Supplementary Information

A cryptic hydrophobic pocket in the polo-box domain of the polo-like kinase PLKı regulates substrate recognition and mitotic chromosome segregation

Pooja Sharma, Robert Mahen, Maxim Rossmann, Jamie E. Stokes, Bryn
Hardwick, David J. Huggins, Amy Emery, Dominique L. Kunciw, Marko
Hyvönen, David R. Spring, Grahame J. McKenzie and Ashok R. Venkitaraman

Supplementary Methods.

Fluorescence Polarisation assay

Final concentrations of assay components used in binding assays were as follows: TAMRA-labelled PBIPı phosphopeptide, 5-TAMRA-Glu-Thr-Phe(71)-Asp-Pro-Pro-Leu-His-pThr(78)-Ala-Ile-Tyr-Ala-Asp-Glu-acid ıonM; PLKı PBD (aa345-6o3) 42nM ($1.25 \mathrm{ng} / \mu \mathrm{l}$). Assays were carried out in PBS (pH 7.4) plus 0.03% tween. DMSO controls were run alongside all experimental compounds and percentage inhibition normalised to these controls. Compounds were titrated 2 -fold from a top concentration of $250 \mu \mathrm{M}$ giving a maximum final concentration of DMSO in the assay of 0.25%. The total assay volume per well was 45μ l. Experiments were performed in NBS black 384-well microtiter plates (Corning). All assay components were incubated together at $22^{\circ} \mathrm{C}$ for 20 minutes prior to Fluorescence Polarisation (FP) being read using a BMG PheraStar plate reader with a 540/590/590nm FP module and unbound 1onm TAMRA-labelled peptide set to a FP value of 35 mP .

PBD structure determination

PBD (residues 371-594) of human Plkı was expressed and purified as described in Sledz et al ${ }^{20}$. The purified PBD domain was crystallised in $100-200 \mathrm{mM}$ K/NA Tartrate, $10-$ 20\% PEG3350. Crystals were soaked overnight with Polotyrin or 3-iodobenzyl bromide in the presence of 10% DMSO and 10% PEG8ooo as cryoprotectant and crystals cryocooled in liquid N_{2}. Diffraction data was collected at Diamond Light Source
beamlines i24 and io3, the data was processed with XDS ${ }^{57}$. Structures were solved by molecular replacement using unliganded PBD structure (PDB code ${ }_{3} \mathrm{P} 2 \mathrm{~W}$) as the search model. The structure was refined briefly before electron density evaluated for the presence of clear additional density for the soaked ligand. The resulting complex structures were refined using phenix.refine ${ }^{58}$, with manual rebuilding and validation in Coot ${ }^{59}$. The refined coordinates have been submitted to Protein Data Bank under accession codes 5 NEI (complex with Polotyrin) and 5NMM (complex with 3iodobenzyl bromide).

Synthesis and characterisation of Polotyrin: General information

All non-aqueous reactions were performed at room temperature under a constant stream of dry nitrogen using glassware that had been oven-dried overnight unless otherwise stated.

Room temperature (RT) refers to ambient temperature. All temperatures below o ${ }^{\circ} \mathrm{C}$ were that of the external bath. Temperatures of o ${ }^{\circ} \mathrm{C}$ were produced and maintained with an ice-water bath. Temperatures below o ${ }^{\circ} \mathrm{C}$ were produced and maintained using an acetone-dry ice bath.

All reagents and solvents were used as received unless otherwise stated. Where appropriate, reagents and solvents were purified using standard experimental techniques. Ethyl acetate and methanol were distilled under nitrogen with calcium hydride. Tetrahydrofuran was dried over Na wire and distilled, while under nitrogen, from a combination of calcium hydride and lithium aluminium hydride with triphenylmethane as indicator. Pet ether refers to the fraction of light petroleum ether that had a boiling point between 40 and $60{ }^{\circ} \mathrm{C}$. Brine refers to a sat. aqueous NaCl solution.

Yields refer to spectroscopically and chromatographically pure compounds unless otherwise stated in the experimental text. Reactions were monitored using thin layer
chromatography performed on commercially prepared glass plates pre-coated with Merck silica gel $60 \mathrm{~F}_{254}$ and visualised by quenching of UV fluorescence ($v_{\max }=254 \mathrm{~nm}$), iodine, potassium permanganate, p-anisaldehyde, vanillin, phosphomolybdic acid, ninhydrin or by liquid chromatography mass spectrometry (LCMS) using a Waters Micromass ZQ spectrometer. Retention factors $\left(\mathrm{R}_{f}\right)$ are quoted to o.oi. R_{f} values were not determined for carboxylic acids due to their propensity to stick to the baseline.

Column chromatography was carried out using Merck 9385 Keiselgel $60 \mathrm{SiO}_{2}(230-400$ mesh) under a positive pressure of compressed air.

Lyophilisation was achieved by suspending the required residue in a $\mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O}$ (1:1) solution which was cooled to $-196^{\circ} \mathrm{C}$ with liquid nitrogen. The frozen sample was concentrated using a Scanvac CoolSafe 100-9 Pro freeze dryer overnight.

Infrared spectra were recorded neat on a Perkin-Elmer 1600 FT IR spectrometer. Only absorption maxima ($v_{\max }$) of interest are reported in wavenumbers $\left(\mathrm{cm}^{-1}\right)$ with the following abbreviations: w , weak; m , medium; s , strong; br, broad.

Melting points were obtained on a Büchi B-545 melting point apparatus and are uncorrected.

