to an architecture may only require that a template for that instruction be added to the

instruction selection process. However, sometimes the best way to use a new architectural

feature is through a language extension.

None of the forms of extensibility discussed in the previous section support extending

the middle-end of the compiler. They all handle input language extensions by translating

them into the AST of the original language. This means that all analyses and optimisa-

tions used to implement the extension must be carried out on the AST. However, ASTs

are not a suitable representation for many optimisations. They contain syntactic artefacts

which can add a lot of unnecessary complexity to an analysis’ implementation. It also

means that the analyses cannot be shared with a similar extension to another language.

In general, the problem with supporting language extensions exclusively through ex-

tensions to the front-end is that the analyses (and optimisations) applied to the extension

are completely separate from those applied to the base language. This means that if an

optimisation of the extension requires an existing analysis of the base language, that anal-

ysis must be reimplemented so that it can be applied in the front-end. More importantly,

it means that there is no “semantic integration” of the extension with the rest of the lan-

guage. The analyses and optimisations of the base language remain completely oblivious

to the extension and any semantic information it may contain. If our extensions are to

have parity with the rest of the language, we must be able to extend the middle-end of

the compiler.

Extending the middle-end of a compiler, requires us to be able to extend the compiler’s

intermediate languages. This is difficult because it may require changes to any of the front-

ends, back-ends or optimisations, all of which depend on intermediate languages. The

problem is that the front-ends, back-ends and optimisations all access the intermediate

language directly: there is no abstraction between them which might allow a front-end

to target multiple intermediate languages, or allow an optimisation to operate on any

intermediate language that provides the right operations.

This problem can also be thought of a one of tracking dependencies at a too coarse-

grained level. Front-ends, back-ends and optimisations all depend on intermediate lan-

guages as a whole, rather than specifying which parts or properties of the intermediate

language they actually depend on. This makes it very difficult to know which parts of the

compiler must be changed to accommodate extensions to the intermediate languages.

Chapter 3 describes the design and implementation of a compiler that supports ex-

1.4 Compilers for multi-core architectures 15

tensions to its middle-end. Section 3.1 contains a discussion of existing approaches to

extending middle-ends.

1.4 Compilers for multi-core architectures

The most dramatic recent change in architecture design has been the arrival of multi-core

on PCs. While parallelism has been a feature of architectures for many years, its arrival

on desktop computers has dramatically increased the number of programmers writing

programs for parallel architectures.

However, despite multi-core having been available in desktop computers since 2005

(and simultaneous multithreading as early as 2002), the compilers used by most program-

mers targeting these architectures are still oblivious to the existence of parallelism.

This means that the only support for shared-memory parallelism is through threading

libraries. Such support is inherently low-level and, as discussed by Boehm [8], is actually

unable to guarantee the correctness of the translation of multi-threaded programs. In

2011, both C and C++ finally added some native support for shared-memory parallel

programming. However, it is mostly provided through standard library support for ex-

plicit multi-threading. Only the new atomic operations require special handling within

the compiler, which allows them to avoid the correctness issues which affect threading

libraries.

This reluctance among compiler implementers to make the compiler aware of paral-

lelism has meant that the middle-ends of these compilers have not changed despite a

dramatic change in the computation model. If the middle-end is not aware of parallelism,

then it cannot perform analyses and optimisations of parallel code. There are many ex-

amples in the academic literature of analyses and optimisations for parallel programs (e.g.

deadlock detection). However, these are only described in terms of small calculi, rather

than implemented in working compilers. If the middle-end of a compiler were extended

to accommodate parallelism, then these analyses and optimisations could be applied to

real-world programs.

Further, this lack of support for parallelism in the middle-end of compilers prevents the

adoption of higher-level approaches to parallelism, which require analyses and optimisa-

tion to be implemented efficiently. This means that explicit multi-threaded programming

remains the most common approach to parallelism, despite general acceptance that it is

difficult to reason with and produces hard-to-find bugs.

16 Chapter 1 Introduction

1.5 OpenMP: Extending C for multi-core

This thesis will look at OpenMP as a language extension to handle the addition of multi-

core to PC architectures. OpenMP is an interesting example as it was originally designed

to be simple enough to implement with a preprocessor, but more recent additions to the

language require more complex analyses in order to be implemented efficiently. Chapter 5

describes an efficient implementation of OpenMP using our EMCC compiler.

OpenMP [61] is a shared-memory parallel programming language that extends C with

compiler directives for indicating parallelism. It was originally designed for scientific

applications on multi-processor systems. It provided a higher level of parallelism than that

provided by threading libraries, but did not require complicated program transformation,

and could be implemented in the front-end of the compiler or with a simple preprocessor.

The rise of multi-core has caused OpenMP to evolve towards supporting mainstream

applications. These applications are more irregular and dynamic than their scientific

counterparts. With this in mind, OpenMP 3.0 included support for task-based parallelism.

Task-based parallelism is a high-level parallel programming model made popular by

languages such as Cilk [70]. Implementing it efficiently requires much more involved pro-

gram transformation than the simple static parallelism originally supported by OpenMP.

These transformations are best implemented in the middle-end of the compiler.

However, current implementations of OpenMP are still being implemented in the front-

end of the compiler. This has prevented their performance from competing with that of

Cilk and other task-based programming languages [60].

1.6 Contributions

The main contributions of this thesis are:

� The design and implementation of EMCC, a C compiler that allows extensions of

its front-, middle- and back-ends. The middle-end is made extensible by abstracting

its IL using functors.

� The design of a customisable library for atomic operations and concurrent data

structures. The design of this library makes it easy to use with a new architecture

or a new programming model.

� A new implementation of the OpenMP programming language which takes advan-

tage of our extensible compiler to implement OpenMP tasks using more lightweight

methods than previous implementations, allowing it to match Cilk in terms of per-

formance.

1.7 Dissertation outline 17

� A theoretical demonstration that OpenMP tasks can be implemented in a space-

efficient way without affecting time efficiency.

� The design of an analysis of OpenMP programs, which detects when it would be

safe for multiple tasks to share a single stack. This optimisation is implemented

using EMCC.

� A novel generalisation of logic programming that we use to concisely express the

above analysis. This enables us to demonstrate that the analysis can be executed

in polynomial time.

� The design of extensions to OpenMP to support heterogeneous architectures. These

extensions allow the programmer to chose how work is allocated to different pro-

cessing elements on an architecture. They are implemented using EMCC and our

customisable run-time library.

1.7 Dissertation outline

The rest of this dissertation proceeds as follows: Chapter 2 details the technical back-

ground required by the other chapters. Chapter 3 describes the design of EMCC. Chap-

ter 4 describes the design of our customisable run-time library. Chapter 5 details how we

implemented OpenMP using EMCC. It also contains a discussion of the space-efficiency

of OpenMP, and a lightweight method for implementing OpenMP tasks. Chapter 6 de-

scribes the design and implementation of a novel optimisation for OpenMP programs,

which allows multiple tasks to share a single stack. Chapter 7 describes extensions to

OpenMP to support heterogeneous architectures. Chapter 8 concludes.

Chapter 2

Technical background

This chapter describes some technical material used in the rest of this thesis. Chapter 3

describes a compiler implemented in the OCaml programming language, so Section 2.1

describes some of the features of that language. Chapter 5 describes an implementation

of OpenMP’s task-based parallelism, so the Sections 2.2 and 2.3 of this chapter give

outlines of task-based parallelism and OpenMP respectively. Chapter 5 also contains

some discussion of the theoretical efficiency of OpenMP programs, for this discussion we

develop a model of parallel computation in Section 2.4. Chapter 6 describes an analysis of

OpenMP program’s memory usage, we present this analysis using a novel generalisation

of logic programming, which is described in Section 2.5.

2.1 The OCaml programming language

The EMCC compiler is implemented in the OCaml [48] programming language, and parts

of its design rely on features of that language. This section contains an outline of the

features of OCaml relevant to the design of EMCC.

OCaml, originally known as Objective Caml, is a programming language from the ML

family. It was created in 1996 based on a previous language called Caml. In addition

to the traditional ML features it includes a number of additions, including support for

object-oriented programming.

2.1.1 The module system

The OCaml module system is based on the ML module system. It provides a means

to group together and encapsulate collections of types and values. There are three key

parts in the module system: signatures, structures, and functors. Signatures correspond

to interfaces, structures correspond to implementations, and functors are functions over

structures.

19

20 Chapter 2 Technical background

Fig. 2.1 shows some simple code using the OCaml module system. EQUALSIG is a

signature with one type (t) and one function (equal). MakeSet is a functor that takes

a parameter (Equal) that obeys the EQUALSIG signature, and produces a structure that

implements a simple set. The StringEqual and StringNoCase structures both implement

the EQUALSIG signature for strings. The StringSet and StringSetNoCase structures are

created by applying the MakeSet functor to StringEqual and StringNoCase respectively.

Both StringSet and StringSetNoCase implement sets of strings, but StringSetNoCase

compares strings case-insensitively.

The important point about this code, and the OCaml module system in general, is

that it abstracts the details of the implementations of StringEqual and StringNoCase

from the code in MakeSet. This allows MakeSet to be used to create different set imple-

mentations that have the same interface.

2.1.2 The class system

The OCaml class system provides structurally typed objects and classes. Like most object-

oriented systems, the OCaml class system provides support for open recursion. Open

recursion allows mutually recursive operations to be defined independently. Fig. 2.2 shows

a simple example using open recursion.

The int string list and string int list types represent lists of alternating inte-

gers and strings. The printer class has two mutually recursive methods int string list,

which creates a string from an int string list, and string int list, which creates a

string from a string int list. The quoted printer class inherits from the printer

class and overrides the string int list with a version which surrounds strings in the

list with single quotation marks.

The open recursion in this example comes from the mutual recursion between the

printer class’s int string list method and the quoted printer class’s string int list

method. These methods call one another (through the special self variables) even though

they are defined independently.

2.1.3 Generalised Algebraic Datatypes

Generalised Algebraic Datatypes (GADTs) are an advanced feature of OCaml that allows

us to encode constraints about how data can be constructed, and have the OCaml type

checker ensure that those constraints are obeyed. Fig. 2.3 shows the classic example of

GADTs: an evaluator for simple typed expressions.

The expr GADT represents simple typed expressions. The types of these expressions

are represented by the OCaml types int and bool. Integer expressions are represented by

the type int expr, whilst boolean expressions are represented by the type bool expr. By

2.1 The OCaml programming language 21

module type EQUALSIG = sig

type t

val equal : t −> t −> bool

end

module MakeSet (Equal : EQUALSIG) =

struct

type e l t = Equal . t

type s e t = e l t l i s t

l et empty = []

l et mem x s = L i s t . e x i s t s (Equal . equal x) s

l et add x s = i f mem x s then s else x : : s

l et f i n d x s = L i s t . f i n d (Equal . equal x) s

end

module Str ingEqual = struct

type t = s t r i n g

l et equal s1 s2 = (s1 = s2)

end

module StringNoCase = struct

type t = s t r i n g

l et equal s1 s2 =

St r ing . l owercase s1 = St r ing . l owercase s2

end

module St r ingSe t = MakeSet (Str ingEqual)

module StringSetNoCase = MakeSet (StringNoCase)

Figure 2.1: An example of the OCaml module system

22 Chapter 2 Technical background

type i n t s t r i n g l i s t =

I N i l

| ICons of i n t * s t r i n g i n t l i s t

and s t r i n g i n t l i s t =

SNil

| SCons of s t r i n g * i n t s t r i n g l i s t

class p r i n t e r = object (s e l f)

method i n t s t r i n g l i s t = function

I N i l −> ””

| ICons (i , s i l) −>
(s t r i n g o f i n t i) ˆ ” ; ” ˆ (s e l f#s t r i n g i n t l i s t s i l)

method s t r i n g i n t l i s t = function

SNil −> ””

| SCons (s , i s l) −>
s ˆ ” ; ” ˆ (s e l f#i n t s t r i n g l i s t i s l)

end

class quo t ed pr in t e r = object (s e l f)

inherit p r i n t e r

method s t r i n g i n t l i s t = function

SNil −> ””

| SCons (s , i s l) −>
” ' ” ˆ s ˆ ” ' ; ” ˆ (s e l f#i n t s t r i n g l i s t i s l)

end

let p = new p r i n t e r

l et q = new quo t ed pr in t e r

l et s1 = p#i n t s t r i n g l i s t (ICons (3 , SCons (” h e l l o ” , ICons (5 , SNil))))

l et s2 = q#i n t s t r i n g l i s t (ICons (3 , SCons (” h e l l o ” , ICons (5 , SNil))))

Figure 2.2: An example of the OCaml class system

2.2 Task-based parallelism 23

type ' a expr =

Const : ' a −> ' a expr

| Plus : i n t expr * i n t expr −> i n t expr

| LessThan : i n t expr * i n t expr −> bool expr

| I f : bool expr * ' a expr * ' a expr −> ' a expr

l et rec eva l : type a . a expr −> a = function

Const x −> x

| Plus (a , b) −> (eva l a) + (eva l b)

| LessThan (a , b) −> (eva l a) < (eva l b)

| I f (c , t , f) −> i f (eva l c) then (eva l t) else (eva l f)

l et x = eva l (I f (LessThan (Const 1 , Const 2) ,

Plus (Const 3 , Const 2) ,

Const 0))

Figure 2.3: An example of GADTs

using a GADT the OCaml type-checker ensures that only correctly typed expressions can

be created—for example, we cannot create an expression that tries to sum two boolean

expressions. Since all expressions are correctly typed, we can write an evaluation function

for the expressions that is guaranteed to succeed (eval).

2.2 Task-based parallelism

With the advent of multi-core processors, many programming languages have introduced

parallel programming models. These programming models can be divided into data-

parallel models, which focus on allowing an operation to be performed simultaneously on

different pieces of data, and task-parallel models, which focus on allowing multiple threads

of control to perform different operations on different data.

Task-parallel programming models can be further classified as either static or dy-

namic task-parallel programming models. Static task-parallel models use a fixed number

of threads and are optimised for computations with long-lasting threads and a similar

number of threads to the amount of physical parallelism in the architecture. Dynamic

task-parallel models support the frequent creation and destruction of threads and are

optimised for computations using many short-lived threads.

Dynamic task parallelism divides computations into an increased number of smaller

tasks compared to static task parallelism, which increases the amount of logical parallelism

exposed to the system. By encouraging programmers to increase the amount of logical

parallelism exposed to the system, dynamic task-parallel programming models can in-

24 Chapter 2 Technical background

crease system utilisation in the presence of delays (synchronisation costs, communication

latency, etc.) and load-imbalance. This works because excess parallelism can be sched-

uled during delays and short-lived threads are easier to divide up evenly. However, each

thread requires a number of resources (e.g. a full execution context), and these resources

have associated time and space costs.

A common approach to dynamic task parallelism is task-based parallelism. This ex-

ecutes program threads using a fixed number of worker threads—often implemented as

heavyweight kernel threads. To differentiate program threads from worker threads they

are often referred to as tasks—hence the name task-based parallelism. Tasks are sched-

uled onto threads cooperatively (i.e. no preemption) at run-time. This division between

worker threads and tasks allows tasks to be more lightweight—requiring fewer resources

per-task and enabling the system to support many more tasks simultaneously.

As the granularity of parallelism is refined, the time cost of supporting many tasks

could ultimately outweigh the benefit of the potential increase in utilisation. Furthermore,

programmers have certain expectations about how a program’s space costs may increase

when executed in parallel (we say that a program that meets these expectations is space

efficient). As the granularity of parallelism is refined the space cost of supporting many

tasks may mean that a program fails to meet these expectations.

The simplest method of reducing the cost of supporting many tasks is load-based

inlining. This means that once some measure of load (e.g. the number of tasks) reaches a

certain level (called the cut-off) any new tasks are inlined within an existing task. When

a new task is inlined within an existing task, the existing task is put on hold while the new

task executes using its resources, then when the new task has finished the original task is

allowed to continue. This inlining can be done cheaply using an architecture’s procedure

call mechanism. However, inlining prevents tasks executing in parallel with their parent,

effectively reducing dynamic task parallelism to static task parallelism.

The alternative to inlining is to make tasks as lightweight as possible, so that the

system can support as many tasks as required without using up the available resources.

In particular, it is important that resource usage scales linearly with the number of tasks.

This is more difficult to implement than load-based inlining, but it does not constrain the

parallelism of the program so can scale much more efficiently.

2.2.1 Support for task-based parallelism

A number of languages and libraries provide support for task-based parallelism. These

include Cilk, OpenMP and Intel’s Threading Building Blocks.

Cilk [70] is a parallel programming language developed since 1994. Parallelism is

expressed by annotating function definitions with the cilk keyword. Functions marked by

this keyword are treated as tasks and all calls to them must be annotated with the spawn

2.3 OpenMP 25

c i lk int f i b (int n)

{
i f (n<2) return n ;

else

{
int x , y ;

x = spawn f i b (n−1);

y = spawn f i b (n−2);

sync ;

return (x+y) ;

}
}

Figure 2.4: An example of some Cilk code

keyword. Further keywords are provided to allow tasks to synchronise and communicate

with each other. Cilk places various restrictions on where tasks can be created and how

tasks synchronise with each other (e.g. a task cannot outlive its parent). These restrictions

provide certain guarantees about the behaviour of tasks in Cilk. An example of Cilk is

shown in Fig. 2.4.

OpenMP is also based on the C programming language, and since version 3.0 [61] has

provided support for task-based parallelism. It is the focus of much of the work in this

thesis, and is described in detail in the next section.

Intel’s Threading Building Blocks [64] is a C++ library with support for task-based

parallelism. Since it is a library, it cannot use any program transformations on the bodies

of its tasks. This forces it to restrict the parallelism of its tasks. Sukha [69] showed

that, in the worst case, such restrictions can remove all the parallelism from a task-based

program.

Other programming languages and libraries with support for task-based parallelism

include Microsoft’s Task Parallel Library [47], X10 [13] and Wool [25].

2.3 OpenMP

OpenMP is a shared-memory parallel programming language that was first standardised

in 1996. It was originally designed for scientific applications on large clusters. Parallelism

is expressed by annotating a program with compiler directives. The language originally

only supported data parallelism and static task parallelism. However the emergence

of multi-core architectures has brought mainstream applications into the parallel world.

These applications are more irregular and dynamic than their scientific counterparts, and

require more expressive forms of parallelism. With this in mind, in 2008 the OpenMP

26 Chapter 2 Technical background

Architecture Review Board released OpenMP 3.0 [61], which includes support for task-

based parallelism.

Before the addition of task-based parallelism, OpenMP did not require complicated

program transformation, and could be implemented in the front-end of the compiler or

with a simple preprocessor. However, implementing task-based parallelism efficiently

requires much more involved program transformation and these transformations are best

implemented in the middle-end of the compiler. Chapter 5 discusses the requirements of

an efficient implementation of task-based parallelism in OpenMP.

The execution model of OpenMP within the parallel sections of a program consists

of teams of threads executing tasks and workshares. These teams are created using the

parallel directive.

Workshares support data parallelism: they divide work amongst the threads in a team.

For instance, the for workshare allows the iterations of a for loop to be divided amongst

the threads.

More dynamic forms of parallelism can be exploited using tasks. Tasks are sequences

of instructions to be executed by a thread. Tasks do not need to be executed immediately,

but can be deferred until later or executed by a different thread in the team. When a

team is created each thread begins executing an initial task. These tasks can in turn

spawn more tasks using the task directive. A task can also perform a sync operation

using the taskwait directive, which prevents that task from being executed until all of

the tasks that it has spawned have finished.

There are two types of OpenMP task that can be spawned: tied and untied. There

are two restrictions related to tied tasks:

1. Once a thread has started executing it, a tied task cannot migrate to another thread.

We say that the task is tied to the thread that started it.

2. A thread can only start executing a new task if that task is descended from all the

tied tasks that are currently tied to that thread.

OpenMP has a relaxed-consistency shared-memory model. All threads have access to

memory and are allowed to maintain their own temporary views of it. This temporary

view allows a compiler to cache variables accessed by a thread and thereby avoid going

to memory for every reference to a variable.

Some simple OpenMP C code is shown in Fig. 2.5. This code uses tasks to perform

a parallel post-order traversal of a binary tree data structure. The taskwait directive

ensures that the child nodes are processed before the parent node.

2.4 Models for parallel computations 27

void p o s t o r d e r t r a v e r s e (t r e e node *p) {
i f (p−> l e f t)

#pragma omp task

p o s t o r d e r t r a v e r s e (p−> l e f t) ;

i f (p−>r i g h t)

#pragma omp task

p o s t o r d e r t r a v e r s e (p−>r i g h t) ;

#pragma omp taskwait

proce s s (p) ;

}

Figure 2.5: An example of some OpenMP C code

2.4 Models for parallel computations

Chapter 5 includes a discussion of the efficiency of OpenMP programs and task-based

programs in general. This discussion requires a model of parallel computation.

This section develops a simple model of parallel computations and their execution on

a parallel architecture. It generalises the model used by Blumofe et al. [7], so that it can

incorporate the computations produced by OpenMP programs. This model consists of

executing computations according to execution schedules. Blumofe et al. used this model

to show that Cilk programs could all be executed in a time- and space-efficient way.

We define the execution time and space for computations in this model. We also define

the concept of a scheduling algorithm and what it means for a scheduling algorithm to be

time or space efficient.

2.4.1 Parallel computations

A parallel computation is a directed acyclic graph (N ,E) where N is a set of nodes,

labelled by instructions, and E represents dependencies between instructions. We write

@E for the transitive closure of E . A simple computation is shown in Fig. 2.6.

Instructions take unit time and may include access to data. A computation’s data

is represented by a set V of variables. We denote the set of instructions that access a

variable v ∈ V by Av ⊆ N .

For any p ∈ N we define a p-way ordering of a computation (N ,E) to be a tuple of

partial functions ω̃ = ω1 , . . . , ωp : N⇀ N satisfying three conditions:

1. (order respecting): ωk(i)@E ωl(j) =⇒ i < j whenever ωk(i) and ωl(j) are defined

2. (injective): ωk(i) = ωl(j) =⇒ i = j ∧ k = l whenever ωk(i) and ωl(j) are defined

3. (surjective): ∀n ∈ N ∃k , i . ωk(i) = n.

28 Chapter 2 Technical background

n1

{v1, v2}
n2

{v2}

n3

{v2}

n4

{v2}

n8

{v2}

n9

{v2}

n5

{}

n6

{v3}

n7

{}

n10

{v4, v5}

n11

{v1}

n12

{v4}

n13

{v4}

Figure 2.6: A parallel computation with instructions n1, . . . , n13 and variables v1, . . . , v5

The last two properties mean that ω̃ gives a unique index for every instruction. These

indices can be found using the function ω−1 : N → N defined uniquely (as a form of

inverse to ω̃) by the requirement

∀n ∈ N . ∃k ≤ p . ωk(ω−1(n)) = n

Note that most parallel languages do not support every possible computation. We call

such restrictions computation restrictions. By restricting the patterns of dependencies

and variable accesses, such languages are able to provide certain guarantees about the

execution behaviour of their computations.

2.4.2 Execution schedules

The physical parallelism of an architecture is represented by a fixed number of worker

threads, and its memory is represented by a set L of locations.

An execution schedule1 X for a parallel computation c (= (N ,E)) on a parallel archi-

tecture with p worker threads consists of:

(i) ω̃, a p-way ordering of c

(ii) ` : V → L, a storage allocation function

The ordering ω̃ determines which instruction is executed by each thread for a particular

step in the execution, so that at time-step i the nodes ω1 (i), . . . , ωp(i) are executed. Note

that if ωk(i) is undefined then we say that worker thread k is stalled at step i . The total

1We refer to this as a schedule for consistency with previous work, even though it includes a storage

allocation component.

