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Abstract

Acute myeloid leukaemia (AML) is an aggressive blood cancer which claims the lives of 70-80% of

patients within 5 years of diagnosis. Like many other cancers, AML usually develops as a consequence

of serial acquisition of somatic driver mutations; a process that starts many years, or even decades,

before diagnosis. This raises the prospect that early detection of ‘pre-leukaemic’ mutations could

be used to identify individuals at high risk of developing AML, in whom early intervention could

halt the disease before it fully develops. One of the difficulties with early detection of AML is that

clonally expanded leukaemia-associated mutations are also found in the blood of healthy individuals, a

phenomenon termed ‘clonal haematopoiesis’. However, most individuals with clonal haematopoiesis

will never progress to AML and so a key challenge is the identification of individuals most at risk. To

do this, we need a better understanding of the evolutionary dynamics of clonal haematopoiesis in the

years, or decades, before AML occurs and how this differs from the dynamics of clonal haematopoiesis

in individuals that remain cancer-free.

We sought to understand this process by first studying the acquisition and expansion of the initial clonal

haematopoiesis driver mutation. Using blood sequencing data amassed from ∼50,000 individuals,

combined with insights from evolutionary theory, we developed a framework to quantify the mutation

rates and fitness effects of clonal haematopoiesis variants down to single nucleotide resolution. This

enabled us to build a league table of the fittest and potentially most pathogenic variants in blood.

We also quantified the distribution of fitness across key clonal haematopoiesis genes and found the

distribution to be highly skewed, with most mutations in these genes conferring either a weak or

no fitness effect. Our framework also reveals that whilst cell-extrinsic effects are likely crucial in

some situations, the combined effects of chance (when a mutation arises) and cell-intrinsic fitness

differences are the major forces shaping clonal haematopoiesis.

Mosaic chromosomal alterations (mCAs) can also be important drivers in AML and ∼3% of indi-

viduals aged ∼40-70 have a clonally expanded mCA detectable in >1% of their blood cells. We

therefore adapted our framework to quantify the mutation rates and fitness effects of mCAs in blood

and applied this to data generated from ∼500,000 individuals in UK Biobank. We find most mCAs

confer growth rates of ∼10-20% per year and find correlation between mCA fitness and blood cancer

risk. In contrast to the strong age dependence observed in single nucleotide variant prevalence in



blood, we find mCA age dependence to be more variable, particularly in women, suggesting the risk

of acquisition and/ or expansion of certain mCAs is non-uniform throughout life and is influenced by

gender-specific factors.

To determine how the dynamics of clonal haematopoiesis differs in individuals who progress to AML,

we identified longitudinal blood samples that had been collected annually at multiple timepoints from

individuals who subsequently developed AML, as well as age-matched controls who remained cancer

free. We developed a custom error-corrected duplex sequencing platform to detect mutations in 34

clonal haematopoiesis/AML-associated genes, genome-wide mCAs and AML-associated translo-

cations and used this to perform an integrative assessment of the genetic changes in these samples.

We find there are four main evolutionary patterns in the years preceding AML diagnosis: linear

evolution, evolution with clonal interference, static evolution and late evolution. We calculate the age

at acquisition of the first and second mutations and, whilst the initial driver mutation is often acquired

early in life, there are some very fit ‘uber drivers’ which appear to occur as the initial event just ∼4

years pre-diagnosis. We find that the variants we identified as ‘highly fit’ in clonal haematopoiesis are

significantly enriched pre-AML and we were able to determine how fitness effects changed with the

acquisition of subsequent mutations. NPM1 mutations, which characteristically occur late in AML

development and have never been seen in individuals who do not progress to AML, can be detected as

early as 2 years pre-AML diagnosis, highlighting the benefit afforded by low VAF variant calling,

particularly in high-risk individuals.

This quantitative analysis of clonal haematopoiesis, combined with an integrated assessment of genetic

changes in longitudinal blood samples from individuals who progress to AML, reveals important

insights into the evolutionary dynamics of mutations in the years preceding AML. Understanding

which features distinguish pre-malignant from benign clonal evolution is key for risk stratification

of clonal haematopoiesis and will aid in the development of rational monitoring approaches and

identification of those who may benefit from early intervention studies.
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1.1 Cancer as an evolutionary process

1.1 Cancer as an evolutionary process

Cancer develops as a result of an evolutionary process that involves the stepwise accumulation of

genetic or epigenetic changes within a cell over time1,2 . The acquisition of somatic mutations with

age is ubiquitous in healthy tissues such as the blood3–9, skin10–12 and gastrointestinal tract13,14.

Whilst many of these mutations will be detrimental to the cell (deleterious mutations, e.g. a frame-shift

mutation in a gene essential for DNA replication) or of no functional consequence (neutral mutations,

e.g. synonymous mutations), some mutations confer a fitness advantage (beneficial mutations) by

promoting cell proliferation and/or cell survival15. If these beneficial mutations occur in cells with an

inherent, or acquired, capacity for self-renewal (e.g. stem cells), the mutation is propagated through

clonal expansion16, which increases the likelihood of further mutations being acquired and may

ultimately result in the clone becoming cancerous6–8. This raises the possibility that cells harbouring

early pre-cancerous mutations may be detectable in individuals in the years, or decades, before they

show signs of the disease.

1.2 Acute myeloid leukaemia as an evolutionary process

Acute myeloid leukaemia (AML) is an aggressive blood cancer, characterised by clonal expansion and

uncontrolled proliferation of abnormal undifferentiated myeloid precursor cells in the bone marrow,

which results in impaired haematopoiesis and bone marrow failure17,18. AML incidence rates rise

steadily until age ∼50 and then more steeply from age ∼60, with peak incidence between ages 85-8919.

Whole genome sequencing has revealed AML to be a genetically heterogeneous disease13–15 with

> 5000 possible driver mutations (across ∼76 genes or genomic regions)20, although an individual

AML is associated with an average of only ∼5 ± 3 (SD) mutations in recurrently mutated genes21.

Single-cell analyses have demonstrated that these mutations are serially acquired in haematopoietic

stem cells (HSCs)17 which, with their long lifespan and capacity for self-renewal22 makes them

vulnerable to the accumulation of mutations over time3–9. It is also possible that the mutations are

serially acquired in more downstream multi-potent progenitors, but only if the cell is capable of

self-renewal (either inherently, or due to the effect of the first mutation), otherwise the mutation will

be lost due to terminal differentiation23. Mutations affecting epigenetic regulators (e.g. DNMT3A,

TET2, ASXL1) have been shown to occur as early events in the step-wise accumulation of mutations

pre-AML, with mutations conferring a proliferative advantage (e.g. FLT3 and NPM1) occurring

late21,24–26 (Figure 1.1). It follows that we should expect to find evidence of early ‘pre-leukaemic’

mutations in the blood of individuals before they develop bona fide AML, as well as in the blood of

‘healthy ageing’ individuals who do not acquire the full complement of mutations required to develop

the disease.
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Figure 1.1 Step-wise accumulation of mutations in HSCs, leading to AML. Figure adapted from Jan et al17.

1.3 Clonal haematopoiesis

Early evidence of clonal expansions in the blood (‘clonal haematopoiesis’) of healthy individuals

came from the observation of a skewed pattern of X-chromosome inactivation in the peripheral blood

cells of ∼20% of healthy women >65 years old27. The skewing was seen in all haematopoietic

lineages, consistent with an HSC origin and, following the advent of next-generation sequencing

(NGS), some cases were found to be associated with mutations in TET228, a gene recurrently mutated

in AML20,21.

In 2014, three large population-based studies3–5 showed that the prevalence of clonal haematopoiesis,

in individuals unselected for haematological malignancy, increases roughly exponentially with age,

with somatic mutations detectable at >2% variant allele frequency (VAF) (i.e. >4% of blood cells)

in 10% of individuals >65 years old4. The most commonly mutated genes were those found to

be recurrently mutated in early pre-leukaemic stem cells24, namely DNMT3A, TET2 and ASXL1,

whereas NPM1 and FLT3-ITD mutations, which occur late in the evolution to AML24–26, were not

observed. This finding is consistent with the notion that mutations in DNMT3A, ASXL1 and TET2

act as ‘initiating’ mutations in pre-leukaemic cells, but that a ‘co-operating’ mutation in e.g. FLT3

or NPM1, is then required for leukaemic transformation4,20. Indeed, these large population-based

studies showed that the presence of clonal haematopoiesis was a strong risk factor for the subsequent

development of haematological malignancy (hazard ratio 11.1-12.9), with a risk of progression of

∼0.5-1% per year3,29. Bone marrow biopsy analysis of two individuals who subsequently developed

AML confirmed that their cancers had arisen from their earlier detected clones4. More recent studies,

using error-corrected sequencing methods, with the ability to detect variants at frequencies as low as

0.03%, have shown that clonal haematopoiesis is even more prevalent than originally thought, with

95% of individuals >60 years old having ≥1 somatic variant detectable in their peripheral blood7.

Whilst the majority of studies have focused on gene mutations in clonal haematopoiesis, mosaic

chromosomal alterations (mCAs) can also be found in the blood of healthy individuals30–33, with

recent studies showing that ∼3.5% of all individuals aged 40-70 years old have a clonally expanded

mCA detectable in >1% of their blood cells34,35. Certain mCAs are associated with an increased risk

of developing myeloid and/ or lymphoid malignancies, with an annual incidence of ∼0.5-1% per

year36. This risk is significantly increased if clonal haematopoiesis variants are also present (hazard

ratio ∼103).
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1.4 Progression of clonal haematopoiesis to AML

AML affects ∼4 in 100,000 individuals per year in the UK and, despite recent advances in treatment,

<30% survive for >5 years after their diagnosis19. The ‘holy grail’ would be to have the ability to

reliably predict which individuals with clonal haematopoiesis are most at risk of developing AML

and then intervene with targeted therapy to stop AML in its tracks before it develops.

How the mutational landscape differs in individuals who progress to AML was explored in recent

studies, using blood samples collected from up to 3 timepoints pre-AML diagnosis37–39. These studies

highlighted several key features associated with increased risk which were detectable in the blood

∼10 years prior to AML diagnosis. Pre-AML cases showed enrichment for mutations in TP53 (OR

47.2), IDH1/2 (OR 28.5), spliceosome genes (OR 7.4), TET2 (OR 5.8) and DNMT3A (OR 2.6)37,38.

VAFs tended to be higher in pre-AML cases, with ∼40% having a mutation at >10% VAF (OR 6.5),

compared to only ∼4% of controls37. Clonal complexity was also greater in pre-AML cases, with

≥1 mutations detectable in nearly 50% of cases compared to only ∼5% of controls ('1% VAF)38.

Factors associated with accelerated time to AML progression included clonal complexity (6.9 years

vs 9.1 years for ≥ 2 mutations vs 1 mutation) and mutations in specific genes (accelerated time to

progression associated with mutations in TP53, DNMT3A, RUNX1 and spliceosome genes)38.

1.5 Key unanswered questions

These studies captured ‘snapshots’ of the pre-leukaemic evolutionary process and provided evidence

of appreciable clonal differences between individuals who develop AML compared to those who

remain cancer-free. Before these findings can be translated into a robust risk-stratification and early

detection tool, however, several questions remain unanswered:

How do we explain the wide variation in VAFs observed in clonal haematopoiesis?

Whilst these studies showed that higher VAFs were associated with an increased risk of AML37,38,

simply using VAF measurements to comprehensively risk-stratify specific variants is difficult because

the VAF of a specific variant can vary by over 3 orders of magnitude between individuals7. What

causes this variation? Do the variants confer different growth advantages (fitness effects) in different

individuals? Does the bone marrow microenvironment affect the growth of clones? Does the difference

in VAF simply reflect the different ages at which the mutations were acquired?

Should all variants within the same gene be considered to confer the same risk?

Pre-AML cases were enriched for mutations in certain genes, relative to controls, suggesting the risk

of progressing to AML depends on which gene is mutated37,38. However, certain variants within a

gene are observed more frequently than others (e.g. R882H in DNMT3A)7,38 and evidence from
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mouse models40,41 and human leukaemia cell lines42 has shown that the functional consequence of

mutations can depend on where in the gene they occur and what effect they have on the transcribed

gene product. It is therefore likely that not all variants within a gene confer the same risk of AML. To

build robust risk-stratification tools we need to be able to risk stratify individual variants.

What are the key parameters for stem cell evolutionary dynamics?

In order to build quantitative models of AML risk, we need a robust understanding of stem cell

dynamics and numbers for key stem cell parameters. What is the population size of HSCs susceptible

to acquiring mutations? Is the chance of acquiring a mutation uniform throughout life and, if a

mutation occurs, how does it affect stem cell dynamics? Clonal expansion can occur through a bias

towards HSC symmetric self-renewal divisions43–46, but how often do these divisions occur?

HSC mutation rates can be estimated from the number of mutations observed across the genome,

with most studies in broad agreement with a genome-wide average HSC mutation rate of ∼10−9

per bp per year47,48, although variation in mutation rates within genes, across the genome and

between individuals will occur49–51. Within genes, at the base pair level, the sequence context of the

base is felt to be the greatest source of variation in mutation rate, with mutation rates at CpG sites

occurring ∼10 times more frequently than non-CpG sites49,52–54 due to spontaneous deamination of

5-methylcytosine. Across the genome, replication timing and chromatin accessibility are felt to play a

significant role in mutation rate variability50,51,55,56. Between individuals, analysis of the sequence

context of mutations has revealed distinct mutational signatures for different types of cancers, some

of which reflect particular mutagenic exposures (e.g. smoking, UV light or previous alkylating agent

exposure), increasing age or differences in mutation repair efficiency57–59.

The HSC population size has historically been harder to measure, with most attempts involving

extrapolation from animal models or calculation of relative proportions of cells, with estimates

ranging from 102 to 109 cells60–67.

HSC division rates, particularly symmetric self-renewal division rates, are also hard to measure.

Previous attempts have involved extrapolation from mouse estimates64,65, analysis of the changing X-

chromosome inactivation ratios in blood with age66 and telomere fluorescence measurements67.

How does sequential accumulation of mutations affect growth rates?

We know that pre-leukaemic mutations appear to be acquired sequentially17,38,68, but little is known

about how different mutation combinations affect growth rates and risk of progression to AML. Mouse

and cell-culture models have demonstrated co-operation between different genetic mutations69–71

and the order in which individuals acquire JAK2 and TET2 mutations has been shown to influence

clonal evolution and expansion rates in myeloproliferative disorders72, but little is known about this

in clonal haematopoiesis and AML. To determine how different combinations of mutations interact
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and affect the evolution of clones over time requires high temporal resolution longitudinal data as

well as an understanding of normal stem cell dynamics.

At what age are mutations acquired?

We know that the prevalence of clonal haematopoiesis and AML increases with age3–5,19, but when

does the acquisition of the first mutation occur? Is this different in individuals who develop AML

compared to those who remain cancer-free? Retrospective analysis of neonatal Guthrie blood spots

from children who had subsequently developed t(8;21) AML between the ages of 3 and 12, found

clonotypic genomic AML1-ETO sequences73. This provided evidence that pre-leukaemic lesions can

occur as early as in utero, but is this also the case for adults that develop AML and how long does it

take before the second, and subsequent, mutations are acquired?

What is the pattern of pre-leukaemic evolution?

By the time AML is diagnosed, the dominant clone has accumulated ∼5 mutations in recurrently

mutated genes21, but from over 5000 possible driver mutations20. What is the pattern of evolution of

these mutations? If the HSC population size is large and/or the mutation rate high, we would expect

clonal interference to play a key role in early evolution, with multiple lineages growing and competing

over time45. If the mutations are rare, however, we might expect to see a simple sequential acquisition

of mutations over time. We might also expect some pre-leukaemic clones to disappear as a result of

immune surveillance74, but how much evidence is there for this and how does it affect progression to

AML?

To try to answer these questions we set out to gain a quantitative understanding of each stage of the step-

wise process to AML, from acquisition and clonal expansion of the initial driver mutation (using single

timepoint data from ∼50,000-500,000 individuals) all the way through to pre-leukaemic evolution

(using longitudinal blood samples from 50 individuals who subsequently developed AML).

In Chapter 2 and Chapter 3 of this thesis, we focused on understanding the acquisition and expansion

of the initial clonal haematopoiesis driver mutation, using single nucleotide variant data amassed from

∼50,000 individuals (Chapter 2) and mosaic chromosomal alteration (mCA) data from ∼500,000

individuals (Chapter 3). Using a framework based on a simple branching model of HSC dynamics we

found that the wide variation in VAFs observed between individuals can be explained by the combined

effects of chance (when a mutation arises) and fitness differences (how fast the mutant clone expands).

Most mutations appear to be acquired at roughly a constant rate throughout life and if they confer a

positive fitness effect they result in exponential growth. The data, across thousands of individuals, are

consistent with the age dependence of clonal haematopoiesis being driven simply by a continuing risk

of mutations and subsequent clonal expansions that lead to increased detectability at older ages. Our

framework also allowed us to quantify the fitness effects of individual variants, at single nucleotide

resolution, the fitness effects of 60% of all possible mCAs and the distribution of fitness effects across
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genes. We generated a league table of the fittest mutations, which, in support of our inferences, we

find confer an increased risk of AML.

To determine how the dynamics of clonal haematopoiesis differs in individuals who progress to AML,

we identified longitudinal blood samples that had been collected annually at multiple timepoints from

50 women who subsequently developed AML, as well as age-matched controls who remained cancer

free. To study the dynamics of pre-AML mutations over time we needed to not only have the ability

to detect a comprehensive array of AML-associated mutations, but also the ability to detect them

when they were at very low frequency. In Chapter 4 of this thesis, we describe the development of a

custom comprehensive targeted NGS panel, which can detect an array of clonal haematopoiesis and

AML-associated genetic changes, including gene mutations, mCAs and chromosomal rearrangements.

We used duplex error-corrected sequencing and developed a custom in silico noise correction method,

which allowed us to call variants down to single molecule resolution. We developed a custom

chromosomal rearrangement caller, for accurate translocation and inversion VAF estimation and, by

harnessing the power of longitudinal samples, we were able to phase SNPs on an individual basis,

allowing us to call mCAs at cell fractions as low as 0.1%.

In Chapter 5 we present our preliminary findings from analysis of this unique set of longitudinal

blood samples collected pre-AML diagnosis. We find that there are four main evolutionary patterns

in the years preceding diagnosis of AML: linear evolution, evolution with clonal interference, static

evolution and late evolution. We calculate the age at acquisition of the first and second mutations and,

whilst the initial driver mutation is often acquired early in life, there are some very fit ‘uber drivers’

which appear to occur as the initial event just ∼ 4 years pre-diagnosis. We find that the variants we

identified as ‘highly fit’ in clonal haematopoiesis (in Chapter 2) are significantly enriched in pre-AML

cases and we were able to determine how fitness effects changed with the acquisition of subsequent

mutations. These findings reveal key insights into the evolutionary dynamics of clones in the years

preceding AML development, which will aid in the development of rational monitoring approaches

and identification of individuals who may benefit from early intervention studies.
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The evolutionary dynamics and fitness

landscape of clonal haematopoiesis
in healthy individuals

An adapted version of the work presented in this chapter was published in Science in 2020.
Watson et al. The evolutionary dynamics and fitness landscape of clonal haematopoiesis. Science 2020, 367(6485):1449-1454

Analyses undertaken by co-authors are not included here, unless specifically indicated.
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Evolutionary dynamics and fitness landscape of clonal haematopoiesis

2.1 Introduction

The adult haematopoietic system produces more than 2 million blood cells per second, a remarkable

feat that is intricately controlled at a hierarchical level to ensure that supply and demand are carefully

matched. At the top of the hierarchy is the haematopoietic stem cell (HSC); a long-lived multipotent

cell with the ability to self-renew. This long lifespan and capacity for self-renewal means that HSCs

are vulnerable to the accumulation of mutations over time, including mutations in cancer-associated

genes. Indeed, since a skewed pattern of X-chromosome inactivation was first observed in the

blood cells of 20% of healthy elderly women ∼ 20 years ago27, numerous large-scale sequencing

studies have shown that the acquisition of leukaemia-associated mutations in our blood cells becomes

increasingly common with age3,4,8,9,75, with deeper sequencing studies showing their presence is

almost ubiquitous in those over the age of 657,39. While this phenomenon, ‘clonal haematopoiesis’,

will be of little consequence in most individuals, it has emerged as an important pre-cancerous

state3,4,29, representing the first of a multi-step process that in some individuals can progress to a

blood cancer, such as AML. To be able to identify those individuals most at risk we need a better

quantitative understanding of this first step of mutation acquisition and clonal expansion and how this

affects normal haematopoiesis.