Proton magnetic resonance spectra were recorded using an internal deuterium lock at ambient probe temperatures on the following instruments: Bruker Avance 400 CRYO QNP (400 MHz), Bruker Avance 400 QNP (400 MHz), Bruker Avance 500 CRYO (500 MHz). Chemical shifts (δ_{H}) are quoted in parts per million (ppm) to the nearest o.o1 ppm downfield of trimethylsilane ($\delta_{\mathrm{H}}=\mathrm{o}$) and are referenced to the residual nondeuterated solvent peak as follows: $\mathrm{CDCl}_{3}, 7.26 \mathrm{ppm} ; d_{6}$ - $\mathrm{DMSO}, 2.50 \mathrm{ppm}$. Integration, chemical shift, multiplicity (s, singlet; d, doublet; t, triplet; q, quartet; quint, quintet; m, multiplet; br, broad; app, apparent; obs, obscured or a combination of these) and coupling constants (J, measured in $\mathrm{Hertz}(\mathrm{Hz})$ and quoted to the nearest 0.5 Hz) were identified using the commercially available iNMR 3.4.7 processor software. Where possible and appropriate, J values have been adjusted to match for coupling nuclei.

Assignment was based on chemical shift, integration, multiplicity, coupling constants and where appropriate, COSY, HMQC and HMBC experiments or by analogy to fully interpreted spectra for related compounds.

Carbon magnetic resonance spectra were recorded by broadband proton spin decoupling at ambient probe temperatures using an internal deuterium lock on the following instruments: Bruker Avance 400 CRYO QNP (100 MHz), Bruker Avance 400 QNP (100 MHz), Bruker Avance 500 CRYO (125 MHz). Chemical shifts (δ_{c}) are quoted in parts per million (ppm) to the nearest 0.1 ppm downfield of trimethylsilane ($\delta_{\mathrm{C}}=\mathrm{o}$) and are referenced to the residual non-deuterated solvent peak as follows: $\mathrm{CDCl}_{3}, 77.2$ ppm; d_{6}-DMSO, 39.5 ppm . Chemical shifts were identified using the commercially available iNMR 3.4.7 processor software. Assignment was based on chemical shift, DEPT editing and where appropriate, HMQC and HMBC experiments or by analogy to fully interpreted spectra for related compounds.

High resolution mass spectrometry (HRMS) measurements were recorded on a Bruker Bioapex 4.7e FTICR or a Micromass LCT Premier spectrometer. Mass values are quoted within the error limits of $\pm 5 \mathrm{ppm}$ mass units. ESI refers to the electrospray ionisation technique.

Characterisation data

Diethyl 2-(3-nitrobenzyl)malonate

Adapted from the procedure of Rotthaus et al. ${ }^{1}$ Diethyl malonate ($4.42 \mathrm{~mL}, 29.1 \mathrm{mmol}, 1$ equiv) was dissolved in anhydrous THF (60 mL) and the resulting solution cooled to o ${ }^{\circ} \mathrm{C}$. Sodium hydride (60% dispersion in mineral oil, $1.17 \mathrm{~g}, 29.1 \mathrm{mmol}, 1$ equiv) and 3nitrobenzyl chloride ($5.00 \mathrm{~g}, 29.1 \mathrm{mmol}, 1$ equiv) were added sequentially. The resulting mixture was refluxed o/n, allowed to cool to RT and poured into a sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The organic layer was collected and the aqueous extracted with $\mathrm{Et}_{2} \mathrm{O}(\times 3)$. The organic fractions were combined, washed with water and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The crude product was purified by column chromatography (SiO_{2}; pet ether-EtOAc gradient, 12:1-4:1) to yield the title compound as a light yellow oil ($4.37 \mathrm{~g}, 14.8 \mathrm{mmol}, 51 \%$).
$\mathbf{R}_{f}\left(\mathrm{SiO}_{2}\right.$; pet ether-EtOAc, 4:1) o.40; IR $v_{\text {max }}\left(\right.$ neat $\left./ \mathrm{cm}^{-1}\right) 1724 \mathrm{~s}(\mathrm{C}=\mathrm{O}), 1528 \mathrm{~s}\left(\mathrm{NO}_{2}\right)$, 1350 $\mathrm{s}\left(\mathrm{NO}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 8.10-8.08(2 \mathrm{H}, \mathrm{m}$, Phenyl CH and Phenyl CH), 7.57 ($1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}$, Phenyl CH), 7.48-7.45 ($1 \mathrm{H}, \mathrm{m}$, Phenyl CH), 4.23-4.13 ($4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.67\left(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}\right), 3.32\left(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}\right), 1.23(6 \mathrm{H}, \mathrm{t}, J$ $=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 168.4$ ($\mathrm{C}=\mathrm{O}$), 148.5 (Phenyl C), 140.1 (Phenyl C), 135.4 (Phenyl CH), 129.6 (Phenyl CH), 124.0 (Phenyl CH), 122.1 (Phenyl CH), $62.0\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $53.4\left(\mathrm{CH}_{2} \mathrm{CH}\right)$, $34.3\left(\mathrm{CH}_{2} \mathrm{CH}\right)$, $14.2\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$; HRMS (ESI+) m/z found $[\mathrm{M}+\mathrm{H}]^{+}$296.1130, $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO}_{6}{ }^{+}$required 296.1134.