2.4 Models for parallel computations 29

Ordering:

n1 n2 n3 n4 n8

n5 n6 n7 n9

n11n10 n12 n13

ω1 :

ω2 :

ω3 :

1 2 3 4 5 6

Locations:

l1 l2 l3 l4

v1 v2 v3 v4

v5

Figure 2.7: A valid 3-thread execution schedule for the computation from Fig. 2.6 using

four locations (l1, . . . , l4)

function ` determines which memory location each variable is stored in. We define the

live range2 of a variable v as the interval:

liveX (v) = [min
n∈Av

ω−1(n),max
n∈Av

ω−1(n)]

For an execution schedule to be valid the following condition must hold for all distinct

variables v , u ∈ V :

`(v) = `(u) =⇒ liveX (v) ∩ liveX (u) = {}

An example schedule for the computation from Fig. 2.6 is shown in Fig. 2.7.

2.4.3 Execution time and space

The execution time of a computation c (= (N ,E)) under a p-thread execution schedule

X , T(c,p)(X), is defined as the number of execution steps to execute all the computation’s

instructions:

T(c,p)(X) = max
n∈N

ω−1(n)

When the choice of computation is obvious, we will often refer to this as simply Tp(X).

We also denote the minimum execution time of a computation c using p threads by T(c,p).

T(c,p) = min
Y

T(c,p)(Y)

Note that T1 is equal to |N |, since a single worker thread can only execute one

instruction per step. We use T∞ to denote the length of the longest instruction path

2Our definition treats liveness as from first access to last access and hence live ranges reduce to a

simple interval.

30 Chapter 2 Technical background

(called the critical path) in the computation, since even with arbitrarily many threads,

each instruction on this path must execute sequentially. We call a p-thread schedule

with an execution time of Tp time optimal. We call T1

T∞
the average parallelism of the

computation.

The space required by a computation c under a p-thread execution schedule X ,

S(c,p)(X), is defined as the number of locations used by the schedule (i.e. the size of

the image of `). We denote the minimum space needed to execute the computation on a

single thread as:

S(c,1) = min
Y

S(c,1)(Y)

This is also the minimum space needed to execute the computation on any number of

threads. We call a schedule that only requires S1 execution space space optimal.

2.4.4 Scheduling algorithms and restrictions

The definitions of execution time and space given above allow us to compare different

schedules. However, in reality these schedules must be computed (often during the ex-

ecution of a computation) by some kind of algorithm. It is these algorithms that we

are really interested in comparing. A scheduling algorithm is an algorithm that maps

computations to valid execution schedules of those computations for any given number of

threads. We represent these algorithms as functions X that map a number of threads p

and a computation c to a p-thread execution schedule for c: Xp(c).

Most parallel languages place restrictions on which scheduling algorithms are allowed.

We call these restrictions scheduling restrictions3. For instance, most parallel languages

do not permit scheduling algorithms that depend on the “future” of the computation. In

other words, the choice of which instructions should be executed at a particular time-step

(and where variables first used at that time-step should be allocated) should not depend

on instructions whose prerequisites are executed at a later time-step. This is a common

restriction because, in practice, the nature of these “future” instructions may depend on

the prerequisites that are yet to be executed.

2.4.5 Optimal scheduling algorithms

We denote the execution time of running a computation c on p threads using the schedul-

ing algorithm X as TX (c, p) = T(c,p)(Xp(c)). Similarly, the execution space of running

a computation c on p threads using the scheduling algorithm X is denoted SX (c, p) =

S(c,p)(Xp(c)).

3Again, although we call these scheduling restrictions, they may also include restrictions in how

variables are allocated to locations.

2.4 Models for parallel computations 31

The definitions of execution time and space given above can be used to define preorders

between scheduling algorithms pointwise (e.g. one algorithm is less than another if the

schedules it produces use less space than the ones produced by the other algorithm for

all computations on any number of threads). In general, with either the time or the

space ordering, the set of all scheduling algorithms becomes a downward-directed set (i.e.

all finite subsets have lower bounds). This means that we can produce time-optimal or

space-optimal scheduling algorithms that have the best time or space performance across

all computations.

However, in the presence of scheduling restrictions, the set of all allowed scheduling

algorithms may not form a downward-directed set. This means that optimal scheduling

algorithms that have the best time or space performance across all computations may not

exist.

2.4.6 Efficient scheduling algorithms

We wish to define what it means for a schedule to be efficient. By efficient we mean that

the effect on execution time or space of increasing the number of threads is in accordance

with that expected by the programmer.

In the case of time we would like linear speedup for any number of threads, however

this is not possible in general. So instead we say that a scheduling algorithm X is time

efficient iff:

TX (c, p) = O(
TX (c, 1)

p
) whenever p ≤ T1

T∞

In the case of space, we expect space to only increase linearly with the number of

threads. We say that a scheduling algorithm X is space efficient iff:

SX (c, p) = O(p × SX (c, 1))

Note that these conditions only provide guarantees about how time and space will

change with the number of threads. For good performance we also require guarantees

about performance of the scheduling algorithm in the single-threaded case. For this

reason we also define what it means for a scheduling algorithm to be absolutely time

(space) efficient. We say that a scheduling algorithm is absolutely time (space) efficient

iff it is time (space) efficient and all its single-threaded schedules are within a constant

factor of optimal. Equivalently, a scheduling algorithm X is absolutely time efficient iff it

obeys the following condition (a similar condition is obeyed by absolutely space-efficient

scheduling algorithms):

TX (c, p) = O(
T(c,1)

p
) whenever p ≤ T1

T∞

32 Chapter 2 Technical background

h1 ,1

V1,1

h1 ,l

V1,l

c1 ,1

{}

c1 ,2l

{}

t1 ,1

V2,1

t1 ,l

V2,l

h2 ,1

V2,1

h2 ,l

V2,l

c2 ,1

{}

c2 ,2l

{}

t2 ,1

V3,1

t2 ,l

V3,l

hw ,1

Vw ,1

hw ,l

Vw ,l

cw ,1

{}

cw ,2l

{}

tw ,1

V(w+1),1

tw ,l

V(w+1),l

Figure 2.8: Inefficient Computation C(w , l , s) (where Vx ,y = {vx ,y,1, . . . , vx ,y,s})

Early work on scheduling directed acyclic graphs by Brent [9] and Graham [30] shows

that this condition holds for any time-optimal scheduling algorithm. Eager et al. [24] and

Blumofe et al. [7] show that any greedy scheduling algorithm (i.e. an algorithm that only

allows a thread to stall if there are no ready instructions) also obeys this condition.

Any space-optimal schedule only requires S1 space, so any space-optimal scheduling

algorithm is obviously absolutely space efficient.

Note that if there are no scheduling restrictions, then it is always possible to create

both absolutely time-efficient scheduling algorithms and absolutely space-efficient schedul-

ing algorithms. However, it is not possible to create scheduling algorithms that are simul-

taneously both absolutely space efficient and absolutely time efficient.

2.4.7 Inherently inefficient example

It is not possible to create scheduling algorithms that are simultaneously both absolutely

space efficient and absolutely time efficient for all possible computations. This can be

demonstrated by showing that for certain classes of computation there are no schedules

which meet the conditions for both absolute time efficiency and absolute space efficiency

when p > 1.

Consider the class of computation C(w , l , s) (where w > 1, l > 1 and s > 0) shown in

Fig. 2.8. These computations access (w + 1)ls variables (v(1,1,1), . . . , v(w+1,l ,s)) and consist

of w “chains”, each a linear chain of 4l instructions divided into three sections:

1. A header of l instructions hx ,1 , . . . , hx ,l . Each header instruction hx ,y accesses

variables v(x ,y,1) through v(x ,y,s).

2. A core of 2l instructions cx ,1 , . . . , cx ,2l , which access no variables.

3. A tail of l instructions tx ,1 , . . . , tx ,l . Each tail instruction tx ,y accesses variables

v(x+1,y,1) through v(x+1,y,s).

2.5 Logic programming 33

For any computation C(w , l , s) it can be shown that S1 = s . This can be achieved by

a schedule that executes the core of each chain in order and interleaves the headers and

tails of adjacent chains, so that tx ,y is executed immediately before hx+1 ,y .

It can be shown (see Appendix A) for any p-thread schedule X of the computation

C(w , l , s) where p > 1 that:

Tp(X) = O(
T1

p
) =⇒ Sp(X) = Ω(l · s · p)

This means that the space required for an efficient schedule cannot be bounded by a

function of s and p alone.

Informally, the reason for this bound is that any absolutely time-efficient schedule

must execute multiple chains at once. This means that the headers of some chains must

execute before the tails of their preceding chains, causing the lifetimes of all the variables

accessed by these headers to overlap.

2.5 Logic programming

Chapter 6 describes an analysis of OpenMP programs’ task-local memory usage. We

develop an intuitive and novel presentation of this analysis using a generalisation of logic

programming. This section describes logic programming and the generalisation used in

presenting our analysis.

2.5.1 Logic programming

Logic programming is a paradigm where computation arises from proof search in a logic

according to a fixed, predictable strategy. It arose with the creation of Prolog [43]. In a

traditional logic programming system, a logic program represents a deductive knowledge

base, which the system will answer queries about.

Syntax

A (traditional) logic program P is a set of rules of the form

A←− B1, . . . ,Bk

where A,B1, . . . ,Bk are atoms.

An atom is a formula of the form F (t1, . . . , tk) where F is a predicate symbol and

t1, . . . , tk are terms. A is called the head and B1, . . . ,Bk the body of the rule. Logic

programming languages differ according to the forms of terms allowed. We give a general

explanation below, but our applications will only consider Datalog-style terms consisting

of variables and constants. A logic program defines a model in which queries (syntactically

34 Chapter 2 Technical background

bodies of rules) may be evaluated. We write ground(P) for the ground instances of rules

in P .

Note that we do not require P to be finite. Indeed the program analyses we propose in

Chapter 6 naturally give infinite such P , but Section 6.6 shows these to have an equivalent

finite form.

Interpretations and models and immediate consequence operator

To evaluate a query with respect to a logic program we use some form of reduction process

(SLD-resolution for Prolog, bottom-up model calculation for Datalog), but the semantics

is simplest expressed model-theoretically. We present the theory for a general complete

lattice (L,v) of truth values (the traditional theory uses {false v true}). We use t to

represent the join operator of this lattice and u to represent the meet operator of this

lattice. Members of L may appear as nullary atoms in a program.

Given a logic program P , its Herbrand base HBP is the set of ground atoms that can

be constructed from the predicate symbols and function symbols that appear in P . A

Herbrand interpretation I for a logic program P is a mapping ofHBP to L; interpretations

are ordered pointwise by v.

Given a ground rule r = (A ←− B1, . . . ,Bk), we say a Herbrand interpretation I

respects rule r, written I |= r, if I (B1) u · · · u I (Bk) v I (A).

A Herbrand interpretation I of P is a Herbrand model iff I |= r (∀r ∈ ground(P)).

The least such model (which always exists for the rule-form above) is the canonical rep-

resentation of a logic program’s semantics.

Given logic program P we define the immediate consequence operator TP from Her-

brand interpretations to Herbrand interpretations as:(
TP(I)

)
(A) =

⊔
(A←−B1,...,Bk)∈ground(P)

I (B1) u · · · u I (Bk)

Note that I is a model of P iff it is a pre-fixed point of TP (i.e. TP(I) v I). Further,

since the TP function is monotonic (i.e. I1 v I2 ⇒ TP(I1) v TP(I2)), it has a least fixed

point, which is the least model of P .

2.5.2 Negation and its semantics

It is natural to consider extending logic programs with some notion of negation. This

leads to the idea of a general logic program which has rules of the form A←− L1, . . . ,Lk

where L is a literal. A literal is either an atom (positive literal) or the negation of an atom

(negative literal).

The immediate consequence operator of a general logic program is not guaranteed to

be monotonic. This means that it may not have a least fixed point, so that the canonical

2.5 Logic programming 35

model of logic programs cannot be used as the canonical model of general logic programs.

It is also one of the strengths of adding negative literals: support for non-monotonic

reasoning.

Non-monotonic reasoning grew out of attempts to capture the essential aspects of

common sense reasoning. It resulted in a number of important formalisms, the most well

known being:

� The circumscription method of McCarthy [52], which attempts to formalise the

common sense assumption that things are as expected unless otherwise specified.

� Reiter’s Default Logic [65], which allows reasoning with default assumptions.

� Moore’s Autoepistemic Logic [54], which allows reasoning with knowledge about

knowledge.

A classic example of non-monotonic reasoning is the following:

fly(X)←− bird(X),¬penguin(X)

bird(X)←− penguin(X)

bird(tweety)←−
penguin(skippy)←−

It seems obvious that the “intended” model of the above logic program is:

{bird(tweety), fly(tweety), penguin(skippy), bird(skippy)}

Two approaches to defining such a model are to stratify programs and to use stable models.

Stratified programs

One approach to defining a standard model for general logic programs is to restrict our

attention to those programs that can be stratified.

A predicate symbol F is used by a rule if it appears within a literal in the body of a

rule. If all the literals that it appears within are positive then the use is positive, otherwise

the use is negative. A predicate symbol F is defined by a rule if it appears within the

head of that rule.

A general logic program P is stratified if it can be partitioned P1 ∪ · · · ∪ Pk = P so

that, for every predicate symbol F , if F is defined in Pi and used in Pj then i ≤ j, and

additionally i < j if the use is negative.

36 Chapter 2 Technical background

Any such stratification gives the standard model4 of P as Mk below:

M1 = The least fixed point of TP1

Mi = The least fixed point of λI .
(
TPi (I) tMi−1

)

Stable models

Stable models (Gelfond et al. [28]) give a more general definition of standard model using

reducts. For any general logic program P and Herbrand interpretation I , the reduct of P

with respect to I is a logic program defined as:

RP(I) = { A←− red I (L1), . . . , red I (Lk) | (A←− L1, . . . ,Lk) ∈ ground(P) }

where red I (L) =

 L if L is positive

Î (L) if L is negative

where Î is the natural extension of I to ground literals.

A stable model of a program P is any interpretation I that is the least model of its

own reduct RP(I).

Unlike the standard models of the previous sections, a general logic program may have

multiple stable models or none. For example, both {p} and {q} are stable models of the

general logic program having two rules: (p←− ¬q) and (q ←− ¬p). A stratified program

has a unique stable model.

The stable model semantics for negation does not fit into the standard paradigm

of logic programming. Traditional logic programming hopes to assign to each program

a single “intended” model, whereas stable model semantics assigns to each program a

(possibly empty) set of models. However, the stable model semantics can be used for a

different logic programming paradigm: answer set programming. Answer set programming

treats logic programs as a system of constraints and computes the stable models as the

solutions to those constraints. Note that finding all stable models needs a backtracking

search rather than the traditional bottom-up model calculation in Datalog.

2.5.3 Implication algebra programming

In Chapter 6 we use logic programs to represent stack-size constraints using a multi-

valued logic. To represent operations like addition on these sizes it is convenient to allow

operators other than negation in literals—a form of implication algebra (due to Damasio

et al. [18])—to give implication programs.

4Apt et al. [3] show that this standard model does not depend on which stratification of P is used.

2.5 Logic programming 37

Literals are now terms of an algebra A. A positive literal is one where the formula

corresponds to a function that is monotonic (order preserving) in the atoms that it con-

tains. Similarly, negative literals correspond to functions that are anti-monotonic (order

reversing) in the atoms they contain. We do not consider operators which are neither

negative nor positive (such as subtraction).

Implication programs and their models

An implication program P is a set of rules of the form A ←− L1, . . . ,Lk where A is an

atom, and L1, . . . ,Lk are positive literals.

Given an implication program P , we extend the notion of Herbrand base HBP from

the set of atoms to the set, HLP , of all ground literals that can be formed from the

atoms in HBP . A Herbrand interpretation for an implication program P is a mapping

I : HBP → L which extends to a valuation function Î : HLP → L.

Given rule r = (A ←− L1, . . . ,Lk), now a Herbrand interpretation I respects rule r,

written I |= r, if Î (L1) u · · · u Î (Lk) v I (A). Definitions of Herbrand model, immediate

consequence operator etc. are unchanged.

General implication programs and their models

General implication programs extend implication programs by also allowing negative liter-

als. The concepts of stratified programs and stable models defined in Section 2.5.2 apply

to general implication programs exactly as they do to general logic programs.

Chapter 3

EMCC: An extensible C compiler

This chapter describes the design and implementation of the EMCC compiler, a C com-

piler which supports extensions to its front- and middle-ends.

Most previous work on extensibility in compilers has focused on extensions to the front-

end of the compiler. Extensions are added to the AST of the language, this extended AST

is then lowered into the original AST in the front-end before being passed on to the middle-

end. This means that all analyses and optimisations used to implement the extension

must be carried out on the AST. However, ASTs are not a suitable representation for

many optimisations. They contain syntactic artefacts which can add a lot of unnecessary

complexity to an analysis’ implementation.

The problem with supporting language extensions exclusively through extensions to

the front-end is that the analyses (and optimisations) applied to the extension are com-

pletely separate from those applied to the base language. This means that if an optimisa-

tion of the extension requires an existing analysis of the base language, that analysis must

be reimplemented so that it can be applied in the front-end. More importantly, it means

that there is no “semantic integration” of the extension with the rest of the language.

The analyses and optimisations of the base language remain completely oblivious to the

extension and any semantic information it may contain. If our extensions are to have

parity with the rest of the language, we must be able to extend the middle-end of the

compiler.

Extending the middle-end of a compiler, requires us to be able to extend the compiler’s

Intermediate Languages (ILs). In traditional compilers this is difficult because the front-

ends, back-ends and optimisations of the compiler are all implemented directly in terms

of the ILs. There is no abstraction of the ILs to allow a front-end to target multiple ILs,

or allow an optimisation to operate on any IL that provides the right operations.

Difficulty in extending the middle-end can cause people to try to encode their ex-

tensions within the existing IL inappropriately. For example, for years libraries like

PThreads[57] were used to add atomic operations to C/C++. Rather than add atomic

39

40 Chapter 3 EMCC: An extensible C compiler

constructs to the IL, this encoded the atomic operations within the existing IL in the form

of function calls. The safety of these libraries relied on assumptions about how optimisa-

tions would treat calls to unknown procedures. However, these assumptions turned out

to be incorrect within GCC resulting in bugs in code using those libraries, as discussed

by Boehm[8].

Difficulty in extending the middle-end can also prevent people using efficient tech-

niques not supported within the existing IL. For example, language designers targeting

the LLVM framework have requested improved support for precise garbage collection in

LLVM, notably the Rust project[55] from Mozilla. While the LLVM IL has support for

precise garbage collection, it forces all garbage collection roots to be spilled from registers

when a collection may occur. This greatly reduces the efficiency of languages using such

collectors. Adding support for GC roots in registers would require additional instructions

in the IL and additional restrictions about how other instructions could be manipulated.

Adding these features would require all optimisations in LLVM to be checked to ensure

these restrictions were obeyed. The amount of work required to make these changes has

meant that Rust has continued to use a much less efficient conservative garbage collector,

despite wanting to change to a precise collector for multiple years.

The rest of this chapter discusses the design and implementation of the EMCC com-

piler, a C compiler which supports extensions to its front- and middle-ends. Section 3.1

discusses related work. Section 3.2 gives a general overview of the design of EMCC. Sec-

tion 3.3 describes some design patterns to support extensibility in EMCC. Section 3.4

describes how the design of EMCC allows the front-end to be extended. Section 3.5

describes how the design of EMCC allows the middle-end to be extended.

3.1 Related Work

In this section we first discuss the extensibility of mainstream compilers, and then discuss

related work on designing extensible compilers and languages.

3.1.1 Mainstream compilers

The two most widely used open source compilers are GCC [68] and LLVM [45].

GCC

GCC has a traditional compiler design, with front-ends for multiple languages all targeting

an Intermediate Language, called GIMPLE. This IL is then optimised before being lowered

to another IL, called RTL. The RTL representation is then passed to target-specific code-

generators. Each instruction in RTL carries with it the corresponding target-specific

3.1 Related Work 41

assembly instruction, so the lowering from GIMPLE to RTL is parameterised by the

target, while the RTL optimisations are still independent of the target.

The front-ends of GCC have hand-written lexers and parsers, and are not particularly

easy to extend. However, for C and C++ GCC has its own language extension (since

adopted by many other compilers) called attributes. These allow arbitrary expressions to

be attached at various places in the AST, in order to pass additional information to the

compiler. For example, the deprecated attribute can be attached to function definitions:

int o l d f n () a t t r i b u t e ((deprecated)) ;

and the compiler will emit a warning if the function is used. GCC propagates these

attributes through to the GIMPLE IL, so they can be used by optimisations.

There is support for adding new kinds of simple expression to GIMPLE. However other

changes are much more difficult, requiring changes to all GIMPLE optimisations as well as

the target-specific lowering from GIMPLE to RTL. Similarly, extensions to RTL require

changes to all RTL optimisations. Adding new optimisations based on either GIMPLE

to RTL is well supported: there is even a plugin mechanism.

LLVM

LLVM is framework consisting of an IL and a collection of optimisations and back-ends

for that IL. It was designed to support link-time optimisation and JIT compilation by

using its IL as a form of byte code.

Clang is a C/C++ front-end that targets the LLVM IL and is closely associated with

the LLVM project. It has a hand-written lexer and parser, and its semantic analysis is

tightly coupled with its parser. This makes it very difficult to extend the parser. However,

like GCC, it has good support for creating new attributes, which can be used for language

extensions.

LLVM is designed to make it easy for people to build new compilers and optimisations,

by standardising on a single simple IL. However, this makes it very difficult to extend the

IL. Not only the optimisations in LLVM, but also all the code written by third-parties

using LLVM, are based directly on the IL. This means that changes to the IL cause

incompatibilities with code based on previous versions of LLVM, and are avoided if at

all possible. To mitigate this, there is some support for added new intrinsic functions by

providing a basic description of their effects, but this system is very limited.

3.1.2 Extensible compilers

There is much literature on creating extensible compilers, especially to support extension

of the compiler by its users. This work is mostly focused on extending the front-end of

compilers by extending the syntactic and semantic analysis phases of the compiler.

42 Chapter 3 EMCC: An extensible C compiler

Expr1 → Expr2 + Term [Expr1.value = Expr2.value + Term.value]

Expr→ Term [Expr.value = Term.value]

Term1 → Term2 ∗ Factor [Term1.value = Term2.value ∗ Factor.value]

Term→ Factor [Term.value = Factor.value]

Factor→ ”(”Expr”)” [Factor.value = Expr.value]

Factor→ integer [Factor.value = strToInt(integer.str)]

Figure 3.1: A simple Attribute Grammar

Extensible syntax

There has been a lot of work on allowing the syntax of languages to be extended. This has

mostly focused on various forms of extensible grammar. Examples include the extensible

PEG grammar in Xtc [31], the extensible LL grammar of Camlp4 [20], the extensible

GLR grammar in Xoc [17] and the extensible LALR grammar in Polyglot [59].

Extensible semantic analysis and translation

Most work on extending the semantic analyses of a compiler is related to the notion of

Attribute Grammars [41]. Attribute grammars define values (called attributes) associated

with nodes on a tree – for compilers the AST. These attributes are defined in terms of

production rules which describe how the attribute is computed in terms of other attributes.

For example, expression nodes may have a type attribute, and the type attribute of a

addition expression (e.g. x + y) might be int or float depending on the type attributes

of its operands. Attributes, like type, which are computed and passed up the tree are

called synthesised attributes, whilst attributes that are passed down the tree (for example

the typing environment) are called inherited attributes. A simple example of an attribute

grammar is shown in Fig. 3.1.

A good example of a system using attribute grammars is the JustAdd framework [32].

JustAdd is a framework for creating compilers with extensible front-ends. It provides

a library for defining attribute grammars over an AST and for creating AST rewriters

based on those attributes. The semantic analysis of the compiler can be defined using these

grammars, and extensions to that analysis can be made by adding additional attributes

to the grammar. The AST rewriters can be then used to remove the extension’s nodes

from the AST before it is passed to the middle-end.

