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The theoretical analysis of many problems in physics, astronomy and applied mathematics requires
an efficient numerical exploration of multimodal parameter spaces that exhibit broken ergodicity.
Monte Carlo methods are widely used to deal with these classes of problems, but such simula-
tions suffer from a ubiquitous sampling problem: the probability of sampling a particular state is
proportional to its entropic weight. Devising an algorithm capable of sampling efficiently the full
phase space is a long-standing problem. Here we report a new hybrid method for the exploration
of multimodal parameter spaces exhibiting broken ergodicity. Superposition enhanced nested sam-
pling (SENS) combines the strengths of global optimization with the unbiased/athermal sampling
of nested sampling, greatly enhancing its efficiency with no additional parameters. We report ex-
tensive tests of this new approach for atomic clusters that are known to have energy landscapes
for which conventional sampling schemes suffer from broken ergodicity. We also introduce a novel
parallelization algorithm for nested sampling.

I. INTRODUCTION

Computer simulations play an important role in the
study of phase transitions and critical phenomena. In
particular, stochastic techniques such as Monte Carlo
(MC) methods have proved to be powerful tools [1].
These methods rely on the ability of the Monte Carlo al-
gorithm to sample the accessible volume in phase space.
There are, however, many situations where standard
Monte Carlo simulations suffer from a lack of ergodicity.
In that case, more sophisticated algorithms are needed
to explore the volume in phase space that is, in princi-
ple, accessible. Some such techniques are based on the
efficient exploration of the underlying, multi-dimensional
potential energy surface (PES) [2]. The PES, or energy
landscape, can be viewed as a collection of basins sepa-
rated by barriers, where each basin corresponds to a par-
ticular local minimum-energy configuration. The basin
volumes define the entropic weight of the corresponding
local minima. The transition rate from one basin to an-
other depends on the barrier height as well as the rela-
tive entropic weights (configurational space volumes) [2].
Many PES of interest exhibit frustration in the form of
low-lying minima with different morphologies separated
by high barriers. These structures may act as kinetic
traps, when fixed-temperature sampling methods such
as molecular dynamics or Metropolis Monte Carlo sam-
pling are used. There exist a wide range of extended
or biased sampling techniques, both in Monte Carlo and
in Molecular Dynamics, that make it possible to speed
up the sampling of landscapes with kinetic traps. These
techniques include Monte Carlo methods, such as um-
brella sampling [3, 4], density of states based methods,
such as the Wang-Landau method [5] and replica ex-
change methods [6, 7], along with their Molecular Dy-
namics counterparts. Examples are the replica-exchange
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MD method [8], and the Meta-Dynamics method [9]. In
cases where a biased distribution is generated, the orig-
inal distribution can be reconstructed using reweighting
techniques [10, 11] However, these approaches may per-
form poorly when dealing with high-dimensional spaces
exhibiting broken ergodicity or, in other words, with
highly multimodal (or multifunnel [2, 12–14]) parameter
spaces [15–18].
In recent years a Bayesian method known as nested

sampling [19] has emerged as a possible alternative to
extended or biased sampling methods. The nested-
sampling approach has found widespread application in
astrophysics [20, 21] and cosmology [22, 23], and has
drawn the attention of computational and statistical
physicists [24–29]. Furthermore, the method has been
recently adopted for Bayesian model comparison in sys-
tems biology [30–32]. Nested sampling explores phase
space in an unbiased way, and allows one to determine
statistically the density of states associated with shrink-
ing fractions of phase space. This objective is achieved
by placing a constraint on the potential energy (for in-
stance), which decreases at each nested sampling itera-
tion. Like Wang-Landau sampling, the method is ather-
mal and produces the density of states and the parti-
tion function (Bayesian evidence) as its primary prod-
uct. However, nested sampling does not require binning
of the energy for systems with continuous potentials. The
self-adapting steps in energy (but constant in log phase
space volume) is attractive because the approach does
not require prior knowledge of possible phase transitions.
For example, the step size adjusts automatically as the
phase space volume shrinks near a first order phase tran-
sition [19, 25].
An important drawback of nested sampling is that

when the decreasing energy constraint forbids a transi-
tion to an unexplored basin, that basin cannot be visited
and ergodicity is broken. Hence, while nested sampling
certainly is conceptually interesting, its performance is
often no better than that of conventional extended sam-
pling methods in dealing with systems exhibiting broken
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ergodicity [25]. In the present work we introduce a novel
hybrid methodology for the exploration and thermody-
namic analysis of such systems.
Superposition enhanced nested sampling (SENS) com-

bines the strengths of unbiased global optimization tech-
niques [2] with those of nested sampling. Global opti-
mization techniques such as basin-hopping [33–35] are
designed to find the lowest energy configuration of a PES.
They are not constrained to sample according to any dis-
tribution, so they are free to use ‘quick and dirty’ tech-
niques while searching for the global minimum. For ex-
ample, they can take Monte Carlo steps that do not sat-
isfy detailed balance, and make use of minimisation algo-
rithms such as L-BFGS and conjugate gradient. Such op-
erational freedom makes global optimization algorithms
much more efficient than generalised ensemble methods
at locating the lowest energy minima [36–40]. Collections
of the lowest energy minima configurations thus obtained
can then be used in the context of the superposition ap-
proach (SA) [2, 39–45] to compute the thermodynamic
properties of the system. However, doing so accurately
at high temperatures using the SA alone often requires a
prohibitively large number of minima.
In the present contribution we show how knowledge of

the lowest energy minima and their statistical weights,
calculated using the harmonic superposition approxima-
tion (HSA), can be exploited to enhance the problematic
low energy behaviour of nested sampling, thus making it
likely that none of the important minima and associated
regions are missed. Although we discuss SENS in the
context of energy landscapes, the method is completely
general and can be applied to any multi-modal param-
eter space whose minima (maxima in likelihood) can be
identified by global optimization algorithms.