Diethyl 2-(3-aminobenzyl)malonate

Diethyl 2-(3-nitrobenzyl)malonate ($2.56 \mathrm{~g}, 8.68 \mathrm{mmol}, 1$ equiv) was dissolved in EtOAc (0.07 M) followed by the addition of platinum (IV) oxide ($10 \mathrm{~mol} \%$) at RT. The resulting mixture was vigorously stirred under H_{2} until TLC analysis indicated complete consumption of starting material (ninhydrin stain, approx. reaction time: 1 hr). The mixture was filtered over celite and concentrated in vacuo. The title compound was isolated as a colourless oil ($2.32 \mathrm{~g}, 8.68 \mathrm{mmol}$, quant.) that was used without further purification.
$\mathbf{R}_{f}\left(\mathrm{SiO}_{2}\right.$; pet ether-EtOAc, 4:1) o.o8; IR $\mathrm{v}_{\text {max }}\left(\right.$ neat $\left./ \mathrm{cm}^{-1}\right) 3466 \mathrm{w}\left(\mathrm{NH}_{2}\right), 3379 \mathrm{w}\left(\mathrm{NH}_{2}\right), 1723$
 Phenyl CH), 6.54-6.52 (2H, m, Phenyl CH and Phenyl CH), 4.22-4.10 ($4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), $3.61\left(1 \mathrm{H}\right.$, obs t, $\left.J=8.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}\right), 3.61\left(2 \mathrm{H}\right.$, obs br s, $\left.\mathrm{NH}_{2}\right), 3.12(2 \mathrm{H}, \mathrm{d}, J=8 . \mathrm{oHz}$, $\mathrm{CH}_{2} \mathrm{CH}$), $1.22\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 169.1(\mathrm{C}=\mathrm{O})$, 146.6 (Phenyl C), 139.3 (Phenyl C), 129.5 (Phenyl CH), 119.1 (Phenyl CH), 115.7 (Phenyl CH), 113.6 (Phenyl CH), $61.6\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $53.9\left(\mathrm{CH}_{2} \mathrm{CH}\right)$, $34.8\left(\mathrm{CH}_{2} \mathrm{CH}\right)$, $14.2\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$; HRMS (ESI +) m / z found $[\mathrm{M}+\mathrm{H}]^{+}$266.1394, $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}_{4}{ }^{+}$required 266.1392 .

Methyl thiophene-2-carboxylate

To a solution of 2-thiophenecarboxylic acid ($10.0 \mathrm{~g}, 78.0 \mathrm{mmol}$, 1 equiv) in MeOH (100 mL) was added a concentrated solution of $\mathrm{H}_{2} \mathrm{SO}_{4}(5 \mathrm{~mL})$. The resulting solution was heated to reflux for 17 hr , allowed to cool to RT and concentrated in vacuo. The residue was dissolved in EtOAc, washed with a sat. aqueous NaHCO_{3} solution ($\times 3$), dried (MgSO_{4}) and concentrated in vacuo. 111 was isolated as a brown oil ($9.86 \mathrm{~g}, 69.4 \mathrm{mmol}$, $92 \%)$ that was used without further purification.
$\mathbf{R}_{f}\left(\mathrm{SiO}_{2} ;\right.$ pet ether-EtOAc, 4:1) o.52; IR $\mathrm{v}_{\text {max }}\left(\right.$ neat $\left./ \mathrm{cm}^{-1}\right) 1703 \mathrm{~s}(\mathrm{C}=\mathrm{O}) ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ (400 MHz ; $\left.\mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.8 \mathrm{o}(\mathrm{1H}, \mathrm{dd}, J=4.0$ and 1.5 Hz , Thienyl CH), $7.55(1 \mathrm{H}, \mathrm{dd}, J=5.0$ and 1.5 Hz , Thienyl CH), $7.10\left(1 \mathrm{H}, \mathrm{dd}, J=5.0\right.$ and 4.0 Hz , Thienyl CH), $3.89\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 162.8$ ($\mathrm{C}=\mathrm{O}$), 133.7 (Thienyl C), 133.6 (Thienyl CH), 132.4 (Thienyl CH), 127.9 (Thienyl CH), $52.3\left(\mathrm{OCH}_{3}\right)$; HRMS (ESI +) m / z found $[\mathrm{M}+\mathrm{H}]^{+}$143.0172, $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{O}_{2} \mathrm{~S}^{+}$required 143.0167.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data consistent with that previously reported. ${ }^{2}$

3-Iodo- N -methoxy- N -methylbenzamide

1,1'-carbonyldiimidazole ($3.39 \mathrm{~g}, 20.9 \mathrm{mmol}, 1.3$ equiv) was added to a stirring solution of 3-iodobenzoic acid (4.00 g , 16.1 mmol , 1 equiv) in anhydrous THF (22 mL) and the resulting mixture stirred for 2 hr at RT. N, O-dimethylhydroxylamine hydrochloride (1.57 $\mathrm{g}, 16.1 \mathrm{mmol}, 1$ equiv) was added and the mixture stirred for 24 hr . The reaction was quenched with a sat. aqueous NaHCO_{3} solution. The organic layer was collected and the aqueous extracted with $\mathrm{Et}_{2} \mathrm{O}(\times 3)$. The organic fractions were combined, washed with a 10% aqueous HCl solution, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$; pet ether-EtOAc, 4:1) to yield the title compound as a light yellow oil ($3.12 \mathrm{~g}, 10.7 \mathrm{mmol}, 67 \%$).
$\mathbf{R}_{f}\left(\mathrm{SiO}_{2}\right.$; pet ether-EtOAc, 4:1) o.19; IR $v_{\text {max }}\left(\right.$ neat $\left./ \mathrm{cm}^{-1}\right) 1636 \mathrm{~s}(\mathrm{C}=\mathrm{O}) ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz ; $\left.\mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}}$ 8.o1-8.0o ($\mathrm{l} \mathrm{H}, \mathrm{m}$, Phenyl CH), 7.79-7.76 ($1 \mathrm{H}, \mathrm{m}$, Phenyl CH), 7.65-7.62 ($1 \mathrm{H}, \mathrm{m}$, Phenyl CH), $7.14(1 \mathrm{H}$, app dt, $J=8.0$ and 1.0 Hz , Phenyl CH), $3.54(3 \mathrm{H}, \operatorname{app} \mathrm{d}, J=1.0 \mathrm{~Hz}$, $\left.\mathrm{OCH}_{3}\right), 3.34\left(3 \mathrm{H}\right.$, app d, $\left.J=1.0 \mathrm{~Hz}, \mathrm{NCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 168.5\left(\mathrm{C}=\mathrm{O}^{\text {Amide }}\right)$, 139.9 (Phenyl CH), 137.4 (Phenyl CH), 136.4 (Phenyl C), 130.2 (Phenyl CH), 127.8 (Phenyl CH), 94.0 (Phenyl C), $61.4\left(\mathrm{OCH}_{3}\right)$, $34.0\left(\mathrm{NCH}_{3}\right)$; HRMS (ESI +) m/z found $[\mathrm{M}+\mathrm{H}]^{+}$ 291.9836, $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{2} \mathrm{I}^{+}$required 291.9834.