We know that the risk of progressing to blood cancer depends on which gene is mutated76,77, but

should all variants within the same gene be considered equally high risk? We also know that the higher

the variant allele frequency (VAF) of a mutation, the greater the risk of progression to AML76,77,

but a challenge to using VAFs to risk-stratify variants is that the VAF of a specific variant can vary

by over 3 orders of magnitude between different individuals7. How do we explain this variation?

Are these differences in VAFs between individuals the result of cell-intrinsic fitness advantages78,

cell-extrinsic perturbations79 or sheer chance (when a mutation occurs and its stochastic growth after

it occurs)9? To identify the most highly fit variants we need to understand how mutation, genetic

drift, and differences in fitness combine to produce the spectrum of VAFs we observe in clonal

haematopoiesis. The advent of higher throughput and more cost-effective sequencing technologies

over the past decade has resulted in a significant increase in available blood sequencing data, providing

us with the means to try to answer these questions.

Here, using insights from evolutionary biology we present a novel quantitative analysis of VAF spectra

using publicly available blood sequencing data amassed from ∼50,000 individuals. Determining the

growth rate of mutations usually requires multi-timepoint data but, using our framework we show that

it is possible to quantify the fitness of key pathogenic variants, down to single-nucleotide resolution,

using single-timepoint data. We present a league table of the fittest and potentially most pathogenic

variants in blood and quantify the distribution of fitness across key clonal haematopoiesis genes. We

reveal the distribution of fitness effects in these genes to be highly skewed, with most mutations

conferring either a weak or no fitness effect. Our framework also allows us to make quantitative

predictions for the total number of haematopoietic stem cells (HSCs) that maintain the peripheral
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blood as well as the prevalence of clonal haematopoiesis across ages. While previous studies have

suggested the age dependence of clonal haematopoiesis is due to an ageing stem cell niche, we show

that the data are consistent with a much simpler explanation: as clones grow, they become easier to

detect.

2.2 A branching model of haematopoietic stem cell dynamics

To determine how mutation, drift and selection contribute to the wide variation in VAFs between

individuals, we considered a simple stochastic branching model of haematopoietic stem cell (HSC)

dynamics based on classic population genetics models43–46, but adapted to include a spectrum of ages

and a spectrum of fitness effects.

In this model, there is a population of N diploid HSCs. In normal homeostasis HSC numbers are

maintained, at the population level, by a constant balance of self-renewal and differentiation43,80,81.

This homeostasis could be achieved if the HSCs divided only asymmetrically (producing 1 HSC

and 1 differentiated cell with each division), but this would not be a robust homeostatic mechanism

if increased self-renewal was required. Indeed, work over the past decade, predominantly in skin,

has shown that stem cells also have the ability to divide symmetrically, producing two differentiated

cells or two stem cells with each division43,82,83. Therefore in this model the HSCs make 1 of 3 fate

decisions with each cell division: symmetrically divide to produce 2 HSCs, asymmetrically divide

to produce 1 HSC and 1 differentiated cell or symmetrically divide to produce 2 differentiated cells

(Figure 2.1a). The differentiated cells ultimately die and so the average offspring per generation, within

the total population, is 1. At the individual cell level the HSC fate decision is random, however, and

so there are fluctuations in offspring number at the individual cell level, known as ‘drift’81,84,85. The

overall population HSC number (N) will fluctuate too, but only with a magnitude
√

1/N, which means

these fluctuations are suppressed when the total number of HSCs is large. In normal homeostasis,

feedback mechanisms likely exist to keep total HSC numbers fairly stable, for example from the stem

cell niche86–88 and extrinsic regulatory molecules84,89,90.

symmetrical division

asymmetrical division

symmetrical division

ba

stem cell

2 stem cells

cell death1 stem cell
& 1 di�erentiated cell

2 di�erentiated cells cell death

symmetrical division

asymmetrical division

symmetrical division

stem cell

2 stem cells

cell death1 stem cell
& 1 di�erentiated cell

2 di�erentiated cells cell death

mutation

Figure 2.1 Branching model of haematopoietic stem cell dynamics. a. In normal homeostasis the HSC makes 1 of 3
fate decisions with each cell division. b. Mutations with a positive fitness effect (red star) cause an imbalance in stochastic
cell fates toward self-renewal. This can be an increase in the rate of self-renewal (red plus sign), a decrease in differentiation
(red minus sign), or a combination of the two, resulting in clonal expansion.
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In this model of HSC dynamics, mutations are acquired at a constant rate (µ), per year. The mutation’s

fate depends on its influence on the HSC’s stochastic fate decisions through a fitness effect (s). Neutral

mutations (s = 0) do not alter the balance between self-renewal and differentiation, which means

that neutral mutations either rapidly go extinct or grow slowly, due to drift, and remain at low VAFs.

Beneficial mutations (s > 0) increase the rate of self-renewal relative to symmetric differentiation

(Figure 2.1b), such that the average offspring per cell per generation increases from 1 to 1+ s. Over

time (t years), this causes the lineage to change in size as (1+ s)t , a binomial series which ≈ est for

small s. Therefore, provided the beneficial mutation escapes stochastic drift to extinction, it will

eventually grow exponentially at rate s per year. The relative increase in the rate of self-renewal,

caused by beneficial mutations, can be achieved by biasing of the cell fate alone (i.e. increasing

the probability of self-renewal) (Figure 2.1b, red plus sign) and/or by decreasing differentiation or

apoptosis (Figure 2.1b, red minus sign).

The branching model of haematopoietic stem cell dynamics allows us to infer how large we expect

a clone of stem cells to become after a certain period of time and what the expected distribution of

clone sizes (VAFs) should be. Variants with a high fitness effect (s) or those acquired early in life are

expected to reach high VAFs (trajectories labelled 1 and 2 in Figure 2.2), whereas variants with a low

fitness effect or those acquired late in life are restricted to low VAFs (trajectories labelled 3 and 4 in

Figure 2.2). This variation in the fitness effect and acquisition age of variants produces a characteristic

spectrum of VAFs that can be measured in a single blood sample (Figure 2.2 insets).
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Figure 2.2 The branching model of HSC dynamics produces characteristic variant trajectories and VAF spectra.
Simulations of HSC populations, behaving according to a branching model of HSC dynamics, show how differences in
fitness effect and age produce characteristic VAF spectra. The vertical dashed lines indicate the timings of the simulated
blood samples that produce the VAF spectra shown in the insets. The numbered features are explained in the main text. The
red dots labelled 5 and 6 highlight where the red trajectories cross the vertical dashed line.
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2.2 A branching model of haematopoietic stem cell dynamics

How these VAF distributions (Figure 2.2 insets) change with age (t), the variant’s fitness effect (s) the

variant’s mutation rate (µ), the population size of HSCs (N) and the time in years between successive

symmetric cell differentiation divisions (τ) is given by the following expression for the probability

density as a function of l = log(VAF) (see Appendix A.1):

ρ(l) =
θ

(1−2el)
e
− el

φ(1−2el ) where θ = 2Nτµ and φ =
est −1
2Nτs

(2.1)

for neutral mutations (when s = 0): φ =
t

2Nτ

There are two key features to this distribution. First, because the model assumes the chance of

acquiring a specific mutation is uniform throughout life, and beneficial mutations grow exponentially,

the trajectories for a specific variant, with the same mutation rate and fitness effect, will be uniformly

spaced straight lines when plotted on a log VAF scale (red dots labelled 5 in Figure 2.2). This also

means that the density of these variants at a single timepoint is expected to be uniform at low cell

fractions, producing a flat density on a log VAF histogram (e.g. red datapoints, Figure 2.2 insets). The

number of these low VAF variants (y-intercept) is determined by the product of the mutation rate (µ)

and the HSC population size (Nτ) (i.e. θ ). Dividing the density of variants by the mutation rate (µ)

can therefore provide us with an estimate for Nτ , and vice versa.

Second, because the age of the oldest surviving variant cannot exceed the age of the individual, there

is a characteristic maximum VAF (φ ) that a specific variant can reach. This is determined by how

quickly the affected cells can grow (i.e. the fitness effect, s) and the age of the individual (t). To reach

VAFs > φ requires a variant to both occur early in life and stochastically drift to high VAFs, which is

unlikely. Therefore, the density falls off exponentially for VAFs > φ (red dots labelled 6 in Figure

2.2). There is a sharp density fall-off at 50% VAF because even a variant that is present in a very large

proportion of total HSCs will tend toward 50% VAF because the cells are diploid.

When considering a number of variants with a range of fitness effects and mutation rates (e.g. all the

variants within a specific gene) (Figure 2.2, blue trajectories), the density of variants on a log VAF

histogram is still expected to be uniform at low VAF, but the y-intercept will be determined by the

product of the sum of the variants’ mutation rates and the HSC population size (Nτ) (Figure 2.2, blue

datapoints). The characteristic maximum VAF (φ ) a variant can reach will be different amongst the

variants and so the VAF densities, rather than falling off at a single VAF, will fall-off gradually over a

range of VAFs which will be determined by the distribution of fitness effects.

It follows, if we plot the distribution of VAFs observed across large numbers of individuals and

compare it to our expected distribution (eq. 2.1), we can determine how consistent HSC behaviour is

with our simple model. If consistent, fitting our expected distribution (eq. 2.1) to the data will enable

us to infer HSC numbers and division times (Nτ), mutation rates (µ) and fitness effects (s) for specific

variants as well as the distribution of fitness effects within genes.
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Evolutionary dynamics and fitness landscape of clonal haematopoiesis

2.3 The spectrum of VAFs across ∼50,000 individuals

To infer these parameters and test the predictions of our model we used peripheral blood se-

quencing data from ∼ 50,000 individuals, amassed from nine publicly available blood sequencing

datasets3,4,6–9,38,39,75 (Table 2.1). VAF measurements in bone marrow and peripheral blood show

good concordance91 and so peripheral blood VAF measurements were used as a proxy to reflect clonal

composition at the level of the bone marrow HSCs.

The nine studies we included in our analysis varied in their number of participants and sequencing

depth. Most large-scale studies were limited by standard sequencing error rates and were only able to

detect VAFs > 3%3,4 while smaller studies, using error-correcting techniques, were able to detect

VAFs as low as 0.03%7,8,39 (Figure 2.3).

50
reported VAF limit of detection (%)

1010.10.01

Jaiswal 2014
Genovese 2014
McKerrel 2015
Zink 2017
Acuna-Hidalgo 2017
Coombs 2017
Young 2016 & 2019
Desai 2018

Figure 2.3 Study sizes and VAF limits of detection. Studies used in this analysis varied in the number of participants
(indicated by relative circle size) and reported VAF detection thresholds.

As predicted, the spectrum of VAFs across all individuals was broad, even within the same gene, as

shown for DNMT3A, the most commonly mutated clonal haematopoiesis gene (Figure 2.4). The

majority of variants were found at low VAF and some variants were observed far more frequently

than others, for example DNMT3A R882H (Figure 2.4, red datapoints). Most observed variants were

nonsynonymous or frameshift variants, with synonymous variants being rare. Some of the paucity

of synonymous variants could be attributable to most studies excluding them. However, in the three

studies that did report them7,8,39, they tended to be restricted to low VAFs.

R882 hotspot
nonsynonymous 
synonymous

Jaiswal 2014
Genovese 2014
McKerrel 2015
Zink 2017
Acuna-Hidalgo 2017
Coombs 2017
Young 2016 & 2019
Desai 2018
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Figure 2.4 Distribution of VAFs across DNMT3A from blood sequencing data from ∼50,000 individuals. The
majority of variants are found at low VAF, but the spectrum of VAFs varies by >3 orders of magnitude across individuals.
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2.3 The spectrum of VAFs across ∼50,000 individuals
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Evolutionary dynamics and fitness landscape of clonal haematopoiesis

2.3.1 Combining data from nine different studies

To test the predictions of our model we needed to plot VAF distributions for SNVs from all the studies

together. The studies not only varied in their number of participants but also in their panel footprint,

with some studies choosing to target only hotspot sites3,6, some focusing on specific exons and others

including entire coding regions (Appendix A.2). To meaningfully combine the data from all the

studies, we had to control for these differences. To do this we normalised the number of observed

variants by the size of the study, as well as the total study-specific mutation rate (for variant or gene of

interest), controlling for the trinucleotide contexts of mutations.

Mutation rate estimates

To estimate variant-specific and study-specific mutation rates, we used recently published whole-

genome sequencing data from 140 single-cell derived HSC colonies derived from a healthy 59 year

old man48. A total of 129,582 genome-wide somatic mutations were observed across the 140 colonies

which, over 59 years of life, equates to ≈ 15.7 mutations per year per cell (≈ 2.7×10−9 per bp per

year). The observed substitutions were categorised into 96 trinucleotide-context specific categories

according to the pyrimidine base change and its neighbouring 5’ and 3’ bases (e.g. A[C>A]A). To

obtain site-specific mutation rate estimates (per year), for these 96 site contexts, as well as their

complementary site contexts, we normalised by the trinucleotide frequencies (of both sites) across the

mappable genome (5.87×109 bp per cell) (Appendix A.3.1). The normalised number of substitutions

was then divided by the number of colonies (140) and the age of the individual (59), in order to obtain

a haploid trinucleotide-context-site-specific mutation rate in units of years:

site-specific (e.g. A[C>A]A) mutation rate =
observed number of substitutions

(trinuc. freq + complementary trinuc. freq) × (5.87 × 109) × 140 × 59

Having calculated mutation rates for all possible trinucleotide-context specific base changes (Table

2.2), the mutation rate for individual variants could be estimated, for example the mutation rate of

DNMT3A R882H, whose trinucleotide-context base-change is C[G>A]C, is 18.82×10−9 per year

(Appendix A.3.2). To determine study-specific mutation rates across a particular gene, e.g. TET2, the

regions targeted by the study were determined from the study’s published information and then all the

site-specific mutation rates in these regions were summed (Appendix A.3).

We only included single nucleotide variants (SNVs) in our analysis, due to mutation rate uncertainties

for other classes of mutation.
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2.3 The spectrum of VAFs across ∼50,000 individuals

Table 2.2 Site-specific haploid mutation rates according to trinucleotide context of base change. Although we
calculate the haploid mutation rates for all 192 site contexts, the rates at particular sites and their complementary partner
(e.g. A[C>A]A and T[G>T]T) cannot be distinguished since only the sum of their rates is measured. However this is the
relevant rate for calculating how frequently a site mutates since either strand could have undergone the mutation.

Site Site-specific
mutation rate (µ)
(×10−9 /year)

Site Site-specific
mutation rate (µ)
(×10−9 /year)

A[C>A]A or T[G>T]T 1.33 A[T>A]A or T[A>T]T 0.43
A[C>A]C or G[G>T]T 0.95 A[T>A]C or G[A>T]T 0.81
A[C>A]G or C[G>T]T 1.06 A[T>A]G or C[A>T]T 0.50
A[C>A]T or A[G>T]T 0.76 A[T>A]T or A[A>T]T 0.37

C[C>A]A or T[G>T]G 1.54 C[T>A]A or T[A>T]G 0.42
C[C>A]C or G[G>T]G 0.81 C[T>A]C or G[A>T]G 0.38
C[C>A]G or C[G>T]G 1.16 C[T>A]G or C[A>T]G 0.45
C[C>A]T or A[G>T]G 0.98 C[T>A]T or A[A>T]G 0.38

G[C>A]A or T[G>T]C 1.12 G[T>A]A or T[A>T]C 0.41
G[C>A]C or G[G>T]C 0.64 G[T>A]C or G[A>T]C 0.45
G[C>A]G or C[G>T]C 0.85 G[T>A]G or C[A>T]C 0.31
G[C>A]T or A[G>T]C 0.77 G[T>A]T or A[A>T]C 0.40

T[C>A]A or T[G>T]A 0.54 T[T>A]A or T[A>T]A 0.29
T[C>A]C or G[G>T]A 0.54 T[T>A]C or G[A>T]A 0.27
T[C>A]G or C[G>T]A 0.91 T[T>A]G or C[A>T]A 0.22
T[C>A]T or A[G>T]A 0.50 T[T>A]T or A[A>T]A 0.25

A[C>G]A or T[G>C]T 1.09 A[T>C]A or T[A>G]T 1.47
A[C>G]C or G[G>C]T 0.48 A[T>C]C or G[A>G]T 0.83
A[C>G]G or C[G>C]T 0.96 A[T>C]G or C[A>G]T 1.49
A[C>G]T or A[G>C]T 0.73 A[T>C]T or A[A>G]T 1.35

C[C>G]A or T[G>C]G 0.46 C[T>C]A or T[A>G]G 0.88
C[C>G]C or G[G>C]G 0.46 C[T>C]C or G[A>G]G 0.81
C[C>G]G or C[G>C]G 0.66 C[T>C]G or C[A>G]G 0.81
C[C>G]T or A[G>C]G 0.44 C[T>C]T or A[A>G]G 0.74

G[C>G]A or T[G>C]C 0.54 G[T>C]A or T[A>G]C 0.88
G[C>G]C or G[G>C]C 0.40 G[T>C]C or G[A>G]C 0.89
G[C>G]G or C[G>C]C 0.63 G[T>C]G or C[A>G]C 0.65
G[C>G]T or A[G>C]C 0.44 G[T>C]T or A[A>G]C 1.09

T[C>G]A or T[G>C]A 0.28 T[T>C]A or T[A>G]A 0.62
T[C>G]C or G[G>C]A 0.44 T[T>C]C or G[A>G]A 0.54
T[C>G]G or C[G>C]A 0.57 T[T>C]G or C[A>G]A 0.54
T[C>G]T or A[G>C]A 0.47 T[T>C]T or A[A>G]A 0.50

A[C>T]A or T[G>A]T 3.21 A[T>G]A or T[A>C]T 0.20
A[C>T]C or G[G>A]T 3.18 A[T>G]C or G[A>C]T 0.15
A[C>T]G or C[G>A]T 32.69 A[T>G]G or C[A>C]T 0.36
A[C>T]T or T[G>A]T 3.10 A[T>G]T or A[A>C]T 0.19

C[C>T]A or T[G>A]G 1.96 C[T>G]A or T[A>C]G 0.17
C[C>T]C or G[G>A]G 2.65 C[T>G]C or G[A>C]G 0.19
C[C>T]G or C[G>A]G 14.15 C[T>G]G or C[A>C]G 0.30
C[C>T]T or A[G>A]G 4.38 C[T>G]T or A[A>C]G 0.25

G[C>T]A or T[G>A]C 2.32 G[T>G]A or T[A>C]C 0.19
G[C>T]C or G[G>A]C 3.45 G[T>G]C or G[A>C]C 0.12
G[C>T]G or C[G>A]C 18.82 G[T>G]G or C[A>C]C 0.25
G[C>T]T or A[G>A]C 4.09 G[T>G]T or A[A>C]C 0.17

T[C>T]A or T[G>A]A 0.99 T[T>G]A or T[A>C]A 0.16
T[C>T]C or G[G>A]A 1.56 T[T>G]C or G[A>C]A 0.16
T[C>T]G or C[G>A]A 12.00 T[T>G]G or C[A>C]A 0.28
T[C>T]T or A[G>A]A 1.40 T[T>G]T or A[A>C]A 0.19
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Data trimming below study-specific limits of detection

Whilst studies generally reported their VAF detection threshold, this is typically determined by a

predetermined false positive rate, at which false negative rates could be substantial. Because an

accurate VAF density measurement, particularly at low VAF, is important for the fitting of our theory

distribution, it was important for us to only include variants at VAFs where the false negative rate was

expected to be low. To estimate where false negative rates were beginning to have a substantial effect

on the data, we used variants in DNMT3A (which had the most data) and chose a threshold VAF

below which the density began to decline (Figure 2.5). Variants were excluded from our analysis if

their VAF was below this study-specific VAF threshold and the same threshold was used for trimming

all other variants reported by the study (Table 2.3).

Figure 2.5 Data trimming of DNMT3A variants . Vertical dashed lines on the probability density histograms indicate
the VAF below which the density of DNMT3A variants starts to fall off and thus likely represents the study’s limit of
reliable variant detection. DNMT3A variants at VAFs lower than this cut-off were not included in our data analysis and this
cut-off was also used for trimming all other variants reported by that study.

Table 2.3 Study-specific limits of detection used for data trimming. The VAF limit of SNV detection reported by each
study is shown in comparison to the study-specific threshold below which we trimmed each study’s data.