NESTED SAMPLING

Nested sampling [19] provides an elegant solution to
the problem of evaluating the density of states, and hence
the partition function, for arbitrary systems. A like-
lihood value is assigned to each possible configuration.
For our purposes the likelihood is the Boltzmann factor
exp(−E/kBT ), but it could be some other measure. Typ-
ically, there are large numbers of configurations with a
low likelihood. In addition, there may be a small number
of configurations with high likelihood.
The aim of nested sampling is to sample configuration

space uniformly, but with the energy constrained to lie
below a maximum value, Emax, that decreases iteratively
throughout the calculation. The rate of decrease is main-
tained self-consistently, such that the phase space volume
with energy less than Emax decreases by a constant fac-
tor in each iteration.
The nested sampling algorithm starts by generating

K configurations of the system completely at random,
distributed uniformly, in configuration space. The en-
ergy, ER, of each of these configurations is computed

and added to a sorted list, where R is the associated in-
dex in the sorted list. For each of these replicas we define
the configurational phase space volume, ΩE≤ER

, contain-
ing all configurations with E ≤ ER. The key insight of
nested sampling is that the volumes, ΩE≤ER

, normalised
by the total phase space volume, are distributed accord-
ing to the Beta distribution, Beta(K − R + 1,R) [46].
This distribution has expectation value and variance

µR = 1−
R

K + 1
and σ2

R =
R(K −R+ 1)

(K + 2)(K + 1)2
. (1)

The above formalism assumes that the total phase space
volume Ωtot is finite, but this condition can generally be
satisfied with negligible error, for example by placing the
system in a large box.
At the i-th nested sampling iteration the replica (out

of K replicas) with highest energy Emax
i is discarded and

replaced by a new configuration sampled uniformly under
the constraint E ≤ Emax

i . The maximum energy Emax
i is

stored for later analysis. Again, the volume of configura-
tion space with energy less than the R-th largest energy,
ΩE≤ER

, this time normalized by ΩE≤Emax
i

, is distributed
according to the Beta distribution with mean and vari-
ance given by Eq. (1). During the nested sampling itera-
tion the volume of phase space with energy below Emax

contracts, on average, by µ1 = K/(K + 1). After N
nested sampling iterations, the algorithm produces a list
of the form {Emax

1 , Emax
2 , . . . , Emax

N }. We can associate
a fraction of configuration space Xi = ΩE≤Emax

i
/Ωtot =

µi
1, with each Emax

i . The density of states, or the (nor-
malized) volume of phase space with energy between
Emax

i+1 and Emax
i is simply

gi(E) = Xi −Xi+1 = µi
1 − µi+1

1 =
1

K + 1

(
K

K + 1

)i

.

(2)
Thermodynamic quantities of interest, such as the mean
energy, entropy, free energy, and heat capacity, can eas-
ily be computed from the density of states at arbitrary
temperature.
To generate configurations uniformly in space we use

the strategy suggested by Skilling [19]: after removing
the configuration with highest energy one of the remain-
ing K − 1 replicas (chosen randomly) is duplicated. The
new configuration is then evolved through a Markov
chain Monte Carlo (MCMC) walk sufficiently long to
decorrelate the system from its initial state. This Monte
Carlo walk is equivalent to a normal Monte Carlo simu-
lation at infinite temperature. The coordinates are ran-
domly perturbed, and the new configuration is accepted
subject only to the condition that the energy remains be-
low Emax. For most systems of interest the vast majority
of the computational effort will be spent generating new
configurations.
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Parallelization

Nested sampling can be formulated to run in paral-
lel on an arbitrary number of processors. We present a
pseudocode description of our parallel implementation in
Algorithm 2. Since this scheme also constitutes the basic
framework for SENS we define the MCMC loop in the
most general way at line 9 of Algorithm 2. For the pur-
pose of discussing the algorithm in its simplest form here
we will consider Algorithm 1.

for l = 0 to N-steps do
generate trial configuration (e.g. by random
perturbation);
if Etrial ≤ Emax: accept trial configuration;

end for

ALGORITHM 1. Nested sampling MCLoop

At each nested sampling iteration, instead of removing
only the replica with the highest energy, we remove the
P replicas with highest energy, where P is the number
of processors available. The rate of phase space contrac-
tion now is given by µP , leading to much faster phase
space contraction and shorter calculations in terms of
wall-clock time. This parallelization procedure was first
described in reference [27]. Our improvement is that we
do not discard the P − 1 replicas with highest energy
but we store them for later analysis. Phase space con-
traction between iterations is still constant, but now the
post-analysis is slightly more complicated. The fraction
of configuration space associated with the n-th recorded
energy is

Xn =

n∏

i=0

K − i%P

K + 1− i%P
, (3)

where “%” is the mod operator. This method follows
the same stepping routine as the existing parallelization
algorithm. However it produces P times as many points,
hence providing a more detailed picture of the potential
energy surface and a much more fine-grained binning of
the density of states.

SENS - THE CONCEPT

Global optimization is a common numerical problem
and global optimization algorithms have been developed
in many areas of science [2, 47, 48]. Knowledge of the
local minima alone, however, is not sufficient to infer
all the observable properties of interest from the energy
landscape (or in general any parameter space). The har-
monic superposition approximation (HSA) [49] (for more
details, see e.g. [2]) allows one to compute the density
of states and the partition function, solely based on the
knowledge of the individual local minima and the local
curvatures (normal mode frequencies) of the potential en-
ergy landscape, via the Hessian matrix. In the HSA each

⊲ initialisation
1: generate K random configurations;
2: store their coordinates and energy in LiveList ;

⊲ main loop
3: while termination condition is False do

4: remove the P replicas {R
(1)
m , . . . ,R

(P)
m } ≡ {Rm}

with highest energy {E
(1)
m > · · · > E

(P)
m } ≡ {Em}

from LiveList ;
5: append {Em} to OutputList ;

6: set Emax = E
(P)
m ;

7: select P replicas {R
(1)
s , . . . ,R

(P)
s } ≡ {Rs} from

LiveList at random;
8: add a copy of {Rs} to LiveList ;
9: MCLoop{{Rs}, Emax, minima.db }

10: end while

ALGORITHM 2. Parallel nested sampling

local minimum corresponds to a harmonic basin and ob-
servable properties are expressed as a sum over individual
contributions of the minima.
The HSA has been shown to be very effective for sev-

eral systems [18, 40, 50] but the accuracy depends on how
well the potential energy of the basins can be approxi-
mated as harmonic, and how many minima are thermo-
dynamically important. While the HSA captures land-
scape anharmonicity, arising from the distribution of lo-
cal minima, it does not include well anharmonicity, aris-
ing from the shape of the well. Therefore, the HSA be-
comes an increasingly good approximation at lower en-
ergies where well anharmonicity is less important. The
total number of minima increases exponentially with sys-
tem size [49, 51], but it is impossible to tell a-priori
how many of those are important. For example, LJ31,
a cluster of 31 isotropic particles interacting through a
Lennard-Jones potential [52], has about 3× 1015 distinct
minima [12], but only a few dozen are required to repro-
duce the low temperature thermodynamic behaviour.
The global resolution of nested sampling depends on