Methyl 5-(3-iodobenzoyl)thiophene-2-carboxylate

Methyl thiophene-2-carboxylate ($831 \mathrm{mg}, 5.84 \mathrm{mmol}, 1$ equiv) was dissolved in anhydrous THF (0.1 M) and the resulting solution cooled to $-78{ }^{\circ} \mathrm{C}$. Lithium diisopropylamide (2 M in THF/heptane/ethylbenzene; 1.2 equiv) was added dropwise and the resulting solution stirred at $-78{ }^{\circ} \mathrm{C}$ for 15 min . 3-Iodo- N-methoxy- N methylbenzamide ($2.17 \mathrm{~g}, 5.84 \mathrm{mmol}, 1$ equiv) in anhydrous THF (0.1 M) at $-78^{\circ} \mathrm{C}$ was transferred into the reaction mixture via cannula. The resulting mixture was stirred at $78^{\circ} \mathrm{C}$ for 1 hr , allowed to warm to RT and stirred for 2 hr . The reaction was quenched with a 10% aqueous HCl solution, the organic layer separated and the aqueous extracted with EtOAc ($\times 3$). The organic fractions were combined, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The crude product was purified by column chromatography (SiO_{2}; pet ether-EtOAc, $10: 1$) to yield the title compound as a light yellow solid (409 mg , $1.10 \mathrm{mmol}, 19 \%$).
$\mathbf{R}_{f}\left(\mathrm{SiO}_{2}\right.$; pet ether-EtOAc, 4:1) o.45; mp 119-122 ${ }^{\circ} \mathrm{C}$ (pet ether-EtOAc, 10:1); IR $v_{\text {max }}$ (neat $\left./ \mathrm{cm}^{-1}\right) 1727 \mathrm{~s}\left(\mathrm{C}=\mathrm{O}^{\text {Ester }}\right), 1627 \mathrm{~s}\left(\mathrm{C}=\mathrm{O}^{\text {Ketone }}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 8.18(1 \mathrm{H}$, app t, $J=1.5 \mathrm{~Hz}$, Phenyl CH), 7.95 (1 H , ddd, $J=7.5$, 1.5 and 1.0 Hz , Phenyl CH), 7.83-7.8o ($2 \mathrm{H}, \mathrm{m}$, Thienyl CH and Phenyl CH), $7.58(1 \mathrm{H}, \mathrm{d}, J=4.0 \mathrm{~Hz}$, Thienyl CH), $7.26(1 \mathrm{H}$, obs app $\mathrm{t}, J=7.5 \mathrm{~Hz}$, Phenyl CH), 3.94 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}$); ${ }^{13} \mathrm{C}$ NMR (1 оo MHz; CDCl_{3}) $\delta_{\mathrm{c}} 186.5$ ($\mathrm{C}=\mathrm{O}^{\text {Ketone }}$), 162.1 ($\mathrm{C}=\mathrm{O}^{\text {Ester }}$), 147.3 (Thienyl C), 141.8 (Phenyl CH), 140.5 (Thienyl C), 139.2 (Phenyl C), 138.1 (Phenyl CH), 134.2 (Thienyl CH), 133.3 (Thienyl CH), 130.4 (Phenyl CH), 128.5 (Phenyl CH), 94.4 (Phenyl C), $52.9\left(\mathrm{OCH}_{3}\right)$; HRMS (ESI +) m / z found $[\mathrm{M}+\mathrm{H}]^{+}$ 372.9404, $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{3} \mathrm{SI}^{+}$required 372.9395 .

5-(3-Iodobenzoyl)thiophene-2-carboxylic acid

To a stirring solution of methyl 5-(3-iodobenzoyl)thiophene-2-carboxylate (319 mg, o. 86 mmol, 1 equiv) in a THF- $\mathrm{H}_{2} \mathrm{O}$ (4:1) solution (0.0125 M) was added $\mathrm{LiOH}_{2} \mathrm{H}_{2} \mathrm{O}$ (4 equiv) at RT. When TLC analysis indicated complete consumption of ester, the solution was concentrated in vacuo. The residue was suspended in the minimum amount of $\mathrm{H}_{2} \mathrm{O}$, acidified to pH 1 with a 10% aqueous HCl solution and extracted with EtOAc ($\times 3$). The organic fractions were combined and extracted with a sat. aqueous NaHCO_{3} solution (\times 3). The aqueous solution was re-acidified to pH 1 with a 10% aqueous HCl solution and re-extracted with EtOAc ($\times 3$). The organic fractions were combined, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated in vacuo and lyophilised in a $\mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O}$ (1:1) solution to yield the title compound as a cream solid ($285 \mathrm{mg}, \mathrm{o} .8 \mathrm{ommol}, 93 \%$) that was used without further purification
$\mathbf{m p} 214-215{ }^{\circ} \mathrm{C}(\mathrm{EtOAc}) ;$ IR $v_{\max }\left(\right.$ neat $\left./ \mathrm{cm}^{-1}\right) 3359-2352 \mathrm{br}(\mathrm{OH}), 1674 \mathrm{~s}(\mathrm{C}=\mathrm{O}), 1627 \mathrm{~s}$ (C=O); 'H NMR ($500 \mathrm{MHz} ; d_{6}$-DMSO) $\delta_{\mathrm{H}} 8.11(1 \mathrm{H}$, app $\mathrm{t}, J=2.0 \mathrm{~Hz}$, Phenyl CH), 8.06 (1 H, ddd, $J=8.0$, 2.0 and 1.0 Hz , Phenyl CH), $7.86(1 \mathrm{H}, \mathrm{ddd}, J=8.0,2.0$ and 1.0 Hz , Phenyl CH), 7.77 ($1 \mathrm{H}, \mathrm{d}, J=4.0 \mathrm{~Hz}$, Thienyl CH), $7.70(1 \mathrm{H}, \mathrm{d}, J=4 . \mathrm{Hz}$, Thienyl CH), $7.38(\mathrm{iH}$, app t, $J=8 . \mathrm{o} \mathrm{Hz}$, Phenyl CH); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz} ; d_{6}$-DMSO) $\delta_{\mathrm{C}} 186.3$ (C=O ${ }^{\text {Ketone }), 162.4 ~}$ ($\mathrm{C}=\mathrm{O}^{\text {Acid }}$), 146.1 (Thienyl C), 142.2 (Thienyl C), 141.4 (Phenyl CH), 138.7 (Phenyl C), 137.1 (Phenyl CH), 135.6 (Thienyl CH), 133.4 (Thienyl CH), 130.9 (Phenyl CH), 128.5 (Phenyl CH), 95.2 (Phenyl C); HRMS (ESI+) m/z found $[\mathrm{M}+\mathrm{H}]^{+} 358.9216, \mathrm{C}_{12} \mathrm{H}_{8} \mathrm{O}_{3} \mathrm{SI}^{+}$required 358.9233.