Study Reported VAF limit
of SNV detection

VAF threshold used
for data trimming

Jaiswal 2014 3 3.50% 5.56%
Genovese 20144 5.00% 11.94%
McKerrel 20156 0.80% 0.83%
Zink 20179 10.00% 23.63%
Coombs 201775 1.00% 1.90%
Acuna-Hidalgo 20178 0.10% 0.16%
Young 20167 0.03% 0.10%
Desai 201838 1.00% 1.69%
Young 201939 0.03% 0.07%
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2.4 Haematopoietic stem cell numbers and division times

Testing the model and inferring HSC numbers using DNMT3A R882H

To infer HSC numbers and test the predictions of our model, we first focused on a single variant,

DNMT3A R882H, which was the most commonly observed variant across all studies, being detected

in 105 individuals. Because this single variant is expected to confer the same fitness effect in all

individuals, it served as a useful simple first check on our model.

A probability density histogram was plotted, as a function of log VAF (Figure 2.6a, datapoints). To

enable the data from all studies to be combined, the densities were normalised by dividing by [number

of individuals in the study × bin widths] and, in order to read Nτ from the y-intercept, the densities

were rescaled by dividing by 2µ , where µ is the trinucleotide-context-site-specific mutation rate

for DNMT3A R882H (Appendix A.3.2). Estimates for Nτ and s were inferred using a maximum

likelihood approach (Figure 2.6b-c), minimising the L2 norm between the log rescaled densities and

predicted densities, for all datapoints. To account for the distribution of ages across all the studies, the

predicted density was calculated by integrating the theoretical density (eq. 2.1) across the distribution

of ages, normally distributed with mean 55 years and standard deviation σ . Because the standard

deviation of ages (σ ) across the studies was unknown, σ was optimised along with Nτ and s.

Consistent with the predictions of our model (Figure 2.2, insets), the density of DNMT3A R882H

variants is seen to be flat over almost the entire VAF range (<15% VAF) (Figure 2.6a) and then falls

off exponentially. The inferred y-intercept of Nτ is ≈ 100,000±35,000 years which, encouragingly,

is in close agreement with the number recently inferred from two different single-cell HSC phylogeny

studies48,92.
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Figure 2.6 Parameter estimation for DNMT3A R882H. a. Probability density histogram for R882H with theory
distribution (eq. 2.1) fitted using maximum likelihood estimates. The mean age was fixed at 55 years (normally distributed)
and maximum likelihood approaches were used to infer the standard deviation of ages (σ ) = 11.4 years, Nτ = 94017 and s =
14.8% per year. b. Maximum likelihood heatmap for Nτ and s estimates for DNMT3A R882H. White cross marks the most
likely Nτ (94017) and s (14.8% per year). c. Distribution of likelihoods for s and Nτ . Red vertical line represents most
likely value. 95% confidence intervals are shown shaded in pink: Nτ 64956 – 136751, s 14.0 – 15.9%.
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An important point to note is that ours and other population genetic analyses can only reliably infer

the combination Nτ (number of HSCs multiplied by the average time between HSC self-renewing

divisions in years) and not N or τ separately. Estimating τ independently of N is challenging. Early

developmental mutations suggest that HSCs acquire ≈1.2 mutations per cell division48, which,

combined with an HSC mutation rate in adulthood of ≈16 mutations per cell per year48 suggests

HSCs divide ≈13 times per year. Although this includes both symmetric and asymmetric divisions, it

provides us with a lower bound for the time between symmetric self-renewing divisions (τ ≥ 1/13

years) and thus an upper-bound on the number of HSCs (N). If Nτ ≈100,000, this suggests that <1.3

million HSCs maintain the peripheral blood. A lower-bound for the number of HSCs can be estimated

using the largest fitness effect observed in the data. If the HSC fate decisions were completely biased

towards self-renewal, which occurred every τ years, then the growth rate would be s = 1/τ . This

means that τ cannot be >1/s. Our maximum inferred s was ≈ 25% (Figure 2.8) suggesting that τ < 4

years. If Nτ ≈100,000 this suggests a lower bound of 25,000 for the number of HSCs.

Validating the model and HSC numbers using synonymous variants

To validate our estimates for Nτ , we turned to the VAF distribution of synonymous variants. Because

synonymous variants are expected to be functionally neutral (s = 0), their characteristic maximum

VAF (φ ) is expected to increase only linearly with age (t), as it is driven by drift alone (see Figure 2.2,

insets) and Nτ is the time it would take for a neutral mutation to drift to fixation by chance:

φ =
est −1
2Nτs

⇒ t
2Nτ

when s = 0 (2.2)

If haematopoietic stem cells behave according to our model, and our inferred value of Nτ ≈ 100,000

years is correct, then we would expect the majority of synonymous variants to be found at VAFs less

than φ = t/2Nτ ≈ 0.025% at age 50.

To check whether this was the case, we looked at the log VAF probability density histogram of all

synonymous variants reported in the three studies that reported them7,8,39 (Figure 2.7). The VAF

densities for each study were normalised by the study size and, to take in to account the different

study panel sizes (which would affect the number of synonymous variants detected), the densities

were also normalised by the estimated study-specific synonymous mutation rate (Appendix A.3). An

estimate for φ was inferred using a maximum likelihood approach, fixing Nτ to that inferred from

DNMT3A R882H (Nτ ≈ 100,000) and minimising the L2 norm between the log rescaled densities

and the predicted densities, taking in to account the distribution of ages across the three studies.

If all synonymous variants were included (Figure 2.7a), the inferred value of φ was 0.12%, which was

4.8-fold higher than the 0.025% predicted by our model. However, the distribution of synonymous

variants >0.25% VAF are consistent with variants that have either hitchhiked to high VAFs with

an expanding fit clone, were acquired early in development (Figure 2.18 orange dashed line, work

20



2.5 The fitness landscape of clonal haematopoiesis

by Gladys Poon in the Blundell Lab93,94), have a functional consequence themselves (e.g. due to

codon usage bias) or are in fact nonsynonymous in an alternatively spliced transcript. Because these

synonymous variants are not expected to behave neutrally, we excluded them from the maximum

likelihood analysis. When only synonymous variants <0.25% VAF were included (Figure 2.7b),

the maximum likelihood inferred φ was ≈ 0.03± 0.005%, which broadly agrees with our model

predictions. This internal consistency check indicates that both synonymous and DNMT3A R882H

variants point toward similar values of Nτ .
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Figure 2.7 Fitted theory distribution for synonymous variants. a. If synonymous variants of any VAF are included in
the maximum likelihood approach, the inferred φ value (orange dot-dashed line) is 0.115% (95% C.I. 0.104-0.132%, inset
orange shaded area), which is 4.8-fold higher than the predicted φ value of 0.024% (grey vertical line). b. If synonymous
variants >0.25% VAF are assumed to be hitchhikers, maximum likelihood approaches on those <0.25% VAF infer a φ value
(orange dashed line) of 0.032% (95% C.I. 0.027-0.038%, inset orange shaded area), which is only 1.3-fold higher than the
predicted φ value of 0.024% (grey vertical line). Each study is represented by a shaped symbol as described in Fig. 2.6.

2.5 The fitness landscape of clonal haematopoiesis

2.5.1 Fitness effects of single nucleotide variants

Because our model assumes a variant’s mutation rate is uniform throughout life, the density of variants

is expected to be flat at low VAFs and then to fall off exponentially at a characteristic maximum VAF

(φ ), which is determined by the variant’s fitness effect (s). By estimating φ from a variant’s spectrum

of VAFs, we can therefore infer a variant’s fitness. This can be illustrated using DNMT3A R882H as

an example (Figure 2.6). In agreement with our model, the density of DNMT3A R882H variants is

flat at low VAFs and then begins to fall off exponentially at VAFs >12%. Using a maximum likelihood

approach (described in Section 2.4), we can estimate that this is consistent with a fitness effect of

≈ 15±1% per year.

To reveal the fitness landscape of other highly fit and possibly pathogenic variants, we applied this

analysis to each of the 20 most commonly observed variants across all studies (Figure 2.8a). Because

our estimate for Nτ agrees with other independent estimates48,92, we fixed Nτ to ≈ 100,000 and used

a maximum likelihood approach to infer variant-specific s and µ values, minimising the L2 norm

between the log rescaled densities and the predicted densities and taking into account the distribution
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of ages across studies (Appendix A.4.1). Of note, for most variants, the inferred value of µ agreed to

within a factor of 5 to that estimated by the site-specific trinucleotide context (Figure 2.8b).

We found that variants in the spliceosome genes SF3B1 and SRSF2 are some of the fittest in clonal

haematopoiesis, with fitness effects as high as s ≈ 23% per year, but they are relatively rare due to

low mutation rates of ∼ 3×10−10 per year. Our analysis also reveals that DNMT3A R882H is the

most commonly observed clonal haematopoiesis variant, not because it is the most fit, but because it

is both highly fit and has a high mutation rate, most likely due to its CpG context (C[G>A]C). The

potential of our analyses is highlighted by the GNB1 K57E variant. While this variant has received

little attention in clonal haematopoiesis, we find it is in fact highly fit and, importantly, strongly

associated with myeloid cancers and potentially targetable95.
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Figure 2.8 The fitness landscape of clonal haematopoiesis variants. a. Inferred fitness effects and mutation rates for
the top 20 most commonly observed clonal haematopoiesis variants. Error bars represent 95% confidence intervals. Purple
vertical lines indicate site-specific mutation rates inferred from trinucleotide context (Appendix A.3). b. Inferred mutation
rates compared to mutation rates estimated from the variant’s trinucleotide context (Table 2.2).

Disentangling the relative effects of mutation rate and fitness effect

A key feature of our framework is its ability to disentangle the relative effects of mutation rate and

fitness effect. For example, DNMT3A R882H, which was observed in 105 individuals across the

nine studies, is the most commonly observed variant in DNMT3A, followed by R882C, which was

observed in 61 individuals. The estimated mutation rate for DNMT3A R882H, from the trinucleotide-

context of its base change, is 1.9×10−8, compared to 5.9×10−9 for DNMT3A R882C (Appendix

A.2). But is R882H’s higher prevalence explainable by a higher mutation rate, a higher fitness effect or

both? Plotting the distribution of VAFs for each of these two variants and using maximum likelihood

approaches, as described above, to infer fitness effects, reveals that R882C actually has a higher fitness

effect than R882H (Figure 2.9). So, although R882H variants are observed most frequently, this is

attributable to a high mutation rate in combination with a high fitness whereas R882C mutations

actually have a higher fitness effect and are thus potentially more pathogenic.
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Figure 2.9 Fitted theory distributions for DNMT3A R882H and R882C. a. Probability density log-log histograms
for R882H (red data) and R882C (blue data), as a function of log VAFs. Nτ was fixed to ≈ 100,000 and maximum
likelihood approaches were used to infer s of 14.8% (95%C.I. 14.0-15.9%, pink shaded area) for R882H and s of 18.7%
(95% C.I.18.1-19.6%, blue shaded area) for R882C. b. Probability density linear-log histograms for R882H (red data) and
R882C (blue data), as a function of linear VAFs. Nτ was fixed to ≈ 100,000 and maximum likelihood approaches were
used to infer s of 15.7% (95% C.I. 14.9-16.9 %, pink shaded area) for R882H and s of 18.2% (95% C.I. 16.1-32.4%, blue
shaded area) for R882C. Each study is represented by a shaped symbol as described in Fig. 2.6. p-values were calculated
from the area under the distribution of difference probability curve where the difference ≤ 0.

2.5.2 Distribution of fitness effects across key clonal haematopoiesis driver genes

To reveal the overall fitness landscapes of key clonal haematopoiesis driver genes, we considered

the VAF distribution of all nonsynonymous variants in each of the genes DNMT3A, TET2, ASXL1

and TP53 (Appendix A.4.2). For DNMT3A, the density of nonsynonymous variants at low VAF

is broadly consistent with the same Nτ ≈ 100,000 years inferred from DNMT3A R882H variants

(Figure 2.10a). With increasing VAF, however, the density of variants gradually declines, consistent

with the predictions of our model, where the density of variants declines over a range of φ due to the

set of variants having a range of fitness effects (Figure 2.2 insets, blue data).

To estimate the spectrum of fitness effects, log VAF probability density histograms were plotted for

all the nonsynonymous variants observed in each study within a particular gene (e.g. DNMT3A) and

normalised by the study size. To account for different studies targeting different amounts of the gene

of interest, the densities of variants within each study were also normalised by the study-specific gene

mutation rate (Appendix A.3). Nτ was fixed to that inferred from DNTM3A R882H (Nτ ≈ 100,000)

and the distribution of fitness effects was parameterised using a family of stretched exponential

distributions with a maximum s = smax:

ρ(s)∼ exp
[
−
( s

d

)β
]

(2.3)

A maximum likelihood approach was then used to optimise the shape (β ) and scale (δ ) of the

distribution, as well as smax.

We found that the spectrum of fitness effects for nonsynonymous variants in DNMT3A was very broad

with ≈ 40% of variants conferring moderate to high fitness effects (s > 4% per year, Figure 2.10b).
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In contrast, the genes TET2, ASXL1 and TP53 have a spectrum that is more skewed towards low

fitness effects with only ≈ 7–10% of all possible nonsynonymous variants in these genes conferring

moderate or high fitness effects. These distributions highlight that, in these clonal haematopoiesis

genes, most nonsynonymous variants have a low enough fitness that they are effectively neutral, while

an important minority have fitness effects great enough to allow them to expand to overwhelm the

bone marrow over a human lifespan.
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Figure 2.10 The fitness landscape of clonal haematopoiesis genes. a. b. The distribution of fitness effects of non-
synonymous variants in key clonal haematopoiesis driver genes, inferred by fitting a stretched exponential distribution
(Appendix A.4.2) and dividing this into three fitness classes (low, moderate and high). Over a human lifespan, variants with
fitness effects <4% expand only a modest factor more than a neutral variant (low fitness), variants with fitness effects of
4-10% per year expand by substantial factors (moderate fitness), and variants with fitness effects >10% per year can expand
enough to overwhelm the bone marrow (high fitness).

2.5.3 Fitness effects within TP53 domains

A recent study found that TP53 missense variants in the DNA binding domain exerted a strong

dominant negative effect, leading to clonal expansion of haematopooetic stem and progenitor cells

(HSPCs) in mice, whereas missense variants outside the DNA-binding domain had either a neutral or

loss-of-function effect42. It stands to reason, therefore, that missense variants in the DNA binding

domain might have higher fitness effects compared to missense variants outside the DNA-binding

domain. Our framework allows us to test this. We considered all TP53 variants in the seven studies

that reported TP53 variants3,4,7–9,39,75 and tested whether the number of variants observed within the

DNA-binding domain was significantly different to the number observed outside the DNA binding

domain, controlling for the differences in panel coverage and estimated mutation rates in these regions.

Because of the differences in sensitivities of each of the studies that reported TP53 variants, the

p-values were calculated independently and then combined using Fisher’s method (Figure 2.11). The

origin of the non-significant p-values in Jaiswal 20143, Genovese 20144, Zink 20179 and Acuna-

Hidalgo 20178 is the small number of sites outside the DNA-binding domain that were targeted by

these studies (Appendix A.2). Taken together, however, these studies demonstrate a significant and

substantial enrichment for missense variants in the DNA binding domain (p = 0.0002, Poisson exact

test followed by Fisher’s method), consistent with these variants having higher fitness effects.
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Figure 2.11 Relative frequency of missense and nonsense TP53 variants inside and outside the DNA-binding do-
main. The relative frequency controls for differences in mutation rate (µ) inside the DNA-binding domain and outside
the DNA-binding domain (calculated by summing site-specific mutation rates for the sites included in each study). The
actual number of observations in each study is shown above each bar. Error bars are one standard deviation assuming
Poisson sampling noise. p-values calculated using the Poisson Exact Test. Combining these p-values using Fisher’s method
demonstrates a significant and substantial enrichment for missense variants in the DNA binding domain (p = 0.0002,
Poisson exact test followed by Fisher’s method). DBD: DNA-binding domain, non-DBD: non-DNA-binding domain.

2.6 Highly fit variants confer an increased risk of AML

One of the principles underlying pre-cancerous mutation acquisition and clonal expansion is that

the greater the fitness effect of a mutation, the faster the clone will expand and the more likely it is

that subsequent mutations will be acquired within the same clone. We therefore wondered whether

high fitness clonal haematopoiesis variants conferred an increased risk of AML development. By

considering the pre-AML and control samples from three studies38,39,77 we found that individuals

harbouring one or more of the 20 highly fit variants we identified (Figure 2.8) are ≈ 4-fold more likely

to develop AML compared to those harbouring lower fitness variants (p < 10−5) (Figure 2.12).
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3.79 (2.57-5.57)
7.13 (4.99-10.20)

< 0.00001

< 0.00001
< 0.00001

p valueOdds ratio (95% con�dence interval)
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any variant (vs. no variant)

high-�tness variant (vs. lower �tness variant)
high-�tness variant (vs. no high �tness variant)

Figure 2.12 Odds ratio of AML stratified by variant fitness. Odds ratios were calculated using Fisher’s Exact Test
(one-sided) using combined data from Desai 2018, Abelson 2018 and Young 2019 (Appendix A.5). Only SNVs were
considered when calculating the number of individuals with variants. ‘High-fitness variant’ refers to any of the 20 highly fit
variants we identified in Figure 2.8 (Section 2.5.1). ‘Lower-fitness variant’ refers to any other SNV.
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2.7 Age dependence of clonal haematopoiesis

Predicted prevalence of specific variants

The prevalence of a variant, within a particular range of VAFs, can be calculated by integrating the

variant’s probability density, given in eq. 2.1, but as a function of f = VAF, over the range of cell

fractions ( f0 to f1): ∫ f1

f0

2Nτµ

f (1−2 f )
e−

f
φ(1−2 f ) d f where φ =

est −1
2Nτs

(2.4)

A key prediction of our model, which assumes that variants enter the HSC population at a constant rate

throughout life, is that prevalence of a specific variant is expected to increase approximately linearly

at rate 2Nτµs, once the individual is above a certain age determined by the VAF limit of detection

( flim) and the variant’s fitness effect (s). The reason for this is that, provided the limit of detection is

less than the VAF at which the exponential decline in variant densities occurs (i.e. flim ≪ φ ), the

variant’s prevalence can be approximated as:

∫ f1

flim

2Nτµ

f (1−2 f )
e−

f
φ(1−2 f ) d f ≈ 2Nτµ log

(
φ

flim

)
≈ 2Nτµst +C (2.5)

where φ =
est −1
2Nτs

and C =−2Nτµ log(2Ns flim)

We confirmed this prediction using DNMT3A R882H and R882C variants from two studies6,75, which

contained sufficient data (> 500 total individuals in ≥ 2 age categories) to examine the age-prevalence

relationship. In agreement with predictions, the age-prevalence of these variants does indeed increase

linearly with age, consistent with the age-dependence of clonal haematopoiesis being driven by the

expansion of clones which become more detectable at older ages (Figure 2.13).
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Figure 2.13 Age prevalence of R882H and R882C variants. a. R882H and R882C variants were grouped together to
increase data strength. As predicted by the model, the prevalence of R882H and R882C increases approximately linearly,
once above a certain age determined by the VAF limit of detection and the fitness effect of the mutation. Medium red line:
McKerrell 2015, Dark red line: Coombs 2017. b. Maximum likelihood estimations for fitness effect (s) of R882H and
R882C mutations. The most likely fitness effect (s) and VAF limit of detection were determined for the two studies that
contained sufficient data to analyse their age-prevalence relationship. The white cross marks the most likely s and VAF
limit of detection for the study.
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Because the rate of increase in prevalence with age is 2Nτµs, examining the age-prevalence relation-

ship of a variant also provides us with another method by which the fitness effect of the variant can

be inferred. A maximum likelihood approach was used to calculate the likely fitness effect (s) and

VAF limit of detection ( flim), by integrating the expected density of clones (eq. 3.2) between the f0

= VAF limit of detection and f1 = 0.5 across a range of ages (t). The best-fit s for McKerrel 20156

was 10.5% per year, and for Coombs 201775 was 15.1% per year (Figure 2.13b), which is in good

agreement with estimates inferred from the VAF distributions for R882H and R882C (Figure 2.6 and

Appendix A.4).

