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Abstract

For several theoretically and experimentally motivated reasons, super-

symmetry (SUSY) has for some time been identified as an interesting

candidate for a theory of fundamental particle physics beyond the Stan-

dard Model. The ATLAS collaboration, of which I am a member, possess

a detector emplaced in the Large Hadron Collider experiment at CERN.

If SUSY does in fact describe our universe, then it is hoped that evidence

of it will be visible in data collected in the ATLAS detector.

I present an analysis looking for a particular signature that could

indicate the presence of SUSY; events containing two like-charge leptons

(e or µ). This signature benefits from having both low Standard Model

backgrounds as well as potential to observe several SUSY scenarios, par-

ticularly those involving strong production processes. These include pair

production of squarks and gluinos. The latter of these are particularly

relevant for the analysis presented herein since gluinos are Majorana

fermions; hence they can decay to produce like-charge leptons. The

analysis considers several SUSY production topologies determined from

a variety of simplified and phenomenological models.

One of the core pieces of any ATLAS analysis is estimating the

expected backgrounds in the signal regions. These backgrounds arise
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both from known Standard Model production processes that can produce

the same final state as the SUSY models being targeted, as well as

detector mismeasurement effects. One important background in the

like-charge analysis is that of “fake” leptons; these are jets that have

been misclassified as either electrons or muons by the reconstruction

algorithms. A large portion of this thesis is dedicated to introducing novel

techniques for robustly estimating these backgrounds, and evaluating

their relative performance.
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Preface

The problem of estimating the expected number of events which contain fake leptons

is not new, and ATLAS analyses have been contending with it throughout the 2012

data-taking period. Throughout this work such a method will be simply referred to as

a ‘fake estimation technique’. One of the most widely-used methods of estimating the

impact of this background is known as the matrix method, however it is readily admitted

that the behaviour of the method is not necessarily always understood by the analyses

that use it:

I have seen many analyses that simply used the FakeLeptBkg package without

even taking a look at the real and fake efficiencies, just assuming the [matrix

method] works perfectly.

(Ximo Poveda, ATLAS SUSY Background Forum Convenor, Jan. 2015)

I started working in this area after discovering the problem myself in the context of

an analysis searching for evidence of supersymmetry in events with like-charge lepton

signatures. Due to the particular selection requirements employed, the existing matrix

method could not be directly applied – an extension was therefore necessary. This later

led to further investigations into how the statistical robustness of the procedure could be

improved through more fundamental changes to the method, experimenting with both

maximum likelihood and Bayesian approaches.

The like-charge lepton SUSY analysis, performed using the 8 TeV data collected from

ATLAS during 2012, forms a most interesting study and an integral part of this work.

The conclusions provide relevant results to help exclude a large variety of supersymmetric

signatures, complementary to results from other ATLAS analyses published with the

latest dataset. It is a testing time for SUSY, and these results are amongst those that

start to put a strain on the desired ‘naturalness’ of the models.

This thesis therefore aims to provide the following:
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• A full development of several ‘fake estimation’ techniques, some of them new or

extended beyond those used prior to this work. To the author’s knowledge to date,

even the existing techniques have not been fully documented publicly.

• A questioning of the assumption that the matrix method will always ‘just work’, and

provision of comparisons with alternative methods in controlled scenarios.

• An analysis of the 2012 ATLAS dataset which searches for evidence of supersymmetry

in events with like-charge or three leptons, and places strong constraints in many

scenarios.

In addition to the phenomenological applications of the physics results presented

herein, I hope that future analyses within ATLAS, and in principle CMS, can improve

robustness in fake estimation for Run 2 as a result of the studies performed here.
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Chapter 1

The ATLAS experiment and the

LHC

1.1 The Large Hadron Collider

As of 2014, the Large Hadron Collider (LHC) [1] is the highest energy proton-proton

collider in existence. It is a synchrotron that maintains two counter-rotating beams of

proton bunches. Focussing magnets can ‘pinch’ these beams together at any of the four

interaction points, where experiments are housed; in these locations interactions will

occur between the protons. The design centre-of-mass collision energy of the accelerator

is
√
s = 14 TeV, however at the time of writing the majority of the data available for

analysis has been taken at
√
s = 8 TeV. Additionally, whilst the LHC is designed to

run with a bunch spacing of 25 ns, throughout the 2012 run twice this, i.e. 50 ns was

used. This was compensated for by putting more protons in each bunch, however this

leads to a larger number of interactions expected per bunch crossing, presenting analysis

challenges in the form of ‘pile-up’. With the design parameters, the bunch crossing rate

is expected to be 40 MHz, whereas for the 2012 run (and all data used in this thesis),

the rate was 20 MHz.

In fact, the LHC is only the final and largest component of a multi-stage process to

accelerate the protons from rest – the entire set of accelerators that are used is shown in

Figure 1.1. Protons are injected into the LHC ring in bunches at an energy of 450 GeV

until the beams are full; that is, enough bunches are created such that the target bunch

spacing is reached. At this point both beams are accelerated up to half the target centre

of mass energy, which was 4 TeV for the 2012 dataset – this process typically takes

3



4 The ATLAS experiment and the LHC

Figure 1.1: Overview of the accelerators supplying the LHC, and the experiments housed at
the four interaction points on the main ring [2].

about 20 minutes. The beams are then pinched at each of the interaction points, and

interactions subsequently occur for O(10) hours. At the four interactions points are

installed the four main LHC experiments – ATLAS, CMS, ALICE, and LHCb.

The rate of proton interactions occurring is analytically defined in terms of lumi-

nosity. Specifically, for a physics process with cross section σ it acts as the constant of

proportionality L to give the event rate,

dN

dt
= σL. (1.1)

The design luminosity of the LHC is 1034 cm−2s−1. Since the precision with which

statistical statements can be made typically increases with the amount of data collected,

it is useful to know the integral of luminosity over the lifetime of a detector, known

simply as ‘integrated luminosity’. The cumulative integrated luminosity delivered to

ATLAS is shown in Figure 1.2. The higher delivery rate during the 8 TeV 2012 run

compared to that of 2011 is clearly visible.



The ATLAS experiment and the LHC 5

Figure 1.2: Running total of the integrated luminosity delivered to and recorded by ATLAS
during the 2011-2012 run of the LHC [3].

1.2 The ATLAS detector

The ATLAS experiment [4] is the largest of those installed at the LHC, weighing in

at around 7000 tonnes. Although it is presently, in the public eye at least, very much

associated with the 2012 discovery of the Higgs boson, it is designed to be a multi-purpose

detector. The other such detector is CMS. Between them they are designed to probe

Higgs physics, QCD, flavour physics, as well as a multitude of beyond Standard Model

(BSM) physics scenarios including supersymmetry. These capabilities were first described

in the second volume of the initial ATLAS design report [5].

ATLAS is designed to capture as much information as possible from any given

collision event; it possesses near 4π solid angle coverage, and comprises an array of

different detectors to ensure that as many particles as possible are measured with high

accuracy. These various subsystems were first described in a technical design report

[6], and can be seen in Figure 1.3. In the innermost part of the detector, closest to the

interaction point, can be found silicon tracking sensors designed to reconstruct the paths

of charged particles. Further out are electromagnetic and hadronic calorimeter cells, to

give measurements on the energy of particles, and outermost are the muon chambers,

since muons are capable of penetrating the calorimeters. Across the inner detector is a
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Figure 1.1: Cut-away view of the ATLAS detector. The dimensions of the detector are 25 m in
height and 44 m in length. The overall weight of the detector is approximately 7000 tonnes.

The ATLAS detector is nominally forward-backward symmetric with respect to the interac-
tion point. The magnet configuration comprises a thin superconducting solenoid surrounding the
inner-detector cavity, and three large superconducting toroids (one barrel and two end-caps) ar-
ranged with an eight-fold azimuthal symmetry around the calorimeters. This fundamental choice
has driven the design of the rest of the detector.

The inner detector is immersed in a 2 T solenoidal field. Pattern recognition, momentum
and vertex measurements, and electron identification are achieved with a combination of discrete,
high-resolution semiconductor pixel and strip detectors in the inner part of the tracking volume,
and straw-tube tracking detectors with the capability to generate and detect transition radiation in
its outer part.

High granularity liquid-argon (LAr) electromagnetic sampling calorimeters, with excellent
performance in terms of energy and position resolution, cover the pseudorapidity range |h | < 3.2.
The hadronic calorimetry in the range |h | < 1.7 is provided by a scintillator-tile calorimeter, which
is separated into a large barrel and two smaller extended barrel cylinders, one on either side of
the central barrel. In the end-caps (|h | > 1.5), LAr technology is also used for the hadronic
calorimeters, matching the outer |h | limits of end-cap electromagnetic calorimeters. The LAr
forward calorimeters provide both electromagnetic and hadronic energy measurements, and extend
the pseudorapidity coverage to |h | = 4.9.

The calorimeter is surrounded by the muon spectrometer. The air-core toroid system, with a
long barrel and two inserted end-cap magnets, generates strong bending power in a large volume
within a light and open structure. Multiple-scattering effects are thereby minimised, and excellent
muon momentum resolution is achieved with three layers of high precision tracking chambers.

– 4 –

Figure 1.3: Overview of the subsystems that together form the ATLAS detector [4].

applied a magnetic field of 2 T, and a reduced magnetic field of ∼ 0.5 T exists in them

muon system. This allows for momentum measurements of charged particles through the

curvature of their tracks in both the inner detector and muon chambers.

The remainder of this chapter will be dedicated to more detailed descriptions of

these components of the ATLAS detector, along with the conventions of the ATLAS

supersymmetry (SUSY) group used to define the reconstructed objects with which

analyses can be performed.

1.2.1 Co-ordinate system

As is sometimes emphasised [7], the co-ordinate system of ATLAS is right-handed

Cartesian, with its origin at the nominal interaction point. The axes are then oriented

such that the x-axis is pointing towards the centre of the LHC ring, and y-axis is directed

vertically upward. The z-axis thus defines one of the beam directions. The (x, y) plane

is referred to as the transverse plane, in which points are frequently given in polar (r, φ)

co-ordinates, where the azimuthal angle φ is, standardly, set to 0 on the x-axis.
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Whilst the remaining polar angle θ = arctan(pz,
√
p2
x + p2

y) could be used, it is

preferred to use the pseudorapidity

η = − ln

[
tan

(
θ

2

)]
. (1.2)

It is named thus since in the case of massless particles it is identical to the rapidity

y =
1

2
ln

(
E + pz
E − pz

)
, (1.3)

which is invariant under boosts in the z-direction. Since for many of the particles that

will be observed in ATLAS it will be the case that E ≈ |p|, this property is still desirable

even although it does not hold exactly.

Given the definition of pseudorapidity, it is common to describe separations between

objects in the detector in terms of

∆R =
√

∆η2 + ∆φ2. (1.4)

1.2.2 Inner detector

The inner detector, closest to the interaction point, is formed of three subsystems – the

pixel detector, SCT (SemiConductor Tracker), and Transition Radiation Tracker (TRT)–

as can be seen from Figure 1.4. Overall these give coverage of the solid angle defined

by |η| < 2.5, and occupy the volume with 45.5 < r < 1082 mm. Using these systems,

its purpose is to detect the path taken by charged particles as they bend through the

magnetic field, and hence determine their momenta.

Pixel detector

The pixel detector is closest to the beamline, with 45.5 < r < 242 mm, and as such is

the highest resolution detector, containing 140 million semiconductor pixels each of just

50× 400 µm. This allows it to achieve measurements of track intersection positions up

to a precision of 10× 115 µm, which is desirable since it is very close to the interaction

point, and as such the area subtended by a given solid angle is at its smallest value for

any component in the detector. It is also designed to tolerate the very high radiation

doses that must be endured at such proximity to the interaction point. The detector is
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Figure 4.2: Drawing showing the sensors and structural elements traversed by a charged track of
10 GeV pT in the barrel inner detector (η = 0.3). The track traverses successively the beryllium
beam-pipe, the three cylindrical silicon-pixel layers with individual sensor elements of 50×400
µm2, the four cylindrical double layers (one axial and one with a stereo angle of 40 mrad) of
barrel silicon-microstrip sensors (SCT) of pitch 80 µm, and approximately 36 axial straws of 4 mm
diameter contained in the barrel transition-radiation tracker modules within their support structure.

This chapter describes the construction and early performance of the as-built inner detector.
In section 4.2, the basic detector sensor elements are described. Section 4.3 describes the detector
modules. Section 4.4 details the readout electronics of each sub-detector, section 4.5 describes the
detector power and control and section 4.6 describes the ID grounding and shielding. Section 4.7
discusses the mechanical structure for each sub-detector, as well as the integration of the detectors
and their cooling and electrical services. The overall ID environmental conditions and general
services are briefly summarised in section 4.8. Finally, section 4.9 indicates some initial results on
the operational performance and section 4.10 catalogues the material budget of the ID, which is
significantly larger than that of previous large-scale tracking detectors.

– 55 –

Figure 1.4: Overview of the systems forming the inner detector in ATLAS. The right-hand
image shows the radial locations of each component. Both images from [4].

formed of three barrel layers as well as two end-cap structures. Each of the end-caps

comprises four discs of sensors, arranged such that most tracks ought to hit pixels in at

least three distinct layers. Further details can be found in the corresponding technical

design report [8].

SCT

The semiconductor tracker sits outside the pixel layers, and is formed of etched strips in

silicon wafers. Whilst not providing the resolution of individual pixels, location in (η, φ)

is achieved by use of a ‘stereo effect’, whereby wafers are layered with their strips deviated

from parallel by 40 mrad. The SCT is formed of four such stereo layers in the barrel,

along with nine discs in each end-cap. The pitch of the strips in the barrel permits a

resolution of 17 µm in the φ-direction, and the stereo effect allows approximately 580 µm

in the z-direction. A typical track is expected to cross eight layers of strips, including

stereo layers. Further details can be found in the technical design report of the inner

detector [9, 10].

TRT

Finally, the transition radiation tracker is a straw chamber, and is the outermost com-

ponent of the inner detector. Each “straw” is a 4 mm diameter polyimide tube, coated



The ATLAS experiment and the LHC 9

internally with aluminium to form a cathode, and enclosing a tungsten wire. Each

straw is sealed and filled with a gas mixture, formed of 70% Xe, 27% CO2 and 3% O2.1

Charged particles traversing a tube ionise the gas; the ions then drift radially due to

the potential difference, and the excess charge is collected and detected. The tubes are

arranged parallel to the beam axis in the barrel region, and radially in the end-caps. In

total one expects 30 straw tube hits from a typical track. By including measurements of

the drift time a resolution of 130 µm is achieved for each straw hit.

1.2.3 Calorimeters

Calorimeters in ATLAS come in two types – liquid argon (LAr) technology in the electro-

magnetic barrel, end-cap (both electromagnetic and hadronic) and forward calorimeters,

and then iron-scintillator ‘tiles’ for the hadronic barrel and extended barrel regions [12].

An overview of the calorimeter system can be seen in Figure 1.5. Overall they cover solid

angles up to |η| < 4.9, with the electromagnetic calorimetry providing finer grained mea-

surements to augment the inner detector for electron and photon measurements, whilst

the hadronic calorimeter is coarser but sufficient for jet reconstruction and measurements

of missing transverse momentum.

All the calorimeters in ATLAS are of the sampling variety, that is they use different

materials for the absorber, that triggers a particle shower, to the material that measures

the energy of that shower. Whilst this has the advantage that dense materials, e.g.

lead, can be used to trigger the shower in a small space, some energy will be lost and

unmeasured in the absorber. Thus a calibration must be used to estimate the true energy

of any observed shower in the calorimeter. Each calorimeter is also segmented in η and

φ so as to provide some directional information, although it is coarser than that from

the inner detector. Finally, the calorimeter is designed to limit “punch-through” of high

energy jets into the muon chambers.

LAr calorimeters

The LAr electromagnetic calorimeters are divided into the barrel section with |η| < 1.475,

and two end-cap sections with 1.375 < |η| < 3.2. The barrel section is itself formed of

1A mixture of 70% Ar and 30% CO2 has also been tested, and shown to give somewhat inferior electron
identification ability. However, due to the high cost of xenon studies checking the impact of using
this argon mixture in Run 2 have been made for some analyses. The author was involved in one
related to the analysis described later in this work [11].
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Figure 1.3: Cut-away view of the ATLAS calorimeter system.

Calorimeters must provide good containment for electromagnetic and hadronic showers, and
must also limit punch-through into the muon system. Hence, calorimeter depth is an important
design consideration. The total thickness of the EM calorimeter is > 22 radiation lengths (X0)
in the barrel and > 24 X0 in the end-caps. The approximate 9.7 interaction lengths (l ) of active
calorimeter in the barrel (10 l in the end-caps) are adequate to provide good resolution for high-
energy jets (see table 1.1). The total thickness, including 1.3 l from the outer support, is 11 l
at h = 0 and has been shown both by measurements and simulations to be sufficient to reduce
punch-through well below the irreducible level of prompt or decay muons. Together with the large
h-coverage, this thickness will also ensure a good Emiss

T measurement, which is important for many
physics signatures and in particular for SUSY particle searches.

1.3.1 LAr electromagnetic calorimeter

The EM calorimeter is divided into a barrel part (|h | < 1.475) and two end-cap components
(1.375 < |h | < 3.2), each housed in their own cryostat. The position of the central solenoid in
front of the EM calorimeter demands optimisation of the material in order to achieve the de-
sired calorimeter performance. As a consequence, the central solenoid and the LAr calorimeter
share a common vacuum vessel, thereby eliminating two vacuum walls. The barrel calorimeter
consists of two identical half-barrels, separated by a small gap (4 mm) at z = 0. Each end-cap
calorimeter is mechanically divided into two coaxial wheels: an outer wheel covering the region
1.375 < |h | < 2.5, and an inner wheel covering the region 2.5 < |h | < 3.2. The EM calorimeter is
a lead-LAr detector with accordion-shaped kapton electrodes and lead absorber plates over its full
coverage. The accordion geometry provides complete f symmetry without azimuthal cracks. The

– 8 –

Figure 1.5: Overview of the different calorimeters in ATLAS [4].

two cylindrical halves, joined at z = 0, albeit with a gap of 4 mm. Whilst the barrel

and end-cap sections do overlap, at the join there exists a region of slightly degraded

performance for 1.37 < |η| < 1.52. For the purpose of quality assurance most ATLAS

analyses ignore electron and photon candidates falling into this ‘crack’ region.

Barrel Figure 1.6 shows a view of a section of the calorimeter in the middle of the

barrel. Notable is that the lead absorbers and electrodes are shaped into an accordion-like

pattern, thus providing coverage without cracks in φ, as well as meaning that a continuous

piece of metal allows for easy signal extraction at either end of the electrode (i.e. at the

inside or outside of the calorimeter). The gaps are then filled with liquid argon, and as

such the whole system is cooled in a cryostat; separate cryostats are used for the barrel

and end-cap sections.

Due to the presence of a significant amount of material in front of the calorimeter, a

pre-sampler is placed as the first layer of the calorimeter. This is an instrument LAr cell,

however it does not contain a dedicated absorber – rather the material in front of the

calorimeter is used as the absorber. It is coarse in φ, but has a very fine η granularity,

as can be seen in Figure 1.6. The second layer is segmented into square ‘towers’ of

∆η = ∆φ = 0.025 , and the third and final layer is similar, but with a coarser η resolution

of ∆η = 0.05.
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Figure 5.4: Sketch of a barrel module where the different layers are clearly visible with the ganging
of electrodes in f . The granularity in h and f of the cells of each of the three layers and of the
trigger towers is also shown.

5.2.2 Barrel geometry

The barrel electromagnetic calorimeter [107] is made of two half-barrels, centred around the z-
axis. One half-barrel covers the region with z > 0 (0 < h < 1.475) and the other one the region
with z < 0 (�1.475 < h < 0). The length of each half-barrel is 3.2 m, their inner and outer
diameters are 2.8 m and 4 m respectively, and each half-barrel weighs 57 tonnes. As mentioned
above, the barrel calorimeter is complemented with a liquid-argon presampler detector, placed in
front of its inner surface, over the full h-range.

A half-barrel is made of 1024 accordion-shaped absorbers, interleaved with readout elec-
trodes. The electrodes are positioned in the middle of the gap by honeycomb spacers. The size
of the drift gap on each side of the electrode is 2.1 mm, which corresponds to a total drift time
of about 450 ns for an operating voltage of 2000 V. Once assembled, a half-barrel presents no

– 114 –

Figure 1.6: Cross-sectional view of a barrel module from the LAr electromagnetic calorimeter
[4]. The ‘accordion’ structure of the electrodes can be seen throughout, as can the
division of the calorimeter into cells, and clustering of cells into trigger towers.
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EMEC The electromagnetic end-cap calorimeter (EMEC) sections have a similar

accordion structure to the barrel. In these instances the detector is a disc shaped ‘wheel’,

with the accordion folds lying in axial planes. Again, due to material in front of the

calorimeter, pre-samplers are used in the same fashion as for the barrel for the region

1.5 < |η| < 1.8; at higher pseudorapidities the combination of higher energy particles

together with less dead material means there is not the need for a pre-sampler.

HEC The hadronic end-cap calorimeter (HEC) is placed behind the EMEC and is

formed of two wheels, similar in design to the EMEC. The main difference is that copper

plates are used instead of lead. These calorimeters contain hadronic showers effectively

due to the large amount of material; in total there are about 12 interaction lengths present.

The detector is segmented into 32 wedges, as well as two sections in the z-direction.

FCal The forward calorimeter (FCal) is split into three sections, the first of which

is intended for electromagnetic measurements, and the latter two for hadronic. These

occupy the forward region of 3.1 < |η| < 4.83. The hadronic systems are designed to be

very dense so as to minimise the lateral spread of showers, in particular with a view to

preventing leakage into the HEC.

Tile calorimeters

Tile calorimeters are placed around the outside of both the barrel and end-cap regions,

taking the form of a barrel and extended barrel, as can be seen in Figure 1.5. As with

the LAr modules, it is a sampling calorimeter design, however in this case using steel

tiles as an absorber and scintillating tiles as the detector. The tiles are connected via

wavelength-shifting optical fibres to photomultiplier tubes (PMTs), which are mounted

in the support girder at the rear of each tile module. A sketch of the layout can be seen

in Figure 1.7. Leakage is minimised in these calorimeters, both to minimise the impact

of punch-through on the muon system, as well as to ensure that jet energies are well

measured.

1.2.4 Muon system

The muon system forms the outermost part of the ATLAS detector, covering a pseudora-

pidity range of |η| < 2.7. The core operating principle of the muon spectrometer [13] is
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supplies which power the readout are mounted in an external steel box, which has the cross-section
of the support girder and which also contains the external connections for power and other services
for the electronics (see section 5.6.3.1). Finally, the calorimeter is equipped with three calibration
systems: charge injection, laser and a 137Cs radioactive source. These systems test the optical
and digitised signals at various stages and are used to set the PMT gains to a uniformity of ±3%
(see section 5.6.2).

5.3.1.2 Mechanical structure
Photomultiplier

Wavelength-shifting fibre

Scintillator Steel

Source

tubes

Figure 5.9: Schematic showing how the mechan-
ical assembly and the optical readout of the tile
calorimeter are integrated together. The vari-
ous components of the optical readout, namely
the tiles, the fibres and the photomultipliers, are
shown.

The mechanical structure of the tile calorime-
ter is designed as a self-supporting, segmented
structure comprising 64 modules, each sub-
tending 5.625 degrees in azimuth, for each of
the three sections of the calorimeter [112]. The
module sub-assembly is shown in figure 5.10.
Each module contains a precision-machined
strong-back steel girder, the edges of which
are used to establish a module-to-module gap
of 1.5 mm at the inner radius. To maximise
the use of radial space, the girder provides both
the volume in which the tile calorimeter read-
out electronics are contained and the flux return
for the solenoid field. The readout fibres, suit-
ably bundled, penetrate the edges of the gird-
ers through machined holes, into which plas-
tic rings have been precisely mounted. These
rings are matched to the position of photomul-
tipliers. The fundamental element of the ab-
sorber structure consists of a 5 mm thick mas-
ter plate, onto which 4 mm thick spacer plates
are glued in a staggered fashion to form the
pockets in which the scintillator tiles are lo-
cated [113]. The master plate was fabricated
by high-precision die stamping to obtain the dimensional tolerances required to meet the specifica-
tion for the module-to-module gap. At the module edges, the spacer plates are aligned into recessed
slots, in which the readout fibres run. Holes in the master and spacer plates allow the insertion of
stainless-steel tubes for the radioactive source calibration system.

Each module is constructed by gluing the structures described above into sub-modules on a
custom stacking fixture. These are then bolted onto the girder to form modules, with care being
taken to ensure that the azimuthal alignment meets the specifications. The calorimeter is assembled
by mounting and bolting modules to each other in sequence. Shims are inserted at the inner and
outer radius load-bearing surfaces to control the overall geometry and yield a nominal module-
to-module azimuthal gap of 1.5 mm and a radial envelope which is generally within 5 mm of the
nominal one [112, 114].

– 122 –

Figure 1.7: Cross-sectional view of a barrel module from the tile hadronic calorimeter [4].
Pictured is the alternating structure of the absorber and scintillator, as well as
the optical readout mechanism. Wavelength-shifting fibres are required as the
tiles emit ultraviolet photons, which are converted to visible light for detection
by the PMTs.
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Figure 1.4: Cut-away view of the ATLAS muon system.

1.4 Muon system

The conceptual layout of the muon spectrometer is shown in figure 1.4 and the main parameters
of the muon chambers are listed in table 1.4 (see also chapter 6). It is based on the magnetic
deflection of muon tracks in the large superconducting air-core toroid magnets, instrumented with
separate trigger and high-precision tracking chambers. Over the range |h | < 1.4, magnetic bending
is provided by the large barrel toroid. For 1.6 < |h | < 2.7, muon tracks are bent by two smaller
end-cap magnets inserted into both ends of the barrel toroid. Over 1.4 < |h | < 1.6, usually referred
to as the transition region, magnetic deflection is provided by a combination of barrel and end-cap
fields. This magnet configuration provides a field which is mostly orthogonal to the muon trajec-
tories, while minimising the degradation of resolution due to multiple scattering. The anticipated
high level of particle flux has had a major impact on the choice and design of the spectrome-
ter instrumentation, affecting performance parameters such as rate capability, granularity, ageing
properties, and radiation hardness.

In the barrel region, tracks are measured in chambers arranged in three cylindrical layers
around the beam axis; in the transition and end-cap regions, the chambers are installed in planes
perpendicular to the beam, also in three layers.

– 11 –

Figure 1.8: Overview of the different components of the muon system in ATLAS [4].

that of measuring the deflection of tracks due to magnetic fields. In the barrel section,

|η| < 1.4, the magnetic field is induced by the main barrel coils, however in the end-cap

regions (1.6 < |η| < 2.7) there are separate coils that induce a toroidal field; these can

be seen in Figure 1.8. In the intermediate transition region bending will occur due to the

fields from both sources.

As is also shown in Figure 1.8, several different detector technologies are employed.

In the barrel region are found resistive-plate chambers (RPCs) for |η| < 1.05, as well as

monitored drift tubes (MDTs) at |η| < 2.0. The former has the advantage of providing

very rapid, ∼ 10 ns, information for the purpose of triggering, whilst the MDTs give

precise measurements (averaging 35 µm per chamber) in the (η, z)-plane, in which bending

occurs. This allows the determining of momenta of muons down to ∼ 33 GeV. In the

forward section of the detector, cathode strip detectors (CSCs) are placed nearest to

the interaction point for 2.0 < |η| < 2.7, followed by thin-gap chambers (TGCs) as

well as additional MDTs at 2.0 < |η| < 2.7. The CSCs have a resolution of 40 µm in

the (η, z)-plane, and 5 mm in the transverse plane. The detectors are placed in several

‘stations’ throughout the magnetic field, as is most clearly seen in Figure 1.9. In the barrel

section this implies three cylindrical layers, whereas in the end-cap region vertical planes

(wheels) are used. This sparse design allows sampling of the tracks at several points over
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Figure 1: The ATLAS muon spectrometer.

than 100 µm. The cathode strip chambers additionally provide a rough (1 cm) measurement of the
ϕ-coordinate.

• Resistive plate and thin gap chambers provide similarly rough measurements of both η and ϕ near
selected stations.

High-pT muons typically traverse all three stations but there are η-ϕ regions where one, two or all
three stations do not provide a precision measurement, e.g. those regions with support structures or
passages for services. There are also regions where overlaps allow two measurements from a single
station. Figure 3 shows the number of station measurements as function of η and ϕ . The resolution and
efficiency are degraded where one or more stations do not provide a measurement.

Figure 4 shows how contributions to the muon spectrometer momentum resolution vary as a function
of pT . At low momentum, the resolution is dominated by fluctuations in the energy loss of the muons
traversing the material in front of the spectrometer. Multiple scattering in the spectrometer plays an
important role in the intermediate momentum range. For pT > 300 GeV/c, the single-hit resolution,
limited by detector characteristics, alignment and calibration, dominates.

The other ATLAS detector systems also play important roles in achieving the ultimate performance
for muon identification and measurement. The calorimeter, with a thickness of more than 10 interaction
lengths, provides an effective absorber for hadrons, electrons and photons produced by proton-proton
collisions at the center of the ATLAS detector. Energy measurements in the calorimeter can aid in muon
identification because of their characteristic minimum ionizing signature and can provide a useful direct
measurement of the energy loss [2].

A tracking system inside the calorimeters detects muons and other charged particles with hermetic
coverage for |η | < 2.5, providing important confirmation of muons found by the spectrometer over that
η range. This inner detector has three pixel layers, four stereo silicon microstrip layers, and, for |η | <
2.0, a straw-tube transition radiation detector that records an average of 36 additional measurements on
each track. A 2 Tesla solenoidal magnet enables the inner detector to provide an independent precise
momentum measurement for muons (and other charged particles). Over most of the acceptance, for pT

roughly in the range between 30 and 200 GeV/c, the momentum measurements from the inner detector
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Figure 1.9: Cross-sectional view in the (y, z)-plane of the muon detectors [14].
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Figure 1.10: Muon reconstruction efficiency measured in 2012 data as functions of pT and η
respectively [15].

a large bending distance without instrumenting the entire region. High-momenta muons,

i.e. those with near-straight tracks, are typically expected to be detected by at least

three such stations.

Muon reconstruction employs primarily information from the muon system, as well as

tracking information from the inner detector. A summary of the reconstruction efficiency

for muons is shown in Figure 1.10.
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1.2.5 Triggers

Under the design LHC running conditions ATLAS can expect to receive 40 million bunch

crossings each second, and for each crossing an expected number of interactions ∼ 20,

yielding an overall interaction rate ∼ 1 GHz. The trigger is required to reduce this by a

factor of 107, since events can only be written to disk at ∼ 100 Hz. This is achieved by

a multi-stage triggering system; from most fundamental upwards the layers are Level 1

(L1), Level 2 (L2), and the Event Filter (EF). An overview of how they plug together is

shown in Figure 1.11.

In essence, the L1 triggers are the fastest, hence simplest, filters, while L2 triggers

make use of more information and can afford to be slower, since they are already working

on a much reduced data rate. The L1 trigger is implemented entirely in hardware for

maximum speed, based purely on coarse muon and calorimeter information, and makes a

decision within 2.5 µs. It is aided in this by the dedicated parts of the muon spectrometer

dedicated to triggering, as have been mentioned in section 1.2.4. The L2 trigger is,

conversely, software-based which allows for more flexibility in its design, focussing on

regions of interest (RoIs) within the event that may contain objects such as leptons or

jets. Finally the EF trigger is an additional software layer that is applied to events after

they have been fully reconstructed.

The lower-level L1 and L2 triggers are typically combined and used as part of any

given EF trigger, which are the objects typically used by physics analyses. The analysis

described in the body of this thesis makes use of such triggers, which are specified in

more detail in section 5.3.1.

1.3 Software environment

As has already been alluded to in the previous descriptions, large amounts of software

are required both to firstly record data, and to then analyse it in a useful sense. A key

requirement for the vast majority of analyses is to compare observations to the expected

outcomes given a certain physics model (e.g. the standard model, or one of a variety of

SUSY scenarios). In order to achieve this, a set of software modules are used:

• Event generation: When colliding protons, it is desired to know what new particles

will be created, and what their kinematic distributions are. This is typically achieved

by means of Monte Carlo samplers, which repeatedly draw samples that represent
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Figure 1: Schematic diagram of the
ATLAS Trigger system.

Latency /µs
Target Latency 2.0 (up to 2.5)
- Longest time-of-flight (to
TGC part of L1Muon)

0.75

- Worst case signal transmis-
sion to trigger hardware, 80m
cables

0.4

- Worst case signal transmis-
sion L1A back to front-end,
80m cables

0.4

Available Processing Time 0.45

Table 1: Approximate latencies in the Level-1 Trigger
system

reduce the input 40MHz rate by 50-75%. However, the remaining rate reductions must be
accomplished by the trigger system identifying events of interest, by performing a fast analysis
of the detector signals generated by the colliding bunches. For each data taking period, the
Level-1 trigger is loaded with a ‘trigger menu’, which is a list of up to 256 criteria (trigger items)
upon which to determine if an event is accepted or not. The Level-1 trigger items include,
among others, configurable algorithms to trigger on electrons/photons, hadronically decaying
tau leptons, muons, jets and Emiss

T . As the luminosity is increased, these algorithm’s trigger
rates will increase with at least a linear dependence on the luminosity. However, sometimes the
dependence can be highly non-linear, such as with the Emiss

T > 50 GeV trigger L1 XE50, shown
in figure 2. The trigger menu and its associated trigger items must be continually refined in
order to keep within the 75 kHz budget as the luminosity increases.

In 2011, luminosities of up to 3.65 ⇥ 1033 cm�2s�1 were delivered, corresponding to a
maximum of approximately 24 average collisions in a single bunch (ATLAS uses a 71.5 mb
inelastic cross-section for

p
s = 7 TeV, and note that not all bunches contribute equally). In

2012, both the increase in centre of mass energy from
p

s = 7 TeV to 8 TeV, and the expected
increases in instantaneous luminosity will put further pressure on the Level-1 trigger system.
Section 2 discusses recent modifications to the L1Calo trigger system, designed to cope with the
increasing luminosity being delivered to the ATLAS experiment. Section 3 presents a similar
review of recent enhancements to the L1Muon system. Finally, section 4 reviews recent and
planned changes to the CTP, in relation to the challenges outlined in this introduction.

2. L1Calo - Calorimeter Trigger
The L1Calo system is described in detail in [2], with a summary presented here. The L1Calo
trigger is based on dedicated analogue trigger signals provided by the ATLAS calorimeters
independently from the signals read out and used by o✏ine reconstruction software. The
calorimeters measure energy deposited in small cells of various sizes down to a granularity
in �⌘ ⇥ �� of 0.025 ⇥ 0.025. Rather than using the full granularity of the calorimeter, L1Calo
uses information from analogue sums in regions of granularity ranging from 0.1 ⇥ 0.1 (central
regions) up to 0.4 ⇥ 0.4 (forward regions), to form 7168 trigger towers. These are split between
the EM and hadronic layers of the calorimeter. L1Calo digitizes these analogue signals at a
sample rate of 40MHz, with the analogue-to-digital conversion calibrated so that the height of
an analogue pulse generated by an energy deposit is measured in units of approximately one
ADC count per 250MeV of ET deposited. The final conversion from ADC count to an ET

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 012010 doi:10.1088/1742-6596/396/1/012010

2

Figure 1.11: Top-level view of the triggering and DAQ system in ATLAS [16].
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a possible outcome of a particular physics process. Many such programs exist,

designed to simulate different Standard Model, or BSM, scenarios. For example, a

new-physics scenario could be encoded in MadGraph [17], which gives matrix-element

level events to another tool such as Pythia [18], which hadronises quarks and

gluons into particle jets. The raw output of such generators is forked, with one

stream undergoing minimal processing to yield “truth events” which can be used

for preliminary analysis.