Other systems have used notions very similar to attribute grammars. The Xoc [17]

3.1 Related Work 43

compiler uses lazy attributes which are attributes attached to AST nodes which are com-

puted on demand. The Polyglot [59] compiler treats AST nodes as extensible objects and

creates fields to represent the semantic analyses of the compiler. These fields are very

similar to attributes, and creating these objects using mixin inheritance is similar to how

extensions are added to an attribute grammar.

Another interesting example is MPS [36]. MPS is a structured editor that supports

creating language extensions using a system related to attribute grammars. Structured

editors work directly on the AST of a language, rather than editing text and then parsing

it. MPS allows users to define language extensions with a system similar to an attribute

grammar specification, and these extensions can then be used within the editor. This

system avoids the need to fully support extensible syntax.

Extensible middle-ends

One compiler which has support for extending its middle-end is the CoSy [2] compiler

framework. Optimisations and analyses in CoSy are performed by engines. These engines

must declare how they are going to access the IL. For example, they must declare which

kinds of nodes they may write to. This system was designed in order to allow these

engines to be safely run in parallel, or even speculatively, but it also makes it much easier

to extend the IL since you can easily determine which optimisations might be affected by

the change.

Another example is the SUIF [73] compiler. SUIF allows new IL nodes to be created

by subclassing from existing nodes. There are also abstract node classes which create a

predefined hierarchy of abstractions, allowing some analyses and optimisations to work

on ILs including new nodes.

3.1.3 Extensible languages

There has been a large body of work around the creation of extensible languages. These

are languages which allow users to add new features to them. Zingaro [77] gives a good

summary of some of this work. The mechanisms for extensibility are often macro systems,

for example hygienic macros in Lisp [42] or the macro system in Scala [11]. Another exam-

ple, is the Delite framework [10], built on top of the Scala macro system, which supports

creating language extensions to improve performance using heterogeneous parallelism, in-

cluding extensible transformations on an “IL” which is then translated back into Scala.

XLR [19] is an extensible language that allows users to specify AST rewrite rules to imple-

ment new features. The Seed7 [53] language supports extensibility through an extensible

syntax and call-by-name functions.

44 Chapter 3 EMCC: An extensible C compiler

3.2 Design overview

EMCC is implemented using the OCaml programming language (see Section 2.1). OCaml’s

excellent support for complex data structures makes it ideal for implementing a compiler,

and its module and object systems are both very useful for allowing extensibility.

EMCC is really a library for creating compilers combined with a “driver” program.

The library can either be used directly to create a new compiler that includes some

language extensions, or the extensions can be wrapped into a plug-in and executed by the

driver program.

Fig. 3.2 shows the main components of the EMCC library.

Cabs contains a definition of our Abstract Syntax Tree. This is a set of mutually recursive

datatypes which describe the syntax of preprocessed C programs.

Lexer is a lexer which converts a preprocessed C source file into a stream of tokens. It

is implemented using the ocamllex tool which comes with the OCaml distribution.

ocamllex is a traditional lexer generator, based on Lex [49], which generates a lexer

based on a specification made up of regular expressions.

Parser is a parser which converts a stream of tokens from Lexer into the AST defined

by Cabs. It is implemented using the Menhir [63] parser generator. Menhir is

a traditional LR parser generator, like Yacc [38] or Bison [22], which generates a

parser based on a context-free grammar.

Translate converts the AST defined in Cabs into an IL. This translation is built using a

functor that accepts a module describing how to create a given IL (see Section 3.4.2).

The translation also checks the C program for errors.

Generate provides the main back-end for EMCC; it converts an IL back into the AST

defined in Cabs so that it can be printed as C source code. This source code can then

be run through a standard C compiler to produce the final output. Like Translate,

this conversion is defined as a functor that accepts a module describing how a given

IL can be lowered to the Cabs AST for output.

IL defines some basic facilities for creating and manipulating ILs.

CIL defines a default IL including a module that describes how this IL can be created

using Translate and a module that describes how this IL can be lowered using

Generate.

Properties provides support for properties (see Section 3.3.1).

3.2 Design overview 45

Lexer

Lexer for use with

Parser

Parser

Parser that creates

the Cabs AST

Cabs

Defines an AST

and utilities for its

manipulation

Translate

Provides an ex-

tensible transla-

tion from the Cabs

AST

Front-End

IL

Provides utilities

for creating ILs

CIL

The default IL

Properties

Supports anno-

tating ILs with

additional data

Middle-End

Generate

Provides an exten-

sible translation to

the Cabs AST

Printing

Provides support

for pretty printing

ILs and the Cabs

AST

Back-End

Figure 3.2: Components of EMCC

46 Chapter 3 EMCC: An extensible C compiler

type ' a p r o p c l a s s

type property

val de f inePropClas s : un i t −> ' a p r o p c l a s s

val c reateProper ty : ' a p r o p c l a s s −> ' a −> property

val matchProperty : ' a p r o p c l a s s −> property −> ' a opt ion

val f indProper ty : ' a p r o p c l a s s −> property l i s t −> ' a

val addProperty : property −> property l i s t −> property l i s t

val removeProperty : ' a p r o p c l a s s −> property l i s t −> property l i s t

Figure 3.3: The signature of the Properties module

We developed EMCC starting from the C Intermediate Language [56] project, which

is a C front-end. Most of the modules have been completely rewritten since then, but the

Lexer, Parser and Cabs modules have remained mostly unchanged.

Note that the current version of EMCC only supports a back-end that generates low-

level C code. This means that extensions to the back-end are really made by extending

the back-end of another C compiler and then using that to compile the output C code.

This design should not be confused with preprocessors which transform extensions down

to their base language. We use C as a portable assembly language and expect all machine-

independent optimisations to be performed by our compiler rather than during the final

translation of the output C. We intend to support more traditional back-ends in the

future.

3.3 Patterns for extensibility

We use a number of design patterns to support extensibility in EMCC. This section

describes two of these patterns: properties and visitors.

3.3.1 Properties

Sometimes we only need to add a small extension to an existing IL. For these cases EMCC

supports properties. Properties are an extensible sum type that allows nodes of the ILs to

be tagged with arbitrarily typed data. The signature of the Properties module is shown

in Fig. 3.3.

Properties can be used to attach additional data to an existing data type. Fig. 3.4

shows a simple example which uses properties to add an addr taken field to the variable

data type.

In OCaml properties can be implemented using hash tables or extensible variant types,

which were added to OCaml in version 4.02 by the author.

3.3 Patterns for extensibility 47

open P r o p e r t i e s

type v a r i a b l e =

{ · · ·
mutable p r o p e r t i e s : property l i s t ;

· · · }

l et addr taken : bool p r o p c l a s s = de f inePropClas s ()

l et s e t addr taken v b =

l et props = removeProperty addr taken v . p r o p e r t i e s in

let p = createProper ty addr taken b in

let props = addProperty p props in

v . p r o p e r t i e s <− props

l et get addr taken v =

f indProper ty addr taken v . p r o p e r t i e s

Figure 3.4: An example using properties

Properties are basically an instance of an extensible algebraic datatype, which have

been proposed before as a useful tool for implementing extensible compilers by Zeneger

et al. [75].

3.3.2 Visitors

Many analyses and optimisations involve traversing a tree (or graph) of IL nodes. For

example, marking all the local variables used in a function requires us to traverse the

IL nodes which represent the function to find all the variable usages. For extensibility,

we would to express these optimisations in a way that does not rely on the underlying

structure of the nodes. We can use visitors to make this easier. A visitor is a class that

encodes the recursive tree structure of a set of data types—in our case IL nodes. The

class contains a method for each of the data types will recursively call the other methods

on all of its child nodes.

Fig. 3.5 shows an example of a visitor class for a small set of recursive data types.

Fig. 3.6 uses the visitor from Fig. 3.5 to create a function that counts the number of minus

operations in an expression. This function is implemented by creating a class that inherits

from visitor and overrides its op method to increment a count. Note how the new op

method calls the inherited op method (using the special super variable) to recursively

visit its child nodes.

48 Chapter 3 EMCC: An extensible C compiler

type var = s t r i n g

and expr =

Const of i n t

| Var of var

| Op of op

and op =

Plus of expr * expr

| Minus of expr * expr

class v i s i t o r = object (s e l f)

method var v = ()

method expr = function

Const −> ()

| Var v −> s e l f#var v

| Op o −> s e l f#op o

method op = function

Plus (e1 , e2) −> s e l f#expr e1 ; s e l f#expr e2

| Minus (e1 , e2) −> s e l f#expr e1 ; s e l f#expr e2

end

Figure 3.5: An example of a visitor class

class count minuses = object

val mutable count = 0

method count = count

inherit v i s i t o r as super

method op o =

super#op o ;

match o with

Minus −> count <− count + 1

| −> ()

end

let minuses e =

l et v = new count minuses in

v#expr e ;

v#count

Figure 3.6: An example using the visitor from Fig. 3.5

3.4 Extensible front-end 49

3.4 Extensible front-end

3.4.1 Extensible syntax

Extensible front-ends must include some method of extending the syntax of the language.

However, extending grammars is complex and the extensions do not compose easily. In-

stead EMCC uses a more flexible version of the attributes, pragmas and built-in functions

used by GCC and LLVM to support syntax extensions. EMCC treats these constructs

as quotations. Quotations are syntactic constructs which are not parsed with the rest of

the source code. Quotations are treated normally by the lexer, however the parser simply

leaves them as sequences of lexical tokens. This allows them to be handled by extensions

during the translation phase.

EMCC supports three types of quotation:

Pragmas are compiler directives of the form:

#pragma name arguments

A pragma’s arguments are terminated by a newline. Pragmas can appear anywhere

in a program where a statement or declaration would be allowed. Within a function

body a pragma is attached to the statement that it precedes.

Attributes are attached to functions, variables and types during declarations. For ex-

ample:

extern void f oobar (void) a t t r i b u t e ((s e c t i o n (”bar”))) ;

An attribute’s arguments must have balanced parentheses and quotation marks.

They can appear at any point within a declaration, and various rules determine

where in the AST they are attached.

Built-in Functions look like ordinary functions whose names start with builtin .

For example:

b u i l t i n t y p e s c o m p a t i b l e p (typeo f (x) , long double)

A built-in function’s arguments must have balanced parentheses and quotation

marks. They are treated just like any other kind of expression.

During translation (in the Translate module), the quotations’ bodies can be parsed

using simple stream parsers. OCaml provides good support for creating these and some

useful ones (e.g. one that parses the same expression syntax as Parser) are included in

EMCC.

50 Chapter 3 EMCC: An extensible C compiler

3.4.2 Extensible semantic analysis and translation

The semantic analysis of the AST and its translation into an IL are handled in EMCC by

the Translate module. This analysis and translation is implemented using a mechanism

similar to attribute grammars. The Translate module can be thought of as two compo-

nents: a set of recursive functions which apply a grammar to the AST, and a grammar

which implements the semantic analysis required to check the correctness of a C program.

The translation is used by creating a grammar which inherits from the one in Translate

and using the functions in Translate to apply it to an AST. The representation of an

AST node in the target IL is represented as an attribute in these grammars.

These grammars are implemented as a set of functions which take an environment

object and objects representing the node’s children and produce an object representing

the node, and possibly a modified environment object. The inherited attributes of the

grammar are represented by the methods of the environment objects, whilst the synthe-

sised attributes are represented by the methods of the node objects. Note that, in these

grammars the passing around of the environment object is hard-coded so there are limits

to how inherited attributes can be used.

These grammars are wrapped in a module and passed to a functor in the Translate

module which generates the functions that will apply the grammar to an AST. The

semantic analysis grammar in Translate is actually a set of classes, rather than a set of

functions, so that they can be inherited by other grammars.

There are two kinds of extensions to this translation that we wish to support: new

AST nodes and new attributes. Fig. 3.7 shows part of a simple language extension to add

a built-in function that evaluates to my name. It also adds a new attribute on expressions

is name, which is true for the expression node created for the new name built-in.

This example includes an is name method in its expression class, which inherits from

the expression class in the Translate.Grammar module. It also defines a name builtin

class which inherits from the string literal class specialised by my name and overriding

its is name method to be true. The extension would also need to register the name of

the built-in function and register name builtin as the function for handling it.

3.5 Extensible middle-end

3.5.1 Modular interfaces

In order to allow the compiler’s middle-end to be extended, it is important to have a

modular design with clear interfaces between the middle-end and each of the front-end,

back-end and optimisations. These interfaces must also themselves be extensible, to allow

extensions to the middle-end to be consumed by back-ends and produced by front-ends.

3.5 Extensible middle-end 51

class type expr =

object

inherit Trans late . Grammar . exp r e s s i on

· · ·
method i s name : bool

end

class s t r i n g l i t e r a l (env : environment) (s : s t r i n g) : expr =

object

inherit Trans late . Grammar . s t r i n g l i t e r a l env

· · ·
method i s name = fa l se

end

class name bui l t in (env : environment) : expr =

object

inherit s t r i n g l i t e r a l env ”Leo White”

method i s name = true

end

let name bui l t in e = new name bui l t in env

Figure 3.7: Example of a language extension

52 Chapter 3 EMCC: An extensible C compiler

In EMCC we achieve this modularity by using OCaml functors throughout the design.

The front-end, back-end and all analyses and optimisations are implemented as functors.

The input to these functors describes what must be exposed by a middle-end in order to

use these components. This allows the middle-end to be anything that can provide the

required interfaces for translation and generation.

The extensibility in these interfaces is achieved using techniques like property lists and

visitors (see Section 3.3). Fig. 3.8 shows a simple analysis which uses a visitor class to

determine whether a local variable has its address referenced.

The ADDRESSABLE signature defines the interface required by the analysis. The AddressTaken

implements the analysis parameterised by a module M which implements ADDRESSABLE.

Note that the methods of the visitor class must be private in order to be used with

these functors because non-private methods cannot be ignored. The visitor class of the

AddressTaken module overrides the expr method with one which checks if an expression

takes the address of a given variable. Then the isAddressTaken function instantiates this

class and uses its func method to check all the expressions within a function definition.

3.5.2 CIL: The default IL

The library also provides a default IL called CIL. CIL resembles a very simple subset of

C, and is derived from the C Intermediate Language [56]1.

CIL is actually made up of two separate ILs: the expression language and the control-

flow language. The expression language includes side-effect-free expressions, variables

and types. The control-flow language is used to describe function definitions, including

statements that change the state of variables. This division makes it easy to change the

control flow representation without having to change the expression representation, and

vice-versa.

We provide two versions of the control-flow language: one that represents function

bodies as a control-flow graph, and one that represents them as a tree of simple control

structures.

The CIL expression language has two related type systems. Each expression and

variable has both a type which describes which operations are valid on that expression or

variable, and a representation which describes how the value of that expression or variable

is represented in memory.

The types are used to ensure that invalid expressions cannot be created. This is

done by encoding the types of the IL within OCaml’s own type system using Generalised

Algebraic Datatypes (GADTs).

Fig. 3.9 shows an example of how GADTs are used in CIL’s definition. This example

illustrates how the type parameter of the expr type is used to ensure that the PlusII

1Not to be confused with Microsoft’s Common Intermediate Language used in their .NET framework

3.5 Extensible middle-end 53

module type ADDRESSABLE = sig

type func

type expr

type l v a l

type v a r i a b l e

val i sAddres s : expr −> bool

val getAddress : expr −> l v a l

val i s V a r i a b l e : l v a l −> bool

val ge tVar i ab l e : l v a l −> v a r i a b l e

val equa lVar iab l e : v a r i a b l e −> v a r i a b l e −> bool

class v i s i t o r : object

method private expr : expr −> uni t

method private func : func −> uni t

end

end

module AddressTaken (M : ADDRESSABLE) = struct

class v i s i t o r (v : M. v a r i a b l e) : object

method r e s u l t : bool

method func : M. func −> uni t

end = object

inherit M. v i s i t o r

val mutable r e s u l t = fa l se

method r e s u l t = r e s u l t

method ! private expr (e : M. expr) =

i f (M. i sAddres s e) then

let l v = M. getAddress e in

i f (M. i s V a r i a b l e l v) then

let v′ = M. getVar iab l e lv in

i f (M. equa lVar iab l e v v′) then

r e s u l t <− true

end

let isAddressTaken (f : M. func) (v : M. v a r i a b l e) =

l et v i s = new v i s i t o r v in

v i s#func f ;

v i s#r e s u l t

end

Figure 3.8: An example of a modular analysis

54 Chapter 3 EMCC: An extensible C compiler

type typ = [`Integer | `Float | · · ·]

type 'ty constant =

| CInt : int l i t −> [< typ > `Integer] constant

| CFloat : f l oat l i t −> [< typ > `Float] constant
.
.
.

type 'ty expr =
.
.
.

| Const : 'ty constant −> 'ty expr
.
.
.

| BinOp : ('op1, 'op2, ' ty) binop * 'op1 expr * 'op2 expr −> 'ty expr
.
.
.

type ('op1, 'op2, ' result) binop =
.
.
.

| PlusII : ([` Integer] , [`Integer] , [< typ > `Integer]) binop
.
.
.

Figure 3.9: An excerpt from CIL using GADTs

(addition of two integers) binary operation is only applied to expressions representing

integers.

The representations are used when generating code from the IL. Representations are

also parametrised by the types that they can be used to represent. For instance, it is not

possible to create an integer expression with a representation that is used for representing

structures.

Rather than implement the interface used by the Translate module directly, CIL

provides a functor for creating such implementations. The argument to this functor is a

MachineDescription module which describes how C’s types should be represented and

other machine-dependent parts of the C standard. This allows EMCC to target multiple

architectures.

3.6 Conclusion

In this chapter we have described the design and implementation of the EMCC compiler,

a C compiler which supports extensions to its front- and middle-ends. This compiler has

been successfully implemented in OCaml and is complete enough to compile large C code

bases (including the C standard library).

3.6 Conclusion 55

EMCC has an extensible front-end that takes advantage of OCaml’s class system to

implement a system based on Attribute Grammars. These grammars are used to allow

the semantic analysis phase of the front-end to be extended. EMCC does not have an

extensible parser, but supports syntax extensions by allowing new attributes, pragmas

and built-in functions to be defined.

EMCC has an extensible middle-end which abstracts the details of the IL using the

OCaml module system. In particular, the front-end, the back-end and the analyses and

transformations of the middle-end are implemented as functors. Design patterns such

as properties and visitors are used to make implementing these functors easier. EMCC

includes a default IL which uses GADTs to ensure that it is correctly typed.

This compiler has been used to create an OpenMP implementation, which is described

in Chapter 5.

Chapter 4

Run-time library

Not every aspect of a high-level language is implemented in the machine code generated by

the compiler’s back-end. Some features are typically implemented with the help of a run-

time library. These run-time libraries implement higher-level features than those provided

by the architecture’s machine instructions. A classic example is garbage collection. Like

compilers, these run-time libraries translate an input language (the library’s API) into an

output language (instructions executed on the architecture). As with compilers, a single

run-time library may be capable of translating multiple input languages (different APIs

targeted by different compiler back-ends) into multiple output languages (instructions for

different architectures).

In order for run-time libraries to support new architectures and new language features

they must be extensible. This extensibility must run through the whole library. Archi-

tectures with similar high-level features may also perform very differently with different

low-level algorithms and data structures. To support as many architectures as possible, it

is important that the library can be customised to use different instructions, algorithms

and data structures depending on the architecture.

In this chapter we outline the design and implementation of such an extensible run-

time library. In Chapter 5 we implement OpenMP with EMCC, and the run-time library

that we implement in this chapter is focused on providing the functionality required by

that implementation. In Chapter 7 we extend our OpenMP implementation to support

heterogeneous architectures, using the Cell Broadband Engine [14] as our example. For

this reason, it is important that our library can target both the x86 64 architecture used

in Chapter 5 and the Cell architecture used in Chapter 7. This provides us with a good

example of the need for extensibility in run-time libraries.

Section 4.1 describes how we use the library’s build system to increase its modularity,

and thus increase its extensibility. Section 4.2 gives an overview of the data structures and

algorithms provided by our run-time library. Section 4.3 describes how we abstract differ-

ent kinds of atomic operation, so that the implementations of concurrent data structures

57

58 Chapter 4 Run-time library

and algorithms described in Section 4.2 can run on a large variety of different architec-

tures.

4.1 Modular build system

A key aspect of extensibility is modularity. It allows us to easily change which implemen-

tation of a component is used for a particular instance of our library. Since performance

is important for a run-time library, any such customisation must occur at compile time.

The simplest way to change which implementation of a component is used at compile-

time is through the build system. This means providing a build script that chooses which

components are required, and which implementations of these components should be used.

We can check for errors in these build scripts by having each component implementa-

tion provide a description of the interface that it implements. In our case we describe these

interfaces as a list of the symbols that it requires and the symbols that it defines. Using

these lists we can ensure that a build script is not missing a component, or choosing an

implementation that does not correspond to the desired component. This can be thought

of as a kind of poor man’s module system, where the modules are groups of header files

and source files which provide definitions of particular symbols. If two “modules” provide

the same set of symbols1 then they can be thought of as having the same “module type”.

In addition to choosing which components to use in an instance of our library, we also

wish to allow one component to be parametrised in terms of another. For example, we

may want one tree data structure using lock-based lists and another using lock-free lists,

so that the tree data structure is parameterised by the list implementation it uses.

We can implement this using C macros. By always referring to a component in the C

code through a C macro, the build system can change which implementation is used by

changing the definition of the C macro. To support this, a component implementation

must provide a list of macros which need to be defined, then uses of the implementation

within the build script must include a list of component implementations to be assigned

to these macros. These parameterised components are analogous to a functor in a module

system.

We implemented a simple build system with this design using a simple shell script,

which could easily be integrated into a configuration script. By specifying a different build

script for different architectures, we are able to customise our library at compile-time to

use the most appropriate collection of data-structures and algorithms for that particular

architecture.

1We do not check the actual C types of these symbols, leaving this as a problem for the C compiler.

4.2 Library overview 59

4.2 Library overview

This section gives an overview of the facilities provided by our run-time library.

4.2.1 Thread teams

The library provides facilities for creating teams of threads. These threads could be imple-

mented by any mechanism that can support a full C execution context (user-level threads,

operating system threads, processes, etc.). All the threads in a team start executing the

same function, and each is given an index within that team so that different work can

be assigned to different threads. The thread which creates the team also executes the

function, and when all the threads have finished it returns from the thread team creation

function and continues its execution.

To allow the threads to communicate with each other, each thread is allocated a block

of shared memory. Threads can look-up the address of the shared memory of another

thread in order to communicate with it.

4.2.2 Memory allocator

The data structures and algorithms provided by the library require dynamically allocated

shared memory. This is provided in the form of a simple memory allocator. It only

allocates cache-aligned blocks of a single size (intended to be the cache-line size). These

blocks are accessed using the atomic operations described in Section 4.3. By restricting

data to the size of a single cache-line the library encourages algorithms which have good

locality and make this locality explicit. It also greatly simplifies the design of the allocator.

Each thread in a team allocates blocks from its own pool. This pool consists of a

linked list of previously allocated nodes and a page of fresh memory for allocating new

nodes if the list is empty. Each list only has access to its own free list, so that blocks

can be allocated without synchronisation. However, each thread also has a public free

list whose items are moved onto its private free list when the private list is empty. Any

thread may deallocate a memory block, however it must be deallocated onto the free lists

of the thread which created it.

4.2.3 Concurrency primitives

The library provides various concurrency primitives that are used to implement OpenMP.

These include mutexes, barriers and atomic counters. Some of these primitives are exposed

by OpenMP directly as library functions.

60 Chapter 4 Run-time library

4.2.4 Concurrent data structures

Implementing OpenMP requires a variety of concurrent data structures. The library pro-

vides lock-free implementations of all these data structures based on the atomic operations

described in Section 4.3.