Predicted prevalence of clonal haematopoiesis

Our framework also allows us to estimate the overall prevalence of clonal haematopoiesis as a function

of age, for different sequencing thresholds. To do this, we considered the distribution of fitness effects

for nonsynonymous variants across 10 of the most commonly mutated clonal haematopoiesis genes in

four studies that most comprehensively targeted these genes7,38,39,75. Estimates for the distribution of

fitness effects, s, across these 10 genes were inferred by fixing Nτ to that inferred from DNMT3A

R882H (Nτ ≈ 100,000). The distribution of ages was assumed to be Gaussian with mean 60 years and

standard deviation 15 years. These are the values for the mean and standard deviation of participants

from Coombs 201775, which contributed ∼85% of the data from these four studies. We parameterised

the distribution of fitness effects using a family of stretched exponential distributions (eq. 2.3) and

used a maximum likelihood approach to optimise the shape (β ) and scale (d) of the distribution as

well as smax (Figure 2.14a). This revealed a broad distribution, with 90% of variants having a low

fitness and only 2% of variants having a high fitness (Figure 2.14b).
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Figure 2.14 Distribution of fitness effects across 10 of the most commonly mutated clonal haematopoiesis genes. a.
Probability density histogram for all nonsynonymous variants in DNMT3A (all coding exons), TET2 (all coding exons),
ASXL1 (exon 12), JAK2 (exon 12 and 14), TP53 (all coding exons), SF3B1 (exons 13-16), SRSF2 (exon 1), IDH2 (exon 4),
KRAS (exons 2-3) and CBL (exons 8-9). b. Distribution of fitness effects across these 10 genes.
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The prevalence of clonal haematopoiesis across these 10 genes, as a function of age, was then

calculated by taking into account the distribution of fitness effects and different VAF limits of

detection. Briefly, the mutation rate was normalised by the distribution of fitness effects and, for

a given age, the theoretical density (eq. 3.2) was integrated over the distribution of fitness effects

and over the range of VAFs capable of being sequenced (from f0 = VAF limit of detection to f1 =

0.499). The predicted prevalence was then plotted as a function of age for different VAF limits of

detection (Fig. 2.15). This showed that, with sensitive enough sequencing (VAFs& 0.01%), clonal

haematopoiesis variants will be common, even in young adults, and almost ubiquitous in people aged

over 50, consistent with recent ultra-sensitive sequencing studies7,39.
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Figure 2.15 Predicted prevalence of clonal haematopoiesis as a function of age for different detection thresholds.
Prevalence is predicted for individuals to have acquired at least one variant within 10 of the most commonly mutated
clonal haematopoiesis genes (DNMT3A, TET2, ASXL1, JAK2, TP53, CBL, SF3B1, SRSF2, IDH2 and KRAS), taking
into account the distribution of fitness effects across these genes. The actual prevalence of variants within these genes,
as a function of age, is shown for Young 2016 and 2019 (pentagons, VAF limit of detection ∼ 0.1%) and Coombs 2017
(triangles, VAF limit of detection ∼ 2%. Error bars represent sampling noise.

2.8 Estimating the fitness effects of infrequently mutated sites

To determine the fitness effect of individual variants from their VAF density histograms, our framework

requires that a variant be seen in ≥ 8-10 individuals. This means that, even with a combined study

size of ∼50,000 individuals, we will be unable to calculate the fitness effects of infrequently mutated

variants, even if they were highly fit. A crude method to determine the fitness effects of variants is to

simply determine what fitness effect, given the variant’s site-specific mutation rate, would be required

to explain the number of times the variant is observed. This method does not allow for deviations from

the site-specific mutation rates estimated from trinucleotide context, due to its inability to separate out

the effects of mutation rate and fitness (in contrast to the VAF-density histogram-based method), but

it can be used to determine whether there might be highly fit, but infrequently mutated variants, that

we might have missed (because they were observed in <8-10 individuals).

To crudely determine the fitness effects of all the variants that were observed more than once across a

gene, e.g. DNMT3A, we first created a list of all the possible nonsynonymous variants within the
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2.8 Estimating the fitness effects of infrequently mutated sites

gene, as well as a list of all the variants within the gene that could have been detected by each study

(Appendix A.2). If a variant was included in a study’s panel, the number of times the variant was

expected to be observed in that study was calculated, taking into account the study’s VAF limit of

detection, study size, distribution of ages and the variant’s site-specific mutation rate. This involved

integrating the theoretical density (eq. 3.2) over the range of VAFs capable of being sequenced by the

study (from f0 = VAF limit of detection to f1 = 0.499) and then integrating over the distribution of

ages for that study. The expected number of observations of that variant was then summed across all

the studies that included the variant in their panel. A maximum likelihood approach was then used

to determine what fitness effect minimised the L2 norm between the expected and actual number of

observations of each variant across all studies (Figure 2.16, Appendix A.6).
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Figure 2.16 Distribution of fitness effects across DNMT3A, estimated using a counting method to infer the fitness
effect required to achieve the actual number of observations of the variant. Variants that are in the list of the top 20
most commonly observed variants in clonal haematopoiesis (from Figure 2.8, Section 2.5.1) are highlighted in red. Fitness
effects were calculated only for those variants observed two or more times across all nine studies. PWWP: Pro-Trp-Trp-Pro
domain, ADD: ATRX-DNMT3A-DNMT3L-type zinc finger domain, MTase: Methyltransferase domain.

In addition to DNMT3A, we also used this method to determine the fitness effects of variants seen

more than once, across all nine studies, in TET2, ASXL1 and TP53 (Figure 2.17, Appendix A.6).

Notwithstanding the limitations caused by the inability of this method to disentangle the effects of

mutation rate and fitness, this method suggests that there are a number of sites within these four

mutated genes that are highly fit yet infrequently mutated.
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Figure 2.17 Distribution of fitness effects across TET2, AXL1 and TP53, estimated using a counting method to
infer the fitness effect required to achieve the actual number of observations of the variant. No variants in TET2,
ASXL1 or TP53 were in the top 20 most commonly observed variants in clonal haematopoiesis. Fitness effects were
calculated only for those variants observed two or more times across all nine studies. a. TET2. b. ASXL1. c. TP53. TAD:
Transactivation domain, PRO: Proline-rich domain, OD: Oligomerization domain, CTD: C-terminal domain.
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2.9 Discussion

A simple framework explains clonal haematopoiesis

Analysing blood sequencing data from ∼50,000 individuals, using insights from evolutionary theory,

shows that the VAF spectra of single nucleotide variants (SNVs) is consistent with a simple branching

process model of HSC dynamics (Figure 2.18). This reveals a simple picture of how HSC population

dynamics shape the genetic diversity of blood. The very wide variation in VAFs observed between

people can be explained by the combined effects of chance (when a mutation arises) and fitness differ-

ences (how fast they expand). Implicit to our analysis is the assumption that clonal haematopoiesis

mutations drive clonal expansions through a fixed cell-intrinsic increase in fitness. While the data

across ∼ 50,000 individuals is quantitatively consistent with cell-intrinsic fitness effects playing the

major role in shaping the variation in VAFs we see between individuals, it is important to bear in mind

that cell-extrinsic effects such as chemotherapy75,96–98, acute infection99,100 and inflammation101

likely play a role in certain contexts. Indeed, variants in certain genes (e.g. PPM1D, TP53, CHEK2

and ASXL1) have been shown to be strongly influenced by external factors97,98,102). It is also possible

that the fitness effects of some variants may change over time, as has been recently observed for

certain DNMT3A variants, whose growth rate was found to slow in older age103.
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Figure 2.18 A branching model of HSC dynamics explains the observed VAF distribution for SNVs in healthy
blood (Summarised from Figures 2.6, 2.10 and 2.7). The distribution of VAFs for a single variant (DNMT3A R882H,
red data main plot) is consistent with the model’s prediction for the distribution of VAFs for a variant with a fixed fitness
effect and mutation rate (red datapoints, inset). The distribution of VAFs for a collection of variants (all nonsynonymous
DNMT3A variants, blue data main plot) is consistent with the model’s prediction for the distribution of VAFs for a collection
of variants with a range of fitness effects (blue datapoints, inset). The distribution of synonymous variants across all genes
(orange datapoints main plot) are consistent with the model’s prediction for the distribution of neutral variants (orange
datapoints, inset), with some of these variants hitchhiking on the back of a highly fit clone or occurring early in development
(orange dashed line main plot and inset) (Hitchhiker and developmental work performed by Gladys Poon, Blundell lab 93,94).
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Whilst it may seem surprising that a simple model of HSC dynamics captures so many quantitative

aspects of the clonal haematopoiesis data, work undertaken by our collaborators Alana Papula and

Daniel Fisher at Stanford University has shown that more complex scenarios yield the same effective

model for the multi-year development of clonal haematopoiesis, although in these scenarios N and τ

have more complex meanings93. These more complex scenarios include models with HSCs switching

between active and quiescent states, and models with progenitors occasionally reverting to HSCs.

There are, however, important observations that the simple model cannot fully explain. One of

these is the very broad distribution in the number of variants observed between different individuals

(ranging from 0 to >10, for the same VAF detection limit7). One explanation for this could be

variations in mutation rates between individuals or environment-specific effects. Indeed, analysis of

the trinucleotide-context of mutations has revealed distinct mutational signatures for different types of

cancers, some of which reflect particular mutagenic exposures (e.g. smoking, UV light or previous

alkylating agent exposure), increasing age or differences in mutation repair efficiency57–59. Differing

exposure to mutagens may result in variation in mutation rates between individuals. To investigate this

further will likely require longitudinal data and would be an important area for future work.

In haematopoietic stem cells, fitness dominates drift

The relative roles of mutation, drift and selection in shaping the somatic mutational diversity observed

in human tissues has been the subject of much recent debate, especially regarding the conflicting

interpretations from ‘dN/dS’ measures104–106 and clone size statistics46,107,108. In blood we find that

the two measures are in quantitative agreement; nonsynonymous variants are under strong positive

selection and most synonymous variants fluctuate via neutral drift.

Our inference for the HSC population size (Nτ ≈ 100,000 years) has an important interpretation.

On average it would take 100,000 years for a variant to reach VAFs of 50% by drift alone and

>2000 years to be detectable by standard sequencing (VAF > 1%). Therefore the vast majority of

clonal haematopoiesis variants reaching VAFs> 0.1% over a human lifespan likely do so because of

positive selection. This does not, however, mean that variants with VAFs< 0.1% are not potentially

pathogenic. Indeed, most highly fit variants exist at low VAFs because not enough time has yet passed

for them to expand, although it is less likely they will acquire subsequent driver mutations whilst at

low VAFs.

More than 2500 variants confer moderate to high fitness

By considering the VAF spectra across ten of the most commonly mutated clonal haematopoiesis

genes (Figure 2.14, Section 2.7), we can infer that mutations conferring fitness effects s > 4% per

year occur at a rate of ≈ 4×10−6 per year. Given the average site-specific mutation rate in HSCs is

1.6×10−9 per year, this implies there are & 2500 variants within these genes with moderate to high

fitness effects. While there is direct evidence from longitudinal data77 and indirect evidence from age-
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prevalence patterns (Figure 2.13, Section 2.7) that variants at many of these sites expand at a roughly

constant rate, others, notably JAK2 V617F, might exhibit more complex dynamics given the small

exponential growth rates observed in longitudinal data109. It is likely that specific variants achieve

their fitness effects in different ways. Some will simply cause a bias towards self-renewal110,111,

whereas others may cause a bias as well as an increase in the intrinsic cell division rate. Distinguishing

between these scenarios is an important area for future work and will require functional studies.

DNMT3A, JAK2, TET2, ASXL1 and TP53 were the five genes with the greatest number of observed

nonsynonymous variants across all the studies. We know from our analysis of the distribution of

fitness effects across TET2, ASXL1 and TP53 that ∼2% of variants in each of these genes confer

fitness effects ≥ 10% per year (Figure 2.10). Although this is less than in DNMT3A, in which ∼7%

of variants are confer fitness effects ≥ 10% per year (Figure 2.10), it is interesting to note that we

do not see any variants in TET2, ASXL1 or TP53 in our league table of the 20 most commonly

observed variants in clonal haematopoiesis (Figure 2.8a). It is important to bear in mind that the

variants commonly observed in clonal haematopoiesis are not necessarily the most fit, but are both

sufficiently fit and sufficiently frequently mutated to be detected. Indeed, by considering all variants

in TET2, ASXL1 and TP53 detected 2 or more times across all studies, we find that there are some

infrequently observed variants that are potentially highly fit (Section 2.8). Thus although there are

highly fit variants in TET2, ASXL1 and TP53, which are collectively not that uncommon, there were

no specific individual ‘hotspot’ variants with sufficiently high enough mutation rates for them to be

observed enough times for us to calculate their fitness effect.

To estimate the fitness effects of individual variants using our framework, we required the variant to

have been observed in >8-10 individuals, in order to form a meaningful VAF-density histogram. The

number of times a variant is observed depends on the fitness effect of the variant, the mutation rate

of the variant, the size of the study and the sequencing sensitivity. Given the average site-specific

mutation rate of 1.6×10−9 per year, a comprehensive map between variant and fitness effect for all

sites that confer a fitness large enough to expand significantly over a human lifespan (s > 4%) could

be achieved with the current sample size (∼ 50,000 individuals) by increasing sequencing sensitivity

to detect variants at VAFs> 0.04% (Figure 2.19). However, because sites can mutate at rates as low

as µ ∼ 10−10 / year (Table 2.2, Section 2.3.1) to quantify all variants, even rare ones, would require

both a 6-fold increase in sample size, as well as sequencing sensitivities as low as 0.01% VAF (Figure

2.19). Nonetheless, even with small study sizes, there are significant advantages to being sensitive to

very low VAFs7,8,39, particularly in relation to synonymous variants, which, when grouped together,

provide important information on Nτ and genetic hitchhikers (Figure 2.7, Section 2.4)94.

AML driver mutations in FLT3 and NPM1, which are found in ∼50% of patients with AML, were

notably absent across the nine studies. One possible theory for this is that the fitness effect conferred

by these mutations is so high that samples from ∼50,000 individuals were insufficient to capture these

mutations within the brief time window between mutation acquisition and AML development. The
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incidence of AML with FLT3 or NPM1 mutations is ∼1 per 50,000 individuals per year and so if

we assume all individuals that acquire an NPM1 or FLT3 mutation develop AML, then ∼1 in 50,000

individuals per year would be expected to acquire one of these mutations. Considering ∼50,000

individuals, with an average age of 55 (across the 9 studies), we would expect ∼ 55 individuals to

have acquired an NPM1 or FLT3 mutation at some point during their life. Assuming AML develops

when the VAF is close to ∼50%, the time between the mutation being detectable (i.e. >0.1% VAF)

and developing AML would need to be <1 year for there to not be at least 1 person in the ∼50,000

with a detectable NPM1 or FLT3 driver mutation. A growth rate that high would involve a clone

doubling time of at least every ∼ 6 weeks, which would mean these mutations confer fitness effects

of at least ∼800% per year. Whilst fitness effects this high are not implausible (see Chapter 5), this

theory would predict that we would see many cases of AML with FLT3 or NPM1 mutations as the sole

drivers. We know from other studies that this unusual, with NPM1 and FLT3 mutations often found

co-existent with other driver mutations20. Another potential theory for their absence in ostensibly

healthy individuals is that NPM1 and FLT3 mutations on their own do not confer an unconditional

fitness effect to HSCs. Indeed this theory is consistent with studies in mice and humans showing

that NPM1 and FLT3 mutations are late-occurring and potentially ‘cooperating’ mutations that are

necessary for transformation to AML17,26.

Future directions

Clonal haematopoiesis is associated with an increased risk of cardiovascular disease3,112 and blood

cancers3,4,38,77, and also has important consequences in the study of ctDNA113,114, aplastic anaemia115,

response to chemotherapies116,117 and bone marrow transplant96,118,119. A major challenge is to

develop a predictive understanding of how variants and their VAFs affect disease risk. Recent studies

show that both gene identity and VAF are predictive of progression to AML38,77. Our framework

provides a rational basis for quantifying the fitness effects of these variants and understanding VAF
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variations. Using our framework we demonstrate that fitness estimates can be used to stratify AML

risk. Given higher VAFs are strong predictors of AML development38,77 and fitter variants are more

likely to reach higher VAFs, it is perhaps unsurprising that high fitness variants can stratify AML risk.

However, knowing the fitness effect of a variant allows prediction of which variants have the potential

to reach high VAF and so should have increased predictive power, particularly when considering

risk over longer timescales. Although the vast majority of individuals will never acquire the full

complement of mutations required to progress to AML, combining our framework with studies that

longitudinally track individuals over time will shed light on how these initiating mutations acquire

further mutations that drive overt disease. More sensitive sequencing techniques, broader sampling of

the genome and the study of environmental factors that alter the fitness of mutations, will also improve

our quantitative understanding of native human haematopoiesis and help accelerate the development

of risk predictors.
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3
Fitness consequences and mutation rates

of mosaic chromosomal alterations
in clonal haematopoiesis
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3.1 Introduction

3.1 Introduction

While clonal haematopoiesis analyses have largely focused on single nucleotide variants (SNVs) and

indels in recurrently mutated leukaemia-associated genes, ∼70% of clonal expansions in healthy blood

are driven by mutations not covered by typical cancer-associated gene panels94. Mosaic chromosomal

alterations (mCAs) are common in myeloid malignancies such as AML120 and so it seems reasonable

to suspect that mCAs may be driving some of the clonal expansions we observe in healthy individuals,

some of whom may eventually progress to myeloid malignancy. In support of this, a number of

studies have found mCAs in the blood of healthy individuals30–33, with recent studies using UK

Biobank data showing that ∼3.5% of all individuals aged 40-70 years old have a clonally expanded

mCA detectable in >1% of their blood cells34,35 . Similar to clonal haematopoiesis variants, the

prevalence of mCAs increases with age34,35,121,122 and certain mCAs are associated with an increased

risk of developing myeloid malignancies (hazard ratio 17.8), at an annual incidence rate of 0.82%,

and /or lymphoid malignancies (hazard ratio 28.6), at an annual incidence rate of 0.60%36. This

risk is greater if clonal haematopoiesis variants are also present (hazard ratio ∼103) or if multiple

genetic changes are present36. Therefore, just as the presence of clonal haematopoiesis variants in the

blood has emerged as an important pre-cancerous state, so to has the presence of mCAs (‘mCA-clonal

haematopoiesis’). A quantitative understanding of the mutation rates and fitness effects of mCAs

would aid in the development of risk stratification tools and further improve our understanding of

normal haematopoiesis.

Here we adapt the evolutionary framework described in Chapter 2 to quantify the mutation rates

and fitness effects of mCAs and apply this to mCA data generated by Loh et al35 from ∼ 500,000

individuals in UK Biobank. We generate a league table revealing the fittest and potentially most

pathogenic mCAs and find that chromosomal losses, as a class, tend to be the most fit. Whilst copy

neutral loss of heterozygosity events (CN-LOH) are the least fit, they have the highest mutation

rates. We find correlation between mCA fitness and blood cancer risk. In contrast to the strong

age dependence observed in SNV prevalence in blood, we find mCA age dependence to be more

variable for some mCAs, suggesting the risk of acquisition and/ or expansion of certain mCAs may be

non-uniform throughout life and may be influenced by gender-specific factors.

3.2 mCA data from ∼500,000 UK Biobank participants

To estimate the fitness effects and mutations rates of mCAs, we analysed cell fraction estimates of

autosomal mCAs generated by Loh et al from 482,789 UK Biobank participants aged 40-7035. Loh et

al transformed genotyping intensities from the UK Biobank SNP array data into log2 R ratios (LRR)

and B-allele frequencies (BAF) to obtain measures of total and relative allelic intensities respectively.