Diethyl-2-(3-(5-(3-iodobenzoyl)thiophene-2-carboxamido)benzyl)malonate

To a stirring ice-cold suspension of diethyl 2-(3-aminobenzyl)malonate (203 mg , 0.77 mmol, 1.24 equiv) and 5-(3-iodobenzoyl)thiophene-2-carboxylic acid ($222 \mathrm{mg}, 0.62$ mmol, 1 equiv) in EtOAc (0.07 M) was added N, N-diisopropylethylamine (2 equiv) and propylphosphonic anhydride (50% solution in EtOAc, 1.6 equiv). The resulting solution was stirred at $\mathrm{o}^{\circ} \mathrm{C}$ for 30 min , allowed to warm to RT and stirred o / n. The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$ and extracted with EtOAc ($\times 3$). The organic fractions were combined, washed with a 10% aqueous HCl solution ($\times 3$), a sat. aqueous NaHCO_{3} solution ($\times 3$) , dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to furnish the title compound as a light yellow oil ($173 \mathrm{mg}, 0.29 \mathrm{mmol}, 46 \%$) that was used without further purification.
$\mathbf{R}_{f}\left(\mathrm{SiO}_{2}\right.$; pet ether-EtOAc, 2:1) o.29; IR $\mathrm{v}_{\text {max }}\left(\right.$ neat $\left.^{2} \mathrm{~cm}^{-1}\right) 3342 \mathrm{w}(\mathrm{NH}), 1728 \mathrm{~s}(\mathrm{C}=\mathrm{O}), 1642$ $\mathrm{s}(\mathrm{C}=\mathrm{O}), 16 \mathrm{~m} \mathrm{~m}(\mathrm{C}=\mathrm{O})$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 8.18(1 \mathrm{H}$, app t, $J=1.5 \mathrm{~Hz}$, Phenyl CH), 7.96-7.94 ($2 \mathrm{H}, \mathrm{m}, \mathrm{NH}$ and Phenyl CH), 7.83 ($1 \mathrm{H}, \mathrm{ddd}, J=8.0$, 1.5 and 1.0 Hz, Phenyl CH), 7.67 ($1 \mathrm{H}, \mathrm{d}, J=4.0 \mathrm{~Hz}$, Thienyl CH), $7.61(1 \mathrm{H}, \mathrm{d}, J=4.0 \mathrm{~Hz}$, Thienyl CH), $7.53-7.51$ ($1 \mathrm{H}, \mathrm{m}$, Phenyl CH), 7.48 (1 H , app t, $J=2.0 \mathrm{~Hz}$, Phenyl CH), 7.29-7.24 ($2 \mathrm{H}, \mathrm{m}$, Phenyl CH and Phenyl CH), 7.03-7.01 ($1 \mathrm{H}, \mathrm{m}$, Phenyl CH), 4.21-4.13 ($4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), $3.66(1 \mathrm{H}, \mathrm{t}$, $J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}$), $3.21\left(2 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}\right), 1.22\left(6 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta_{\mathrm{c}} 186.8$ ($\mathrm{C}=\mathrm{O}^{\text {Ketone }}$), 169.3 ($\mathrm{C}=\mathrm{O}^{\text {Ester }}$), 159.5 ($\mathrm{C}=\mathrm{O}^{\text {Amide }}$), 146.7 (Thienyl C), 146.3 (Thienyl C), 142.2 (Phenyl CH), 139.7 (Phenyl C), 139.6 (Phenyl C), 138.4 (Phenyl CH), 137.9 (Phenyl C), 135.0 (Thienyl CH), 130.8 (Phenyl CH), 129.9 (Phenyl CH), 129.4 (Thienyl CH), 128.9 (Phenyl CH), 126.2 (Phenyl CH), 121.3 (Phenyl CH), 119.4 (Phenyl CH), 94.8 (Phenyl C), $62.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $54.2\left(\mathrm{CH}_{2} \mathrm{CH}\right)$, $35.1\left(\mathrm{CH}_{2} \mathrm{CH}\right)$, 14.6 $\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$; HRMS (ESI+) m / z found $[\mathrm{M}+\mathrm{H}]^{+} 606.0449, \mathrm{C}_{26} \mathrm{H}_{25} \mathrm{NO}_{6} \mathrm{SI}^{+}$required 606.0447 .