The most important data structure for implementing OpenMP is a single-producer

multiple-consumer dequeue. This is based on the design of Hendler et al. [33]. It allows

one thread to add and remove items from one end of the dequeue, like a stack, while

allowing multiple threads to remove items from the other end. By creating one such

dequeue per-thread, threads can fetch their own most recently created task for execution,

or steal the least recently created task from another thread. Similar designs of a single-

producer multiple-consumer stack and a single-producer multiple-consumer queue are also

provided by the library.

The library also provides a tree data structure using reference-counted memory blocks

that form an upwardly linked tree. Each block in the tree contains a pointer to its parent,

and each such pointer is included in the reference count of the parent.

4.2.5 Worksharing primitives

The library uses the data structures and concurrency primitives described above to provide

primitives for implementing OpenMP’s worksharing constructs. In particular, it provides

support for OpenMP’s for construct which dynamically divides the iterations of a loop

amongst the threads in a team.

4.2.6 Task primitives

The library also uses the data structures and concurrency primitives described above

to provide primitives for implementing OpenMP’s task-based parallelism as described

in Chapter 5. This includes maintaining per-thread task pools, support for calling the

continuations that represent suspended tasks, and control of of the C stack using the C

standard library’s setjmp and longjmp functions. Note that these primitives are specific

to the continuation-based approach used by our OpenMP implementation, they could not

be used as the run-time library targeted by other OpenMP implementations.

4.3 Atomics

The atomic instructions provided by a particular architecture can vary widely. We would

like to be able to abstract away these differences so that a single implementation of a

concurrent data structure can be used across all the different architectures supported by

the library.

4.3 Atomics 61

Operation Description

read An atomic load operation.

write An atomic store operation.

load linked A strong LL operation with acquire memory ordering.

store conditional A strong SC operation with release memory ordering.

compare and swap A CAS operation with both acquire and release memory ordering.

swap An swap operation with both acquire and release memory ordering.

fence Ensures all previous operations are visible to all threads.

Table 4.1: Some Atomic Operations

When choosing which atomic operations the library should provide, we wanted to be

able to support two common styles of instruction set, namely:

1. Those instruction sets, for instance x86 and PowerPC, whose atomic instructions

operate on a word at a time.

2. Those instruction sets, like the Synergistic Processing Element of the Cell Broad-

band Engine [14], whose atomic instructions operate on an entire cache line.

In order to support these two situations efficiently, we use a simple programming model

which has both a cache-based aspect and a word-based aspect. In this model atomic

operations are performed by first loading a cache line with the load cache statement,

then performing the operations themselves on offsets of that cache line. If the atomic

operations need to make changes to the cache line then the write cache aborted function

must be called after the operations have completed to check that they were successful. If

write cache aborted returns true then the operation was unsuccessful and no changes

have taken place.

Even though write cache aborted may indicate that none of the atomic operations

since the last load cache have completed, the operations on a cache line do not happen

all at the same time. An individual atomic operation may become visible to other threads

before write cache aborted has been called. Similarly, changes to the cache line by other

threads may become visible after load cache has returned.

A sample of the atomic operations provided by the library are detailed in Table. 4.1.

Using these atomic operations we are able to create lock-free implementations of many

useful data structures. As an example, a simple spin-lock is shown in Fig. 4.1.

When implementing this programming model using word-based atomic instructions

the load cache and write cache aborted operations become essentially no-ops. Simi-

larly, on an architecture with cache-line based atomic instructions operations like swap uint

are implemented by ordinary reads and writes.

62 Chapter 4 Run-time library

void acquireLock (cache addr lock)

{
uint o ld ;

do

{
l oad cache (l ock) ;

o ld = swap uint (SPIN LOCK INDEX, LOCKED) ;

} while ((o ld == LOCKED) | | wr i t e cache abo r t ed ()) ;

}

void r e l ea s eLock (cache addr lock)

{
do

{
l oad cache (l ock) ;

w r i t e u i n t (SPIN LOCK INDEX, UNLOCKED) ;

} while (wr i t e cache abo r t ed ()) ;

}

Figure 4.1: A simple spin-lock

The flexibility of this approach allows this programming model to also be implemented

using per-cache-line locks, by implementing load cache as an acquire operation and

write cache aborted as a release operation. This gives us a fine-grained lock-based

implementation of our data-structures for free.

Note that some of the supported architectures implement the atomic operations us-

ing weak load-linked/store-conditional. This means that, although the design of our

data structures is lock-free, on these architectures the implementations are only really

obstruction-free. Similarly, an architecture using locks to implement its atomic primitives

would produce data structures that were not non-blocking.

The emphasis on cache lines in our atomic model encourages a focus on reducing the

number of cache lines accessed and prevents false sharing. This can help improve the

locality of our algorithms, which in turn improves their performance.

The cache-line aspect of our model is very similar to Software Transactional Mem-

ory (STM) [66], with load cache similar to the start of a transaction and write cache aborted

similar to a commit operation. However, our model does not require transactions that

consist entirely of reads to perform a commit operation. This means that it would be

difficult to implement our model directly using STM.

4.4 Conclusion 63

4.4 Conclusion

In order for run-time libraries to support new architectures and new language features

they must be extensible. In this chapter we have described the design and implementation

of an extensible run-time library to support our OpenMP implementation (see Chapter 5).

We have described how our run-time library uses a modular build system to enable

component implementations to be selected at compile-time. It also supports components

parametrised by other components.

We have also outlined how our library abstracts the details of atomic operations on

a particular architecture. This enables our (lock-free) data structures to have a single

implementation which works on a wide variety of architectures. In particular, we support

the x86 64 architecture which we use for our initial OpenMP implementation in Chapter 5

and the Cell Broadband Engine architecture which we use for our heterogeneous extensions

to OpenMP in Chapter 7.

Chapter 5

Efficient implementation of OpenMP

This chapter describes our implementation of OpenMP(see Section 2.3) as an extension

in EMCC. We particularly focus on the implementation of task-based parallelism (see

Section 2.2), because previous implementations of OpenMP’s task system have struggled

to compete with the performance of other task-based systems like Cilk [62, 60].

Task-based parallelism in OpenMP is an interesting example of the need for extensible

compilers. OpenMP was originally designed for scientific applications on multi-processor

systems. It provided static parallelism which did not require complicated program trans-

formation, and could be implemented in the front-end of the compiler or with a simple

preprocessor. Then OpenMP 3.0 added support for task-based parallelism, as part of an

effort to evolve towards supporting more mainstream applications. However, implement-

ing task-based parallelism efficiently requires much more involved program transformation

than the simple static parallelism OpenMP originally supported. These transformations

are best implemented in the middle-end of the compiler, but current implementations of

OpenMP are still being implemented in the front-end of the compiler. This has prevented

their performance from competing with that of Cilk and other task-based programming

languages [60]. It should be said that, even with these less efficient implementations,

task-based parallelism can still dramatically improve the performance of some algorithms

in OpenMP [5].

Efficient implementation of task-based parallelism requires tasks to be as lightweight

as possible. The resources used by a set of tasks should scale linearly with the number

of live tasks. Lightweight tasks require an efficient representation of the current state

of a task. An important part of a task’s state is its task-local variables (analogous to

the local variables of a traditional procedural language). Existing implementations of

OpenMP handle task-local variables by allocating a stack for each task in the program.

However, giving each task its own stack is very inefficient. This inefficiency forces these

implementations to use load-based inlining (see Section 2.2), which can severely restrict

the parallelism of a program.

65

66 Chapter 5 Efficient implementation of OpenMP

On recent architectures with 64-bit address spaces and support for memory over-

commit, it may not seem that large amounts of unused space are a problem. However,

per-thread stacks produce both excessive and fragmented memory usage which can result

in many page and TLB misses, significantly damaging performance. Support for memory

overcommit is also controversial and not very portable, and it is common for architectures

to allow users to disable it.

Section 5.1 gives a theoretical demonstration that OpenMP tasks can be scheduled in

a space-efficient way without affecting time efficiency. It also shows that using per-thread

stacks is not space efficient, and is likely to be inefficient in common cases. Section 5.2 gives

an overview of how OpenMP is implemented efficiently using EMCC and our customis-

able run-time library. Section 5.3 contains experimental results for various benchmarks.

Related work is discussed in Section 5.4.

5.1 Efficiency of task-based computations

Both Cilk and OpenMP 3.0 are extensions to the C programming language that support

task-based parallelism.

Cilk places various restrictions on where tasks can be created and how tasks synchro-

nise with each other (e.g. a task cannot outlive its parent). These restrictions provide

certain guarantees about the behaviour of tasks in Cilk. Blumofe et al. [7] used these

guarantees to show that Cilk programs could be scheduled in a way that was guaranteed

to be space efficient, without affecting their time efficiency. This space guarantee, com-

bined with fast implementations of task creation and destruction, mean that Cilk never

has to resort to load-based inlining.

OpenMP’s support for task parallelism places fewer restrictions than Cilk on how tasks

may behave (e.g. OpenMP tasks can outlive their parents). OpenMP lacks the guaran-

tees about task behaviour that Blumofe et al. used to show that all Cilk programs can

be scheduled in a space-efficient way without affecting time efficiency. Without a guar-

antee of space efficiency, many current implementations of OpenMP allocate activation

frames from per-task stacks, and fall back on load-based inlining to ensure space efficiency.

These implementations have struggled to compete with the performance of Cilk [62, 60],

especially for benchmarks with fine-grained tasks.

In this section, we show that OpenMP tasks can be scheduled in a space-efficient way

without affecting time efficiency.

5.1.1 Execution model

Task-based parallel programming languages, such as OpenMP and Cilk, share a basic

underlying task-based computation model. This model consists of threads executing tasks.

5.1 Efficiency of task-based computations 67

Tasks are sequences of instructions to be executed by a thread. When a computation

begins there is a set of initial tasks to be executed. These tasks can in turn spawn more

tasks, creating a directed forest of tasks (which we call the task tree). A task can also

perform a sync operation, which prevents it from being executed until all of the tasks

that it has spawned have been finished.

We define a number of terms relating to the current state of a task. If some of a

task’s instructions have been executed then we say that the task has started. If all of

the instructions have been executed we say that the task has finished. If a task has

been spawned but has not yet been started we say that the task is waiting. If a thread

executes instructions from one task and then executes instructions from a different task,

even though the first task has not finished, we say that the first task has been suspended.

If the execution of a suspended task resumes on a different thread than the one that had

previously been executing it, we say that the task has migrated. If a thread is suspended

at a sync operation, and some of its child tasks have not yet finished, we say that the

task is blocked. We write ≺ for the tree relation between tasks formed by the spawn edges

(e.g. τ ≺ τ ′ means that τ ′ is descended from τ). If the completion of a task depends on

the completion of all its child tasks (i.e. every spawn is followed by a sync) then we say

that those tasks are nested.

In terms of the model of parallel computation described Section 2.4, a task-based

computation is a parallel computation that obeys some computation restrictions. The

computation must be partitioned into a set of tasks T , where each task τ is a directed

path n0, . . . , nk through the computation. Only three kinds of edges are permitted in a

task-based computation:

1. Continue edges – The edges within a task’s path

2. Spawn edges – The edges that represent spawns. They proceed from the parent task

into the first instruction n0 of its child.

3. Join edges – The edges that represent syncs. They proceed from the final instruc-

tions nk of all the child tasks to the sync instruction of the parent task.

We define the lifetime of a task τ with instructions n0, . . . , nk as:

lifetimeX (τ) = [ω−1(n0), ω
−1(nk)]

There are also two scheduling restrictions placed on scheduling algorithms in task-

based systems. First, since the computations are not known in advance, the scheduling

algorithms cannot rely on information about the “future” of a computation. Second, the

scheduling algorithm cannot use preemption, which means that a thread can only stall a

task at specific points in that task’s sequence of instructions. We call these points task

scheduling points.

68 Chapter 5 Efficient implementation of OpenMP

5.1.2 Memory model

The memory model of these task-based languages is based on that of single-threaded

languages like C. The variables in a task-based computation can be divided into three

kinds:

1. Global variables, which are allocated for the duration of the program. Note that

this includes the thread-local variables supported by many C compilers, which are

global variables with local versions for each operating system thread.

2. Automatically allocated task-local variables, which are allocated for the duration of

a code block or function call. These would typically be allocated on the stack in a

single-threaded program.

3. Dynamically allocated space on the heap, which can be allocated and deallocated

at any point in the program.

It is generally considered the programmer’s responsibility to control the amount of

dynamically allocated memory (3) live at any point in the program; accordingly we discuss

this no further. Similarly, since global variables (1) are always allocated for the duration

of the program, they are not relevant to a discussion of space efficiency.

For these reasons, we only consider task-local variables (2). Since all the variables

associated with a code block are allocated at the same time and deallocated at the same

time as part of an activation frame, they are represented within our model of parallel

computations by a single variable v that is accessed by the first and last instructions of

the code block.

5.1.3 Scheduling tasks efficiently

We would like to use scheduling algorithms that are both absolutely time efficient and

absolutely space efficient (see Section 2.4.6). However, the scheduling restrictions of task-

based systems mean that there are no absolutely space-efficient scheduling algorithms.

This means that we will have to settle for space-efficient schedules whose single-threaded

schedules, while not optimal, perform within the expectations of a programmer.

To do this we will first define some kinds of scheduling algorithms for task-based

computations. A depth-first scheduling algorithm is one that assigns work to threads

from the task tree in a depth-first manner. This means that once a thread has started

executing tasks from a sub-tree of the task tree it will continue to execute tasks from that

sub-tree until there are none available.

There are two kinds of depth-first scheduling algorithm that are of particular interest.

A post-order scheduler will assign work to threads so that a thread will continue to execute

a task until it reaches a task spawn or the task finishes, and when a thread reaches a task

5.1 Efficiency of task-based computations 69

spawn it continues by executing the spawned task. A pre-order scheduler will assign work

to threads so that a thread will continue to execute a task until it reaches a task sync or

the task finishes.

Single-threaded schedules from either a pre-order or post-order scheduling algorithm

are the schedules most likely to match a programmer’s expectation of how much space

their program will require. We will write SD for the minimum execution space for a

computation using a post-order scheduling algorithm and SW for the minimum execution

space for a computation using a pre-order scheduling algorithm. We consider any scheduler

whose single-threaded schedules use either SD or SW space to be performing within the

expectations of the programmer.

We can create pre-order scheduling algorithms (see Appendix B) that are space efficient

and whose single-threaded schedules use SW space. These scheduling algorithms can also

be made greedy, so that they are also absolutely time efficient. This shows that we can

create schedules that are both time and space efficient.

The scheduling restrictions on task-based systems prevent us from creating a post-

order scheduling algorithm that is absolutely time efficient, space efficient and whose

single-threaded schedules use SD space. However, it is possible (see Appendix B) to

create a post-order scheduling algorithm that is absolutely time efficient, space efficient

and whose single-threaded schedules use O(SD + SW) space. Since in practice the space

requirement will usually be very close to SD, and there are practical advantages to using

a post-order schedule (see Section 5.2.1), these algorithms are likely to be the most useful

in practice.

Intuitively, both the above proofs work because, in a depth-first schedule, all live tasks

are either being executed or one of their children is being executed. The tasks whose

children are being executed would also have been live when the single-threaded version

was executing that child task. This means that each live variable can be associated with a

thread, and each thread is associated with no more live variables than the single-threaded

version would have been when executing the same task.

5.1.4 Scheduling OpenMP tasks efficiently

If an OpenMP program contains no tied tasks, then the above results for general task-

based computations still apply.

Unfortunately, the restrictions on tied tasks prevent the creation of an absolutely time-

efficient scheduling algorithm. This is because in general it is impossible to tell in advance

whether it would be quicker to begin executing a new tied task or wait for another thread

to become free to execute it. The nature of tied tasks also means that any scheduling

algorithm that schedules tied tasks in post-order can cause a complete loss of speedup,

because if the parent task is tied it cannot migrate to another thread.

70 Chapter 5 Efficient implementation of OpenMP

However, the time efficiency of an OpenMP scheduling algorithm only depends on

decisions about whether a thread, with no other available tasks, should start executing

the descendant of a task tied to another thread, or stall and wait for more tasks to become

available.

These decisions are not affected by the requirements of a pre-order depth-first sched-

uler. This means that, given an OpenMP scheduler, we can create a new scheduler that

is space efficient and whose single-threaded schedules use SW space, and that is as time

efficient as the original scheduler.

This means that OpenMP tasks, including tied tasks, can be executed in a space-

efficient way without affecting time efficiency. As mentioned in the previous section, we

prefer to schedule untied tasks in post-order, so in practice we prefer to use a scheduling

algorithm that schedules its tied tasks in pre-order and its untied tasks in post-order. The

above proofs still hold for such a schedule.

5.1.5 Inefficiency of stack-based implementations

Previously reported OpenMP implementations [1, 71, 72] have allocated task-local mem-

ory by allocating a whole stack for each task in an OpenMP computation. It can be

shown (see Appendix C) that maintaining space efficiency in such a system can cause a

complete loss of speed-up.

Intuitively, the limit on the number of stacks, which is required to maintain space

efficiency, is also a limit on the number of stolen tasks (i.e. tasks executing on a different

thread than their parents) that can be live at any point. This inevitably limits parallelism

for some kinds of computation.

Not only is allocating each task its own stack theoretically inefficient in the worst case,

it is likely to be inefficient for common task-based patterns. The inefficiency of this system

can be seen by considering how much of its stack a task is actually likely to use. For any

program where the tasks have a low stack depth (i.e. they do not allocate many activation

frames at once), increasing the amount of parallelism will increase the inefficiency of a

stack-based implementation.

Task-based programs express parallelism in two ways:

Recursively Creating child tasks which in turn create more child tasks etc.

Iteratively Creating many child tasks from a single parent.

Recursive tasks that are not nested are also a type of iteration, since they amount to a

tail-call.

Recursive task patterns produce a large task depth (i.e. they have a deep task tree),

which forces each individual task to have a low stack depth. This is because, if the

program is run on a single-thread, all these tasks must be able to fit their activation

5.2 Implementing OpenMP 71

frames onto a single stack. Even in the case of iterative task patterns, where task depth

is low, unless the tasks are executing deep recursive functions they are still likely to have

a low stack depth.

We conclude that a system using separate stacks per task is only likely to be space

efficient for iterative task patterns where the individual tasks execute deep recursive func-

tions.

5.1.6 Scheduling overheads

In our discussion so far we have overlooked the fact that some memory must always

be allocated to represent a task that has been created but not started. In a post-order

schedule, the total amount of this scheduling data that is allocated at any point is bounded

by the task depth, which in turn is bounded by SD. However, in a pre-order schedule there

is no such bound. Since tied tasks become serialised when executed in post-order, this

means that sometimes we must still choose between space efficiency and time efficiency.

However, this is only possible for programs that use a tied task to create a huge number

of tasks, and in these cases it is likely that briefly executing the tied task in post-order

will not actually affect the time efficiency.

5.2 Implementing OpenMP

This section describes how we implement OpenMP as an extension for EMCC, focusing

on the efficient implementation of OpenMP tasks. The other aspects of OpenMP are

implemented in much the same way as in previous OpenMP implementations, and their

performance is not affected by our approach to task-based parallelism.

5.2.1 Efficient task-based parallelism

Representing tasks

In order to keep the tasks in our implementation as lightweight as possible we represent

suspended tasks as simple continuations. These consist of a pointer to the current function

being executed by the task, an integer representing which suspension point within the

function the task is suspended at, and a pointer to the activation frame for that function.

Resuming suspended tasks involves calling these continuations. We call a continuation

by calling the function pointer with the suspension point and activation frame as argu-

ments. This requires us to transform functions into a form which accepts the suspension

point and activation frame as arguments.

The activation frames must contain the arguments, return addresses and returned

values of function calls in our implementation. Since C does not allow programs to

72 Chapter 5 Efficient implementation of OpenMP

control where these values are stored, we cannot use C’s procedure calling mechanism

and must instead transform them to use a continuation-passing style. This means that

the return address of a function is stored as a continuation within its activation frame,

which is called when the function is finished with the return value as an argument.

Separating suspendable and non-suspendable procedures

Since tasks can only be suspended at task synchronisation points, any code that does not

contain such a point is guaranteed to execute to completion on a single thread without

suspending. This means that if a procedure is not suspendable (i.e. does not contains a

task synchronisation point) then it will never be used as the function pointer within a

continuation. So non-suspendable procedures do not need to be transformed to use our

continuation calling convention, and can be left as regular C procedures.

We use a simple inter-procedural static analysis to determine whether or not a proce-

dure is suspendable, and only transform procedures marked as suspendable.

Activation frames

The work in Section 5.1 showed that OpenMP tasks can be scheduled so that they are

space efficient without affecting time efficiency, but that giving each task its own stack

cannot achieve this efficiency.

Note that OpenMP does not guarantee that tasks are nested (unlike Cilk). This

prevents us from using one stack per-thread solutions like the one used in TBB [64]

(which are not space efficient anyway), or a cactus stack implementation like the one

suggested by Lee et al. [46].

This means that we must, in general, allocate activation frames using dynamic alloca-

tion from the heap. In our implementation we allocate frames using the malloc function

provided by the C standard library.

As with the continuation transformation, only suspendable procedures need to dy-

namically allocate their activation frames. Non-suspendable procedures continue to use

the regular C stack for their local variables.

Live variable analysis

Rather than operate directly on the variables in the heap-allocated activation frame, we

keep their values in normal local variables and copy them into the activation frame when

crossing a task suspension point. In order to detect which variables need to be written

to the activation frame across a particular suspension point, we perform a live-variable

analysis. This means we will only store a value if it may be needed later.

5.2 Implementing OpenMP 73

Lazy task creation

While our task representation requires us to support a continuation-based calling mecha-

nism, we can still take advantage of C’s procedure calling mechanism in the most common

cases by using a technique called lazy task creation. This technique relies on using a post-

order scheduler and works on the assumption that most of the time a parent task will still

be available for execution after its child task has completed.

When a new task is created, the program attempts to execute it as a normal procedure.

However, it will also store enough information about the parent task to allow it to be stolen

by another thread. If the parent task is still available when the child task returns, the

program simply continues as normal.

Similarly, when a suspendable procedure is called it is treated as a normal procedure,

but enough information is stored to allow the calling procedure (which must also be

suspendable) to be suspended if the task is stolen. If the task is not stolen while the

procedure is executing then the program simply continues as normal.

This means that only when executing a task that has been stolen do we have to use

the continuation-based calling mechanism.

We implement lazy task creation using the fast/slow clones method, which was de-

signed for use in Cilk-5 [27]. This means that we actually create two versions of every

suspendable procedure. The first time a suspendable procedure is called the fast version

is used, but if that procedure is suspended then it is the slow version that is resumed.

The fast versions are called and return using the regular procedure calling mechanisms,

while the slow versions are called and return using the continuation-based mechanism.

Serial-parallel reciprocity

Allocating (suspendable) procedures’ activation frames on the heap requires a non-standard

calling convention. However, OpenMP is supposed to be compatible with standard C, so

we must also be able to provide versions of these procedures that use the standard stack-

based calling conventions. The same problem arises due to function pointers – if we call

a procedure indirectly we do not know which calling convention it uses.

In Cilk this problem is avoided by using the type system to prevent these two sit-

uations, however OpenMP does not place such restrictions on the use of suspendable

procedures. Other solutions to this problem, such as those discussed by Lee et al. [46],

rely on the heap-based frames being allocated on a cactus stack, which is not possible for

OpenMP.

To avoid this problem, we create wrapper procedures that call the suspendable proce-

dures using the correct calling convention. Since the activation frames of the procedures

that called the wrapper are on the C call stack, and cannot be properly suspended, the

task is forced to become tied to the thread executing it. These activation frames also

74 Chapter 5 Efficient implementation of OpenMP

prevent the stack from being unwound, so if more than one of these tasks is on a single

stack only the topmost one is available to be resumed.