the number of replicas, K, used in the simulation, which
is generally limited by the available computation time
(the larger K, the slower the descent in energy). A more
serious problem for nested sampling is that if the barrier
to enter an unexplored funnel or superbasin is higher than
the energy constraint Emax, that region of the PES will
never be explored if it is not already populated. For ex-
ample, in a crystallisation transition, at high energy the
statistical weight of the liquid phase will be overwhelming
and there will be no replicas in the region corresponding
to the solid phase. However, as the energy constraint
decreases (hence the temperature) the relative statisti-
cal weight associated with the solid phase increases. If
we could sample phase space uniformly then at low en-
ergy we would observe a phase transition corresponding
to crystallisation, but we must resort to a MCMC walk
to explore phase space. If the entrance to the superbasin
corresponding to the crystal has been locked out by Emax

a Markov chain will not be able to find it, thus missing
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the transition.
Here we propose a new method that combines com-

plementary techniques: nested sampling can sample effi-
ciently the high energy regions of phase space, while at
low energy a database of minima obtained by global op-
timization is used to augment the survey. While nested
sampling assigns the correct statistical weight to each
basin, global optimization makes it likely that no impor-
tant minima are missed. This philosophy is also used in
other methods combining replica exchange Monte Carlo
with global optimization algorithms to treat broken er-
godicity [12, 16, 53, 54].

SENS - THE ALGORITHM

Employing knowledge of low-lying minima fits nat-
urally within the framework of nested sampling. We
present here both an exact and an approximate imple-
mentation of the SENS algorithm. Exact SENS is fully
unbiased and requires no additional parameters than
those needed in nested sampling. Approximate SENS,
on the other hand, is formally biased and requires ad-
ditional parameters. The reason for presenting both
methods is that, in some cases, the latter approach can
be considerably simpler to implement than the former,
while generally producing equally good, or better, re-
sults. SENS is based on the original nested sampling
algorithm presented in Algorithm 2. The novelty of our
method resides in the augmented sampling of the pa-
rameter space obtained by coupling the MCMC to the
HSA. SENS can therefore be implemented by changing
the function MCLoop({Rs}, Emax, minima.db) of Algo-
rithm 2. A full outline of the SENS algorithm can be
found in Algorithm 3 of the Supplementary Information.
To run SENS, a database of the lowest energy minima
must be pre-computed.
In this work we adopt basin-hopping [33–35] as the global
optimization algorithm of choice. Basin-hopping asso-
ciates any given point of the PES to a minimum obtained
by energy minimisation, thus transforming the PES into
a set of catchment basins. This basin transformation
is combined with a sampling scheme to search for the
global minimum. At each step the coordinates of the
current minimum configuration are perturbed to hop out
the basin and minimised again to find a new minimum.
Each step between two minima configurations is accepted
with probability

P (xold → xnew) = min [1, exp(−β(Enew − Eold))] .

If the move is rejected, the coordinates are reset to those
of the current local minimum. Since perturbations should
be large enough to step out of the catchment basin, the
step-size is typically much larger than for thermodynamic
sampling. Furthermore, since detailed balance need not
hold, the step-size can be dynamically adjusted to im-
prove sampling. Basin-hopping has been successfully ap-

plied to a wide range of atomic, molecular, soft and con-
densed matter systems [50, 55–57].

Exact SENS

An unbiased version of SENS can be implemented
by means of Hamiltonian replica exchange Monte Carlo
moves [58, 59]: in addition to normal MC steps, we in-
troduce a new Monte Carlo step in which a minimum is
sampled from the database according to its HSA config-
urational entropic weight:

w(b)
c (E) =

Ω
(b)
c (E)

Ωc(E)
. (4)

We define the configurational volume of basin b

Ω(b)
c (E) ∝

nb(E − V (b))
κ
2

∏κ
α=1 ν

(b)
α

, (5)

and the total configurational volume

Ωc(E) ∝
∑

b

nb(E − V (b))
κ
2

∏κ
α=1 ν

(b)
α

, (6)

where V (b) is the potential energy of the minimum corre-

sponding to basin b, ν
(b)
α are the normal mode vibrational

frequencies defined by the Hessian matrix, κ is the num-
ber of vibrational degrees of freedom, and nb is the de-
generacy of the basin (for Lennard-Jones clusters this is
the number of distinct non-superimposable permutation-
inversion isomers for minimum b) [2]. Here we have left
out all the constant factors that cancel out as well as
overall rotations. Once a minimum is selected, a con-
figuration with E ≤ Emax is then chosen uniformly from
within its basin of attraction. This approach corresponds
to selecting a point uniformly from a multidimensional
harmonic well. Such a configuration can be generated
analytically, see the Supplementary Information for de-
tails. Unlike Ref. [16], in our approach we sample from
the uniform distribution of configurations below energy
Emax, rather than from the corresponding canonical dis-
tribution.
Thus, we obtain a configuration Rsys sampled accord-

ing to the true Hamiltonian, Hsys, and a trial configura-
tion, Rhar, sampled according to the HSA-Hamiltonian,
Hhar. The energies of the two configurations are then
computed with the other Hamiltonian. If

Hhar(Rsys) ≤ Emax and Hsys(Rhar) ≤ Emax, (7)

then the true distribution and the HSA distributions
overlap, the swap is accepted, and Rsys becomes Rhar,
otherwise it is rejected. This procedure guarantees that
detailed balance is satisfied, for further discussion refer to
the Supplementary Information. In practice only the low-
est energy minima will successfully swap, since the HSA
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can only be reasonably accurate around these basins. It
is, however, at low energy that such swaps are needed the
most due to the hard energy constraint used by nested
sampling. Note that swaps are complemented by regu-
lar MCMC walks to allow for the exploration of the full
configuration space. In SENS the replicas are allowed to
“tunnel” between basins, thus improving the sampling.
A more detailed description, along with a pseudo-code
implementation of MCLoop specific to Lennard-Jones clus-
ters is provided in the Supplementary Information.