2-(3-(5-(3-Iodobenzoyl)thiophene-2-carboxamido)benzyl)malonic acid

To a stirring solution of diethyl-2-(3-(5-(3-iodobenzoyl)thiophene-2carboxamido)benzyl)malonate ($97 \mathrm{mg}, 0.16 \mathrm{mmol}, 1$ equiv) in a THF- $\mathrm{H}_{2} \mathrm{O}$ (4:1) solution (0.0125 M) was added LiOH. $\mathrm{H}_{2} \mathrm{O}$ (4 equiv) at RT. When TLC analysis indicated complete consumption of ester, the solution was concentrated in vacuo. The residue was suspended in the minimum amount of $\mathrm{H}_{2} \mathrm{O}$, acidified to pH 1 with a 10% aqueous HCl solution and extracted with EtOAc ($\times 3$). The organic fractions were combined and extracted with a sat. aqueous NaHCO_{3} solution ($\times 3$). The aqueous solution was reacidified to pH 1 with a 10% aqueous HCl solution and re-extracted with EtOAc ($\times 3$). The organic fractions were combined, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated in vacuo and lyophilised in a $\mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O}$ (1:1) solution to yield the title compound as a cream solid ($46 \mathrm{mg}, 0.084 \mathrm{mmol}, 52 \%$) that was used without further purification.
mp 101-103 ${ }^{\circ} \mathrm{C}\left(\mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O}, \mathrm{1}: 1\right)$; IR $\mathrm{v}_{\text {max }}\left(\mathrm{neat} / \mathrm{cm}^{-1}\right) 1713 \mathrm{~m}(\mathrm{C}=\mathrm{O}), 1638 \mathrm{~m}(\mathrm{C}=\mathrm{O}), 161 \mathrm{~s}$ (C=O); ${ }^{1} \mathrm{H}$ NMR ($40 \mathrm{MHz} ; d_{6}$-DMSO) $\delta_{\mathrm{H}} 12.77(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{COOH}), 10.49(\mathrm{HH}, \mathrm{s}, \mathrm{NH}), 8.13$ (1 H , app $\mathrm{t}, J=1.5 \mathrm{~Hz}$, Phenyl CH), $8.12(1 \mathrm{H}, \mathrm{d}, J=4.0 \mathrm{~Hz}$, Thienyl CH), $8.07(1 \mathrm{H}, \mathrm{ddd}, J=$ 8.0, 1.5 and 1.0 Hz , Phenyl CH), 7.89 (1 H , ddd, $J=8.0$, 1.5 and 1.0 Hz , Phenyl CH), 7.80 ($1 \mathrm{H}, \mathrm{d}, J=4.0 \mathrm{~Hz}$, Thienyl CH), 7.64-7.61 ($2 \mathrm{H}, \mathrm{m}$, Phenyl CH), 7.40 (1 H , app t, $J=8.0 \mathrm{~Hz}$, Phenyl CH), 7.29 (1 H , app t, $J=7.5 \mathrm{~Hz}$, Phenyl CH), 7.03 ($1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}$, Phenyl CH), $3.56\left(1 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}\right)$, $3.04\left(2 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}\right.$); ${ }^{13} \mathrm{C}$ NMR (100 MHz ; $d_{6}{ }^{-}$ DMSO) $\delta_{C} 185.6$ ($\left.\mathrm{C}=\mathrm{O}^{\text {Ketone }}\right)$, 169.5 ($\left.\mathrm{C}=\mathrm{O}^{\text {Acid }}\right)$, 158.3 ($\mathrm{C}=\mathrm{O}^{\text {Amide }}$), 146.8 (Thienyl C), 144.3 (Thienyl C), 140.7 (Phenyl CH), 138.6 (Phenyl C), 138.2 (Phenyl C), 137.6 (Phenyl C), 136.4 (Phenyl CH), 135.3 (Thienyl CH), 130.2 (Phenyl CH), 129.0 (Thienyl CH), 128.1 (Phenyl CH), 127.8 (Phenyl CH), 124.1 (Phenyl CH), 120.2 (Phenyl CH), 118.1 (Phenyl CH), 94.5 (Phenyl C), 52.8 ($\mathrm{CH}_{2} \underline{\mathrm{CH}}$), 33.7 ($\underline{\mathrm{CH}}_{2} \mathrm{CH}$); HRMS (ESI +) m/z found $[\mathrm{M}+\mathrm{H}]^{+} 549.9836$, $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{NO}_{6} \mathrm{SI}^{+}$required 549.9821.

References

${ }_{1}$ O. Rotthaus, S. LeRoy, A. Tomas, K. M. Barkigia et al., Eur. J. Inorg. Chem., 2004, 15451551.

2 C. Liu, J. Wang, L. Meng, Y. Deng et al., Angew. Chem. Int. Ed., 2011, 50, 5144-5148.

Supplementary Table Si. Oligonucleotides used in the study

Designation	Oligonucleotide sequence (5^{\prime} - 3')	Purpose
Plkı Y42ıA Forward	G GTG GAC TAT TCG GAC AAG GCC GGC CTT GGG tat CAG C	Site-directed mutagenesis of GFPPLKıwt to generate Y421A
Plkı Y42ıA Reverse	G CTG ATA CCC AAG GCC GGC CTT GTC CGA ATA GTC CAC C	Site-directed mutagenesis of GFPPLKiwt to generate Y421A
Plkı L478A Forward	CC TTG ATG AAG AAG ATC ACC GCC CTT AAA TAT TTC CGC	Site-directed mutagenesis of GFPPLKıY421A to incorporate L478A
Plkı L478A Reverse	GCG GAA ATA TTT AAG GGC GGT GAT CTT CTT CAT CAA GG	Site-directed mutagenesis of GFPPLKıY421A to incorporate L478A
Plk L478A/ Y481D Forward	G AAG ATC ACC GCC CTT AAA GAT TTC CGC AAT TAC ATG AGC G	Site-directed mutagenesis of GFPPLKıY421A/L478A to incorporate Y 481 D