This solution risks both deadlock and space inefficiency. To prevent this, we restrict

the scheduling algorithm, only allowing a thread to resume tasks that are deeper in

the task tree than the tasks “stuck” on its stack. Unfortunately this may reduce the

parallelism of the program, however it is a very similar condition to the one used by Intel’s

Threading Building Blocks (TBB) [64] to prevent its tasks from being space inefficient,

and TBB has been shown to perform very well when compared with published OpenMP

implementations.

5.2.2 Implementing OpenMP in EMCC

OpenMP IL

In order to implement OpenMP in EMCC, we create a new IL to represent an OpenMP

program. This IL is based on the flowgraph version of CIL extended with graph edges to

represent OpenMP constructs. It also adds representations for suspendable procedures—

which use a different calling convention from regular procedures.

The front-end

Since OpenMP only uses pragmas to extend the C syntax, the EMCC lexer and parser do

not need to be extended at all. For semantic analysis, we register handlers in Translate

for each of the OpenMP pragmas. These handlers produce nodes representing the appro-

priate OpenMP construct, including its translation into the OpenMP IL. The handlers

also extend the environment so that we can associate each OpenMP construct with its

local variables.

Fig. 5.1 shows some example code used to handle the task construct The task construct

class extends the block class used for handling structured blocks. The IL node for the

construct is returned by the output method. This IL node is constructed using the Task

constructor and contains the IL node representing its child block. The task construct

function uses the task construct class to handle task constructs. It also modifies the

environment using the enter task function.

The middle-end

Our middle-end performs a number of analyses and transformations, including:

Outlining of the bodies of parallel and task constructs into their own function def-

initions. This is necessary so that they can be referred to by function pointers.

These constructs already have their own lists of local variables and control-flow

5.2 Implementing OpenMP 75

class t a s k c o n s t r u c t blk · · · = object

inherit block

· · ·
method output = Task (blk#output , · · ·)

end

let t a s k c o n s t r u c t env blk · · · =

l et tk = new t a s k c o n s t r u c t blk in

let env = e n t e r t a s k env in

(tk , env)

Figure 5.1: Code to handle the task construct

graphs within our IL, so it is very simple to treat them as function definitions when

generating C code.

Suspendable procedure analysis is performed to detect which procedure definitions

contain task suspension points or calls to other suspendable procedures. These are

transformed into suspendable procedure definitions, including a list of all possible

suspension points.

Live variable analysis is performed on suspendable functions to annotate all suspen-

sion points with the variables that must be maintained in the activation frame

during a possible suspension.

Reaching definition analysis is performed to further refine the lists of variables which

must be copied to activation frames. This allows us to only copy values which may

have changed since the last suspension point.

Each of these is implemented as a functor that expects functions and visitors for

inspecting and translating different parts of the IL.

The back-end

We use the Generate module to convert the OpenMP IL into C. The OpenMP constructs

are handled using a combination of low-level C code and calls into our OpenMP run-time

library.

5.2.3 Implementing OpenMP in our run-time library

The high-level OpenMP constructs are implemented using the run-time library described

in Chapter 4. For example, the parallel construct is translated into a call to the run-

time to create a team of threads executing the body of the construct (which has been

76 Chapter 5 Efficient implementation of OpenMP

outlined into its own function definition). Similar support is provided for the worksharing

constructs.

The scheduler used for task-based parallelism is also implemented in the run-time

library. When a task is spawned, a continuation for the current task is registered with the

scheduler. When a thread has finished all its tasks (or had its remaining tasks stolen),

it calls a function in the run-time library which will find a new task to execute and then

begin its execution. This function also handles the removal of dead stack frames from the

thread’s stack when tasks have been stolen from the thread.

5.3 Evaluation

5.3.1 Benchmarks

We evaluated our implementation using six benchmarks from the Barcelona OpenMP

Tasks Suite [23].

Alignment Aligns all protein sequences from an input file against every other sequence.

It uses an iterative pattern, with a parallel for loop containing an inner loop that

spawns tasks.

Health Simulates the Colombian Health Care System. It uses a recursive divide-and-

conquer pattern, with each task spawning multiple tasks in a loop and then waiting

for them to finish.

N Queens Computes all solutions to the n-queens problem. It uses a recursive divide-

and-conquer pattern, with each tasks spawning multiple tasks in a loop and then

waiting for them to finish.

Sort Sorts numbers with a fast parallel variation of merge sort. It uses two parallel

algorithms: one for merging and another for sorting. They both use recursive divide-

and-conquer patterns, with each task spawning a fixed number of tasks and then

waiting for them to finish.

Sparse LU Computes an LU matrix factorisation over sparse matrices. It uses an it-

erative pattern, with a single task spawning all the other tasks from within a for

loop.

Strassen Multiplication of large dense matrices using hierarchical decomposition. It uses

a recursive divide-and-conquer pattern, with each tasks spawning a fixed number of

tasks and then waiting for them to finish.

5.3 Evaluation 77

Figure 5.2: Alignment

We chose the Barcelona OpenMP Task Suite over the NAS OpenMP Parallel Benchmarks

because the NAS benchmarks have not yet been updated to take advantage of task-based

parallelism in OpenMP.

In addition to EMCC, we also ran the benchmarks using the GCC, NANOSv4 [71] and

OpenUH [1] implementations of OpenMP. Each of these implementations uses a stack

per-thread, although OpenUH is a relatively lightweight implementation, using coroutines

to implement its tasks. We also converted the benchmarks to the Cilk language and ran

them using Cilk version 5. The benchmarks were run on a server with 32 AMD Opteron

processors (model 6134).

5.3.2 Results

Figs. 5.2–5.7 show the speed-ups for each benchmark.

Alignment is an embarrassingly parallel algorithm, and showed roughly linear speed-up

on all implementations. Both Health and Strassen showed noticeably worse speed-up on

the heavyweight implementations GCC and NANOSv4. N Queens and Sort both showed

noticeably better speed-up for the two implementations that allocate their activation

records on the heap (i.e. EMCC and Cilk). The Sparse LU result is something of an

anomaly; we do not know what causes the poor performance of Cilk and also expected

the heavyweight implementations to perform better on an algorithm with an iterative

pattern.

Overall these results show that using the heap to allocate activation records can no-

78 Chapter 5 Efficient implementation of OpenMP

Figure 5.3: Health

Figure 5.4: N Queens

5.3 Evaluation 79

Figure 5.5: Sort

Figure 5.6: Sparselu

80 Chapter 5 Efficient implementation of OpenMP

Figure 5.7: Strassen

ticeably improve performance. They also show the superiority of a lightweight implemen-

tation.

5.4 Related work

Our demonstration that OpenMP tasks can be space efficient without affecting time

efficiency is a generalisation of the demonstration by Blumofe et al. [7] that there are

absolutely time- and space-efficient scheduling algorithms for Cilk programs. The original

demonstration only allowed computations where all tasks were nested and each task only

allocated a single activation frame. Under those restrictions S1 = SW = SD, so that our

result in Section 5.1.3 implies the stronger result that there are scheduling algorithms

that are both absolutely time efficient and absolutely space efficient.

The Nanos Mercurium OpenMP compiler [6] is derived from the Open64 compiler.

It uses the Open64 front-end to produce an AST including OpenMP constructs and

translates that into an AST without OpenMP constructs. It uses a macro template

system to specify these translations. The implementation of task-based parallelism in

Nanos [71] uses user-level threads to represent tasks, each with its own call stack, and

relies on inlining to maintain space efficiency.

The GNU Compiler Collection [68] implementation of OpenMP converts OpenMP

constructs into library calls as part of the process of turning the AST into the Single

Static Assignment form used by its middle-end optimisations. The GCC implementation

of task-based parallelism treats all tasks as tied tasks, and any tasks that are not stolen

5.5 Conclusion 81

are inlined. This means that each task gets its own stack. This design greatly reduces

the available parallelism in some programs, which explains GCC’s poor performance in

many task benchmarks.

The closest implementation of OpenMP to our own is the OpenUH compiler [50],

which is based on the Open64 compiler. OpenUH does include OpenMP constructs in the

early stages of its middle-end. This enables it to perform loop optimisations on OpenMP

parallel loops, which can’t be done after the OpenMP constructs have been replaced

by calls into a run-time library. The OpenMP constructs are translated late enough to

make an implementation of task-based parallelism similar to ours possible, however the

OpenUH implementation of task-based parallelism [1] still gives each task its own stack

and relies on inlining to maintain space efficiency.

5.5 Conclusion

In this chapter we have described an efficient implementation of OpenMP using our EMCC

compiler. Unlike previous implementations of OpenMP, we avoid giving each task its

own stack for local variables. This makes tasks more lightweight and allows us to avoid

the load-based inlining which has prevented previous implementations from obtaining

performance similar to other task-based systems like Cilk.

To show that we do not require load-based inlining, we presented a theoretical demon-

stration that OpenMP tasks can be scheduled in a space-efficient way without affecting

time efficiency. We also showed that using per-thread stacks is not space efficient, and is

likely to be inefficient in common cases.

Finally, we provided experimental results, using our implementation, that demonstrate

the effectiveness of our approach.

Chapter 6

Optimising task-local memory

allocation

In Chapter 5, we showed that allocating activation records from per-thread stacks requires

load-based inlining to remain space efficient, and that this inlining can seriously degrade

time performance. To avoid this our OpenMP implementation allocates activation records

from the heap using dynamic allocation. However, dynamic allocation is more expensive

than stack allocation, and in practice most of these activation records will be allocated

and deallocated in stack order.

This chapter describes an optimisation that allows multiple tasks to share a single

stack. In general, two concurrent tasks sharing a stack would require time-consuming

synchronisation between the tasks and would require garbage collection to avoid wasting

a potentially unbounded amount of space. However, in some cases a parent task may

safely share its stack with some of its child tasks. Consider the OpenMP function shown

in Fig. 6.1. Both tasks only require a bounded amount of space, and they both must

finish before the parent task (the one which executed the work function) finishes. This

means that their stack frames could safely be allocated from the parent task’s stack (by

using different offsets within it). We say that the child tasks’ stacks can be merged with

their parent task’s stack.

The stacks of the child tasks created by the spawn instructions in Fig. 6.1 can always

safely be merged. Other spawn instructions create child tasks whose stacks can safely be

merged in most, but not all, instances. Consider the post-order tree traversal OpenMP

function shown in Fig. 6.2. There is no guarantee that the first child task will finish before

the second child task begins and they both use unbounded stack space, so they cannot

generally be merged. However, our OpenMP implementation executes tasks in post-order:

when a thread encounters a spawn instruction it will suspend its current task and begin

executing the newly created task. After that new task has finished it will resume its

original task (assuming it has not been stolen for execution on another thread). This

83

84 Chapter 6 Optimising task-local memory allocation

void add t ree (struct t r e e node * root) {
#pragma omp task unt ied // OpenMP spawn

{ t r e e node *p = root ;

while (p) {
l e f t sum += p−>value ;

p = p−> l e f t ;

}
}
#pragma omp task unt ied // OpenMP spawn

{ t r e e node *q = root ;

while (q) {
r ight sum += q−>value ;

q = q−>r i g h t ;

}
}
#pragma omp taskwait // OpenMP sync

}

Figure 6.1: OpenMP example—where spawned stacks can be merged.

void p o s t o r d e r t r a v e r s e (struct t r e e node *p) {
i f (p−> l e f t)

#pragma omp task unt ied // OpenMP spawn

p o s t o r d e r t r a v e r s e (p−> l e f t) ;

i f (p−>r i g h t)

#pragma omp task unt ied // OpenMP spawn

p o s t o r d e r t r a v e r s e (p−>r i g h t) ;

#pragma omp taskwait // OpenMP sync

proce s s (p) ;

}

Figure 6.2: OpenMP example—stack merge is often possible subject to a cheap test.

6.1 Model of OpenMP programs 85

means that, if the parent task has not been stolen, the first child task in Fig. 6.1 will

definitely finish before the second child task begins.

We can merge spawn instructions like the second one in Fig. 6.1 as long as their

parent task has not been stolen. This can be checked at run-time cheaply and without

synchronisation. We say that such spawn instructions are merged guarded, while spawn

instructions that can always be merged are merged unguarded.

To support this optimisation the compiler must perform an analysis to determine sets

M of spawn instructions whose stacks can safely be merged (the merged set), and U ⊆ M

of spawn instructions whose stacks can safely be merged unguarded (the unguarded set).

Note that previous work on predicting the stack usage of programs, for example by

Campbell [12], has not considered languages with parallelism and has focused on inferring

upper bounds for a fixed program. Whereas this work must allow for parallelism and is

focused on optimising the stack usage rather than predicting it.

In order to express this analysis concisely, we develop a generalisation of logic program-

ming (described in Section 2.5). We use a multi-valued logic, with the values representing

possible stack sizes.

First we use a program in this logic to represent finding the sizes of stacks for a

particular pair of merged set and unguarded set. Then, using the notion of a stable model

which was developed as a semantics for negation in logic programming, we are able to

extend this program to express the whole analysis.

By showing a stratification result about the program representing the analysis, we

show that the analysis has a single solution and can be solved in polynomial time.

6.1 Model of OpenMP programs

In order to describe our analysis we require a model of OpenMP programs.

6.1.1 OpenMP programs

We represent OpenMP programs as a triple (F , body ,S) where F is the set of function

names, body is a function that maps function names to their flowgraph (CFG), and S ⊆ F
gives the entry points to the program.

We make various assumptions: function names are unique, program flowgraphs are

disjoint and the bodies of tasks have been outlined into their own separate functions. (For

example, Fig. 6.1 would be treated as three function definitions, one for the work function

and one each for the two task bodies.) We assume that every function is call-graph

reachable from S and that every node in a flowgraph is reachable within its associated

function.

86 Chapter 6 Optimising task-local memory allocation

Each flowgraph is a tuple (N ,E , s , e) with nodes N , edges E , entry node s and exit

node e. For a given function f ∈ F we write start(f) = s , end(f) = e, Nodes(f) = N and

Edges(f) = E . Our analysis is not concerned with detailed intraprocedural execution,

so control flow is considered non-deterministic along edges in E , and local variables are

summarised by their total size, frame(f).

Flowgraph nodes n are labelled with instructions instr(n). These form four classes:

calls, spawns, syncs and local computation. Given f ∈ F we write Calls(f) (resp.

Spawns(f), Syncs(f)) for the subset of Nodes(f) labelled with function calls (resp. task

spawns, task syncs). Additionally, provided instr(n) calls or spawns function g , we write

func(n) = g .

6.1.2 Paths, synchronising instructions and the call graph

Paths

A path through a function f is an edge-respecting sequence of nodes (n0, . . . , nk) in body(f).

The set of all paths between nodes n and m is

Paths(n,m) = {(l0, . . . , lk) | l0 =n ∧ lk =m ∧ ∀ 0 ≤ i < k . (li , li+1) ∈ Edges(f)}

Notation: Paths(n,) =
⋃

m Paths(n,m) Paths(, n) =
⋃

m Paths(m, n)

Synchronising instructions

A synchronising instruction is one whose execution necessarily involves the execution of a

sync instruction. These are either sync instructions themselves or calls to functions with

a synchronising instruction on every possible path. We define the sets of synchronising

instructions, one for each function, as the smallest sets closed under the rules:

Synchronising(f) ⊇ Syncs(f)

Synchronising(f) ⊇
{

n ∈ Calls(f) | g = func(n) ∧
∀ (m0, . . . ,mk) ∈ Paths(start(g), end(g))

∃ 0 ≤ i ≤ k . mi ∈ Synchronising(g)
}

Unsynchronised paths

An unsynchronised path is a path that may pass through no synchronising instructions.

We define the set of unsynchronised paths between two instructions of a function f as

follows:

Upaths(n,m) = {(l0, . . . , lk) ∈ Paths(n,m) | ∀ 0 < i < k . li /∈ Synchronising(f)}

Notation: Upaths(n,) =
⋃

m Upaths(n,m) Upaths(, n) =
⋃

m Upaths(m, n)

6.2 Stack sizes 87

Call graph

The call graph is a relation CallGraph on instructions:

CallGraph(n,m)
def⇔ m ∈ Calls(f) ∪ Spawns(f) where f = func(n)

We use this relation on spawn and call instructions to order merged sets M and unguarded

sets U by dominance (rooted in S, the set of program entry points).

6.2 Stack sizes

The safety of merging stacks depends on the potential size of those stacks at different

points in a program’s execution. We represent the potential size of a stack by N∞ =

N ∪ {∞}, writing v for its usual order ≤N extended with (∀z ∈ N∞) z v ∞. Note that

(N∞,v) is a complete lattice. To emphasise this, we will often represent 0 by the symbol

⊥ and ∞ by the symbol >. The join of this lattice (t) is max and the meet (u) is min.

We use this lattice as the basis for implication programs, using literals of the form:

L ::= ¬L | ∼L | L + L | A

We use the usual addition operator extended such that (∀z ∈ N∞) z +∞ =∞+ z =∞.

There are natural definitions for both implication and difference operators on this

lattice1:

∀z1, z2 ∈ N∞. z1 → z2
def
=

 z2 if z2 @ z1

> otherwise

∀z1, z2 ∈ N∞. z1 r z2
def
=

 z1 if z2 @ z1

⊥ otherwise

Both operators can be used to define pseudo-complement operations:

∀z ∈ N∞. ¬z
def
= z → ⊥

∀z ∈ N∞. ∼z
def
= >r z

To distinguish them we will call ¬ the complement and ∼ the supplement.

The complement gives > when applied to 0, and ⊥ otherwise. We use it conveniently

to mean “equals zero”. The supplement gives ⊥ when applied to ∞, and > otherwise.

We use it conveniently to mean “is not ∞”. Note that both are anti-monotonic, so they

form negative literals in our implication programs.

1This follows from N∞ being a bi-Heyting algebra—both it and its dual are Heyting algebras

88 Chapter 6 Optimising task-local memory allocation

6.3 Stack size analysis using implication programs

This section formulates the stack size analysis as an implication program in a logic using

N∞ as logic values. Although predicates in the implication program are written as having

parameters, these parameters are all constants rather than run-time variables as could be

found in Prolog. We emphasise this by writing parameters within 〈 〉 instead of (). The

framework is monotonic in that only conjunction (min), disjunction (max) and sum are

used (we address the benefits in expressiveness and efficiency of using general implication

programs in Section 6.4).

We do not analyse OpenMP programs in isolation, but rather in a context of a choice of

merged set M and unguarded set U . Hence the result of analysing an OpenMP program

is an implication program P(M ,U).

Only some choices of M and U are safe and of these we wish to choose a ‘best’ solution

(Section 6.3.3). Finally, we show how a context-sensitive variant of the analysis naturally

follows (Section 6.3.5).

This section focuses on ease of expression and does not address efficiency, or even com-

putability (note that the analyses here can produce infinite logic programs—Section 6.6

shows that these are equivalent to finite logic programs).

We represent the amount of stack space that may be required by a function at different

points in its execution by four separate values:

Total Size An upper bound on the total amount of stack space that may be used during

a function’s execution. This includes the space used by any child functions that it

calls, and the space used by any child tasks that it spawns whose stacks have been

merged.

Post Size An upper bound on the amount of stack space that the function may use after

it returns2. This size represents how the function may interfere with functions or

tasks executed after it has finished. It includes the space used by any merged child

tasks that it spawns whose execution may not have completed when the function

returns.

Pre Size An upper bound on the amount of stack space that the function may use while

an existing child task is still executing. This size represents how the function may

interfere with tasks spawned before it started executing. It is similar to the total

size, but includes neither tasks whose stacks are merged guarded nor any space used

after the execution of a sync instruction.

2In task-based systems like Cilk this value is always zero because all tasks wait for their children to

complete, but this is not the case in OpenMP.

6.3 Stack size analysis using implication programs 89

void f oo (. . .)

{
#pragma omp task

bar (. . .) ;

#pragma omp taskwait

#pragma omp task

baz (. . .) ;

}

Size Value

Total frame(foo)+(
frame(bar) t frame(baz)

)
Post frame(baz)

Pre frame(foo) + frame(bar)

Through 0

Figure 6.3: Example of different stack sizes.

Through Size An upper bound on the amount of stack space that the function may use

after it returns, while an existing child task is still executing. This size represents

how the function may simultaneously interfere with tasks spawned before it started

executing, and functions or tasks executed after it has finished. It is similar to the

post size, but includes neither tasks whose stacks are merged guarded nor space

used after the execution of a sync instruction.

For example, consider the program in Fig. 6.3. If we assume that the spawns of bar()

and baz() are merged unguarded then the sizes are as shown on the right-hand side. We

also extend these size definitions to apply to individual instructions, for instance the total

size of a call instruction is an upper bound on the total amount of stack space that may

be used during that call’s execution.

We represent these sizes with the predicate symbols TotalSize, PostSize, PreSize

and ThroughSize parameterised with function names or instruction nodes. The next two

subsections describe the rules that make up P(M ,U).

6.3.1 Rules for functions

Total size

Each function’s total size must be greater than its stack frame plus the total size of any

of its individual instructions. We can represent this by the following rule family:

[f ∈ F , n ∈ Nodes(f)] TotalSize〈f 〉 ←− frame(f) + TotalSize〈n〉

The notation here [f ∈ F] represents a meta-level ‘for all’, in that one rule is generated

for every function f (and in this case for each node n).

The above rules ensure that a function’s total size is greater than the total size of any

of its instructions executing on their own. A function’s total size must also be greater

90 Chapter 6 Optimising task-local memory allocation

than any combination of its instructions that may use stack space simultaneously. This

can be represented by the following rule family:

[f ∈ F , n ∈ Nodes(f), (m0, . . . ,mk) ∈ Upaths(, n)]

TotalSize〈f 〉 ←−frame(f) + PostSize〈m0〉

+
∑

0<i<k

ThroughSize〈mi〉

+ PreSize〈mk〉

Post size, pre size and through size

A function’s post size must be greater than the post size of any combination of its instruc-

tions that may use stack space simultaneously, and which lie on an unsynchronised path

to the function’s exit. A function’s pre size must be greater than its stack frame plus the

pre size of any combination of its instructions that may use stack space simultaneously,

and which lie on an unsynchronised path from the function’s entry. A function’s through

size must be greater than the through size of any combination of its instructions that

may use stack space simultaneously, and which lie on an unsynchronised path from the

function’s entry to its exit. These observations encode directly as rule families:

[f ∈ F , (n0, . . . , nk) ∈ Upaths(, end(f))]

PostSize〈f 〉 ←− PostSize〈n0〉

+
∑

0<i≤k

ThroughSize〈ni〉

[f ∈ F , (n0, . . . , nk) ∈ Upaths(start(f),)]

PreSize〈f 〉 ←−frame(f) +
∑

0≤i<k

ThroughSize〈ni〉

+ PreSize〈nk〉

[f ∈ F , (n0, . . . , nk) ∈ Upaths(start(f), end(f))]

ThroughSize〈f 〉 ←−
∑

0≤i≤k

ThroughSize〈ni〉

6.3.2 Rules for instructions

Call instructions

Since all call instructions use the stack of the caller, their sizes must be greater than the

corresponding size of the functions they call. This is represented by the following rule

6.3 Stack size analysis using implication programs 91

family:

[f ∈ F , n ∈ Calls(f)]

TotalSize〈n〉 ←− TotalSize〈func(n)〉
PreSize〈n〉 ←− PreSize〈func(n)〉
PostSize〈n〉 ←− PostSize〈func(n)〉
ThroughSize〈n〉 ←− ThroughSize〈func(n)〉

Spawn instructions

For any merged spawn instruction, the spawned task may use the stack of the caller and

may be deferred until some point after the spawn instruction has completed. This means

that both the total size and post size of the instruction must be greater than the total size

of the spawned task. If the spawn instruction is merged unguarded then the pre size and

through size of the instruction must also be greater than the size of the spawned task.

