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ABSTRACT: In vivo, mammalian cells proliferate within
3D environments consisting of numerous microcavities and
channels, which contain a variety of chemical and physical
cues. External environments often differ between normal
and pathological states, such as the unique spatial
constraints that metastasizing cancer cells experience as
they circulate the vasculature through arterioles and narrow
capillaries, where they can divide and acquire elongated
cylindrical shapes. While metastatic tumors cause most
cancer deaths, factors impacting early cancer cell prolifer-

Cancer cells High-/super-resolution studies of mitotic
entrapped inside processes in tubular confinement

capillaries ___..- -1 =
.

ation inside the vasculature and those that can promote the formation of secondary tumors remain largely unknown. Prior
studies investigating confined mitosis have mainly used 2D cell culture systems. Here, we mimic aspects of metastasizing
tumor cells dividing inside blood capillaries by investigating single-cell divisions of living human cancer cells, trapped
inside 3D rolled-up, transparent nanomembranes. We assess the molecular effects of tubular confinement on key mitotic
features, using optical high- and super-resolution microscopy. Our experiments show that tubular confinement affects the
morphology and dynamics of the mitotic spindle, chromosome arrangements, and the organization of the cell cortex.
Moreover, we reveal that membrane blebbing and/or associated processes act as a potential genome-safety mechanism,
limiting the extent of genomic instability caused by mitosis in confined circumstances, especially in tubular 3D
microenvironments. Collectively, our study demonstrates the potential of rolled-up nanomembranes for gaining molecular
insights into key cellular events occurring in tubular 3D microenvironments in vivo.

KEYWORDS: rolled-up nanofilms/membranes, mitosis, chromosome segregation, membrane blebbing, actin cortex, 3D cell culture,

metastasis

ancer cells, originating from primary lesions can invade

adjacent tissues and squeeze along muscle fibers,'

before entering the vascular system and traveling to
distal sites, where some of them can proliferate and form
metastases. During this process cancer cells can become
trapped inside narrow blood capillaries”™ (Figure 1A), where
they adapt to the tubular confinement by elongating into
cylindrical shapes® (Figure 1A and B). Importantly, several in
vivo studies have shown that circulating tumor cells can divide
under such tubular confinements and form early micro-
metastatic colonies before exiting the vasculature.”” This
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intravascular proliferation in tubular environments is thought
to be a critical step during metastasis, at least in the lung and
the liver.”>" ™ Despite the leading role of metastasis in cancer
mortality, many steps during this process remain poorly
understood. This is due to metastasis being a rare—but often
destructive—process that happens in parts of the body not
easily accessible to molecular analyses, such as the vascular or
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Figure 1. Tubular confinement affects cell shape, chromosome alignment, and spindle morphology in mitotic HeLa cells. (A) Schematic of
metastasizing tumor cells originating from the primary tumor and circulating the blood system. The large tumor cells get trapped, for
instance, through size restriction, in narrow capillaries, where they acquire elongated cylindrical shapes. (B) Dual-labeled cancer cells (red:
nuclei; green: cytoplasm) trapped inside a blood capillary in a living mouse. The cells were imaged 1 h after injecting them in the epigastric
cranialis vein in an abdominal skin flap. The cells and nuclei are deformed by elongation to fit the small (~8 gm) inner diameter of the
capillary. Yellow arrow indicates the outer wall of the blood vessel. Red arrows point out entrapped and elongated human HT-1080 dual-color
cells. The ri§ht red arrow indicates a cell that has likely undergone mitosis, as judged by its binucleate appearance. Image taken from Suetsugu
et al,, 2013.° Reprinted with permission from ref 6. Copyright 2013 The International Institute of Anticancer Research. (C) 3D schematic of
tubular confinement, indicating 2D constraints (red arrows) on 3D cultured mammalian cells. (D) Cell shape factor plotted against microtube
sizes (n = 15, 16, 24, 25, 12, and 10 cells from left to right). The inset shows an ellipsoidal fit in orange and black dashed lines for the major (1)
and minor (d) ellipsoid axes. NS, not significant; all other cell shape factors are significantly altered compared to free cells (p-value < 0.05;
Student’s t-test). (E) 3D projected fluorescent microscopy images (histone H2B-mCherry, red; GFP-tubulin, green) of prometa-/metaphase
HeLa cells inside differently sized rolled-up nanomembranes (regions between the parallel, dashed lines). (F) Side (upper row) and top
(lower row) 3D reconstructed images of chromosome rosettes inside different microtube sizes. The 3D schematics on the left indicate the top
view angles (blue arrows) for free (top) and confined (bottom) chromosome rosettes depicted in the lower row on the right. Scale bars, 10
pm.

ductal system. Gaining molecular insights into how 3D, and in restructure their interphase actin structures,'” resulting in the

particular tubular, constraints affect the division of human recruitment of actin filaments to the cell cortex,' thereby

cancer cells might therefore lead to a better understanding of imparting a heightened stiffness to mitotic cells.'>'® This

the events and factors that promote metastasis, which in the . C . .
i i _ increased rigidity is usually accompanied by conspicuous
future could help improve antimetastatic cancer treatments.

Cell division, the partitioning of the nucleus (mitosis) changes in mitotic cell shape, whereby the cells abandon their

followed by the division of the cytoplasm (cytokinesis), flattened and spread-out interphase morphologies on planar
) ; 14,15

involves striking 3D changes in the cell's geometry and substrates to take up rounded-up sphere-like shapes. The

cytoskeleton. For instance, most dividing eukaryotic cells cell cortex is then further remodeled to generate a contractile
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actomyosin ring that is tightly coupled to the plasma
membrane'' and enables cytokinesis.'®

Mitotic rearrangements of the cortex are accompanied by,
and tightly linked to, the remodeling of the interphase
microtubule network into a bipolar spindle, which itself
possesses an intricate 3D architecture. Dedicated motor-protein
activities functioning along microtubules help to provide the
vectorial forces required to push/pull the duplicated
centrosomes apart, allowing the centrosomes to migrate along
various 3D trajectories to opposite cell poles. This process
occurs in a tightly controlled temporal manner and generates a
mature prometa-/metaphase spindle with extremely well-
defined geometric dimensions."’ ™' A ring-like arrangement
of chromosomes then forms at the nascent spindle, facilitating
bipolar attachment of microtubules to the chromosomes’
kinetochores and, thus, enabling faithful chromosome segrega-
tion and maintaining genomic stability.'” Notably, genomic
instability can lead to cancer as well as other diseases,”””’
highlighting the importance of genome-protective mechanisms
for human health.