Plk L478A/ Y48ıD Reverse	C GCt CAT GTA ATt GCG GAA ATC TTT AAG GGC GGT GAT CTT C	Site-directed mutagenesis of GFPPLKıY421A/L478A to incorporate Y 48 D D
Plkı Forward	$\begin{aligned} & \text { GCG CTC GAG ATG AGT GCT } \\ & \text { GCA G } \end{aligned}$	Cloning Plkı containing XhoI restriction site (underlined)
Plkı Reverse	CTC GCG GCC GCT TAT TAG GAG GC	Cloning Plkı containing NotI restriction site (underlined)
PBIP1 Forward	ATT GGA TCC ATG GCC CCG CGG GGG CGG CGG CGG	Cloning PBIP1 containing BamHI restriction site (underlined)
PBIP1 Reverse	GCC TCT AGA TCC CTG GTC AAG GAG CTT CTC taA CTG	Cloning PBIP1 containing XbaI restriction site (underlined)
PBIP1 F71A Forward	GAA GAA ACT TAT GAG ACC GCT GAT ССT ССT TTA CAT AGC	Site-directed mutagenesis of PBIP1 to generate $\mathrm{F}_{71} \mathrm{~A}$
PBIP1 F71A Reverse	GCT ATG TAA AGG AGG ATC AGC GGT CTC ATA AGT TTC TTC	Site-directed mutagenesis of PBIP1 to generate $\mathrm{F}_{71} \mathrm{~A}$

PBIPı T78A	ACC TTT GAT CCT CCT TTA	Site-directed
Forward	CAT AGC GCA GCT ATA TAT	mutagenesis of PBIP1 to
GCT G	generate T78A	
PBIPı T78A	CAG CAT ATA TAG CTG CGC	Site-directed
Reverse	TAT GTA AAG GAG GAT CAA	
AGG T		

*Residues mutated for site-directed mutagenesis are highlighted in grey.

Supplementary Table \mathbf{S}_{2}. SiRNA sequences used in the study

Designation	Target sequence (5'-3')	Target	Manufacturer
siLuc	CGUACGCGGAAUACUUCGA	Luciferase (non- targeting control)	MWG
siPlkı	CAACGGCAGCGTGCAGATCAA	Plkı	Qiagen
siPlkı 3'UTR	CCATATGAATTGTACAGAATA	3'UTR of Plkı	Qiagen

Supplementary Table S3. Crystallographic data collection and refinement statistics

Protein	Plk1 PBD	Plk1 PBD
Ligand	Polotyrin	3-iodo benzyl bromide
PDB code	5NEI	5NMM
Data collection		
Synchrotron and beamline	DLS, 124	DLS, 103
Wavelength (\AA)	0.9830	0.9200
Temperature (K)	100.0	100.0
Data processing		
Resolution (\AA)	45.68-2.68 (2.75-2.68)	46.52-2.02 (2.07-2.02)
Space group	$\mathrm{P} 2_{1}$	$\mathrm{P} 2_{1}$
Unit cell: $\mathrm{a}, \mathrm{b}, \mathrm{c}(\mathrm{A})$	$33.350,91.360,35.940$	$33.360,93.040,35.910$
a,b,g (deg)	90.00, 99.71, 90.00	$90.00,100.22,90.00$
$\mathrm{R}_{\text {merge }}$	0.072 (0.470)	0.058 (0.701)
$\mathrm{R}_{\text {mess }}$	0.115 (0.704)	0.087 (0.877)
Total number of observations	15,152 (1214)	52232 (3925)
Total number unique	5965	13,900 (1009)
Mean((l)/s(l))	9.56 (2.19)	11.4 (2.4)
Completeness (\%)	99.2 (99.6)	98.1 (97.3)
Multiplicity	2.6 (2.6)	3.8 (3.9)

Refinement

Resolution (\AA)	$45.68-2.68(3.38-2.68)$	$46.52-2.02(2.17-2.02)$
$R_{\text {work }}$	$0.199(0.229)$	$0.192(0.259)$
$R_{\text {free }}$	$0.248(0.303)$	$0.237(0.328)$
No. of non-H atoms	1797	1763
Protein atoms	1755	1720
Ligand atoms	31	9
Waters	11	34
RMSD bonds (\AA)	0.008	0.005
RMSD angles (deg)	1.126	0.868
Ramachandran favored (\%)	94	95
Ramachandran allowed (\%)	5	5
Ramachandran outliers (\%)	1	0
Molprobity clashscore	17.1	10.9
Average B-factor ($\left.\AA^{2}\right)$	55.7	46.7
of macromolecules	55.7	46.7
of ligands	50.8	46.7

SUPPLEMENTARY FIGURE LEGENDS

S1. Inducible expression of GFP-PLKiwt/AAD/AM after induction with doxycycline. HeLa cells expressing GFP-PLKıwt/AAD/AM were either treated with Dox for 16, 24 and 48h (+), or untreated (-). Cell extracts were analysed by immunoblotting using GFP antibody for GFPPLKıwt/AAD/AM in panels A/B/C respectively; β-actin blot shows uniform loading across lanes.

S2: Knockdown of PLKı with siRNA and concomitant expression of GFPPLKıwt/AAD/AM. HeLa cells inducibly expressing GFP-PLKıwt/AAD/AM were treated with Dox and concomitantly transfected with SiRNA's as specified (siLuc -non-targeting SiRNA or SiPLKı 3'UTR or SiPlkı, see table S_{2}). Cells extracts after 24 h and 48 h of treatment were analysed by immunoblotting using PLKı antibody. Ponceau S-treated membranes show comparable loading of the lysates on each membrane. Asterisks (*) show cross-reacting bands.