Approximate SENS

The implementation of approximate SENS is some-
what simpler, but comes at the cost of at least one extra
parameter. The basic idea of approximate SENS is that
the sampling of configuration space can be augmented by
starting a MCMC walk from a local minimum configu-
ration, sampled from the database according to its en-
tropic weight Eq. (4), with some user defined frequency.
This frequency is intrinsically defined in exact SENS by
the relative overlap of the HSA and the true density of
states. To implement approximate SENS we only need a
database of minima and their relative weights computed
according to Eq. (4). Before each MCMC step a ran-
dom number is drawn. If this number is less than some
user defined probability, PDS , then a minimum is selected
from the database according to the HSA weights and the
MCMC walk starts from this minimum configuration. A
pseudo-code implementation of MCLoop for approximate
SENS is provided in the Supplementary Information.
There are two main sources of bias in the approximate

SENS. The first one is due to the limited number of min-
ima from which we sample, since we cannot include the
large number of high energy minima. The second source
of error is due to the poor quality of the HSA approxima-
tion far from the minimum, hence the entropic weights
for the minima are not accurate at high energy. The most
obvious way of reducing these biases is to use long MCMC
walks. In fact, if we sample from the wrong basin a long
MCMC walk will allow the system to escape and explore
regions of phase space with greater entropic weight. How-
ever, very long MCMC walks are computationally expen-
sive, and if short runs are required we need to sample
from the database of minima carefully. If we start sam-
pling from the database of minima at high energy we will
possibly introduce a bias due to over-weighting of the low
energy regions of configuration space. To avoid this prob-
lem we suppress sampling from the database until we are
sure the HSA is likely to describe the potential energy
landscape accurately. We use a simple function (of the
Fermi type) that delays the onset of sampling from the
database of minima and limits its maximum frequency

fonset =
fmax

1 + e(E
(R)
min

−Eon)/∆E
, (8)

where Eon is some onset energy and E
(R)
min is the en-

ergy of the replica with lowest energy. Eon could be

chosen as E
(minima.db)
max , the energy of the highest known

minimum (stored in the database), or as the largest en-
ergy at which the HSA describes the system accurately.
fmax and ∆E are user-defined parameters that deter-
mine the total probability of sampling after the onset
and the width of the onset region, respectively. For small
sampling probabilities, PDS ≪ 1, the optimal frequency
of sampling from the database, should scale as 1/K; a
theoretical justification is derived in the Supplementary
Information. Hence, for PDS ≪ 1, we can make the prob-
ability of sampling from the database independent of the
number of replicas, replacing fmax with fmax/K.
We identify two possible strategies for the applica-

tion of approximate SENS. One is to start sampling
from a large database early in the simulation when

Eon = E
(minima.db)
max , with a small PDS , hence we choose

fmax ≪ 1. This procedure allows nested sampling to do
most of the work, but ensures that no important basins
will be missed. Alternatively, sampling from the database
can be delayed until all the high temperature transi-
tions have occurred, at which point we start sampling
more extensively from the database, hence fmax & 1/2.
Note that the database can be considerably smaller in
this case. The first strategy is a slight enhancement to
nested sampling, while the latter strategy interpolates
between nested sampling and the HSA in a similar spirit
to the basin-sampling method [12]. Importantly, even
if we sample from the database of minima, we use the
MCMC walk to explore more the anharmonic regions of
a basin, allowing us to go beyond the harmonic approxi-
mation.

RESULTS

We test SENS by calculating the thermodynamic prop-
erties of Lennard-Jones clusters exhibiting broken ergod-
icity. Lennard-Jones (LJ) clusters are systems of particles
that interact via the Lennard-Jones potential[52]

E = 4ǫ
∑

i<j

[(
σ

rij

)12

−

(
σ

rij

)6
]
, (9)

where ǫ is the pair well depth, σ is the separation at
which E = 0, and 21/6σ is the equilibrium pair sep-
aration. LJ clusters have served as benchmarks for
many global optimization techniques and thermodynam-
ics sampling [2, 12, 15, 18, 25, 34].
The majority of putative ground states for LJ clus-

ters are based on icosahedral packings [13]. For some
magic number LJ clusters complete Mackay icosahedra
are possible, for examples N = 13, 55. Complete icosahe-
dral structures are considerably more stable than neigh-
bouring sizes and their landscape is funneled towards the
global minimum [13]. There are, however, other sizes for
which the global minimum is not icosahedral. Examples
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FIG. 1. Heat capacity curves for LJ31. PT and HSA corre-
spond to parallel tempering and the harmonic superposition
approximation, respectively. All SENS calculations were per-
formed using K = 20000 replicas.

are LJ38, whose ground state is an fcc-truncated octahe-
dron [13], and LJ75 whose global minimum is a Marks
decahedron [13]. Due to the overwhelming number (en-
tropic weight) of structures based on incomplete icosahe-
dra at high energy, the energy landscapes of LJ clusters
with nonicosahedral global minima exhibit broken ergod-
icity. Calculating accurate thermodynamic properties for
these systems has proved to be a real challenge for all con-
ventional techniques [2, 15, 18, 25] and hybrid or more
complicated schemes [12, 14, 15, 18] are necessary. LJ
clusters with broken ergodicity therefore provide excel-
lent benchmarks to test the performance of new sampling
techniques.

LJ31

LJ31 is the smallest Lennard-Jones cluster exhibit-
ing broken ergodicity and a low temperature solid-solid
phase-like transition from Mackay to anti-Mackay surface
structures [13]. Convergence of the heat capacity curve
for LJ31 by parallel tempering (PT) with 24 geometri-
cally distributed temperatures in the range 0.0125 to 0.6
required N total

E = 1.9 × 1011 energy evaluations to con-
verge (curve shown in Fig. 1). Partay et al. [25] report
that K = 288000 replicas and N total

E = 3.4× 1012 energy
evaluations were needed to converge the heat capacity
curve of LJ31 by nested sampling (NS) using a low par-
ticle density of 2.31× 10−3σ−3 (100 fold less dense than
our system). Fig. 1 compares the heat capacity curves
obtained by PT, HSA (computed using & 80000 min-
ima), NS and SENS for LJ31. The SENS and NS results
correspond to K = 20000 replicas, N = 10000 steps for
each MCMC walk, and P = 16 cores. The database
of minima used for SENS contained the lowest 183 min-
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FIG. 2. Comparison of heat capacity curves for LJ31 obtained
by exact SENS using different numbers of replicas. The PT
and HSA curves were obtained by parallel tempering and the
harmonic superposition approximation, respectively.