Mitotic progression is highly sensitive to external physical
influences, such as spatial stimuli and geometric con-
straints.””~>* Indeed, by remodeling the actin cortex lying at
the interface between an animal cell and its environment,
mitotic cells can translate geometric aspects of their micro-
environment into spatial information that determines the fate
of their daughter cells. For instance, the pattern of cell adhesion
can dictate the orientation of the spindle and thus, the positions
of the two arising daughter cells.””** Moreover, preventing
mitotic cell rounding by planar compression in one dimension
from the top/bottom can cause mitotic delays, multipolar
spindles, and defects in chromosome segregation.'*” In
addition, changes in spindle architecture caused by external
forces™® can impair the stability of the bipolar spindle and the
positioning of the cell division plane.'*

Collectively, the above findings illustrate tight connections
between the cortical cytoskeleton and spindle microtubules and
the highly mechanosensitive nature of cell division. However,
prior studies were mainly performed on cells growing on flat
surfaces that lack the geometric attributes of the highly curved
substrates and tubular confinements cells experience inside the
body, such as kidney tubules, mammary ducts, gut villi, vessels,
muscle fibers, and bone tissue. Despite the in vivo relevance of
these microenvironments, only few in vitro models have been
developed to mimic the geometry of such structures, for
instance, the ducts and acini of mammary glands.”’
Importantly, recent evidence has emerged indicating that cells
under tubular confinement elicit distinct mitotic responses to
external spatial stimuli that are different compared to those of
spatially confined cells growing on planar substrates.”®
Investigating these responses at a molecular level is therefore
crucial to understand better how the physical parameters of
different 3D surroundings, such as the tubular confinement of
cancer cells inside blood capillaries (Figure 1B), might dictate
mitotic cell behavior and function.

To address this challenge, we have developed and used
rolled-up SiO/SiO, nanofilms to encapsulate live, individual
human cancer cells (HeLa cells) inside transparent micro-
tubes”* ™" (Figure 1C). This tubular nanomembrane system
offers a way of mimicking aspects of the in vivo 3D
microenvironments certain cancer cells encounter during
metastasis. The behavior of the entrapped cells can then be
analyzed conveniently with high- and super-resolution micros-
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copy. Moreover, due to the on-chip nature of the platform,
numerous cells can be imaged in a single experiment. Other
systems, such as microfluidic devices, either have complex
macro-to-micro interfaces, introduce contamination via oil
molecules, have rectangular rather than circular channels, or
cannot be implemented in an easily visualizable chip-based
format.”' =

In this study, we show that tubular confinement has a
profound impact on a wide range of mitotic features, and we
provide an in-depth characterization of these features at a
molecular level by using confocal and super-resolution 3D
structured illumination microscopy (3D SIM). Thus, we
observed deformation of chromosome rosettes into densely
packed and disordered shapes and show that tubular confine-
ment influences the kinetics of spindle formation. In addition,
consistent with the link between the mitotic spindle and the cell
cortex, we discover a striking bipolar redistribution of cortex
proteins that occurs specifically in mitotic cells dividing inside
nanomembrane tubes. This redistribution coincides with
conspicuous membrane blebbing that occurs at the actin- and
cortactin-enriched cell tips throughout mitosis. Finally, we
establish that membrane blebbing and/or associated processes
can act as a potential genome-safety mechanism that becomes
functionally important under certain spatial confinements.
Based on our findings, we discuss the potential of our platform
for uncovering cellular pathways relevant for cells dividing in
certain 3D microenvironments. These advances might help
provide a better understanding of the molecular events
happening, for instance, during early intravascular proliferation
of circulating tumor cells.

RESULTS AND DISCUSSION

Tubular Confinement Impacts on Mitotic Cell Round-
ing, Spindle Morphology, and Chromosome Arrange-
ments. To gain insights into how spatial confinement
influences key mitotic features of cells dividing in 3D contexts,
we fabricated arrays of on-chip microtubes, inside which
individual proliferating human cells, such as HeLa cells, can be
entrapped and cultured®® (Figure 1C). Briefly, SiO/SiO,
nanobilayers of 25—100 nm thickness were deposited on a
transparent substrate patterned with 100 X 100 pgm square-
shaped sacrificial layers. After selective etching away of the
sacrificial layers, the SiO/SiO, nanobilayers were self-folded
into microtubes in on-chip format with a density of ~500
microtubes per 1 cm? chip area.’*™*° The diameters of
microtubes are highly defined and tunable.”” We used 7—21
um microtubes in our initial experiments, because 7 pm
represents about one-third of the diameter of rounded-up
human HeLa cells (~20 pum) and because we found that
nanomembrane tubes of this size are the smallest tubes that
HeLa cells can be entrapped in (not shown). By contrast, tubes
with diameters above 21 pm do not impose any spatial
confinement on mitotic HeLa cells, as they are larger than the
rounded-up diameter of HeLa cells during mitosis. The surfaces
of the microtubes were functionalized with fibronectin to mimic
aspects of the chemical microenvironment of mammalian cells
in vivo. We then co-cultured HeLa cells with the nano-
membrane arrays overnight, allowing the cells to spontaneously
migrate into the tubular nanomembranes.”® Finally, we
analyzed cells entrapped inside the tubes with high-resolution
fluorescence microscopy (confocal microscopy) and/or super-
resolution 3D SIM. As described below, these techniques
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Figure 2. Tubular confinement perturbs the kinetics of centrosome separation during spindle formation and leads to abnormally elongated
prometa-/metaphase spindles. (A) Time-lapse z-stack projections of a HeLa cell dividing inside a 9 um microtube and expressing centrinl-
GFP (green; white arrowheads), a centrosome marker, to visualize the 3D spindle pole kinetics in the cell. Scale bar, 10 gm. Times are in
hour:min format. (B) Quantification of (A) showing the temporal evolution of spindle length (mean 3D distances between centrosomes +
SD; time ‘0’ defined as the beginning of cell rounding) in the indicated situations. The @s with arrows indicate the times at which full
separation of the centrosomes is achieved in prometa-/metaphase, i.e., when a mature prometa-/metaphase spindle has formed (black ®: 10.3
+ 0.8 min for free cells and red @: 32.3 + 2.1 min for cells in 7—9 gm microtubes). The onset of anaphase spindle elongation is marked by a
black and red @ for free cells and cells confined in 7—9 pm microtubes, respectively. In each case, the experiment was repeated at least five
times. (C) Quantification of prometa-/metaphase spindle lengths + SD in the indicated spatial environments (n =7, 6, 6, 5, and § cells from
left to right). Blue dotted line indicates the average spindle length corresponding to free cells. (D) Bar graph illustrating average elongation
speeds of nascent spindles in indicated spatial environments (blue columns; n =7, 6, 6, 5, and S cells from left to right) and the average time
required to form an 11.5 gm long spindle, the average length of prometa-/metaphase spindles in free cells (orange columns; n =7, 6, 6, 5, and
S cells from left to right; mean + SD; see Supplementary Figure 3C for more details). NS, not significant, *significantly altered changes
compared to free cells (p-value < 0.05; Student’s t-test).