• Detector simulation: Given a record of particle momenta from an event generator,

it is desired to know the expected response of various detector components. This is

achieved with a detector simulator [19], which simulates the propagation of particles

through the different materials comprising the detector, and estimating their energy

deposits throughout. The canonical “full” simulation used for the 2012 run was

based on GEANT4 [20], however was typically slow. Hence for many applications

faster, but more approximate simulators were used, e.g. for the calorimeter [21].

Significant work is being undertaken to integrate several different simulation methods

into a framework to give an optimal trade-off between speed and accuracy [22].

• Digitisation: The detector simulation records ‘hits’ and energy deposits in the

detector, at which point the digitisation procedure emulates the response of the

electrical components given these inputs. The output of this stage is intended to be

virtually identical to the data recorded by the real detector in an event.

• Reconstruction: This is the entry point for real data recorded in ATLAS. Its

purpose is to turn the various activations recorded throughout the detector into

objects ideally corresponding to fundamental particles. This includes electrons,

photons, muons, and jets, as well as unmatched “soft terms”, which represent

energy deposits that don’t easily fit into a hard particle. These are important for

calculations of the missing transverse momentum, described later.

• Analysis: With reconstructed objects, the data is in a state ready for analysis. The

only further processing are sets of quality requirements applied on the reconstructed

objects to give so-called ‘analysis objects’. These are described in the next section.
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1.4 Defining analysis objects

The objects produced by the reconstruction step in section 1.3 are not suitable for use in

analysis. This is because they do not reflect all our knowledge about the calibrations of

various sensors, nor the fact that certain parts of the detector may not always work to

specification. Furthermore some classes of object are discarded since the detector is known

to have limitations, e.g. the ‘crack’ region provides a blind-spot in the electromagnetic

calorimeter system. The definitions in this section specifically reflect those used for the

analysis in chapter 5, although for the most part they are in agreement with those agreed

on by the ATLAS SUSY working group.

1.4.1 Leptons

This section defines the baseline requirements for electrons and muons; taus are not

considered since they are not explicitly considered in this thesis. In both cases the baseline

requirements are defined globally by the ATLAS SUSY working group. Additionally, a

tighter set of requirements defines ‘tight leptons’, or ‘signal leptons’, that are used to

define the signal regions in the like-charge lepton analysis considered later. These are not

set by the collaboration, but rather were found to be optimal for this particular analysis.

The selection requirements for electrons are summarised in Table 1.1, for both baseline

and tight selections. The Medium++ quality denotes a set of other requirements, namely:

it excludes objects falling in the crack region, 1.37 < |η| < 1.52, requires a specific

shower shape in the electromagnetic calorimeter, and also places a lower bound on the

number of Pixel and SCT hits. Tight++ has identical requirements to Medium++, but

additionally requires a smaller ∆φ between the inner detector track and the deposits in

the EM calorimeter. Moreover the electron must have a hit in the innermost pixel layer

(‘b-layer’), and additionally have left hits in the TRT. These quality requirements are

specified in more detail in [23].

For both electrons and muons, requirements are placed on the impact parameters of

the reconstructed tracks. These are defined to be the minimum (possibly extrapolated)

approach to the beam axis, d0, as well as the displacement z0 along the z-axis at the point

at which this occurs. This is illustrated by the diagram in Figure 1.12. The selection

requirements also use u(d0), which represents the uncertainty on the d0 measurement.
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Figure 2: A track parameterised with respect to two di↵erent surfaces: the expression to the nominal z
axis yields the Perigee representation of the track to the left, while the expression of an intersection with a
planar surface (right) is described by the AtaPlane object. The parameterisations di↵er only in the first two
local coordinates that are defined by the surface type and are optimised with respect to the given detector
layout. The momentum expression through the azimuthal angle �, the polar angle ✓ and the (charged) inverse
momentum is identical for both cases.

Hidden Template Method The authors are aware that template solutions are in general not amongst
the most popular techniques within the client community and track representations belong clearly to
the most widely spread classes of the ATLAS tracking EDM. The template resolving has therefore be
hidden from the user through inserting actual class types for the track parameterisations on the various
surfaces for charged and neutral particles that extend the class templates to non-virtual objects7.
Figure 3 shows an UML class diagram that illustrates the charged and neutral track parameterisation
with respect to a planar surface.

The ParametersBase base class is restricted to the attributes that are identical for both a neutral and
a charged trajectory parameterisation and can be used for applications that only work on the global
parameters of a trajectory expression, i.e. a position, a momentum and the charge. The template
mechanism, on the other hand, forces the client to resolve the template argument and consequently
an object has to be identified to be either of Neutral or Charged flavor, before the parameters vector
can be retrieved8.

3 Measurement representation: The MeasurementBase Class

Measurement representations exist in manifold ways in the ATLAS tracking EDM: in most of the
cases, measurements are directly integrated as fully calibrated representations clusters or drift radii.
These objects are realised as classes that extend the RIO OnTrack class, and represent either one-
dimensional or two-dimension measurements; the calibration applied on the input objets from the
clusterisation process (in ATLAS terms PrepRawData objects) is hereby based on the already collected
track information. In the MS, a second additional calibration step is applied on RIO OnTrack objects
in the preparation phase for track fitting (pre-tracking), that is based on the local pattern recognition
output for the various detector chambers.

As described in [1] an even more flexible way of representing single and combined measurements with a
extended MeasurementBase object has been implemented in ATLAS. These types include pre-grouped
(and fitted) measurements as Segment realisations and a dedicated competing measurement collection

7The technically interested reader may find that the class templates mark virtual class descriptions and can thus not
be instantiated in the program flow.

8In C++ terms this is done using the dynamic cast operator.

Figure 1.12: Visualisation of the impact parameters used in defining lepton selection require-
ments, taken from [24].

Their ratio is hence a measure of the significance by which the impact parameter deviates

from 0.

Isolation requirements are also used; the “*cone20” and “*cone30” variables represent

the summation of all transverse energies/momenta in a region around the nominal track

defined by ∆R < 0.2 and ∆R < 0.3 respectively. A prefix of “et” specifies that energies

are used, whilst “pt” implies momenta. The variables are separately defined for the inner

detector and calorimeters; in the former case the pT of tracks within the cone are used,

whereas in the latter it is the energy deposits in suitably near cells that are summed. In

both cases the energy/momenta of the nominal track or energy deposit is not included in

the summation. These quantities are most helpful in reducing the rate at which jets can

fake lepton objects, since jets tend to be wider than real lepton tracks and hence be less

well isolated.

Muons undergo an analogous treatment to electrons, with a summary of the various

cuts applied to the objects shown in Table 1.2. Both combined and segment-tagged muons

are used, where the former implies that the inner detector and muon spectrometer tracks

are consistent and used together in forming the track. By contrast, the segment-tagging

algorithm extrapolates the inner detector tracks into the muon system and searches for

matching hits in the muon stations. The Loose quality places more specific requirements

on the recorded hits and energies, as detailed in [25].
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Baseline electron

Acceptance pT > 10 GeV, |ηclus| < 2.47

Quality Medium++

Impact parameter |d0/u(d0)| < 5

Tight electron

Acceptance pT > 15 GeV

Quality Tight++

Track isolation ptcone20/min(pT, 60 GeV) < 0.06

Calorimeter isolation topoEtcone20/min(pT, 60 GeV) < 0.06

Impact parameter
|z0 sin(θ)| < 0.4 mm

|d0/u(d0)| < 3

Table 1.1: Object requirements for baseline electrons, as well as the additional requirements
for an electron to be labelled ‘tight’. The former are common to the whole SUSY
group within ATLAS, whilst the latter are optimised for the analysis presented
in chapter 5. Due to the tighter isolation requirements tight electrons are much
rarely induced by misclassified jets than the baseline.

1.4.2 Jets

As for leptons, the common definitions used by the ATLAS SUSY working group are

shown in the first part of Table 1.3. The jets are reconstructed using the anti-kT algorithm

[26] as implemented in FastJet [27]. The distance parameter for this algorithm is set to

∆R = 0.4. It operates on topological clusters from the calorimeter [28], with energies

calibrated to take into account the losses inherent in a sampling calorimeter, as well as

the presence of other dead material. This is performed using the local cluster weighting

(LCW) scheme [29], as well as taking into account jet energy scale (JES) calibrations

[30].

A further requirement used in some places by the SUSY working group at the time

of the analysis being performed involved placing a cut on the jet vertex fraction (JVF).

This is an estimate of the probability that a given jet originated from the primary vertex

and aims to reduce the impact of jets from secondary interactions on the analysis. It was

not applied as it was found that the 40 GeV requirement sufficed in making the impact

from pile-up negligible.
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Baseline muon

Acceptance pT > 10 GeV, |ηclus| < 2.5

Quality Loose

Pixel hits (*) # pixel hits ≥ 1

SCT hits (*) # SCT hits ≥ 5

Pixel, SCT holes # pixel holes + # SCT holes < 3

B-layer (**) # b-layer hits ≥ 1

TRT requirements
If 0.1 < |η| < 1.9: nTRT ≥ 6 and noutliers

TRT < 0.9nTRT

Else if nTRT ≥ 6: noutliers
TRT < 0.9nTRT

Tight muon

Acceptance pT > 15 GeV

Track isolation ptcone30/min(pT, 60 GeV) < 0.12

Calorimeter isolation etcone30/min(pT, 60 GeV) < 0.12

Impact parameter
|z0 sin(θ)| < 0.4 mm

|d0/u(d0)| < 3

Table 1.2: Object requirements for baseline muons, as well as the additional requirements
for an muons to be labelled ‘tight’. The former are common to the whole SUSY
group within ATLAS, whilst the latter are optimised for the analysis presented in
chapter 5. nTRT is the total number of hits recorded in the TRT, whereas noutliers

TRT

is the subset of that which are classified as outliers. (*) If a track crosses either
a pixel or SCT sensor known to be dead, this counts as a hit. (**) This b-layer
requirement is only included if the track is expected to have crossed the b-layer.
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Baseline jet

Algorithm AntiKt4Topo

Acceptance pT > 20 GeV, |η| < 2.8

Signal jet

Acceptance pT > 40 GeV

b-jet

Acceptance pT > 20 GeV, |η| < 2.5

Tagging requirement MV1 algorithm, 70%

Table 1.3: Object requirements for baseline jets, as well as the additional requirements for
the signal jets used in the analysis presented later. The extra requirement for b-jets
is also included.

1.4.3 Overlap removal

The reconstruction algorithms for electrons, muons, and jets in ATLAS are all independent,

and as such it is quite possible for a single set of tracks and energy deposits to be classified

as both an electron and a jet, for example. In order to remove this duplication when

performing analysis, a procedure denoted ‘overlap removal’ is applied to the objects

defined thus far. In the ordered set of cuts below, if e.g. the set of jets is updated at a

given step, then the updated collection would be used if referred to in a subsequent step.

The recipe is:

1. Remove any jet with ∆R < 0.2 with any electron.

2. Remove any electron with ∆R < 0.4 with any jet.

3. Remove any muon with ∆R < 0.4 with any jet.

4. Remove any electron with ∆R < 0.1 with any muon.

At this stage all of the electrons, muons, and jets are as used in chapter 5.



24 The ATLAS experiment and the LHC

1.4.4 Missing transverse momentum

One quantity that is possible to measure at near-4π detectors such as ATLAS is the

missing transverse momentum. It is a quantity of particular relevance in analyses

searching for new physics signatures expecting a new stable and non-electromagnetically

interacting particle; such particles can only leave traces through momentum that isn’t

seen. In principle, one computes the sum of all visible four momenta, and projects it

into the transverse plane. In the event that no particles are missed this should be very

close to zero, since the beams carry approximately no momentum in this plane. Thus,

one defines

pmiss
T ≡ −

∑

visible

pT (1.5)

≈
∑

invisible

pT, (1.6)

where equality holds in the ideal case where all visible particles are measured perfectly.

In the subsequent analysis often only the magnitude of this is used, which is written as

pmiss
T .

For the purposes of this thesis a calculation denoted MET Egamma10NoTau RefFinal

is used, which uses information from all calorimeter cells with |η| < 4.9 as well as the

reconstructed muon objects. The readings from individual cells are calibrated according

to which reconstructed object they have been associated. The objects used differ slightly

in their acceptances from the analysis objects:

• Electrons: All electrons with pT > 10 GeV and satisfying the Medium++ quality

requirement.

• Muons: All muons with pT > 10 GeV, and otherwise satisfying the baseline

requirements in Table 1.2.

• Jets: All jets with pT > 10 GeV, although the JES calibration is not applied for

those with pT < 20 GeV, and LCW is used alone.

• Photons: This uses reconstructed photons with pT > 10 GeV.

• CellOut: This is the term representing all the energy deposits in the calorimeter

not associated with any of the previously defined object classes (including objects

not meeting their pT requirements). These are calibrated with the LCW scheme.



Chapter 2

Introduction to Supersymmetry

A significant portion of this thesis is dedicated to the presentation of results from an

analysis searching for evidence of SUSY, in chapter 5. In order to motivate this analysis

it is first necessary to consider the principles on which SUSY is founded, and then to

foray into a discussion of the incongruencies and deficiencies of the Standard Model

(SM) which SUSY might be able to address.

This chapter will not concern itself with the introduction of the SM or quantum

field theory – some knowledge of the fundamental principles in these areas is assumed.

Many sources covering these concepts already exist, to which the interested reader is

encouraged to refer. Rather, the purpose of this chapter is primarily to convince the

reader that not only is the SM incomplete, but that SUSY is an interesting extension

worthwhile searching for at the LHC.

The theoretical content of this chapter is largely based on the textbooks and extended

articles in references [31–36].

2.1 Limitations of the Standard Model

That the Standard Model is incomplete is not in question, since it makes no attempt

to include gravity in its modelling of the fundamental forces of nature. The reason

for this is that the näıve addition of gravitational terms results in a theory that is not

renormalisable. Hence some new physics, such as string theory [37], would need to take

over in the regime of the Planck mass where the SM loses predictivity. However, this

aside there is still a list of more pressing issues at the energy scales we are currently able

25
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to probe, either with the predictive power of the Standard Model, or its elegance as a

theory:

• Dark matter: Despite strong evidence suggesting its existence, the SM has no

candidate particle for dark matter.

• Baryon asymmetry: We observe more matter than antimatter, which suggests a

source of CP violation not present in the SM.

• Anomalous magnetic moment of the muon: Precision measurements suggest

it has a value incompatible with the SM.

• Neutrino masses: Neutrino flavour oscillation has been observed, which requires

them to have mass; however the SM does not include mass terms for neutrinos.

• Hierarchy problem: The apparent ‘miraculous cancellation’ giving rise to the

observable Higgs mass at electroweak scales, which suggests fine-tuning in any UV

completion at high scales.

The following sections aim to delve into these problems in a bit more detail.

2.1.1 Dark matter

One of the most significant experimental disagreements with the SM is that of the

inferred existence of dark matter. Dark matter is defined as matter which is massive,

cold, non-relativistic, and has at most very weak couplings to the electromagnetic force.

It is generally assumed to be uncharged, however millicharged dark matter has not been

ruled out . This is the reason given to the fact that it cannot be directly observed with

telescopes. It is theorised that such particles might interact weakly,1 but this need not

be the case.

It is now largely agreed that dark matter is indeed present in our universe, an opinion

based primarily upon the functional dependence of the rotational velocities of galaxies

with their radius. These studies suggest a lower bound on the average relative density of

dark matter, ΩDM > 0.1, related to the dimensionful density ρDM by

ΩDM =
ρDM

ρcrit

, (2.1)

1These type of dark matter particles are hence called WIMPs (weakly interacting massive particles).
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where ρcrit is the density of dark matter that would result in a closed universe [38]. More

recent measurements suggest that dark matter comprises ≈ 23% of all energy in the

universe [39,40], with only 4% being formed of the baryonic matter with which we are

most familiar.2 Measurements of the anisotropy of the cosmic microwave background

additionally provide indirect information about the expected dark matter particle mass,

and their interaction cross section in the very early stages of the universe’s existence [41].

There is currently a large push to run experiments capable of direct detection of dark

matter. In general these are large quantities of a dense medium with which it is hoped

that dark matter particles will interact, typically buried to a great depth to minimise

the flux of cosmic rays. These containers would then be surrounded by some form of

detector. For example, taking the LUX experiment [42,43], a container of liquid xenon is

surrounded by photomultiplier tubes in order to detect gamma rays emanating from a

dark matter interaction.

The majority of such experiments have, as yet, failed to find any direct evidence for

dark matter, with the exception of apparent large excesses from the DAMA/LIBRA

collaboration, along with other small excesses from CoGeNT, CDMS-Si, and CRESST

[44]. These excesses are treated suspiciously due to their apparent inter-incompatibility,

in addition to the tension created with results from the XENON-100 experiment.

Despite the current lack of direct evidence for dark matter, the indirect evidence is

considered sufficiently strong that its existence is all but confirmed. Unfortunately, the

SM does not contain any particle which satisfies the required properties of a dark matter

particle, and as such it is strongly suspected that the SM is incomplete.

2.1.2 Baryon asymmetry

It is known that we observe an asymmetry in the ratio of matter to antimatter, with

significantly less antimatter than matter [45]. If one assumes that at the moment of the

big bang3, matter and antimatter were created in equal quantities, it necessarily follows

that the present-day asymmetry must be explained by the presence of CP -violating

interactions. The SM does contain such CP -violating terms in the form of the CKM

2The rest of the energy is deemed dark energy, and is even less well understood than dark matter.
Whilst a very interesting problem, it is not addressed by this work.

3This is not a universally accepted assumption, although is the prevailing opinion. The alternative
requires a much larger initial baryon asymmetry due to conversion of baryons to leptons through
sphaleron processes [46].
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Figure 1: Representative diagrams contribut-
ing to aSM

µ . From left to right: first order QED
(Schwinger term), lowest-order weak, lowest-
order hadronic.

of the measurement in Eq. (3) by a factor of four by moving the

E821 storage ring to Fermilab, and utilizing a cleaner and more

intense muon beam is in progress. An even more ambitious

precision goal is set by an experiment based on a beam of

ultra-cold muons proposed at the Japan Proton Accelerator

Research Complex.

The SM prediction for aSM
µ is generally divided into three

parts (see Fig. 1 for representative Feynman diagrams)

aSM
µ = aQED

µ + aEW
µ + aHad

µ . (4)

The QED part includes all photonic and leptonic (e, µ, τ) loops

starting with the classic α/2π Schwinger contribution. It has

been computed through 5 loops [9]

aQED
µ =

α

2π
+ 0.765 857 425(17)

(α

π

)2
+ 24.050 509 96(32)

(α

π

)3

+ 130.879 6(6 3)
(α

π

)4
+ 753.3(1.0)

(α

π

)5
+ · · · (5)

with a few significant changes in the coefficients since our

previous update of this review in 2011. Employing2 α−1 =

137.035 999 049(90), obtained [6] from the precise measure-

ments of h/mRb [11], the Rydberg constant and mRb/me [6],

leads to [9]

aQED
µ = 116 584 718.95(0.08) × 10−11 , (6)

2 In the previous versions of this review we used the precise

α value determined from the electron ae measurement [9,10].

With the new measurement [11] of the recoil velocity of Rubid-

ium, h/mRb, an ae-independent determination of α with suffi-

cient precision is available and preferred.
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Figure 2.1: Schematic summary of the lowest order loop contributions to the magnetic
moment of the muon in the SM. On the far left is the QED contribution, the
middle two depict weak contributions, and the right demonstrates the hadronic
contribution. Figure taken from [38].

matrix, which describes quark mixing, or the equivalent PMNS matrix for neutrino

mixing [47], however the magnitude of the effect is too small to explain the observed

asymmetry [45].

2.1.3 Anomalous magnetic moment of the muon

The gyromagnetic ratio of the muon gµ can be computed at tree level in quantum

electrodynamics as being exactly 2. This is then related to the overall magnetic moment

M of the muon by

M = gµ
e

2mµ

S, (2.2)

where S is the spin vector. Loop corrections, for example those shown in Figure 2.1,

provide a small deviation from this tree level value. As such it is customary to define the

anomalous magnetic moment,

aµ =
gµ − 2

2
. (2.3)

Several predictions of the SM value of the anomalous magnetic moment exist, which

shall be denoted aSM
µ , which can then be compared to the average observed value aexp

µ .

Experiments which can measure this quantity include the E821 experiment at BNL,

which studied the precession of muons in a magnetic field whilst contained in a storage

ring [48]. The differences between the calculations and prediction is, on average

aexp
µ − aSM

µ = 288(63)(49)× 10−11, (2.4)
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Figure 2: Compilation of recent published re-
sults for aµ (in units of 10−11), subtracted
by the central value of the experimental av-
erage (3). The shaded band indicates the size
of the experimental uncertainty. The SM pre-
dictions are taken from: JN [4], DHMZ [17],
HMNT [21]. Note that the quoted errors in
the figure do not include the uncertainty on the
subtracted experimental value. To obtain for
each theory calculation a result equivalent to
Eq. (15), the errors from theory and experiment
must be added in quadrature.

(with all errors combined in quadrature) represents an inter-

esting but not yet conclusive discrepancy of 3.6 times the

estimated 1σ error. All the recent estimates for the hadronic

contribution compiled in Fig. 2 exhibit similar discrepancies.

Switching to τ data reduces the discrepancy to 2.4σ, assuming

the isospin-violating corrections are under control within the

estimated uncertainties (see Ref. 32 for an analysis leading to a

different conclusion).

An alternate interpretation is that ∆aµ may be a new

physics signal with supersymmetric particle loops as the leading

candidate explanation. Such a scenario is quite natural, since

December 18, 2013 11:57

Figure 2.2: Comparison of the experimentally measured anomalous magnetic moment of the
muon, aexp

µ , to a selection of the latest SM theory predictions (which vary in the
computation of the hadronic component, cf. Figure 2.1). The blue band represents
the experimental uncertainty, and the bars on the theory points represent the
purely theoretical uncertainty. Figure taken from [38].

where the number in the first bracket is the experimental uncertainty, and in the second

the theoretical uncertainty. A graphical comparison of the experimentally observed value

to several current theoretical predictions is shown in Figure 2.2. Overall the deviation is

3.6σ, however if τ data is used then the discrepancy is only 2.4σ. Whilst this does not

satisfy the 5σ requirement for a discovery, it is an interesting tension, which shall later

be shown to be explainable in several supersymmetric scenarios.

This section is largely based on the pertinent article in reference [38].

2.1.4 Neutrino masses

The SM includes only left-handed massless neutrinos, with three flavours. These three

neutrinos are, by definition, flavour eigenstates. However, in general it is necessary to

compute the propagation of any particle in a mass eigenstate, since the propagation speed

of waves on a massive field are dependent on this mass. If one postulates for a moment
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that neutrinos did indeed have mass, then one can imagine a unitary transformation

between the flavour eigenstates |να〉 and mass eigenstates |νi〉,

|να〉 =
∑

i

U∗αi |νi〉 (2.5)

|νi〉 =
∑

α

Uαi |να〉 . (2.6)

The transformation U is known as the Pontecorvo-Maki-Nakagawa-Sakata matrix, devel-

oped in 1962 [47]. Then, if producing neutrinos of definite flavour, and observing in the

flavour basis at a later time some distance from the source, it would be expected that the

flavour composition might change if there exist differences between the masses of the |νi〉.

Observations consistent with this flavour oscillation are well known. For example, in

the ‘solar neutrino problem’ it appeared that only about 1/3-1/2 of the expected electron

neutrino flux from the Sun was detected. This is now attributed to the Mikheyev-

Smirnov-Wolfenstein (MSW) effect, which means that the neutrinos emerging from the

Sun are largely in the ν2 mass eigenstate, which is formed more significantly of νµ than νe.

The ν1 and ν2 components propagate through space and arrive, incoherently, at Earth.

Subsequent measurements of flavour by experiments will then see the appropriate deficit

of νe [49,50]. Neutrino oscillation has also been observed with man-made neutron sources,

such as nuclear reactors [51], and long-baseline beam experiments such as OPERA [52].

While not explicable directly by the SM, there are two relatively simple extensions that

do allow for it. In one case, one assumes that neutrinos are Majorana particles, and adds a

mass term to the Lagrangian [53]. In order to preserve gauge-invariance this is formed by

spontaneous symmetry breaking of a dimension-5 Weinberg operator, however it is non-

renormalisable. This operator could arise from many different theoretical frameworks,

and a review of possible extensions can be found in reference [54]. Alternatively, if

neutrinos are Dirac particles it is required to add a right-handed neutrino field to the

Lagrangian, and adding a standard Dirac mass term [55].

2.1.5 Hierarchy problem

The ‘hierarchy problem’ pertains to the large difference between the scales of gravity

and electroweak physics, namely that the ratio of the Planck mass to the mass of the

W boson MPl/MW ∼ 1017. This fact is equivalently a statement that the gravitational

force is much weaker than any of the other known forces. This question can be reduced
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“We are, I think, in the right Road of Improvement, for we are making Experiments.”
–Benjamin Franklin

1 Introduction

The Standard Model of high-energy physics, augmented by neutrino masses, provides a remarkably
successful description of presently known phenomena. The experimental frontier has advanced into the
TeV range with no unambiguous hints of additional structure. Still, it seems clear that the Standard
Model is a work in progress and will have to be extended to describe physics at higher energies.
Certainly, a new framework will be required at the reduced Planck scale MP = (8πGNewton)−1/2 =
2.4 × 1018 GeV, where quantum gravitational effects become important. Based only on a proper
respect for the power of Nature to surprise us, it seems nearly as obvious that new physics exists in the
16 orders of magnitude in energy between the presently explored territory near the electroweak scale,
MW , and the Planck scale.

The mere fact that the ratio MP/MW is so huge is already a powerful clue to the character of
physics beyond the Standard Model, because of the infamous “hierarchy problem” [1]. This is not
really a difficulty with the Standard Model itself, but rather a disturbing sensitivity of the Higgs
potential to new physics in almost any imaginable extension of the Standard Model. The electrically
neutral part of the Standard Model Higgs field is a complex scalar H with a classical potential

V = m2
H |H|2 + λ|H|4 . (1.1)

The Standard Model requires a non-vanishing vacuum expectation value (VEV) for H at the minimum

of the potential. This will occur if λ > 0 and m2
H < 0, resulting in ⟨H⟩ =

√
−m2

H/2λ. Since we

know experimentally that ⟨H⟩ is approximately 174 GeV, from measurements of the properties of the
weak interactions, it must be that m2

H is very roughly of order −(100 GeV)2. The problem is that m2
H

receives enormous quantum corrections from the virtual effects of every particle that couples, directly
or indirectly, to the Higgs field.

For example, in Figure 1.1a we have a correction to m2
H from a loop containing a Dirac fermion

f with mass mf . If the Higgs field couples to f with a term in the Lagrangian −λfHff , then the
Feynman diagram in Figure 1.1a yields a correction

∆m2
H = − |λf |2

8π2
Λ2

UV + . . . . (1.2)

Here ΛUV is an ultraviolet momentum cutoff used to regulate the loop integral; it should be interpreted
as at least the energy scale at which new physics enters to alter the high-energy behavior of the theory.
The ellipses represent terms proportional to m2

f , which grow at most logarithmically with ΛUV (and
actually differ for the real and imaginary parts of H). Each of the leptons and quarks of the Standard
Model can play the role of f ; for quarks, eq. (1.2) should be multiplied by 3 to account for color. The

H

f

(a)

S

H

(b)

Figure 1.1: One-loop quantum corrections to the Higgs squared mass parameter m2
H , due to (a) a Dirac

fermion f , and (b) a scalar S.

3

Figure 2.3: Higgs self-coupling terms at one loop contributing to the observed Higgs mass,
with (a) terms from fermion loops, and (b) terms from scalar loops. Figure taken
from [35].

to a more directly calculable quantity, namely the mass of the Higgs boson. It is found

that the physically observed mass, as opposed to the bare mass parameter appearing in

the Lagrangian, has significant contributions from loops as shown in Figure 2.3. The

correction to the observed squared Higgs mass for a fermion loop of mass mf is, up to

constant factors

∆m2
H,f ∝ −

∫ Λ

d4k

(
1

k2 +m2
f

+
m2
f(

k2 +m2
f

)2

)
, (2.7)

where we choose to apply some cutoff scale, Λ, above which we expect new physics to

apply. This integral is hence finite but large, since the first term of the integral will

scale like Λ2. If the SM were valid up to MPl, then in order for the Higgs to have a

mass ≈ 126 GeV, the bare mass in the Lagrangian must be tuned to cancel out this huge

correction. This bare mass can in turn be related to the parameters of the higher-energy

physics model, and as such this implies a find-tuning problem in this new theory. Whilst

this is possible, it would be more elegant not to require such tuning.

2.2 Supersymmetry

SUSY aims to exploit an additional allowed spacetime symmetry that is not included

in the SM. In doing so it is thought to not leave any other possible extensions, and as

such is motivated largely by being in some way ‘complete’. The rest of this section will

firstly discuss this topic in more detail, and then proceed to demonstrate a selection of

supersymmetric theories that have been widely investigated for various reasons. Using

these it shall be shown that some of them are capable of fixing, or at least mitigating,

several of the known or observed deficiencies in the SM pointed out in section 2.1. Finally
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some considerations are made about the current constraints on SUSY, both from collider

and other experiments.

2.2.1 Theoretical principles and motivation

The S-matrix

The arguments later in this subsection rely on the meaning of the S-matrix in quantum

field theory. The S-matrix is the core part of scattering theory that contains all the

observable physical properties of a given theory.4

In abstract terms, if one has an initial state |Φi〉 defined at t = −∞, then one can

consider the state at time t, |Ψ(t)〉, which has evolved from this. For a target final state

at t = +∞, denoted 〈Φf |, the S-matrix represents the transition amplitude to this state

from the initial state, namely

Sfi = lim
t→+∞

〈Φf |Ψ(t)〉 (2.8)

≡ 〈Φf |Hint|Φi〉 , (2.9)

where Sfi is the S-matrix element for the specified initial and final states, and Hint is the

interaction Hamiltonian for the system. Quantum field theory allows one to compute the

S-matrix, in particular using the perturbative expansion most familiar in its graphical

form as Feynman diagrams.

The Coleman-Mandula theorem

In 1967, Coleman and Mandula published a paper [56] containing a ‘no-go’ theorem which

claimed to prohibit any additional symmetries of the S-matrix which were not trivial

combinations of the known Poincaré space-time symmetry (which includes Lorentz boosts,

rotations, and translations), and other internal symmetries. If additional symmetries

were enforced, the only allowable S-matrix would be trivially the identity; that is, there

would be no interactions. However, the Coleman-Mandula makes a key assumption –

that only commuting symmetry generators are considered. Thus the theory only directly

4It is possible, and indeed it is the case in the SM, that a theory will contain additional, spontaneously
broken, symmetries that are not visible in the S-matrix.
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considers bosonic operators, those of integer spin, since those for fermions are defined by

anticommutation relations.

The Haag-Lopuszanski-Sohnius theorem

Generalising the Coleman-Mandula theorem by additionally allowing these anticommu-

tating symmetry generators, i.e. those operating on fermions, Haag,  Lopuszański and

Sohnius wrote in 1975 of an additional symmetry that the S-matrix might possess [57].

These are represented by the four supersymmetry generators Qα and Q̄α̇, which belong

to the (1
2
, 0) and (0, 1

2
) irreducible representations (irreps) of the Lorentz group. α and α̇

represent respectively a left-handed and right-handed Weyl spinor index. If acting on a

scalar state φ, one then finds

Qα |φ〉 = |ψα〉 , (2.10)

where the resultant object ψ must be a fermion (in this case left-handed) due to the

fact that the left-hand side transforms like a left-handed Weyl spinor. Using the anti-

commutation identity5 {Qα, Qβ} = 0 ∀α, β, it is clear that acting on a scalar state with

components of Qα twice will not leave any free spinor indices. Namely, one finds

εβαQβ |ψα〉 = |φ〉 . (2.11)

If φ is a scalar in a left-handed chiral supermultiplet, then it is defined such that Q̄α̇φ = 0

– as such, since Qs and Q̄s commute, the latter operators cannot be used to add an extra

index since the state will be annihilated. However, with an alternative definition one

could have a supermultiplet in which

Q̄α̇ |ψα〉 = |Aα̇α〉 6= 0, (2.12)

where the object Aα̇α lives in the (1
2
, 1

2
) representation of the Lorentz group, and is hence

a vector boson; the pair (ψα, Aα̇α) is then called a vector supermultiplet.

Due to the representations in which the Q operators live, they transform non-trivially

under the Lorentz group; as such they do not form an internal symmetry, but in fact

supersymmetry is an additional space-time symmetry.

5This is true only for N = 1 SUSY. For extended SUSY models the result is an antisymmetric matrix
ZIJ in the supersymmetry generator indices, known as the ‘central charge’.
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It is found that both the momentum operator and any gauge transformation generators

corresponding to internal symmetries commute with both Q and Q̄. The net result of

this is that supersymmetric states contain both bosonic and fermionic fields due to

the presence of Q; due to this it is commonly referred to as a supermultiplet. These

supermultiplets are either chiral, containing either a boson and left-handed fermion, or

anti-chiral, where the fermion is instead right-handed.

Within a supermultiplet the particles have identical charges under all gauge sym-

metries, due to the commutation properties. In the context of extending the SM, this

means that in a given representation there will be two ‘superpartners’, a boson and a

fermion, each of which has the same electric charge, colour charge, and charge under

the weak force.6 Since P µ also commutes with Q it can be inferred that each of these

superpartners will have an identical mass.

Extended supersymmetry

In the above discussion of the Haag-Lopuszanski-Sohnius theorem, only one supersym-

metry operator, Q, was used; however, one is not prevented from inventing N of them,

QI
α and Q̄J

α̇, with I, J ∈ {1, . . . , N}. By increasing N above 1 one places additional

constraints on the S-matrix, since there are additional symmetries that must be satisfied

by the interaction Hamiltonian. All of the models constrained by the analysis in this

thesis are of the N = 1 form, however models with N > 1 are of interest elsewhere. In

general, this latter class of models forms extended supersymmetry.

2.2.2 Supersymmetric phenomenology

This section will introduce the common benchmark SUSY model, the Minimal Super-

symmetric Standard Model (MSSM), and consider the particle content that one finds

after a brief diversion through mechanisms of SUSY breaking. A mention will also be

made of R-parity violating extensions to the MSSM, a model based on which is studied

later in this work.

6In general a supermultiplet need not be restricted to having just one bosonic and one fermionic degree
of freedom, although this is the only phenomenological case that will be considered. In the general
case it can be proved that there must be equal numbers of bosonic and fermionic degrees of freedom.
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Minimal Supersymmetric Standard Model

The MSSM is called ‘minimal’ because it introduces the smallest particle content necessary

such that the SM particles still exist in their current forms within an N = 1 supersym-

metric framework. Each SM fermion is placed within a supermultiplet containing an

additional spin 0 boson – these new particles have the same name as their fermionic

counterpart but with a prepended ‘s’ (for ‘scalar’). So an electron (e) is partnered with a

selectron (ẽ), a generic quark (q) with a generic squark (q̃), and so forth. Spin 1 bosons

in the SM (before electroweak symmetry breaking (EWSB), so the B0,W±,W 0 bosons)

are placed into gauge supermultiplets with fermionic spin 1
2

superpartners; these again

carry equivalent names but with the ‘-ino’ postfix. One therefore has gluinos (g̃), winos

(W̃ ) and binos (B̃).

The Higgs sector is slightly more complex, with two supermultiplets, in order to

ensure anomaly cancellation, which would otherwise make the theory non-renormalisable

[58]. This is also required for the reason that each of the Higgs chiral supermultiplets Hu

and Hd can give mass to only the up-type and down-type quarks respectively, due to

their different charges under U(1)Y .

The overall particle content of the MSSM, before SUSY breaking, is summarised in

Table 2.1.