Incorporating long-range phase information significantly increased the sensitivity for detection of

BAF deviations, which meant mCAs at cell fractions as low as 0.7% could be detected.
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most common
total number 

of mCAs

most common
total number 

of mCAs

most common
total number 

of mCAs

a b c

Figure 3.1 Number of observations of each mCA in Loh 202035, in people who had a total of 1, 2 or >2 mCAs
detected. a. Gain mCAs. b. Loss mCAs. c. CN-LOH mCAs. The dashed vertical line indicates the minimum number
of people (8) in whom an mCA had to be observed in order to calculate the mCA’s fitness effect and mutation rate. The
majority of mCAs were most commonly seen in individuals as single events (‘most common total number of mCAs: 1’).
mCAs that were seen more often in people that had 1 other additional mCA were 3+, 7+, 10p+, 17+, 5p-, 17p-, and 18-.
mCAs that were seen more often in people that had 2 or more additional mCAs were 2+, 3q+, 4+, 8q+, 18+, 19+, 20+, 1p-,
4-, 4p-, 6-, 6q-, 8p-, 9p-, 10-, 10p-, 21q-, 7= and 19=. 6 mCAs were never seen as single events : 2+, 17+, 4-, 6- and 18-. 5
mCAs were not observed at all: 2-, 5-, 8-, 16- and 19-.
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3.3 Evolutionary framework to infer mCA mutation rates and fitness

In total, mCAs were identified in 3.5% of individuals (17,111 out of 482,789): 2389 gain events, 3718

loss events and 8185 CN-LOH events (Appendix B.1). Some mCAs were observed far more often

than others, with some being detected hundreds of times (e.g. 14q CN-LOH) and others not at all (e.g

monosomy 5) (Figure 3.1). The majority of mCAs were most commonly seen in individuals as single

events, although some mCAs were more commonly found in the context of additional mCAs (e.g.

17p-, 18+) (Figure 3.1). For individuals that had an mCA detected, the average number was 1 (range 1

- 22) (Figure 3.2).
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Figure 3.2 Number of mCAs per person, for individuals with an mCA detected. a. All individuals with an mCA
detected (mean number mCAs = 1). b. Individuals with no previous cancer diagnosis that had an mCA detected (mean
number mCAs = 1). c. Individuals with a previous cancer diagnosis that had an mCA detected (mean number mCAs = 1).

mCAs spanned a broad range of cell fractions and, as was the case with clonal haematopoiesis SNVs

(Chapter 2), the density was greatest at low cell fractions (65% at cell fractions 0.7-5%) and then

rapidly decreased with increasing cell fraction (Figure 3.3). There was a sharp cut-off at cell fractions

≥ 67% for losses and ≥ 54% for CN-LOH events, corresponding to BAF deviations >0.25. This was

due to the analytical approach used by Loh et al35 to identify and call mCA cell fractions, which

resulted in heterozygous SNPs ‘dropping out’ of the data if BAF deviations were >0.25.

3.3 Evolutionary framework to infer mCA mutation rates and fitness

To disentangle how much of the variation in mCA cell fraction seen between individuals is due

to differences in mutation rates versus differences in fitness effects, we adapted our evolutionary

framework,93 described in Chapter 2, to allow us to quantify the mutation rate and fitness effect of each

specific mCA. The framework is still based on a simple stochastic branching model of haematopoietic

stem cell (HSC) dynamics (described in Chapter 2), where mCAs (with an mCA-specific fitness

effect, s) are acquired stochastically at a constant rate (µ per year), but takes in to account cell fraction

(rather than VAF) measurements, the UK Biobank age distribution and the cell fraction cut-off for

loss and CN-LOH events.

For a given mCA (e.g. 14q+, Figure 3.3b), cell fraction estimates were log-transformed and their

density was plotted as a function of the log-transformed cell fraction, rescaled by the total number

of individuals in UK Biobank. In our evolutionary framework, where the chance of acquiring an
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Fitness consequences and mutation rates of mosaic chromosomal alterations

Figure 3.3 Estimating mCA fitness effects and mutation rates. a.. Distribution of estimated cell fractions for each
mCA that was detected in ≥ 1 person in UK Biobank (red = gains, blue = losses, yellow = CN-LOH events). b. Plotting
all cell fraction measurements for a particular mCA as log-binned histograms yields estimates for Nτµ and s. Using an
estimate for Nτ of ∼ 100,000 allows the mCA-specific mutation rate to be calculated. Using the known distribution of
ages in UK Biobank enables s to be calculated. c. Three example mCAs with different fitness effects and mutation rates.
The mCA densities predicted by our evolutionary framework (solid lines) closely match the densities observed for specific
mCAs (datapoints). The greater the fitness effect of the mCA, the faster the clone grows and so the more likely it is to be
seen at higher cell fractions. Error bars represent sampling noise.

mCA is uniform throughout life, the density of a specific mCA is expected to be uniform at low cell

fractions, with the amplitude determined by the product of the mCA-specific mutation rate (µ) and

the haematopoietic stem cell population size. The typical maximum observed cell fraction (φ ) for

an mCA, across all individuals, is determined by how quickly the mCA-affected cells can grow (i.e.

the mCA’s fitness effect, s) and the longest amount of time the mCA-affected cells could have been

growing for (i.e. if acquired early in life in the oldest individual). The density of mCAs is therefore

expected to decline above a cell fraction determined by a combination of the mCA’s fitness effect (s)
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3.4 Fitness effects and mutation rates of mCAs

and the age distribution of individuals harbouring that mCA. How the distribution of cell fractions,

predicted by our evolutionary framework, changes with age (t), the mCA-specific fitness effect (s),

the mCA-specific mutation rates (µ), the population size of HSCs (N) and the time in years between

successive symmetric cell differentiation divisions (τ) is given by the following expression for the

probability density as a function of l = log(cell fraction):

ρ(l) =
Nτµ

(1− el)
e
− el

φ(1−el ) where φ =
est −1
Nτs

(3.1)

Fitting the distribution of cell fractions predicted by our evolutionary framework to the observed

densities for a specific mCA enables us to infer estimates for Nτµ and s. To take in to account the

varying ages in UK Biobank, predicted densities were calculated by integrating the theoretical density

for a given age (eq. 3.1) across the distribution of ages in UK Biobank (23.8% aged 40-49, 33.6%

aged 50-59, 42.6% aged 60-69). A maximum likelihood approach was used for parameter estimation,

minimising the L2 norm between the cumulative log rescaled densities and the cumulative predicted

densities, for all datapoints, in order to optimise Nτµ and s. We now have a good estimate for Nτ ,

from work by us93 and others48,92, of ∼100,000 and so we can estimate the mCA-specific mutation

rate (µ) by dividing the maximum-likelihood inferred Nτµ by Nτ of ∼100,000.

The mCA densities predicted by our evolutionary framework (solid lines, Figure 3.3c, d) closely

match the densities observed for specific mCAs. Some mCAs, e.g 21q+, have a very high mutation

rate, resulting in a large number of observed events, but because they only confer a modest fitness

effect the vast majority are confined to low cell fraction. Others, e.g. 9q-, have a very low mutation

rate, resulting in a modest number of observed events, but because they confer a substantial fitness

effect, a considerable fraction are detected at high cell fraction.

3.4 Fitness effects and mutation rates of mCAs

Applying our framework to all mCAs that were observed in ≥ 8 individuals reveals a broad range

of fitness effects and mutation rates (Figure 3.4a, Appendix B.2). The fittest mCAs, e.g. 3p-, 17p-,

confer fitness effects in the region of ∼ 20% per year, which would result in a doubling of the number

of affected stem cells every ∼3.5 years. With this mCA fitness effect, it would take ∼ 50 years for

an affected stem cell to clonally expand and dominate the entire stem cell pool. Therefore, even the

fittest mCAs are unlikely to be detected at very high cell fraction in anyone <50 years old, unless they

co-occur with other highly fit mutations. The least fit mCAs detectable in the UK Biobank participants

confer fitness effects of ∼ 6-10 % per year, which would result in a doubling of the number of affected

stem cells every ∼7-12 years. This means that a stem cell acquiring one of these lower fitness effect

mCA would be unlikely to expand to comprise ' 10% of the entire stem cell pool over the course of

a human lifespan.
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Figure 3.4 mCA fitness effects and mutation rates. a. Inferred fitness effects and mutation rates for all mCAs observed
in ≥ 8 individuals. Error bars represent 95% confidence intervals. b. Mutation rate distribution of fitness effects for gains
(red, top plot), losses (blue, middle plot) and CN-LOH events (yellow, bottom plot). Each box within a fitness interval
column represents a specific mCA. Darker hatched boxes represent the fitness effects of a specific mCA that was seen in
individuals that also harboured ≥1 other mCAs.
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3.4 Fitness effects and mutation rates of mCAs

Examining the mutation rate distribution of fitness effects for each class of mCA reveals systematic

differences between the 3 classes of mCA (losses, gains and CN-LOH events) (Figure 3.4b). Of the

3 classes, CN-LOH events occur at the highest rate (combined rate of ∼ 9×10−8 per cell per year)

(Figure 3.4b, bottom plot). However, CN-LOH events typically confer modest fitness effects, with

most being in a narrow range between ∼11-13% per year. By contrast, the fitness effect of losses are

systematically higher, with most fitness effects being between ∼14-20% per year (Figure 3.4b, middle

plot). However, as a class, losses occur at a combined rate of ∼ 4×10−8 per year, ∼ 2-fold lower

than CN-LOH. Gains appear to have a broad range of fitness effects, but occur at the lowest combined

mutation rate of ∼ 2×10−8 per year (Figure 3.4b, top plot).

3.4.1 Sex differences in fitness effects and mutation rates

Previous studies have reported sex-biases in the prevalence of certain mCAs, e.g. 15+/15q+ is more

common in men and 10q- is more common in women34,35. Our framework allows us to determine
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Figure 3.5 Sex differences in mCA fitness effects and mutation rates. Fold differences in fitness effects and mutation
rates between men and women for mCAs that were observed as a single mCA ≥10 times in men and in women and which
showed a significant difference (p-value <0.05) in either fitness effect or mutation rate. Error bars represent the 95%
confidence interval from the distribution of difference between men and women. p-values were calculated from the area
under the distribution of difference probability curve where the difference ≤ 0.
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whether these sex-biases are driven by differences in fitness effect, differences in mutation rate, or a

combination. To examine this we calculated the sex-specific fitness effect and mutation rate for mCAs

that were observed ≥10 times in men and ≥ 10 times in women (Appendix B.3). The majority of

mCAs (40/60) showed no significant sex-specific differences in either fitness effects or mutation rate.

Of the 24 mCAs that showed significant sex differences (Figure 3.5), most sex-specific differences

in fitness effect were relatively modest, with fold-differences between 1.03 and 1.43. In contrast,

sex-specific differences in mutation rate were sometimes substantial, with fold-differences between

1.2 and 12.

From this analysis, we can infer that the observed higher prevalence of 10q- in women is likely due

to a ∼4-fold higher mutation rate in women (p = 3.5 ×10−8), with limited evidence for any sex

bias in fitness effect. Similarly, the observed higher prevalence of 15q+ in men is likely due to their

∼12-fold higher mutation rate (p = 0). Unlike other types of myelodysplasia (MDS), which occur

more commonly in men, MDS associated with 5q- (del(5q) syndrome) is much more common in

women (ratio 7:3)123. Our analysis suggests this may be driven by the 4-fold higher 5q- mutation rate

in women (p = 1.9 ×10−5). Men with 5q- have a significantly higher (1.08 fold higher, p = 3.1 ×10−3)

fitness effect, however, which may contribute to their worse del(5q) syndrome prognosis123.

3.5 Age dependence of mCAs

The prevalence of an mCA, within a particular range of cell fractions, can be calculated by integrating

the mCA’s probability density, given in eq. 3.1, but as a function of f = cell fraction, over the range of

cell fractions ( f0 to f1):

∫ f1

f0

Nτµ

f (1− f )
e−

f
φ(1− f ) d f where φ =

est −1
Nτs

(3.2)

Our framework, which assumes that the fitness effects and mutation rates of mCAs remain constant

throughout life, predicts how the prevalence of mCAs should increase with age. The prevalence of

a specific mCA is expected to increase approximately linearly at rate Nτµs, once the individual is

above a certain age determined by the cell fraction limit of detection ( flim) and the mCA-specific

fitness effect (s). The reason for this is that, provided the limit of detection is less than the cell fraction

at which the exponential decline in cell fraction densities occurs (i.e. flim ≪ φ ), the mCA prevalence

can be approximated as:

∫ f1

flim

Nτµ

f (1− f )
e−

f
φ(1− f ) d f ≈ Nτµ log

(
φ

flim

)
≈ Nτµst +C (3.3)

where φ =
est −1
Nτs

and C =−Nτµ log(Ns flim)
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3.5 Age dependence of mCAs

We reasoned that our framework could serve as a null model to determine if there were any classes

of mCA (gains, losses or CN-LOH), or specific mCAs, whose age prevalence deviated from the

prevalence expected, which might highlight interesting biology.

Age dependence of gains, losses and CN-LOH events

We first calculated the expected prevalence of each class of mCA (gains, losses, CN-LOH), as a

function of age. First, the expected prevalence of each individual mCA within the class (e.g. 1=, 1p=

etc. for the CN-LOH class) was calculated by integrating eq. 3.2 between f0 = mCA class-specific

lower limit of detection and f1 = mCA class-specific upper limit of detection (Table 3.1), using

each mCA’s sex-specific µ and s values (Appendix B.3). The overall expected prevalence for the

mCA class was then calculated by summing the expected prevalence of each mCA in the mCA class.

Overall, we found the observed prevalence of gain and loss events in both men and women to be in

close agreement with the predicted prevalence (Figure 3.6a-c). CN-LOH events, in contrast, showed

weaker age dependence than expected, particularly in women, possibly pointing to a violation of the

underlying assumptions of our framework.

Table 3.1 mCA-class specific lower and upper cell fraction limits of detection. The lowest detected cell fraction for
each mCA in the class, multiplied by 1.5 (to reduce the false negative rate), was calculated and the maximum of these
values, across all mCAs in the class, was used as the mCA-class specific lower limit of detection.

Gain Losses CN-LOH

mCA class-specific lower cell fraction limit of detection 2.5% 4.1% 1.5%
mCA class-specific upper cell fraction limit of detection 100% 67% 54%

Age dependence of individual mCAs

We next calculated the expected prevalence of each individual mCA observed ≥ 30 times in men

and ≥ 30 times in women. The expected prevalence of each mCA was calculated by integrating

eq. 3.2 between f0 = mCA-specific lower limit of detection and f1 = mCA-specific upper limit of

detection, using each mCA’s sex-specific µ and s values (Appendix B.3). The class-specific upper

limit of detection (Table 3.1) was used as the upper cell fraction limit of detection. The lowest cell

fraction detected for the mCA, multiplied by 1.5 (to reduce the false negative rate), was used as the

mCA’s lower limit of detection.

To quantify any deviation from the expected age dependence, the observed and expected numbers in

three UK Biobank age groups (age 40-49, 50-59, 60-69) were first normalised to the observed and ex-

pected numbers in the oldest age group (age 60-69). The deviation from expected was then calculated

by summing the square distance between the normalised observed and normalised expected number

in each age group. By quantifying the deviation between the observed and expected prevalence across

the 3 different age groups in UK Biobank we are able to identify specific mCAs with unexpected

age prevalence (Figure 3.6d, Appendix B.4). While most mCAs exhibited age dependence broadly
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Figure 3.6 Age dependence of mCAs. a-c. Observed and expected prevalence of gains (a), losses (b) and CN-LOH (c)
events for men and women. Expected prevalence (solid lines) calculated by summing the expected prevalence of each mCA
in the mCA class. d. Deviation from expected age-dependence for each mCA observed ≥30 times in men and ≥30 times in
women, with examples from each mCA class (see Appendix B.4 for age dependence plots for all mCAs).

in line with predictions (e.g. 22q+, 20q-, 22q=), there were certain mCAs that showed considerable

deviation from the expected prevalence in at least one of the two sexes. Some mCAs showed greater

age dependence than expected (e.g. 12+ in both men and women). Other mCAs showed no age

dependence (e.g. 2q= in both men and women) and some showed declining age prevalence (e.g. 10q-

in women, 20q= in men). In some mCAs, therefore, there is a lack of self-consistency between the

cell fraction distributions, the age dependence and a model where the fitness effects and mutation

rates are constant throughout life.

3.6 Predicted prevalence of mCAs

The observed prevalence of mCAs is determined, in part, by the sensitivity of the detection method.

Because our framework predicts how the density of mCAs should be distributed as a function of cell

fraction, we can predict the age prevalence of mCAs (or specific mCAs) in the blood above any defined

limit of detection (eq. 3.2). With infinitely sensitive detection, the chance of an mCA being present

in the blood increases steadily over the course of life, from ∼5% in teenage years to nearly 20% in

later life (Figure 3.7). However, the vast majority of these are at cell fractions below the detection
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3.7 Length dependence of mCAs

limit of ∼1% cell fraction in the UK Biobank dataset. The different mutation rates and fitness effects

of the 3 classes of mCA drive different patterns of expected age dependence. Because losses and

gains have a relatively low mutation rate, they are less common at younger ages than CN-LOH events

(Figure 3.7), but because of their higher fitness their prevalence should increase more strongly with age.
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Figure 3.7 Predicted prevalence of mCAs. Predicted prevalence for each class of mCA calculated by summing the
expected prevalence of each mCA (observed in ≥8 individuals) in the mCA class. Expected prevalence of each mCA was
calculated by integrating eq. 3.2 between f0 = 1/N (where N ∼100,000) and f1 = 1.0, using each mCA’s specific µ and s.

3.7 Length dependence of mCAs

Strong clustering of loss events can be seen involving genes recurrently mutated in clonal haematopoiesis

and haematological malignancies, e.g. DNMT3A, TET2, DLEU1, IGH (Figure 3.8a), suggesting the

fitness effect conferred by these loss events might be attributable to the loss of one of the cell’s copies

of these genes. We wondered whether the fitness effects of these loss events were similar to the fitness

effects we inferred for SNVs in these genes (Chapter 2) and wondered how the fitness effects and

mutation rates depended on the length of the chromosomal section lost. To assess this, we separated

loss events involving these genes in to broad length categories (0-3 MB, 3-10 MB, 10-30 MB and

30-100 MB) and inferred the fitness effects and mutations rates for the loss events within each length

category using our evolutionary framework (Figure 3.8b, c).

Some confidence intervals were large, due to small numbers of events in some length categories (≥
5 events required), but for the majority of loss events the fitness effect seemed to be unaffected by

the length of the loss, suggesting loss of the recurrently mutated gene was the main driver of the

fitness effect (Figure 3.8b). In further support of this, the fitness effects of losses involving DNMT3A,

TET2 and ASXL1 were broadly consistent with the fitness estimates we had previously inferred for

SNVs in these genes (Chapter 2). Interestingly, the fitness effects of loss events on chromosome

20, involving ASXL1 and/or L3MBTL1, appeared to decrease for loss lengths >30 MB, suggesting

the additional loss of a gene (or region) at the telomeric end of chromosome 20 might be having a

negative effect on the fitness effect. There was not a consistent pattern for how the mutation rate
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varied for different lengths of loss involving these genes. With increasing length of loss, the mutation

rate seemed to decrease for some genes (e.g. DNMT3A, DLEU2), but seemed to increase for others,

e.g. ASXL1.
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Figure 3.8 Length dependence of fitness effects and mutation rates for loss events. a. Strong clustering of loss events
involving genes commonly mutated in clonal haematopoiesis and haematological malignancies was observed. b. Fitness
effects were calculated for all losses that involved the particular gene highlighted in (a), separated into broad length
categories. Error bars represent 95% confidence intervals. c. Mutation rates were calculated for all losses that involved the
particular gene highlighted in (a), separated into broad length categories. Error bars represent 95% confidence intervals.
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3.8 mCAs and haematological cancer risk

3.8 mCAs and haematological cancer risk

Just as clonal haematopoiesis SNVs and indels increase the risk of haematological malignancy, so do

certain mCAs. Loh et al found 13 specific mCAs that were significantly associated with subsequent

haematological malignancy diagnosis during 4-9 years of follow-up in UK Biobank35. Of these, the

most significant were 12+, 13q- and 14q- which each conferred >100-fold increased risk of CLL, 9p=

which conferred a 260-fold increased risk of MPNs, and 4q= and 7q= which each conferred >70-fold

increased risk of MDS. Recent work by Niroula et al, also using UK Biobank data, grouped mCAs

into classes based on whether they were specifically associated with myeloid malignancies (M-mCAs)

(overall class hazard ratio = 28.9), lymphoid malignancies (L-mCAs) (overall class hazard ratio =

11.1) or both myeloid (overall class hazard ratio = 5.8) and lymphoid (overall class hazard ratio =

5.9) malignancies (‘ambiguous’ mCAs (A-mCAs))36. Interestingly, some of these were not found

to be associated with haematological malignancy in Loh et al’s UK Biobank analysis35. This may

be because Niroula et al had access to longer follow-up data (12 years) and given the median time

to myeloid or lymphoid cancer diagnosis was ∼ 6-7 years36, some of these cancer occurrences may

have been missed in Loh’s analysis.