allowed us to gain insights into key processes occurring during encapsulated by narrow rolled-up nanomembranes. Thus, the
single-cell division under tubular confinement. extent of deformation of cancer cells inside blood capillaries in
The rolled-up nanomembrane configuration enables tubular living organisms matches well with the changes in cell shape we
2D-confinement of 3D cultured mitotic human cells (Figure observed inside rolled-up nanomembranes: cell shape factors
1C). As such, the nanomembrane platform is fundamentally reached ~0.08 in the very narrowest vascular capillaries inside
different from previous 1D-confined (from top and bottom) living mice,”” comparable to the ~0.10 cell shape values we
experimental set-ups based on cells cultured on 2D/planar determined for HeLa cells inside 7—9 um rolled-up nano-
surfaces'*** (Supplementary Figure 1). We observed that membranes (Figure 1D). Collectively, these findings illustrate
confinement inside tubular nanomembranes prevented cells that the experimental conditions in our system are within the

from rounding up during mitosis. Instead, cells adopted range of tubular constrictions certain cells encounter in vivo.
elongated cylindrical shapes, as illustrated by the strong To probe how tubular confinement affects the mitotic
correlation between the cell shape factor (ratio between the machinery in 3D cultured cells, we investigated how the
minor and major axes of an ellipse fitted to the cell) and the obstruction of cell rounding influences spindle morphology and
microtube diameter (Figure 1D). We therefore focused our chromosome alignment in mitotic prometaphase and meta-
subsequent analyses on microtube diameters ranging from 7 to phase (named prometa-/metaphase henceforth). Both spindle
18 um, the largest microtubes that induced significant cell and chromosome alignments are geometrically demanding
shape changes (Figure 1D). Significantly, this diameter range is features that are important for successful mitotic progres-
comparable to the widths of in vivo blood arterioles/capillaries sion.'**7* For our experiments, we used HeLa cells stably co-
present in humans and other mammals.”>**” While blood expressing the core histone H2B tagged with the fluorescent
capillaries readily allow passage of endogenous cells of the marker mCherry (H2B-mCherry) and a-tubulin fused to green
vascular system, such as red blood cells (~7 ym in diameter), fluorescent protein (GFP-tubulin). This allowed us to
metastasizing cancer cells that are much larger in diameter simultaneously follow chromosome and spindle dynamics by
(~20 um) can get stuck due to size restriction.”” Importantly, fluorescence microscopy together with morphological cell
cancer cells trapped inside the vascular system adapt to the shape changes (Figure 1E). The acquired images revealed
widths of blood capillaries in vivo,”” comparable to HeLa cells that tubular confinement often led to misaligned chromosome
5838 DOI: 10.1021/acsnano.6b0046 1
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Figure 3. Tubular confinement induces bipolar distribution of cortical actin in mitotic HeLa cells. (A) Confocal images of phalloidin-stained
free HeLa cells showing the distribution of actin filaments (F-actin) in indicated cell cycle phases (blue: DAPI staining to visualize DNA).
Enrichment of F-actin at the cytokinetic furrow is highlighted by a white arrowhead. (B) Super-resolution 3D SIM projection images of
confined human HeLa cells. Stainings and cell cycle stages as in (A). White arrowheads point to enrichment of F-actin at cell tips. (C) Left:
Super-resolution fluorescent image showing bipolar distribution of actin filaments at the cell tip of a confined metaphase HeLa cell in a 3D
SIM single z-plane. Right: Fluorescence intensity profiles along the blue (cell side) and red (cell tip) dotted lines, as indicated in the left image
by arrowheads. Note the enrichment of F-actin at the cell tip facing the opening of the rolled-up nanomembrane. (D) Histogram of mean
fluorescence intensities (+SD) of F-actin at 30 randomly chosen locations at the sides and tips of HeLa cells (fluorescence intensity sums
along 0.5 pm lines at different locations as shown in (C)) in indicated cell cycle phases of HeLa cells confined within 13—15 gm microtubes.
NS, not significant; comparisons of F-actin intensities between the cell tip and the side for all mitotic cell cycle phases are significantly
different (p-value < 0.05; Student’s t-test). Scale bars, 10 gm. A.U., arbitrary units.