After EWSB, the diminutive -ino ending is still used for these gauge fields; in the

absence of any supersymmetry breaking terms one would end up with zino (Z̃ 0) and

photino (γ̃). Since we know that SUSY must be a broken symmetry (as discussed in

the next section), these and the Higgs multiplets are mixed into a set of neutralinos,

charginos, and Higgs bosons as a result of the SUSY breaking terms that are added. A

summary of these mixings is shown in Table 2.2.

The most notable feature here is probably the postulated existence of multiple Higgs

bosons – here h0 is known as the ‘light Higgs’ and H0 as the ‘heavy Higgs’, since it

is specified that mh0 ≤ mH0 and these are both CP -even neutral scalars, like the SM

Higgs boson. The observation of a boson at 126 GeV [59], consistent with the Higgs, is

then one of these two. Moreover there is an additional neutral scalar, A0, however this

differs in that it is CP -odd. There are then a pair of charged Higgs states, H±, which

are the charge conjugates of one another. It is also worth nothing that the neutralino
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Names Label Spin 0 Spin 1/2 Gauge representation

Quarks

Q (ũL, d̃L) (uL, dL) (3,2, 1
6
)

U ũ∗R u†R (3̄,1,−2
3
)

D d̃
∗
R d†R (3̄,1, 1

3
)

Leptons
L (ν̃L, ẽL) (νL, eL) (1,2,−1

2
)

E ẽ∗R e†R (1,1, 1)

Higgs
Hu (H+

u , H0
u) (H̃+

u , H̃ 0
u ) (1,2, 1

2
)

Hd (H0
d , H−d ) (H̃ 0

d , H̃−d ) (1,2,−1
2
)

Names Spin 1/2 Spin 1 Gauge representation

Gluon g̃ g (8,1, 0)

W bosons W̃ ±, W̃ 0 W±, W 0 (1,3, 0)

B boson B̃0 B0 (1,1, 0)

Table 2.1: Supermultiplet particle content in the MSSM. The upper table contains the SM
matter content and Higgs, and the lower table the SM force carriers. The matter
supermultiplets have conventional labels, as indicated, which shall be used later. In
all cases here particles are specified before EWSB; hence the gauge representation
is in the form (SU(3)C , SU(2)L, U(1)Y ). Note that the SU(2)L both singlets and
doublets are formed of left-handed Weyl spinors, such that the superpotential
remains holomorphic; this is why conjugates of the right handed particles are
inserted into the supermultiplets. The tables are adapted from [35].
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Particle group Gauge eigenstates Mass eigenstates

Higgs bosons H0
u , H0

d , H+
u , H−d h0, H0, A0, H±

Neutralinos B̃0, W̃ 0, H̃ 0
u , H̃ 0

d χ̃0
1 , χ̃0

2 , χ̃0
3 , χ̃0

4

Charginos W̃ ±, H̃+
u , H̃−d χ̃±1 , χ̃±2

3rd gen. squarks t̃L, t̃R, b̃L, b̃R t̃1, t̃2, b̃1, b̃2

3rd gen. sleptons τ̃ L, τ̃R, ν̃ τ τ̃ 1, τ̃ 2, ν̃ τ

Table 2.2: The mass eigenstates observed in the MSSM after SUSY breaking, with an
indication of which gauge eigenstates previously described in Table 2.1 are mixed
into each group of particles. The precise form of mixing is determined by the SUSY
model in question, and its parameters. It is assumed here that negligible mixing
occurs between the first and second generation of squarks and sleptons – this is
the case for all specific models considered later in this thesis.

and chargino states are ordered in terms of mass, so mχ̃0
1
≤ mχ̃0

2
≤ mχ̃0

3
≤ mχ̃0

4
, and

m
χ̃±1
≤ m

χ̃±2
.

Whilst the above has detailed the particle content of the MSSM, the precise masses

of the particles will be determined by a large number of free parameters. If one considers

the SUSY-breaking parameters mentioned in the following discussion, there are a total

of 120 new parameters over the SM. Whilst much of this space is already excluded, for

the reasons noted in section 2.4, there are many degrees of freedom still remaining.

Much current interest is directed towards a subset of the MSSM known as the

phenomenological MSSM (pMSSM), which imposes a number of constraints yielding a

model with 19 free parameters [60]. Whilst this forms a large space, it is not infeasible to

perform an exhaustive scan with current computer resources, and identify regions where

SUSY is still not excluded that might not otherwise have been thought of.

SUSY breaking

Whilst the symmetry structure described above treats supersymmetry on a par with

Lorentz symmetry, if SUSY is a valid model then it is necessarily a broken symmetry.

This is due to the fact that [Qα, P
µ] = [Q̄α̇, P

µ] = 0, which forces particle pairs in a

given supermultiplet to have the same mass; however since we have not yet observed any
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of the superpartners, there must be a mechanism to break supersymmetry that causes

them to be more massive than the corresponding SM particles.

A common scheme is known as soft supersymmetry breaking, and is employed by the

MSSM. It is particularly tidy since it does not alter the normalisation of the superpotential

above the SUSY breaking scale, and additionally allows one to consider separately the

issues of what effect actually introduces the breaking of SUSY, and the particle spectra

that result from it. This latter feature is possible since soft SUSY breaking simply

introduces all possible additional mass terms into the Lagrangian for the gauginos and

scalar fields – they break SUSY simply because the resultant addition to the Lagrangian

will not be invariant under Q or Q̄.

The causes behind these SUSY-breaking terms will not be discussed here, but two

specific examples of gravitationally-mediated symmetry breaking in the mSUGRA

(minimal SUper GRAvity) model, and gauge-mediated supersymmetry breaking (GMSB),

will be discussed when setting limits on these respective scenarios in section 5.9.2.

R-parity

In general, it is possible to write down supersymmetric interaction terms that violate

baryon or lepton number. This is sometimes considered undesirable, since these are

perturbatively good symmetries in the standard model, and in all cases B−L is conserved.7

The requirement that a supersymmetric theory conserve baryon and lepton number can

be recast into the conservation of a quantity called R-parity. For baryon number B,

lepton number L and particle spin s, we define R-parity to be

PR = (−1)3(B−L)+2s. (2.13)

As an extension to the MSSM (which is an R-parity conserving (RPC) theory), the

superpotential for the R-parity violating (RPV) interactions is

W/PR
=

1

2
λijkLiLjEk + λ′ijkLiQjDk − κiLiHd

︸ ︷︷ ︸
∆L=1

+
1

2
λ′′ijkUiDjDk

︸ ︷︷ ︸
∆B=1

, (2.14)

where i, j, and k are flavour indices, and the supermultiplet labels are as denoted in

Table 2.1. The formality of the superpotential is not necessary for the discussion at hand;

7The one exception to baryon number conservation being non-perturbative sphaleron processes, due to
the chiral anomaly, which can change the baryon number by 3.
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Figure 2.4: Feynman diagrams showing processes with several of the lepton and baryon
number RPV couplings. The example for the LQD coupling implicitly includes
an off-shell squark. Diagrams taken from [61].

merely that it denotes additional allowed couplings between particles such as those shown

in Figure 2.4. These are also the only interactions that violate baryon or lepton number

conservation, as indicated. If it is required that the product of PR at any vertex is +1,

then it follows that these vertices are disallowed – this would then be an RPC theory.

Otherwise, the type of RPV theory would be specified by the values of the coupling

constants λ, λ′, λ′′, and κ. The analysis in chapter 5 considers one model with non-zero

components of λ′′.

2.2.3 Some specific terminology

This section introduces a few specific terms used later in this work, which do not neatly

fit elsewhere.

Simplified models

Simplified models are called such since they typically decouple many particles in the

SUSY spectrum – moreover for those that are left typically the branching fraction for

one specific decay mode is set to be 100%. This is in the spirit of on-shell effective

field theories [62], and is an approach that has been widely used by ATLAS SUSY

analyses. Practically, the decoupling is achieved by arbitrarily tweaking the SUSY-broken

Lagrangian to include precisely the desired mass terms and couplings; naturally in doing

so it is very unlikely one is producing a renormalisable theory, however the results are
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useful for a more schematic understanding of what specific types of process are excluded

by a given analysis. Work has also been done that shows how exclusions on several

different simplified models might be combined to give limits on more complex scenarios

[63].

Compressed scenarios

This refers to the situation in RPC SUSY where there is only a small mass gap between

two SUSY particles, one of which will decay to the other. Often, particularly in the case

of simplified models, these particles will be the next-to-lightest supersymmetric particle

(NLSP) and the lightest supersymmetric particle (LSP). This can be a challenging

signature to search for at colliders, since if a light SM particle is also produced during

this decay (for example a lepton or light quark), then it will have a low energy, and hence

also typically have a low pT.

2.3 Fixing the Standard Model with SUSY

Whilst SUSY is arguably an incredibly elegant theory from a purely mathematical

perspective, it is also can serve a pragmatic purpose in fixing some of the limitations in

the SM mentioned in section 2.1. Whilst SUSY does not offer solutions to all of these,

the particular cases of dark matter, the anomalous magnetic moment of the muon, and

the hierarchy problem will be considered.

2.3.1 Dark matter

In an RPC SUSY scenario, in which the χ̃0
1 is the LSP, this neutralino is an ideal candidate

for dark matter since it is stable, interacts gravitationally, and is electromagnetically

neutral. This could provide an explanation for the effects mentioned in section 2.1.

2.3.2 Anomalous magnetic moment of the muon

As previously noted, there is tension between the experimentally observed and predicted

values of the anomalous magnetic moment of the muon, aµ. This tension could be

relieved by the introduction of additional diagrams into Figure 2.1. There are several
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χ̃−

ν̃µ
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µ̃−

χ̃0

µ̃−
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Figure 2.5: Examples of the contributions from particles in the MSSM at one loop to the
anomalous magnetic moment of the muon. If the equivalent diagrams for µ+ are
considered, along with a sum over all possible chargino and neutralino states,
then these represent all contributions at one loop. The diagrams are inspired by
Figure 3 of [64].

SUSY particles which could form these loops, a couple of examples of which are shown in

Figure 2.5. It is thought that the presence of SUSY particles in the range 100− 500 GeV

could add a contribution sufficient to explain the observed deviation of aexp
µ − aSM

µ from

0 [38].

2.3.3 The hierarchy problem

As noted previously in Figure 2.3, there are diagrams from both fermionic and scalar

loops that contribute to corrections to the Higgs mass. It has already been shown that a

fermionic loop will have a large negative contribution to m2
H , in equation (2.7). However,

the contribution from a scalar particle loop of the same mass will, conveniently, be

of the same magnitude as this correction but with the opposite sign. Thus it can be

seen that unbroken SUSY completely removes the fine-tuning problem, since every loop

contributing to the Higgs mass from an SM fermion will be exactly cancelled by the

scalar loop from its superpartner.

If it exists, we know that SUSY is a broken symmetry, and thus that this cancellation

will not be exact. This leads to the concept of naturalness that places approximate limits

on the masses of certain SUSY particles, that will be described briefly in the next section.

Naturalness simply embodies the desire not to replace the existing fine tuning problem

in the SM with another in a supersymmetric model.
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2.3.4 Gauge-coupling unification

Whilst not a problem with the SM per-se, it is noted that the gauge coupling strengths

in the SM do not intersect when extrapolated to increasingly high energies, whereas in

the MSSM with superpartners at the TeV scale they do. This is theoretically desirable,

since a point of intersection could represent the spontaneous breaking of some larger

symmetry group, for instance SU(5) [65] or SO(10) [66]. The couplings we observe at

the current energy frontier could then be calculated from a smaller number of parameters

of this higher-energy Grand Unified Theory.

2.3.5 CP -violation

Notably, in the MSSM the SUSY-breaking processes are assumed to be diagonal in flavour

space; this is done to keep from breaking constraints imposed by measurements of flavour-

changing neutral currents (FCNCs) and the electron electric dipole moment (EDM).

The result of this is that the MSSM predicts minimal CP -violation, and not enough to

explain the observed baryon asymmetry. There are, however, other scenarios which allow

for larger CP -violation [67], which could be used to account for this phenomenon.

2.4 Constraints on supersymmetry

Now that the reader is hopefully convinced that SUSY is both a mathematically elegant

and phenomenologically useful theory, it is time to temper the enthusiasm. As of the

time of writing, no direct evidence has been observed to support the existence of SUSY.

This section will give a brief overview of the sources of constraints on supersymmetric

models.

2.4.1 Proton lifetime constraints

Some constraints on what RPV couplings are allowed exist due to the observed stability

of the proton. In particular, if both ∆B = 1 and ∆L = 1 terms were present, the proton

would decay much too quickly, so generally it is assumed that an RPV contribution

either violates baryon or lepton number, but not both. Present experimental results
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Figure 2.6: Example of a SUSY diagram which shows a flavour-changing neutral current.
There are assumed to be non-zero off-diagonal terms in the squark mixing matrix
which allows the bottom left vertex.

place constraints on the lepton number violating terms of equation (2.14), however the

last, baryon number violating, term is less constrained [68].

2.4.2 Flavour-changing neutral currents

These are, as the name suggests, an interaction which allows a fermion to change to a

fermion of a different flavour whilst retaining its electric charge. Whilst observed to occur

in the SM, they are strongly suppressed by the GIM mechanism [69], and measurements

of the decay of B0 mesons at BaBar place strong constraints on the magnitude of

the effect. SUSY potentially allows for large FCNCs by virtue of couplings like that

demonstrated in Figure 2.6. In order to suppress these, models like the MSSM suppress

flavour mixing terms, and as such these diagrams are prevented from occurring.

2.4.3 Naturalness

The concept of naturalness is summarised quite concisely by Susskind:

Naturalness . . . requires properties of a theory to be stable against minute

variations of the fundamental parameters. (Susskind, 1979 [70])

This can be seen simply as a restatement of the hierarchy problem in the SM, and

indeed the concepts are related; one wants to avoid the situation where the fundamental

parameters of a SUSY model must be fine-tuned in order to reproduce the physics we
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observe. Such considerations typically lead one to favour lighter third generation squarks,

O(1 TeV). Of course, this not a hard constraint, but rather an aesthetic hope.

2.4.4 Additional constraints

In addition to the items described in slightly more detail above, there are other sources

of constraints worth mentioning briefly, namely

• Dark matter relic density: Whilst the χ̃0
1 is often a good dark matter candidate

particle, the parameters of the model should be tuned to ensure a fit to the observed

dark matter relic density.

• EDM measurements: Measurements of the neutron and electron EDM suggest

very strongly that they are near-zero [71]. Without constraining some parameters

SUSY could introduce large contributions here.

• B0
s → µµ measurements: Recent research at the LHCb and CMS experiments

[72,73] has observed this decay mode with combined significance greater than 5σ

significance. Its branching fraction imposes a strong constraint in some areas of

SUSY parameter space [74].



Chapter 3

The problem of fakes

3.1 Motivation and overview

The estimation of ‘fake’ backgrounds to certain types of objects is a common problem

through experimental particle physics. A large number of analyses at ATLAS make

measurements involving leptons, ranging from those making precision measurements of

the Standard Model to those searching for evidence of BSM physics. All of these must

hence consider, to some level, the impact of these backgrounds.

Reconstructed objects can be seen as representing some kind of real desirable un-

derlying object; for example, an electron. It could also, however, be reconstructed as

something it is not – by means of a concrete example, a jet leaving a suitably narrow

deposit in the calorimeter could be identified as an electron. This would be denoted a

fake electron. Any analysis that were to place a requirement on electrons would hence

need to model the background where events are accepted due to the presence of one or

more fake electrons. A slightly more detailed consideration of the mechanisms by which

electrons and muons can be faked is presented in section 3.2.

Several methods have existed for performing such estimates prior to the author’s

work in the field. One option is to rely upon the Geant4 detector simulation of ATLAS,

and use Monte Carlo (MC) events generated for processes expected to contribute via

fake objects. Whilst often a straightforward option for the analyser to adopt, there

are two main drawbacks. Firstly, the simulation code might not faithfully reproduce

the behaviour of the objects under investigation. Secondly, if looking in a particularly

narrow region of phase space, generating a sufficiently large number of events to produce

an estimate with a low enough statistical uncertainty might prove problematic. For

45
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these reasons, data-driven methods are preferred, which aim to perform complementary

measurements in data (sometimes aided by measurements on MC) in order to form a

prediction of the fake background.

3.2 Processes for faking electrons and muons

This section summarises some of the more common processes by which electrons and

muons can be faked in ATLAS.

3.2.1 Electrons

Electron reconstruction depends both on the observation of a hits in the inner detector,

aligning to form a track with appropriate inferred mass, followed by an aligned deposit in

the electromagnetic calorimeter. The inner detector can measure momenta of a track by

its bending in the magnetic field, and estimate the speed of the particle given the energy

loss in the TRT. Photon deposits in the calorimeter are often difficult to distinguish

from electrons, and so any process that can give a photon (or more than one if tightly

collimated) aligned with a charged track could be mistaken for an electron.

A hadronic jet, primarily formed of charged and neutral pions, can achieve this. The

particle multiplicity can fluctuate, so it is possible to find jets with a single charged

pion, which will leave an electron-like track in the inner detector – particularly for high-

momentum particles the inferred mass measurement is not necessarily precise, allowing

for electron and pion tracks to be confused. The decay of a π0 mesons to photons in the

same jet could then leave the required signature in the calorimeter.

Alternatively, electrons can be faked by photons emitted due to Brehmstrahlung from

high energy muons. The track left by the muon in the inner detector could be confused

with that from an electron, and the photon’s subsequent deposit in the calorimeter could

result in an electron being reconstructed. In practice this can usually be mitigated by

requiring separation between reconstructed muons and electrons at the analysis level,

however cases where the muon is not subsequently reconstructed cannot be removed.
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3.2.2 Muons

Muons are primarily reconstructed using information from the muon system, although it

is also required that the tracks in the muon spectrometer match onto tracks in the inner

detector. Faking muons hence requires particles penetrating through the calorimeter

layers – this can be achieved by charged hadrons with a lifetime sufficient to traverse the

whole detector. Whilst the track of this hadron in the inner detector might not match

that expected from a muon, events have enough activity that sometimes a chance match

can be found with unrelated hits. In this way a muon can be reconstructed.

3.3 Problem statement

As is so often the case, the devil is in the details; a precise definition of what is required

of such a data-driven method is needed.

Imagine there is a signal region, or if one prefers a single bin of a distribution in this

region. The analyser suspects that faked leptons1 are one reason why events are being

observed here in the recorded data. At its core, what we would like is an estimate of

how many events we expect to see as a result of one or more leptons being faked. To be

even more explicit, in an ideal world what is desired is the probability distribution of this

expected number.2

It is perhaps also useful to dispel one particular misconception – for the purposes of

the standard ATLAS analysis techniques, and hence this thesis, we are not interested

in trying to work out how many of the events actually seen in a given experiment are

in fact due to faked leptons. Rather, and this is implied by the use of ‘expected’ in

the definition, one is interested in the behaviour one would see when running the same

experiment many times (if one is a frequentist), or one’s belief on what one would see if

one were to perform it (for a Bayesian).

1Or, in principle, other objects – for the remainder of this chapter ‘lepton’ is used throughout for
simplicity.

2Later in chapter 4 it is shown that technically the requirement is slightly different if one aims to
integrate the estimation procedure directly with a limit setting procedure. However, from a high-level
perspective the difference is rather minor.
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3.4 Modelling fake events

Any solution to the problem posed in the previous section will almost certainly contain

several features:

1. Classification: Whilst we are not ultimately interested in classifying leptons or

events as being real or fake, this is a necessary first step. Given quantities observed

by the detector, some metric must be defined by which real and fake leptons can be

discriminated.

2. Control regions: In ATLAS, making measurements commonly boils down to

selecting events according to certain criteria, then counting them. In order to make

the desired prediction in the signal region, we should therefore expect to be making

auxiliary measurements in one or more control regions. In order to be relevant,

these control regions must be related to the classification task mentioned previously.

3. Event rate modelling: Given a set of measurements in control regions, we desire

a prescription to translate this into the fake background estimate.

3.4.1 ‘Tight and Loose’ model

Whilst there are likely many valid approaches, only one model is chosen in this thesis. It

is based on a binary classification metric; any observed lepton is deemed to be either

‘tight’ or ’loose’. This metric could be based on any number of observed quantities, all

that is important is that real and fake leptons behave differently – by convention the cut

is arranged such that real leptons are more likely to be observed as tight, and vice versa.

A more detailed mathematical formulation of this model is introduced in section 4.2,

however for now a more graphical overview is presented.

3.4.2 Simple events

Consider the simplest case, where we are aiming to select events containing exactly one

lepton. One can imagine two sets of physics processes contributing in our signal and

control regions – one producing real events (those with a real lepton), and the other

fake. In a given amount of data, each could be parametrised by the mean of a Poisson

distribution, which are denoted νR and νF respectively. Some number of events will then
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Figure 3.1: Diagram of the relationship between the fundamental parameters νR, νF , εr, εf
(in circles); the derived parameters νT and νL (in diamonds); and the observations
nT and nL (in squares).

be produced, each of which pass through the detector, and are each classified either as

tight (T) or loose (L). The probabilities for this happening are, by construction, different

for real and fake leptons, and are denoted εr and εf respectively. The diagram included

in Figure 3.1 displays the hierarchy of these parameters graphically.

Commonly the quantities εr, εf are called ‘efficiencies’, since they measure the fraction

of a given population (real or fake) of leptons that satisfies the tight cut. In practice,

these are determined experimentally by using control regions enriched, respectively, in

real and fake leptons.

The usual choice made at this point, which we shall also make, is to equate nT with

our signal region; that is, signal regions shall be defined exclusively with tight leptons.

The other, loose, events will form a control region. In this case, therefore, the problem

reduces to measuring nT and nL, estimating εr and εf , and then combing that to yield

sufficient information to estimate νFT , the expected number of events that are both fake

and land in the tight, i.e. signal, region.
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3.4.3 Complicated events

Multiple categories

Regrettably, things are rarely as simple as in section 3.4.2. The first complication that

arises relates to the efficiencies – namely that they are different for different leptons. These

can either be fundamentally discrete differences, e.g. electrons vs muons, or continuous,

e.g. varying behaviour as a function of pT.

Continuous variations can be considered as sets of discrete possibilities if we create

bins. One can then imagine an extension of the single lepton thought experiment with a

set of lepton ‘categories’, divided according to flavour, kinematics, or any other observable

quantity. One, quite significant, assumption that can be made is to take each of these

categories as being independent. If this is true, then the model now looks more like that

in Figure 3.2.

It is perhaps worth giving some more details on what constitutes a lepton category.

An easy one is that of flavour – a given lepton can either be an electron or a muon. The

mechanism for the formation of fake muons is different to that of fake electrons, and so

we should expect the efficiencies to be different. However, we might also observe that the

fake efficiency varies as a function of object pT, and therefore create bins for different pT

ranges, say with index i. Now one can regard all quantities as being functions of this bin,

so νF,i, νT,i, εf,i, etc. The assumption of indepedence discussed in the previous paragraph

says that if you know νF,i−1 and νF,i+1 then you should have no idea what νF,i might be

(the same goes for the efficiencies or any other quantity). In practice, for a quantity like

pT, this is simply not true: we would expect all quantities to have a reasonably smooth

distribution as a function of pT. Thus the categoies are not independent. It is, however,

of little importance when one’s knowledge of νF,i is primarily driven by information in

category i itself rather than by information in ‘adjacent’ categories. This motivates one

to choose binning wisely – enough so as to represent the shape of the distribution in each

variable, but few enough that inter-category correlations are unimportant.

Essentially, the model from Figure 3.1 has been pasted multiple times, one for each

category of event. Each has its own set of efficiencies and rates of production of real and

fake events. Correspondingly, rather than just measuring nT and nL, we measure both

of these quantities for each event category.
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Figure 3.2: Sketch of the event production model in the case of events with a single lepton,
where the lepton could fall in one of several independent categories.

Since the signal region is formed by summing over all the tight categories, predictions

for each of these categories individually are not necessarily of interest. One approach

could be to consider each category completely separately, and then sum the predictions at

the end, but this could lead to trouble in situations with few events – for a given category

one may only observe a single (or zero) events as either tight or loose. Either some form

of sensible combination will be necessary, or the previous assumption of independence

between categories should be dropped.

Multiple leptons

An alternative way that events can become more complex is with the presence of additional

leptons. For example, one might consider the case of events with exactly two leptons;

in this case the generalisation is shown in Figure 3.3. The number of parameters again

increases, since now each lepton can independently be either real or fake, or tight and

loose. Since we wish to estimate expected numbers of events, we need to consider all the

possible combinations of tight and loose – with m leptons there are 2m such combinations.
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Figure 3.3: Generalising to an event with two leptons (right). It is necessary to consider the
two leptons ordered in some fashion, even if it is randomly. Some arrows on the
right hand diagram are omitted for clarity.

Finally, one can imagine what happens when additionally adding multiple lepton

categories, as in Figure 3.4. To consider this, it helps to additionally consider the concept

of an event category. This concept assigns a unique identifier to an event based upon the

lepton category of each of its consitutent leptons, with some definite ordering (such as

by pT). Thus if each lepton can be in one of Nω categories, and an event has m leptons,

there are Nω
m possible event categories.

This can clearly be a very large number. In the analysis presented in chapter 5, for

events with two leptons there are more than 30k such event categories – given that the

analysis additionally considers three lepton events (with over 6 million event categories),

it is clear that a truly independent treatment of each event category is simply impossible,

for the reasons stated earlier.

This potentially enormous category multiplicity is the core problem that fake estima-

tion methods must address.

3.5 Potential solutions

Whilst the detailed descriptions of the methods will be presented in chapter 4, these all

must have an answer for the “hard problem” that has been outlined above. Possible

approaches are:
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Figure 3.4: Visualisation of how multiple lepton categories are handled in events with two
leptons. If there are n lepton categories then n2 event categories emerge, each
with their own rate parameters and observed numbers of events. Efficiencies are
shared between the different event categories, as is indicated.

• Combining all event categories: This is the approach aimed for by the matrix

method, albeit in an approximate fashion. This reflects quite closely what is desired,

since the signal region itself is just a sum over all contributing event categories.

• Enforce smoothness between event categories: Often, the fundamental prob-

lem will be the implicit assumption that each lepton efficiency category is inde-

pendent. When the categories are subsets of e.g. (pT, η), as is commonly the case,

the efficiencies will likely be rather smooth functions, ε(pT, η), and similarly for

the underlying rates e.g. νR(pT, η). The “right” way to approach the problem

then might be to use techniques such as kernel density estimation [75] to find

plausible functions νT (pT, η). Whilst elegant, unfortunately these techniques are

computationally expensive, and as such are not pursued in this thesis.

• Combining lepton categories: Rather than combining event categories, by

reducing the number of lepton categories sufficiently the problem could be made

tractable again. This approach is needed to make the Bayesian sampling method

feasible, as demonstrated in chapter 6.

• Form a parametric model with a reduced parameter set: This is used in

the tests of the likelihood method, as described in section 4.5.3. The potential
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drawbacks are that the parameter set must be sufficient to describe the physics

processes producing the event, and so performing a sufficient reduction may still be

difficult. It also creates a more complex network that might be tricky to work with

computationally.

The methods mentioned naturally differ in other ways, but this discussion will be left

for the next chapter.



Chapter 4

Data-driven methods for estimation

of fake backgrounds

4.1 Introduction

The problem of fake estimation, and the reasons that a solution is desired, have already

been detailed in chapter 3. A widely used data-driven method used to estimate fake-

backgrounds is the so-called matrix method, first employed in ATLAS in [76]. It has

since been employed by many ATLAS analyses, including [77–105]; CMS have used the

method less prolifically [106–108], and claim to originally describe it in [109]. This chapter

endeavours to distil the aims of the method, present a novel syntax that clarifies the

intent, and then demonstrates how the method may be generalised to cater for a wider

class of events simultaneously. Further to this, a larger methodological improvement is

presented which uses a likelihood-based method to provide more accurate, and statistically

meaningful, estimates of the fake background, and ultimately a more reliable limit on a

postulated signal process.1 A final method is presented which is related to the likelihood

method, but aims instead to produce the Bayesian posterior estimate of the expected

fake contamination in a signal region.

This chapter makes use of both frequentist and Bayesian statistical methods. For a

useful introduction to statistics and inference, particularly from a Bayesian viewpoint, see

MacKay’s excellent book [110]. It also contains a brief discussion on confidence intervals,

which shall be used in this section.

1It would also have been possible to frame the discussion in terms of discovery significance – this choice
reflects the author’s guess as to which procedure would prove more relevant in Run 2.

55
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4.2 Common definitions

The terminology described here is equally applicable to several types of objects in certain

scenarios (for example electrons, muons or b-jets). The core concepts to all variants of

matrix methods are:

• Real (r): An object that represents the intended entity.

• Fake (f): An object that does not represent the intended entity.

• Tight (t): An object that passes tighter quality requirements.

• Loose (l): An object that passes baseline and not tighter quality requirements.

• l̃ = l ∪ t: An object that passes baseline quality requirements.

• t ∩ f : An object that is both tight and fake – this is the type of object whose

presence we wish to predict.

With these definitions, one of the most important quantities in methods such as the

matrix method are the efficiencies, defined thus:

• εr = P (t|rl̃): The ‘real efficiency’ – the probability that an object is tight given

that it is real and passes baseline quality.

• εf = P (t|f l̃): The ‘fake efficiency’ – the probability that an object is tight given

that it is fake and passes baseline quality.

• ε̄r = P (l|rl̃) = 1− εr: Symbol used for convenience.

• ε̄f = P (l|f l̃) = 1− εf : Symbol used for convenience.

Since these efficiencies are often expected to vary as a function of kinematic quantities

such as object pT, they are typically subdivided into several bins, or ‘categories’. This

shall be explored in more depth later. Later in this chapter such categories will be

labelled ω1, ω2, . . ., with the efficiencies gaining an additional subscript e.g. εω1r.

Given such object-level quantities, it is necessary to classify events containing these

objects. For a given event containing m leptons, each lepton is observed to be either l or

t, and will have some category ωi. If there are Nω possible categories for each lepton,

then the number of measurable event categories will be NΩ = 2m ×Nω
m; note that this

includes tightness and looseness in addition to the object category information. If the

number of leptons can differ between events, then one introduces a sum with appropriate
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limits over m. Each of these event categories will correspond to an event that is either

tight (T ) or loose (L), and real (R) or fake (F ). That is, events are classified by the same

symbols as for the object level, but in capitals, hence the set of all baseline events is L̃.

Experimentally, one counts how many events fall into each of the NΩ sub-regions of

a given signal region, yielding the set of integers {nΩi}. For the purpose of the physics

analysis being performed, one is most often interested in the total number of tight events,

nT =
∑

Ωi⊂T nΩi . Usually this is the quantity with which a limit on the cross section of

a new physics model is placed.

Further to this, the observed numbers of events are often assumed to be the particular

values of a Poisson distributed random variable, with means specified by ν. For example,

one can have nT ∼ Poiss (νT ); in general the indices on the rate ν correspond to those

on the observation n.

Explicitly, we define

• nX : The number of events in set X .

• 〈nX 〉: The expected value E [nX |C], for some possible condition C that will depend

on the context, and will be specified when necessary.

• νX : The rate of events being produced in set X , assuming that nX ∼ Poiss (νX ).

4.3 The vanilla matrix method

4.3.1 Single object events

Following the notation introduced in section 4.2, in the case where the efficiencies and

nR, nF are known, it is claimed that the following statement holds true:


〈nT 〉
〈nL〉


 =


E [nT |nR, nF ]

E [nL|nR, nF ]


 =


 εr εf

1− εr 1− εf




nR
nF


 . (4.1)

The result follows by considering the real/fake event counts to be known integers, which

are then divided into tight and loose components according to a binomial distribution using

the probabilities contained in the efficiencies. In fact, it can be noted that equation (4.1)
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is a special case of a relation between the means of Poisson distributions


νT
νL


 =


εr εf

ε̄r ε̄f




νR
νF


 . (4.2)

This shall be made use of later when discussing the likelihood formulation of the method.

At this point it is worth remarking that the predictive power of this method stems

from real and fake objects have different composition in the tight and loose sets; that

is, the ability to distinguish fake from real comes from having εf 6= εr. Moreover, in

all scenarios considered in this paper, the tight region will be considered to favourably

contain real objects, and the loose region to favourably contain fake objects. It can be

seen that this corresponds to having εf � εr.

In this method, and also in the other variants that follow, a significant task is that of

estimating the efficiencies εr and εf . In this chapter we will not concern ourselves with

this issue; rather it shall be addressed in the more specific contexts within which this

method is applied.

It is now claimed that, given measurements of the efficiencies and of nT and nL, an

estimator n̂T∩F of 〈nT∩F 〉 = E [nTF |nT , nL] can be formed. The first step is to invert the

relation found in equation (4.1) to obtain


nR
nF


 =

1

εr − εf


 ε̄f −εf
−ε̄r εr




〈nT 〉
〈nL〉


 . (4.3)

The matrix is invertible so long as εf 6= εr, however as previously explained we typically

expect εr � εf so this condition will be assumed to hold true. Following this, estimates

of 〈nR〉 and 〈nF 〉 are obtained by a heuristic swapping of which values are observed and

expected, and upon which variables the expectation is conditioned. Note also that the

expectation 〈nR〉 in this context is conditioned on different quantities to 〈nT 〉, as shown

explicitly below.


E [nR|nT , nL]

E [nF |nT , nL]


 ≈


n̂R
n̂F


 =

1

εr − εf


 ε̄f −εf
−ε̄r εr




nT
nL


 . (4.4)

The hatted quantities, n̂R and n̂F represent the matrix method estimators for the

expectation values on the far left-hand side. Formally, the expectation values should be
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given by an expression akin to equation (4.1), but with the efficiency terms replaced; e.g.

εr = P (l|rl̃) should be replaced by P (r|ll̃) using Bayes’ theorem. It can also be seen that

the estimators do not always reflect the expectation value because it permits negative

values for n̂R or n̂F . For example, consider the case where nT = 7, nL = 1, εr = 4
5
, and

εf = 1
5
. One can then show that n̂R = 9, and n̂F = −1; this negative estimator for the

expectation of the number of fake events is clearly unphysical. Despite this shortcoming

being possible, as observed in [79], in other analyses it has been found to be less of a

problem when all regions in question have moderately high statistics.

By further selecting the expected fake component from here, and applying equa-

tion (4.1) again (specifically the identity that n̂T∩F = εf n̂F ), one obtains an estimator

for the expected number of tight and fake events

n̂T∩F =
εf

εr − εf
(εr(nT + nL)− nT ) . (4.5)

This method has been used in recent publications, including [101], to form a fake

estimate in signal regions with one lepton. The method will, in section 4.5.4, be seen to

emerge in many cases as a maximum likelihood estimator of the background contribution.

As has already been noted, it is possible for the matrix method estimator n̂F , and hence

the estimator n̂T∩F above to be negative; in fact it is also possible to have n̂T∩F > nT +nL.

In these cases it is later shown that this maximum likelihood property no longer holds,

and as such the method ought not be trusted if results are yielded in these regimes.

4.3.2 Efficiencies varying with kinematic quantities

It is commonly the case that the efficiencies will vary in terms of kinematic properties

of the objects being studied; for example the values of pT and |η|. It is assumed that

the efficiencies will vary slowly as a function of such parameters, and as such can be

measured in a fixed number of categories, Nω. As mentioned in section 4.2, events with

m leptons will have NΩ categories. For the single object case described here, there is a

one-to-one mapping between object and event categories.

More generally however, one would define quantities such as ntl, the number of

events with the first2 lepton tight and the second loose – others are defined similarly.

2The definition of “first” can depend on the analysis. Often it is chosen to be the hardest according to
pT.
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The number of tight events would now be denoted nT ≡ ntt. In order to include the

possible categories for each lepton, ntt must be further subdivided to take into account

all combinations, that is

ntt = nω1ω1
tt + nω1ω2

tt + · · ·
=
∑

i,j

n
ωiωj
tt . (4.6)

In this notation, nω1ω2
tt indicates the number of events with two tight leptons, where the

first is in category ω1, and the second in ω2. The result in equation (4.5) can then be

applied to each orthogonal subset of events, and the overall prediction will be the sum of

all contributions. The efficiencies themselves would then be written with an extra index

representing the category which they represent; the real efficiency for category ω1 would

be εω1r.