LJ31

Method K N N
(total)
E

PT 1.9× 1011

NS ref.[25] 280000 3.4× 1012

NS 20000 10000 1× 1011

SENS approx 20000 10000 1× 1011

SENS exact 20000 10000 1× 1011

SENS exact 10000 10000 5.2× 1010

SENS exact 5000 10000 2.6× 1010

SENS exact 2500 10000 1.3× 1010

TABLE I. Comparison of methods used to obtain the LJ31
heat capacity curves shown in Figs. 1 and 2. N

(total)
E indi-

cates the total number of energy evaluations (summed over
all processors). PT was performed using 24 replicas spread
geometrically through the temperature range 0.0125 to 0.6.
Note that approximate SENS can perform as well as exact
SENS when fewer replicas are used, in the interest of brevity
we do not include these results as the LJ75 calculations illus-
trate clearly the capabilities of the method.

ima, although for SENS exact we observe that only seven
minima contribute to the swaps; see Table IV of Supple-
mentary Information for the swap statistics. From Fig. 1
we see that both exact SENS and approximate SENS
are well converged and agree with the PT curve over
the whole temperature range, and with the HSA at low
temperature. We note that K = 20000 replicas are not
nearly enough for NS to converge, and the low tempera-
ture peak is in fact completely absent. Using this number
of replicas SENS requires half the total number of energy
evaluations of PT and one order of magnitude less than
NS, see Table I. The swap operations do not constitute a
noticeable overhead and the reduction in the total num-
ber of energy evaluations corresponds to an equivalent
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FIG. 3. Heat capacity curves for LJ75. The PT and HSA
results were obtained by parallel tempering and the harmonic
superposition approximation, respectively. Exact SENS cal-
culations were performed using K = 60000 replicas, while re-
sults for approximate SENS calculations are shown for both
K = 30000 and K = 60000 replicas.

reduction in wall-clock time.
In Fig. 2 we show a comparison of PT, HSA and exact

SENS for a range of replica numbers 2500 ≤ K ≤ 20000;
see Table I for comparison. We observe that the high
temperature peak practically converges for K = 10000
and it resembles the features of the converged curve quite
well even for smaller numbers of replicas. The low tem-
perature peak instead converges very quickly, for as few
as K = 2500 replicas, representing an improvement in
performance of 20 times over PT. We note that one of
the great strengths of SENS is that even when a small
number of replicas are used and run times are very short,
although the curves may not be completely converged,
the physical picture produced by the method is always
correct because all the important basins are visited. On
the other hand, rapid convergence of the heat capacity
curves, requires the HSA to be a good representation for
the system. LJ38 is an example for which this condition
does not hold as well, see the Supplementary Information
for further details.

LJ75

LJ75 is a particularly clear example of a double-
funneled energy landscape [13] with O(1025) distinct lo-
cal minima [12]. The decahedral global minimum is sep-
arated by a very large potential energy barrier from the
lowest icosahedral minimum. Sharapov and Mandelsh-
tam [16] showed that O(1012) (total) energy evaluations
of adaptive parallel tempering are not enough to con-
verge the heat capacity peak corresponding to the solid-
solid phase-like transition in LJ75 [16]. Furthermore, the

LJ75

Method K N N
(total)
E

SENS approx 30000 10000 4× 1011

SENS approx 60000 10000 8× 1011

SENS exact 60000 10000 8× 1011

TABLE II. Comparison of methods used to obtain the LJ75
heat capacity curves shown in Fig. 3. N

(total)
E indicates the

total number of energy evaluations (summed over all proces-
sors). PT curves are not shown as the computational cost to
converge its heat capacity by this method is computationally
prohibitive as shown in Ref. [16]. SENS exact does not con-
verge as quickly as approximate SENS due to the low accuracy
of the HSA and hence the low swap acceptance.

rate of convergence slows down dramatically (it practi-
cally stops) after O(1011) (total) energy evaluations and
coupling of PT to the HSA is necessary to obtain conver-
gence of the low temperature peak [16]. Fig. 3 compares
the heat capacity curves obtained by HSA (computed
using 758 minima) and SENS for LJ75. SENS was car-
ried out using K = 30000 or K = 60000 replicas and
N = 10000 steps for each MCMC walk on P = 16 pro-
cessors. The database of minima for SENS contained
the lowest 758 minima. Approximate SENS started sam-
pling from the database at Eon = −369 ǫ, while for exact
SENS only 10 of the minima contributed to the swaps;
see Table VI of the Supplementary Information for swap
statistics. Unlike adaptive PT [16], approximate SENS
converges in O(1011) energy evaluations (Table II), but
exact SENS fails to converge the low temperature peak
for the same number of replicas. As for LJ38, exact SENS
does not converge quickly due to the lower accuracy of
the HSA, as inferred from the extremely low swap ac-
ceptance (Table VI of Supplementary Information). On
the other hand approximate SENS performs considerably
better than for LJ38 because the melting transition is
well separated from the solid-solid transition, thus al-
lowing sampling from the database relatively early on in
the simulation (right after melting) without affecting the
melting transition.

Methods

We define a move in MCMC as the displacement of
each individual particle along a random vector (n in to-
tal). After each MCMC walk we update the step size in
order to keep the average acceptance ratio within range
of some target value, which we have chosen as 0.5. The
default parameter values for the onset function Eq. (8)
were fmax ≈ 2/3 and ∆E = 1. We used a spherical box
of radius R = 2.5 σ for n = 31, R = 2.8 σ for n = 38 and
R = 3.0 σ for n = 75, with no periodic boundary con-
ditions and no cutoff radius. All calculations were car-
ried out on a single workstation with P = 16 processors
(eight-core dual Xeon E5-2670 2.6GHz, Westmere) using
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the improved parallelization scheme discussed in sec. Par-
allelization. The calculations were terminated when the
energy difference between the replicas with highest and
lowest energies was less than 10−2 ǫ. Energies of the
final “live” replicas were added to the output and the
compression factor associated with the ℓth “live” replica
was computed as

µ
(live)
ℓ =

ℓ<K∏

j=0

K − j

K − j + 1
. (10)

Error bars were obtained by the compression factor
resampling scheme discussed in the Supplementary
Information. By nested sampling or SENS iterations,
Niter, we mean a whole nested sampling iteration on P
processors, the total number of energy evaluations is

N
(tot)
E = N × P ×Niter, where N is the number of steps

in a MCMC. The computational overhead associated
with global optimization by basin-hopping is insignifi-

cant as less than around O(105) energy evaluations are
necessary to find the global minima of the LJ clusters
considered here [35]. Highly modular Python/C parallel
implementations of nested sampling and SENS are
publicly available [60, 61].
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Supplementary

Information

S.I. A: Sampling configurations in a harmonic well

Given a harmonic potential the configurational density
of states for a basin can be obtained by inverse Laplace
transforming the configurational partition function. In
particular, the scaling goes as:

gc(E) = L−1 {Zc(β)} ∝ (Ec − V )
κ
2 −1, (A1)

where all the terms that do not depend on energy have
been left out. gc(E) is the configurational density of
states, Zc the configurational partition function (evi-
dence), β = 1/kBT is the inverse temperature, Ec the
configurational energy, V the potential energy of the cor-
responding minimum and κ is the number of degrees of
freedom (for a n-atoms cluster κ = 3n−6). We can write
the energy of the simple harmonic oscillator as