This leads to the following rule families:

[n ∈ M] TotalSize〈n〉 ←− TotalSize〈func(n)〉
PostSize〈n〉 ←− TotalSize〈func(n)〉

[n ∈ U] PreSize〈n〉 ←− TotalSize〈func(n)〉
ThroughSize〈n〉 ←− TotalSize〈func(n)〉

6.3.3 Optimising merged and unguarded sets

A solution to our analysis is a pair (M ,U) of merged set M and unguarded set U. Our

analysis must choose the “best” safe solution. We now explore: (i) which solutions are

safe, and (ii) which safe solution is the “best”.

Which solutions are safe?

Using the implication program P(M ,U), we can now decide whether a particular solution

(M ,U) is a safe choice of merged and unguarded sets. There are two situations that we

consider unsafe:

1. A child task using its parent task’s stack after that parent task has finished.

2. Two tasks simultaneously using unbounded amounts of the same stack.

In situation 1 the parent task may delete the stack after it has finished while the child

task is still using it. In situation 2 both tasks may try to push and pop data onto the

top of the stack concurrently, which our optimisation does not support (it would require

92 Chapter 6 Optimising task-local memory allocation

synchronisation). Note that it would be safe if one of the tasks only required a bounded

amount of space because then that much space could be reserved on the stack in advance.

Situation 1 is equivalent to spawning a function with a non-zero post size. To avoid

this situation, under the least model of P(M ,U) for a safe solution (M ,U), the following

family of formulae must all evaluate to >:

[f ∈ F , n ∈ Spawns(f)] ¬ PostSize〈func(n)〉

Note that here the ¬ operator conveniently means “equals zero”.

Situation 2 is equivalent to some of a task’s child tasks using unbounded stack space

whilst at the same time the parent task (and possibly some of its other child tasks) also

uses unbounded stack space. To avoid this situation, under the least model of P(M ,U) for

a safe solution (M ,U), the following family of formulae must all evaluate to >:

[f ∈ F , n0 ∈ Nodes(f), (n0, . . . , nk ,m0, . . . ,ml) ∈ Upaths(n0,)]

∼

(∑
0<i≤k

ThroughSize〈ni〉

+ PostSize〈n0〉

l
∑
0≤i<l

ThroughSize〈mi〉

+ PreSize〈ml〉

)

These formulae mean that the tasks spawned by instructions n0, . . . , nk , and the in-

structions m0, . . . ,ml which may execute simultaneously with them, cannot both use

unbounded stack space (∼ means “is not unbounded”).

If both of these conditions are met then we say that a solution (M ,U) is a safe choice

for merged and unguarded sets.

Which safe solution is the “best”?

Our aim is to merge as many stacks at run time as we can, and for as many as possible of

those merges to be unguarded. It is also more important to increase the total number of

stacks merged than to increase the number of stacks merged unguarded. Hence we order

solutions lexicographically:

(M ,U) v (M ′,U ′) ⇔ M ⊂ M ′ ∨ (M = M ′ ∧ U ⊆ U ′)

We would like to choose as the result of our analysis the greatest safe solution according

to this ordering. However, not every program has a unique greatest safe solution. Every

program does have a unique set of maximal safe solutions, whose members are each either

greater than or incomparable with all other safe solutions. In order to chose the best

solution from the set of maximal safe solutions, we must use heuristics.

One simple heuristic is preferring to merge spawns that are further from the root

of the run-time call graph, because they are likely to be executed more often. We can

approximate this using the static call graph by preferring maximal solution (M ,U) over

6.3 Stack size analysis using implication programs 93

maximal solution (M ′,U ′) if, letting Lost = M ′ \M and Gained = M \M ′, we have that

every node n ∈ Lost dominates (in CallGraph with respect to paths starting at S) every

node m ∈ Gained . Note that this is a heuristic for choosing between maximal solutions,

rather than an ordering on all solutions, because the reasoning behind it assumes that

there are no safe solutions greater than (M ,U) or (M ′,U ′).3

Even with this heuristic programs may still have several equally preferred safe solu-

tions. We call such solutions optimal. In Section 6.3.5 we discuss context sensitivity; the

context-sensitive version of our analysis has only a single optimal solution.

6.3.4 Finding an optimal solution

Finding the greatest safe solution according to both the ordering on solutions and our

call-graph heuristic is a kind of constraint optimisation problem (COP).

A traditional COP consists of a constraint problem (often represented by a set of

variables with domains and a set of constraints on those variables) and an objective

function. The aim is to optimise the objective function while obeying the constraints. In

our case, the safety conditions are our constraint problem, and instead of an objective

function we have the ordering on solutions and our call-graph heuristic.

Many COPs are inherently non-monotonic: as the variables are increased the value of

the objective function increases, until a constraint is broken – which is equivalent to the

objective function being zero. This is true of finding an optimal solution for our analysis:

we prefer solutions which merge more spawn instructions, but as more spawn instructions

are merged the sizes increase, and as the sizes increase the solution becomes more likely

to be unsafe.

COPs are usually solved using some form of backtracking search. This tries to incre-

mentally build solutions, abandoning each partial candidate as soon as it determines that

it cannot possibly be part of a valid solution. Such an approach can easily be adopted for

finding the optimal solution to our analysis: keep merging more spawn instructions until

it is unsafe, then backtrack and try merging some different spawn instructions.

The search space of a COP is exponential in the number of variables, and our problem

requires us to recompute the stack sizes for each solution that we try. A naive search

could be very expensive, however there are two simple methods for improving our search:

1. We can use the stack sizes to prune the search tree. For instance, if the current

solution causes two tasks to have unbounded size and their spawn instructions have

an unsynchronised path between them, then there is no point in trying a solution

that merges both of them unguarded.

3Including this heuristic as part of the ordering on all solutions can lead to cycles in the ordering.

94 Chapter 6 Optimising task-local memory allocation

2. Instead of recomputing the stack sizes for each possible solution, we can start from

the stack sizes of a similar solution and just compute the changes.

We shall see in Section 6.4 that this approach can be encoded as a general implication

program.

6.3.5 Adding context-sensitivity

It is clear from our safety conditions that whether a spawn can be safely merged is context-

sensitive. By context-sensitive we mean that it does not just depend on the details of the

function that contains it, but also on the details of the function that called that function,

and the details of the function that called that second function, and so on.

While the safety conditions are context-sensitive, the optimisation and analysis de-

scribed so far are context-insensitive. This means that some stacks will not be merged

even though it would be safe to do so, because it would not have been safe if the function

had been called from a different context.

In order to allow more spawn points to be merged at run time, we can make the opti-

misation and analysis context-sensitive. This involves making the behaviour of functions

depend on the context that called them.

In our model we achieve this by creating multiple versions of the same function for

different contexts, but in practice we simply add extra arguments containing information

about the calling context.

A recursive program may have an infinite number of contexts, however we are only

interested in the restrictions placed on a function by its context. These restrictions can

be represented by four boolean values (see Section 6.4.1), so we can also represent our

context by four boolean values.

Making our optimisation context-sensitive is very cheap; other than the extra context

arguments it only requires a few additional logic operations before some calls and stack

frame allocations. A simple analysis can detect and remove unused or unnecessary context

arguments.

The aim of making the optimisation context-sensitive is to separate run-time function

calls when they are called from contexts which require them to merge fewer spawns. This

means that the context that a call is in depends on the stack sizes of related instructions,

but the stack sizes of instructions depend on the contexts that they are given. This

recursive relationship is also non-monotonic: as stack sizes increase more calls are assigned

more restrictive contexts, but as more calls are placed in more restrictive contexts stack

sizes decrease.

This situation is very similar to the one that exists between stack sizes and the merged

and unguarded sets. Similarly it can be resolved using a backtracking search and it can

be encoded as a general implication program.

6.4 The analysis as a general implication program 95

6.4 The analysis as a general implication program

This section describes how to represent the context-sensitive version of our analysis as a

single general implication program—the idea is that meta-level constraints on U and M

are now expressed within the logic using negation.

6.4.1 Stack size restrictions

We represent the safety conditions, within this general implication program, as various

restrictions on individual stack sizes. There are four kinds of restriction:

1. Restricting the post size to 0. This is equivalent to making the complement of the

post size >.

2. Restricting the post size to be not unbounded. This is equivalent to making the

supplement of the post size >.

3. Restricting the pre size to be not unbounded. This is equivalent to making the

supplement of the pre size >.

4. Restricting the through size to be 0. This is equivalent to making the complement

of the through size >.

We place these restrictions on instructions using the predicates CompPostSize,

SuppPostSize, SuppPreSize and CompThroughSize. We do not need to have explicit

predicates to place these restrictions on functions, because we use these restrictions as

the contexts for functions. Each function f is replaced by 16 versions of the function

f(cr ,sr ,sg,cgr), one for each possible combination of restrictions.

Note that these restrictions can only affect stack sizes by preventing or guarding

merges. So a function whose pre size is restricted may still have unbounded pre size if

that unboundedness is caused by ordinary recursive calls, rather than by recursive spawns.

6.4.2 Restriction rules

The CompPostSize restriction is placed on functions that are spawned, to prevent our

first safety condition from being broken. It is propagated by the rule family:

[f ∈ F , γ ∈ ({T} × B× B× B), (n0, . . . , nk) ∈ Upaths(, end(fγ))]

CompPostSize〈n0〉 ←− >

96 Chapter 6 Optimising task-local memory allocation

The other restrictions are used to prevent our second safety condition from being

broken. They are propagated by the rule families:

[f ∈ F , γ ∈ (B× {T} × B× B), (n0, . . . , nk) ∈ Upaths(, end(fγ))]

SuppPostSize〈n0〉 ←− >

[f ∈ F , γ ∈ (B× B× {T} × B), (n0, . . . , nk) ∈ Upaths(start(fγ),)]

SuppPreSize〈nk〉 ←− >

[f ∈ F , γ ∈ (B× B× B× {T}),
(n0, . . . , nk) ∈ Upaths(start(fγ), end(fγ)), 0 ≤ i ≤ k]

CompThroughSize〈ni〉 ←− >

The CompThroughSize restriction is used to prevent loops of instructions from using

unbounded stack space. It is enforced by the rule:

[f ∈ F , γ ∈ (B× B× B× B), n ∈ Nodes(fγ), (m0, . . . ,mk) ∈ Upaths(n, n)]

CompThroughSize〈m0〉 ←− >

The SuppPreSize restriction is used to prevent spawn instructions from being merged

unguarded if they are unbounded and preceded by a merged spawn instruction which is

also unbounded. It is enforced by the rule family:

[f ∈ F , γ ∈ (B× B× B× B), n ∈ Nodes(fγ), (m0, . . . ,mk) ∈ Upaths(, n)]

SuppPreSize〈mk〉 ←− ∼∼ PostSize〈m0〉

The SuppPostSize restriction is used to prevent spawn instructions from being merged

if they are unbounded and followed by a call to a function that may use unbounded stack

space (even if all its spawns are merged guarded). Note that we do not prevent a spawn

from being merged due to a later unguarded spawn, because we prefer to make the later

spawn guarded. This restriction is enforced by the rule family:

[f ∈ F , γ ∈ (B× B× B× B), n ∈ Nodes(fγ), (m0, . . . ,mk) ∈ Upaths(n,),

g = func(mk), cr ∈ B, sr ∈ B, crg ∈ B]

SuppPostSize〈m0〉 ←− ∼∼ PreSize〈g(cr ,sr ,T,crg)〉 ,
lit(cr, CompPostSize〈mk〉) ,
lit(sr, SuppPostSize〈mk〉) ,
lit(crg, CompThroughSize〈mk〉)

where lit(b,A) is a macro for

¬¬A if b = T

¬A if b = F

Note that the lit macro used in generating the above rules converts the restriction predi-

cates into booleans that can be used as the contexts for functions.

6.4 The analysis as a general implication program 97

We apply the supplement restrictions to spawns via complement restrictions using the

following rules. This is equivalent to preventing unbounded sizes by forcing those sizes to

be zero (i.e. preventing the stacks from merging).

[f ∈ F , γ ∈ (B× B× B× B), n ∈ Spawns(fγ), g = func(n)]

CompPostSize〈n〉 ←− SuppPostSize〈n〉 ,
∼∼ TotalSize〈g(T,T,F,F)〉

CompPreSize〈n〉 ←− SuppPreSize〈n〉 ,
∼∼ TotalSize〈g(T,T,F,F)〉

We refer to these rules as the bounding rules.

6.4.3 Other rules

The rules for the stack sizes of spawn instructions are as follows:

[f ∈ F , γ ∈ (B× B× B× B), n ∈ Spawns(fγ), g = func(n)]

TotalSize〈n〉 ←− TotalSize〈g(T,T,F,F)〉 , ¬ CompPostSize〈n〉
PostSize〈n〉 ←− TotalSize〈g(T,T,F,F)〉 , ¬ CompPostSize〈n〉
PreSize〈n〉 ←− TotalSize〈g(T,T,F,F)〉 , ¬ CompPostSize〈n〉 ,

¬ CompPreSize〈n〉 , ¬ CompThroughSize〈n〉

ThroughSize〈n〉 ←− TotalSize〈g(T,T,F,F)〉 , ¬ CompPostSize〈n〉 ,
¬ CompPreSize〈n〉 , ¬ CompThroughSize〈n〉

The remaining stack size rules are based on those in Section 6.3 and are shown in

Fig. 6.4 and Fig. 6.5.

6.4.4 Extracting solutions

Given a stable model of the rules described in this section, we can extract a solution that

is equivalent to the solution that we would have obtained using the methods suggested in

Section 6.3.3. The merged set M and unguarded merge set U are given by:

M = {n | TotalSize〈g(T,T,F,F)〉 v PostSize〈n〉, g = func(n)}
U = {n | TotalSize〈g(T,T,F,F)〉 v ThroughSize〈n〉, g = func(n)}

98 Chapter 6 Optimising task-local memory allocation

[f ∈ F , γ ∈ (B× B× B× B), n ∈ Nodes(fγ)]

TotalSize〈fγ〉 ←− frame(fγ) + TotalSize〈n〉

[f ∈ F , γ ∈ (B× B× B× B), n ∈ Nodes(fγ), (m0, . . . ,mk) ∈ Upaths(, n)]

TotalSize〈fγ〉 ←−frame(fγ) + PostSize〈m0〉

+
∑

0<i<k

ThroughSize〈mi〉

+ PreSize〈mk〉

[f ∈ F , γ ∈ (B× B× B× B), (n0, . . . , nk) ∈ Upaths(, end(fγ))]

PostSize〈fγ〉 ←− PostSize〈n0〉

+
∑

0<i≤k

ThroughSize〈ni〉

[f ∈ F , γ ∈ (B× B× B× B), (n0, . . . , nk) ∈ Upaths(start(fγ),)]

PreSize〈fγ〉 ←−frame(fγ) +
∑

0≤i<k

ThroughSize〈ni〉

+ PreSize〈nk〉

[f ∈ F , γ ∈ (B× B× B× B), (n0, . . . , nk) ∈ Upaths(start(fγ), end(fγ))]

ThroughSize〈fγ〉 ←−
∑

0≤i≤k

ThroughSize〈ni〉

Figure 6.4: Rules for Functions

6.4 The analysis as a general implication program 99

[f ∈ F , γ ∈ (B× B× B× B), n ∈ Calls(fγ), g = func(n),

cr ∈ B, sr ∈ B, sg ∈ B, crg ∈ B]

TotalSize〈n〉 ←− TotalSize〈g(cr ,sr ,sg,crg)〉 ,
lit(cr, CompPostSize〈n〉) ,
lit(sr, SuppPostSize〈n〉) ,
lit(sr, SuppPreSize〈n〉) ,
lit(crg, CompThroughSize〈n〉)

PreSize〈n〉 ←− PreSize〈g(cr ,sr ,sg,crg)〉 ,
lit(cr, CompPostSize〈n〉) ,
lit(sr, SuppPostSize〈n〉) ,
lit(sr, SuppPreSize〈n〉) ,
lit(crg, CompThroughSize〈n〉)

PostSize〈n〉 ←− PostSize〈g(cr ,sr ,sg,crg)〉 ,
lit(cr, CompPostSize〈n〉) ,
lit(sr, SuppPostSize〈n〉) ,
lit(sr, SuppPreSize〈n〉) ,
lit(crg, CompThroughSize〈n〉)

ThroughSize〈n〉 ←− ThroughSize〈g(cr ,sr ,sg,crg)〉 ,
lit(cr, CompPostSize〈n〉) ,
lit(sr, SuppPostSize〈n〉) ,
lit(sr, SuppPreSize〈n〉) ,
lit(crg, CompThroughSize〈n〉)

where lit(b,A) is a macro for

¬¬A if b = T

¬A if b = F

Figure 6.5: Rules for Call Instructions

100 Chapter 6 Optimising task-local memory allocation

6.5 Stratification

We could find stable models for the general implication program using backtracking algo-

rithms similar to those used in answer set programming, based on the DPLL algorithm.

However, using stratified models finds them more directly.

It is easy to see that the implication program derived in the previous section cannot

be stratified. However looking at the rules we can make the following observations:

1. CompPostSize and CompThroughSize only depend negatively on other predicates

via the bounding rules.

2. The bounding rules only apply within a function with context (T, T, F, F) if that func-

tion contains an instruction with unbounded TotalSize, and such functions have

unbounded TotalSize with or without the bounding rules. This means that the

TotalSize of all functions f(T,T,F,F) can be calculated without the bounding rules, and

in such a calculation TotalSize will only depend negatively on the CompPostSize

and CompThroughSize predicates.

3. For any instruction n, if SuppPreSize〈n〉 equals > then the value of

SuppPostSize〈n〉 will not affect the values of PreSize〈n〉 or ThroughSize〈n〉. This

means that the PreSize of any function with a context of the form (cr, sr, T, crg)

only depends negatively on the TotalSize of functions with context (T, T, F, F) and

on the values of CompPostSize and CompThroughSize calculated without the bound-

ing rules.

4. If ThroughSize〈f(cr ,T,sg,crg)〉 6= ThroughSize〈f(cr ,F,sg,crg)〉 then

PostSize〈f(cr ,T,sg,crg)〉 = PostSize〈f(cr ,F,sg,crg)〉 = >. Therefore, for any instruction

n, the value of SuppPreSize〈n〉 will not affect the values of PostSize〈n〉. This

means that the PostSize of any node only depends negatively on the TotalSize of

functions with context (T, T, F, F) and on the values of CompPostSize,

CompThroughSize and SuppPostSize.

This means that we can create a stratifiable general implication program by using five

layers of the general implication program from the previous section. Each layer is a more

accurate approximation of the full set of rules. All negative literals are made to refer to

the literals of the previous layer, so that the program can easily be stratified.

These layers work as follows:

1. The first layer calculates the values of CompPostSize and

CompThroughSize ignoring the bounding rules.

2. The second layer calculates the values of TotalSize for all functions with context

(T, T, F, F).

6.6 Complexity of the analysis 101

3. The third layer calculates the values of SuppPostSize.

4. The fourth layer calculates the values of SuppPreSize.

5. The fifth layer calculates the values of all the remaining predicates.

It can be shown that the stable models of the previous general implication program

are equivalent to the stable models of this stratified general implication program. Since

stratifiable general implication programs have a unique stable model, this shows that our

analysis has a unique solution.

6.6 Complexity of the analysis

The unique stable model of a stratified general implication program P1 ∪ · · · ∪ Pk is the

same as its standard model. This standard model can be computed in polynomial time if

the least fixed points of each TPi can be computed in polynomial time.

While some of the rule families of our analysis contain an infinite number of rules

this was only for presentation. They can also be expressed by a finite number of rules,

using an additional predicate to represent the maximum sum of ThroughSize between

two instructions:

[f ∈ F , n,m ∈ Nodes(f), (l0, . . . , lk) ∈ Upaths(n,m), ∀ 0 < i < k]

PathMax〈n,m〉 ←− PathMax〈n, li〉+ PathMax〈li ,m〉+ ThroughSize〈li〉

Since the number of rules is polynomial, and the operations within the rules are all

polynomial time, each iteration of TPi can be computed in polynomial time.

Each possible bounded size that can be assigned to a predicate in P is uniquely de-

termined by a set of (context-sensitive) function names and instruction nodes. Otherwise

that size would include a recursive call or an unbounded iteration of spawns, and so would

be >. This means that the number of times a predicate can increase its size is propor-

tional to the size of the original OpenMP program, so the least fixed points of each TPi

can be computed in polynomial time.

6.7 Implementation

This analysis is implemented within EMCC as two separate analyses. The first one does a

control-flow analysis to work out the unsynchronised paths in each function. The results

of this analysis are attached to each spawn and call instruction using properties. The

second analysis uses these properties to create the stratified set of rules representing the

analysis. The iterated least model of these rules is then calculated, and spawns and calls

are marked as merged and unguarded according to its results. The stack size bounds

102 Chapter 6 Optimising task-local memory allocation

are also attached to the spawns and calls, so that space can be reserved on stacks where

necessary. Both these analyses are implemented as OCaml functors that expect functions

for inspecting statements and visitors for traversing the control-flow and call graphs.

Some of the handlers used with the Generate module to convert the OpenMP IL into

C were overridden so that the back-end produced code using stacks instead of dynamic

allocation. These new handlers recognise the properties produced by the analyses and

uses them to merge stacks where possible.

The execution time of this (quite naive) implementation seems to be very good, with

no noticable difference in compilation times on any of the programs that we have tried.

This is to be expected as we have shown the time complexity to be polynomial to the

number of spawn sites and suspendable function calls, which will very small in a typical

OpenMP program.

6.8 Evaluation

We compared our OpenMP implementation using this optimisation with the original

version using heap-based allocation of stack frames (see Chapter 5). We also compare it

with a version which uses stacks but does not apply our optimisation.

We compared the implementations using programs from the Barcelona Tasks Suite [23]:

Alignment, NQueens and Sort. Alignment uses an iterative pattern with a parallel loop

that spawns multiple tasks. The other two use recursive divide-and-conquer patterns, with

each task spawning multiple tasks and then waiting for them to finish. The benchmarks

were run on a server with 32 AMD Opteron processors.

The speed-ups for each benchmark are shown in Fig. 6.6. These show that the op-

timised version scales just as well as our heap-based version. The version using stacks

without our optimisation does not scale as well because it is forced to restrict parallelism

using load-based inlining.

The relative execution time of the optimised and heap versions for each benchmark is

shown in Fig. 6.7. Alignment shows no difference between implementations, Sort shows

an improvment of 4% using our optimisation, and NQueens shows an improvemnt of 9%.

6.8 Evaluation 103

Figure 6.6: Speed-up

104 Chapter 6 Optimising task-local memory allocation

Figure 6.7: Relative execution time

6.9 Conclusion 105

6.9 Conclusion

In this chapter we have described a program analysis for OpenMP to enable tasks to

share stacks for task-local memory. We have shown how a novel implication-algebra

generalisation of logic programming allows a concise but easily readable encoding of the

various constraints.

Using this formalism we were able to show that the analysis has a unique solution and

polynomial time complexity.

We implemented this optimisation in EMCC and provided experimental results that

show that it provides reasonable improvements in performance compared with the heap-

based approach described in Chapter 5.

Chapter 7

Extensions to OpenMP for

heterogeneous architectures

In this chapter we use EMCC to implement another language extension: we add extensions

to OpenMP to support heterogeneous architectures.

Section 7.1 discusses heterogeneous architectures and the challenges they pose for

OpenMP. Section 7.2 presents relevant related work. Section 7.3 describes our proposed

extensions. Section 7.4 discusses how the extensions can be implemented using EMCC

and our customisable run-time library. Section 7.5 presents experimental results to show

some benefits of the extensions.

7.1 Heterogeneous architectures and OpenMP

Modern architectures are becoming more heterogeneous. Power dissipation issues have

led chip designers to look for new ways to use the transistors at their disposal. This

means multi-core chips with a greater variety of cores and increasingly complex memory

systems. These modern architectures can contain a GPU or a number of slave processors,

in addition to their CPUs. Developing programs for architectures containing multiple

kinds of processors is a new challenge. This chapter describes the design of some extensions

to OpenMP to support its implementation on heterogeneous architectures.