The same end result can be achieved by computing the estimate on an event-by-event

basis, yielding a weight for each event with an object in L̃. These weights would then be

summed together in a final step. The weight is given by equation (4.5) in the special case

that one or the other of nT and nL is 1, and the other is 0. This has the advantage of

automatically making predictions about distributions in variables that have not explicitly

been considered in producing the fake estimate, since each weight is associated to an

event with specific properties, e.g. meff or pmiss
T . That is, histograms can be produced in

any desired variable that can be determined for each event in data and filled with the

computed weight of each event in L̃ to give the background estimate.

A further advantage to the weight-based workflow will be seen in subsequent sections,

since the additional subdivisions for events with larger numbers of objects might otherwise

become tricky to process.

4.3.3 Events with two or more objects

In section 4.3.1 a presentation was made of the commonly-used single-object matrix

method. The method is readily extended to events with exactly two objects, and was

done in [111–113].

Care must be taken, however, when defining what precisely is meant by a ‘two object

event’. In particular, it is difficult to have a consistent procedure unless one requires

that only events with exactly two objects in l̃ are considered by the analysis. Otherwise
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there exists an ambiguity whereby an event with two objects in t might have its highest

pT (and arguably most significant) object in l – this is problematic since it is not clear

whether it should be counted as passing the nominal cuts (tt), or whether it would just

be used as an lt event in forming the background estimate 3.

As mentioned in the previous section, efficiencies are assumed implicitly to be functions

of properties of the objects such as their pT. Therefore, the efficiencies of the two objects

in the event will, in general, be different, and as such are denoted (for example, for the

real efficiencies) as εr1 and εr2. Given this, a similar identify to equation (4.1) can be

formed:




〈ntt〉
〈ntl〉
〈nlt〉
〈nll〉




=




εr1εr2 εr1εf2 εf1εr2 εf1εf2

εr1ε̄r2 εr1ε̄f2 εf1ε̄r2 εf1ε̄f2

ε̄r1εr2 ε̄r1εf2 ε̄f1εr2 ε̄f1εf2

ε̄r1ε̄r2 ε̄r1ε̄f2 ε̄f1ε̄r2 ε̄f1ε̄f2







nrr

nrf

nfr

nff



. (4.7)

This factorisation makes the assumption that the processes of each object in the event

becoming tight or loose are independent. Whilst not necessarily true, in practice it is

found to work, primarily because the objects are separated in the detector by an overlap

removal procedure. The result of passing tight cuts is only dependent on spatially local

properties, hence it is logical that this assumption should be applicable. An inversion

procedure can again be applied, and it can be shown that the condition for the inverse of

the matrix in equation (4.7) existing is that εr1 6= εf1 and εr2 6= εf2. Whilst quantities

such as nrr are used in the above discussion, in practice the event-weight workflow will

be used, as described in section 4.3.2.

At this point one can see that the method can be extended for m objects by considering

an analogous identity to that in equation (4.7) but with a 2m × 2m efficiency matrix.

Performing explicit inversion of such matrices either symbolically or numerically is

possible, however a much more compact approach is considered in section 4.4.

4.4 Generalised matrix method

Firstly some new notation will be used to describe the existing methods, and having

introduced this it will become clear how to extend to multi-object systems in a general

3Such ambiguities are addressed more generally by the method in section section 4.4
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way. Finally specific workflows will be considered for two concrete examples; one using

leptons and the other using b-jets.

4.4.1 Summation formalism

The first insight is to note that equation (4.7) can be re-written in terms of a Kronecker

product [114]:




〈ntt〉
〈ntl〉
〈nlt〉
〈nll〉




=




εr1εr2 εr1εf2 εf1εr2 εf1εf2

εr1ε̄r2 εr1ε̄f2 εf1ε̄r2 εf1ε̄f2

ε̄r1εr2 ε̄r1εf2 ε̄f1εr2 ε̄f1εf2

ε̄r1ε̄r2 ε̄r1ε̄f2 ε̄f1ε̄r2 ε̄f1ε̄f2







nrr

nrf

nfr

nff




=


εr1 εf1

ε̄r1 ε̄f1


⊗


εr2 εf2

ε̄r2 ε̄f2







nrr

nrf

nfr

nff



. (4.8)

This is possible since the matrix method treats each object in the event independently.

Whilst the set of events in which there is one high and one low pT object are treated

separately to those where both objects are high pT, fundamentally the matrix method

is formulated in terms of probabilities of a given object to pass certain selections, from

which a statement about the event can be inferred.

Whilst the Kronecker product neatens some of the notation, in order to achieve

greater freedom the set of 4 variables ntt, ntl, nlt, and nll should be rewritten as a rank

2 ‘tensor’4, Tα1α2 . Similarly the tensor corresponding to the ‘real or fake’ combinations

shall be labelled Rα1α2 . Each index αi corresponds to one object, and it can take values

αi ∈ {t, l} for T , or αi ∈ {r, f} for R. Now the Kronecker product can be expressed in

terms of contracting a 2× 2 matrix with each index of the tensor. This matrix is that

formed by the efficiencies shown above, denoted φ1
α1
β1

, where φs with different indices are

implicitly assumed to take appropriate values given the kinematics of the object which

they describe (the first subscript will subsequently be dropped when the intention is

4Strictly speaking the objects in this section are not tensors, rather just mathematical objects with
several indices.
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clear). In this way, the result in equation (4.8) can be written more compactly as

〈Tβ1β2〉 = φ1
α1
β1
φ2

α2
β2
Rα1α2 , φ1 =


εr1 εf1

ε̄r1 ε̄f1


 . (4.9)

Finding the inverse relation is now much more straightforward, since instead of having

to invert a 4 × 4 matrix one merely uses the inverse of each 2 × 2 matrix. Given a

measurement Tα1α2 , one can hence write the full background estimate as
〈
T Fα1α2

〉
, where

〈
T Fν1ν2

〉
= φ µ1

ν1
φ µ2
ν2

ζ β1β2
µ1µ2

φ−1 α1

β1
φ−1 α2

β2
Tα1α2 .

Of this tensor, one is typically most interested in the component
〈
T Ftt
〉
, corresponding to

the prediction in the tt region. The logic that ensures that this is a prediction of the

fake and tight component is encoded in the ζ tensor, which selects out the expected

fake component. For example, if rr ≡ R and {rf, fr, ff} ≡ F then one would choose

ζ12
12 = ζ21

21 = ζ22
22 = 1, and all other components 0. It is most easily visualised in the outer

product basis, as below, and is seen to be equivalent to an identity matrix with the upper

left hand 1 changed to a 0. This prevents the rr component from contributing, whilst

retaining all others that have at least one object being fake:

ζ =




0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



.

With the expression of the matrix method in this form, it is evident how the method

can be generalised to events with any number of objects. In particular, one finds the

expression for those events containing exactly m objects to be

〈
T Fν1···νm

〉
= φ µ1

ν1
· · ·φ µm

νm ζ β1···βm
µ1···µm φ−1 α1

β1
· · ·φ−1 αm

βm Tα1···αm . (4.10)

In the preceding equation the tensor ζ is of the general form

ζ β1···βm
µ1···µm = δ β1

µ1
· · · δ βm

µm h(β1, . . . , βm, ν1, . . . , νm),
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where the function h takes values 0 or 1 to pick out the sets of indices βi that, when

considered together, make for an event that should be classified as ‘fake’ (e.g. in the

exactly two object case this might be all those events with fewer than 2 real objects). In

general ζ can also depend on the output tight/loose configuration being computed, as

shown in the functional form of h through its dependence on the νi indices.

The result in equation (4.10) is most readily applied on an event-by-event basis, where

the input tensor Tα1···αm has exactly one component = 1, and the rest 0. Depending on

the precise selection, it will typically be necessary to consider each event as having a

different value of m, and then assign a weight for each element of
〈
T F
〉

which represents

a configuration that would be considered a signal event. Further details on how this is

done are provided in the case studies in section 4.4.3.

Results with explicit categories

In section 4.5, the more explicit notation for object categories shall be used. As such it

shall be useful to note the results for the generalised matrix method in this form also.

Specifically, if one has exactly two leptons, then the analogous relation to equation (4.9)

is

〈
T ωiωjβ1β2

〉
= φωi

α1

β1
φωj

α2

β2
Rωiωj
α1α2

,

φωi
{r,f}
{t,l} = P ({t, l}|{r, f}ωil̃), φωi =


εωir εωif

ε̄ωir ε̄ωif


 , (4.11)

where the same notation as equation (4.6) is adopted to label object categories on the

T object. Subsequently the background estimate for events that are fake is denoted as

before, but this time will contain sums over all possible categories of the leptons

〈
T Fν1ν2

〉
=
∑

i,j

(
φωi

µ1
ν1
φωj

µ2
ν2

ζ β1β2
µ1µ2

φ−1
ωi

α1

β1
φ−1
ωj

α2

β2
T ωiωjα1α2

)
. (4.12)

In the case with more leptons, corresponding summations over categories will hence be

required.
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4.4.2 Propagation of uncertainties

Another important consideration is the propagation of uncertainties to the final estimate

of the fake rate. It will be assumed that there are one or more distinct sources of

uncertainty on each measured efficiency, in addition to the statistical uncertainty in the

values of the components of T . In this section it shall be assumed that the functions

transforming the underlying random variables can be taken to be approximately linear in

the vicinity (about ±1σ) of the measured point – in fact in many cases the relationship

is exactly linear, and so no approximation is being made.

Derivatives of an event weight

In this section the methods of propagation of standard uncertainty shall be used [115].

The main requirement to do this is to be able to compute the first derivative of the result

with respect to each variable. For compactness, let the tensors Φ and Φ−1 be defined to

be the products of all φ and φ−1 terms respectively for a given event, such that

〈
T Fν1···νm

〉
= Φ µ1···µm

ν1···νm ζ β1···βm
µ1···µm Φ−1 α1···αm

β1···βm Tα1···αm .

The derivatives with respect to εr for each lepton can then be shown to be

∂

∂εri

〈
T Fν1···νm

〉
= Φ µ1···µi−1µi+1···µm

ν1···νi−1νi+1···νm ζ β1···βm
µ1···µm Φ−1 α1···αi−1αi+1···αm

β1···βi−1βi+1···βm
(
∂φ µi

νi

∂εri
φ−1 αi

βi
+ φ µi

νi

∂φ−1 αi
βi

∂εri

)
Tα1···αm ,

since ζ is independent of the efficiencies. An analogous expression can be derived for εf .

At this point it is useful to note that the derivatives ∂φ
∂εri

, ∂φ−1

∂εri
etc. are 2× 2 matrices

that are easy to compute, for example in this case we have

φ =


εr εf

ε̄r ε̄f


 ⇒ ∂φ

∂εr
=


 1 0

−1 0


 ,

∂φ−1

∂εr
=

1

(εr − εf )2


−ε̄f εf

ε̄f −εf


 .

Uncertainty scheme on ε

In general the same efficiency will be used for more than one object in an event, and

as such this introduces a correlation that needs to be taken into account. This section
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considers the mechanism by which the efficiencies are measured to introduce correlations

in a way that allows uncertainties to be propagated efficiently even when using the event-

weight technique, where it is desirable to have the sum over events to happen last. The

most general final result can be found in equation (4.15) with common approximations

in limiting cases following. Whilst the techniques and results herein are not in any

way revolutionary, the author is unaware of any previous document describing these

prescriptions.

Consider a set of efficiencies {εi} 5 which have been computed as a function of some

data and MC simulations, with i denoting the category of the efficiency. In general they

can be parametrised by

εi = f(ai, bi,x)

where the variables ai, bi, and x differ in terms of the correlation structures that exist

internally between the values of the vectors for different i. Each element of a given vector

is assumed to be a random variable independent of all other elements, that is if ai = aiµ

then u(aiµ, ajν) = δµνu(aiµ, ajµ), and similarly for b and x. Furthermore, there is no

correlation between the cross terms, that is

u(ai, bj) = u(ai,x) = u(bi,x) = 0 ∀i, j,

where the notation u(x, y) indicates the covariance between two random variables x and

y, as used in [115]. The a term is intended to correspond to a ‘statistical’ component of

the uncertainty, where each efficiency εi is using a different, uncorrelated, set of values.

As such, representing the vector as ai = {aiµ}, we find that only the diagonal (variance)

term is non-zero. The b term represents some variables that vary systematically with

unknown correlation between different εi – at the end of the computation one can either

apply a conservative estimate assuming maximal correlation, or alternatively one might

be able to justify that the correlation is negligible on physical grounds. Finally, the x

variable represents parameters that are common to the computation of all efficiencies.

In this case the same variables are used explicitly in the functional form of εi, as above.

5The ‘real’ and ‘fake’ subscripts are dropped in this section, since the same argument applies to both
cases, and it should be clear how to generalise the result.
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The covariance scheme can hence be summarised as follows:

u(aiµ, ajν) = δµνδiju
2(aiµ)

u(biµ, bjν) = δµνu(biµ, bjµ)

u(xµ, xν) = δµνu
2(xµ).

Given these, one can now write down the full covariance matrix for the efficiencies.

Through use of the chain rule, it can be shown that for some set of functions fi(aα), with

some known u(aα, aβ) , the covariance on the fs is given by

u(fi, fj) =
∑

α

∑

β

∂fi
∂aα

∂fj
∂aβ

u(aα, aβ).

Using this, after some computation one finds that

u(εi, εj) = δij

na∑

µ

(
∂εi
∂aiµ

)2

u2(aiµ)

︸ ︷︷ ︸
u2stat(εi)

+
nx∑

µ

∂εi
∂xµ

∂εj
∂xµ

u2(xµ)

︸ ︷︷ ︸
±ucorr,µ(εi)ucorr,µ(εj)

+

nb∑

µ

∂εi
∂biµ

∂εj
∂bjµ

u(biµ, bjµ),︸ ︷︷ ︸
≤u(biµ)u(bjµ)

(4.13)

where u2
stat(εi) has been packaged, since it is clear that this quantity is sufficient for

subsequent propagation. If, in general, we expected that ∂εi
∂xµ

> 0 we could also safely

combine the fully correlated part in terms of ucorr,µ =
∣∣∣ ∂εi∂xµ

∣∣∣u(xµ), although there is no

reason a priori that this will be the case.

The final weight W , indicating the overall estimator for the expected number of fake

and tight and events, is given by the sum of weights on a set of events, that is W =
∑

αwα.

For each event α, wα is computed using an expression like that in equation (4.12), and

then as previously noted the final result is obtained by summing the estimators from all

events.

Given that each wα is a function of the efficiencies whose derivatives can be computed,

as has been shown previously6, the squared uncertainty on W due to the propagated

6The event weight w corresponds to the sum of the relevant components of
〈
T F
〉
, the derivatives of

which were calculated in the previous section.
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uncertainties on the efficiencies is given by

u2(W ) =
∑

i

∑

j

∑

α

∑

β

∂wα
∂εi

∂wβ
∂εj

u(εi, εj).

This can then be combined with equation (4.13) to yield the final propagated uncertainty,

which is found to be

u2(W ) =
∑

i

(∑

α

∂wα
∂εi

ustat(εi)

)2

+
nx∑

µ

(∑

α

∑

i

∂wα
∂εi

∂εi
∂xµ

u(xµ)

)2

(4.14)

+
∑

α

∑

β

∑

i

∑

j

nb∑

µ

∂wα
∂εi

∂wβ
∂εj

∂εi
∂biµ

∂εj
∂bjµ

u(biµ, bjµ). (4.15)

The last term of this expression can be rewritten in the two limits that would be used

in a computation where the full covariance matrix is not known; that is assuming no

correlation

∑

i

(∑

α

∂wα
∂εi

uuncorr(εi)

)2

, u2
uncorr(εi) =

nb∑

µ

(
∂εi
∂biµ

)2

u2(biµ), (4.16)

and assuming full correlation

nb∑

µ

(∑

α

∑

i

∂wα
∂εi

∂εi
∂biµ

u(biµ)

)2

. (4.17)

The final result in equation (4.15), and the two limits for the third term in equa-

tions (4.16) and (4.17) are written in a fashion that is readily computable in a weight-based

workflow. In general, there are some components that can be summed up for each indi-

vidual event, for example the contributions sum over efficiencies i in the second term of

equation (4.15), which is then followed by a sum over events α. There are several such

independent terms that need to be summed separately, and these are then combined in

quadrature.

Given that the efficiency computation is a separate procedure from the application

process that is focused upon in this section, it is useful to identify which uncertainties or

related quantities need to be provided alongside the efficiencies. For the uncorrelated

uncertainty components, ustat(εi) and uuncorr(εi) (in the limit of equation (4.16)) are

clearly necessary and sufficient, however in the case of the correlated component a signed
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quantity, ∂εi
∂xµ

u(xµ), is ideally necessary. However, if it is the case that the only quantity

that can feasibly be computed is

ucorr,µ(εi) =

∣∣∣∣
∂εi
∂xµ

∣∣∣∣u(xµ),

then this is insufficient to properly perform the propagation in the second term of

equation (4.15). In this case, the term must be replaced by the conservative expression

nx∑

µ

(∑

α

∑

i

∣∣∣∣
∂wα
∂εi

∣∣∣∣ucorr,µ(εi)

)2

.

4.4.3 Applications in lepton and jet systems

Example: fakes in m lepton region

In a case where we are interested in identifying the contribution from fake leptons, we are

often interested in whether a particular lepton is real or fake; for example, the analysis

described in the following chapter needs to be aware of whether the two leptons it contains

are of the same charge. As such, after having computed T F using equation (4.10) each

component of it that might correspond to a tight event is treated separately. Additionally,

variables such as the dilepton invariant mass and meff will be re-computed for each of

these weights.

For example, if one were to measure an event with three leptons in l̃, e+e−µ+, with

configuration tll, then the matrix method will produce the following

Input Output

e+e−µ+, tll −→





lll wlll e+
l e
−
l µ

+
l Fails cuts

· · · · · ·
ttl wttl e+

t e
−
t µ

+
l Fails cuts

tlt wtlt e+
t e
−
l µ

+
t 2 lepton SS

ltt wltt e+
l e
−
t µ

+
t Fails cuts

ttt wttt e+
t e
−
t µ

+
t > 2 lepton
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Of the possible combinations, only two pass the channel selection cuts, presuming

additional requirements such as trigger matching are also satisfied.

At the LHC, it is very rare to have more than 4 leptons in an event. As such, it is

feasible to use the above method in an event-by-event workflow by simply storing each

event multiple times, according to how many tight/loose permutations pass the cuts of

the signal region. However, considering events multiple times in this fashion necessitates

a correction to the usual handling of the statistical component of the uncertainty, due to

the splitting of each input event into multiple streams that are each processed separately

with unique weights. If two such streams from one event, with weights wttl and wtlT ,

were to fall into one signal region, then the total statistical uncertainty should be

(wttl + wtlt)
2,

whereas if they were treated as completely separate events (as software utilities such as

HistFitter by default will do), they would be combined as w2
ttl + w2

tlt.

Example: fakes in 3 b-jet region

The analysis in the next chapter also uses a matrix method to evaluate the contribution

of fake b-jets in one signal region, with results shown in section 5.5.5. Whilst in principle

the same workflow could be used here as for the leptonic case, storing the multiple t/l

permutations for each event, it is neither necessary nor computationally feasible to do so.

In this particular example, one is attempting to identify whether the b-tagged jets in

an event do in fact correspond to b-jets, or if one or more of them are in fact mis-tagged

jets from other sources. Since, unlike in the leptonic case, there are no particular event

selections on which of the jets in an event are b-jets, it is safe to simply form one weight

per event. This is also the only feasible approach; it is not uncommon to have ≥ 10 jets

in an event, at which point the number of ways of selecting three or more of the jets as

tight is ∼ 1000. As such, after having computed T F , one simply sums those components

that correspond to tight events (three or more b-jets), and takes the result as the weight

for the given event.



Data-driven methods for estimation of fake backgrounds 71

4.5 Likelihood-based fake estimation

As an alternative to the matrix method discussed previously, a likelihood-based method is

now presented. Since this concept ties in closely with that of the frequentist limit-setting

procedures used in ATLAS, a digression into the CLs method is made before returning

to the topic of fake background estimation.

4.5.1 Frequentist limit setting procedures

ATLAS analyses use the CLs method [116,117] to place an upper limit on the parameter

that sets the mean of the Poisson distribution controlling the appearance of events in

one or more signal regions. A short overview of the method is presented here.

One starts by defining a likelihood for a set of parameters (which shall be defined

subsequently), given some observed data X; that is, the probability of observing the

data given the parameters

L(µ,θ|X) = P (X|µ,θ). (4.18)

The data term X should contain all data that might have been observed, including that

from auxiliary experiments (such as control regions), which might constrain the model

parameters. In order to set a limit, there must be a single parameter µ ∈ R, µ > 0,

representing the ‘strength’ of the signal process. In this context ‘signal’ refers to the

physics model which is being tested, which is of a form that is expected to increase the

expected number of events in the signal region if present. The µ strength parameter

is typically used to scale the nominally expected cross section for the signal process,

however there is no reason that it could not represent the overall rate of appearance

of signal events.7 The other parameter, θ represents a set of nuisance parameters – so

called simply because these are not the parameters upon which we are trying to set a

limit. Finally, X is a placeholder for one or more real (in our case, typically integer)

values corresponding to experimental measurements. At this point it is not necessary to

consider the functional form of L.

7The likelihood will of course behave differently with respect to other parameters, for example those
controlling luminosity uncertainty, but it remains a valid expression.
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Next one defines a set of test statistics representing the ‘profiled likelihood ratio’, qµt ,

defined to be

qµt(X) =





−2 ln



L
(
µt,

ˆ̂θµt|X
)

L
(
µ̂, θ̂|X

)


 µt > µ̂

0

, (4.19)

where here it is written explicitly as a function of the observed data X. For a given X,

the likelihood is maximised when one chooses the parameter values µ̂ and θ̂. If one also

fixes the value of µ to some proposed value µt, then the set of values ˆ̂θµt is defined to

be that which maximises the likelihood for the particular value of µt.
8 It is always the

case that qµt ≥ 0, and qualitatively it can be seen that small values correspond to cases

where µt is ‘about right’, and large values to the case where µt is too large to explain the

data (that is, the numerator is decreasing relative to the denominator). The precise form

of qµt is motivated by the desire to be able to apply approximations derived by Wald

and Wilks [118,119] in high-statistics scenarios.

It is then necessary to construct a p-value for a particular model; in this case a

particular assumed true value for the parameter of interest, µ∗. This p-value is defined

to be the probability that the data could have been more discrepant than that observed,

given the hypothesis defined by µ∗. By definition, this general case is represented by

p(µt, µ
∗,X) = P (qµt(X

′) ≥ qµt(X)|X ′ ∼ µ∗)

=
∑

X′

θ (qµt(X
′)− qµt(X))P (X ′|µ∗), (4.20)

where the unemboldened θ is the Heaviside step function,

θ(x) =





1 x ≥ 0

0 otherwise.
(4.21)

Conceptually this involves a sum over the set of all possible datasets we could have

recorded, weighted according to the probability of getting such a dataset were the signal

strength µ∗. The result necessarily involves the slightly problematic term, P (X ′|µ∗); this

can be expressed in terms of the likelihood by introducing an integral over the nuisance

8This use of maximal values of the likelihood is sometimes referred to as profiling over the nuisance
parameters. Common terminology is to say the the nuisance parameters are ‘profiled away’, since
the value of the maximum is no longer a function of these variables.
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parameters:

P (X ′|µ∗) =

∫
P (X ′|µ∗,θ′)P (θ′|µ∗) dθ′

=

∫
L(µ∗,θ′|X ′)P (θ′|µ∗) dθ′

∝∼ L
(
µ∗, ˆ̂θµ∗ |X ′

)
. (4.22)

In this last approximate step, ˆ̂θµ∗ is the value that maximises L
(
µ∗, ˆ̂θµ∗ |X

)
, the

likelihood conditioned on the observed data. The rationale behind this is that the prior

term, P (θ′|µ∗), ought to be peaked around ‘reasonable’ values of θ′, and that hence

the most significant contribution to the integral will come from this point. Whilst in

principle this point should be computed without knowledge of X, for example with MC

simulations, in practice the correlations introduced by doing so are not significant; the

important thing is to have a reasonable model for the depenence of θ′ on µ∗. We can

then write an approximate form for the p-value which is easily computed by performing

pseudoexperiments

p(µt, µ
∗,X) ≈

∑
X′ θ (qµt(X

′)− qµt(X))L(µ∗, ˆ̂θµ∗ |X ′)
∑
X′ L

(
µ∗, ˆ̂θµ∗|X ′

)

= E [θ (qµt(X
′)− qµt(X))], X ′ ∼

(
µ∗, ˆ̂θµ∗

)
, (4.23)

where this expectation is easily computed by throwing ‘toy’ datasets X ′, distributed

according to the likelihood with µ∗ as the signal parameter, and the corresponding

maximum likelihood estimate of the nuisance parameters. In the literature, equation (4.20)

is often written as an integral over the test statistic – in practice this is useful when

considering the asymptotic approximations described in [120], however this chapter will

not aim to develop these.

The two terms defined in the limit setting framework used by ATLAS are the ‘signal

plus background’ hypothesis, or CLs+b, and the ‘background only’ hypothesis, CLb. In

the generally accepted notation, these are then defined

CLs+b(µt,X) = p(µt, µt,X) (4.24)

1− CLb(µt,X) = p(µt, 0,X), (4.25)
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where the use of “1−CLb” is such that CLb itself refers to the probability that the data

would not have been more discrepant than that observed if there were no signal present.

From these, a third quantity is defined,

CLs(µt,X) =
CLs+b(µt,X)

1− CLb(µt,X)
. (4.26)

An upper bound with a confidence level of α can then be set on the strength parameter,

defined by

max
µmax,α

[
CLs(µmax,α,X) ≤ 1− α

]
. (4.27)

The motivation for this variable stems from a calculation by Zech [121]. The usual

frequentist procedure would be to place a limit using the CLs+b p-value, however when

applied to a system consisting of a signal and background component it can give results

that were deemed difficult to interpret; specifically that the upper limit on the signal

strength parameter would be 0 if the estimated background contribution were equal to

or greater than the number of observed events. To avoid this, Zech proposed to alter

the definition of the p-value to include a condition that the (unmeasurable) number of

observed background events be ≤ the total number of observed events; applying basic

probability theory then yields the result above.

4.5.2 Limit setting with the matrix method

In the context of limit setting, the output from the matrix method is treated on a par

with those irreducible background components estimated from MC samples. Once the

central value and corresponding uncertainty is estimated as described in section 4.4, the

background mean b̄ and uncertainty σb are fed into a joint likelihood for the signal and

background rates, µ and b, given the number of events observed in the signal region nT .

In this simple case it would take the form

L(µ, b|nT ) = Poiss(nT ;µ+ b)Gauss(b̄; b, σb). (4.28)

When setting the limit, the nuisance parameter b is profiled away to form the test

statistic qµt , as defined in equation (4.19), and then upper limits (CLs or CLs+b) at some

confidence level are then formed by following the recipe outlined in section 4.5.1.
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Method Cost of calculation Limit quality Other names

A low
poor,

frequently undercovers matrix method

B very high very good likelihood matrix method

C quite low good –

Table 4.1: An overview of the three methods discussed in this chapter, and their relative
strengths and weaknesses. ‘Limit quality’ refers to whether CLs+b limits tend
to have the correct frequentist coverage properties, and also avoid unnecessary
overcoverage.

4.5.3 An extended likelihood method

In this section, it will be convenient to introduce abbreviated names for three variations

on the combined background estimation and limit setting procedure, as also used by

the author in [122]. Method A denotes the matrix method which has previously been

described. Method B labels the concept of setting a limit with a likelihood that includes

all information from the background estimate itself; this shall be the focus of this section.

Finally, Method C is used to denote a half-way house where the full likelihood of

Method B is used to produce a maximum likelihood estimate (MLE) for the fake rate

and corresponding uncertainty. This uncertainty represents both an uncertainty with

which the efficiencies are known, as well as statistical limitations of the observed data. It

is estimated with the MINOS method [123], by taking the values of the fake rate where

the minimum of the negative log likelihood with respect to the remaining parameters

increases by 0.5 from its minimum value. A limit is then placed using an expression

identical to that in equation (4.28), where b̄ and σb take the aforementioned MLE fake

rate and uncertainty.

All of these methods have relative advantages and disadvantages, which have been

described in the text but are also summarised in Table 4.1.

Whilst the matrix method can yield limits that suffer from undercoverage (a confidence

interval whose statistical coverage is below that intended), as noted further in the

subsection below, this can be avoided for a purely data-driven background if the full

likelihood, including all datasets used to make the measurement, is used in the limit
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setting procedure. That is, one should use

L(µ,θ|nt, nl, ntt, . . .), (4.29)

where θ represents the set of nuisance parameters. If the leptons can fall into more than

one category, quantities should be replaced with the separate terms from equation (4.6).

Each of these quantities can be considered as independent random variables with a Poisson

distribution. The means of these Poisson distributions will be denoted as functions of

the parameters e.g. νω1ω1
tt (µ,θ); the likelihood then factorises and takes a form similar to

equation (4.28)

L(µ,θ| . . . , nω1ω1
tt , . . .) = · · ·Poiss(nω1ω1

tt ; νω1ω1
tt (µ,θ)) · · ·P (θ̄|θ). (4.30)

The final term represents constraints placed on the nuisance parameters by external

measurements.

Coverage of frequentist limits

There is some discussion in the literature regarding how the incorporation of background

components with some uncertainty affects the frequentist coverage properties of p-value

limits [124]. In particular, when one is considering a background that is constrained e.g.

from an MC sample, the acceptance region for the hypothesis test in the full Neyman

construction will vary according to the value assumed by the nuisance parameter(s)

controlling the strength of the background. In an approximated scheme, such as the

profile liklihood method used in the computation of CLs+b and CLs, the coverage can

hence deviate from that nominally expected; potentially significantly if the background

overestimates the data. Since both Methods A and C feed information into the likelihood

in the same way (and hence have the shortcoming that the likelihood used in the limit-

setting procedure is not the likelihood for all the data), one should not be surprised if

one or both methods under-cover. It is later shown, however, that by virtue of the MLE

fake rate being more ‘sensible’ than that from the matrix method, any deviations in

coverage from that nominally expected would be less extreme in Method C than with

Method A.
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Choice of parametrisation

The efficacy of any likelihood method depends on a sensible choice of θ. In this case,

they must completely describe how events from both signal and background are expected

to be divided between the different categories. For example, one could directly use νω1ω1
tt

etc. as the free parameters, but this removes all predictive power!

A method has been trialled within the ATLAS collaboration [125, 126] that uses

a similar parametrisation to the matrix method – the efficiencies described before, in

addition to the rates separated both by object category and real/fake-ness. Whilst this

has an advantage of making minimal assumptions about how a given background process

distributes itself between these categories, it does lead to a very large parameter space.

For example, even with three objects coming from only three possible categories, there are

already 80 such parameters (before considering efficiencies). Since any form of prediction

will require a maximisation of the likelihood over this input parameter space, and since

such global maximisations become computationally more expensive as dimensionality

increases, the author has chosen to use an alternative parametrisation.

Decision tree parametrisation

Diagrammatically, the parametrisation used in this work is displayed in Figure 4.1. For

every event that is generated, it is first decided how many leptons that event ought to

contain. This is controlled by a set of parameters {αm}, each of which corresponds to

the probability of forming an event with m leptons. As noted in the caption these must

sum to 1 in an appropriate fashion. For each lepton, a category ωi is assigned to it with

probability βi, and it is then further assigned to be either f with probability πi or r with

probability 1− πi. Formally, βi ≡ P (ωi|l̃) and πi ≡ P (f |ωil̃). Efficiencies are then used

in the usual way to select objects as being t or l.

Using these terms, together with one extra parameter denoting the mean of the

Poisson distribution controlling the total production of tight events9, one can compute

the terms such as νω1ω1
tt in equation (4.30). It should be noted that one of these trees

must exist for every separate ‘component’ that is being fitted – that is, at least one for

the hypothesised signal process and one for the fake component of the background, and

9One could alternatively use the overall production of L̃ events, however it is essential to have the
rate of T events as a parameter for any signal component, since this is the quantity upon which one
wishes to place a limit.
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Figure 4.1: Parametrisation proposed to be used with a likelihood matrix method, to deter-
mine how events should be split between different categories, due to its constituent
objects themselves falling into different categories. The leftmost branch is com-
plete, the others are not. In general one could allow both more lepton categories,
as well as more leptons in the event. Note that

∑mmax
m=0 αm =

∑Nω
i=1 βi = 1, where

mmax is the largest number of leptons that can be produced in a given event.
Additionally, the abbreviation π̄i = 1− πi is used.

optionally others for additional background components that have been estimated using

MC samples. This is because for every component it is necessary to say something about

how its events are divided up between the different categories.

4.5.4 Emergence of the matrix method

One interesting side effect of the parametrisation trialled by ATLAS is that it can be

used to justify the approximate result in equation (4.4) in certain circumstances. The

following discussion presents this justification, along with its limitations.

When considering a likelihood as a product of Poisson terms as in equation (4.28),

and neglecting the Gaussian terms involving the efficiencies, the negative log likelihood

will be

− lnL =
∑

ω,β

(〈
T ωβ
〉
− T ωβ ln

〈
T ωβ
〉)
, (4.31)
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where for a set of m leptons the categories and tight/looseness information are compacted

into vectors ω and β of length m respectively. From equation (4.2), one finds

〈
T ωβ
〉

=
∑

α′

Φω
α′

β 〈Rωα′〉, Φω
α′

β = φωi1
α′1
β1
φωi2

α′2
β2
· · · , (4.32)

where α′ is a vector representing whether each lepton is real or fake.

One can now differentiate equation (4.31) with respect to 〈Rωα〉, ∀ω,α, using the

identity in equation (4.32). In order to locate the minimum of the negative log likelihood,

one sets all these derivatives to 0, yielding

∑

β′

(
1−

T ωβ′〈
T ωβ′

〉
)

Φω
β′

α = 0, ∀ω,α. (4.33)

These are satisfied if
〈
T ωβ′

〉
= T ωβ′ ∀β′, the result of which being that upon inversion

equation (4.32) will look like

〈Rωα〉 =
∑

β′

Φ−1
ω

α

β′ T ωβ′ , (4.34)

analogously to equation (4.4).

Whilst this is a valid operation for the problem as stated above, it should be noted

that the minimum of − lnL is represented by equation (4.33) only when the components

of 〈Rωα〉 are > 0. It is also only useful in the case where the components of 〈Rωα〉 are

readily assigned to either signal plus other ‘real’ backgrounds (those typically estimated

from MC samples) and the fake background.

4.6 Bayesian fake rate posterior

The new likelihood methods discussed in section 4.5 revolved around considering the full

likelihood with which one wished to set limits on a new physics scenario, and performing

the fake estimation as part of that limit setting process. The more approximate approach

of using the MLE fake rate and estimated uncertainty as the input for a simpler likelihood

for limit setting was also presented; it is this latter concept that shall now be improved

upon.
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Figure 4.2: Diagram representing the transformation from the valid quarter plane in real/fake
space to the valid region in tight/loose space. The angles of the dotted lines on
the right plot with respect to the axes are determined by the efficiencies.

An alternative approach to using an MLE and uncertainty is to sample from the

Bayesian posterior distribution on the fake rate. With the use of appropriately uninforma-

tive priors, this distribution will have a peak corresponding to the desired MLE estimate.