plates and variations in the angles between metaphase plates opposite cell poles.”” By contrast, 3D reconstructions of cells
and spindle axes (Figure 1E). 3D chromosome reconstructions confined inside microtubes of <14 pm diameters did not
highlighted a strong compression of prometaphase chromo- contain chromosome rosettes. Instead, their chromosomes
some arrangements inside microtubes below 13 ym in diameter exhibited dense packaging into tilted plates lacking a central
(Figure 1F and Supplementary Movies 1—4). During early cavity (Figure 1F and Supplementary Movies 2—4). These
prometaphase, unconfined HeLa cells dividing on planar effects were pronounced most strongly in nanomembrane tubes
surfaces outside of the microtubes (named “free cells” narrower than 10 pm, the mean diameter of chromosome
henceforth) displayed typical chromosome rosettes, ring- rosettes in free HeLa cells. In those narrow microtubes, the
shaped chromosome formations of ~10 pgm in diameter prometaphase chromosome arrangements appeared twisted and
(extracted from our live- and fixed-cell observations). The strongly elongated into “cloud-like” structures (Figure IF,
rosettes consistently formed at the surface of nascent spindles, Supplementary Figure 2B, right and Supplementary Movie 2).
with the arms pointing outward and the centromeres inward Tubular Confinement Impacts on the Dynamics of
toward the spindle axis, in accord with previous reports'’ Centrosome Separation. Chromosome rosettes are impor-
(Figure 1F; Supplementary Figures 2A and B, left and tant for the timely formation of bipolar prometa-/metaphase
Supplementary Movie 1). These rosettes are believed to be spindles.'” Thus, we wondered whether tubular confinement
crucial for timely establishment of bipolar kinetochore impacts on the kinetics of spindle formation. To address this
attachments to opposite spindle poles, a process that relies question, we took advantage of a Fiji plugin (http://fijisc; Fiji
on a functional prometaphase spindle and is important for is an open source software that is a bundled version of Image J)
faithful sister chromatid segregation.'”*' Chromosomes cap- to automatically monitor the 3D motion of centrosomes during
tured from this ring by the microtubules are concentrated to mitosis, using GFP-tagged centrinl as a marker (centrinl-GFP;

form a metaphase plate at an angle perpendicular to the long Figure 2A, Supplementary Figures 3A and B and Supple-
axis of the spindle.'” Only when all kinetochores are properly mentary Movies 5 and 6). The evolution of spindle length—the

bioriented and the spindle assembly checkpoint (SAC) is distance between the two centrosomes—revealed three distinct
satisfied, do cells enter anaphase, triggering a loss of sister phases during mitosis (I-III; Supplementary Figure 3C). This
chromatid cohesion and the movement of sister chromatids to allowed us to determine the timing of the transition from an

5839 DOI: 10.1021/acsnano.6b0046 1
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Figure 4. Tubular confinement induces marked membrane blebbing at the tips of mitotic HeLa cells. (A) Spatially confined cells show
conspicuous blebbing from prometaphase onward (left two images), whereas unconfined HeLa cells start blebbing only during cytokinesis
(right two images). Membrane blebs are highlighted by orange arrowheads. H2B-mCherry is shown in red. For white arrows see description
in (B). (B) Kymographs of 10 pixels in width along longitudinal cell axes of HeLa anaphase cells (white arrows in A) were created from phase-
contrast time-lapse movies: every 3 min for 140 min for a representative 13 gm microtube confined cell (top); every 3 min for 40 min for a
representative free cell (bottom), starting from NEB and cell rounding to the end of telophase. Distance ‘0’ indicates the center of the
rounded-up cells just after NEB. Black arrowheads indicate initial cell membrane position at NEB, and white arrowheads indicate protrusions
of membrane blebs. (C) Super-resolution 3D SIM images of confined HeLa cells (DAPIL, DNA, blue; phalloidin, F-actin, green) with
conspicuous blebs at cell tips in prometa-/metaphase (two representative cells) in the absence (c’) or presence (c”) of 25 uM blebbistatin.

Scale bars, 10 pm.

elongating nascent spindle to a prometa-/metaphase spindle,
which is fairly constant in length (Figure 2B and
Supplementary Figure 3C). The @s with arrows indicate the
times at which full separation of the centrosomes is achieved in
prometa-/metaphase i.e, when a mature prometa-/metaphase
spindle has formed (Figure 2B and Supplementary Figure 3C).
Moreover, the data indicated the timing for initiation of the
final elongation phase of the spindle during anaphase (Figure
2B and Supplementary Figure 3C, time points indicated with
®). We found that tubular confinement prolonged the
formation of prometa-/metaphase spindles from 10.3 + 0.8
min in free cells (black @, Figure 2B) around 3-fold to 32.3 +
2.1 min in cells dividing inside narrow microtubes below 10 ym
(red ®, Figure 2B). We detected an intermediate, around 2-
fold, delay to 20.0 + 5.0 min in cells dividing inside microtubes
between 10 and 12 ym (Supplementary Figures 3C and D, time
points indicated with @).

The delays in intermediate and narrow sized tubes were
significant compared to free cells (p-value < 0.0009, Student’s ¢
test) and could be explained by either or both of two
phenomena: first, elongated prometa-/metaphase spindles; and
second, slower elongation speeds of nascent spindles. To
address the first possibility, we measured the lengths of
prometa-/metaphase spindles in cells exposed or not exposed
to tubular confinement. Ensuing analyses revealed that, in <10
um and 10—12 ym microtubes, prometa-/metaphase spindles
were ~4 ym longer than those of free cells (Figures 2B and C,
and Supplementary Figures 3B—D). To address the second
possibility, we compared the elongation speeds of nascent
spindles in cells dividing without or with tubular confinement.
Experiments revealed that the mean elongation speed of
nascent spindles was significantly reduced from 0.94 + 0.06
um/min in free cells to 0.39 + 0.05 ym/min in 7—9 um

5840

microtubes and 0.64 + 0.05 ym/min in 10—12 gm microtubes
(Figure 2D, blue columns; see Supplementary Figures 3C and
D for more information). Under the tightest confinement
conditions, the reduction in elongation speed led to a 15 min
delay in forming spindles of lengths similar to those of free cells
(Figure 2D, orange columns; see Supplementary Figures 3C
and D for more information). This time difference is
comparable to the delay in spindle formation predicted by
computational simulations of in silico perturbations of
chromosome rings.'” We conclude that the observed spindle
formation delays inside rolled-up nanomembranes are likely
due to a combined effect of elongated prometa-/metaphase-
spindle lengths and decreased elongation speeds during spindle
formation. Moreover, these elongated prometa-/metaphase
spindles inside narrow microtubes plateaued for extensive time
periods before further elongating in anaphase (Figure 2B and
Supplementary Figures 3C and D). These findings thus
demonstrate that increased durations of spindle formation as
well as strongly prolonged prometa-/metaphases contribute to
the extensive overall mitotic delays occurring inside rolled-up
nanomembranes.””