Ec = V +
1

2
ξr2 (A2)

where r is the magnitude of the displacement vector and
ξ is the stiffness of the harmonic spring. We want to
determine the probability distribution of the configura-
tional energy as a function of the displacement vector
norm, ξ

1
2 r, to perform analytical uniform sampling in the

harmonic well. The unnormalised probability of finding
a configuration between Ec and Ec + dEc must be pro-
portional to the configurational density of states, from
Eq. (A1):

p(Ec)dEc ∝ (Ec − V )
κ
2 −1dEc. (A3)

Denoting q = ξ
1
2 r, by a simple change of variables we

can express the energy probability distribution in terms
of q:

p(Ec)dEc = p(Ec(q))Jdq ∝ (q2)
κ
2 −1qdq, (A4)

where the Jacobian J = dEc/dq = q and the equality
simplifies to the probability density function

p(q)dq ∝ qκ−1dq. (A5)

Hence q must be distributed according to the power law
cumulative distribution function P (q) = qκ (denoted
Pow(κ)) to obtain the correct distribution of energies.
In order to sample uniformly below some energy con-

straint Emax we first generate a random κ−dimensional
vector v with norm v ∼ Pow(κ) ∈ (0, 1] in the unit hy-
persphere. Then starting from Eq. (A2) we write

qusc =

√
2(Emax − V )

ξ
v (A6)

where qusc is the uniformly sampled configuration vector
with energy Ec. It can easily be verified that qusc has
the correct inner product:

Ec =
1

2
ξq2usc = (Emax − V )v2, (A7)

where again v ∼ Pow(κ) ∈ (0, 1]. The configuration qusc

is then projected onto the orthonormal eigenvector basis
{ei} of the minimum (obtained by diagonalization of the
Hessian matrix). The analytically sampled configuration
is then:

r = rmin +

κ∑

i=1

qiei (A8)

where rmin is the configuration of the minimum stored
in the database and qi is the uniformly sampled configu-
ration in Eq. (A6) with ξ being the eigenvalue associated
with the i-th eigenvector, ei.

S.I. B: Hamiltonian replica exchange moves satisfy

detailed balance

The Hamiltonian replica exchange method associates
different Hamiltonians (energy functions) with different
replicas of the same system, rather than different temper-
atures. The detailed balance condition for this method
has been derived in Ref. [58, 59].
The probability to accept an exchange between a con-

figuration Rsys, sampled according to an arbitrary sys-
tem HamiltonianHsys, and a configurationRhar sampled
according to a harmonic Hamiltonian Hhar is:

P (Rsys → Rhar) = min
(
1, e−β(Eafter−Ebefore)

)
, (B1)

where

Ebefore = Hsys(Rsys) +Hhar(Rhar), (B2)

Eafter = Hsys(Rhar) +Hhar(Rsys). (B3)

In SENS we effectively sample configurations at infinite
temperature (β → 0), with a hard constraint in energy
at Emax which can be cast into the Hamiltonian so that

H
′
x(Ry) =

{
Hx(Ry) if Hx(Ry) ≤ Emax

∞ ≡ Ebarrier if Hx(Ry) > Emax

and we require that

1/β ≫ Hsys(Rsys),Hhar(Rhar). (B4)

Therefore, if either Hsys(Rhar) or Hhar(Rsys) diverges,
Eafter will diverge such that βEafter = ∞. This last con-
dition requires that

Ebarrier ≫ 1/β. (B5)

It follows that Eq. (7) is the correct condition for a swap
and that detailed balance holds.
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pb(i) =
Ω

(b)
c

Ω
(a)
c +Ω

(b)
c

=
(Ei − Vb)

κ
2 Θ(Ei − Vb)

∏κ

α=1 ν
(a)
α oa

(Ei − Vb)
κ
2 Θ(Ei − Vb)oa

∏κ

α=1 ν
(a)
α + (Ei − Va)

κ
2 Θ(Ei − Va)ob

∏κ

α=1 ν
(b)
α

. (C2)

S.I. C: Onset function scaling

How well would SENS perform in a multifunneled land-
scape? Let us assume that SENS is using a database
that stores the lowest minima ma and mb of two different
funnels, with associated energies Va and Vb, respectively.
Assuming that funnel Fb has already been missed (Fb is
not populated and Emax is lower than the lowest transi-
tion state that leads to Fb) and all replicas are already
in funnel Fa, the probability of successfully sampling in
Fb is then

Pr(success|K replicas in Fa) = 1−

n∏

i=1

(1− PDSpb(i))
P ,

(C1)
where n is the number of iterations before the calculation
terminates, P is the number of processors, PDS is a user
defined probability of sampling from the database, and
pb(i) is the discrete probability density that the minimum
sampled from the database is mb. Assuming that the
funnels are harmonic we obtain Eq. (C2) where να =
ωα/(2π) is the vibrational frequency of mode α and for an
object corresponding to a point group with o independent
symmetry operations, there are o permutation-inversion
operations associated with barrierless reorientations [2].
The ideal value for PDS must then satisfy an identity of
the form

1−

n(Va)∏

i=1

(1− PDSpb(i))
P = φ, (C3)

where n(Va) is the average number of steps necessary for
descending from Eg to Va and φ is a probability close to
1, say φ = 0.999. Taking the logarithm of both sides,
Eq. (C3) can be rewritten as

n(Va)∑

i=1

log(1− PDSpb(i)) =
log(1 − φ)

P
. (C4)

For small PDS linearisation then leads to

PDS = −
log(1− φ)

P
∑n(Va)

i=1 pb(i)
, (C5)

which provides an optimal value for PDS . To calculate
the average number of steps necessary to descend a har-
monic basin, first we calculate an expression for the set
of energies that would be obtained by nested sampling
if at each step the configurational space was compressed
exactly by µ. We note that

µ =
Ω(Ei+1)

Ω(Ei)
=

(Ei+1 − V )
κ
2

(Ei − V )
κ
2

(C6)
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FIG. 4. Eq. (C8) gives the average number of steps necessary
to descend a particular harmonic basin as a function of the
number of replicas K and by substituting it in Eq. (C3) we can
evaluate PDS, the optimal probability of sampling from the
database of minima. As long as K is sufficiently large, fmax =
KPDS will be approximately constant, hence the optimal PDS

scales as 1/K. (a) As Va, the potential of ma, decreases, the
volume of Fa increases, and hence the optimal fmax increases
as well. (b) The optimal fmax should be independent of the
number of processors used, hence for sufficiently large K all
curves approach the same value. Unless specified assume P =