By doing this one gains not only the ability to more reliably identify the location of this

peak (since one can never be sure if only a local minimum has been located), but also

visualise the entire posterior probability density function (pdf). This extra information

could, in principle, be included in the limit setting stage. Moreover, rather than use an

MLE of the fake rate it might be more desirable to estimate the median value of the

posterior, and use a credible interval as an estimate of the asymmetric uncertainty band.

4.6.1 Sketch of the method

By means of an introduction to the sampling method presented in this section, it is

instructive to first consider the simple case of events containing a single lepton with only

one possible category previously presented in Figure 3.1.

Recalling the discussion from section 4.3.1, the matrix method is capable of returning

negative fake rate estimates. This can be understood in a more graphical way: in the

(νR, νF ) plane only the positive quadrant contains valid values of the parameters. For

a given pair of efficiencies εr, εf , this quarter plane valid region can be drawn as a

triangular shape in the (νT , νL) plane, as shown in Figure 4.2. This follows directly from

the relation in equation (4.2). In the case of events containing m leptons, the space in

which this wedge shape appears has 2m dimensions.
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Whilst our observed values of nT and nL place constraints on our belief of the values

of νT and νL, it is also necessary to respect the boundaries exemplified in Figure 4.2.

Coupled with some belief on the values of the efficiencies, if one can draw points in the

valid region of the tight and loose plane, this can be directly turned into a value of the

fake and tight rate.

4.6.2 Sampling methods

In this section we develop the numerical methods necessary to sample from the posterior.

The derivations shall be shown for the single lepton case, however the generalisation to

arbitrary lepton number should hopefully be clear.

The quantity we are aiming to obtain is

P (νTF |nT , nL, ε̃), (4.35)

where ε̃ represents measurements made in some control regions that constrain the efficien-

cies, and other quantities defined as in chapter 4. This can be defined as marginalisation

of a joint probability of a sufficient set of parameters to uniquely define the system. That

is, we can write

P (νTF |nT , nL, ε̃) =

∫
dε

∫

ΨRF

dνR dνF δ (νTF − fRF (νR, νF , ε)) · · ·

· · ·P (νR, νF , ε|nT , nL, ε̃) (4.36)

=

∫
dε

∫

ΨTL(ε)

dνT dνL δ (νTF − fRF (νT , νL, ε)) · · ·

· · ·P (νT , νL, ε|nT , nL, ε̃), (4.37)

where Ψ represents the allowed region of integration in the rate space RF for real/fake

space, and TL for tight/loose space; f represents the transformation from the collection of

rates and efficiencies to the tight and fake rate. Each of these are defined in the real/fake

space (equation (4.36)) and the tight/loose space (equation (4.37)). One observation

worth noting is that ΨTL is a function of ε; this represents the fact that the allowed

region in tight/loose space is defined by the efficiencies, as was shown in Figure 4.2.

Neither of these integrals can be evaluated analytically, however various numerical

techniques exist that could be applied to perform the integration. Monte Carlo methods
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seem appropriate, given the potentially high dimensional nature of the integral, and the

most efficient methods would aim to draw samples from the probability distributions

under the integral, thus not spending time in “unimportant” places. It shall be shown

how Gibbs sampling may be used to compute the integral in equation (4.37), and how a

more general Metropolis-Hastings algorithm could be used in equation (4.36)

Evaluating integral in tight/loose space with Gibbs sampling

One can now consider evaluating the probability contained in equation (4.37),

P (νT , νL, ε|nT , nL, ε̃) = P (ε|ε̃)P (νT , νL|nT , nL, ε)
∝ P (ε|ε̃)P (nT , nL|νT , νL)P (νT , νL|ε)
∝ P (ε|ε̃)P (nT |νT )P (nL|νL)P (νT , νL|ε), (4.38)

where the prior on the tight and loose rates is necessarily dependent on ε, due to the

restrictions in Figure 4.2. Note that the last of these three steps contains an assumption

– namely that the efficiencies are much more tightly constrained by ε̃ than by any

information in (nT , nL). Thus, the integral to evaluate is

∫
dεP (ε|ε̃)

∫

ΨTL(ε)

dνT dνL δ(νTF − · · · )P (nT |νT )P (nL|νL)P (νT , νL|ε). (4.39)

There are two evidently straightforward Poisson terms, and then a prior term that requires

closer inspection. In choosing P (νT , νL|ε), it is desired to be largely uninformative, except

that it must only have support in ΨTL(ε). As such, Gamma distributions are used for

each of νT and νL, truncated so as to remain within ΨTL(ε). This is not exactly the

required probability distribution – an alternative might be to enforce νR and νF to have

Gamma priors, which then avoids the need for truncation, however this could not be

used with a Gibbs sampler. Figure 4.3 presents an illustrative example that suggests

that the difference between these scenarios is not too great. As specified in more detail

in the caption, one imagines placing Gamma distribution priors in either the tight/loose

or real/fake planes, and making equivalent observations of event counts in each of these

planes respectively. The resulting distributions are not identical, however it is argued that

the differences are of minor importance. It seems very likely that it will only influence

the tails of the final fake rate posterior, given that the differences are largely in very

low-probability density areas, and as such is of limited importance for the intended

application.
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(a) Using truncated Gamma prior in (νT , νL) (b) Using Gamma prior in (νR, νF )

Figure 4.3: Illustration of the truncation procedure used in the model, compared to an
alternative model with a Gamma distribution used in (νR, νF )-space. An example
is shown here with a single lepton, single category model, and known efficiencies
of εr = 0.8, εf = 0.2. For a) it is assumed that one observation of nT = 1, nL = 2
has been made, and for b) that an equivalent observation of nR = 1, nF = 2 –
the two observations are exactly related by the matrix method approximation,
equation (4.1). The former uses the observation to determine a Gamma posterior
on (νT , νL), truncating to remain in the allowed region. The latter uses the
equivalent observation in the (νR, νF ), with the distribution subsequently plotted
in the (νT , νL)-plane. Red indicates high probability mass, down to dark purple
at 0. The disallowed region is shown in white.
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At this point it is difficult to express the prior directly, due to the truncation procedure,

so instead we define it through the complete set of conditional probabilities. These are,

up to constant factors:10

P (νT |νL, ε) ∝ θ(νT |νL, ε) Gamma (νT |α0, 0) (4.40)

P (νL|νT , ε) ∝ θ(νL|νT , ε) Gamma (νL|α0, 0) , (4.41)

where the notationally abused Heaviside step functions θ are such as to perform the

necessary truncation in each case, and α0 is a prior constant to be discussed later.

Explicitly, θ(νT |νL, ε) is 1 inside the green region of Figure 4.2, and 0 elsewhere; the

same logic applies for θ(νL|νT , ε). Note that the ‘shape and rate’ parametrisation of the

Gamma distribution is used throughout, that is

Gamma (x|α, β) =
βα

Γ (α)
xα−1e−βx. (4.42)

Through application of Bayes’ theorem one can show that if a random variable λ has

prior Gamma (λ|α, β), and another random variable M ∼ Poiss (λ), then an observation

m of M yields a posterior on λ of Gamma (λ|α +m,β + 1).

The conditional probabilities above are sufficient for the Gibbs sampling algorithm

[110] to be applied. In the simple example above, it can be written out as follows:

1. Choose a random point, (νT 0, νL0), in ΨTL(ε)

2. Draw νT i ∼ θ(νT i|νLi−1, ε) Gamma (νT i|α0 + nT , 1)

3. Draw νLi ∼ θ(νLi|νT i, ε) Gamma (νLi|α0 + nL, 1)

4. Present pair (νT i, νLi)

5. Repeat steps 2-4 until burn in completes, and then samples are approximately

independent draws from the joint distribution of the tight and loose rates.

Drawing from truncated distributions is straightforward using inverse transform

sampling, so long as the inverse of the cumulative density function (CDF) is computable

[127]. An implementation of the inverse of the Gamma distribution CDF can be found

in the Boost C++ libraries [128].

10Here, ‘constants’ are also taken to include conditioning variables for a given expression.
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Computing the truncation limits For any given draw from one of the conditional

distributions above, it is necessary to compute the upper and lower allowed bounds for

the rate in question. Whilst this can easily be derived analytically in the single lepton

case, it becomes less trivial with more leptons. However, since it is a standard linear

programming problem – maximise and minimise one rate subject to linear constraints

imposed by the other rates and efficiencies – the Simplex algorithm can used to find the

bounds [129]. For the results shown later in this chapter the implementation in the GNU

Linear Programming Kit [130] is used.

Choosing α0 It is desired to choose a value of α0 such that the priors are uninformative.

In a model with a single random variable λ, which is the mean of another random variable,

M ∼ Poiss (λ), then the usual uninformative prior is Gamma (λ|1, 0), i.e. α0 = 1.

However, now consider Λ =
∑N

i=1 λi; if one again chooses priors on each λi of

Gamma (λi|1, 0), then this effectively places a prior on Λ of Gamma (Λ|N, 0). This is

appropriate if each of the λi are completely independent, however if in fact the quantity

of interest is Λ, and if one is unsure which of the λi might be constrained by data, and N

is big, then the prior of Gamma (Λ|N, 0) on Λ is potentially problematic. A workaround

is to choose the prior on each λi to be Gamma (λi|1/N, 0), which then leaves an effective

prior on Λ of Gamma (Λ|1, 0), which would be more desirable due to its resembling the

uninformative choice mentioned previously.

An alternative in this scenario could be to use a Jeffreys prior, which is proportional

to the square root of the Fisher information. In the case of a Poisson distribution with

scale parameter λ this would be ∝ 1√
λ
. Considering the model above one could then use

a joint prior

p(λi, . . . , λN) ∝ 1√
Λ

=
1√∑N
i=1 λi

. (4.43)

In practice this form could be more difficult to work with than the approximation

described in the previous paragraph, since it does not easily factorise into separate terms

for each λi.

This toy example is similar to the case with multiple categories of events. Since

the quantities we are interested in are fundamentally sums over all event categories, we

choose α0 = 1/NΩ, where NΩ represents the number of event categories. Ideally it would

benecessary to ensure the priors are overwhelmed, that is that the posterior distribution
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is not strongly affected by choice of prior, such that by definition this choice should not

be too important. In practice this isn’t always achieved, and as such the approximate

form above avoids biasing the estimated fake and tight rate higher than one might expect

due to the presence of many categories.

Varying efficiencies The discussion above demonstrates an algorithm to sample from

the joint posterior on tight and loose rates given that ε is known. However, the actual

situation is that we must also integrate over P (ε|ε̃). If this distribution can be sampled

from,11 then the Gibbs sampling algorithm can be updated as follows:

1. Draw efficiencies ε from P (ε|ε̃)

2. Choose a random point, (νT 0, νL0), in ΨTL(ε). Set i = 0

3. Increment i

4. Draw νT i ∼ θ(νT i|νLi−1, ε) Gamma (νT i|α0 + nT , 1)

5. Draw νLi ∼ θ(νLi|νT i, ε) Gamma (νLi|α0 + nL, 1)

6. Repeat steps 3-5 until burn in completes

7. Present pair (νT i, νLi)

8. Repeat steps 1-7 until the desired number of samples have been drawn

Multiple event categories Given the prescription above it is straightforward to

include multiple event categories in the Gibbs sampling process. After one has selected

ε, the burn-in loop is repeated for each event category, yielding a sample of (νT , νL) for

each.

Burning in Gibbs sampling is a particular type of Markov Chain Monte Carlo

(MCMC) algorithm, and like other MCMC methods it can take a while for the Markov

chain to “burn in”; that is, for the samples being drawn to be truly representative of

the target distribution. The number of steps required for burn in has to be determined

empirically. It is clear that the number of burn in steps should only depend strongly on

11In practice this is a very reasonable assumption, since one typically finds mean values through control
region measurements, and assigns statistical and systematic uncertainties, with potential correlations
between efficiencies. These correlation structures can then be modelled by drawing a suitable number
of (potentially truncated) normally distributed random variables and determining the efficiencies.
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the number of leptons, since this determines the dimensionality of the allowed region,

and the approximate “shape” of this region is always the same.

Evaluating integral in real/fake space with Metropolis-Hastings

An alternative approach is to start from equation (4.36), which involves drawing samples

in the joint space of real and fake rates. Since this method is not used in the remainder of

the chapter a mathematical development is not included, however a sketch of important

points follows.

In this case there is no need to compute limits of truncated distributions, since

the allowed region is always the positive quadrant (e.g. as on the left of Figure 4.2).

However, the ‘likelihood’ terms are necessarily Poisson distributions in tight/loose space,

i.e. terms like P (nT |νT (νR, νF , ε)). Thus it is not possible to write down the necessary

conditional probabilities to use Gibbs sampling. As such a more general Metropolis-

Hastings algorithm has to be used, which has the downside of necessitating some effort

to go into the choice of an effective proposal distribution.

In the case under investigation here, where each category is independent one efficiencies

have been drawn, the use of Gibbs sampling seems preferable since it allows avoidance of

tuning a proposal distribution. However, if tighter links were introduced between the

categories then this would render the Gibbs mechanism impossible. As such Metropolis-

Hastings would be the natural fallback, and then operating in real/fake space would

be logical so as to avoid the necessity of computing the appropriate boundaries of the

allowed region at each step.
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Chapter 5

An analysis of ATLAS data for

like-sign lepton events

The chapters thus far have set the scene for the search described herein. A motivation for

the signature is presented, and the details of the event selection procedures are described.

The mechanisms used for estimating the various backgrounds are discussed in detail, and

the results of these are presented. Finally the analysis is put into the context of several

simplified and popular phenomenological supersymmetric models, with limits being set

in their respective parameter spaces.

The author was involved in all aspects of the analysis and performed much of the

critical lower-level development and maintenance required for the implementation and

running of the analysis. The most significant physics contributions were centred around

the background estimation procedure used for the fake leptons, the theory of which

has already been discussed. This method was introduced for the latest publication of

this analysis [100], which included the three-lepton signatures that necessitated the use

of a generalised matrix method. The author also performed a cross-check background

estimation procedure for a signal region with three b-jets, as well as various other specific

cross checks to ensure our results were correct and consistent – these are not described

here. The analysis has had four publications [100, 111–113], and the author has been

a member on the analysis team for the last two of these. This chapter focusses on the

latest publication, [100], to which the author made the largest contributions.
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5.1 Motivation

When designing a ‘general’ analysis for new physics signatures, the primary considerations

are to ensure that the signal regions have acceptance for a range of well-motivated models,

whilst simultaneously reducing the contribution from SM processes as much as possible.

The use of like-charge leptons achieves both of these goals.

Firstly, the fact that gluinos are Majorana fermions and are pair produced, means

that each branch of the decay can produce a lepton of either charge. Thus the possibility

of observing like-charge leptons is not significantly lower than that of seeing those of

opposite-charge.

Secondly, since the SM does not predict production of particles with these properties,

like-charge signatures are highly suppressed. Contributions occur from processes such as

tt + V , that is tt in association with a vector boson, and di- and tri-boson production.

However, since tt production is kinematically similar to, and has a significantly higher

cross-section than the typical signatures for which we search, two significant backgrounds

come from a mis-reconstruction of this process. A semi-leptonic decay of tt, where one top

quark decays leptonically, and the other hadronically, can be misidentified as a leptonic

decay mode if the hadronic decay products ‘fake’ a lepton in the detector. Likewise, the

fully leptonic decay mode can contribute to our background if one of the leptons has its

charge mis-reconstructed. As such a mixture of MC samples and data-driven methods

have been used to model both the reducible and irreducible backgrounds.

This analysis additionally makes use of events containing three leptons. Whilst

producing little additional contribution from the SM the extra leptons allow the analysis

to target supersymmetric models with longer decay chains. By allowing them to be

soft (a low pT requirement, pT > 15 GeV) this also increases sensitivity to compressed

scenarios (see section 2.2.3).

5.2 Data and Monte Carlo samples

5.2.1 The 8 TeV ATLAS dataset

The data used in this analysis corresponds to the 2012 run of the LHC, with a centre of

mass energy of 8 TeV. The total integrated luminosity collected by the ATLAS detector
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was 20.3 fb−1, with an uncertainty of 2.8% [131,132]. This uses the centrally-provided

offline calculation normalised with Van der Meer scan data, using techniques similar

to those described in [133]. The average pileup during this run, i.e. the number of pp

interactions within each bunch crossing, lies in the approximately range 10-20, with a

mean of 20.7. Further quality selections were applied to this dataset to ensure that any

period where a necessary component of the detector was considered faulty or unstable was

removed. The analysis uses data from the Egamma, Muons and JetTauEtmiss streams.

5.2.2 Background samples

Standard model processes that contribute to the background of this analysis that cannot

be accounted for using the data driven methods described in section 5.5 are estimated

using centrally produced MC samples, corresponding to the MC12 production run.

Samples corresponding to processes that are normally estimated by the data driven

methods were additionally used for optimisation studies, as well as the testing of the

data-driven background estimation methods themselves. After matrix element generation

and parton showering using the generators described below, the ATLAS detector is

simulated using either ‘full’ simulation (based on GEANT4) or Atlfast-II simulation, as

described in section 1.3. Full simulation is assumed for these samples, unless otherwise

stated.

Backgrounds with prompt leptons: The backgrounds with two prompt like-charge

leptons, or three leptons, comprise tt in association with bosons (W , Z , H), single top in

association with a Z boson (tZ) and diboson production plus jets (including Wγ, WH

and ZH). These are collectively referred to as the ‘irreducible’ backgrounds, since these

processes are capable of producing the targeted signature directly.

The matrix elements for tt + V + n partons, where n ∈ {0, 1,≥ 2}, in addition to tZ ,

tt+WW and V V V +jets were generated using MadGraph-5.1.4.8 [17], followed by parton

showering using Pythia-6.426 [18]. Here and henceforth the abbreviation for a vector

boson V ∈ {W,Z} is used. The tt +H , WH and V H processes are modelled in their

entirety by Pythia-8.165 [134], with the mass of the Higgs boson set to 125 GeV. Diboson

samples for WW and WZ are generated using Sherpa-1.4.1 [135], which produces matrix

elements including up to three final state partons. The default parametrisations for

renormalisation and factorisation scales are used, and a dilepton invariant mass cutoff

of mll > 0.1 GeV is applied. The ZZ diboson sample is produced by the Powheg-1.0

[136] interface to Pythia8. Finally, the Wγ sample is produced using Alpgen-2.13 [137],
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interfaced to Herwig-6.510 [138] for parton showering and fragmentation, and to JIMMY

[139] for underlying event simulation.

Further to these samples used in the core measurement, additional samples representing

diboson and tt + V processes were used to estimate systematic uncertainties caused by

the choice of generator. These used Sherpa for the ZZ sample and Powheg for the WZ

and WW processes. Furthermore, Alpgen was used to generate an alternative tt + V

sample.

Samples for reducible backgrounds: In the process of developing the background

estimates, and for the purpose of cross-checking, MC samples corresponding to the

‘reducible’ backgrounds are also used. In this context, a reducible background is one that

can only produce the experimental signature through a reconstruction error, and as such

includes tt + jets, W/Z + jets and single-top production. The W/Z + jets sample is

modelled using Sherpa, with the same configuration as for the diboson samples previously

described, however with matrix elements containing up to five final state partons rather

than three. In order to increase the accuracy of the prediction, the MENLOPS [140]

treatment is applied. This applies a weight to every event that not only causes the

overall normalisation to correspond to a next-to-leading order (NLO) treatment, but

also introduces corrections to the shapes of distributions of kinematic variables. tt + jets

samples are produced using Powheg with Pythia, and finally the single-top process is

created using the MC@NLO [141] generator for the Wt process and s channel, and AcerMC

[142] for the t channel.

Parton distribution functions: Two different sets of parton distribution function

(PDF) sets were used with the generators described above to describe the quark and

gluon content of the proton. With the Sherpa, Powheg and MC@NLO generators the NLO

[143] PDF set is used, whilst with MadGraph, Pythia and Alpgen the PDFs were taken

from the CTEQ6L1 [144] prediction.

Cross sections: For all background processes, the most precise theoretical available

cross sections [145–147] were used to normalise the background distributions found from

the above samples.

5.2.3 Signal samples

The samples corresponding to the SUSY models considered were either simulated with

Herwig++-2.5.2 [148] or MadGraph interfaced with Pythia, using the CTEQ6L1 PDF set
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in both cases. Cross sections were calculated at NLO furthermore adding the resummation

of soft gluon emission to next-to-leading-logarithmic (NLL) order [149–153].

Uncertainties on these cross sections were obtained by propagating the uncertainties

from the PDF sets, in addition to varying the generator factorisation and renormalisation

scales, as described in [154]. Additionally, a set of samples corresponding to an mUED

model were used; these were also generated with Herwig++ with the CTEQ6L1 PDF

set, and in this case the leading-order cross section computed by Herwig++ was used.

The majority of these samples were simulated using Atlfast-II, with the exception of

the gluino-stop models in the off-shell tχ̃0
1 and on-shell bχ̃±1 channels, for which the full

detector simulation was applied.

A thorough account of the different SUSY models considered, along with the resulting

exclusions from this analysis, can be found in section 5.7.2.

5.2.4 MC sample tuning and corrections

ATLAS data that was known to be sensitive to initial- and final-state QCD radiation,

colour reconnection, hadronisation and multiple parton interactions were used to de-

termine the parton shower parameters of the simulated samples. Specifically, the set

of tuned parameters AUET2 [155] is used with Pythia, Pythia8 and Herwig, with the

exception of the Powheg +Pythiatt sample for which the P2011C [156] tune is applied.

For samples generated with Herwig++, the UEEE3 [157] tune is used.

Since multiple protons can interact on each bunch crossing, an effect known as “pile-

up”, corrections are applied as follows to account for the extra energy deposits that are

likely to appear alongside the desired primary interaction. This effect is modelled by

overlaying minimum-bias events, simulated with Pythia8 using the AUET2 tune, onto the

hard scatter event produced by the generator for the sample in question. Subsequently,

simulated events are weighted such that the distribution for the average number of

collisions per bunch crossing matches that observed in the recorded dataset using the

ExtendedPileupReweighting [158] tool. The optimal agreement in the distribution of

the number of primary vertices between MC and data is found when MC samples are

reweighted to (1/1.09)× 〈µ〉, where 〈µ〉 is the average number of interactions per bunch

crossing.

Whilst the simulated samples are reconstructed using the same algorithms as used to

reconstruct data, corrections are applied for known deficiencies in the detector simulation
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procedure, largely derived from data control samples. The properties corrected for include

the leptonic trigger efficiencies, lepton reconstruction efficiencies, object momentum scale

and resolution, and finally the real and fake efficiency for the tagging of jets originating

from b-quarks. Some of these are discussed in more detail in section 5.6.

5.3 Event selection

Using the basic objects reconstructed and selected as described in section 1.4, one can

define the procedure by which events are either accepted or rejected for use in the analysis.

This is represented by a series of cuts, every one of which must be passed. The same

procedure is applied to both data and MC samples, unless stated otherwise.

The cuts can be separated into those largely associated with ‘data quality’, which

tend to be common between many ATLAS analyses, and those looking to isolate those

events of interest to this particular analysis. The quality cuts, with the exception of the

trigger, are as follows:

1. Good Runs List: Isolate data-taking runs known to be good – corresponds to a

total working luminosity of 20.3 fb−1.

2. Trigger skim: Require any of the triggers mentioned in section 5.3.1 to have

passed; this is a fast requirement to remove many events, although the necessary

overlap removal is performed later.

3. LAr and Tile Error: Inhibit unwanted effects from noise bursts and data corrup-

tion in the LAr and Tile calorimeters.

4. Incomplete events: Reject incomplete events due to the timing, trigger and

control (TTC) [159] restart procedure.

5. Fake pmiss
T veto: Reject events where pmiss

T is induced by jets pointing towards

dead calorimeter cells.

6. Jet cleaning: Events required to pass the “looser” selection, limiting contribution

from jets caused by detector noise, beam-induced particles, or cosmic rays.

7. Primary vertex: The primary vertex must have at least five tracks with pT >

0.4 GeV associated with it.
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8. Bad & cosmic muon veto: Remove events with poorly reconstructed muons, or

muons with impact parameters implying they were likely to have been created by

cosmic rays.

The event selection procedure continues, but now with those cuts which are more

specific to this analysis:

9. Two leptons: Events are required to contain at least two signal leptons (as defined

in section 1.4.1) with pT > 15 GeV, the leading of which must additionally satisfy

pT > 20 GeV.

10. Trigger processing: Described further in section 5.3.1.

11. Trigger matching: The trigger objects must match to within ∆R < 0.15 of a

corresponding reconstructed lepton – if not the event is vetoed, as it suggests the

trigger was fired mistakenly.

12. Same sign: If there are exactly two leptons, it is required that they have the same

charge. Otherwise no requirement is imposed.

13. Z-veto: To reduce the contribution from Z production, veto events where the

invariant mass mll of same-flavour and opposite-charge leptons are in the window

84 < mll < 98 GeV. By definition this will only affect events with more than two

signal leptons.

14. Invariant mass: Require leading lepton invariant mass mll > 12 GeV to avoid

heavy flavour meson resonances.

5.3.1 Trigger selection

Due to to the requirement of our signal regions on both lepton multiplicity as well as

moderate pmiss
T , the analysis is designed to use a combination of pertinent triggers to

maximise the number of potentially interesting events we accept. This step is also used

to classify events as being in one of five non-intersecting categories; high pmiss
T , dielectron,

electron-muon, muon-electron, or dimuon; each of which comes from exactly one of the

overlapping data streams. Hence this ensures that no data event that appears in more

than one of the Egamma, Muons or JetTauEtmiss is used more than once. Events falling

into each category have additional requirements applied for the purpose of ensuring that

trigger efficiencies are near the plateau (i.e., are approximately constant regardless of
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event kinematics). A summary of all the categories and requirements can be found in

Table 5.1.

By operating in the kinematic regions where the efficiency has plateaued, it allows

for trigger-dependent weight corrections to be applied to MC datasets correcting for

deficiencies in the simulated trigger efficiency. These are found to be approximately

±2− 4% for the pmiss
T trigger when lepton pT > 20 GeV. For dielectron events in the ‘soft’

case when the subleading electron has 15 < pT < 20 GeV, the MC events are weighted

by +9%.

5.4 Signal regions

Signal regions were chosen through optimisation, based on a combination of those from

previous versions of this analysis and also an older dedicated three lepton search [160,161].

The aim is to achieve broad sensitivity for a variety of supersymmetric scenarios, broadly

separated into three signal regions separated by their b-jet multiplicity, and a further

two focusing on the three lepton signatures.

Event accepted into any signal region are required to have passed the event selection

procedure as described in section 5.3. For each event a number of quantities are computed:

• Nleps – the number of leptons passing the signal requirements.

• Njets – the number of jets with pT > 40 GeV.

• Nb-jets – the number of b-jets with pT > 20 GeV.

• pmiss
T – the magnitude of the missing transverse momentum, as defined in sec-

tion 1.4.4.

• mT – the transverse mass, defined to be
√

2 · pT · pmiss
T · (1− cos ∆φ), where pT

is the transverse momentum of the leading lepton and ∆φ is the difference in φ

between the lepton and the missing transverse momentum vector.

• meff – the ‘effective mass’, defined to be the scalar sum of missing transverse mo-

mentum and all signal lepton and jet pT’s. meff = pmiss
T +

∑
l p
l
T +
∑

jet, pT > 40 GeV p
jet
T .

• Z veto – remove events whose same-flavour opposite-charge lepton invariant mass,

mll, satisfies 84 < mll < 98 GeV.
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Category Data stream Trigger requirements

High pmiss
T JetTauEtmiss

EF xe80T tclcw loose for data-taking periods A-
B5, or EF xe80 tclcw loose otherwise. Require
LocHadTopo (LHT) pmiss

T > 125 GeV.

Dielectron Egamma

If leading electron pT > 65 GeV, require single
electron trigger EF e60 medium1 (plateau efficiency
> 95%).
Else check the dielectron trigger EF 2e12 Tvh loose1

with baseline lepton pT cuts (plateau efficiency 97%).

Electron-muon Egamma

If leading lepton is an electron with pT > 65 GeV,
require single electron trigger EF e60 medium1

(efficiency > 95%).
Else check the dileptonic trigger
EF e12Tvh medium1 mu8 with baseline lepton
pT cuts (plateau efficiency 95%).

Muon-electron Muons

If leading lepton is a muon with pT > 36 GeV, require
single muon trigger EF mu36 tight (plateau efficiency
for pT > 40 GeV is 75% [90%] in the barrel [end-cap]).

Dimuon Muons

If leading muon has pT > 36 GeV, require single
muon trigger EF mu36 tight.
Else check the dimuon trigger
EF mu18 tight mu8 EFFS. The EF mu18 tight

component plateaus for pT > 20 GeV at 75% [90%]
in the barrel [end-cap], and the EF mu8 EFFS is fully
efficient for pT > 10 GeV.

Table 5.1: Summary of the trigger requirements placed on events from the different data
streams. Each requirement is tried in the order presented, and if failed the next
is attempted. If all fail then the event is rejected. The data stream indicates the
requirement placed on only events from data; all the possible categories are tried
for MC events.
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SR Nleps Nb-jets Njets pmiss
T /GeV Other meff/GeV

SR3b ≥ 2 ≥ 3 ≥ 5 – – > 350

SR0b = 2 = 0 ≥ 3 > 150 mT > 100 GeV > 400

SR1b = 2 ≥ 1 ≥ 3 > 150 mT > 100 GeV > 700

SR3Llow ≥ 3 – ≥ 4 ∈ [50, 150] Z veto > 400

SR3Lhigh ≥ 3 – ≥ 4 > 150 – > 400

Table 5.2: Definition of the signal regions in terms of the quantities defined in the text.
In order to remove overlap between SR3b and other regions, events are checked
against each set of requirements in turn, and accepted into whichever region whose
requirements they meet first. The meff requirement is only applied when running
the fit in ‘discovery’ mode. A ‘–’ indicates no requirement.

meff bin limits/GeV

SR Bin 1 Bin 2 Bin 4 Bin 4

SR3b [190, 845] [845,∞]

SR0b [300, 600] [600, 900] [900, 1200] [1200,∞]

SR1b [300, 700] [700, 1100] [1100,∞]

SR3Llow [255, 727.5] [727.5,∞]

SR3Lhigh [355, 1077.5] [1077.5,∞]

Table 5.3: When running in ‘exclusion’ mode, signal regions are divided into two or more
bins in meff , in place of the basic cut on meff described in Table 5.2. These binning
are shown here

Five signal regions are created using these quantities, as shown in Table 5.2. As will be

further discussed in context of the fitting and interpretation procedure in section 5.7,

the analysis has two modes; an meff shape-fit ‘exclusion’ mode for placing limits on

specifically simulated models, and a ‘discovery’ mode used for quantifying any generic

excess in one or more of the signal regions. For the shape fit the signal regions are divided

into bins of meff , these are shown in Table 5.3. The latter discovery mode modifies the

signal regions with additional constraints on meff , as denoted in the table. These regions

with additional cuts are sometimes referred to as e.g. SR3bdisc.
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The SR0b region targets those SUSY models that do not have a tendency to produce

b-quarks, which are largely those either directly producing first or second generation

squarks, or those mediated by gluino production in the case where stops are sufficiently

massive to not be a favoured decay mode of the gluino. Naturalness arguments tend to

favour a lighter stop; In this case direct or gluino mediated stop production will lead to

events containing at least two b-quarks. Since the tagging process is not fully efficient,

SR1b is designed to pick up these events. Finally, a handful of the models discussed

in section 5.9 are expected to produce at least four b-quarks, and these are targeted by

SR3b.

In cases where there is a tendency for multi-step cascades to occur, such as in the

gluino-mediated q̃ → qWZχ̃0
1 scenario, either of both of leptons and jets could occur

with large multiplicity. The latter of these motivates the moderately high jet multiplicity

cuts present in many of the signal regions, whilst the former is the prime motivation

behind the two three-lepton signal regions. These are split into both low and high pmiss
T

variants, to target models producing, respectively, off- and on-shell W and Z bosons in

cascades respectively. The background from Z boson production is suppressed by a Z

veto in SR3Llow, and in SR3Lhigh is already reduced by the higher pmiss
T requirement.

5.5 Estimating the backgrounds

5.5.1 Prompt backgrounds

There are a number of processes contributing to the appearance of events in our signal

regions. Those with real, or ‘prompt’ leptons (not occurring as the result of e.g. a mis-

identified jet) turn out to not be readily susceptible to the use of data-driven methods;

these are irreducible backgrounds. Instead, the expected contribution is estimated using

those MC samples described in section 5.2.2. To re-iterate, the most significant processes

contributing are tt + V , diboson and triboson production processes, and single top with

a Z boson.

In order to ensure that the modelling of the effective mass distribution is good here,

three control regions are defined which aim to demonstrate good modelling for each of

the major irreducible backgrounds; these are VRttW (for tt +W ), VRttZ (for tt + Z)

and VRVV (primarily for WZ + jets). These regions are defined with the same quantities

introduced in section 5.4, with the addition of:
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Region Nleps Nb-jets Njets pmiss
T /GeV Other

VRttW µ±µ± = 2 ≥ 1 (30 GeV) ∈ [20, 120] mT > 80 GeV

VRttZ ≥ 3 ∈ {1, 2} ≥ 2 (40 GeV) ∈ [20, 120] meff > 300 GeV, Z accept

VRVV µ±µ± = 0 ≥ 2 (20 GeV) ∈ [20, 120] mT > 100 GeV

Table 5.4: Definition of the validation regions in terms of the quantities defined in the text.
To avoid ambiguity, note that µ±µ± indicates a requirement for like-charge muon
pairs.

• Z accept – keep only events whose same-flavour opposite-charge lepton invariant

mass, mll, satisfies 83 < mll < 96 GeV.

The cuts placed for each of these are recorded in Table 5.4, and were optimised to ensure

that each region was enriched in events from the targeted background process whilst

remaining kinematically similar to the signal regions1. It should also be noted that the pT

requirement on jets is varied between the validation regions, unlike in the signal regions

where the lower limit was fixed at 40 GeV.

The distributions in effective mass for each of the validation regions are shown in

Figure 5.1. Whilst each region is rich in the targeted process, the full background estimate

is applied (including the data-driven methods discussed in the subsequent sections) so as

to account from contamination from the other sources of background. In all cases good

agreement is observed between data and MC, giving us good confidence in the validity of

our estimates.

It has also been verified that the contamination in the validation from signal models

near exclusion, but not excluded is small. Had this not been the case, it could have lead

to an overestimate of the backgrounds, perhaps nullifying our ability to see the same

new physics in the signal regions. VRttZ and VRVV both have negligible contamination,

and VRttW has contamination of at most 25%.

Since the modelling of b-jets is suspected to be one potential weakness of both the MC

generators and detector simulation procedure, an additional check is carried out to verify

our confidence in the modelling of the background in SR3b. Since there are few events

with three b-jets, a validation region is designed requiring events with opposite-sign

1Checks were performed to ensure minimal contamination from SUSY signal models near the exclusion
threshold.
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Figure 5.1: Comparison of data with the full background estimate for the effective mass (meff)
distribution in each of the three validation regions, as labelled. The statistical
and systematic uncertainties on the background prediction are included in the
uncertainty band. The last bin of each histogram includes the overflow, and the
lower region shows the ratio of data to the total standard model background
estimate.
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Figure 5.2: Effective mass (meff) distribution for a control region requiring opposite sign
leptons in addition to three b-jets. The statistical and systematic uncertainties
on the background prediction are included in the uncertainty band. The last bin
includes overflows. The lower part of the figure shows the ratio of data to the
total standard model background prediction.

lepton pairs, but otherwise the same selection described in section 5.3. Due to requiring

opposite-sign lepton pairs, it is also necessary to include a Z + jets sample, modelled

with Sherpa. The comparison can be seen in Figure 5.2, and demonstrates that at least

in this region agreement is mostly good, and within uncertainties. From the ratio plot

a small bias can be seen to overestimate at high meff and underestimate at low meff ,

however this was not deemed significant enough to be a cause for concern.