Bipolarization of the Mitotic Actin Cortex Inside
Rolled-Up Nanomembranes. Mitosis is a geometrically
demanding process. As such, it is spatially controlled to ensure
that two equivalent daughter cells are produced with high
fidelity and in various situations placed into spatially favorable
positions. Cells can sense physical cues in their environment to
adjust their cytoskeleton.” Thus, we tested whether and/or
how the cytoskeletal cortex of mitotic cells was affected by
tubular confinement. To do so, we stained different mitotic
stages of free and confined HeLa cells for actin, a major
cytoskeletal protein. Based on confocal and 3D SIM
approaches, we performed high- and super-resolution imaging
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Figure S. Membrane blebbing and/or associated processes limit the extent of chromosome segregation errors inside rolled-up
nanomembranes. (A) Typical time-lapse images (phase-contrast and fluorescently tagged H2B-mCherry, red) of a mitotic HeLa cell,
displaying CSEs (orange arrowhead) in the presence of blebbistatin in a 16 ym microtube. Lagging chromosomes (white arrowhead) in
anaphase in the same cell are highlighted more clearly in a’ (H2B-mCherry; red). Scale bar, 10 gm. Times are shown in hour:min format. (B)
Quantification of mean durations of mitotic phases (+SD) in blebbistatin-treated cells (n = 46, 15, 7, 20, 18 cells from left to right). Red
dotted horizontal lines indicate corresponding average prometa-/metaphase durations in the absence of blebbistatin (taken from ref 28). (C)
Histogram of mean percentages (+SD) of blebbistatin-treated anaphases with CSEs (n = 96, 26, 18, 38, 27 anaphase cells from left to right).
CSEs in HeLa anaphase cells in the absence of blebbistatin (taken from ref 28) are shown as a reference (gray bars).

of actin filaments (F-actin). In free HeLa cells, the overall
distribution of F-actin at the cortex (green, labeled by
phalloidin) remained uniform in different mitotic stages until
the formation of the contractile ring in telophase (see Figure
3A for representative images). By contrast, in confined cells we
detected a remarkable enrichment of cortical F-actin at the cell
tips, facing the open ends of the microtubes. This bipolar
accumulation was reproducibly observed from nuclear envelope
breakdown (NEB) onward until telophase, and was specific to
mitosis, since no such enrichment was present in confined
interphase cells (Figure 3B, left image). Moreover, the bipolar
distribution of actin did not affect formation of the contractile
ring in telophase. A similar staining pattern was observed for
cortactin, a monomeric protein involved in actin polymer-
ization. Thus, it appears that, under tubular confinement,
related, but distinct, cytoskeletal proteins are rearranged in a
similar fashion to one another (Supplementary Movie 7). To
quantify this redistribution, we measured the fluorescent
intensities of phalloidin in single 3D SIM cross sections of
mitotic HeLa cells. This revealed a more than 2-fold higher F-
actin accumulation at the cell tips (Figure 3C, red arrowhead)
compared to the sides underlying the microtube walls (Figure
3C, light-blue arrowhead). The fluorescence intensities along
0.5 pm xy cortex sections at different locations and their
evolution through mitosis are presented in Figure 3D. We
observed this phenomenon in both transformed HeLa cells and
nontransformed human retinal pigment epithelial (RPE1) cells
(Supplementary Figure 4), suggesting that the bipolar
accumulation of certain cytoskeletal proteins under tubular
confinement might be a phenomenon conserved among various
cell types. In line with spindle orientation being tightly linked
to the distribution of the cortex (see Introduction), we noticed
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that misaligned spindles in confined cells reorientated
themselves toward the enriched cortex, facing the open ends
of the rolled-up nanomembranes (Supplementary Figure S).
Conspicuous Membrane Blebbing of Mitotic Cells
Inside Rolled-Up Nanomembranes. The bipolar enrich-
ment of actin and cortactin inside rolled-up nanomembranes
was accompanied by conspicuous membrane blebbing (Figure
3B and C, left), with the cell membrane at the tips of the
confined dividing cells usually undergoing multiple dynamic
cycles of bleb formation and retraction (Supplementary Movie
8). Furthermore, membrane blebbing occurred exclusively
during mitosis. Blebs are extensions of the cell membrane
caused by contractions of the actomyosin cortex to release
hydrostatic pressure.”* In cells dividing under tubular confine-
ment, pressure can only be released at the cell tips that face the
two openings of the microtubes. Interestingly, we observed that
blebbing started to take place at much earlier mitotic stages in
confined cells than in free cells (Figure 4A). Based on time-
lapse images of HeLa cells, we noticed that membrane blebbing
in confined situations started in prometa-/metaphase and
continued throughout cell division (Figure 4A, left two images,
and Supplementary Movies 8—10). By contrast, in free cells it
occurred exclusively during later cell division stages, mainly
cytokinesis, and to a much lesser extent (Figure 44, right two
images, and Supplementary Movie 11). To quantify the spatial
positions of membrane protrusions over time, we generated
kymographs based on phase-contrast time-lapse images. As
shown in the top kymograph in Figure 4B, bleb protrusions
(white arrowheads) inside 13 pm microtubes reached lengths
of up to ~10 ym in prometa-/metaphase and more than 35 ym
in anaphase (measured from the center of the cell). By contrast,
we detected no blebs in free cells in prometa-/metaphase.
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Moreover, the farthest membrane protrusions were limited to
~7 pm in length in anaphase of free cells (Figure 4B, bottom
kymograph). Notably, conspicuous membrane blebbing was
also observed in confined 3D cultured mitotic RPE1 cells,*®
demonstrating that the observed phenomena are conserved
between different types of human cells. Blebbing at the cell tips
(the parts of the cell pointing toward the open ends of the
tubes) suggested that cells frequently were under internal
hydrostatic pressure inside the nanomembranes.