Table 3.2 mCAs classified as being associated with myeloid malignancy (M-mCAs), lymphoid malignancies (L-
mCAs) or both myeloid and lymphoid malignancies (A-mCAs) by niroula et al.36

Gains Losses CN-LOH

Myeloid associated mCAs (M-mCAs) 1q+ 5q- 9p=
8+ 20q- 22q=

9p+

Lymphoid associated mCAs (L-mCAs) 2p+ 1p- 7q=
3q+ 1q- 12q=
8q+ 6q- 13q=
12+ 7q- 16p=

17q+ 8p-
18+ 10q-
19+ 11q-

13q-
14q-
17p-
22q-

Ambiguous mCAs (A-mCAs) 1p=
11q=
17p=

We wondered whether an mCA’s fitness effect was correlated with its risk of subsequent haematological

malignancy. Comparing our inferred mCA fitness effects with the log odds ratio of any blood cancer

reported in Loh et al, we find correlation between increasing mCA fitness and increasing blood cancer

odds ratio (Pearson R = 0.53, p = 9.8×10−5), with all high risk mCAs having fitness effects >11%

per year (Figure 3.9a). There were some mCAs (15 CN-LOH events and 8 loss events) that were
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inferred to be highly fit, but were not found to be associated with increased risk of any blood cancer

(Figure 3.9a), within the 4-9 years of follow-up.

Correlation between increased fitness effect and odds ratio was also seen for CLL (Pearson R = 0.55,

p = 0.01), with all mCAs conferring a CLL odds ratios > 100 having fitness effects >14% per year. For

MPN, there was a trend towards increased fitness effect and odds ratio, although it was not significant

(Pearson R = 0.37, p = 0.24) (Figure 3.9b). For MDS, higher odds ratios were not associated with

higher fitness effects, although all of the mCAs significantly associated with MDS risk had fitness

effects >11% per year (Figure 3.9d).
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Figure 3.9 mCA fitness effects and haematological cancer risk. The odds ratios of haematological cancer for mCAs
observed in ≥ 30 individuals are those reported by Loh et al 35. The haematological malignancies were diagnosed >1 year
after DNA collection (within 4-9 years follow-up) in individuals with no previous cancer. The mCAs highlighted in bold
are the mCAs that Loh et al determined have a statistically significant increased risk (FDR <0.05). The mCAs faded out did
not have a statistically significant increased risk. Pearson correlation coefficient and 95% confidence intervals are shown
(for all mCAs with >0 odds ratio). a. mCA fitness effect and odds ratio of any blood cancer. b. mCA fitness effects and
odds ratios of CLL. mCAs that had 0 odds ratio are not shown. c. mCA fitness effects and odds ratios of MPN. mCAs that
had 0 odds ratio are not shown. d. mCA fitness effects and odds ratios of MDS. mCAs that had 0 odds ratio are not shown.
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3.9 Discussion

A simple framework explains the behaviour of most mCAs

Analysing mCA cell fraction spectra from ∼ 500,000 UK biobank participants reveals that the

behaviour of most mCAs, like SNVs, is consistent with a simple model of haematopoietic stem cell

dynamics. In this model, mCAs are acquired stochastically at a constant rate throughout life and

then expand with an mCA-specific intrinsic fitness effect. Variation in the age at which an mCA

is acquired results in the observed variation in mCA cell fractions between individuals. Whilst the

data are consistent with cell-intrinsic fitness effects playing the predominant role, it is likely that

cell-extrinsic effects may influence the dynamics of some mCAs. Indeed, for some mCAs, we find

significantly different fitness effects and/ or mutation rates between men and women, suggesting

hormonal influences and/ or sex-linked genetic influences have an effect. Previous work has shown

that exposure to external beam radiation therapy increases the chance of detecting an mCA (odds ratio

= 1.7)122, again suggesting a role for external influences.

Most mCAs confer high fitness effects

By considering the cell fraction spectra across individuals for each mCA, our framework enables

us to quantify mCA-specific fitness effects. There are 168 different possible mCAs that could have

been detected in the UK Biobank dataset (i.e. gain, loss or CN-LOH of each chromosome, p arm or

q arm, excluding 13/14/15/21/22p). To infer the fitness effect of an mCA using our framework, we

needed the mCA to have been observed as single events in ≥ 8 individuals. Despite this, we were

still able to infer fitness effects for 105 of the different possible mCAs: 86% of possible CN-LOH

events, 60% of possible losses and 43% of possible gains. As a class, loss events were the fittest, with

most fitness effects ranging between 12-20%. CN-LOH were the least fit, with fitness effects ranging

between 6-15%, whereas gains had a broad range of fitness effects ranging from 9-18%. Therefore, of

all possible mCAs, we can infer that at least ∼60% are ‘highly fit’ (fitness effect ≥10% per year),

which means if they were acquired early in life they could expand to overwhelm the bone marrow

over the course of a lifetime.

It is important to bear in mind that the fitness effects we infer for some of the fitter loss events may

actually be an underestimate of their true fitness. This is because the upper cell fraction limit of

detection for losses was 67% (corresponding to BAF deviations >0.25), due to the analytical method

used by Loh et al to call mCAs35. If the exponential fall-off in cell fraction densities occurred at a cell

fraction greater than this (φ > 0.67), then only a lower-bound on the fitness effect could be inferred

(hence the large upper confidence intervals for highly fit losses in Figure 3.4). CN-LOH also had an

upper limit of detection, but at a lower cell fraction of 54%. As for losses, if the exponential fall-off in

cell fraction densities occurred at a cell fraction greater than this (φ > 0.54), then only a lower-bound
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on the fitness effect could be inferred. CN-LOH events were generally less fit compared to loss events

and so this was not an issue for the majority of CN-LOH events.

One of the principles underlying pre-cancerous mutation acquisition and clonal expansion is that

the greater the fitness effect of a mutation, the faster the clone will expand and the more likely it is

that subsequent mutations will be acquired within the same clone. Consistent with this, we found

correlation between higher mCA fitness effects and increased risk of any haematological malignancy.

There were some mCAs, however, that we had inferred to be highly fit, but had no reported increased

risk of haematological malignancy over 12 years of follow-up, e.g. 3p- which was observed in 26

individuals and had an inferred fitness effect of 23% per year. This suggests that additional factors,

other than the fitness effect of the initial driver mutation, may be important for subsequent progression

to malignancy. There is also likely to be variability in the time it takes to progress to malignancy and

so 12 years of follow-up may not be sufficient to observe the subsequent development of cancer in

some individuals.

mCA-specific mutation rates are similar to SNV mutation rates

Unlike somatic SNV mutation rates, which can be estimated from large-scale single-cell sequencing

studies124,125, somatic mCA mutation rates have historically been harder to calculate. Our framework

allows us to do this, for individual mCAs as well as classes of mCAs, using recent estimates for

Nτ 48,92,93. We found mCA mutation rates ranged from 5× 10−11 to 6× 10−9 per year, with an

average mutation rate of ∼ 1.4×10−9 per year, which is similar to the average SNV mutation rate of

∼ 1.6×10−9 per year (Chapter 2). As a class, CN-LOH events appear to have the highest mutation rate

(∼ 9×10−8 per year) relative to losses (∼ 4×10−8 per year) and gains (∼ 2×10−8 per year).

BAF deviations, for an mCA of the same cell fraction, are greatest for CN-LOH events, followed

by loss and gain events. For example, for an mCA affecting 50% of cells, the BAF deviation will

be 0.25 for a CN-LOH, 0.17 for a loss and 0.1 for a gain event. This means that the sensitivity for

detecting small CN-LOH events is greater than for gains and losses and explains why the limit of

detection is lowest for CN-LOH events (Table 3.1). Although this could theoretically result in relative

under-estimation of gain and loss mutation rates, these mCAs are generally fitter than CN-LOH events,

with the typical maximum observed cell fraction much greater than the lower limit of detection (φ ≫
lower limit of detection) (Appendix B.2), and so our mutation rate estimates for gain and loss events

should still be robust.

Infrequently observed mCAs

Some mCAs that were not observed as single events in ≥ 8 individuals, were observed in ≥ 8

individuals as multiple mCA events (e.g. 8q+, 17+) (Table 3.1), suggesting a degree of co-operativity

between some mCAs. The majority, however, were simply infrequently observed, which could be

due to a low fitness effect and/or a low mutation rate. In a study the size of UK Biobank (∼500,000
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participants), we would only expect to observe an mCA in ≥ 8 individuals if its fitness effect was

>7-9% per year, assuming it had an average mutation rate (µ = 1.4×10−9 per year) (Figure 3.10b).

However, for mCAs with mutation rates as low as µ = 5×10−11 per year (the lowest mCA mutation

rate we inferred), the mCA would need to have a fitness effect >16-18% per year to be detected in ≥
8 individuals (Figure 3.10a). For mutation rates this low and cell fraction detection limits of 1.5-4%,

well over 10 million participants would be needed to infer the fitness effects of mCAs of all possible

fitness effects.
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Figure 3.10 Study size required to accurately quantify different fitness effects for individual mCAs, as a function
of cell fraction detection limit. Different fitness effects are represented by different coloured lines (legend in figure a).
The approximate cell fraction detection limits for CN-LOH, gain and loss events are shown as orange, red and blue vertical
dotted lines respectively. The UK biobank study size is indicated by the horizontal dashed black line. a. Study size required
for mCAs with mutation rates of 5×10−11 per year (minimum µ inferred in Figure 3.4). b. Study size required for mCAs
with mutation rates of 1.4×10−9 per year (mean µ inferred in Figure 3.4). c. Study size required for mCAs with mutation
rates of 6×10−9 per year (maximum µ inferred in Figure 3.4).

There were 5 mCAs that were not observed at all in the UK Biobank dataset: monosomies of

chromosomes 2, 5, 8, 16 and 19 (Figure 3.1). Of note, monosomy 5 is known to be associated

with MDS and AML and is associated with poor prognosis126,127. Monosomy 16, although rare,

has also be found to be associated with myeloid malignancies and is similarly associated with poor

prognosis128. Whilst the absence of monosomy 5 and 16 in the UK Biobank cohort may simply

reflect low mCA-specific mutation rates, their absence could suggest that these events only occur

in individuals who then rapidly progress to MDS or AML (i.e. they are ‘late’ events in MDS/AML

development).

Our framework highlights mCAs whose behaviour deviates from the simple model

A key feature of our framework is that it can reveal mCAs whose behaviour deviates from the simple

model, thus highlighting potentially interesting biology. In contrast to the strong age dependence

observed in SNV prevalence93, we find age dependence to be more variable for several mCAs, in

particular CN-LOH events. Of note, there are 8 mCAs (2q=, 3p=, 7q=, 8q=, 17p=, 20q= 21q=,

10q-) for which the prevalence plateaus or even decreases with age. This observation appears to be

particularly evident in women, except for 20q= in which the observed decrease in prevalence with
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age only occurs in men and 2q= in which the plateau in age prevalence occurs in both men and

women. The reasons behind this poor age dependence are unclear, although a number of theories are

possible.

Because our mCA- specific fitness effects and mutation rates were inferred using ‘single event’ mCAs,

we also focused on mCAs that were seen as single events when assessing age dependence. One theory

is that the acquisition of additional mCAs with age results in the relative prevalence of single mCAs

plateauing or even decreasing with increasing age. To explore this we also looked at the prevalence

for individuals that had ≥1 mCA. However the lack of age dependence for these mCAs persisted

(Appendix B.4.1), suggesting this is not the explanation.

Another theory is that these mCAs are only acquired early in life, such that above a certain age, no

further increase in mCA prevalence is observed. This would suggest an age-related external factor

may be important and, given this effect is largely seen in women, perhaps it could be hormonal- or

pregnancy-related. Information on whether or not pregnancy has occurred is available in UK Biobank

and so the potential role of this could be explored further. mCA prevalence across a large number of

individuals of younger ages would also be helpful.

Another theory is that an mCA’s fitness effect could depend on the age at which it is acquired, with

mCAs acquired when young being fitter than those acquired when older. Similar effects have recently

been reported for DNMT3A-mutant clones whose growth is slowed in older age in the context of an

increasingly competitive oligoclonal landscape103. In this scenario, the prevalence would be greater

than expected at younger ages because more of the young mCAs, being fitter, would have expanded

to above the limit of detection. These mCAs would be expected to still be detectable as the person

aged, but there would be less newly acquired mCAs becoming detectable, due to their lower fitness

effects. The overall result would be poorer age dependence than expected. The cell fraction density

histogram for the mCA, across all individuals, would likely still appear consistent with the simple

evolutionary model because the younger fitter mCAs would be interpreted as mCAs from an older

individual, and vice versa. Further work is required to explore this theory further, although it does not

explain why some mCAs showed a decrease in prevalence with age.

For an mCA to show a decrease in prevalence with age, either the clone needs to become undetectable,

or the affected individuals cease to exist. A clone could become undetectable if it was outcompeted by

a mutant-clone with a greater fitness effect. Because we focused on single-event mCAs, we know this

isn’t an additional mCA, but it could be that a mutation elsewhere in the genome has occurred. This

could be explored by looking at the UK Biobank whole exome sequencing data for these individuals

to determine if they have additional mutations. Why these specific mCAs would be especially prone

to acquiring a fitter additional clone with increasing age is not clear though. A study that analysed

longitudinal blood samples showed a change in 4q CN-LOH cell fraction over time, from 58% of

cells at age 82, to 59% of cells at age 88 and then 30% of cells at age 90 years121. A similar decrease

with age was also observed in an individual with 20q-, which was detected in 51% of cells at age
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75 and then only 36% of cells at age 88 years. The authors attributed these decreases with age to

‘autocorrection of the immune system’121. If an mCA’s cell fraction was decreasing with age, it would

need to decrease below the limit of detection to affect the overall prevalence. Whether this could be

due to clonal interference or the immune system requires longitudinal data from many individuals and

would be an interesting area for future work.

Whilst 10q-, 7q= and 17p= are associated with haematological malignancy (Table 3.2), the other

mCAs that show poor age dependence do not appear to be associated with increased cancer risk.

However, it could be that these mCAs confer a significantly increased risk of non-cancer related

mortality, resulting in the affected individuals having a shorter than expected life expectancy and

the prevalence of these mCAs seemingly decreasing with age. This could be explored further by

exploring mortality rates in the individuals with these mCAs in UK Biobank.

Future work

Here we have shown that our evolutionary framework, based on a simple stochastic model of stem

cell dynamics, allows us to infer fitness effects and mutation rates of individual mCAs and that the

behaviour of the majority of mCAs, albeit with some notable exceptions (typically CN-LOH events),

is consistent with this simple model. Thus far, we have focused on mCAs that were seen in individuals

as single events, due to the possible confounding effect of additional mCAs on fitness effects. Multiple

mCAs are not uncommon in UK Biobank, however, and some mCAs are more commonly observed

in the context of additional mCAs (Figure 3.1), some of which are found at the same cell fraction

suggesting they co-occurred. Exploring whether these events occur more frequently than expected by

chance, and how fitness effects change with the additional of further mutations is an ongoing area we

are working on.

mCAs affecting X and Y chromosomes (sex chromosomes) were not reported by Loh et al35 and so

it was only possible for us to calculate the fitness effects and mutation rates of autosomal mCAs. X

chromosome mCAs have recently been associated with increased risk of lymphoid leukaemias129

and mosaic loss of Y (mLOY), being the most common recurrent cytogenetic abnormality observed

in MDS130,131, has become important as a clonal marker in haematological malignancy. It therefore

seems likely that mCAs affecting the sex chromosomes, like many autosomal mCAs, can also

influence the fitness of HSCs and this would be an area for future analysis when these mCA calls

become available.

In UK Biobank, mCAs >1% cell fraction were found in ∼3.5% of all individuals35, but were found

in ∼ 6% of individuals with clonal haematopoiesis variants36 in the UK Biobank initial 50k exome

release. In other studies, as many as 63% of mCAs have been found to co-occur with at least one gene

mutation, which could not be simply explained by shared age-related incidence, suggesting a potential

synergistic relationship122. Indeed, at frequently mutated DNMT3A, TET2 and JAK2 loci in UK

Biobank, ∼23-60% of CN-LOH events appeared to provide a ‘second hit’ to somatic point mutations
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in these genes35, with JAK2 V617F mutations being found in 60% of individuals with 9p CN-LOH

events. Similarly, 7q CNLOH commonly co-localise with EZH2 mutations and 1p CNLOH events

with MPL mutations122. Co-mutational patterns have also been observed for mCAs in trans with gene

mutations, suggesting possible synergistic effects122 It is therefore likely that some of our inferred

mCA fitness effects may be confounded by the additional presence of gene mutations. Obtaining this

data from the UK Biobank 50k exome release, and the imminent 200k whole genome release, will

allow us to explore the relationship in more detail and is an important area for future work.
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4.1 Introduction

Distinguishing between different evolutionary scenarios is difficult using single time-point data and so,

to assess whether there are differences between the evolutionary dynamics of clonal haematopoiesis in

individuals who develop AML compared to ‘healthy ageing’ individuals, we need good longitudinal

data from multiple timepoints preceding AML diagnosis. Also, if we want to study the dynamics

of pre-AML mutations over time, we not only need to be able to detect a comprehensive array of

AML-associated mutations, but we also need to be able to reliably detect the mutations when they are

at very low frequency.

In this chapter, we describe an invaluable longitudinal blood sample resource from which we obtained

blood samples, from up to 11 yearly timepoints, from 50 women who subsequently developed AML.

We describe the development of a custom comprehensive targeted NGS sequencing panel, which

we used to analyse these samples, which can detect an array of clonal haematopoiesis and AML

associated genetic changes, including gene mutations, chromosomal rearrangements and mosaic

chromosomal alterations. To detect these mutations when they are at low frequency, we used duplex

error corrected sequencing and developed a custom in silico noise correction method, that we describe

here, which allowed us to call variants down to single molecule resolution. We describe how we

developed a custom chromosomal rearrangement caller for accurate translocation and inversion VAF

estimation and how we harnessed the power of longitudinal samples to phase SNPs on an individual

basis, enabling us to call mosaic chromosomal alterations at cell fractions as low as 0.1%.

4.1.1 Longitudinal pre-AML blood samples

The UK Collaborative Trial of Ovarian Cancer Screening (UKCTOCS) is a multi-centre randomised

controlled trial which recruited ∼200,000 postmenopausal women aged 50 to 74, between 2001 and

2005, to assess the impact of screening on ovarian cancer mortality132. All the women had a peripheral

blood sample taken at trial enrolment and then ∼50,000 women were randomised to a ‘multimodal’

group, which involved annual blood sampling (for CA125 screening) up until 31st December 2011.

All peripheral blood samples were taken in Greiner gel separation tubes and then transported overnight

at ambient temperature to the central laboratory where the serum was centrifuged, aliquoted and

stored. The median sample transport time (∼22.1 hours) from sample collection to centrifugation was

longer than anticipated, which resulted in leukocyte DNA leaking into the serum, such that the serum

contains DNA at concentrations as high as ∼ 300-750 ng/ml133. While this is not ideal for studies

requiring ‘serum samples’, having high quantities of leukocyte-derived DNA in these longitudinal

samples makes them an invaluable resource for our purposes.

The health outcomes of all the UKCTOCS participants are being followed until the end of 2024 and by

2018 ∼220 had developed AML (ICD-10 C92.0). Of these women, ∼50 had blood samples collected

from more than 1 time-point prior to AML diagnosis (mean 5 timepoints, Figure 4.1a) and the average
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Figure 4.1 Longitudinal blood samples pre-AML diagnosis. a. Timings of blood samples in relation to AML diagnosis
for all individuals in UKCTOCS who had multiple blood samples collected pre-AML diagnosis. b. Distribution of age at
AML diagnosis for individuals in UKCTOCS: mean age 71 years, range 53-83 years, s.d. 6 years. c. Distribution of DNA
yields from pre-AML serum samples (red histogram) and control serum samples (blue histogram). Mean DNA yield: 273
ng/ml in pre-AMLs, 269 ng/ml in controls.

age at AML diagnosis was 71 years (Figure 4.1b). We obtained 1ml serum from each of the yearly

timepoints from all of the women who developed AML, as well as from age- and timepoint-matched

controls who have remained blood cancer free since the trial started. DNA was extracted by LGC

Genomics, using an adapted Kleargene™ method with mag beads on KingFisher™ 96, and eluted

in 10 mM Tris-Cl pH 8.0. The DNA was quantified using PicoGreen™, yielding an average of 273

ng/ml DNA (range 11-814 ng/ml serum) in the pre-AML samples and 269 ng/ml DNA (range 2-1313

ng/ml serum) in the control samples (Figure 4.1c).