5.5.2 Fake lepton contributions

As has been discussed to some length in chapter 4, events requiring one or more leptons

are prone to being faked by events containing non-prompt leptons or mis-reconstructed

jets. In the older versions of the analysis [112] it was found that the primary sources of

these fakes were non-isolated leptons produced in the decays of B hadrons, as well as

conversions in the inner detector.

The methods therein, specifically those developed by the author in section 4.4, were

applied to this analysis. A crucial part of forming the estimate is the measurement of

the real and fake efficiencies; this was performed by other members of the analysis team,

but is documented herein.
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Isolation choice

In order to use the matrix method, it is required to discriminate between tight and loose

leptons; such a distinction has already been made between baseline and signal leptons, i.e.

loose-or-tight and tight. The difference between the two is largely the choice of isolation

variables, as has already been discussed in section 1.4.1.

Fake efficiency computation

As defined in section 4.2, the fake efficiency is εf = P (t|f l̃). In order to estimate this

quantity, one firstly wants to use control regions as kinematically close to the signal

regions as possible, to ensure that the efficiencies derived are applicable there. The rest

of the procedure follows from the definition; one wants to pick a control region with a set

of leptons that are almost surely fake, and then approximate the probability of a given

lepton passing the tight requirements as the fraction of those leptons that do. In practice

there will be a contamination from real leptons in this sample, and as such MC is used

to estimate this component and subtract it before taking the ratio. That is:

εf ≈
nData
T − nMC

TR

nData − nMC
R

, (5.1)

where n = nT +nL, nData
T represents the number of events measured in data in the control

region that are tight, and nMC
TR are those events from MC in the control region that are

both tight and known to be real. Fake efficiencies are measured separately for electrons

and muons, using different control regions for each. For each of these they are then

subdivided into categories distinguished by pT and |η| ranges.

Electron fake efficiency: The control region used searches for like-sign µe pairs, using

the muon as a real ‘tag’ object. To make it likely that the muon is real, it is required to

pass the tight selection and have pT > 40 GeV.2 This is, of course, an assumption, and

as such an uncertainty is associated with it, to be described forthwith. The electron is

then used as a ‘probe’ with which to measure the fake efficiency, since it is more likely

than not to be a fake; this is because processes that will produce like-sign eµ events have

very low cross section by comparison.

2The selection procedure from section 5.3 is followed up to the point of the analysis-specific “two
leptons” cut - from this point forward the selection for computing both the fake and real efficiencies
diverges from that described in that section.
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Statistical uncertainty

Region εf Total Data MC subt. Syst.

pT ∈ [15,20) GeV, |η| ≤ 1.5 0.055 0.015 0.015 0.002 0.022

pT ∈ [15,20) GeV, 1.5 < |η| ≤ 2.5 0.059 0.024 0.024 0.002 0.032

pT ∈ [20,25) GeV, |η| ≤ 1.5 0.101 0.028 0.028 0.003 0.049

pT ∈ [20,25) GeV, 1.5 < |η| ≤ 2.5 0.083 0.045 0.045 0.004 0.036

pT ∈ [25,35) GeV, |η| ≤ 1.5 0.035 0.018 0.018 0.001 0.019

pT ∈ [25,35) GeV, 1.5 < |η| ≤ 2.5 0.045 0.040 0.040 0.005 0.039

pT ∈ [35,45) GeV 0.080 0.037 0.033 0.004 0.035

pT ∈ [45,65) GeV 0.043 0.042 0.042 0.004 0.042

pT > 65 GeV 0.055 0.072 0.072 0.009 0.092

Table 5.5: Measured electron fake efficiencies (εf ) including statistical and systematic uncer-
tainties, in the presence of at least one b-jet. ‘MC subt.’ refers to the systematic
associated with the MC subtraction procedure.

Since it was noted that a particularly prevalent source of fakes are from B hadron

decays, the most likely true fake efficiency for a given electron will likely vary as a

function of heavy flavour activity in the event. Due to the fact that signal regions place

varying requirements on b-jet multiplicity it is therefore prudent to extract the efficiencies

in two scenarios – with a b-jet veto, and requiring at least one b-jet.3 In each of these

scenarios the efficiencies are binned in pT, and for pT < 35 GeV also in η; for higher pT

there are insufficient statistics to perform this split, causing the uncertainties to become

too large. The efficiencies as well as a breakdown of the uncertainties are shown in the

b-jet scenario (Table 5.5) and the scenario vetoing b-jets (Table 5.6).

Muon fake efficiency: A like-sign muon control region is used, additionally requiring

two jets of pT > 25 GeV. It has been verified that the muon fake efficiencies are

not strongly dependent on whether or not these jets are required to also be b-jets.

As for the electron case, the hardest muon is used as a tag object and is required

to have pT > 40 GeV; the precise method employed then depends on the pT of the

softer probe muon. For pT < 40 GeV the same method is employed as for electrons,

except that statistics permit only binning in pT and not η. The results in this case are

3There were found to be insufficient statistics to further separate this latter region into bins of b-jet
multiplicity. A correction factor is noted in due course.
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Statistical uncertainty

Region εf Total Data MC subt. Syst.

pT ∈ [15,20) GeV, |η| ≤ 1.5 0.035 0.006 0.006 0.001 0.006

pT ∈ [15,20) GeV, 1.5 < |η| ≤ 2.5 0.055 0.008 0.008 0.001 0.017

pT ∈ [20,25) GeV, |η| ≤ 1.5 0.052 0.010 0.010 0.002 0.022

pT ∈ [20,25) GeV, 1.5 < |η| ≤ 2.5 0.075 0.013 0.013 0.002 0.059

pT ∈ [25,35) GeV, |η| ≤ 1.5 0.032 0.009 0.009 0.002 0.020

pT ∈ [25,35) GeV, 1.5 < |η| ≤ 2.5 0.070 0.013 0.013 0.002 0.039

pT ∈ [35,45) GeV 0.100 0.014 0.014 0.002 0.061

pT ∈ [45,65) GeV 0.107 0.019 0.019 0.004 0.070

pT > 65 GeV 0.131 0.028 0.028 0.006 0.085

Table 5.6: Measured electron fake efficiencies (εf ) including statistical and systematic un-
certainties, requiring there be no b-jets in the events.‘MC subt.’ refers to the
systematic associated with the MC subtraction procedure.

Statistical uncertainty

Region εf Total Data MC subt. Syst.

pT ∈ [15,20) GeV 0.107 0.019 0.019 0.003 0.042

pT ∈ [20,25) GeV 0.087 0.032 0.031 0.006 0.064

pT ∈ [25,40) GeV 0.128 0.051 0.050 0.011 0.148

Table 5.7: Measured muon fake efficiencies (εf ) including statistical and systematic uncer-
tainties. ‘MC subt.’ refers to the systematic associated with the MC subtraction
procedure.

shown in Table 5.7. For the probe having pt > 40 GeV, the fake efficiency from the

pT ∈ [25,40] GeV bin is used, but scaled according to a factor derived from a tt MC

sample.

Correction for SR3b: As noted previously, for neither the electron nor muon efficiency

calculations were there sufficient statistics to directly extract a fake efficiency directly

applicable to a signal region containing three b-jets. In order to circumvent this limitation,

a correction factor for the final fake rate is derived following measuring the number of

real and fake events in several tt MC samples. In order to increase the statistical power,
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Generator Electrons, fe Muons, fµ

Powheg +Pythia 1.24 ± 0.40 1.07 ± 0.68

Powheg +JIMMY 1.31 ± 0.47 1.65 ± 1.17

MC@NLO +JIMMY 1.13 ± 0.66 0.62 ± 1.08

Alpgen +JIMMY 1.39 ± 0.63 0.68 ± 1.20

Table 5.8: Correction factors for events with at least one b-jet to those with at least three
b-jets for various tt MC samples for both electrons and muons. Due to limited
statistics any former divisions on pT and |η| have been removed, and as such these
would be applied to the combined efficiency in those regions. Only the statistical
uncertainties are included.

samples produced with MC@NLO, Alpgen and Powheg were combined after checking that

they had consistent behaviour; these factors are shown in Table 5.8.

The scaling factors, fe and fµ, are applied directly to the expected fake component

derived for events in the dielectron and dimuon channel. When the leptons are of different

flavour, a combined weight feµ is used, formed by taking a weighted average of fe and

fµ according to the number of events with either fake electrons or fake muons events

expected in the MC sample, denoted ne and nµ respectively:

feµ =
fene + fµnµ
ne + nµ

. (5.2)

After the samples were combined the overall correction factors were fe = 1.27 ± 0.25,

feµ = 1.24± 0.31 and fµ = 1.16± 0.51. These were applied during the fitting procedure

described in section 5.7.

Uncertainties: In addition to the natural uncertainties arising above due to statistical

limitations in both data and MC in the control regions, three systematic effects are

considered which introduce additional contributions to the overall uncertainty on the

fake efficiencies:

• Kinematic dependence of εf : Since the control regions have different kinematics

to the signal regions, there is no guarantee that the true fake efficiencies remain the

same when extrapolated. A study is made varying the kinematic requirements in

the control region, and the maximum difference observed is symmetrised and taken

as the uncertainty; it is found to be 33.7%.
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• MC subtraction: The cross sections of the diboson and tt + V MC samples used

for subtracting unwanted real components are not known exactly; conservative

uncertainties of ±30% and ±50% are used for each of these samples respectively.

• Methodological assumptions: The methods assume that the tag object is real,

which is not always the case. By looking at the number of dilepton events with

the higher pT lepton loose and the other tight, compared to the converse isolation,

this assumption is estimated to be wrong only 2% (3%) of the time for electrons

(muons), and is hence negligible compared to the other uncertainties.

Real efficiency computation

The real efficiency is defined to be εr = P (t|rl̃), therefore contrary to the fake efficiency

computation one wishes to use a sample enriched in real leptons. This is achieved by

imposing cuts to select Z → ee and Z → µµ events. As before for the fake efficiencies,

the basic event selection procedure is followed for the cleaning cuts, at which point two

opposite-sign same-flavour leptons are required passing the loose isolation cuts. The

dilepton invariant mass mll is then required to satisfy 80 < mll < 100 GeV. Since by

and large both leptons are expected to be real, each lepton is considered as a possible

tag, and the other as a probe, lowering the probability of an unintended systematic bias

arising.

Figure 5.3 shows the invariant mass distribution in these control regions, demonstrating

that most of the baseline leptons are also real. As noted with regards to the FSR photons

in the caption, this is not always the case; it is, however, a fairly small effect, and no

specific correction is applied. Instead, the real efficiency is computed in both data and

MC and the difference between the two is taken as a systematic uncertainty. Whilst

conservative, in practice the uncertainty on the final fake rate prediction is dominated by

the uncertainty on the fake efficiencies rather than the real efficiencies.

The real efficiencies are then extracted as a function of both pT and η, displayed in

Figure 5.4. Since these are extracted in Z control region with limited hadronic activity,

there is potentially an issue in applying them to the signal regions which all require several

jets. A systematic uncertainty was introduced to take this into account after studies in

the variation of real efficiency with jet multiplicity and meff in tt MC. The results of this

study were that a uniform uncertainty of 3% was applied across all measurements.
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Figure 5.3: Invariant mass distribution of two opposite-sign muons and electrons where
at least one tag lepton passes the signal requirements. The data are then split
between the scenarios where the other probe lepton passes or fails the signal
requirements. The shoulder in the looser selection for muons was identified as
being caused by fake muons originating from soft FSR photons – these were then
removed by the calorimeter isolation cut in the tight requirement.

[GeV]
T

p

20 40 60 80 100 120

re
al

ε

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

|<0.8η0.0<|
|<1.4η0.8<|
|<1.5η1.4<|
|<1.8η1.5<|
|<2.0η1.8<|
|<2.5η2.0<|

(a) Electrons

[GeV]
T

p

20 40 60 80 100 120 140

re
al

ε

0.8

0.85

0.9

0.95

1

1.05

1.1

|<0.6η0.0<|

|<1.2η0.6<|

|<1.8η1.2<|

|<2.4η1.8<|

(b) Muons

Figure 5.4: Real efficiencies measured in data for electrons and muons in bins of pT and η.
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Forming the background estimate

Having measured the efficiencies and estimated the uncertainties on them, it only remains

to define the procedure by which an estimate of the expected number of events due to

fakes in a given signal region is formed from the observed data.

The first example of section 4.4.3 demonstrates use of the generalised matrix method

in exactly the case required here; the selection can require either exactly two like sign

leptons, or three leptons with no requirement on charge. Efficiencies have been measured

across a large number of categories with uncertainties split into systematic components

that are correlated between the different categories (for example the uncertainties in the

MC sample cross sections), as well as uncorrelated statistical components; hence the

uncertainty in the final estimate is found by following the steps in section 4.4.2.

5.5.3 Charge-flipped like-sign lepton events

Another background that also arises due to detector effects is that of charge-flip; that

is, an event with like-charge leptons is observed when in fact an opposite-charge event

was produced in the hard scatter.4 This effect is significant for electrons, but negligible

for muons. Most commonly this is caused by so-called “trident electrons”, where one

electron in a dielectron event undergoes Brehmsstrahlung in the inner detector, radiating

an off-shell photon. This photon subsequently decays into an electron and positron:

depending on the relative pT of each object, it is possible that only the positron track

will be reconstructed, which will of course be determined to have the opposite charge

of the initial electron. The impact of this process is significantly reduced by the track

isolation requirements imposed on electrons, however it is not removed entirely. Charge

mis-identification, where a track is merely identified as having the opposite charge than its

true value, is also possible though a smaller effect. Figure 5.5 demonstrates the presence

of charge-flip in dielectron events by examining the Z peak – notably the structure seen

in the same-sign dielectron invariant mass is not present in the dimuon invariant mass.

In order to estimate the expected contribution of this effect to the events in the signal

region, a fully data-driven procedure is applied to reweight opposite-sign dielectron events

otherwise kinematically identical to those that would have been recorded in the signal

region. Each of these events is given a weight according to the flip probabilities for each

4Or vice versa, but in practice this effect is quite negligible due to the low cross section of like-charge
events.
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Figure 5.5: Inclusive opposite- and same-charge dilepton invariant mass spectrum for electron
and muon pairs. In both cases all events passing the baseline selection are used
where the ‘probe’ lepton has |η| > 2.1, since this selects events for which charge-
flip is more prevalent. Note the presence of charge-flip in the electron sample, but
not the muon sample.

of its constituent electrons. These probabilities are estimated using a likelihood-based

method as described in the next section.

Estimation of flip probability

Let us define the probability of an electron of category i flipping to be ζi. In this case

categories will comprise bins in pT and η. Pseudorapidity is particularly important

since trident electron formation depends strongly on the material present, which in turn

varies significantly with η. Figure 5.6 demonstrates how the electrons in opposite- and

same-sign electron pair events are distributed in pT and η. This demonstrates that higher

pT causes a slight increase in flip probability, and more significantly that there is a large

increase towards large |η| (as one might expect since the electrons are forced to traverse

more material).

If one assumes that each of these categories is independent, and also that all same-sign

events arise from charge-flip in the given control region, then one can write an expression

for
〈
nSSij
〉

= E
[
nSSij |nij, ζi, ζj

]
, the expected number of same-sign events with leptons in

categories i and j respectively, in terms of nij , the total number of ‘actual’ opposite-sign
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Figure 5.6: Inclusive lepton pT and η spectra found for opposite- and same-charge dielectron
events.

events, is

〈
nSSij
〉

= nij (ζi(1− ζj) + (1− ζi)ζj) (5.3)

≈ nij (ζi + ζj) . (5.4)

The approximation follows in the case that all ζ are small; this is shown to be the case

in the scenarios of interest to this analysis.

One further assumes that the act of an electron flipping charge is a Bernoulli trial,

such that for a given number of events in an dielectron control region, the number of

events in its same-sign subset will be governed by a Bernoulli process; i.e. it will follow

a binomial distribution. Since both the flip probabilities are small, and the number of

events in each bin large, the Poisson limit theorem can be applied [162]. As such the full

probability distribution is

P
(
nSSij |λij

)
u
λ
nSSij
ij e−λij

nSSij !
, (5.5)
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where λij =
〈
nSSij
〉

= nij (ζi + ζj). Therefore the joint probability across all event

permutations from m lepton categories is

L (ζ1, . . . , ζm| · · · ) = P
(
nSS11 , n

SS
12 , . . . , n

SS
mm|ζ1, . . . , ζm

)
=

m∏

i=1

m∏

j=1

P
(
nSSij |λij

)
(5.6)

⇒ − lnL = −
∑

i

∑

j

lnP
(
nSSij |λij

)
(5.7)

=
∑

i

∑

j

λij − nSSij λij + constants (5.8)

=
∑

i

∑

j

nij (ζi + ζj)
(
1− nSSij

)
+ constants. (5.9)

For a given set of observations of {nSS} and n, this negative log likelihood function can

be minimised (neglecting the constant terms) to give the MLE values of ζ1, . . . , ζm.

A Z boson control region is chosen as a region dominated by opposite-sign dilepton

events, selected by requiring the invariant mass of the two leptons to be in the range

75 < mll < 100 GeV. The asymmetric window is chosen because, due to the trident

process described above, charge-flip leptons have a smeared pT with respect to the

electrons that induced them. This is found to result in the Z peak in the same-sign

channel being shifted to lower invariant mass.

The measurement is performed for both tight and loose leptons separately5; in the

latter case the contamination of fake leptons in the same-sign Z peak is particularly

significant. In both cases the fake component is estimated in 25 GeV sidebands above

and below the Z peak; an MC estimate of the Z production background is subtracted

from the observed data, yielding an estimate of the fake component. The average of the

fake component in the upper and lower bands is taken to be the contribution within the

Z peak itself, since it is not expected to have significant mll dependence.

Uncertainties: In the procedures described above several assumptions and approxima-

tions are made; as usual these are accounted for in several uncertainties in the estimated

values of the flip probabilities:

• Statistical uncertainty: the data sample in the Z peak has limited statistics;

inherent uncertainty then follows in any quantity derived from event counts therein,

which are propagated in the usual way.

5It shall later be seen to be necessary to know the flip probabilities for loose electrons for the purposes
of removing overlap with the fake lepton estimate.
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Electron type Weighted OS SS Difference / %

tight 11315.33± 45.7 11473 1.4± 0.4

loose 64265.76± 181.2 67703 5.1± 0.3

Table 5.9: Results of the charge-flip probability closure test. The weighted opposite-sign
event multiplicity in the Z peak, weighted using the flip probabilities as described
in the text, is compared to the observed same-sign multiplicity. The percentage
difference between these is shown in the final column; this is taken as the systematic
uncertainty.

• Background subtraction: a very conservative estimate is given to the subtraction

of the estimated fake component, taken to be the symmetrised absolute difference in

flip probability obtained with and without the subtraction procedure. It is computed

independently in each of the pT and η bins, and found to be ≈ 90% for low pT and

η, and only a few % at higher values.

• Closure: A closure test was performed in order to demonstrate how well the

measured flip probabilities reproduced the same-sign Z peak – the percentage

normalisation difference between opposite-sign events weighted with a factor ωij

and the observed same-sign events was then used as a systematic uncertainty. The

weight ωij is defined to be

ωij =
ζi + ζj

(1− ζi)(1− ζj)
, (5.10)

and hence varies depending on the categories i and j of each lepton in the event

(determined by their pT and η). This expression is derived later and shown in

equation (5.13). The procedure was repeated for both tight and loose electrons, as

summarised in Table 5.9.

Results: The results of the flip probability measurements are shown for tight and loose

leptons in Figure 5.7, along with the corresponding systematic uncertainties in Figure 5.8;

all flip probabilities are in the range of 10−5 to 0.05 (0.07) for tight (loose) electrons.
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Figure 5.7: Measured charge flip probabilities for loose and tight electrons in bins of pT and
η. Uncertainties shown are statistical only; systematic uncertainties are shown in
Figure 5.8.
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Figure 5.8: Combined relative systematic uncertainty on the measured charge flip probabilities
for loose and tight electrons in bins of pT and η.
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Forming the background estimate

Earlier in equation (5.12) it was shown how the expected number of observed same-sign

events would be related to the total number of opposite-sign events produced, assuming

that charge-flip was the only mechanism by which same-sign events are produced. An

analogous relation can be written down for the number of observed opposite-sign events

(considering that either neither lepton must flip charge, or both must flip; this latter

scenario can be neglected on grounds that all ζ are small, however).

〈
nOSij

〉
= nij ((1− ζi)(1− ζj) + ζiζj) (5.11)

≈ nij(1− ζi)(1− ζj). (5.12)

By taking a ratio of equations (5.4) and (5.12) the dependence on nij is eliminated,

leaving the approximate dependence of
〈
nSSij
〉

on
〈
nOSij

〉
to be

〈
nSSij
〉

= ωij
〈
nOSij

〉
, ωij =

ζi + ζj
(1− ζi)(1− ζj)

. (5.13)

Since we never have access to nij, equation (5.13) is ideal since we take
〈
nOSij

〉
to be

the number of opposite-sign events we actually saw. Therefore, in order to model the

charge-flip component of an arbitrary distribution composed of same-sign events, the

same distribution is formed from opposite-sign events, but with every event weighted by

the factor ωij defined here.

Removing overlap with the fake lepton prediction

The fake estimate described in section 5.5.2 will have an overlap with the charge-flip

background described in this section. This is because the set of observed opposite-sign

events used in the derivation,
〈
nOSij

〉
, is partially formed of events with at least one fake

lepton. Therefore, when reweighted to form
〈
nSSij
〉
, this prediction also includes the effect

of this component.

In order to remove it, the matrix method procedure described in the previous section

is used. Since the basic charge flip estimation in equation (5.13) can be written as an

explicit sum of weights event by event,

〈
nSSij
〉

=
∑

α ∈ OS tight

ωij, (5.14)
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then a correction can be applied to remove the fake component. Here, α denotes any

information included within each event – thus i and j in the equation above can be

thought of as functions of α. Similarly, every event α (both loose and tight) have some

weight under the matrix method, which we shall denote T Fα . Since a prediction for the

total fake and tight component in some region is formed by summing the weights from

corresponding tight and loose events, the corrected expression for the charge flip estimate,〈
nSSij,corr

〉
is

〈
nSSij,corr

〉
=

∑

α ∈ OS tight

ωij(1− T Fα )−
∑

α ∈ OS loose

ωijT Fα (5.15)

=
∑

α ∈ OS tight

ωij −
∑

α ∈ OS

ωijT Fα . (5.16)

The last term of the second line of this expression represents the correction term to the

original estimate.

5.5.4 Validating the data-driven background estimates

It is necessary to validate that both of the data-driven estimates, together with the

MC generators validated previously, describe the backgrounds well. This is particu-

larly relevant since both of the data-driven methods involve the use of control regions

kinematically different (by necessity) to the signal regions; as such it should be verified

that similar extrapolations to validation regions (not expected to contain signal) yield

background estimates consistent with the observed data.

Inclusive validation regions demonstrating the proficiency of the fake lepton and

charge-flip background estimates are shown in figures 5.9, 5.10, and 5.11, which include

regions comprising subsets of those events selected according to the procedure described

in section 5.3. These are selected to probe a variety of distributions, and in every case

good agreement between the measured data and the prediction is observed.

5.5.5 Cross-check of the fake b-jet contribution in SR3b with

the matrix method

Our signal region SR3b, due to requiring at least three b-tagged jets, has a significant

background from events with one mistagged b-jet (or a ‘fake’ b-jet). Typically these form
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Figure 5.9: Distributions of kinematic variables in ee same-sign inclusive validation regions.
The statistical and systematic uncertainties on the background prediction are
included in the uncertainty band. The last bin includes overflows. The lower
part of the figure shows the ratio of data to the total standard model background
prediction.
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Figure 5.10: Distributions of kinematic variables in eµ same-sign inclusive validation regions.
The statistical and systematic uncertainties on the background prediction are
included in the uncertainty band. The last bin includes overflows. The lower
part of the figure shows the ratio of data to the total standard model background
prediction.
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Figure 5.11: Distributions of kinematic variables in µµ same-sign inclusive validation regions.
The statistical and systematic uncertainties on the background prediction are
included in the uncertainty band. The last bin includes overflows. The lower
part of the figure shows the ratio of data to the total standard model background
prediction.
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Figure 5.12: Two of the seven diagrams contributing to tt in association with bb production

(ttbb). This process is responsible for producing events with three real b-jets.
Figures produced by MadGraph [17].

from semileptonic tt events, where the decay products of the hadronically decaying top

fake both a lepton and a b-jet. Alternatively processes such as tt + V can yield two real

leptons in addition to one or more fake b-jets. The nominal background estimate for

this analysis focusses on estimating the fake leptonic contribution using the data-driven

matrix method, and trusting the detector simulation to model the fake b-jet component.

In order to cross-check this method, a data-driven method has been applied to estimate

the fake b-jet contribution directly.

The method described in this section will yield the background components which

include only fake b-jets, as well as fake b-jets in addition to fake leptons. However, it will

itself not predict the contribution from events with three real b-jets but one or more fake

or charge-flipped leptons. Processes that can contribute to this include ttbb, as shown in

Figure 5.12. Nominally it will produce three real b-jets and two opposite sign leptons, so

either one top will decay hadronically and create a fake lepton, or both tops will decay

leptonically with one of the resulting leptons being charge-flipped. Since neither the

data-driven fake lepton or charge-flip estimation have been designed to be used together

with the fake b-jet estimate, there would be double counting associate with using both

together. As such, and since the background from ttbb and others is expected to be very

small, this component of fake & charge flipped leptons will be taken from MC for the

purposes of this cross-check.
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The b-jet matrix method

A previous ATLAS search for supersymmetry using three b-jets documented use of

a matrix method for computing the contribution of fake b-jets in their signal regions

[163]. Their method shares some similarities with the generalised matrix method as

has been described in section 4.4. When compared to the procedure used to estimate

the fake lepton contribution in this analysis, the main difference is the multiplicity of

objects; whilst most events typically only had four or fewer leptons passing the looser

set of isolation cuts, it is not unusual to find events with ten or more loose jets. This

significantly increases the computational complexity of the problem, and means that the

most thorough method of considering all of possible the tight/loose combinations for

every object that could make for a tight event is infeasible. Instead, one simply computes

the total weight for every event – this is sufficient in this case since none of the computed

variables used in defining our signal regions are sensitive to the b-jet multiplicity (given

of course that it is ≥ 3, which is the case that the estimate is catering for), nor indeed

upon which of the jets in an event are tagged as b-jets.

Computing efficiencies

As in the fake leptonic matrix method, the key measurement that needs to be performed

is that of the efficiency for real and fake b-jets to pass a tighter set of cuts. In this case,

‘tight’ and ‘loose’ objects correspond to those whose values of the MV1 tagger output

correspond to a b-tagged jet or not, respectively. These quantities will depend on the

origin of the fake b-jet – that is, c-jets, τ -jets, light jets have different probabilities for

passing a given MV1 operating point. Therefore, in order to compute the fake efficiency

control regions are used that aim to emulate the relative contribution of these processes

in the signal region as best as possible. The real efficiencies are taken from a central

calibration effort, described in further detail below.

Moreover, it has already been described how both tt and tt + V processes can be

responsible for contributions with one or more fake b-jets, possibly in association with a

fake or charge-flipped lepton. Depending on the origin of the leptons, the origin of the

fake b-jets will also be altered; for example a semi-leptonic decay mode of tt is most likely

when considering events with a fake lepton, or indeed with two real leptons in tt + V .

Conversely, the fully leptonic tt decay mode would be responsible for events passing the

selection with one of the leptons having been charge-flipped. Therefore it is prudent to
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Index of b-jet Opposite-sign Same-sign 1 lepton

0 22% 23.3% 29%

1 28.6% 39.1% 31.8%

2 48.6% 37.4% 38.7%

Table 5.10: The probability that a b-tagged jet of given index, sorted in order of decreasing
object pT, is a fake. Studies are performed in Powheg tt and MadGraph tt+V MC
for opposite-sign and same-sign dilepton, as well as single lepton control regions.

compute the fake b-jet efficiencies in both single and di-leptonic signal regions, although

the single lepton control region is thought to be most appropriate for the same-sign signal

region.

Methodology for fake efficiencies: Given a tt control region that requires at least

two b-tagged jets, it is most likely that two of the total number of tags observed are real,

and that the presence of additional b-jets indicates that one or more of them are mistags.

A ‘tag and probe’ method is then used to compute the desired efficiencies as functions of

pT and η as described below.

Firstly consider the case where there are more than two b-jets in an event. If one is

performing this procedure on an MC sample, then one has the luxury of perusing the

truth record to determine which of the b-jets that have been observed are in fact fake.

However, we wish to perform this procedure on data where this is not an option, forcing

one to pick one of the b-jets as a probe. Although it is impossible to pick correctly with

certainty, a study using the MC samples showed that softer b-jets were more likely to be

fake. The results are summarised in Table 5.10.

When computing efficiencies in data the probe b-jet is selected at random with

probability as shown in this table. For each kinematic bin in which efficiencies are

measured, the number of these probe objects are counted and denoted nt, raw. This

number is then corrected for events with three real b-jets; a Powheg inclusive tt MC

sample is processed, truth matching to find those events with ≥ 3 real b-jets in order to

find an estimate of nt, real, and is subtracted from the raw estimate. The number used in

the final calculation is nt = nt, raw − nt, real.

For any event, it is assumed that all real b-jets are tagged properly – that is, any jet

that is not tagged is assumed to be fake and loose, in matrix method terminology. These
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Figure 5.13: Fake efficiencies computed using both MC and data for an opposite-sign dilepton
control region. The last pT bin extends to infinity.

jets are counted, and for a given pT and η bin there are nl of them. The estimate of the

efficiency for this bin is then εf = nt/nl. In total there are two bins in pseudorapidity,

0 ≤ |η| < 1.2 and 1.2 ≤ |η| < 2.5, each of which is divided into six pT regions.

Since the fake efficiency is a primarily data driven source, with the real three b-jet

subtraction constituting only a minor correction, the only relevant source of uncertainty

is of a statistical nature. These uncertainties are computed, and propagated through the

matrix method procedure.

Fake efficiency measurements: Two control regions are used to estimate the fake

efficiencies, building upon the basic event selection described in section 5.3 with a

requirement for Njets ≥ 3 and Nb-jets ≥ 2. The first additionally requires an opposite-

sign lepton pair (with leading lepton having pT > 20 GeV, and the sub-leading with

pT > 15 GeV), the results for which are shown in Figure 5.13. The latter requires only a

single lepton with pT > 20 GeV, and additionally that there be at least four jets, and that

the missing transverse energy satisfies 100 < pmiss
T < 200 GeV. The efficiencies computed

from this control regions are shown in Figure 5.14.

Each of these figures demonstrates efficiencies computed both with the algorithm

described above, using data, and also an alternative computation directly with MC

samples. Whilst agreement is reasonable, it is not necessarily expected to be perfect – if

it were the background estimation process would not be needed! Uncertainties are quite

large in the dilepton control region due to low statistics, however fortunately the single



124 An analysis of ATLAS data for like-sign lepton events

 [GeV]
T

b-jet p

0 50 100 150 200 250 300 350 400

F
ak

e 
ra

te

0

0.02

0.04

0.06

0.08

0.1

0.12

| < 1.2η0 < |

| < 2.5η1.2 < |

(a) MC

 [GeV]
T

b-jet p

0 50 100 150 200 250 300 350 400

F
ak

e 
ra

te

0

0.02

0.04

0.06

0.08

0.1

0.12

| < 1.2η0 < |

| < 2.5η1.2 < |

(b) Data

Figure 5.14: Fake efficiencies computed using both MC and data for a single lepton control
region. The last pT bin extends to infinity.

lepton region was already deemed most appropriate for a same-sign signal region, as here

the statistics are significantly higher.

Real efficiencies: The probabilities for real b-jets to pass the MV1 operating point,

as functions of pT and η, can be taken from a centrally performed measurement, since

there is not the same influence of the c-jet, τ -jet and light jet composition that effects an

accurate computation of the fake efficiency. The ATLAS internal documentation [164]

contains these efficiencies as measured in a tt control region; further documentation on

the method can be found in [165].

Validation of the method

Closure tests: In order to verify that the method is unbiased, closure tests are performed

in both the opposite-sign dilepton and single lepton scenarios. The basic procedure of

this test is to measure efficiencies in a particular MC sample, and then apply the method

to the whole sample blindly, pretending it is data. This ought to fairly represent the

component of the ‘pretend data’ that has at least one fake b-jet. Truth matching is

then used to extract the component with three real b-jets. When these backgrounds are

summed they ought to match very well with the pretend data – any significant deviations

could indicate a bias in the fake estimation procedure.

The opposite-sign dilepton closure tests uses the MC results from Figure 5.13, and

the comparison in several distributions after following the procedure described above is



An analysis of ATLAS data for like-sign lepton events 125

shown in Figure 5.15. Similarly for the single lepton case, efficiencies from Figure 5.14 are

propagated through to the comparisons included in Figure 5.16. Overall the agreement

is excellent, save for an apparent bias in the high jet multiplicity tail in the single lepton

scenario. This is a moderately small effect, and since it acts in the direction of giving

a background estimate that is slightly conservative, it is deemed that the method is

sufficiently unbiased for the intended purpose.

Validation in data: Constructing a sensible validation region in data is difficult due

to the already very limited statistics in the volume of phase space which requires three

b-jets. The only change that is plausible is to invert the jet multiplicity requirement with

respect to SR3b itself – thus we define

SR3b : Nleps ≥ 2, Njets ≥ 5, Nb-jets ≥ 3

VR3b : Nleps ≥ 2, Njets < 5, Nb-jets ≥ 3.

The b-jet matrix method is then used to make a prediction in VR3b using the efficiencies

computed from the single lepton region in both MC and data. A comparison, including

this computation as well as the real three b-jet component from truth-matched MC is

shown in Figure 5.17. It is very encouraging that either set of efficiencies produces an

estimate that agrees with data within the uncertainties.

Results

The matrix method has then been applied to the SR3b signal region, using the single

lepton efficiencies measured both in MC and in data, with the results presented in

Table 5.11. The three rows correspond to the two bins of the signal region in the

exclusion mode fit, and the ‘discovery’ mode signal region. The first two data columns

exemplify the different results one obtains when using the MC vs the data derived

efficiencies. Whilst there is a noticeable difference it is within the estimated uncertainties.

Each of these is then combined with the real contribution in the third column, to give a

number which can be compared to the nominal background estimate in the final column.

These can finally be compared with the observed results of 0 events in the low meff bin

of SR3b, one event in the high meff bin, and one event in SR3bdisc.

Comments on results: Firstly, it is interesting to note that the uncertainties on

the b-jet matrix method background shown in Table 5.11 are clearly dominated by the
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Figure 5.15: Closure test performed in opposite-sign control region using Powheg tt and
MadGraph tt + V MC samples. The points labelled ‘Data’ are all events in the
MC and the other MC components are truth matched to pertain to the ‘real 3b’
component. The matrix method component is computed using the efficiencies
computed from MC in this region.
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Figure 5.16: Closure test performed in single lepton control region requiring 100 < pmiss
T <

200 GeV and at least 4 jets pT > 20 GeV, using Powheg tt and MadGraph tt+V
MC samples. The points labelled ‘Data’ are all events in the MC and the other
labelled MC samples are truth matched to pertain to the ‘real 3b’ component.
The matrix method component is computed using the efficiencies computed from
MC in this region.
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Figure 5.17: Agreement found in VR3b when using efficiencies computed in a single lepton
region from both MC (left) and data (right). The MC samples included are
truth matched so as to pertain to the ‘real 3b’ component.

Bin/region MM (data eff.) MM (MC eff.) Real 3b (MC) Nominal

Bin 1 1.51± 0.72 1.90± 0.89 0.29± 0.19 1.55± 0.63

Bin 2 1.37± 0.60 1.90± 0.83 < 0.01 0.45± 0.12

SR3bdisc 2.88± 0.94 3.80± 1.21 0.29± 0.19 1.99± 0.69

Table 5.11: Predictions in the bins of SR3b and SR3bdisc (as defined in Table 5.3), with
fake efficiencies computed from data and MC in the single lepton control region.
The first two columns are the data-driven matrix method described above, and
the third is the component with three real b-jets estimated from truth-matched
MC (tt and tt + V ; the tt + V component is negligible, however.). The ‘nominal’
values listed refer to estimates made using the normal fake lepton based matrix
method, and MC samples, as presented in the results section.
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statistical component in the application procedure, rather than by those in the efficiencies.