S3. Localisation of GFP-PLKıWt/AAD/AM on kinetochores in prometaphase cells. (A) Representative maximal-intensity projection images of cells showing kinetochores (KT) in red, centrosomes (CENT) in white, GFP-PLKıWt/AAD/AM in green and DNA in blue used for quantification of GFP-PLKı intensity in Fig. S3 (B). The cell lines were treated with Dox (o.5 $\mathrm{mg} . \mathrm{ml}^{-1}$) for 7 h , fixed and stained with CREST antiserum, anti-Pericentrin and Hoechst 33342 and analysed by immunofluorescence microscopy for GFP signal in prometaphase cells. (B) Quantification of intensity ratios of GFP-PLKı ${ }_{\text {Wt/AAD/AM }}$ on CREST-stained kinetochores (KT) normalized to the corresponding GFP-PLKı expression in cells. Image analysis was done using CellProfiler. Data from each cell is represented as a hollow circle, horizontal line (red) indicates mean intensity ratio and error bars indicate \pm S.D. Statistical analysis was done using nonparametric, Mann-Whitney two-tailed test with 95% confidence interval. ${ }^{* * *} \mathrm{p}<0.0029$.

S4. Mitotic index (MI) of GFP-PLK1 ${ }_{\text {Wt/AAD/AM }}$ cells after 24 h treatment with siPlkı 3'UTR. Cells treated with siPlkı 3'UTR were fixed and stained as described in the methods section. MI is expressed as a percentage of phospho-histone H_{3} positive cells per 100 DAPIstained nuclei counted. Each bar is a mean of three replicates (each replicate $=2000$ cells) \pm S.E.M.

S5. Representative images of single mitotic GFP-PLKı ${ }_{w t}$ cell in the FRAP experiment. At the onset of the experiment ($\mathrm{t}=\mathrm{o} \mathrm{s}$), both centrosomes show localization of GFP signal; upon photobleaching ($\mathrm{t}=1.4 \mathrm{~s}$) the signal disappears in one of the centrosomes (see arrow head) and gradually reappears ($\mathrm{t}=1.9$ to 9.7 s). Scale bar, $3 \mu \mathrm{~m}$.

S6. Immunoprecipitation of GFP-PLKıWt/AAD/AM with NEDDı. (A, B). HeLa cells expressing GFP-PLKıwt/AAD/AM were synchronized in mitosis by double thymidine block and released as shown in the experimental schedule in Fig. 4B. The cell lysates were immunoprecipitated using GFP-Trap ${ }^{\circledR}$ beads to pull down GFP-PLKıwt/AAD/AM and analysed by immunoblotting. (C). HeLa cells expressing GFP-PLKıwt/AAD/AM were synchronized in mitosis with nocodazole. The cell lysates were immunoprecipitated using GFP-Trap ${ }^{\circledR}$ beads to pull down GFP-PLKıwt/AAD/AM and analysed by immunoblotting.

S7. Reciprocal co-Immunoprecipitation (co-IP) of GFP-PLKıWt/AAD/AM with PBIPı. Reciprocal co-IP of Figure 4^{C}. $\mathrm{PBIP}_{1 \mathrm{w}_{t}-\mathrm{V}_{5}}$ was transfected in to uninduced HeLa cells and cells expressing GFP-PLK1 ${ }_{\text {Wt/AAD/AM. }}$ 24h later cells were harvested, GFP-Trap ${ }^{\oplus}$ was used to pull down GFP-PLKıWt/AAD/AM from the lysates and co-immunoprecipitates were analysed by immunoblotting.

S8. Treatment with Polotyrin causes chromosome congression defects in mitotic cells. Representative images used for MI determination (see Fig. 5D) were collected on Cellomics ArrayScan with a $20 x$ Planfluor objective $\times 0.4$ NA; cells were stained with Hoechst 33342 and phospho-Histone H_{3} (shown in blue and green in the merged image respectively). Insets were digitally magnified to show chromosome congression in Polotyrin versus DMSOtreated cells.

Supplementary Video Mı. GFP-PLKıWt cells treated with Plkı 3'UTR siRNA were imaged at 5 \min intervals and displayed at 10 frames per second.

Supplementary Video M2. GFP-PLKıAAD cells treated with Plkı 3'UTR siRNA were imaged at 5 min intervals and displayed at 10 frames per second.

Supplementary Video M3. GFP-PLKıAM cells treated with Plkı 3'UTR siRNA were imaged at 5 min intervals and displayed at 10 frames per second.

Figure S1: Inducible expression of GFP-PLK1wt/AAD/AM after induction with doxycycline.
A.

B.

C.

Figure S2: Knockdown of PLK1 with siRNA and concomitant expression of GFP-PLK1wt/AAD/AM
A. GFP-PLK1wt

■ Endogenous PLK1

- GFP-PLK1Wt/AAD/AM
* Non-specific
B. GFP-PLK1AAD

C. GFP-PLK1AM

Figure S3: Localisation of GFP-PLK1wt/AAD/AM on kinetochores in prometaphase cells
A.

B.

Figure S4: Mitotic index (MI) of GFP-PLK1wt/AAD/AM after 24h of treatment with siPIk1 3'UTR

SiPIk1 3'UTR

Figure S5: Representative images of single mitotic GFP-PLK1wt cell in the FRAP experiment

Figure S6: Immunoprecipitation of GFP-PLK1wt/AAD/AM with NEDD1

Figure S7: Reciprocal co-Immunoprecipitation (co-IP) of GFP-PLK1wt/AAD/AM with PBIP1

Figure S8: Treatment with Polotyrin causes chromosome congression defects in mitotic cells

FULL SIZE BLOTS.
Boxed regions indicate area used in figures.
Figure 4B GFP

FULL SIZE BLOTS.

Boxed regions indicate area used in figures.
Figure 4B NEDD1 Short Exposure

Figure 4B NEDD1 Long Exposure

Figure 4C Long Exposure

ECL: 8 min .

Figure 4C Short Exposure

Figure 4D Long Exposure

Figure 4D Short Exposure
05.05.16

ECl: $1 \frac{1}{2}$ min.

lAb: V5 ($1: 7500$)
2.Ab: Mouse L-chain (1 : 500)

Figure 5F Long Exposure

Figure 5F Short Exposure

Figure S2 A

Figure S2 B

Figure S2 C

Figure S6A

17.0415

ECb: 10sec

9n

10h

Figure S6B

Figure S6C

Figure S7