There are two main problems with implementing and using OpenMP on a modern

heterogeneous architecture:

1. The model assumes that there is a single coherent memory space. Compiler tech-

niques for mapping programs written for a single memory space onto architectures

that have partitioned memory systems have had some success [15, 16, 29]. However

it seems that these techniques will not solve the problem in the general case, and

some sort of extension to OpenMP will be required.

107

108 Chapter 7 Extensions to OpenMP for heterogeneous architectures

void a9 (int n , int m, f loat *a , f loat *b , f loat *y , f loat *z)

{
int i ;

#pragma omp paral le l

{
#pragma omp for nowait

for (i =1; i<n ; i++)

b [i] = (a [i] + a [i −1]) / 2 . 0 ;

#pragma omp for nowait

for (i =0; i<m; i++)

y [i] = s q r t (z [i]) ;

}
}

Figure 7.1: First Example: Two parallel loops

2. There is no mechanism for allocating work to specific processors on an architecture.

This problem is orthogonal to the first one: whatever method is used to address

partitioned memory systems, if OpenMP continues to use fork/join, loop-based and

task-based parallelism then it will require mechanisms for mapping these models

onto heterogeneous architectures.

It is the second problem that our extensions attempt to solve. They increase the expressiv-

ity of OpenMP to give programmers control over how work is allocated on a heterogeneous

architecture.

We start with some illustrative examples of how OpenMP is used in practice, adapted

from those found in the OpenMP Version 3.0 Specification [61]. Fig. 7.1 shows how two

loops can be divided between the threads in a team. It consists of a parallel construct

containing two for constructs (each annotated with a nowait clause). Fig. 7.2 shows a

how a single thread in a team can traverse a list creating one task for each node. These

tasks will then be executed by the other threads in the team.

The work in these examples could be allocated onto a heterogeneous architecture in

a number of ways. The simplest allocation would allow the threads in the team to be

executed by any of the processors in the architecture. However, it might be more efficient

to restrict the threads to a selection of the processors – perhaps those sharing a single

memory unit. This would require some form of thread mapping extension, to allow the

programmer to describe which threads in a team were restricted to which processors.

It is also possible that, in the first example, the processors best suited to execute

the first loop differ from those best suited to execute the second. Perhaps there are two

groups of processors, and the most efficient solution is to run the first loop on one group

while the second loop runs on the other. In either case, the best allocation involves using

7.2 Related work 109

void p r o c e s s l i s t i t e m s (node *head)

{
#pragma omp paral le l

{
#pragma omp single

{
node *p = head ;

while (p) {
#pragma omp task

proce s s (p) ;

p = p−>next ;

}
}

}
}

Figure 7.2: Second Example: Using tasks to traverse a list

different threads to execute the two workshares. This would either require two separate

teams running in parallel (i.e. nested parallelism), or workshares restricted to subsets of

the threads in the team (i.e. subteams).

The best allocation for the second example might involve allocating the processing

tasks to accelerators, while the main loop is executed on the central processor. This

would require the single workshare to be restricted to the subset of threads executing

on the main processor and the task constructs to be restricted to the subset of threads

executing on the accelerators. Note that nested parallelism could not be used to achieve

this allocation.

OpenMP is currently incapable of expressing these possible allocations. In this chapter,

we propose a combination of thread mapping and named subteams to control how work

is allocated amongst the different parts of a heterogeneous architecture. We also perform

some experiments with a prototype implementation on the Cell Broadband Engine to

show the benefit of giving the programmer control over the allocation of work onto a

heterogeneous architecture.

7.2 Related work

The need to extend OpenMP to handle the increasing complexity of modern processors

has prompted a number of proposals for extensions. We discuss them here in relation to

the examples discussed in the previous section.

Device-annotated tasks [4, 26] have been proposed to allow OpenMP tasks to be

110 Chapter 7 Extensions to OpenMP for heterogeneous architectures

.

.

.

while (p) {
#pragma omp task t a r g e t dev i c e (a c c e l e r a t o r)

p roce s s (p) ;

p = p−>next ;

}
.
.
.

Figure 7.3: Using device-annotated tasks to offload tasks to an accelerator

offloaded to accelerators. The OpenMP syntax is extended to allow a device clause to

be attached to task constructs. This clause takes, as its argument, an identifier that

represents a device capable of executing the task. Fig. 7.3 shows how this extension can

be used to assign the tasks in our second example to an accelerator. This extension is an

effective way of offloading tasks to accelerators, however it does not allow any of a team’s

threads to run on the accelerators. It also breaks the notion that all work in OpenMP

is done by teams of threads, and forces the use of task-based parallelism where fork/join

or loop-based parallelism might be more appropriate. These extensions also provide no

mechanism to allow the programmer to specify how many instances of a given device

should be used or if/when they should be initialised.

Zhang [76] proposes extensions to support thread mapping. The OpenMP execution

model is extended to include the notion of a logical processor, which represents something

on which a thread can run. An architecture is thought of as a hierarchy of these logical

processors. The OpenMP syntax is extended by allowing an on clause to be used with

parallel constructs. This clause takes an array of logical processors as its argument,

then the team’s threads are allocated from each processor in the list in turn. Fig. 7.4

shows how this kind of extension can be used to execute our first example on a selection

of the processors in an architecture (in this case the processors 0, 2 and 4). However

these extensions do not allow different pieces of work in a parallel region to be allocated

to different selections of processors. A new team would have to be created each time a

different set of processors is required, which is potentially expensive. They also do not

allow tasks to be created on one processor for execution on another. Furthermore, these

extensions break the OpenMP rule that the thread that encounters a parallel construct

becomes part of the new team.

Multiple levels of parallelism are already supported in OpenMP with nested parallel

constructs, however the creation of new thread teams is often prohibitively expensive, and

tasks cannot be exchanged between the threads in separate teams. Accordingly Huang et

al. [34] propose allowing workshares to be executed by a subteam, as a cheaper alternative

7.2 Related work 111

void a9 (int n , int m, f loat *a , f loat *b , f loat *y , f loat *z)

{
omp group t g [3] ;

omp group t procs = omp get procs () ;

a s s e r t (omp get num members (procs) > 5) ;

g [0] = omp get member (procs , 0) ;

g [1] = omp get member (procs , 2) ;

g [2] = omp get member (procs , 4) ;

int i ;

#pragma omp paral le l on (g)

{
.
.
.

}
}

Figure 7.4: Using thread mapping to control the allocation of the example from Fig. 7.1

to nested parallelism. It works using an onthreads clause for workshares, e.g.

#pragma for onthreads(first:last:stride)

where first to last is the range of thread indices and stride is the stride used to se-

lect which threads are members of the subteam that will execute the workshare.

Other directive-based programming models, similar to OpenMP, have been created

for use with accelerators, especially GPUs. The PGI Accelerator Model [74] consists of

directives for executing loops on an accelerator. HMPP [21] uses directives to allow remote

procedure calls on an accelerator. These calls can be asynchronous, giving them some of

the functionality of OpenMP tasks. Both these models only support a single model of

parallelism and can only allocate work to either the main processor or the accelerators.

Low-level programming models to enable programming with accelerators, especially

GPUs, have also been created and have seen wide-spread use. The two most popular are

the CUDA framework [58] by Nvidia and the OpenCL framework [40] by Apple. These

frameworks allow programmers to utilise accelerators, but they are very low-level. This

makes them difficult to use and code written in them is not very portable.

112 Chapter 7 Extensions to OpenMP for heterogeneous architectures

7.3 Design of the extensions

This section describes our extensions to the OpenMP execution model and syntax for

implementing OpenMP on heterogeneous architectures. These are centred around two

complementary extensions: thread mapping and named subteams.

7.3.1 Thread mapping and processors

The current OpenMP execution model consists of teams of threads executing work. We

propose extending this model with thread mapping. Thread mapping consists of placing

restrictions, for each thread, on which parts of an architecture can participate in that

thread’s execution.

We define an architecture as a collection of processing elements (a hardware thread,

a CPU, an accelerator, etc.), which are capable of executing an OpenMP thread. Each

thread is mapped to a subset of these processing elements, called its processing set. A

thread may migrate between processing elements within its processing set, but will never

be executed by an element outside its set. Which subsets of the processing elements in

an architecture are allowed as processing sets is implementation-defined.

Processing sets are represented by values of the new type omp procs t. These val-

ues are created using implementation-defined expressions (typically macros or functions).

Some examples of possible processing sets and expressions to represent them are:

� Group processors based on their functions (e.g. MAIN for the main processors and

ACC for the accelerators).

� Arrange the processors in a tree and allow any sub-trees of this hierarchy as pro-

cessing sets. These processing sets could be represented by a variadic function or

macro, where a sub-tree is represented by their child indices on the path from the

root of the tree (e.g. TREE(n,m) represents the sub-tree that is the mth child of the

nth child of the root of the hierarchy).

� Other patterns that specify groups of processors (e.g. STRIDE(n1,n2,s)).

� Allow any set of processing elements as a processing set, and provide a full range

of functions to manipulate these sets. (union procs(p,q), intersect procs(p,q),

etc.).

� Expressions that do not change the processing set of a given omp procs t value,

but provide guidance about how groups of threads should be executed on these

processing elements (SCATTER(p), COMPACT(p), etc.).

7.3 Design of the extensions 113

7.3.2 Subteams

In the current OpenMP execution model tasks and workshares are executed by all of the

threads in the team. We propose changing this model to allow tasks and workshares to

be restricted to a subset of the threads in a team. To make creating these subsets easier

we introduce the notion of subteams. Each team is divided into disjoint subteams, which

are created when the team is created and remain fixed throughout the team’s lifetime.

The subset of threads associated with a task or workshare is specified by combining one

or more subteams.

Subteams are referenced through the use of subteam names. These are identifiers

with external linkage in their own namespace (similar to the names used by the critical

construct). They exist for the duration of the program and can be used by different teams

to represent different subteams. Each team maintains its own mapping between subteam

names and subteams. Every subteam in a team must be mapped to a different subteam

name.

7.3.3 Syntax

The subteams clause Thread mapping, subteam creation and the mapping of subteams

to subteam names is all done using a single clause for the parallel construct:

subteams(name1(procs1)[size1], name2(procs2)[size2], ...)

Each argument of the clause creates a new subteam containing sizei threads, which is

mapped to the subteam name namei. All the threads in the subteam are mapped to the

processing set represented by the omp procs t expression procsi. If no name is given then

the subteam is mapped to a unique unspecified name. If no processing set is given, or

the keyword auto is used instead, the implementation chooses an appropriate processing

set. The first subteam listed is the master subteam and contains the master thread of

the team. The processing set used with the master subteam must be a superset of the

processing set that the encountering thread was mapped to.

The on clause Subteams can be used to specify the subset of threads associated with

a workshare or task construct by annotating that construct with an on clause:

on(subteams1, subteams2, ...)

Each argument subteamsi is a subteam name. The threads that are members of the

subteams mapped to these subteam names (according to the current team’s mapping) are

used to execute the task or workshare.

114 Chapter 7 Extensions to OpenMP for heterogeneous architectures

void a9 (int n , int m, f loat *a , f loat *b , f loat *y , f loat *z)

{
int i ;

#pragma omp paral le l subteams (s t1 (PROC 1) [4] , s t2 (PROC 2) [4])

{
#pragma omp for nowait on (s t1)

for (i =1; i<n ; i++)

b [i] = (a [i] + a [i −1]) / 2 . 0 ;

#pragma omp for nowait on (s t2)

for (i =0; i<m; i++)

y [i] = s q r t (z [i]) ;

}
}

Figure 7.5: Using subteams to divide work between processors in the example from Fig. 7.1

When a workshare or task construct without an on clause is encountered, it is as-

sociated with the subset of threads defined by the default subteams set. This is a set

of subteam names, which is stored in a per-task internal control variable (these are the

variables that control the behaviour of an OpenMP implementation). By default, the

default subteams set is the set of subteam names that represent the subteams executing

the current piece of work.

In addition to the on clause, an on construct is also added, of the form:

#pragma omp on(subteams1, subteams2, ...)

structured block

Each argument subteamsi is a subteam name. Threads that are members of the subteams

mapped to these subteam names execute the structured block, all other threads ignore

the construct. The on clause can also be attached to a parallel construct as syntactic

sugar for a parallel construct containing a single on construct.

7.3.4 Examples

Fig. 7.5 shows how these extensions can be used to allocate the loops of our first example

onto different processors. Two subteams are created and each executes one of the loops.

Here PROC 1 and PROC 2 are macros representing processing sets (each representing a

different processor), and st1 and st2 are subteam names. Fig. 7.6 shows how these

extensions can be used to assign the tasks of our second example onto accelerators. The

subteams clause is used to create two subteams. The first subteam contains only the

master thread and allows the implementation to choose a suitable processing set. The

7.4 Implementation 115

void p r o c e s s l i s t i t e m s (node *head)

{
#pragma omp paral le l subteams (main [1] , accs (ACC) [5])

{
#pragma omp single on (main)

{
node *p = head ;

while (p) {
#pragma omp task on (accs)

p roce s s (p) ;

p = p−>next ;

}
}

}
}

Figure 7.6: Using subteams to offload tasks to an accelerator in the example from Fig. 7.2

second subteam contains five threads mapped to the processing set represented by the

macro ACC. The single construct is associated with the first subteam, which forces the

block to be executed by the master thread. The task construct is then associated with

the second subteam so that all the tasks created by it will be executed by the threads on

the accelerators. Here main and accs are subteam names.

7.4 Implementation

We were able to add support for subteams to our OpenMP implementation without

changing the OpenMP IL by using properties. The appropriate handlers in the front-end

were extended to detect subteams and on clauses and add properties to the resulting

IL nodes. Similarly, the handlers in the back-end were extended to detect the relevant

properties and create the required calls into the run-time library.

Most of the implementation effort for these extensions was in adding support for

heterogeneous architectures to our run-time library.

It is worth noting that these extensions were designed before EMCC was developed,

but they turned out to be very easy to hook into it using its various extensions mechanisms.

This perhaps illustrates the flexibility of EMCC’s approach.

116 Chapter 7 Extensions to OpenMP for heterogeneous architectures

7.5 Experiments

To show the benefits of increasing the expressivity of OpenMP to allow the programmer

to control how work is allocated to processing elements, a prototype implementation

was created for the Cell Broadband Engine [14]. The aim of these experiments is to

demonstrate that:

1. Traditional OpenMP programs can easily take advantage of heterogeneous architec-

tures to improve performance

2. Different programs must be allocated onto heterogeneous architectures in different

ways, so it is important to let the programmer control this allocation.

The Cell Broadband Engine processor includes one PowerPC Processor Element (PPE)

and seven Synergistic Processor Elements (SPEs). The PPE has two hardware threads

and accesses main memory through a cache. The SPEs cannot access main memory

directly, instead they use 256kB local stores. The SPEs can perform DMA transfers

between their local stores and main memory. The prototype implementation supports

two processing sets: one mapping threads to the PPE and another mapping threads to

the SPEs. The initial thread is mapped to the PPE. We use the Cell Broadband Engine

of a Playstation 3 for the experiments.

The prototype implementation uses only simple mechanisms to move memory to/from

the SPEs’ local memories. Shared variables are accessed through simple software-managed

caches in the local stores, while private variables are kept on the local stores within the

call stack. Alternatives to simple software-managed caches have been shown to be more

effective [15, 16, 29] and would be preferred in a more refined implementation.

The test programs are taken from the OpenMP C implementation of the NAS Parallel

Benchmarks [37]. Each program was modified by adding a subteams clause to each of its

parallel constructs. These clauses contain one subteam mapped to the PPE and one

mapped to the SPEs. An on clause is also added to the parallel constructs to allow the

parallel region to be executed by just the threads on the SPEs.

The test programs are:

EP Pairs of Gaussian random deviates are generated. The main part of the algorithm

is a for workshare that performs computation on private data. There is very little

communication between threads.

IS A large integer sort is performed. The main part of the algorithm is a for workshare

that includes regular access to a shared array.

CG A conjugate-gradient method is used to compute an approximation to the smallest

eigenvalue of a large, sparse, symmetric positive definite matrix. It contains a series

of for workshares, some including irregular access to shared arrays.

7.5 Experiments 117

EP

SPE Threads

PPE

Threads

0 1 2 3 4 5 6 7

0 - 1.23 2.45 3.68 4.90 6.12 7.35 7.31

1 1 2.02 3.01 4.04 4.98 6.03 7.01 7.98

2 1.68 2.51 3.34 4.17 5.01 5.85 6.68 7.43

3 1.62 2.17 2.71 3.24 3.76 4.32 4.80 5.31

IS

SPE Threads

PPE

Threads

0 1 2 3 4 5 6 7

0 - 0.07 0.14 0.20 0.27 0.33 0.39 0.36

1 1 0.14 0.20 0.27 0.33 0.39 0.44 0.42

2 1.42 0.20 0.27 0.33 0.39 0.45 0.50 0.45

3 1.18 0.27 0.33 0.39 0.45 0.50 0.55 0.49

CG

SPE Threads

PPE

Threads

0 1 2 3 4 5 6 7

0 - 0.10 0.20 0.30 0.40 0.50 0.6 0.22

1 1 0.21 0.31 0.41 0.51 0.62 0.72 0.19

2 1.64 0.31 0.41 0.51 0.62 0.72 0.82 0.21

3 0.5 0.29 0.33 0.37 0.40 0.41 0.43 0.15

Figure 7.7: Speed-ups obtained by using different numbers of PPE and SPE threads

We use these programs because they are traditional OpenMP programs, and they

are of quite different natures, which allows us to effectively demonstrate the need for

programmer control over the allocation of work on heterogeneous processors.

The speed-ups from adding threads to either the PPE or the SPEs are shown in

Fig. 7.7. The greatest speed-up is highlighted in the table for each program.

The best speed-up for EP is obtained using a thread on the PPE and seven SPE

threads. This is equivalent to one thread on each processor. This program is inherently

very parallel, so the nearly linear relation between speed-up and number of threads is as

expected.

The best speed-up for IS is obtained using two threads on the PPE and no SPE

threads. This is probably due to the access to shared arrays in the main loop. The

simple software cache used by our implementation is an inefficient method for handling

118 Chapter 7 Extensions to OpenMP for heterogeneous architectures

these regular loop accesses, and it is possible that a more refined implementation would

actually get better performance from an allocation including SPEs.

The best speed-up for CG is also obtained using two threads on the PPE and none on

the SPEs. In this case the access to shared arrays is irregular and very hard to optimise,

so this result is unsurprising.

While memory sharing effects arguably dominate these figures, we argue that the size

of the disparities shows the importance of allowing programmers to control how work is

allocated onto a heterogeneous architecture. The performance of all three test programs

is improved by using multiple threads, however the best thread mapping is not the same

for all three. Observe that the best thread mapping for EP causes significant loss of

performance in IS and CG.

Only the EP benchmark was able to improve performance by using the SPEs, but

the other two benchmarks could both have their performance on the SPEs improved by

using a more refined mechanism than a simple software-managed cache. However, some

programs are simply not amenable to being split across a partitioned memory space, so

primitives to express thread mapping are still required.

The EP benchmark also shows that performance can be improved by allowing a single

workshare to operate across the different kinds of element on a heterogeneous architecture

like the Cell.

7.6 Conclusion

In this chapter we have described the design of extensions to OpenMP to support hetero-

geneous architectures. These extensions allow the programmer to specify the allocation

of work onto the different processing elements of the architecture.

We also described how these language extensions were implemented as extensions to

our EMCC OpenMP implementation described in Chapter 5.

We showed benchmark results using this implementation that illustrate the need to

allow the programmer to specify how work is allocated onto a heterogeneous architecture

(in this case the Cell Broadband Engine).

Chapter 8

Conclusion

8.1 Conclusion

In this thesis we have addressed the problem of creating programming language extensions

that take advantage of new architectural features. We have done this through the design

and implementation of EMCC, a C compiler that allows extensions of its front-, middle-

and back-ends. This allows language extensions to be semantically integrated with the

rest of the language.

By allowing extensions to its middle-end, EMCC can support parallel-aware middle-

ends. This enables the analysis and optimisation of parallel programs, and the implemen-

tation of high-level forms of parallelism.

We have demonstrated the benefits of such a compiler by creating a new implemen-

tation of the OpenMP programming language. This implementation uses more complex

transformations to implement OpenMP tasks with more lightweight methods than previ-

ous implementations, allowing it to match Cilk in terms of performance. This lightweight

implementation is based on our theoretical demonstration that OpenMP tasks can be

implemented in a space-efficient way without affecting time efficiency.

We demonstrated the benefits of supporting high-level analysis for language extensions,

by developing and implementing a new analysis of OpenMP programs, which detects when

it is safe for multiple tasks to share a single stack. We developed a generalisation of logic

programming to allow a concise but easily readable encoding of this analysis. Using this

formalism we were able to show that the analysis has a unique solution and polynomial

time complexity.

Finally, we used EMCC to implement extensions to OpenMP to support heterogeneous

architectures. These extensions allow the programmer to choose how work is allocated to

different processing elements on an architecture.

119

120 Chapter 8 Conclusion

8.2 Future work

EMCC only supports extending syntax through attributes, pragmas and built-in func-

tions. While most extensions do not require the ability to arbitrarily extend the syntax of

a language, a more powerful system for syntax extensions might be considered desirable.

While EMCC allows optimisations and translations to be specified through common

modular interfaces, we have not addressed the question of what these modular interfaces

should be. This is a matter of identifying features that many middle-ends (and ILs in

particular) have in common, so that the optimisations and translations can be applied as

generally as possible. This could involve identifying common features across very different

programming models: do middle-ends for functional languages share common structures

with those for object-oriented or procedural languages?

The problem of identifying common modular interfaces is related to the issue of design-

ing general frameworks for specifying optimisations. Frameworks, such as the monotone

dataflow analysis frameworks [39], are popular methods of describing optimisations. Mak-

ing such frameworks available in EMCC, through a modular interface, would allow many

common optimisations to be easily encoded.

The current version of EMCC uses C as its back-end, treating it as a portable assembly

language. EMCC would benefit from the addition of more back-ends: outputting C code

is simple, but relies on using another C compiler. This means that new architectural

features must first be made available (at a low-level) through another C compiler before

EMCC can be used to create high-level language extensions that exploit that feature. The

easiest way to add new back-ends would probably be to use an existing virtual machine

such as LLVM [45] or JVM [51].

Appendix A

Inefficient schedule proof

A.1 Size lower-bound

For a p-thread schedule X , we define the overlap between the core of a chain x and the

core of its successor as:

overlapX (x) =

 {} if ω−1(tx ,1) ≤ ω−1(c(x+1),1)[
ω−1(c(x+1),1), ω−1(tx ,1)

]
otherwise

We also define the set of variables that is accessed by the tail of a chain x :

Vx = {v(x+1,1,1), . . . , v(x+1,l ,s)}

Note that ∀v ∈ Vx overlapX (x) ⊆ liveX (v).