This can be seen since the MC-based efficiencies have a significantly lower uncertainty

than their data-driven counterparts, yet in the final estimate the overall uncertainties are

of similar magnitude. As such, the method cannot be made more predictive only through

an improved efficiency measurement; without fundamentally altering the method the

uncertainty cannot be reduced. The combined uncertainty is larger than that for the

nominal background estimate (from the fake lepton matrix method), driving the decision

that this method be used as a cross-check for this signal region.

Whilst agreement between the purely data-driven fake b-jet background and the fake

lepton estimate is good in the low meff region, in the other regions it is significantly

larger. It is therefore also systematically overestimating the data in all regions. Whilst it

is possible that this stems from the same issue observed in the single lepton closure test,

it is hard to form any conclusion given the limited statistics. One therefore tentatively

concludes that both fake lepton and fake b-jet matrix methods support the hypothesis

that the observations in SR3b are consistent with background.

5.6 Systematic uncertainties

The measurement and reconstruction procedures are all prone to systematic error, and as

such these sources of systematic uncertainty must be included when forming our result.

One benefit of relying on data-driven backgrounds as much as possible is that these

estimates are already subject to the same systematic error as the data to which we are

comparing, and as such the effect of the uncertainty need only be considered for those

backgrounds estimated with MC samples and passed through the detector simulation.

These uncertainties are broken down as recommended by the ATLAS SUSY working

group as follows.

• Jet Energy Scale: The energies of jets used in the analysis have been corrected

to take into account the inefficiencies of the calorimeter cells, and their differing

response to charged and neutral particles passing through them. A recommended

calibration was derived in ATLAS using a combination of simulation, as well as

test beam and in situ data [30,166]. This procedure carries an inherent uncertainty

correlated between all events – as such all distributions used in the final result are

produced not only with the nominal calibration but with ‘Up’ and ‘Down’ variations,

where the energy scale factors are varied accordingly within its uncertainty band.
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Whilst the full calibration is available broken down into several independent sources

that can be varied separately, our analysis uses the simplified (combined) version to

reduce the number of nuisance variables in the fitting procedure.

• Jet Energy Resolution: In addition to the systematic calibration that must

be applied to jet energies, the measured energy of a given jet will be smeared

stochastically – the jet energy resolution (JER). The width of this distribution

is not always correctly modelled by the detector simulation; as such a systematic

uncertainty is created to estimate the effect on the final result of this defect. The

JER in data has previously been estimated by ATLAS in dijet events [167].

• B-tagging: The simulation does not quite correctly model the b-tagging efficiency

of the detector. Correction factors derived from tt and dijet measurements were

applied to MC samples [168–170]. These correction factors are then varied within

their uncertainties to produce ‘Up’ and ‘Down’ variations as for JES.

• Lepton energy scale, resolution and ID efficiencies: Similarly to the three

sources of systematic uncertainty discussed regarding jets, electrons and muons

have corresponding energy scale and resolution systematic uncertainties, as well

as corrections to account for differing identification efficiency in the detector and

simulation [15,23].

• Missing transverse momentum: The primary source of uncertainty in the pmiss
T

calculation is due to the calibration of ‘soft terms’, i.e. those calorimeter deposits

that are not associated to a reconstructed object [171]. Both scale and resolution

effects are considered, as for JES and JER however they are treated as uncorrelated

to the jet uncertainties.

• Simulation of pile-up: The pile-up reweighting procedure described in sec-

tion 5.2.4 depends on the value of 〈µ〉. In order to reflect the uncertainty in

this procedure this value is varied up and down by 10%, and treated as a systematic.

• Luminosity: As previously mentioned, the measured luminosity has an uncertainty

of 2.8% [132]. The overall normalisation of MC backgrounds are scaled up and down

by this amount to yield the systematic variations in the final distributions.

• Trigger efficiency: The trigger efficiency in MC samples was observed to be

different to that in data, and as such factors were derived to correct for this. The

uncertainty on these was propagated as a systematic uncertainty, as well as an

additional 2% to account for inefficiencies observed in the plateau of the pmiss
T trigger.



An analysis of ATLAS data for like-sign lepton events 131

Background Systematic
Signal regions

SR0b,SR1b SR3b SR3L low,high

tt + V
Cross section 22% 22% 22%
Shape uncertainty 12% 12% 12%

WZ + jets
Cross section 7% 7% 7%
Shape uncertainty 17% 29% 23%
Parton multiplicity 30% 163% 56%

ZZ + jets
Cross section 5% 5% 5%
Shape uncertainty 47% 23% 7%
MC generator uncertainty 37% 78% 82%

Table 5.12: Summary of theoretical systematic uncertainties on tt + V and diboson samples
arising from cross section, shape uncertainty from factorisation and normalisation
scales, and the effects of ISR and FSR.

• Theoretical: The tt + V and diboson MC samples have associated normalisation

and shape uncertainties, derived by considering the effect of varying the factorisation

and renormalisation scales in the generators, as well as the overall normalisation

variation introduced by the uncertainty on the theoretical cross sections for the

processes. The cross sections have uncertainties of 22% for tt +W [145] and tt + Z

[146], and 7% for diboson production [147]. Additionally the impact of initial

state radiation (ISR) and FSR jets is considered for the WZ + jets process by

producing additional samples with MadGraph that include extra jets in the matrix

element, and symmetrising differences that arise. These systematics were estimated

at truth level to save the computational overhead of a full detector simulation.

Finally, a generator uncertainty is assigned to the ZZ+jets sample by symmetrising

the largest difference in distributions produced by the nominal Powheg sample to

those same distributions generated with MC@NLO +Pythia6, MC@NLO +Pythia8, and

Powheg +Pythia8.

A summary of these theoretical uncertainties in each signal region can be found in

Table 5.12. Additionally, processes with small contributions, tt +H and tttt, are

given a conservative 100% uncertainty, justified since this has no measurable impact

on the results.
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The lepton, pmiss
T , and pile-up performance related systematic uncertainties, as well as

that on the luminosity, are found to be small compared to the others, and have negligible

impact on the final results. All of the above are fed into the fitting and limit setting

procedure, which is described in section 5.7. In doing so it is assumed that each of these

sources of uncertainty are uncorrelated, and can hence be treated independently.

5.7 Fitting and limit setting procedure

Recall that limit setting using the CLs method was previously discussed in a fairly

abstract context in section 4.5.1; now this shall be applied to the problem in hand.

In equation (4.18) (reproduced below) the observed data, X, represents a vector of

measured values dependent on a set of parameters θ, as well as the signal strength µ.

L(µ,θ|X) = P (X|µ,θ). (5.17)

In this analysis we aim to achieve two distinct goals:

• Model independent discovery/upper limits: Inspect each signal region indi-

vidually for generic excesses, or if there are no excesses provide a 95% upper limit

on the cross section× efficiency of any new physics process.

• Model dependent exclusions: With a specific model in mind, try to form the

most constraining CLs value possible through not only using all signal regions

simultaneously, bit dividing each signal region into two or more bins in meff .

In each case we shall consider the form the likelihood function takes, at which point

the limit setting procedure previously described can be applied. The analysis uses the

HistFitter [172] package, which is based on RooStats [173] and HistFactory

[174]. The HistFitter reference [172] provides further details on how the systematic

uncertainties are incorporated into the fit.

5.7.1 Model independent discovery & upper limits

The is the simplest case, since here X has a one-dimensional component with value

X, representing the count of events in the signal region. In addition to X, one should

also include auxiliary measurements that constrain the nuisance parameters – these
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observations are packaged into a variable denoted θ̃. Given statistical independence of

each background estimate i, one writes

P (X, θ̃|µ,θ) = g (X|νs(µ,θ))×
∏

i

g (X|νi(θ))×
∏

α

πα

(
θ̃α|θα

)
, (5.18)

where νi represents the mean of a Poisson distribution representing the contribution of

background process i in the signal region, and νs is the same thing for signal. Both depend

on θ which will contain parameters controlling all independent sources of uncertainty;

these underlying parameters are what will ultimately be profiled over in the CLs proce-

dure. Each term g(X|ν) = e−ννX/X! is the Poisson probability density function. The

subsequent terms π(θ̃|θ) represent the likelihood of θ given the auxiliary measurement

θ̃ that has been made. The precise form of this likelihood will depend on the nuisance

parameter in question.For example, the luminosity uncertainty would be expressed by a

Gaussian constraint, centred on the known value and with the experimentally determined

uncertainty as its width. Its effect would be to scale all of the νi rates in the same way,

since it is correlated across all samples. Alternatively, the theoretical uncertainty in a

given cross section calculation would only result in scaling the one sample to which it

corresponds.

Since the upper-limit mode has a comparatively simple likelihood function, it is

feasible to do the integral in equation (4.23) by performing pseudo-experiments – that is

generating datasets drawn from a distribution that is consistent with those observed. In

this process 5000 such pseudo datasets are used.

5.7.2 Model-dependent exclusions

As defined in Table 5.3, signal regions are divided into multiple regions in meff for the

purpose of making a stronger exclusion of simulated signal models. Intuitively this can

be done because the shape of the distributions of signal and background sources can

be different within a given signal region. Each of these bins from every signal region is

considered at once in the likelihood, so equation (5.18) needs to be modified to include a

product over these regions. The observed data in each region are now, again, packaged

into a vector X. The overall expression for the likelihood is then

P (X, θ̃|µ,θ) =
∏

q

g (Xq|νs,q(µ,θ))×
∏

i

g (Xq|νi,q(θ))×
∏

α

πα

(
θ̃α|θα

)
. (5.19)



134 An analysis of ATLAS data for like-sign lepton events

Here the vector of nuisance parameters θ has now been expanded in equation (5.19)

with respect to equation (5.18), since it must not only encode the information about all

background processes in all regions, but also the predicted signal process contributions

in each region. Note in fact that, by convention, one leaves µ as a free ‘signal strength’

parameter, without additional constraints, with respect to which the limit setting is

performed. It is exactly equivalent to instead use this to directly represent the cross

section of the signal process, if one includes the corresponding constraint term from

theory on µ.

For the model dependent case, more regions are being fit simultaneously resulting

in a more complex likelihood function than before. The procedure also needs to be

repeated many times for each parameter point of each model. Thus, when evaluating

equation (4.23), the asymptotic approximations are used rather than the more accurate,

but slower, pseudo-dataset method.

5.8 Results

With the analysis performed as described in the preceding sections, the results can now

be presented. Most fundamental are the combined background predictions in the signal

regions, compared with the observed data. As shall be seen, no excesses are observed

with respect to the SM background prediction. In light of this, upper limits on generic

processes are computed and presented for each discovery mode signal region.

5.8.1 Yields in signal regions

Running in ‘discovery mode’, the predicted background contributions are compared to

the observed yields in Table 5.13. This shows that whilst most of the signal region results

are consistent with the SM prediction, there are some small tensions in SR0b and SR1b.

This has been quantified in the table through computation of the p value for the excess.

One can transform these p values to find that the significances of these excesses are 1.8

and 1.5 standard deviations respectively, and the combined region SR0b+SR1b has an

excess with a significance of 2.1 standard deviations.

The uncertainties in Table 5.13 also demonstrate that the statistical uncertainties on

the MC driven background estimates are a major factor, along with the uncertainties on
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SR3b SR0b SR1b SR3Llow SR3Lhigh

Observed events 1 14 10 6 2

Expected background events 2.2± 0.8 6.5± 2.3 4.7± 2.1 4.3± 2.1 2.5± 0.9

p(s = 0) 0.50 0.03 0.07 0.29 0.50

Background components

ttV , ttH, tZ and tt̄tt̄ 1.3± 0.5 0.9± 0.4 2.5± 1.7 1.6± 1.0 1.3± 0.7

Dibosons and tribosons < 0.1 4.2± 1.7 0.9± 0.4 1.2± 0.6 1.2± 0.6

Fake leptons 0.7± 0.6 1.2+1.5
−1.2 0.8+1.2

−0.8 1.6± 1.6 < 0.1

Charge-flip electrons 0.2± 0.1 0.2± 0.1 0.5± 0.1 – –

Systematic uncertainties

Fake-lepton background ±0.6 +1.5
−1.2

+1.2
−0.8 ±1.6 < 0.1

Theory: dibosons < 0.1 ±1.5 ±0.3 ±0.4 ±0.4

Jet and pmiss
T scale, resolution ±0.1 ±0.7 ±0.4 ±0.4 ±0.3

Monte Carlo statistics ±0.1 ±0.5 ±0.2 ±0.4 ±0.4

b-jet tagging ±0.2 ±0.5 ±0.1 < 0.1 ±0.1

Theory: ttV , ttH, tZ and tt̄tt̄ ±0.4 ±0.3 ±1.7 ±1.0 ±0.6

Trigger, luminosity, pile-up < 0.1 ±0.1 ±0.1 ±0.1 ±0.1

Charge-flip background ±0.1 ±0.1 ±0.1 – –

Lepton identification < 0.1 ±0.1 < 0.1 ±0.1 ±0.1

Table 5.13: Tabulation of the number of observed data events together with the expected
backgrounds predictions and a summary of the corresponding systematic un-
certainties for the discovery signal regions SR3b, SR0b, SR1b, SR3Llow and
SR3Lhigh (with the additional meff cut of Table 5.2). The p-value of the observed
dataset for the background-only hypothesis is denoted by p(s = 0). By conven-
tion, the p(s = 0) value is truncated at 0.50 when the number of observed data
events is smaller than the expected background prediction. The breakdown of
the systematic uncertainties on the expected backgrounds is also shown; however
it should be noted that correlations exist between them that will cause them not
to add in quadrature to the total quoted uncertainty.

the fake background estimate and the theoretical uncertainty on the cross section of the

diboson processes. This suggests that these are the two areas in which improvements

would most aid the constraining power of the analysis.
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Additionally the distributions of observed events and predictions in meff for the

exclusion mode signal regions are shown in Figure 5.18. Although impossible to draw

any firm conclusions given the limited available data, there is a suggestion that the

excess in SR0b mentioned previously is consistent with an overall scaling error in the

background prediction. More suggestively, a benchmark simplified model is chosen for

each signal region and its meff distribution is overlaid. The benchmark points are chosen

to be demonstrative of the signature for which the given signal region is most sensitive,

and to be at the point of being not-quite excluded.

5.8.2 Model-independent limits

Given the raw results presented in the previous section, the fitting procedure described

in section 5.7.1 can be used to set model-independent upper limits on the visible cross

section in each signal region, or equivalently a limit on the number of events that could

have been produced with 20.3 fb−1 at the LHC. The visible cross section is defined to be

the product of acceptance, reconstruction efficiency, and production cross section. The

results can be seen in Table 5.14.



An analysis of ATLAS data for like-sign lepton events 137

 [GeV]
eff

m
200 400 600 800 1000 1200 1400

E
v
e
n
ts

 /
 6

5
5
 G

e
V

1

2

3

4

5

6

7 ATLAS

 = 8 TeVs, 
1

L dt = 20.3 fb∫

SR3b Region

Data

SM Total

Fake leptons

Charge flip

Top + X

Diboson + Triboson

 productiong
~
g

~

 bs (RPV)→
1

t
~

t, 
1

t
~
 →g

~

) = (945, 417) GeV
1

t
~

, g
~
(

 [GeV]
eff

m
400 600 800 1000 1200 1400

E
v
e
n
ts

 /
 3

0
0
 G

e
V

2

4

6

8

10

12

14

16

18

20

22

ATLAS

 = 8 TeVs, 
1

L dt = 20.3 fb∫

SR0b Region

Data

SM Total

Fake leptons

Charge flip

Top + X

Diboson + Triboson

1

0
χ∼

1

0
χ∼ qqq’q’WW → g

~
 g

~

)
1

0
χ∼) = 2 m(

1

±χ∼m(

) = (705, 225) GeV
1

0χ, g
~
(

 [GeV]
eff

m
400 600 800 1000 1200 1400

E
v
e
n
ts

 /
 4

0
0
 G

e
V

5

10

15

20

25

30 ATLAS

 = 8 TeVs, 
1

L dt = 20.3 fb∫

SR1b Region

Data

SM Total

Fake leptons

Charge flip

Top + X

Diboson + Triboson

1

0
χ∼ tc+→g

~
 production, g

~
g

~

)  20 GeV
1

t
~

) = m(
1

0
χ∼m(

) = (700, 400) GeV
1

t
~

, g
~
(

 [GeV]
eff

m
300 400 500 600 700 800 900 1000 1100 1200

E
v
e
n
ts

 /
 4

7
2
 G

e
V

2

4

6

8

10

12

14

16

18

ATLAS

 = 8 TeVs, 
1

L dt = 20.3 fb∫

SR3Llow Region

Data

SM Total

Fake leptons

Charge flip

Top + X

Diboson + Triboson

 decays via sleptonsg
~
g

~

 + neutrinos
1

0
χ∼ 

1

0
χ∼ qqq’q’ll(ll)→ g

~
 g

~

) = (905, 505) GeV
1

0χ, g
~
(

 [GeV]
eff

m
400 600 800 1000 1200 1400 1600 1800

E
v
e
n
ts

 /
 7

2
2
 G

e
V

1

2

3

4

5

6 ATLAS

 = 8 TeVs, 
1

L dt = 20.3 fb∫

SR3Lhigh Region

Data

SM Total

Fake leptons

Charge flip

Top + X

Diboson + Triboson

 production
1

b
~


1
b
~

) = 60 GeV
1

0
χ∼, m(

1

±χ∼ t→
1

b
~

) = (450, 200) GeV
1

±χ, 
1

b
~
(

Figure 5.18: Yields in the five signal regions defined in the analysis, shown after the fitting
procedure has been performed. The hatched regions denote the statistical and
systematic uncertainties on the overall background prediction. The dashed lines
are the overlaid distribution in meff of selected simplified model points – the
descriptions refer to the final states and parameter values of models described
in section 5.9.1.



138 An analysis of ATLAS data for like-sign lepton events

Signal region 〈σvis〉95
obs/fb S95

obs S95
exp

SR3b 0.19 3.9 4.4+1.7
−0.6

SR0b 0.80 16.3 8.9+3.6
−2.0

SR1b 0.65 13.3 8.0+3.3
−2.0

SR3Llow 0.42 8.6 7.2+2.9
−1.3

SR3Lhigh 0.23 4.6 5.0+1.6
−1.1

Table 5.14: The 95% CLs upper limits on the visible cross section (〈σvis〉95
obs), and the observed

and expected 95% CLs upper limits on the number of BSM events (S95
obs and

S95
exp).

5.9 Interpretation of results

In section 5.7.2, the procedure for setting CLs limits on given models was described.

In this section several simplified models, as well as more phenomenologically complete

scenarios, are tested with the results from this analysis. In each case the model typically

has a set of free parameters, allowing a two dimensional exclusion to be drawn. These

plots typically all have the same form:

• A dashed line representing the expected exclusion under the ‘no signal hypothesis’.

That is, it uses the nominal value of the background estimate in place of the observed

data. The limit curve is interpolated from a grid of points, for each of which a CLs

value will have been calculated.

• A yellow band around the expected exclusion. This represents the estimate of the

±1σ uncertainty in the expected exclusion due to the underlying systematic and

statistical uncertainties in the background predictions; this is computed by the

HistFitter package. Note that while this does include systematic uncertainties

on the signal samples, for example the effect of JES and JER, it does not include

the theoretical uncertainty on model cross sections.

• A solid red line representing the observed exclusion. It is interpolated as before,

but this time uses the observed data.

• Dotted red lines either side of the solid line represent the±1σ effect of the uncertainty

in the signal cross section.
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g̃ t t̃1

t χ̃0
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Figure 5.19: Overview of the decay modes present in the simplified SUSY models that are
considered by this analysis.

• Coloured dotted lines in some plots represent the expected limit curve from individual

signal regions, rather than their combination.

• Grey numbers in some of the simplified model plots represent the excluded cross

section for the process.

• Coloured solid lines in a few plots are used to make a comparison with the observed

exclusions of other published analyses.

5.9.1 Simplified models

A summary of the simplified models studied in this analysis are shown in Figure 5.19.

These naturally fall into three categories which are described below, together with their

results. A description of the basic concepts behind simplified models can be found in

section 2.2.3.
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Figure 5.20: Examples of simplified models featuring gluino-mediated stop production. On
the left the case of an off-shell stop decaying to tχ̃0

1 is shown, and on the right
the RPV model with a non-zero UDD coupling, producing tbs in the final state
from each gluino decay. Diagrams taken from [61].

Gluino-mediated top quarks

The first tranche of models in Figure 5.19 represent gluino pair production followed by a

decay g̃ → tt̃
(∗)
1 with a branching fraction of 100%. The t̃1 is taken to be the lightest

squark, as favoured by naturalness arguments; all other squarks are decoupled in these

scenarios. The four models detailed below differ in the decay mode of the stop, two

examples of which are shown in Figure 5.20. In the subsequent discussion, we shall refer

to t̃1 simply as t̃.

Gluino-stop (tχ̃0
1 ) off-shell. In this model the top squark is produced off-shell and

decays to tχ̃0
1 with branching fraction 100%, as featured in the left-hand side of Figure 5.20.

That is, the decay chain for each gluino is g̃ → tt̃∗ → ttχ̃0
1 , with tops decaying either

leptonically or hadronically. The neutralino is the LSP in this scenario. Since the gluinos

are required to be on-shell in this model, there exists an additional constraint that

mg̃ > 2mt + mχ̃0
1
. The stop mass is set to mt̃ = 2.5 TeV, and all other squarks are

decoupled with much higher masses. Limits are then set in the (mg̃ ,mχ̃0)-plane, as shown

in Figure 5.21. As might be expected due to the high multiplicity of b quarks in the final

state, the sensitivity is dominated by SR3b.

Gluino-stop (bχ̃±1 ) on-shell. In this model the top squark is produced on-shell

and subsequently decays to bχ̃±1 , where it is specified that m
χ̃±1

= 118 GeV. Since we

additionally constrain mχ̃0
1

= 60 GeV, making it the LSP, the chargino will decay via

an off-shell W , χ̃±1 → W ∗χ̃0
1 . Again, the gluino is required to be on shell, resulting in
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Figure 5.21: Exclusions for a gluino-mediated stop production model, with the off-shell
stop decaying to tχ̃0

1 . The left hand plot includes a breakdown of sensitivity
by individual signal region, whereas on the right is displayed the upper limit
on the production cross section for each simulated point. The right hand plot
also shows a comparison with limits from multijet [175] and three b-jet [176]
analyses.

the mass requirement mg̃ > mt +mt̃ . Limits are set in the (mg̃ ,mt̃)-plane, as shown in

Figure 5.22. As in the t̃ → tχ̃0
1 case, sensitivity is dominated by SR3b.

Gluino-stop (cχ̃0
1 ) on-shell. In this model there is a small mass splitting between

the top squark and neutralino (which is the LSP again), ∆(mt̃ ,mχ̃0
1
) = 20 GeV. This

prevents the stop decaying to a top quark, however the channel to cχ̃0
1 is still allowed.

This is the sole decay mode considered in this scenario. In order to keep the gluino on

shell, it is required that mg̃ > mt +mc +mχ̃0
1
. Limits are set in the (mg̃ ,mt̃)-plane, as

shown in Figure 5.23. Due to fewer top quarks in the final state compared to the other

models in this section, SR1b has the dominant sensitivity for this model.

Gluino-stop (bs) RPV. This model is also shown in Figure 5.20, and features gluino-

mediated production of on-shell stops, which are then decayed by an RPV UDD coupling

(see section 2.2.2), whose coupling strengths are denoted by the matrix λ′′. This case

considers only λ′′323 = λ′′332 = 1 (equality follows from symmetries of λ′′) to be non-zero,

as proposed in [177]. This value is large enough, by several orders of magnitude, to

make the stop lifetime small enough to prevent the appearance of displaced vertices in
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Figure 5.22: Exclusions for a gluino-mediated stop production model, with the stop decaying
to bχ̃±1 . The left hand plot includes a breakdown of sensitivity by individual signal
region, whereas on the right is displayed the upper limit on the production cross
section for each simulated point. The right hand plot also shows a comparison
with limits from a three b-jet [176] analysis.
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Figure 5.23: Exclusions for a gluino-mediated stop production model, with the stop decaying
to cχ̃0

1 . The left hand plot includes a breakdown of sensitivity by individual
signal region, whereas on the right is displayed the upper limit on the production
cross section for each simulated point.
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Figure 5.24: Exclusions for an RPV model with non-zero λ′′323. The left hand plot includes
a breakdown of sensitivity by individual signal region, whereas on the right is
displayed the upper limit on the production cross section for each simulated
point. The right hand plot also shows a comparison with limits from a multijet
[175] analysis.

the detector. Results are interpreted in the (mg̃ ,mt̃)-plane, as shown in Figure 5.24.

The final state hence has four b-quarks, but limited pmiss
T , and hence sensitivity is again

dominated by SR3b.

Summary. SUSY scenarios involving the top squark are favoured by naturalness, and

with this analysis significant bounds have been placed across several key signatures. Due

to the large multiplicity of b-quarks that appear in the final states, SR3b is particularly

effective, however sensitivity is also gained in RPC scenarios with SR1b, and the three

lepton region SR3Lhigh. Gluino masses below 850 GeV are excluded independently of

top squark mass in the RPV case, and up to 950 GeV is excluded in the RPC scenarios

considered where b-jets are produced; in the trickier t̃ → cχ̃0
1 scenario it is still possible

to rule out gluinos below 840 GeV.
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Figure 5.25: Examples of simplified models featuring 1- and two-step decays of light (first and
second generation) squarks. The squarks are produced either directly, as shown
in the first row, or via gluinos, as shown in the second row. Gluino-mediated
production yields extra jets in the final state. From left to right is shown the
one-step decay, two-step decay via charginos, and two-step decay via sleptons.
Diagrams are taken from [61].

First and second generation squark production

Six simplified models, shown in Figure 5.25, are considered here, each featuring either

direct or gluino-mediated production of a pair of first or second generation squarks.6

Exclusions are then presented for five of these. The models otherwise differ in the

decay mode allowed for the squarks, and are discussed in further detail in the ensuing

paragraphs.

Strong production one-step decay These models are shown on the far left-hand

side of Figure 5.25, that is we consider the decay q̃ → qWχ̃0, via a chargino. We choose

the neutralino and chargino masses to be related by m
χ̃±1

= 2mχ̃0
1
, and specify the

neutralino to be the LSP. Other particles are decoupled. However, one can note that the

6in this section q̃ is used to exclusively denote these lighter squarks, and not those from the third
generation
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Figure 5.26: Exclusions for the light squark production (from gluino pair production) model
with one intermediary SUSY particle. The left hand plot includes a breakdown
of sensitivity by individual signal region, whereas on the right is displayed the
upper limit on the production cross section for each simulated point. The right
hand plot also shows a comparison with limits from zero lepton [178], multijet
[175] and single lepton [179] analyses.

final state in the case of direct squark production is

q̃ q̃ −→ qqW±(∗)W∓(∗)χ̃0
1 χ̃

0
1 , (5.20)

and hence can only contain two opposite-sign leptons, rather than the same-sign pair

required for this analysis to be sensitive. Hence this variant is discounted for this scenario,

and limits are only set on the gluino-mediated squark production, where the final state is

g̃ g̃ −→ qqqqW (∗)W (∗)χ̃0
1 χ̃

0
1 . (5.21)

The limits are shown in the (mg̃ ,mχ̃0
1
)-plane in Figure 5.26, with the largest sensitivity

from SR0b due to the lack of b-quarks in the final state.

Strong production two-step decay via gauginos These are the central two models

in Figure 5.25, and consider the decay q̃ → qWZχ̃0, which is mediated by first a chargino

and then a neutralino (χ̃0
2 ). In order to preserve the correct hierarchy in the spectrum,

the masses of these two particles are set in between the gluino and neutralino masses
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Figure 5.27: Exclusions for the light squark production (from gluino pair production) model
with a two-step decay involving gauginos. The left hand plot includes a break-
down of sensitivity by individual signal region, whereas on the right is displayed
the upper limit on the production cross section for each simulated point. The
right hand plot also shows a comparison with limits from multijet [175] and
single lepton [179] analyses.

according to

m
χ̃±1

=
(
mg̃/q̃ +mχ̃0

1

)
/2 (5.22)

mχ̃0
2

=
(
m
χ̃±1

+mχ̃0
1

)
/2, (5.23)

where the squark mass is used in the direct production scenario, and the gluino mass

otherwise. The final states are most easily read from the Feynman diagrams in Figure 5.25,

although as in the one-step case it should be noted that the direct squark production

variant will always produce oppositely charged W bosons. Unlike the one-step case, a

same-sign pair can always be formed from the Z bosons. The W and Z bosons may

be off-shell, depending on the mass splitting ∆m (g̃ , χ̃0
1 ) (or ∆m (q̃ , χ̃0

1 ) in the direct

production case). Results are plotted in the (mg̃ ,mχ̃0
1
)-plane in Figure 5.27 for the

gluino-mediated case, and in the (mq̃ ,mχ̃0
1
)-plane in Figure 5.28 for the direct squark

case. The three lepton signal regions are most sensitive in this scenario, with SR3Lhigh

doing best at large mass splitting, and SR3Llow doing perhaps marginally better in the

more compressed scenario.
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Figure 5.28: Exclusions for the light squark production (from squark pair production)
model with a two-step decay involving gauginos. The left hand plot includes
a breakdown of sensitivity by individual signal region, whereas on the right is
displayed the upper limit on the production cross section for each simulated
point.

Strong production two-step decay via sleptons In this model the squarks have

two modes of decay available, q̃ → qχ̃±1 and q̃ → qχ̃0
2 , which are defined to have equal

branching fractions. The diagrams on the far right of Figure 5.25 attempt to encode this

for both direct and gluino-mediated squark production. Subsequently both the second

neutralino and chargino have two decay modes open to them, which again occur with

equal probability:

χ̃±1 → ˜̀±ν χ̃0
2 → `±˜̀∓ (5.24)

χ̃±1 → `±ν̃ χ̃0
2 → νν̃ . (5.25)

The sleptons always decay via ˜̀→ `χ̃0
1 , and the sneutrinos as ν̃ → νχ̃0

1 . It is defined

that all three flavours of slepton are degenerate in mass, and that

m
χ̃±1

= mχ̃0
2

=
(
mg̃/q̃ +mχ̃0

1

)
/2 (5.26)

m˜̀ = mν̃ =
(
mχ̃0

2
+mχ̃0

1

)
/2. (5.27)
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Figure 5.29: Exclusions for the light squark production (from gluino pair production) model
with a two-step decay involving sleptons. The left hand plot includes a breakdown
of sensitivity by individual signal region, whereas on the right is displayed the
upper limit on the production cross section for each simulated point.

Thus there is some variety in the final states that are allowed, enumerating the possible

final states for a squark decay yields:

q̃ −→ q`νχ̃0
1 (5.28)

q̃ −→ q``χ̃0
1 (5.29)

q̃ −→ qννχ̃0
1 , (5.30)

the first of which is twice as likely as the other two.

The entire event can thus comprise missing transverse momentum, two or four light

jets, and up to four leptons. Results are plotted in the (mg̃ ,mχ̃0
1
)-plane in Figure 5.29 for

the gluino-mediated case, and in the (mq̃ ,mχ̃0
1
)-plane in Figure 5.30 for the direct squark

case. The best sensitivity is gained by SR3Lhigh in all parts of parameter space shown,

most likely due to the possibility of both significant pmiss
T and high lepton multiplicity.

Summary These models, with longer decay chains, are those that especially benefit

from the existence of the three lepton signal regions SR3Lhigh and SR3Llow. Gains

made in the compressed regions of parameter space (small ∆m(g̃ , χ̃0)), for example in

Figure 5.27 compared to the multijet analysis, can be attributed to the low threshold of
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Figure 5.30: Exclusions for the light squark production (from squark pair production) model
with a two-step decay involving sleptons. The left hand plot includes a breakdown
of sensitivity by individual signal region, whereas on the right is displayed the
upper limit on the production cross section for each simulated point.

15 GeV on the transverse momenta of subleading leptons. Overall the reach in gluino

mass varies considerably, by more than 300 GeV, between the ‘easiest’ and ‘hardest’

scenarios described above.

Direct sbottom production

In this scenario only the sbottom, neutralino and chargino SUSY particles are considered

(others are decoupled). As shown in Figure 5.31 the model involves direct production

of sbottom squarks, followed by a decay b̃ → tχ̃±1 , the chargino subsequently decaying

χ̃±1 → W (∗)χ̃0
1 .

Exclusion limits are displayed for the two following mass scenarios:

1. Chargino mass always twice the neutralino mass, m
χ̃±1

= 2mχ̃0
1
. Limits set in the

(mb̃ ,mχ̃0
1
)-plane.

2. Neutralino mass is fixed to 60 GeV, and limits are set in the (mb̃ ,mχ̃±1
)-plane.

These cases are shown in Figure 5.32 and Figure 5.33 respectively. It can be seen that in

both scenarios we exclude up to about mb̃ = 460 GeV, and that in each case SR1b is
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Figure 5.31: Feynman diagram demonstrating the direct sbottom simplified model. The
diagram is taken from [61].
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Figure 5.32: Exclusions for the direct sbottom simplified model in the case where m
χ̃±1

=

2m
χ̃0
1

always. The left hand plot includes a breakdown of sensitivity by individual

signal region, whereas on the right is displayed the upper limit on the production
cross section for each simulated point.

the most constraining signal region. This is to be expected given that one expects two

b-quarks in the final state.

5.9.2 Phenomenological models

In addition to the simplified scenarios considered above, the sensitivities to a small

selection of models of a more ‘realistic’, phenomenologically viable, nature are investigated.

There are three models that fit into the SUSY framework: mSUGRA/ constrained
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Figure 5.33: Exclusions for the direct sbottom simplified model in the case where m
χ̃0
1

=

60 GeV always. The left hand plot includes a breakdown of sensitivity by
individual signal region, whereas on the right is displayed the upper limit on the
production cross section for each simulated point.

Minimal Supersymmetric Standard Model (cMSSM), GMSB, and bilinear RPV (bRPV).

Additionally an exotic non-SUSY model is also presented, minimal Universal Extra

Dimensions (mUED). These are described in the following sections.

mSUGRA/cMSSM The mSUGRA model, also known as the cMSSM[180–185], uses

a hidden sector via which gravity can mediate supersymmetry breaking. It is defined as

a subset of the MSSM, which has over 100 free parameters, and instead only allows five

parameters to be varied:

• m0: the mass of all scalar particles at the grand unified theory (GUT) scale.

• m1
2
: the mass of all gauginos at the GUT scale.

• A0: the trilinear coupling strengths.

• tanβ: the ratio of the vacuum expectation values of the Higgs doublets.

• sgnµ: the sign of the SUSY Higgs mass parameter.

We set limits on a subset of this space, where A0 = −2m0, µ > 0, and tan β = 30. This

combination of parameters allows for a Higgs mass in the range 122 < mH < 128GeV,

as is shown in the overlay in the right hand plot of Figure 5.34. Exclusions are set in
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Figure 5.34: Exclusions in the mSUGRA/cMSSM scenario described in the text. The left
hand plot includes a breakdown of sensitivity by individual signal region. On
the right shows the current best public ATLAS limits in the same scenario [186];
this analysis is shown in orange.

the plane of the remaining two free parameters, m0 and m 1
2
, as can be seen in the same

figure. Overall the most sensitive signal region is SR3b, although unlike in the simplified

scenarios it is less obvious (and perhaps less useful) to consider which sub-processes are

responsible for this.

bRPV The bRPV model [187] is based on mSUGRA as described previously, but

additionally allows non-zero couplings for the bilinear terms in the superpotential in

such a way that the LSP is unstable, and can decay to mixtures of leptons, quarks, and

neutrinos [188]. Two example decay modes are shown in Figure 5.35.