We found that the membrane blebbing and bipolar actin
filament distributions inside microtubes were largely prevented
by treating cells with blebbistatin,” an inhibitor of the force-
generating mechanoenzyme myosin II (Figures 4C and SA, and
Supplementary Movies 12—14). Membrane blebs have recently
been implicated in mitotic functions, being shown, for example,
to contribute to the control of spindle positioning™® and to act
as a partly redundant genome safety mechanism by stabilizing
the cleavage furrow during cytokinesis.”” Indeed, we found that
in confined cells, inhibition of blebbing and/or associated
processes caused misplacement of the cleavage furrow during
cytokinesis and often led to unequally sized asymmetric
daughter cells (Supplementary Figure 6A and Supplementary
Movie 15). Such phenomena were less pronounced in the
absence of blebbistatin (Supplementary Figure 6B).

To better understand the role of membrane blebbing in key
mitotic features, such as mitotic progression and chromosome
segregation, we compared live-cell movies in the presence or
absence of blebbistatin. Movies of mitotic cells when
blebbistatin was present exhibited strongly enhanced prom-
eta-/metaphase delays (Figure SB) in spatially confined cells.
These delays were particularly pronounced in cells dividing
inside microtubes of intermediate sizes. For instance, in 10—12
pum microtubes, the durations of prometa-/metaphase increased
almost 2-fold (p-value = 0.00015). Strikingly, blebbistatin also
markedly enhanced genomic instability occurring under tubular
confinement. Thus, the percentage of chromosome segregation
errors, especially in microtubes of intermediate sizes such as
those of 10—12 um diameters, went up from ~17% to ~60%
(Figures Sa’ and C). By contrast, blebbistatin had little impact
on the duration of prometa-/metaphase or chromosome
segregation errors in unconfined control cells. Thus, prom-
eta-/metaphase lasted 43.1 + 2.7 min®® in the absence of
blebbistatin compared to 48.3 + 6.1 min in the presence of
blebbistatin (p-value = 0.065; Figure SB), while chromosome
segregation errors occurred in ~6% or ~9% of the anaphase
cells in the absence or presence of blebbistatin, respectively
(Figure SC and Supplementary Movie 16). Moreover, in spite
of the previously identified impairment of centrosome
separation by blebbistatin,”® treatment with blebbistatin posed
no significant hindrance on either chromosome rosette
formation or spindle bipolarization in the majority of free
cells in our experiments (unperturbed chromosome rosettes in
100% of 17 counted cells and morphologically normal bipolar
spindles in >95% of 283 cells, respectively; see also
Supplementary Figure 7). This discrepancy could reflect
differences in cell lines between the two studies (HeLa cells
here versus PtK2/B6—8 cells in the previous report)** or the 4-
fold lower blebbistatin concentrations we used (25 uM versus
100 uM in the previous report).”® Thus, the lower
concentration of blebbistatin in our study may inhibit some
(e.g, membrane blebbing) but not all myosin II-mediated
processes. Collectively, our data suggest that blebbing and/or
associated processes contribute to accurate chromosome
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segregation, particularly in cells under tubular confinement.
Under these conditions, blebbing and/or associated processes
act as a compensatory mechanism to limit the deleterious
effects of spatial confinement on chromosome segregation and
genome stability.

CONCLUSIONS

We have used “rolled-up” nanotechnology to generate
transparent biocompatible 3D structures of tailored tubular
geometry with varying diameters. These nanomembrane tubes
can be integrated into an experimentally convenient pipeline to
investigate the growth and proliferation of mammalian cells
under spatial constraints at high resolution. The SiO/SiO,
bilayer nanomembranes are therefore viable substrates for
studying the effects of tubular confinement on various cellular
processes including but not limited to geometrically demanding
processes such as cell division. The “rolled-up technique” that
we have employed integrates nanofilm engineering and
standard photolithography processes’* and can be readily
scaled-up to produce microtubes as on-chip arrays. The
dimensions (lengths and diameters) and wall thicknesses of
these architectures can be precisely controlled, and moreover,
the inner surfaces can be functionalized with biomolecules, such
as fibronectin. The ease of combining our platform with high-
and super-resolution microscopy allowed us to reveal and
analyze mitotic alterations under narrow tubular confinement,
namely: (1) abnormal spindle morphology including increased
lengths of prometa-/metaphase spindles; (2) distorted
chromosome arrangements in prometaphase that are in stark
contrast to the highly ordered chromosome rosettes occurring
in unconfined situations; (3) delays in centrosome separation
dynamics during spindle formation; (4) bipolar distribution of
the actin/cortactin cell cortex; and (S) enhanced mitotic
membrane blebbing that occurs at the cell tips facing the open
ends of the microtubes.

Numerous biological systems achieve robustness by employ-
ing feedback loops."””” Our observations suggest that the
mechano- and/or geometry-sensing system of redistributing
proteins in response to spatial constraints may be part of such a
feedback mechanism that monitors cell shape and/or associated
features during mitosis. Indeed, we speculate that cells may
sense and respond to spatial strain in the cortex, perhaps by
opening ion channels or by stretching cortical cytoskeletal
proteins such as actin to create new binding sites’”>* and
triggering the recruitment of contractile/cortical and/or other
proteins to further translate the signal. Such scenarios will be
interesting to investigate in future studies.

The effects of tubular constraints that we have observed on
key mitotic features such as the spindle, chromosome rosettes
and centrosome separation, are consistent with the previously
reported impact of spatial constraints on mammalian cell
division."*** Given that perturbations of spindle morphology
and dynamics impair the “search-and-capture” interactions
between microtubules and kinetochores,”** our findings could
help explain the subsequent prometa-/metaphase delays and
the increased chromosomal instability observed previously in
such contexts.”® Indeed, the information presented herein
provides valuable clues as to what potential causes could trigger
the high percentage of chromosome segregation errors (CSEs)
occurring inside microtubes. Intriguingly, our findings suggest
that some mitosis-specific responses, especially membrane
blebs, are involved in limiting chromosome segregation errors
in certain confined environments. Such responses might also
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operate within the context of certain steps during metastasis
when large cancer cells undergo tubular confinement inside
blood arterioles and capillaries. It will thus be interesting to
explore precisely how mitotic processes as diverse as SAC
activation, cortex bipolarization, and membrane blebbing are
orchestrated to help limit genome instability specifically in cells
dividing in 3D environments under such types of spatial
confinement. Our 3D nanomembrane technology could
provide an excellent platform for such future studies. Notably,
evidence has emerged that primary and secondary tumors can
vary in their genomic/chromosomal makeup.*”"* It will be
interesting in the future to see whether aberrant mitotic
processes, occurring during intravascular proliferation, could in
part explain these differences.