4.1.2 Detecting low frequency mutations using error-corrected sequencing

To trace the evolution of mutations in the longitudinal samples back in time, as early as possible,

requires the ability to reliably detect mutations when they were present in just a small number of cells

(i.e. < 0.1% VAF). The error-rate of standard next-generation sequencing is ∼ 10−3 errors per base pair

(bp) which makes it difficult to reliably detect variants < 10−2 (<1% VAF) with standard sequencing
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techniques134 (Table 4.1). However, over the past 5-10 years, much attention has been focused on

strategies to improve the detection limit of sequencing, including computational / statistical strategies

and various methods of ‘tag-based error-correction’ also known as ‘error-corrected sequencing’.

The principle of ‘error corrected sequencing’ is that each DNA molecule is ‘tagged’ with a unique

molecular identifier (UMI) prior to amplification, so that following amplification and sequencing, all

reads sharing the same UMI can be identified and grouped together. Because reads sharing the same

UMI will all be copies of the same original DNA molecule, variants present in only some of the reads

can be discounted as errors (e.g. due to PCR error or sequencing error), whereas those present in all

reads are called as true variants. This allows variants at frequencies theoretically as low as 1.4 x 10−5

to < 10−9 to be detected, depending on the error-corrected method used (Table 4.2)134.

Table 4.1 Error rates of DNA sequencing platforms. Adapted from134,135.

Sequencing platform Most frequent error type Error frequency (per bp)

Sanger sequencing Single nucleotide substitutions 10−1

PacBio RS CG deletions 10−2

Illumina MiSeq Single nucleotide substitutions 5×10−3

Illumina HiSeq 2500 Single nucleotide substitutions 10−3

Illumina NovaSeq 6000 Single nucleotide substitutions 10−3

Table 4.2 Accuracy of error-corrected sequencing (ECS) methods. Adapted from134,136,137

ECS method Most frequent error type Error frequency

SafeSeq
Errors due to DNA damage (e.g. 8-oxoguanine and
spontaneous deamination of 5-methyl-cytosine)

1.4×10−5

smMIPs
Errors due to DNA damage (e.g. 8-oxoguanine and
spontaneous deamination of 5-methyl-cytosine)

2.6×10−5

Duplex sequencing Single nucleotide substitutions < 10−9

Error-corrected sequencing methods can be classified into one of two categories, namely ‘Single-strand

consensus sequencing’ and ‘Duplex sequencing’.

Single strand consensus sequencing

The two most common methods of single-strand consensus sequencing are SafeSeqS (or adaptations

of this method)138 and smMIPs (small molecular inversion probes)136. SafeSeqS was one of the first

implemented methods and involves tagging the DNA molecules using PCR primers that carry UMI

sequences. Following a small number of PCR cycles (first-stage PCR), further PCR amplification

is carried out (second-stage PCR), but with universal primers in order to create multiple copies of

each individually tagged DNA molecule. Following sequencing, all reads sharing the same UMI

can be identified and grouped together138. The smMIPs method uses a single oligonucleotide that

is made up of two arms (which bind to the target DNA region) connected via a linker region which

contains a UMI. Extension and ligation between the two arms creates a tagged product which can

then be enriched, amplified and sequenced and all reads sharing the same UMI can be identified
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and grouped together136,139. One of the main problems with single-strand consensus sequencing is

that errors that occur during the first round of amplification will be propagated to all copies of the

molecule and therefore ultimately escape error-correction. Some methods avoid this problem by

ligating UMIs to the DNA molecule before PCR amplification. The main problem, however, is the

mis-incorporation at sites of DNA damage (e.g. 8-oxoguanine sites and sites where there has been

spontaneous deamination of 5-methyl-cytosine), which can be misinterpreted as a genuine somatic

mutation.

Duplex sequencing

Duplex consensus sequencing circumvents these problems by independently tagging each strand

of the DNA molecule with a UMI as well as a ‘strand-defining element’, using adapter ligation

methods. This enables separate consensus sequences to be produced for each strand, but still enables

the sequences to be identified as deriving from the same double-stranded DNA molecule137,140,141.

If mis-incorporation occurs in a single strand due to DNA damage or during the first round of PCR

amplification then this will be recognised as an error as it will not be present in the partner strand. With

the improved accuracy of duplex sequencing, however, comes increased cost per error-corrected base,

due to the need to sequence to a greater depth to achieve an adequate number of consensus sequences.

The success also relies on adapter ligation efficiency, as well as the capture and amplification of

both DNA strands. This means DNA: adaptor ratios and number of PCR cycles need to be tightly

controlled137.

Accepting the increased cost associated with greater sequencing depths, we decided to use a duplex

sequencing approach on our longitudinal samples, as our main priority was optimising the accuracy of

our low frequency variant calls. Calling variants at the single-strand consensus stage is still possible

with the duplex sequencing approach and allows us the flexibility of being able to call variants at much

lower VAF, due to the greater depths afforded by the single-strand consensus sequences. Although

this is theoretically more ‘error prone’, we can use the single strand consensus for calling mutations of

whose accuracy we can be more certain, such as variants present at very low VAF at earlier timepoints

which had been called using duplex sequencing at later timepoints.

4.2 Designing a targeted sequencing panel

The heterogeneous genomic landscape of AML has now been well-characterised20,142,143, with an

average of 13 gene mutations (range 0 to 51) being found at the time of AML diagnosis, of which an

average of 5 are in a set of 23 recurrently mutated genes21. Mutations in many of these genes are also

found in clonal haematopoiesis, although some mutations, such as internal tandem duplications in

FLT3 (FLT3-ITD)20,142 and 4bp frameshift insertions in NPM1 exon 12143, which are both suspected

to occur ‘late’ in AML development, have only ever been found in individuals with AML. FLT3-

ITD and NPM1 mutations are the most common mutations in AML, being found in 20-30% of
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individuals at diagnosis144 and ‘AML with NPM1 mutation’ is now a distinct entity in the World

Health Organisation classification of AML144.

Mosaic chromosomal alterations (mCAs) are also common in AML. Approximately 67% of AML

patients with intermediate or favourable risk cytogenetics have at least one detectable somatic copy

number gain or loss, whilst cases with unfavourable risk cytogenetics have considerably higher

numbers, with a median of 6 copy number events per person142. Focal deletions affecting recurrently

mutated genes, such as DNMT3A, TET2, STAG2 and TP53, are common142,145,146 and copy neutral

loss of heterozygosity events (CN-LOH) are found in ∼ 10-35% of cases21,147. The presence of

mCAs has historically been assessed using either cytogenetic techniques or SNP microarrays148. SNP

microarrays typically include >1 million probes, which target SNPs evenly spaced across the genome.

These probes produce two metrics for mCA detection: the B-allele frequency (BAF) and the log R

ratio (LRR). The BAF is the non-reference allele fraction at a SNP locus and in a cell without an mCA

will be found at either 0, 0.5 or 1.0. Gain, loss and CN-LOH events all result in deviations in the BAF.

The LRR is the log ratio of signal intensity compared to a reference and is only altered when there is

loss or gain of genetic material (i.e. by gain and loss events, but not CN-LOH events). Whilst SNP

microarrays are classically considered the ‘gold standard’ for mCA detection, their mCA cell fraction

detection limit, unless SNPs can be phased35, is only ∼ 5-10%30. Over the past 10 years, a number

of studies have investigated the use of next generation sequencing (NGS) for the detection of somatic

mCAs149–151, looking for deviations in heterozygous SNP VAFs and variations in read depths, in an

approach analogous to SNP microarrays. These studies have shown NGS to be a sensitive and robust

way of simultaneously detecting mCAs and gene mutations.

Since cytogenetic abnormalities in AML were first described in the 1970s, when t(8;21)(q22;q22) and

t(15;17)(q22;q21) were discovered using chromosome banding techniques152,153, more than 1000

balanced chromosomal rearrangements (translocations, insertions and inversions) have been identified

in AML154. Most of the common AML-associated chromosomal rearrangements create a fusion gene

which encodes a chimeric protein that is required, but not usually sufficient, for leukaemogenesis155.

How long before AML diagnosis these chromosomal rearrangements occur is not clear. Studies in the

1990s on monozygotic twins with concordant leukemias provided evidence for a prenatal origin of

some chromosomal translocations associated with childhood leukaemia. Similarly, seminal work by

Greaves et al showed that chromosomal translocations, including KMT2A::AFF1and ETV6::RUNX1,

could be found in archived neonatal heel-prick spots (Guthrie cards) from children who later developed

leukaemia156,157 . RUNX1::RUNX1T1 fusion transcripts have been detected in 2 of 18 healthy adult

bone marrow samples and as many as 40% of cord blood samples158. BCR::ABL transcripts, which

are more commonly associated with chronic myeloid leukaemia (CML) and acute lymphoblastic

leukaemia (ALL) although can be found in AML, were reportedly found in ∼70% of healthy adults

in a widely quoted study from 1998159. These findings, however, have not been replicated and their

validity has been questioned160. Although chromosomal rearrangements are generally detected by
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fluorescence in-situ hybridisation (FISH), cytogenetics or real-time PCR (RT-PCR), a number of

recent studies have shown that it is possible to detect them using NGS151,161–164. The advantage of

NGS is that it enables the exact breakpoint region to be identified with single nucleotide precision and

cryptic translocations, as well as rearrangements involving unknown partner genes, can be detected

(e.g. KMT2A rearrangements165). It also does not rely on actively dividing cells, unlike cytogenetics

and metaphase FISH.

To ensure that we could track the evolution of a comprehensive array of AML-associated genomic

changes in the longitudinal pre-AML blood samples, we needed to design a panel that could detect

gene mutations, AML-associated chromosomal rearrangements and mCAs. Similar ‘comprehensive

genomic’ approaches have previously been published151,164, but are typically large panels or do not

include all types of genomic changes. We wanted to maximise the cost-effectiveness of our approach

as much as possible and so it was important to optimise which genomic regions we targeted with our

sequencing panel. Detecting mCAs involves targeting SNPs spaced across the whole genome and

detecting chromosomal rearrangements involves targeting breakpoint regions which often occur in

long introns. Being able to detect mCAs and chromosomal rearrangements would therefore require

a large panel size (>1 MB), which would be prohibitively expensive to sequence at ∼ 100,000 X.

However, although ultra-deep sequencing is essential for low VAF detection of SNVs and indels,

it is not necessary for mCA or chromosomal rearrangement detection because the signal is spread

across numerous bases. We therefore decided to develop 2 separate panels, to be used on the same

input DNA sample in an integrated library preparation approach: a small panel (∼ 58kb) specifically

for SNVs and indels, which we would sequence at ∼ 50,000 - 100,000X, and a larger panel (>1

MB) for mCA and translocation detection, which we would sequence at a shallower depth (∼ 1000 -

2000X).

4.2.1 Targeted panel for gene mutations (SNVs and indels)

To design a custom panel for targeting gene mutations, we worked with TWIST Biosciences to design

a custom set of 120-nt oligonucleotide probes targeted to specific regions of interest. We chose the

most commonly mutated genes from 9 different clonal haematopoiesis studies3,4,6–9,39,75,76 as well

as genes recurrently mutated in AML (e.g. NPM1, FLT3)20,166 (Appendix Table C.1) . We then

looked at the distribution of variants across these genes, in both clonal haematopoiesis and AML, and

specifically targeted the exons where variants were most commonly found (Figures 4.2, 4.3, 4.4, 4.5).

We also included DDX41, in which both inherited and somatic variants can be associated with an

increased risk of AML167. Overall, the targeted panel for SNVs and indels included 32 genes and had

a total size of 58,123 bp, which was covered by 589 oligonucleotide probes (Table 4.3).
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Figure 4.2 Distribution of mutations within genes in clonal haematopoiesis (CH) and AML: part 1. Regions chosen
for the custom panel are highlighted with stars. Regions targeted by a typical off-the-shelf ‘myeloid panel’, e.g. Illumina
TruSight® Myeloid Panel, are indicated by grey shading.
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Figure 4.3 Distribution of mutations within genes in clonal haematopoiesis (CH) and AML: part 2. Regions chosen
for the custom panel are highlighted with stars. Regions targeted by a typical off-the-shelf ‘myeloid panel’, e.g. Illumina
TruSight® Myeloid Panel, are indicated by grey shading.
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Figure 4.4 Distribution of mutations within genes in clonal haematopoiesis (CH) and AML: part 3. Regions chosen
for the custom panel are highlighted with stars. Regions targeted by a typical off-the-shelf ‘myeloid panel’, e.g. Illumina
TruSight® Myeloid Panel, are indicated by grey shading.
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Figure 4.5 Distribution of mutations within genes in clonal haematopoiesis (CH) and AML: part 4. Regions chosen
for the custom panel are highlighted with stars. Regions targeted by a typical off-the-shelf ‘myeloid panel’, e.g. Illumina
TruSight® Myeloid Panel, are indicated by grey shading.

Table 4.3 Gene regions targeted by custom SNV/indel panel.

Gene Target region (exon) Gene Target region (exon) Gene Target region (exon)

ASXL1 11, 12 GNAS full RAD21 full
BCOR full GNB1 5 RUNX1 full
BCORL1 full IDH1 4, 6 SF3B1 3-6, 13-16, 18, 24
CBL 8, 9, 16 IDH2 4, 8 SRSF2 full
CEBPA full JAK2 6, 12, 14 STAG2 full
CHEK2 full KIT 1, 2, 7-13, 16, 17 TET2 full
CSF3R 14-17 KRAS full TP53 full
DDX41 full MPL 10-12 U2AF1 2, 6
DNMT3A full NPM1 12 WT1 1-9
EZH2 full NRAS 2, 3 ZRSR2 full
FLT3 3, 6, 8, 11-20 PPM1D 1, 5, 6
GATA2 5-7 PTPN11 3, 7, 8, 13
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4.2.2 Targeted panel for mCAs, KMT2A-PTD and chromosomal rearrangements

Mosaic chromosomal alterations (mCAs)

To detect mCAs, we used an approach analogous to SNP microarrays, involving the targeting of

common SNPs evenly spaced across the genome (a ‘SNP backbone’). This method allows us to detect

deviations in heterozygous SNP B-allele frequencies (BAFs) which, when combined with read depth

information, enables us to detect a gain, loss or CN-LOH event. In order to design a custom set of

120-nt oligonucleotide baits for the ‘SNP backbone’, common SNPs (minor allele frequency (MAF) >

0.01) were first downloaded from UCSC dbSNP (release 153, hg19). A custom Python script was then

written to filter out SNPs that were likely to be uninformative. Heterozygous SNPs are essential for

BAF deviations and so, to maximise their number, SNPs were filtered to retain only those whose MAF

was 0.40 - 0.45 in 1000 genomes168. Previous work has found significant between-sample variation

in normalised read depths if regions with low GC (≤30%) or high GC (≥60%) are targeted150, which

can make interpretation of copy number change difficult. The GC content of the region +/-60bp of

each of the SNPs was therefore calculated using Pybedtools169 and SNPs were excluded if the GC

content was not between 35-55%. Mapping artefacts can result in inaccurate BAF and read depth

measurements and so, to reduce the risk of this, SNPs were excluded if their surrounding region (+/-

60bp) mapped to more than one location (using Bowtie2170) or overlapped with highly repetitive

regions in Repeatmasker (hg19). A minimum of 5 SNPs are typically needed to call an mCA and so

the smaller the gap between targeted SNPs, the higher the resolution for detecting shorter mCAs150.

With better length resolution comes greater panel size, however, which will result in lower depth and

therefore poorer resolution for small BAF deviations associated with low cell fraction mCAs. To

strike a balance between the two, we decided to target a total of 10,326 SNPs which were spaced

every ∼ 280 kb across the genome (Appendix table C.3), allowing us to detect mCAs as short as ∼
1.5 MB.

KMT2A partial tandem duplications (KMKT2A-PTD)

Partial tandem duplications in KMT2A (KMT2A-PTD) are found in 5-10% of adult de novo AML and

are typically associated with poor prognosis171–173. KMT2A-PTDs most commonly involve exons

2 or 3 and span through exon 9 to 11171. They can be detected by observing a relative increase in

read depth, starting from exon 2 or 3, compared to an exon that is never involved in KMT3A-PTD

(e.g. exon 27)149,151. A custom set of 120-nt oligonucleotide baits was therefore designed to target

KMT2A exons 2-27 (Appendix Table C.4).

Chromosomal rearrangements

Thousands of different chromosomal rearrangements have been described in AML154, but to limit

the size of our panel we chose to focus on the detection of chromosomal rearrangements that define

specific subcategories of AML in the World Health Organisation (WHO) AML classification144:
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t(6;9) DEK::NUP214, t(8;21) RUNX1::RUNX1T1, t(9;11) KMT2A::MLLT3, t(9;22) BCR::ABL,

t(15;17) PML::RARA, t(3;3) GATA2::MECOM, inv(3) GATA2::MECOM, t(16;16) CBFB::MYH11

and inv(16) CBFB::MYH11 (Table 4.4). A custom set of 120-nt oligonucleotide baits was designed

to target the known breakpoint regions of each of the rearranged partner chromosomes166,174–177.

KMT2A is renowned for having numerous possible breakpoint partners and so additional common

breakpoint regions in KMT2A were also targeted165. Overall, coverage of the intended target regions

was generally good, although the presence of highly repetitive sequences meant there were coverage

gaps in some target regions (Figure 4.6, Appendix Table C.4). This should not be an issue as long

as the rearranged partner’s breakpoint is covered by the panel. This is because the non-targeted

breakpoint region will be present as part of a ‘chimeric sequence’, which will be captured by the baits

targeting the partner chromosome. Both breakpoint partners can therefore be identified, even if only

one was targeted by the panel. The baits for targeting the breakpoint regions involved in t(3;3) and

inv(3) were unfortunately designed for the wrong region of chromosome 3 (Figure 4.6) and so it will

not be possible to detect t(3;3) or inv(3) with the current version of the panel.

The total size of the custom panel targeting mCAs, KMTA-PTD and chromosomal rearrangements

was 1,631,472 bp (∼ 1.6 MB), which was covered by 13,114 probes.

Table 4.4 Chromosomal rearrangements that define specific AML subcategories in the World Health
Organisation (WHO) AML classification144,176.

Chromosomal rearrangement Frequency in AML Ages Associated genetic abnormalities Prognosis

t(6;9) DEK::NUP214 1% Young FLT3-ITD mutations (78% adults). Poor

t(8;21) RUNX1::RUNX1T1 1-5% Young mCAs (70%), e.g. del(9q).
Mutations in KIT (20-30%), KRAS or
NRAS (10-20%), ASXL1 (10%).

Good

t(9;11) KMT2A::MLLT3 9-12% (children)
2% (adults)

Any age mCAs common (especially 8+).
Overexpression of MECOM in 40%.

Intermediate

t(9;22) BCR::ABL <1% Adults mCAs in most cases, e.g. del(7), 8+ or complex. Poor

t(15;17) PML::RARA 5-8% Any age mCAs (40%): 8+ (10-15%).
Mutations in FLT3 (30-40%).

Good

t(3;3) GATA2::MECOM
inv(3) GATA2::MECOM

1-2% Adults mCAs common: del(7) (>50%), del(5q), complex.
Mutations in NRAS (27%), SF3B1 (27%),
PTPN11 (20%), GATA2 (15%), FLT3 (13%),
RUNX1 (12%), KRAS (11%)

Poor

t(16;16) CBFB::MYH11
inv(16) CBFB::MYH11

5-8% Young mCAs (40%): 22+ (10-15%), 8+ (10-15%).
Mutations in KIT (30-40%), NRAS (45%),
KRAS (13%), FLT3 (14%)

Good
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Figure 4.6 Custom panel coverage of chromosomal rearrangement breakpoint regions. The regions covered by the
120-nt oligonucleotide baits are shown in purple above the region. The frequency with which particular regions are the
location of the breakpoint are written immediately above the region (indicated by arrows)166,174–177.
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4.3 Library preparation and error-corrected sequencing

Library preparation was performed as per the ‘TWIST custom panel enrichment workflow’, but with

adaptations to allow for incorporation of UMIs (for error-corrected sequencing) and to allow for the

use of two targeted panels on the same input DNA. DNA yield varied between UKCTOCS samples

(Figure 4.1), but for each timepoint the same amount of input DNA was used for both the pre-AML

sample and matched control (mean 43 ng, median 50 ng, range 4.5-80 ng).