1, κ = 3, Eg = 500, Va = 100, Vb = 0, v
(a)
α = 1, v

(b)
α = 10,

ob = oa = 1, δ = 10, φ = 0.999.

from which we find

Ei = (E0 − V )µ
2i
κ + V, (C7)

where µ = 1 − P/(K + 1). The number of steps n(Va)
necessary to descend from Eg to E − Va = 10−δ can be
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obtained by rearranging Eq. (C7) to give

n(Va) = −
κ

2

δ log(10) + log(Eg − Va)

log(µ)
. (C8)

Finally, substituting Eq. (C7) for Ei in Eq. (C2) we can
evaluate Eq. (C3) numerically to obtain an optimal value
for PDS (approximating n(Va) to the nearest integer).
In the main text we introduce the onset function

Eq. (8) and suggest that for small PDS an optimal way
to make the probability of sampling from the database
of minima independent of the number of replicas, is to
use the prefactor 1/K, hence the maximum frequency
to sample from the minima, should be fmax/K, where
fmax is a user-defined parameter. Eq. (C8) gives the av-
erage number of steps necessary to descend a particular
harmonic basin as a function of the number of replicas
and by substituting this result in Eq. (C3) we can eval-
uate PDS , the optimal probability of sampling from the
database of minima. In Fig. C we plot fmax = KPDS

vs K. For large K the optimal value of sampling from
the minima scales as 1/K, thus justifying the use of the
prefactor in the onset function.

S.I. D: Algorithms

1. SENS

A complete pseudo-code implementation of the SENS
algorithm is provided in Algorithm 3.

⊲ initialisation, set i = 0
1: generate a database of minima in minima.db ;
2: for minimum in minima.db do

3: compute the Hessian matrix and its eigenvalues
(needed to compute the HSA weight);

4: end for

5: while i < K do

6: sample a random configuration of the system;
7: store its coordinates and its energy in LiveList ;
8: end while

⊲ main loop
9: while termination condition is False do

10: remove the P replicas {R
(1)
m , . . . ,R

(P)
m } ≡ {Rm} with

highest energy {E
(1)
m > · · · > E

(P)
m } ≡ {Em}

from LiveList ;
11: append {Em} to OutputList ;

12: set Emax = E
(P)
m ;

13: sample P replicas {R
(1)
s , . . . ,R

(P)
s } ≡ {Rs} from

LiveList at random;
14: add a copy of {Rs} to LiveList ;
15: MCLoop {{Rs}, minima.db , Emax} ;
16: end while

17: append LiveList to OutputList ;

ALGORITHM 3. Superposition Enhanced Nested Sampling

2. Exact SENS

A pseudo-code implementation of the MCLoop function
for exact SENS can be found in Algorithm 4.

1: for all Rs in {Rs} do

2: sample a minimum m from minima.db according to
its HSA entropic weight;

3: analytically generate a configuration Rhar in
the harmonic well of m, with energy

Hhar(Rhar) = E
(Rhar)
har ;

4: evaluate Hsys(Rhar) = E
(Rhar)
sys

and Hhar(Rs) = E
(Rs)
har

5: if E
(Rs)
har ≤ Emax and E

(Rhar)
sys ≤ Emax then

6: swap Rhar ↔ Rs;
7: for l = 0 to N-steps do
8: walk Rs by sampling uniformly within

{Es} ≤ Emax;
9: end for

10: else reject the swap and perform a standard MCMC;
11: end if

12: end for

ALGORITHM 4. Exact SENS MCLoop

The energy of a configuration Rs with respect to Rmin

is

E
(Rs)
har = E

(Rmin)
har + (Rs −Rmin)

⊤Hmin(Rs −Rmin),
(D1)

where Hmin is the Hessian matrix associated with Rmin.
Note that more careful considerations are needed when
dealing with Lennard-Jones clusters, in factRmin is fixed
in the database (hence also Hmin), thus breaking the
translational and rotational invariance of the system. In
order to avoid this problem we can either align Rmin

to Rs, but then Hmin must also be recalculated, or we
can do the opposite, which is the most efficient solution.
A pseudo-code implementation of the MCLoop function
specific to this system is provided in Algorithm 5.

3. Approximate SENS

A pseudo-code implementation of the MCLoop function
for approximate SENS is presented in Algorithm 6.
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⊲ this loop is performed in parallel
1: for all Rs in {Rs} do

2: sample a minimum m from minima.db according to
its HSA entropic weight;

3: analytically generate a configuration Rhar in
the harmonic well of m, with energy

Hhar(Rhar) = E
(Rhar)
har ;

4: evaluate HLJ (Rhar) = E
(Rhar)
LJ ;

5: if E
(Rhar)
LJ > Emax then

6: reject the exchange and perform a standard
MCMC;

7: else

8: quench Rs → Rque with energy

HLJ (Rque) = E
(Rque)

LJ and find the minimum
configuration Rmin with the corresponding energy
in minima.db ;

9: find the set of permutations (P) and rotations (R)
such that PRRque = Rmin;

10: generate R
(PR)
s = PRRs, which is now aligned

to Rmin;

11: compute Hhar(R
(PR)
s ) = E

(R
(PR)
s )

har ;

12: if E
(R

(PR)
s )

har > Emax then

13: reject the move and perform a standard
MCMC;

14: else swap Rhar ↔ Rs;
15: for l = 0 to N-steps do
16: walk Rs by sampling uniformly within

{Es} ≤ Emax;
17: end for

18: end if

19: end if

20: end for

ALGORITHM 5. Exact SENS MCLoop for LJ-clusters

for all Rs in {Rs} do

sample a minimum configuration Rb from minima.db

according to its HSA entropic weight;
if u ∼ Uniform(0, 1) < PDS then

swap Rb ↔ Rs;
for l = 0 to N-steps do

walk Rs by sampling uniformly within
{Es} ≤ Emax;

end for

else reject the swap and perform a standard MCMC;
end if

end for

ALGORITHM 6. Approximate MCLoop

S.I. E: Statistical Uncertainty by Compression

Factor Resampling

The nested sampling algorithm produces as its pri-
mary product a list of parameters (in our case ener-
gies) with an associated fraction of configurational space

Xi =
∏i

j=0 tj , where the tj are the compression fac-
tors sampled on a unit interval with probability dis-
tribution Beta(K − P + 1,P) and expectation value