In summary, our study provides an in-depth characterization
of a versatile rolled-up nanomembrane platform that can be
used as a powerful tool for live single-cell studies. Indeed, the
system can be applied to virtually every cellular pathway
amenable to high- and/or super-resolution microscopy. Rolled-
up nanomembranes are highly adaptable in their design and
could easily be combined with various other technologies, such
as electronic circuits and microfluidic lab-in-a-tube systems.””
Moreover, we believe that the array setup of the tubular
nanomembranes has considerable potential to be exploited for
tissue engineering/development and high-throughput drug
screening.

METHODS AND EXPERIMENTAL SECTION

Fabricating Microtubes in On-Chip Format for Mammalian
Cell Culture. We fabricated microtubes by rolling-up nanomembranes
on square glass slides (18 mm in length; thickness, 170 ym). To
prepare sacrificial layer patterns, a 2.4 ym thick positive photoresist
(AR P-3510, Allresist GmbH) film was first prepared on the glass
slides by spin-coating at 3500 rpm for 35 s followed by a baking step at
90 °C for S min on a hot plate. A conventional photolithography step
using a contact mode mask aligner (MAS6, SUSS MicroTec AG) was
exploited to produce designed patterns on the glass slides. After that,
SiO and SiO, nanomembranes were deposited onto the patterns with
an electron beam evaporation system (BOC Edwards FL400,
Germany) at a glancing angle of 30° and deposition rates of 5.0 A/s
for SiO and 0.5 A/s for SiO,, respectively. To achieve microtubes with
diameters ranging from 4 to 20 yum, SiO/SiO, bilayers of thicknesses
between 25 and 100 nm were deposited. The binanomembranes were
immediately rolled-up into microtubes by under-etching the sacrificial
layers in an acetone solution for a few seconds. The samples were
dried by a super critical point dryer to prevent the tubes from
collapsing. To strengthen the microtubes, they were further coated
with an ALO; layer of 15 nm in thickness, using atomic layer
deposition (Savannah 100, Cambridge NanoTech Inc.) at 80 °C.

Functionalization of the Microtubes with Fibronectin. To
grow a monolayer of octadecanylphosphonic acid on the microtube
arrays, the samples were incubated in a toluene solution (50 uM)
overnight, followed by a thorough rinse with toluene, acetone and
water. The samples were then immersed into a 1X PBS solution,
containing 100 mM N-(3-(dimethylamino)propyl)-N’-ethylcarbodii-
mide hydrochloride (EDC) and 25 mM N-hydroxylsulfosuccinimide
(NHS) for 1 h followed by an incubation step with 20 ug mL™
fibronectin for 1 h at 37 °C.

Cell Culture and Synchronization. Untagged HeLa cells and
HeLa cells, stably transfected with histone H2B-mCherry and GFP-
tubulin®® or centrinl-GFP,” were cultured on a T25 (25 cm?) flask in
complete medium (Dulbecco’s Modified Eagle Medium (DMEM)
(Sigma-Aldrich), 2 mM L-glutamine (Invitrogen), 10% fetal bovine
serum (FBS, Sigma-Aldrich), and 1% antibiotics) at 37 °C in a
humidified incubator containing 5% CO,. To maintain the stably
transfected cells, 0.4 mg mL™" G418 (GFP-tubulin, centrinl-GFP) or
0.5 pug mL™" puromycin (H2B-mCherry) were used. RPE1 cells were
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grown in full DMEM medium, supplemented with 2 mM L-glutamine,
10% FBS, and 1% antibiotic mixture (penicillin/streptomycin,
Invitrogen). To allow cell migration into the microtubes, cells at a
concentration of 2 X 10° cells mL™> were plated onto microtube arrays
and cultured for 12 days. After that, cells growing outside the tubes
were removed by a brief trypsinization step. To enrich mitotic cells in
the microtubes, a double-thymidine block®” (2 mM thymidine) was
performed to synchronize cells in G1/S phase. After release from the
double-thymidine block, the cells were further grown in complete
medium for 7—8 h before imaging them with optical microscopy.

Inhibitor Treatments. Blebbistatin (Sigma-Aldrich) was used at a
final concentration of 25 uM and was added 1 h before cells entered
mitosis.

Fixation and Staining for Optical Microscopy. A fixative
solution containing 3% paraformaldehyde, 1% Triton X-100, and
0.25% glutaraldehyde in cytoskeleton buffer (a mixture of 10 mM
PIPES pH 6.8, 300 mM sucrose, 2 mM MgCl,, 100 mM NaCl, and 1
mM EGTA) was used to fix cells for 1S min. 1X PBS solution,
containing 1 #M phalloidin-FITC (P5282, Sigma-Aldrich) and 1 yM
DAPI (4, 6-diamidino-2-phenylindole), was used to stain F-actin and
DNA, respectively. Cortactin was immunolabeled using primary rabbit
antibodies (1:200; ab11066, Abcam plc.) and secondary goat
antirabbit-Alexa594 antibody (1:1000; A-11037, Invitrogen GmbH).

Live-Cell Imaging. For time-lapse imaging, the microtube arrays
were mounted on 35 mm dishes (MatTek Corporation). The cells
were then plated onto these arrays and treated with/without chemical
reagents according to the method mentioned above. Imaging was
performed in a heated and humidified chamber (stabilized at 37 °C
and containing 5% CO,). Cells were imaged, using an Axio Observer
Z1 inverted microscope (Zeiss, 40X objective). For time-lapse imaging
of cell division events, we captured one frame every 5—15 min,
depending on the specific experiment. Z-stacks (0.5—1.0 ym) of the
mitotic apparatus (entire volume) were obtained every S min with a
PLANAPO 40X objective. The images were deconvolved using
Huygens and analyzed using Fiji*® Images represent maximum-
intensity projections of all z-planes.