We can now define the set of chains whose tails are being overlapped at a time-step i :

exposedX (i) = {x < w | i ∈ overlapX (x)}

Since all v ∈ Vx are live while the chain x is being overlapped, and distinct variables

that are live at the same time-step cannot be mapped to the same location:

∀i , (x1, x2 < w), v1 ∈ Vx1 , v2 ∈ Vx2 .

x1 ∈ exposedX (i) ∧ x2 ∈ exposedX (i)

=⇒ (v1 = v2) ∨ `(v1) 6= `(v2)

Therefore

∀i . Sp(X) ≥ ls |exposedX (i)| (A.1)

A.2 Time lower-bound

Observe that, by the definition of Tp(X), for any valid schedule X :

Tp(X) ≥ ω−1(tw ,1)− ω−1(c1 ,1)

121

122 Appendix A Inefficient schedule proof

We can expand this into

Tp(X) ≥
w∑

x=1

(ω−1(tx ,1)− ω−1(cx ,1))

−
w−1∑
x=1

(ω−1(tx ,1)− ω−1(cx+1 ,1))

Since the difference in the second sum of this inequality is always less than or equal to

the number of time-steps that the chain is overlapped, we can reduce the inequality to:

Tp(X) ≥ 2lw −
w−1∑
x=1

|overlapX (x)|

Furthermore, since the sum of the number of time-steps each chain is overlapped is equal

to the sum of the number of chains overlapped at each time-step:

Tp(X) ≥ 2lw −
Tp(X)∑
i=1

|exposedX (i)| (A.2)

A.3 Combining the bounds

From (A.2) we can place a lower bound on the average number of chains overlapping at

each time step:

1

Tp(X)

Tp(X)∑
i=1

|exposedX (i)| ≥ 2lw

Tp(X)
− 1

Since there must be at least one time-step at which the number of chains overlapped is

greater than or equal to the average, we can combine this equation with (A.1) to get a

lower bound on the space used:

Sp(X) ≥ ls

(
2lw

Tp(X)
− 1

)
(A.3)

A.4 Efficient schedules

Now if we assume that the following condition holds (which is a requirement of the

schedules from an absolutely time-efficient schedule when p ≤ w)

Tp(X) = O(
T1

p
)

= O(
4lw

p
)

Appendix A Inefficient schedule proof 123

Substituting this into (A.3) and reducing gives us:

Sp(X) ≥ ls

(
2lw

O(4lw
p

)
− 1

)
≥ ls

(
Ω(

p

2
)− 1

)
≥ ls × Ω(p − 1)

Finally, since p > 1, we can simplify this to:

Sp(X) = Ω(lsp)

Appendix B

Task-based space efficiency proof

B.1 Definitions

B.1.1 Task-local variables

All the variables in a task-based computation are local to a specific task. Since tasks are

totally ordered sequences of instructions n0, . . . , nl , we can define the local live variables

at an instruction ni as:

liveLocalVars(ni) = {v ∈ V | ∃ j < i . nj ∈ Av ∧ ∃ k > i . nk ∈ Av}

B.1.2 Spawn descendents

We write spawned(n) for the set of tasks (either one or none) that are spawned by that

instruction (i.e. they are the destination of a spawn edge that comes from n).

We define all the tasks descended from a spawn instruction as the set of tasks that

are descended from the task spawned by that instruction:

spawnDescendents(n) = {τ | ∃ τ ′ ∈ spawned(n). τ ′ ≺ τ}

B.1.3 Sync descendents

We write synced(n) for the set of tasks that are synced by that instruction (i.e. they are

the orign of a join edge leads to n).

We define all the tasks descended from a sync instruction as the set of tasks that are

descended from a task synced by that instruction:

syncDescendents(n) = {τ | ∃ τ ′ ∈ synced(n). τ ′ ≺ τ}

125

126 Appendix B Task-based space efficiency proof

B.2 Pre-order scheduler efficiency

Note that, in a single-threaded scheduleW0 from a depth-first pre-order scheduler, when

a task reaches a sync instruction n all the tasks in synced(n) will be waiting to start.

These tasks must be finished before the sync instruction is executed, and since this is a

depth-first schedule all their descendents must also be finished before the sync instruction

is executed. This means that if ni is a sync instruction from a task with instructions

n0, . . . , nk then:

∀τ ∈ syncDescendents(ni).

lifetimeW0 (τ) ⊆ [ω−1(ni−1), ω
−1(ni)]

therefore

∀τ ∈ syncDescendents(ni). ∀v ∈ liveLocalVars(ni)

lifetimeW0 (τ) ⊆ liveW0 (v)

From this we define the pre-order depth of an instruction. This is essentially the

activation depth when the instruction is executed by a single-threaded schedule from a

pre-order scheduler. For an instruction n that is part of the task τ :

preorderDepth(n) =

{
v ∈ V | ∃m.

τ ∈ syncDescendents(m)

∧ v ∈ liveLocalVars(m)

}
∪ liveLocalVars(n)

Note that ∀ n. SW > |preorderDepth(n)|.
Now consider a p-thread schedule Wp a depth-first pre-order scheduler. By the

definition of pre-order scheduling, at any point in the execution schedule, every live task

is either being executed or suspended at a sync whilst one of that sync’s descendents is

being executed.

Since task-local variables can only be live while their associated tasks are live, every

variable that is live at a particular time-step is associated with either a currently executing

instruction or sync instruction with an executing descendent:

∀ i > 0. ∀v ∈ {v ∈ V | i ∈ liveWp(v)}. ∃ n ∈ {n | ω−1(n) = i}.(
∃m. τ ∈ syncDescendents(m) ∧ v ∈ liveLocalVars(m)

)
∨ v ∈ liveLocalVars(n)

where n ∈ τ

This means that each live variable is a member of the pre-order depth of an executing

instruction:

∀i > 0. {v ∈ V | i ∈ liveWp(v)} ⊆
⋃
k≤p

preorderDepth(ωk(i))

Appendix B Task-based space efficiency proof 127

Therefore the scheduler can create a schedule Wp such that Sp(Wp) ≤ p × SW , so

depth-first pre-order schedulers can be space efficient with single-threaded schedules that

use SW space.

B.3 Post-order scheduler efficiency

Note that, in a single-threaded schedule D0 from a depth-first post-order scheduler, when

a task reaches a spawn instruction n it must execute the task in spawned(n), and since

this is a depth-first schedule all its descendents must also be finished before the original

task is resumed. This means that if ni is a spawn instruction from a task with instructions

n0, . . . , nk then:

∀τ ∈ spawnDescendents(ni).

lifetimeD0 (τ) ⊆ [ω−1(ni), ω
−1(ni+1)]

therefore

∀τ ∈ spawnDescendents(ni). ∀v ∈ liveLocalVars(ni)

lifetimeD0 (τ) ⊆ liveD0 (v)

From this we define the post-order depth of an instruction. This is essentially the

activation depth when the instruction is executed by a single-threaded schedule from a

post-order scheduler. For an instruction n that is part of the task τ :

postorderDepth(n) =

{
v ∈ V | ∃m.

τ ∈ spawnDescendents(m)

∧ v ∈ liveLocalVars(m)

}
∪ liveLocalVars(n)

Note that ∀ n. SD > |postorderDepth(n)|.
Now consider a p-thread schedule Dp a depth-first post-order scheduler. By the

definition of post-order scheduling, at any point in the execution schedule, every live task

is either: being executed; suspended at a spawn whilst one of that spawn’s descendents

is being executed; or suspended at a sync whilst one of that sync’s descendents is being

executed.

Since task-local variables can only be live while their associated tasks are live, every

variable that is live at a particular time-step is associated with either a currently executing

instruction, a spawn instruction with an executing descendent, or a sync instruction with

128 Appendix B Task-based space efficiency proof

an executing descendent:

∀ i > 0. ∀v ∈ {v ∈ V | i ∈ liveDp(v)}. ∃ n ∈ {n | ω−1(n) = i}.(
∃m. τ ∈ spawnDescendents(m) ∧ v ∈ liveLocalVars(m)

)
∨
(
∃m. τ ∈ syncDescendents(m) ∧ v ∈ liveLocalVars(m)

)
∨ v ∈ liveLocalVars(n)

where n ∈ τ

This means that each live variable is a member of either the post-order depth or the

pre-order depth of an executing instruction:

∀i > 0.

{v ∈ V | i ∈ liveDp(v)} ⊆
⋃
k≤p

postorderDepth(ωk(i)) ∪ preorderDepth(ωk(i))

Therefore the scheduler can create a schedule Dp such that Sp(Dp) ≤ p × (SD + SW),

so depth-first post-order schedulers can be space efficient with single-threaded schedules

that use (SD + SW) space.

Appendix C

Stack-based inefficiency proof

C.1 Restrictions on sharing stacks

We say that a task τ is inlined iff none of the instructions of parent(τ) are scheduled

during lifetimeX (τ). We define the set of inlined tasks in a schedule X as:

inlinedX = { τ ∈ T | ∀n ∈ parent(τ). ω−1(n) /∈ lifetimeX (τ)}

A stack-based schedule allocates the variables used by a task τ from a single stack stack(τ).

We say that a task τ has a fresh stack iff for any other task τ ′ that uses the same stack

either τ ≺ τ ′ or lifetimeX (τ) and lifetimeX (τ ′) do not overlap. We define the set of tasks

with fresh stacks in a schedule X as:

freshX = { τ ∈ T | ∀τ ⊀ τ ′. stack(τ) = stack(τ ′)

⇒ lifetimeX (τ) ∩ lifetimeX (τ ′) = {} }

In a stack-based schedule every task is either inlined or assigned a fresh stack: T =

inlinedX ∪ freshX .

C.2 An inefficient example

Consider the task-based computation in Fig. C.1.

Note that the lifetime of every task is included in the lifetimes of all the tasks that

aren’t descended from it:

∀τ ⊀ τ ′. lifetimeX (τ) ⊂ lifetimeX (τ ′) (C.1)

This means that the lifetime of a task τx (where 0 < x < d) includes the lifetime of its

child task τx+1. This gives us a lower bound on the lifetimes of tasks whose child task is

129

130 Appendix C Stack-based inefficiency proof

n1,1

{v1}
n1,2 n1,l

{v1}

n2,1

{v2}
n2,2 n2,l

{v2}

nd ,1

{vd}
nd ,2 nd ,l

{vd}

τ1

τ2

τd

Figure C.1: Inefficient Stack-based Computation

inlined:

∀0 < x < d . τx+1 ∈ inlinedX

⇒lifetimeX (τx) ⊇ lifetimeX (τx+1)] {ω−1(n) | n ∈ τx}

∴
∀0 < x < d . τx+1 ∈ inlinedX

⇒|lifetimeX (τx)| ≥ |lifetimeX (τx+1)|+ l

Applying this lower bounded inductively and allowing for those tasks whose children are

not inlined (and must therefore be in freshX), we obtain:

∀0 < x ≤ d . |lifetimeX (τx)| ≥ (d − x − |{τy ∈ freshX | x < y ≤ d}|+ 1)× l

From C.1 and the definition of freshX it is clear that:

∀τx , τy ∈ freshX . stack(τx) 6= stack(τy)

Combining these two equations, we can see that for any p-threaded schedule X that is

stack-based and uses fewer than s stacks, there is a lower bound on the execution time:

Tp(X) ≥ (d − s)l

Bibliography

[1] Addison, C., LaGrone, J., Huang, L., and Chapman, B. OpenMP 3.0 tasking

implementation in OpenUH. In Open64 Workshop at CGO (2009), vol. 2009.

[2] Alt, M., Aßmann, U., and Van Someren, H. Cosy compiler phase embedding

with the cosy compiler model. In Compiler Construction (1994), pp. 278–293.

[3] Apt, K. R., Blair, H. A., and Walker, A. Towards a theory of declarative

knowledge. IBM TJ Watson Research Center, 1986.

[4] Ayguade, E., Badia, R. M., Cabrera, D., Duran, A., Gonzalez, M.,

Igual, F., Jimenez, D., Labarta, J., Martorell, X., Mayo, R., Perez,

J. M., and Quintana-Ort́ı, E. S. A Proposal to Extend the OpenMP Tasking

Model for Heterogeneous Architectures. LNCS 5568 (2009), 154.

[5] Ayguadé, E., Duran, A., Hoeflinger, J., Massaioli, F., and Teruel, X.

An Experimental Evaluation of the New OpenMP Tasking Model. 63.

[6] Balart, J., Duran, A., Gonzàlez, M., Martorell, X., Ayguadé, E., and

Labarta, J. Nanos mercurium: a research compiler for openmp. In Proceedings of

the European Workshop on OpenMP (2004), vol. 8.

[7] Blumofe, R. D., and Leiserson, C. E. Space-efficient scheduling of multi-

threaded computations. In Proceedings of the twenty-fifth annual ACM symposium

on Theory of computing (1993), pp. 362–371.

[8] Boehm, H. J. Threads cannot be implemented as a library. In ACM SIGPLAN

Notices (2005), vol. 40, pp. 261–268.

[9] Brent, R. P. The parallel evaluation of general arithmetic expressions. Journal of

the ACM (JACM) 21, 2 (1974), 201–206.

[10] Brown, K. J., Sujeeth, A. K., Lee, H. J., Rompf, T., Chafi, H., Odersky,

M., and Olukotun, K. A heterogeneous parallel framework for domain-specific

languages. In Parallel Architectures and Compilation Techniques (PACT), 2011 In-

ternational Conference on (2011), pp. 89–100.

131

132 Bibliography

[11] Burmako, E. Scala Macros: Let Our Powers Combine! In Proceedings of the 4th

Annual Scala Workshop (2013).

[12] Campbell, B. Type-based amortized stack memory prediction.

[13] Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kielstra, A.,

Ebcioglu, K., Von Praun, C., and Sarkar, V. X10: an object-oriented

approach to non-uniform cluster computing. In ACM SIGPLAN Notices (2005),

vol. 40, pp. 519–538.

[14] Chen, T., Raghavan, R., Dale, J. N., and Iwata, E. Cell Broadband Engine

Architecture and Its First Implementation; A Performance View. IBM Journal of

Research and Development 51, 5 (2007), 559.

[15] Chen, T., Sura, Z., O’Brien, K., and O’Brien, J. K. Optimizing the Use of

Static Buffers for DMA on a CELL Chip. LNCS 4382 (2007), 314.

[16] Chen, T., Zhang, T., Sura, Z., and Tallada, M. G. Prefetching Irregular Ref-

erences for Software Cache on Cell. In Proceedings of the Sixth Annual IEEE/ACM

International Symposium on Code Generation and Optimization (2008), p. 155.

[17] Cox, R., Bergan, T., Clements, A. T., Kaashoek, F., and Kohler, E.

Xoc, an extension-oriented compiler for systems programming. In ACM SIGOPS

Operating Systems Review (2008), vol. 42, pp. 244–254.

[18] Damásio, C., and Pereira, L. Antitonic logic programs. Logic Programming and

Nonmotonic Reasoning (2001), 379–393.

[19] de Dinechin, C. XLR: Extensible language and runtime.

[20] de Rauglaudre, D. The Camlp4 preprocessor. See: http://caml. inria.fr/camlp4

(2001).

[21] Dolbeau, R., Bihan, S., and Bodin, F. HMPP: A Hybrid Multi-core Parallel

Programming Environment. In First Workshop on General Purpose Processing on

Graphics Processing Units (2007).

[22] Donnelly, C., and Stallman, R. M. Bison: The YACC-compatible Parser

Generator. Free Software Foundation, 1995.

[23] Duran, A., Teruel, X., Ferrer, R., Martorell, X., and Ayguade, E.

Barcelona OpenMP Tasks Suite: A Set of Benchmarks Targeting the Exploitation of

Task Parallelism in OpenMP. In Proceedings of the 2009 International Conference

on Parallel Processing (Washington, DC, USA, 2009), ICPP ’09, IEEE Computer

Society, pp. 124–131.

Bibliography 133

[24] Eager, D. L., Zahorjan, J., and Lazowska, E. D. Speedup versus efficiency

in parallel systems. Computers, IEEE Transactions on 38, 3 (1989), 408–423.

[25] Faxén, K. F. Wool - a work stealing library. ACM SIGARCH Computer Architec-

ture News 36, 5 (2009), 93–100.

[26] Ferrer, R., Beltran, V., Gonzàlez, M., Martorell, X., and Ayguadé,

E. Analysis of Task Offloading for Accelerators. LNCS 5952 (2010), 322.

[27] Frigo, M., Leiserson, C. E., and Randall, K. H. The implementation of the

Cilk-5 multithreaded language. ACM Sigplan Notices 33, 5 (1998), 212–223.

[28] Gelfond, M., and Lifschitz, V. The stable model semantics for logic program-

ming. In Proceedings of the 5th International Conference on Logic programming

(1988), vol. 161.

[29] Gonzàlez, M., O’Brien, K., Vujic, N., Martorell, X., Ayguadé, E.,

Eichenberger, A. E., Chen, T., Sura, Z., Zhang, T., and O’Brien, K.

Hybrid Access-Specific Software Cache Techniques for the Cell BE Architecture. In

Proceedings of the 17th international conference on Parallel architectures and com-

pilation techniques - PACT ’08 (2008), p. 292.

[30] Graham, R. L. Bounds on multiprocessing timing anomalies. SIAM Journal on

Applied Mathematics 17, 2 (1969), 416–429.

[31] Grimm, R. xtc (eXTensible C). See: http://cs.nyu.edu/rgrimm/xtc/ .

[32] Hedin, G., and Magnusson, E. JastAdd—an aspect-oriented compiler construc-

tion system. Science of Computer Programming 47, 1 (2003), 37–58. ¡ce:title¿Special

Issue on Language Descriptions, Tools and Applications (L DTA’01)¡/ce:title¿.

[33] Hendler, D., Lev, Y., Moir, M., and Shavit, N. A dynamic-sized nonblocking

work stealing deque.

[34] Huang, L., Chapman, B., and Liao, C. An Implementation and Evaluation of

Thread Subteam for OpenMP Extensions. Workshop on Programming Models for

Ubiquitous Parallelism (PMUP 06), Seattle, WA (2006).

[35] International Organization for Standardization. ISO Standard 9126:

Software Engineering - Product Quality. International Organization for Standard-

ization, 2001.

[36] JetBrains. JetBrains Meta Programming System. See:

http://www.jetbrains.com/mps/ .

134 Bibliography

[37] Jin, H., Frumkin, M., and Yan, J. The OpenMP Implementation of NAS Parallel

Benchmarks and its Performance. Tech. rep., 1999.

[38] Johnson, S. C. Yacc: Yet another compiler-compiler, vol. 32. Bell Laboratories

Murray Hill, NJ, 1975.

[39] Kam, J. B., and Ullman, J. D. Monotone data flow analysis frameworks. Acta

Informatica 7, 3 (1977), 305–317.

[40] Khronos OpenCL Working Group, et al. The opencl specification. A. Mun-

shi, Ed (2008).

[41] Knuth, D. E. Semantics of context-free languages. Mathematical systems theory 2,

2 (1968), 127–145.

[42] Kohlbecker, E., Friedman, D. P., Felleisen, M., and Duba, B. Hygienic

macro expansion. In Proceedings of the 1986 ACM conference on LISP and functional

programming (1986), pp. 151–161.

[43] Kowalski, R. Predicate logic as programming language. Edinburgh University,

1973.

[44] Kruglinski, D. J. Inside Visual C++. Microsoft press, 1997.

[45] Lattner, C., and Adve, V. LLVM: A compilation framework for lifelong program

analysis & transformation. In Code Generation and Optimization, 2004. CGO 2004.

International Symposium on (2004), pp. 75–86.

[46] Lee, I. Using memory mapping to support cactus stacks in work-stealing runtime

systems. In Proceedings of the 19th international conference on Parallel architectures

and compilation techniques (2010), pp. 411–420.

[47] Leijen, D., Schulte, W., and Burckhardt, S. The design of a task parallel

library. In Acm Sigplan Notices (2009), vol. 44, pp. 227–242.

[48] Leroy, X. The OCaml programming language. See:

http://caml.inria.fr/ocaml/index.en.html (1998).

[49] Lesk, M. E., and Schmidt, E. Lex: A lexical analyzer generator, 1975.

[50] Liao, C., Hernandez, O., Chapman, B., Chen, W., and Zheng, W.

OpenUH: An optimizing, portable OpenMP compiler. Concurrency and Compu-

tation: Practice and Experience 19, 18 (2007), 2317–2332.

Bibliography 135

[51] Lindholm, T., and Yellin, F. Java virtual machine specification. Addison-Wesley

Longman Publishing Co., Inc., 1999.

[52] McCarthy, J. Circumscription—a form of non-monotonic reasoning. Artificial

intelligence 13, 1 (1980), 27–39.

[53] Mertes, T. Seed7. The Extensible Programming Language.

[54] Moore, R. C. Semantical considerations on nonmonotonic logic. Artificial intelli-

gence 25, 1 (1985), 75–94.

[55] Mozilla Foundation. The Rust Reference Manual. See: http://www.rust-

lang.org/ .

[56] Necula, G., McPeak, S., Rahul, S., and Weimer, W. CIL: Intermediate

language and tools for analysis and transformation of C programs. In Compiler

Construction (2002), pp. 209–265.

[57] Nichols, B., Buttlar, D., and Farrell, J. Pthreads programming: A POSIX

standard for better multiprocessing. O’Reilly Media, Inc., 1996.

[58] Nvidia, C. U. D. A. Compute unified device architecture programming guide.

[59] Nystrom, N., Clarkson, M., and Myers, A. Polyglot: An extensible compiler

framework for Java. In Compiler Construction (2003), pp. 138–152.

[60] Olivier, S. L., and Prins, J. F. Evaluating OpenMP 3.0 Run Time Systems

on Unbalanced Task Graphs. In Proceedings of the 5th International Workshop on

OpenMP: Evolving OpenMP in an Age of Extreme Parallelism (Berlin, Heidelberg,

2009), IWOMP ’09, Springer-Verlag, pp. 63–78.

[61] OpenMP Architecture Review Board. OpenMP Application Program Inter-

face. Tech. rep., 2008.

[62] Podobas, A., Brorsson, M., and Faxén, K. F. A comparison of some recent

task-based parallel programming models.

[63] Pottier, F., and Régis-Gianas, Y. The Menhir Parser Generator. See:

http://gallium.inria.fr/ fpottier/menhir/ .

[64] Reinders, J. Intel threading building blocks: outfitting C++ for multi-core processor

parallelism. O’Reilly Media, Incorporated, 2007.

[65] Reiter, R. A logic for default reasoning. Artificial intelligence 13, 1 (1980), 81–132.

136 Bibliography

[66] Shavit, N., and Touitou, D. Software transactional memory. Distributed Com-

puting 10, 2 (1997), 99–116.

[67] Sheard, T., and Jones, S. P. Template meta-programming for Haskell. In

Proceedings of the 2002 ACM SIGPLAN workshop on Haskell (2002), pp. 1–16.

[68] Stallman, R. M. GNU compiler collection internals. Free Software Foundation

(2002).

[69] Sukha, J. Brief announcement: A lower bound for depth-restricted work stealing.

In Proceedings of the twenty-first annual symposium on Parallelism in algorithms and

architectures (2009), pp. 124–126.

[70] Supertech Research. Cilk 5.4. 6 Reference Manual, 1998.

[71] Teruel, X., Martorell, X., Duran, A., Ferrer, R., and Ayguadé, E.

Support for OpenMP tasks in Nanos v4. In Proceedings of the 2007 conference of the

center for advanced studies on Collaborative research (2007), pp. 256–259.

[72] Teruel, X., Unnikrishnan, P., Martorell, X., Ayguadé, E., Silvera, R.,

Zhang, G., and Tiotto, E. OpenMP tasks in IBM XL compilers. In Proceedings

of the 2008 conference of the center for advanced studies on collaborative research:

meeting of minds (2008), p. 16.

[73] Wilson, R. P., French, R. S., Wilson, C. S., Amarasinghe, S. P., Ander-

son, J. M., Tjiang, S. W., Liao, S.-W., Tseng, C.-W., Hall, M. W., Lam,

M. S., et al. SUIF: An infrastructure for research on parallelizing and optimizing

compilers. ACM Sigplan Notices 29, 12 (1994), 31–37.

[74] Wolfe, M. Implementing the PGI Accelerator Model. In GPGPU’10: Proceedings

of the 3rd Workshop on GPGPUs (New York, USA, 2010), ACM, pp. 43–50.

[75] Zenger, M., and Odersky, M. Extensible algebraic datatypes with defaults. In

ACM SIGPLAN Notices (2001), vol. 36, pp. 241–252.

[76] Zhang, G. Extending the OpenMP Standard for Thread Mapping and Grouping.

LNCS 4315 (2008), 435.

[77] Zingaro, D. Modern extensible languages. McMaster University, Hamilton (2007).