The choice of the original mSUGRA parameters is the same as previously (A0 = −2m0,

µ > 0, and tan β = 30, scan the (m0,m 1
2
)-plane), and the bilinear couplings are

determined as a function of these under the tree-level-dominance scenario [189,190]. The

LSP decays within the detector, however for m 1
2
< 200 GeV it has a sufficiently long

lifetime such that the lepton acceptance by this analysis’ criteria is significantly reduced

– as such, these situations have not been considered. The exclusion is shown in the right

hand plot of Figure 5.35.



An analysis of ATLAS data for like-sign lepton events 153

Z
χ̃0

1

ν

`−

`+

W+

χ̃0
1

`−

ν

`+

 [GeV]0m
400 600 800 1000 1200 1400 1600 1800 2000

 [G
eV

]
1/

2
m

200

400

600

800

1000

1200

1400

 (2200 GeV)

q~

 (1800 G
eV)

q~

 (1000 GeV)g~

 (1800 GeV)g~

 > 0, bRPVµ, 0 = -2m
0

)=30, AβMSUGRA/CMSSM: tan(

2 same-charge leptons/3 leptons + jets

=8 TeVs, 
-1

 L dt = 20.3 fb∫
)theory

SUSYσ1 ±Observed limit (

)expσ1 ±Expected limit (

SR3b expected only

ATLAS

All limits at 95% CL

Figure 5.35: Example decays of the neutralino via RPV bilinear couplings (left), and exclusion
(right) in the bRPV scenario. The exclusion plot includes a breakdown of
sensitivity by individual signal region.

GMSB As mSUGRA performs the breaking of SUSY via the gravitational sector,

GMSB achieves the same goal but via the SM’s gauge interactions [191–196]. It is a

subset of the MSSM where new chiral supermultiplets are introduced, so-called ‘messenger

fields’, that couple the MSSM to the source of SUSY breaking. Whilst still present,

gravitational effects leading to SUSY breaking are overwhelmed by the gauge coupling.

The model has six free parameters, which are:

• Λ: the SUSY-breaking mass scale.

• Mmess: the mass of the messenger field(s).

• N5: the number of SU(5) messenger fields.

• tanβ: the ratio of vacuum expectation value (GUT)s of the Higgs doublets.

• sgnµ: the sign of the SUSY Higgs mass parameter.

• Cgrav: the scale factor for the gravitino mass.

Following [179,197,198], we fix Mmess = 250 TeV, N5 = 3, µ > 0 and Cgrav = 1, with the

exclusion then being presented in the (Λ, tan β)-plane, as displayed in Figure 5.36.
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Figure 5.36: Exclusions in the GMSB scenario described in the text. The left hand plot
includes a breakdown of sensitivity by individual signal region. On the right the
same exclusion is shown but with comparison to ATLAS analyses with one or
two taus [89], and one or two leptons [179]. The greyed out area is excluded
theoretically, since it leads to the existence of tachyonic states.

mUED This is the only non-supersymmetric model considered here; mUED postulates

the existence of an extra spatial dimension is postulated with compactification radius R,

and cut-off scale Λ [199, 200]. The decays of the Kaluza-Klein quarks produce similar

decay chains to squarks decaying down to the LSP, and as such this analysis has sensitivity

to it. Exclusions are plotted in the plane of (1/R,ΛR), as shown in Figure 5.37.
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Chapter 6

Comparing fake estimation methods

This chapter presents two sets of tests that have been performed on the fake estimation

methods detailed in chapter 4. The first compares the matrix method to the two likelihood

methods described in section 4.5, considering the effect on a limit setting procedure

performed with a toy MC generator. It concludes that the likelihood methods are indeed

more robust than the matrix method, but that more specifically the “approximate” form

of the method using just the MLE fake rate and an estimated uncertainty is nearly as

good as the “full” method, when performing the whole limit-setting procedure.

In light of this conclusion, since it follows a priori that the Bayesian sampling method

should be no worse than the MLE method for a given model, a second comparison is

then performed in a more realistic setting which pits the matrix method against the

sampling method. From studies in ATLAS MC in two like-charge lepton regions similar

to those studied in chapter 5, it is found that the Bayesian method outperforms the

matrix method, except in very low statistics cases.

6.1 Toy MC: matrix method vs likelihood

This section will study the two likelihood methods, and perform a comparison with the

matrix method. The study aims to test the full statistical procedure used in a search

analysis, including setting a limit on a hypothetical signal sample (see section 4.5.1),

and evaluate what differences, if any, exist in these final results when using the different

fake estimation methods. The parameter model for the likelihood method used here is

that depicted in Figure 4.1; whilst this particular choice is not necessarily expected to
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necessarily generalise to a more realistic scenario, it is sufficient to draw some conclusions,

particularly on the relative performance of the two variations of the likelihood method.

This section will use the ‘Method A, B, and C’ which was terminology introduced in

section 4.5.3.

Using a toy event generator, datasets are produced using the same model shown in

in Figure 4.1. The parameters are set such that datasets are produced containing a

mixture of fake and real ‘signal’ events. The values of these parameters are specified in

the subsequent sections. For each of several configurations, 19000 independent datasets

were formed using the generator. Each of these was subsequently processed using

Methods A, B and C where possible – for the harder example it is found that Method B

was computationally infeasible, and so results for Method B in this case are not shown.

In all cases the necessary minimisation of a negative log likelihood is performed using

the Minuit2 library [123]. The result are 95% CLs+b and CLs upper limits on the signal

strength parameter.1

6.1.1 Simple example – two leptons, two categories

Firstly, a configuration is used that produces events always with exactly two leptons,

each of which can be in one of two categories. There are separate configurations for a

signal process, which produces only real leptons (π1 = π2 = 0), and a fake process which

produces only fake leptons (π1 = π2 = 1). The full set of parameters used in this example

can be found in Table 6.1. In each dataset, 100 events are produced using the tree in

Figure 4.1. As such the number of T events is approximately the sum of two Poisson

random variables; one representing the signal component with mean 0.706, and another

representing the fake background with a mean of 1.94.

The CLs+b and CLs limits from each of the 19000 generated datasets is shown in

Figure 6.1. There is significant overcoverage in the CLs limit, however this is expected

due to the definition CLs = CLs+b
1−CLb . In low statistics regimes, often (1 − CLb) < 1,

meaning that CLs > CLs+b by a potentially significant margin. The CLs+b limit is also

seen to over-cover, particularly with Method C, and to a lesser extent with Method A,

and least of all with Method B. It is indeed expected that Method B should have the

1The p-values used to compute CLs and CLs+b are computed by performing pseudoexperiments, rather
than using asymptotic methods [120], since it is known that the latter are only a good approximation
for scenarios with a large number of events.
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Signal Background Effs.

Object category νL̃ β π νL̃ β π εr εf

ω1 0.01 0.6 0 0.99 0.6 1 0.8 0.1

ω2 – 0.4 0 – 0.4 1 0.9 0.2

Table 6.1: Parameters controlling the simple example with exactly two leptons, and two
categories for each lepton. The parameters are as described in Figure 4.1, however
α2 = 1 and αi = 0 ∀i 6= 2. The overall production rate of events is νL̃, each one of
which is filtered through the decision tree. Components marked with a ‘–’ are not
applicable in the context.
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Figure 6.1: Using the two lepton, two category configuration, the 95% CLs+b and CLs
upper limits on the rate of T signal events for each of 19000 independent toy
datasets are histogrammed. For each ‘column’, histograms are made for each of
Methods A, B and C, and plotted back-to-back. Method B and Method C are
plotted overlapping on the right hand side of each column. The CLs+b results are
further divided into bins of observed nT ; in all cases the area of each histogram is
proportional to the number of toy datasets used to create it. The dashed blue
line indicates the true signal production rate, νTR = 0.706. The coverage of the
observed limits of this truth rate are noted for the overall CLs+b and CLs results.
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best behaviour, and any deviation from accurate coverage must be attributable to the

approximation introduced in equation (4.22). Moreover, this figure also contains a

division of the CLs+b limit according to the number of events observed in the signal

region, nT . This demonstrates a clear, approximately linear, dependence of the limit on

the number of events in the signal region for all methods; again this behaviour should be

expected since the background estimate will be more tightly constrained by the (much

larger) number of loose events, meaning that the remaining tight events are attributed

to the signal. This is corroborated by Figure 6.3, discussed in more detail later, which

shows that the measured fake rate is approximately independent of nT .

Finally, Figure 6.2 demonstrates that, for nT & 2, limits for CLs and CLs+b are

not biased towards being more constraining in any one of the methods. For lower nT ,

Method B is biased towards placing the most aggressive limit, followed by Method A

and then Method C is the least aggressive. CLs exhibits much less of a spread at lower

nT , and in fact shows a tendency to have a reduction in the spread of the ratios for the

lowest values of nT .

Another interesting observation is the significantly larger spread, and the ‘fatter tails’

signified by the larger number of outliers, in the Method A vs Method B limit ratio

plot than that for Method A and Method C. This can be explained by recognising that

Method B makes the fullest use of the available information in the whole limit setting

procedure, which evidently results in a greater tendency to have larger differences between

its limit and that from Method A for any given event; Method C, being a half-way house

has some discrepancy but less than that found in Method B.

A further comparison that can be made is of the fake rate that is the output of the

matrix method in Method A, against the MLE of the fake rate obtained in Method B

(by maximising the likelihood function) and Method C; such a comparison is made in

Figure 6.3. This demonstrates the property that Method A can predict a negative fake

rate, as seen in a handful of the generated datasets. It also shows that Method B and

Method C produce fake rates that cluster more closely around the true value, even at

low nT . The larger fake rates that Method A predicts are responsible for the dip in ratio

towards low nT in Figure 6.2.

From this information, it can foremost be seen that, overall, rather similar limits are

being placed by all methods. Method B and Method C have a tendency to produce more

plausible MLEs of the fake rate, corresponding to slightly more tightly clustered limits

in Figure 6.1. On the whole, there is a tendency to be very slightly more constraining
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Figure 6.2: Using the two lepton, two category configuration, sub-figure (a) shows the ratio
between the CLs+b and CLs limits obtained with Methods A and B respectively;
the box plots are described further in Figure 6.3. Finally sub-figure (b) shows the
same limit ratio for Methods A and C.
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Figure 6.3: Using the two lepton, two category configuration, the estimated fake rate for
each of 19000 independent toy datasets are shown as a function of nT , comparing
Methods A and B with box plots. These indicate the median and lower & upper
quartiles with the box, while the whiskers extend to most extreme datum within
1.5×inter-quartile range of the nearest quartile; this corresponds to the k = 1.5
case as detailed in [201]. Black dots are used to mark data points outside the
range of the whiskers. The dashed blue line marks the true value of νTF = 1.94,
and the red line delimits the unphysical νTF < 0 region.

than one would expect to find from Method A. One therefore ought to slightly favour

Method B in this scenario, all else being equal, to be confident that the limit one obtains

is more likely to be representative of the limit one would expect to obtain from performing

the experiment.

6.1.2 Harder example – two leptons, eight categories

The simple example of section 6.1.1 has been extended to use eight categories instead

of two. As per the parametrisation being used, this involves the addition of 24 extra

parameters – twelve each for the signal and fake background from the addition of six

β and six π terms. These parameters can be referred to in Table 6.2. As before, 100

events were generated in each dataset, corresponding to a signal rate of 0.748 and a fake

background rate of 2.77.

It was found that the increase in parameter space dimensionality was sufficient to

increase the computation time for the minimisation to such an extent that producing
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Figure 6.4: Using the two lepton, eight category configuration, the 95% CLs+b and CLs upper
limits on the rate of T signal events for each of 19000 independent toy datasets
are histogrammed, and plotted in (a). For each ‘column’, histograms are made
for each of Methods A and C and plotted back-to-back. The CLs+b results are
further divided into bins of observed nT ; in all cases the area of each histogram is
proportional to the number of toy datasets used to create it. The dashed blue
line indicates the true signal production rate, νTR = 0.748. The coverage of the
observed limits of this truth rate are noted for the overall CLs+b and CLs results.
Sub-figure (b) shows the ratio between the CLs+b and CLs limits obtained with
Methods A and C respectively; the box plots are described further in Figure 6.3.
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Signal Background Effs.

Object category νL̃ β π νL̃ β π εr εf

ω1 0.01 0.086 0 0.99 0.184 1 0.8 0.1

ω2 – 0.143 0 – 0.008 1 0.8 0.2

ω3 – 0.110 0 – 0.182 1 0.8 0.1

ω4 – 0.010 0 – 0.123 1 0.8 0.3

ω5 – 0.092 0 – 0.102 1 0.9 0.2

ω6 – 0.284 0 – 0.081 1 0.9 0.1

ω7 – 0.245 0 – 0.106 1 0.9 0.4

ω8 – 0.030 0 – 0.214 1 0.9 0.1

Table 6.2: Parameters controlling the simple example with exactly two leptons, and eight
categories for each lepton. The parameters are as described in Figure 4.1, however
α2 = 1 and αi = 0 ∀i 6= 2. The overall production rate of events is νL̃, each one of
which is filtered through the decision tree. Components marked with a ‘–’ are not
applicable in the context.
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Figure 6.5: Using the two lepton, eight category configuration, the estimated fake rate for
each of 19000 independent toy datasets are shown as a function of nT , comparing
Methods A and C with box plots similarly to Figure 6.3. The dashed blue line
marks the true value of νTF = 2.77, and the red line delimits the unphysical
νTF < 0 region.



Comparing fake estimation methods 165

limits with Method B became infeasible using the resources at the authors’ disposal. As

such only Method C is compared to Method A.

Figure 6.5 shows that the MLE fake rate for Method C is much more tightly constrained

around the true value than the Method A estimate; moreover Method A gives even

more significant deviations into negative values than with the simple example. Moreover,

as nT increases, the median fake rate from Method A decreases slightly, whereas that

from Method C is stable for low event counts, only increasing slightly for larger nT ; the

Method C behaviour seems more desirable here. Secondly, Figure 6.4(a) shows that the

CLs+b limits derived in Method A suffer from undercoverage; the upper limit only bounds

the true rate 92% of the time rather than the expected 95%. Finally the ‘upper tails’ of

the CLs+b limit are significantly more pronounced in Method A than in Method C, as

can be seen when the limits are separated by nT , as also included in Figure 6.4(a).

When additionally looking at Figure 6.4(b), one can see that, as in section 6.1.1, the

CLs+b ratio dips for low nT and for the same reason. The new feature is the increase in

ratio above 1 for both CLs+b and CLs limits for larger nT – this corresponds to Method C

systematically placing a more constraining limit than Method A. Therefore, both for this

reason, and the greater consistency shown in Figure 6.4(a), one would favour Method C

over Method A here.

6.1.3 Conclusions

Whilst the tests run in this section have been of a ‘toy’ nature, and might not accurately

represent the behaviour in actual data, it does serve to demonstrate the drawbacks of

Method A, and how both Method B and Method C could be expected to deliver a more

accurate CLs+b or CLs upper limit. In particular, Method B can in some senses be

considered to be the “best” limit setting procedure one can do, making full use of the

available data. Method C has been shown by the author to be a much more readily used

replacement for analyses perhaps already using Method A, due to significantly reduced

computational complexity, whilst still providing rather similar behaviour to Method B in

the tests conducted here.
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6.2 ATLAS MC: matrix method vs Bayesian

posterior

Having just demonstrated the theoretical performance of a likelihood-based fake estima-

tion technique, we now turn to the Bayesian method described in section 4.6. Given that

the previous section concluded that Method C – using just the MLE – gave comparable

performance to limit setting with the full likelihood, we might hope that the Bayesian

method will give another small improvement over this, in robustness if nothing else.

Additionally, rather than using a toy MC generator, this section will use the ‘real world’

MC from the 8 TeV ATLAS like-charge lepton analysis, as described in section 5.2.2. As

such the tests within this section should represent more accurately how one might expect

the new method to perform in a real analysis.

6.2.1 Dealing with many categories

In the likelihood method tested previously, the issue of many categories was mitigated

somewhat through use of a reduced parameter space in a tree hierarchy. This comes

with two main problems – firstly, reducing the parameter space in any way implies that

one believes some information is redundant; the assumptions made in Figure 4.1 are

not necessarily generally applicable, which could cause the method to provide a poor fit

in some situations. Secondly, the nature of this parametrisation makes the likelihood

landscape rather “lumpy”, increasing the risk of a minimisation algorithm becoming

stuck in local minima. Indeed, during preliminary tests it was found that the tree

parametrisation was unusable given the number of categories in the like-charge analysis

(in chapter 5) for this second reason.

The methodology described for the Bayesian sampling process in section 4.6 did not

include any explicit method to solve the many category problem. One of the methods

alluded to in section 3.5 shall hence be used – namely the combining of lepton categories.

Since ultimately we are interested in the integral of the fake and tight rate over all pT

and η in a given bin of a signal region, an attractive alternative proposition is simply to

merge categories until we are left with a set of categories where each hopefully contains

sufficient events to overwhelm the Gamma distribution priors. To a good approximation,

the correct efficiencies for a merged category are an average of the efficiencies from

the original categories, weighted by the number of real/fake leptons respectively for



Comparing fake estimation methods 167

the real/fake efficiencies. Of course, we do not have access to these numbers, and so

approximations to them must be used.

In the remainder of this chapter it is noted that since, for at least the like-charge lepton

regions considered, the measured real efficiencies are all large and the fake efficiencies all

small, with relatively small variations between most categories, the weighting procedure

can be performed to a reasonable approximation using the numbers of tight leptons to

compute the average εr, and the numbers of loose leptons for εf . This should also be the

case more generally, and as such this approximation should be fairly widely applicable.

6.2.2 Description of tests

The set of MC samples described in section 5.2.2 were used to model the SM contributions

in a region requiring exactly two leptons of the same charge. More precisely, every event

is required to have exactly two leptons with pT > 15 GeV that are either tight or loose,

and then a tight event will have both of its constituent leptons tight. This is done so

as to simplify the problem – considering the more general problem with larger numbers

of loose leptons is possible but introduces additional complexity. A truth cut is also

performed to remove events accepted due to charge-flip (see section 5.5.3), thus allowing

a cleaner test of the fake estimation procedures.

A region is then defined with Nb-jets ≥ 1 and Njets ≥ 2, resembling the kinematics of

the signal regions described in section 5.4, and then bins are formed in meff . Due to these

similarities it is considered appropriate to use the real and fake efficiencies measured and

shown in section 5.5.2. This assumption is later tested by also calculating the efficiencies

for this region directly from the MC samples, in a form of closure test.

Having done this, the rates from various processes can be computed and histogrammed

in this region, as has been done in Figure 6.6. This shows that tt+V , diboson, and triboson

processes are responsible for the real events, while the fake events come predominantly

from tt, as well as a small contribution from Z+jets. It is also clear that fake events occur

much more frequently in the loose regions, whereas tight events are slightly favoured in

the tight region.

In order to best simulate the application of the fake estimation methods to a real

dataset, these MC samples are used to generate a set of pseudo-data. Precisely, a

given MC sample contains a set of events each with a weight wi. The sum
∑

iwi in a

given region gives the expected rates normalised to luminosity, as shown in Figure 6.6.
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(b) Tight & fake events
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(c) Loose & real events

 [GeV]effm
200 300 400 500 600 700 800 900 1000

E
xp

ec
te

d 
ev

en
ts

 / 
bi

n

0

100

200

300

400

500

600 VV + VVV
top + X
Z + jets

(d) Loose & fake events

Figure 6.6: Plots of the expected rates of production of tight and loose events in each meff

bin split by background process, normalised to correspond to a luminosity of
20.3 fb−1. The left hand plots only include the production of ‘real’ events is
considered (where both leptons are real), and conversely in the right hand plot
only ‘fake’ events are considered (if either lepton is or both leptons are fake). The
shaded band denotes the overall statistical uncertainty – systematic effects are
not considered for the purposes of this study. The rightmost bin in each plot
includes overflows.
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(a) Tight events
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Figure 6.7: Plots of the expected rates of production of tight (left) and loose (right) events in
each meff bin split by whether the events are real or fake, normalised to correspond
to a luminosity of 20.3 fb−1. The shaded band denotes the overall statistical
uncertainty – systematic effects are not considered for the purposes of this study.
The rightmost bin in each plot includes overflows. Additionally a pseudo-dataset
is shown, computed as described in the text.

A pseudo-dataset is then generated using the properties of event i, with each event i

included ni ∼ Poiss (wi) times. Since in most cases wi � 1, it is rare for any event to be

included more than once. Hence, to a good approximation, all events included in this

pseudo-dataset are independent. The benefit of producing the test dataset in this fashion

is that it is easy to retain the properties of individual events , i.e. information like the

individual lepton pT and η, which is required for fake estimation techniques.

An example of such a pseudo-dataset is shown in the region of interest in Figure 6.7.

This plot additionally shows, as one expects, the tight region to have a much higher

proportion of real events than the loose region. The goal of any fake estimation method

will be to estimate the expected fake contribution in a given bin; this corresponds exactly

to the cream-coloured area of the left-hand plot.

6.2.3 The status quo: matrix method

Firstly the generalised matrix method was applied to the pseudo-dataset; the results

can be seen in Figure 6.8. From referring to the ratio plot on the right-hand side of the

figure, there appears to be a small but systematic overestimate at low meff , and then a

more significant overestimate in the highest few meff bins.
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Figure 6.8: On the left-hand side, a plot of the pseudo-dataset of tight events overlaid on
the nominal matrix method (MM) estimate of the fake and tight rate, using the
efficiencies from section 5.5.2. The real rate plotted is that from MC, as would have
been done if this were a real dataset. The right-hand plot shows the ratio of the
matrix method prediction to the truth fake and tight rate. Uncertainties on both
the truth and estimated fake rate are also scaled by a factor of 1/(truth fake rate).

If there are two categories which can each be considered to have diagrams as in the

Figure 3.1, the ‘correct’ way to combine the efficiencies for events with a single lepton is

to take

εr =
νR1εr1 + νR2εr2
νR1 + νR2

(6.1)

εf =
νF 1εf1 + νF 2εf2

νF 1 + νF 2

. (6.2)

This is correct in the sense that one can then compute e.g. νT = εrνR + εfνF and find

that it is the same as νT 1 + νT 2 computed analogously. In practice we of course do not

have access to these underlying rates, however it is noted that efficiencies do not vary too

significantly in adjacent bins, so even an approximate weighting should be sufficient for

practical purposes. In order to avoid any chicken-and-egg issues that might be created

by trying to estimate the real and fake rates for the purpose of weighting efficiencies

(which are required for said estimation), a very simple scheme is used here; both εr and

εf are weighted using the total number of leptons in a given category. Naturally this

procedure is also applicable to events with multiple leptons.

Using this heuristic method of category combination, the matrix method is applied

three more times with different merging strategies. These are:

• All categories are merged into one category.
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(a) Merge all
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(b) Separate e/µ
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(c) Separate e/µ, with pT cut
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Figure 6.9: Plot of the pseudo-dataset of tight events overlaid on the matrix method (MM)
estimate of the fake rate, merging efficiencies in the manners stated in the text.
The real rate plotted is that from MC, as would be done if this were a real dataset.
The last panel shows the ratio of each of the matrix method predictions to the
truth fake and tight rate. Displacements of each point horizontally within each
bin is for legibility reasons only. All uncertainties are also scaled by a factor of
1/(truth fake rate).

• All bins in pT and η are averaged over, retaining only independent categories for

electrons and muons.

• Independent categories are retained for electrons and muons, and within each there

are two categories differing by requiring pT < 40 GeV and pT ≥ 40 GeV respectively.

The findings can be seen in Figure 6.9, and are most readily apparent in the last

plot, which shows the ratio of each of the four (nominal, and three merging schemes)
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matrix method predictions to the truth fake and tight rate. Looking firstly at low meff ,

there is a slight systematic overestimate of the fake rate, which is worsened in the more

aggressively merged efficiency scenarios. The least merged case has results which are

very similar to the case without any merging, apart from the fact that they have slightly

larger uncertainties. In general it appears that the additional merging only worsens the

matrix method; uncertainties are larger, and agreement becomes worse. This suggests

that the nature of the matrix method already produces an approximate, but appropriate,

efficiency category merging procedure.

At large meff there is clearly a much larger discrepancy. However, this seems more

likely attributable to a physics reason – namely that the efficiencies are no longer

accurate in this region. The overall values of εr and εf are, respectively, estimated in

the 950 < meff < 1000 GeV bin to be 0.879 and 0.0898 respectively. This arises from

merging the efficiencies using the approximate weighting scheme described above. These

values can be compared to the truth efficiencies, computed using all the MC events in the

same meff bin. This yields real and fake efficiencies of 0.851 and 0.0103 respectively. In

conclusion, the fake efficiency is in fact much smaller in this region than was estimated

– as such it is no surprise that the matrix method produces a significant overestimate.

Further demonstrations that all issues in this region are rectified by using the correct

efficiencies are included in section 6.2.5.

6.2.4 The Bayesian posterior

Using the sampling method described in section 4.6.2, the pseudo-data in each bin can

be used to form the Bayesian posterior on the fake and tight rate. Examples of the

distribution obtained in two meff bins can be seen in Figure 6.10. It is desired to extract

a small but sufficient amount of information from these plots, both for visualisation in

histograms as well as to pass on to any subsequent limit setting procedure.

The first point to note is that the distributions are asymmetric, particularly in the

region with the lower predicted rate – as such simply computing the mean and standard

deviation is inappropriate. Instead, I choose to use the median of the sample as a measure

of centrality, along with the bounds of the middle 68% probability mass. These are

visualised in Figure 6.10 as the dotted cyan line and shaded region, respectively.

One could, of course, choose to use an alternative measure, such as the maximum of

the posterior distribution and some form of peak width from a fit. Whilst this maximum
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Figure 6.10: The Bayesian posterior distribution of the fake and tight rate, in the two-
category merging scheme for two different meff bins. The green histogram
represents a sample of 1000 draws using the Gibbs sampling mechanism with 25
steps of burn-in. Also shown is a fit of a Gamma distribution, with its median,
as well as the median of the sampled data and shaded 68% probability mass
region centred on it.

a posteriori technique is widely used in statistics, and can be viewed as a regularisation

of a maximum likelihood method, it is avoided by the author. This is because it tends to

throw away the additional information one has already procured in the form of the full

posterior distribution; in practice it is used when computing the posterior distribution in

full is computationally unviable. The results shown in the later plots would change if an

alternative centrality and width measure were used, however given that the distribution

in Figure 6.10 is representative of the posteriors found in these tests, the mean, median,

and mode are all within the 68% credible interval.

The plots also include a fit of a Gamma distribution to the drawn samples. Whilst it

is a good fit for the 800 < meff < 850 GeV bin, where there is a longer positive tail, the

300 < meff < 350 GeV bin has a longer negative tail, for which the Gamma distribution

can be seen to not fit so well. As such this fit is only provided for illustrative purposes, and

the median and ±1σ (68%) credible interval of the raw sample is propagated forwards.2

2Frameworks such as HistFitter deal with asymmetric uncertainties by means of two-sided Gaussian
distributions. To a good approximation the 68% credible interval could be used to define such ‘up’
and ‘down’ uncertainties.
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Figure 6.11: The ratios of estimates of the fake and tight rate using the sampling method
to the truth value. Efficiency categories are merged into one region each for
electrons and muons. Each data series uses a different number of burn in steps,
as noted in the legend.

Determining the optimal amount of burn in In performing these fits 25 Gibbs

steps were used for burn in, before drawing a sample. This number was determined

experimentally as follows. It is known that the more steps that are taken, the closer the

method is to sampling from the true distribution – as such the burn-in period should be

chosen such that few significant changes occur if the period is increased further. One

can hence compute the limits across all meff bins for several choices of burn in length,

and pick the value that seems to have the best trade-off of accuracy against performance.

The results of doing this are presented in Figure 6.11, which shows the ratios of estimates

to truth for several choices of burn in. It can be seen that changes tend to become small

after having taken 25 steps, but are more sizeable before that.

Results As has already been discussed, the Bayesian sampling method suffers from

the presence of many more event categories than events to support them, since unlike

the matrix method it doesn’t come with an in-built merging scheme. As such only the

performance of the three merged schemes described previously is considered. For each

bin in meff the median and 68% credible interval are used to plot the central value and

asymmetric uncertainty bands, as shown in Figure 6.12.
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(b) Separate e/µ
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(c) Separate e/µ, with pT cut
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Figure 6.12: Plot of the pseudo-dataset of tight events overlaid on the Bayesian posterior
estimate of the fake rate, merging efficiencies in the manners stated in the text.
The real rate plotted is that from MC, as would be done if this were a real
dataset. The last panel shows the ratio of each of the matrix method predictions
to the truth fake and tight rate. Displacements of each point horizontally within
each bin is for legibility reasons only. All uncertainties are also scaled by a factor
of 1/(truth fake rate).
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Similarly to the matrix method, there is relative stability in the fake rate estimates

between all three efficiency merging schemes tested here. As before with the matrix

method, at low meff there is a slight bias towards overestimating which improves as more

finely separated efficiency categories are used. There is also still a large discrepancy at

high meff , which seems likely due to the measured efficiencies being inappropriate in this

region. Comparing back to Figure 6.9 it can be seen that the uncertainty bands for the

Bayesian posterior are considerably narrower than those for the matrix method across

the board, whilst still seeming to give appropriate coverage of the truth value (with the

exception of the aforementioned significantly discrepant regions). This seems to be the

main improvement gained by using the Bayesian method over the matrix method.

6.2.5 Comparisons with ‘truth’ efficiencies

Another test of interest is to look again at the predictions in the test region, but this time

to use real and fake efficiencies computed directly from the MC samples, which hence

correspond to the true underlying values. The three merging schemes defined previously

are again used, where for any given scheme the truth efficiencies are determined by

counting all pertinent events from the whole set of MC samples (rather than just the

subset that forms the pseudo-dataset). Strictly speaking the efficiencies are not merged

for these tests – rather they are separately calculated in each of the bins defined by

each merging scenario. Both the matrix and sampling methods are then used on the

pseudo-dataset in each case, with results shown in Figure 6.13.

From these plots it can be seen that both methods have similar behaviour. However,

there are a few differences worth highlighting:

• Uncertainties: As before, the Bayesian estimate has smaller uncertainties than

that from the matrix method, which for the most part also seem appropriate for

the observed agreement with the truth. The effect is also more pronounced when

using a finer binning of categories.

• Coping with uncertain efficiencies: In the meff bins above about 800 GeV, the

efficiencies are being estimated with increasingly low statistics samples, and as such

have larger uncertainties. Increasing the number of categories for a given meff bin

will only increase these uncertainties – as such looking at the relative behaviour of

the matrix method and Bayesian posterior method in any given bin as the number

of categories increases can be instructive. In the 750 < meff < 800 GeV bin, for
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Figure 6.13: Ratios of both sampling and matrix method fake and tight rate predictions to
the truth value, when using efficiencies computed from the overall MC sample
from which the pseudo-dataset has been drawn. These efficiencies are computed
separately in several broad bins, as have been discussed previously.
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example, the uncertainty on the matrix method estimate increases, whereas that on

the Bayesian estimate is relatively stable.

• Low-stats behaviour: In the 3rd and 2nd last bins, the Bayesian method starts to

overestimate the fake rate. The overestimation becomes more prevalent with more

efficiency categories. These bins have the lowest statistics, with only a handful of

events per bin, and as such there will be several event categories with just one event.

In these categories the estimated fake rate will be very prior dependent. The matrix

method produces an estimate which agrees well with truth, although with a very

large estimated uncertainty (particularly in the 950 < meff < 1000 GeV bin).

Given these features, it seems that the Bayesian method is clearly superior when there

are sufficient statistics to overwhelm the priors of each category independently, in that

it produces more precise estimates, and can cope with uncertain efficiencies somewhat

better than the matrix method.

However, in the case of extremely low statistics regions, which would include the

signal regions of the like-charge ATLAS analysis, it is less clear that the Bayesian method

can be recommended. The treating of each category independently is its undoing, since

with few events the answer is almost entirely dependent on the choice of prior. On the

other hand the matrix method has an implicit combination of the different regions which

appears to allow it to produce more accurate answers here.

6.3 Conclusions

In this chapter it has been set out to verify the claims made in chapter 4 that a likelihood-

based or Bayesian approach can be more robust than the matrix method, by using tests

in both toy and ATLAS MC.3

The essential points to take away are:

• With sufficient statistics, say O(10) events in a two lepton signal region, a Bayesian

or likelihood method will outperform the matrix method.

• With very low statistics, treating each event category separately is not possible –

this is why the Bayesian method fails. The matrix method is less biased, but the

3 In this context a ‘likelihood method’ refers to Method C as defined in Table 4.1, and the ‘matrix
method’ is Method A Ḋue to the speed issues with Method B it is not mentioned in these conclusions.
The Bayesian technique does not map onto any of the lines in Table 4.1.
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best results are presented in the first half of this chapter when using an appropriate

reduced parametrisation.

• Merging efficiency categories, in addition to improving predictive power, also signifi-

cantly reduces computation time for likelihood and Bayesian methods. It however

does not provide any benefit for the matrix method.

Whilst the new methods present do somewhat mitigate the many-category problem

described in section 3.4.3, it has clearly not been an unmitigated success. Further

improvements would either need to tackle the concept of adding smoothness constraints

between event categories, or the problem needs to be approached from a new, as yet

unconsidered, angle.
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Chapter 7

Closing remarks

This thesis set out on a two-pronged mission: both to improve the methods of estimating

the contributions of fake events in ATLAS signal regions, as well as to use these methods

in a search for SUSY.

With respect to the former of these, three distinct methods were presented – an

extended version of the matrix method, a maximum likelihood method, and a Bayesian

method.

The extension to the matrix method was the start of my interest in this particular

background. It was designed to be of particular use to the SUSY search that was

presented; namely to be able to deal seamlessly with events containing varying numbers

of leptons, even when the selection could depend on which leptons in the event were

in fact real. However, both the likelihood and Bayesian methods are certainly more

statistically well-defined than the matrix method, as was demonstrated from a theoretical

perspective. Both of these were also shown to offer modest improvements in robustness

and accuracy over the matrix method in simulations. Apart from suffering a lack of

predictivity in regions with very low event counts, these new methods seem suitable as

replacements for the matrix method.

The SUSY search for like-charge leptons was shown to place competitive, sometimes

the best, limits in several SUSY scenarios, as well as provide model-independent exclusions

for the kinematic regions in which it searched.

The simplified signatures investigated in section 5.9.1 are used across ATLAS, and

where appropriate in the given sections comparisons were made to the exclusions from

other analyses. Whilst not always setting the strongest limit, a particularly beneficial

feature is the complementarity of the results presented here to other ATLAS SUSY

181



182 Closing remarks

analyses. For example, in the gluino-mediated stop scenario (Figure 5.21) the like-charge

analysis extends the limit closer to the diagonal, despite the fact that the multijet analysis

has a greater reach in the regions with less compressed spectra. A similar complementarity

can be seen in Figure 5.27. The analysis also proved its wider applicability through

its strong exclusion of the GMSB model, for which it was not optimised – at the time

of writing it is the strongest such public exclusion on this scenario. This application

to hitherto untested or unforeseen models is enabled through the publication of the

model-independent limits; these can be used by the phenomenological community to test

the viability of new models which are expected to produce events with like-charge lepton

signatures.

Overall, in many of the simplified SUSY scenarios considered the existence of gluinos

of masses up to O(1 TeV) was excluded. These limits are starting to push the bounds

of the masses we would expect to observe given naturalness constraints [202]. Whilst

theorists are now identifying unexplored areas of parameter space where SUSY could

still be hiding, one must surely start to be concerned at the fine-tuning such theories

often require.
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Colophon

This thesis was made in LATEX 2ε using the “hepthesis” class [203].
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