High- and Super-Resolution Imaging. Entrapped and free
HeLa cells were fixed in prometaphase and, in the case of untagged
HeLa cells, stained with DAPI and phalloidin—FITC. Confocal
imaging was performed with an LSM 700 inverted microscope
(Zeiss) equipped with a Zeiss C-Apochromat 60 X 1.2 W objective,
using 405, 488, and 594 nm laser lines for excitation, a 1532 X 1532
pixel frame size at a rate of 0.42 us per pixel and a 1 Airy Unit pinhole
diameter. Z-sections taken every 410 nm covering the entire cell were
projected (maximum intensity).

Super-resolution 3D SIM imaging of phalloidin-FITC (F-actin) and
DAPI as well as H2B-mCherry and GFP-tubulin was acquired using a
Deltavision OMX 3D SIM System V3 from Applied Precision (a GE
Healthcare company) equipped with 3 EMCCD Cascade cameras
from Photometrics, 405, 488, 592.5 nm diode laser illumination, an
Olympus PlanSApo 100X 1.40 NA oil objective, and standard
excitation and emission filter sets. Imaging of each channel was
performed sequentially using three angles and five phase shifts of the
illumination pattern as described in Gustafsson et al, 2008.°° The
refractive index of the immersion oil (Cargille) was adjusted to 1.514
to minimize spherical aberrations. Sections were acquired at 0.125 pm
z steps.

Raw OMX data were reconstructed and channel registered in the
SoftWoRx software (Applied Precision, a GE Healthcare company).
Reconstructions were carried out using channel-specific Optical
Transfer Functions (OTFs) and channel-specific KO angles. OTFs
were generated within the SoftWoRx software by imaging 100 nm
beads (Life Technologies) using appropriate immersion oils to match
the data. Channel registration was carried out using the Image
Registration parameters generated within the SoftWoRx software and
checked for accuracy by imaging Tetraspeck beads (Life Technolo-
gies). Channel registration was accurate to within one pixel. Further
data analysis was performed using Fiji.**
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3D Reconstruction of Chromosomes. Z-stack images were
deconvolved with Huygens Professional 4.1 (SVI), and 3D
reconstruction was performed by its module surface renderer.

Statistics and Computational Analysis. Means =+ standard
deviations presented herein were obtained by comparing at least three
independently performed experiments. Student’s t-tests, as indicated in
the figure legends, were performed to evaluate statistical differences
between two groups, as indicated in the Figures. P-values > 0.05 were
considered nonsignificant.

The 3D Euclidean distances between centrosomes were calculated
using Ace 3D, a visualization and analysis plugin for Fiji°® that uses 3D
Object Counter® to create multidimensional centroid maps for
analysis (available on request).

The 3D temporal evolution of spindle lengths (mean distances
between centrosomes + SD) was plotted against time using OriginPro
9.0.0. The linear portion of the curves was selected by Data Selector
tool and fit by linear regressions utilizing the OriginPro 9.0.0
programming environment with a least-squares fitting algorithm.
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Movie 1: 3D-rotation of a reconstructed prometaphase
chromosome rosette in unconfined conditions (AVI)
Movie 2: 3D-rotation of a reconstructed prometaphase
chromosome rosette inside a 9 y#m microtube (AVI)
Movie 3: 3D-rotation of a reconstructed prometaphase
chromosome rosette inside a 13 ym microtube (AVI)
Movie 4: 3D-rotation of a reconstructed prometaphase
chromosome rosette inside a 17 ym microtube (AVI)
Movie 5: Time-lapse movie of a centrinl-GFP (green)
expressing HeLa cell undergoing mitosis without
confinement (AVI)

Movie 6: Time-lapse movie of a centrinl-GFP (green)
expressing HeLa cell undergoing mitosis inside a 9 ym
microtube (selected frames shown in Figure 2A) (AVI)
Movie 7: 3D-rotation view of mitotic HeLa cells
expressing H2B-mCherry (red) and immunolabelled for
cortactin (green) in unconfined conditions (left) and
inside a 9 ym microtube (right) (AVI)

Movie 8: Phase-contrast and fluorescent time-lapse video
of a H2BmCherry (red) and GFP-tubulin (green)
expressing HeLa cell dividing inside a 9 ym microtube
(AVI)

Movie 9: 3D-SIM rotation of the image shown in Figure
4c' left (AVI)

Movie 10: 3D-SIM rotation of the image shown in Figure
4¢' right (AVI)

Movie 11: Phase-contrast and fluorescent time-lapse
video of a H2BmCherry (red) and GFP-tubulin (green)
expressing HeLa cell dividing in unconfined conditions
(AVI)

Movie 12: 3D-SIM rotation of the image shown in Figure
4c" left (AVI)

Movie 13: 3D-SIM rotation of the image shown in Figure
4c" right (AVI)

Movie 14: Phase-contrast and fluorescent time-lapse
video of a H2B-mCherry (red) expressing HeLa cell
dividing inside a 16 ym microtube in the presence of 25
4M blebbistatin (selected frames are presented in Figure
SA) (AVI)

Movie 15: Phase-contrast and fluorescent time-lapse
video of a H2B-mCherry (red) expressing HeLa cell
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dividing inside a 17 gm microtube in the presence of 25
UM blebbistatin (AVT)

Movie 16: Phase-contrast and fluorescent time-lapse
video of a H2B-mCherry (red) expressing HeLa cell
dividing in unconfined conditions in the presence of 25
UM blebbistatin (AVI)

A 3D schematic representation of 1D confinement using
planar surfaces applied to 2D-cultured cells. Super-
resolution fluorescent images and 3D reconstruction of
chromosome rosettes together with microtubules in free
and confined HeLa cells. Explanatory image illustrating
the features of a Fiji plugin developed for automated 3D
centrosome mapping and plots of the quantification of
3D temporal evolution of spindle lengths as indicated by
positions of centrosome. Fluorescent (time-lapse) images
showing the bipolarized distribution of actin cortex in an
RPE1 cell under confinement and spindle rotation,
centrinl-GFP-expressing HeLa cells showing increased
intercentrosome distances, and mis-/proper-placement
of cleavage furrow during cytokinesis in HeLa cells with/
without blebbistatin. Confocal images showing the
chromosome rosettes formed in blebbistatin-treated
free HeLa cells (PDF)
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