µ = 1 − P/(K + 1). The exploration of configuration
space is the challenging and time consuming part of the
algorithm, while the overhead due to the assignment of
compression factors is almost irrelevant. In general we
use the expectation value µ of these compression factors
in order to find the bins of density of states, g, that we
need to calculate thermodynamic properties. Given a set
of energies obtained by nested sampling, the correct size
of the bins for the density of states is one unique reali-
sation of the compression factors t that we do not know
a priori (it is for this reason that we use the expectation
value µ). There is some statistical uncertainty associated
with the distribution of the bin size, which is ultimately
due to the distribution of compression factors t, which
we know. Since we are interested in the distribution of
some observable Q(E), say the heat capacity, we can use

a representative set of parameters Ẽ = Ẽ1, Ẽ2, . . . , Ẽn

(energies) obtained by nested sampling (the time con-
suming part) and sample c sets of compression factors

tℓ = t
(ℓ)
1 , t

(ℓ)
2 , . . . , t

(ℓ)
n to associate with this representa-

tive set of parameters. This procedure is justified by
the fact that we are interested in the probability distri-

bution of Q(Ẽ) given the joint probability distribution

p(tℓ) = p(t
(ℓ)
1 )p(t

(ℓ)
2 ) . . . p(t

(ℓ)
n ). The mean and variance

of Q(Ẽ) are therefore

〈
Q(Ẽ)

〉
=

c∑

ℓ=1

Q(Ẽ)p(tℓ) =
1

c

c∑

ℓ=1

Q(Ẽ|tℓ); (E1)

V ar
(
Q(Ẽ)

)
=

c∑

ℓ=1

Q(Ẽ)2p(tℓ)−

(
c∑

ℓ=1

Q(Ẽ)2p(tℓ)

)2

=
1

c

c∑

ℓ=1

Q(Ẽ|tℓ)
2 −

(
1

c

c∑

ℓ=1

Q(Ẽ|tℓ)

)2

.

(E2)

A protocol for quantifying uncertainty of this form was
already suggested by Skilling [19]. However, this method
suffers from some flaws: it does not include an estimate
of systematic uncertainties and does not include in any
way an estimate of the uncertainty due to the incomplete
sampling of configurational space. The latter effect is
due to the fact that resampling is performed over one

representative set of energies (Ẽ) that could be missing
a whole part of configurational space.

S.I. F: Results

1. LJ38

LJ38 has a double-funnel energy landscape [43] and its
heat capacity exhibits three peaks: the first high tem-
perature peak corresponds to a vapour-liquid transition,
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FIG. 5. Heat capacity curves for LJ38. The PT and HSA
results were obtained by parallel tempering and the harmonic
superposition approximation, respectively.

the second peak corresponds to melting, and the low tem-
perature peak corresponds to a solid-solid transition from
the cuboctahedral global minimum to the lowest icosa-
hedral minimum [14]. The PT heat capacity curve for
LJ38 generally overestimates the temperature at which
the solid-solid phase-like transition occurs and, conse-
quently, disappears under the melting peak, and should
appear, instead, as a small shoulder slightly under the
melting peak [15, 17]. For this reason long calculations
are necessary for the heat capacity to converge. Partay
et al. [28] employed K = 244000 replicas and O(1012) en-
ergy evaluations to resolve the heat capacity of LJ38 by
NS. Fig. 5 compares the heat capacity curves obtained by
PT (using a box of radiusR = 2.8 σ), HSA (computed us-
ing & 89000 minima) and SENS for LJ38. SENS was car-
ried out using K = 50000 replicas and N = 10000 steps
for each MCMC walk. The database of minima used
for SENS contained approximately 89000 minima. It ap-
pears that neither version of SENS can outperform NS
or parallel tempering, which require the same number of
energy evaluations to converge; see Table III for compar-
ison. Exact SENS fails due to the inaccuracy of the HSA,
and Table V shows the number of effective swaps from
and to the basin. These numbers are considerably smaller
than for LJ31 (see Table IV), even if the total number of
iterations for LJ38 is much larger. Approximate SENS
should generally work independently of the quality of the
HSA. Here, however, the three transitions overlap signif-
icantly thus preventing sampling from the database early
enough to get the right low temperature behaviour with-
out affecting the high temperature behaviour. This is not
the case for LJ75 where the phase-like transitions are well
separated in temperature and sampling can start early
enough to get the correct low temperature behaviour
without affecting the melting transition.

LJ38

Method K N N
(total)
E

PT O(1011)
NS ref.[28] 244000 O(1012)
NS 50000 10000 3.3× 1011

SENS approx 50000 10000 3.3× 1011

SENS exact 50000 10000 3.3× 1011

TABLE III. Comparison of methods used to obtain the LJ31
heat capacity curves shown in Fig. 5. N

(total)
E indicates the

total number of energy evaluations (summed over all proces-
sors).

2. Swap statistics in exact SENS calculations

In this section we present statistics for the exact SENS
swaps in the longest runs of each LJ system presented in
the paper. For each minimum we report the total number
of swaps that led to this minimum, the number of effec-
tive swaps to this minimum (thus excluding the swaps
within the same minimum) and the number of effective
swaps that led from the minimum to another.
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LJ31
minimum total swaps to effective swaps from effective swaps to

−133.586421919 346376 4225 5994
−133.293821966 14585 7167 5403
−133.183574005 1529 1325 1325
−133.104620445 412 385 365
−132.998423589 25 11 25
−132.801757275 1 0 1
−132.765536037 0 1 0
−132.721370719 1 0 1

TABLE IV. Number of swaps to and from basins in exact SENS for LJ31 using K = 20000 replicas, N = 10000 steps for each
MCMC and P = 16. Total number of iterations per processor= 650025.

LJ38
minimum total swaps to effective swaps from effective swaps to

−173.928426591 486584 245 48
−173.252378416 65 26 63
−173.134317009 163 27 154
−172.958633408 4 2 4
−172.877736411 38 6 37
−172.234926493 0 1 0
−171.992596189 1 0 1

TABLE V. Number of swaps to and from basins in exact SENS for LJ38 using K = 50000 replicas, N = 10000 steps for each
MCMC and P = 16. Total number of iterations per processor= 2082691.

LJ75
minimum total swaps to effective swaps from effective swaps to

−397.492330983 632019 1 704
−396.282248826 15 296 12
−396.238512215 14 270 10
−396.193034959 7 41 5
−396.192994186 3 11 3
−396.191648856 4 45 4
−396.186860193 0 1 0
−396.126268882 2 63 1
−396.061061075 1 0 1
−396.061598578 0 13 0
−396.061061075 0 1 0
−396.057293139 1 0 1
−395.992783183 1 0 1

TABLE VI. Number of swaps to and from basins in exact SENS for LJ75 using K = 60000 replicas, N = 10000 steps for each
MCMC and P = 16. Total number of iterations per processor= 5043100.