Briefly, DNA was enzymatically fragmented (using a proprietary enzyme mix from Twist Biosciences),

end-repaired and dA-tailed at 32oC for 21-24 min (see Table 4.5). IDT xGen™ CS adapters (5.5

ul of 10 µM), containing 3 bp duplex UMI sequences, were then ligated to each end of the DNA

fragments at 20oC for 15 min, followed by bead purification using 0.8X DNA Purification beads

(Twist Biosciences). The duplex UMI-tagged fragments were PCR amplified in a 50µl reaction

volume (25µ l KAPA® HiFi HotStart ReadyMix (Roche Diagnostics), 10µ l IDT xGen™ unique dual

index (UDI) primers (10µM), 15µl duplex UMI-tagged fragments). The following conditions were

used for PCR amplification: 98oC for 45s; 11-12 cycles of 98oC for 15s (see Table 4.5), 60oC for 30s,

72oC for 30s; 72oC for 1 min. Following bead purification, using 1X DNA Purification beads (Twist

Biosciences), the amplified UMI-tagged dual index-labelled fragments were eluted into 22µ l ddH2O

and then visualised and quantified using the Agilent 2200 TapeStation.

Table 4.5 Fragmentation times and number of PCR cycles

Input DNA Fragmentation time
(min) at 32oC

1st PCR
(cycles)

2nd PCR (cycles)
(SNV, indel panel)

2nd PCR (cycles)
(chromosomal panel)

5 ng 24 12 17 12
10 ng 24 12 17 12
20 ng 24 12 17 12
30 ng 22 11 17 12
40 ng 22 11 17 12
50 ng 22 11 17 12
60 ng 22 11 17 12
70 ng 21 11 17 12
80 ng 21 11 17 12

Following quantification, each sample was divided in two; one half for the SNV/ indel panel and

the other half for the mCA/ chromosomal rearrangement panel. Samples were pooled together in

groups of 8 (187.5 ng of each indexed sample), with separate pools for each of the two panels. The

pooled samples were concentrated, using 1.5X Agencourt AMPure XP beads (Beckman Coulter™)

and then hybridised to the custom panel probes (SNV/ indel panel probes or mCA/ chromosomal

rearrangement panel probes) in a thermocycler at 95oC for 5 min followed by 70oC for 16 hours.

Following Streptavidin bead capture (30 min at room temperature), the captured DNA was PCR

amplified in a 50µl reaction volume (25µl KAPA® HiFi HotStart ReadyMix (Roche Diagnostics),

2.5µ l TWIST amplification primers, 22.5µ l captured DNA) under the following conditions: 98oC for
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45s; 12 cycles (mCA/ chromosomal rearrangement panel) or 17 cycles (SNV/ indel panel) of 98oC

for 15s, 60oC for 30s, 72oC for 30s; 72oC for 1 min. Following bead purification, using 1X DNA

purification beads (Twist Biosciences), samples were eluted into 32µ l ddH2O and then visualised and

quantified using the Agilent 2200 TapeStation. Samples were then diluted to 10 nM and submitted for

sequencing.

Libraries were sequenced on the Illumina NovaSeq 6000 S4 (CRUK Cambridge Institute Genomics

Core Facility) using the XP workflow, with 150 bp paired ends reads, 8 bp reads in index 1 (i7)

and 8 bp reads in index 2 (i5). 40 samples were sequenced per lane with 10% PhiX control DNA

spiked into each lane. SNV/indel and mCA/ chromosomal rearrangement panels were sequenced in

different lanes and, with only a few exceptions, timepoints from the same individual were sequenced

on different lanes. Each sequencing run contained ∼ 3 billion reads per lane (∼ 68 million reads per

sample). For the SNV/ indel panel (∼ 58 kb, 589 probes), this equated to a raw depth (pre-consensus

calling) of ∼ 50,000X. For the mCA/ chromosomal rearrangement panel (∼ 1.6 MB, 13114 probes),

this equated to a raw depth of ∼ 1000X.

4.3.1 Computational workflow for processing of sequencing data

A custom computational workflow was written for the processing of the sequencing data. This work-

flow used a number of software packages, including Picard178, Fulcrum Genomics fgio package179,

Burrows-Wheeler Aligner (BWA)180, the Genome Analysis Toolkit (GATK)181, SAMtools182, Var-

DictJava183, Pindel184 and ANNOVAR185, as well as several custom written Python scripts. The

workflow consisted of four main steps: i) UMI extraction and initial alignment; ii) Single strand

consensus sequence (SSCS) calling; iii) Duplex consensus sequence (DCS) calling; and iv) Putative

variant detection.

UMI extraction and initial alignment

Sequenced reads were demultiplexed using their sample-specific dual indexes and the demultiplexed

fastq files were converted to unmapped BAM files using Picard178 FastqToSam. The inline UMIs

were extracted from each read and stored in the ‘RX’ tag of the unmapped BAM file using fgbio

ExtractUmisFromBam. Illumina adapter sequences were marked using Picard MarkIlluminaAdapters

and the adapter-marked BAM was converted to a fastq using Picard SamToFastq, which also clipped

the adapter sequences. The fastq was aligned to the The Broad Institute’s b37/hg19 reference

genome181 using BWA mem180 to create a mapped BAM. BAM tags are lost during BAM to fastq

conversion and so Picard MergeBamAlignment was used to transfer the BAM tags from the unmapped

adapter-marked BAM file to the mapped BAM file to ensure that the UMI information for each read

was retained.
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Figure 4.7 UMI tags and consensus calling. a. Each duplex DNA fragment has a 3-bp UMI ligated at each end which
is stored in the reads as a UMI tag e.g. ‘α-β ’. For SSCS calling, UMI families are formed by grouping reads that have
the same UMI tag, start coordinate and template length and which are all e.g. ‘read 1 forward’. For DCS calling, the
corresponding duplex pair is identified by transposition of the UMI tag (i.e. ‘α-β ’ and ‘β -α’ are a duplex pair) for reads that
have the same start coordinate and template length and which are both e.g. ‘forward’. b. SSCS calling from a UMI family
containing 10 reads. Green bases represent PCR errors, red bases represent sequencing errors and blue bases represent true
variants. If ≥90% of the bases are the same at a position, then a consensus base is called, otherwise an N is called.

Single strand consensus sequence (SSCS) calling

A custom Python script was written to generate single strand consensus sequences (SSCS) from the

mapped BAM file in a stepwise manner. First, reads that had a mapping quality >20 and shared

the same UMI tag, genomic coordinates and template length were grouped together to form ‘UMI

families’ (Figure 4.7a). For the SNV/ indel panel, UMI families were discarded if they contained <3

reads. For the mCA/ chromosomal rearrangement panel, no minimum UMI family size was required.

The reads in a UMI family were then compared at each sequence position, if their base quality score

was >20, and a consensus nucleotide was called if there was at least 90% agreement between the

reads (Figure 4.7b). If there was <90% agreement, then an ‘N’ was called as the consensus nucleotide

at that position. This meant, for UMI families containing <10 reads, there had to be 100% agreement

between the reads at a position for the base to not be called as ‘N’. The resulting SSCS reads were

written to an ‘unmapped’ SSCS BAM file. Reads that did not have a 99, 163, 147, 83 flag (i.e. were

not ‘mapped in proper pairs’) were discarded, except for the generation of SSCS BAM files for

FLT3-ITD calling and chromosomal translocation calling.

Duplex consensus sequence (DCS) calling

A custom Python script was written to generate duplex consensus sequences (DCS) from the ‘un-

mapped’ SSCS BAM file in a stepwise manner. First, SSCS reads corresponding to a pair of the initial

DNA strands were identified and grouped together. The UMI tag associated with each read consists

of two 3-nucleotide sequences and the UMI tag of the read from its partner strand is a transposition of

this (Figure 4.7a). For example, if a ‘read 1 forward’ sequence had the UMI tag ‘ATG-CAT’, it would

be grouped with a ‘read 2 forward’ sequence that had the UMI tag ‘CAT-ATG’, the same genomic

coordinates and the same template length. The paired SSCS sequences were then compared at each
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sequence position and a consensus nucleotide was called if the bases matched. If one or both of the

bases had a quality score <20, or if the bases did not match, then an ‘N’ was called as the consensus

nucleotide at that position. The resulting DCS reads were written to an ‘unmapped’ DCS BAM file

with ‘forward strand’ DCSs becoming ‘read 1’ reads and ‘reverse strand’ DCSs becoming ‘read 2’

reads.

Putative variant detection

For SSCS or DCS variant detection, the ‘unmapped’ SSCS or DCS BAM file was processed as follows:

To identify any adapter sequences that may have been missed pre-consensus calling, Illumina adapter

sequences were again marked using Picard MarkIlluminaAdapters and the adapter-marked SSCS or

DCS BAM was converted to a fastq using Picard SamToFastq, which also clipped any remaining

adapter sequences. The fastq was realigned to The Broad Institute’s b37/hg19 reference genome181

using BWA-MEM180 to create a mapped BAM file. Picard MergeBamAlignment was used to transfer

the BAM tags, containing SSCS or DCS calling metrics, from the unmapped adapter-marked BAM

file to the mapped BAM file. Overlapping reads and 3 nucleotides from the end of each read were

clipped and then sequences were realigned with GATK’s Indel Realigner181. The aligned sequences

were processed with SAMtools182 mpileup using the parameters -BOa -Q0 -d 1,000,000 to ensure

all the pileups were returned without any filtering. A custom Python script was then written to

generate a VCF file which contained SNV and indel information as well as the variant depth and

total read depth at every position in the panel. All positions with a variant depth >0 were annotated

with ANNOVAR185. Indels were also called from the realigned BAM file using VarDictJava183 and

FLT3-ITD variants were called using Pindel184.

For the SNV/ indel panel, variants were called from both SSCS and DCS files. The same depth

accuracy was not required for the mCA, KMT2A PTD and chromosomal rearrangement panel and so

only the SSCS was used for calling these.

4.3.2 Error-corrected sequencing metrics

In order to achieve as low a VAF limit of detection as possible, it is important to maximise the number

of DCSs formed. Forming a DCS requires an SSCS to be generated from both DNA strands and so

it is important that there are sufficient sequencing reads sharing the same UMI tag sequence to do

this (i.e. sufficient UMI tag family size). The UMI tag family size is dictated by the number of input

DNA fragments for PCR as well as the number of sequencing reads dedicated to the sample. If there

is too much PCR input and/ or too few sequencing reads then the UMI tag family size will be too

small and a SSCS (and therefore DCS) will not be called. Within a sample there is a distribution of

UMI tag family sizes, due to the variation in PCR amplification efficiency between DNA fragments.

A peak is typically seen at a UMI tag family size of 1, most likely due to sequencing errors in the

UMI tags137. Excluding the peak at 1, an optimal peak family size of 6 is recommended to maximise
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the efficiency of duplex sequencing137, striking a balance between optimal PCR input and sequencing

depth/ cost. Only ∼8% of our pre-AML and control samples (SNV/ indel panel) had a peak family

size ≥ 6, with nearly 75% of samples having a peak UMI tag family size of 2 (Figure 4.8a). Our UMI

tag family size distributions were broad, however, with an average mean UMI tag family size of 8 and

maximum UMI tag family size of ∼175 for both pre-AML and control samples (Figure 4.8b). This

meant, even when we required a minimum UMI tag family size of 3 for an SSCS to be called, we still

retained ∼92% of reads (Figure 4.8c), which represented ∼64% of UMI tag families (Figure 4.8d).

Whilst it might be prudent to adjust PCR input and/ or sequencing coverage in the future to optimise

sequencing costs, the mean SSCS:DCS ratio attained was 5-6 (Figure 4.8e), which is the same as in

the original duplex sequencing protocol paper137. Across all samples, for the SNV/ indel panel, mean

SSCS depth was ∼5500 and mean DCS depth was ∼1800. With ∼50ng DNA input (∼15,000 haploid

genomes), this equates to an efficiency of ∼7.5% for SSCS and ∼6% for DCS.
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Figure 4.8 Error-corrected sequencing metrics (SNV/ indel panel). a. Distribution of peak UMI tag family sizes
across all pre-AML and control samples. Insets show example UMI tag family size distributions with peaks of 2, 5 and
10. Example distributions have been capped at a UMI tag family size of 25. Average maximum UMI tag family size was
179 (range 60-1044) for pre-AML cases and 169 (range 57-875) for controls. b. Distribution of mean UMI tag family
sizes across all pre-AML samples (red) and control samples (blue). Average mean UMI tag family size was 8 (range
2-17) for both pre-AML cases and controls. Inset shows the distribution of standard deviations (std) for the UMI tag
family size distributions. c. Distribution of the proportion of total reads retained if those forming UMI tag family sizes
of <3 are discarded. Mean proportion was 93% (range 61-98%) for pre-AML samples (red) and 92% (range 61-98%) for
controls (blue). d. Distribution of the proportion of UMI tag families retained if those containing <3 reads are discarded.
Mean proportion was 64% (range 29-77%) for pre-AML samples (red) and 64% (range 30-75%) for controls (blue). e.
Distribution of ratio of SSCS to DCS reads across pre-AML samples and control samples. Mean SSCS:DCS ratio was 5.5
(range 4.3-16.2) for pre-AML cases (red) and 5.5 (range 4.4 to 10.9) for controls (blue).
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4.4 Initial testing of the duplex sequencing approach

To validate the duplex sequencing approach it is important to assess the true positive rate (i.e. what

proportion of true variants could be detected) as well as the false positive rate (i.e. how many false

variants are detected). To do this a Myeloid DNA Reference Standard (Horizon Discovery Ltd.)

was used, which contains 14 SNVs and 5 insertions/ deletions in gene regions targeted by our SNV/

indel panel at validated VAFs ranging from 5 - 70% (Appendix Table C.5). Serial dilutions were

created (25%, 1% and 0.1%), by diluting the Myeloid DNA Reference Standard with a sample of

peripheral blood-derived DNA from a 65 year old individual (hDNA). These serial dilutions, as well

as 100% Myeloid DNA Reference Standard and 100% hDNA were sequenced in replicate on the

same sequencing lane as the pre-AML and control samples (i.e. NovaSeq S4 XP workflow, with

∼ 68 million reads per sample). The sequencing files were then processed using the computational

workflow described in Section 4.3.1. Variants were filtered out if the total depth at the position was

<500, the mean variant position in the read was <8 or the variant’s MAF in ExAC186 was >1%.

There was good concordance between replicate samples (Figure 4.9a) and 88% of the validated

variants with expected VAFs >0.1% were successfully called from the DCS (Appendix Table C.6).

Only 41% of validated variants with VAFs of 0.01-0.1% could be detected, which reduced to 15%

for those with VAFs of 0.001-0.1%. Our reliable VAF limit of detection, is therefore likely close

to ∼ 0.1%, which is consistent with the mean DCS depth of ∼1800. We found however, that we

were calling far more variants at frequencies <0.5% than we expected (white data points Figure

4.9a), in both the Myeloid Reference Standard DNA and the hDNA, the majority of which were

detectable in only one of the replicate samples. Analysis of the serial dilutions revealed many of

these ‘variants’ at <0.5% VAF to be errors, as they were found at the same frequencies in the 100%

Myeloid Reference Standard as the dilutions (cluster of variants lying at frequencies <1% around

the grey dotted line, (Figure 4.9b). Further analysis of specific base changes revealed C>T errors

were particularly common (Figure 4.9c) in both the Myeloid Reference Standard as well as the hDNA

sample.

How many variants do we expect to see?

From our analysis of blood sequencing data from ∼50,000 individuals (Chapter 2) we know that the

distribution of clone sizes is consistent with a simple branching process model of haematopoietic stem

cell (HSC) divisions93, such that the probability density as a function of VAF ( f ) is given by:

ρ( f ) =
2Nτµ

f (1−2 f )
e−

f
φ(1−2 f ) where φ =

est −1
2Nτs

(4.1)

N = total number of HSCs
τ = time in years between successive symmetric cell differentiation divisions

µ = mutation rate per year, t = age in years, s = fitness effect of variant (% per year)
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Figure 4.9 DCS variant calling using serial dilutions of Myeloid Reference Standard DNA. a. Concordance between
replicates for serial dilutions of Myeloid Reference Standard DNA. Validated variants in the reference standard are shown in
colour, according to their expected VAF. b. Correlation between variant VAFs in the undiluted Myeloid Reference Standard
and the VAF in the diluted sample. Variants present in hDNA are not shown. c. Mutational signatures for variants called in
the undiluted hDNA sample (top) and the undiluted Myeloid Reference Standard sample (bottom).

Calculating the number of variants we expect in the manufactured Myeloid Reference Standard is

difficult, but we can use this equation to calculate a rough estimate of the number of variants we

expect to see in the hDNA sample, which was collected from a 65 year old (t) individual. Single-cell

derived sequencing work by Lee-Six48 provides us with HSC mutation rate estimates of ∼ 2.7×10−9

/bp /year, which, multiplied by the size of our SNV/ indel panel (∼ 58 kb), gives a mutation rate (µ)

estimate of ∼ 1.6×10−4 per year. Our work has provided estimates for Nτ of ∼ 100,000 as well

as the distribution of fitness effects (s) of variants across 10 of the most commonly mutated clonal

haematopoiesis genes (Chapter 2)93. Using these parameters and integrating our expected density of

clones (eq. 4.1) over the distribution of fitness effects and then over a range of VAFs (e.g. from 0.1%

to 50%), allows us to estimate the number of variants we should expect to observe above a certain

VAF in an individual of a particular age (Figure 4.10a). Bearing in mind that using this distribution

of fitness effects likely provides an over-estimate for the number of variants we would expect to see

across all genes, we can roughly estimate that we should expect to see ∼ 8 variants between 0.1% and

50% VAF in a 65 year old individual, of which ∼ 5 will be at VAFs < 0.5%. In the hDNA sample,

however, we see 252 putative variants between 0.1% and 50% VAF, of which 240 are at VAFs <0.5%

(Figure 4.10b).

80



4.5 Developing an in silico noise correction method for SNV calling

a

VAF (%)

ex
pe

ct
ed

 n
um

be
r o

f v
ar

ia
nt

s 
>V

A
F

120

100

80

60

40

20

0
0.001 0.01 0.1 1 10 50

VAF (%)
0.1 1 10 50

3500

3000

2500

2000

1500

1000

500

0

ob
se

rv
ed

 n
um

be
r o

f v
ar

ia
nt

s 
in

 h
D

N
A

 >
VA

F

b
16
14
12
10

8
6
4
2
0

ex
pe

ct
ed

 n
um

be
r o

f 
va

ria
nt

s 
>V

A
F

VAF (%)
0.1 1 10 50

VAF (%)
0.1 1 10 50

250

200

150

100

50

0

ob
se

rv
ed

 n
um

be
r o

f 
va

ria
nt

s 
in

 h
D

N
A

 >
VA

F 

age 85
age 75
age 65
age 55

Expected number of DCS variants Observed number of DCS variants

Figure 4.10 Expected and observed number of DCS variants. a. Expected number of variants detectable above a
given VAF, using the custom SNV/ indel panel, for individuals aged 55, 65, 75 and 85 years. b. Number of DCS ‘variants’
observed above a given VAF, using the custom SNV/ indel panel, in hDNA replicate 1 (from a 65 year old individual).

The theoretical error rate of duplex sequencing is often quoted as < 10−9 error per bp, which is

simply the probability of two complementary errors occurring at the same nucleotide position on both

DNA strands, either spontaneously or during the 1st PCR cycle140,187. In reality, however, library

preparation artefacts e.g. due to sonication, end-repair and mapping errors14,141,188 have all been

shown to slip through the duplex error correction and likely explains why we see far more ‘variants’

than we expect. Therefore, in order to reliably call ‘true variants’ <0.5% VAF we developed an in

silico noise correction method for SNV calling, which involved developing a null model for the errors,

so that inconsistencies from the model would be identified as ‘true variants’.

4.5 Developing an in silico noise correction method for SNV calling

To develop an in silico noise correction method for SNV calling we used sequencing data from

40 samples (20 pre-AMLs and 20 controls), which had all been sequenced on the same Illumina

NovoSeq S4 lane. The sequencing data was processed using the computational workflow described in

Section 4.3.1 and the DCS output files, containing variant depth and total depth at all positions in the

SNV/indel panel, were used for error model development.

4.5.1 Trinucleotide-context specific error-model

We first considered whether error rates were trinucleotide-context specific (e.g. C[G>A]T and

G[T>A]T would have separate defined error rates). Our null hypothesis was that each trinucleotide

context had a specific error-rate (ε) and the number of variant reads (k) observed at that context would

be consistent with binomial sampling at that context’s error rate (Figure 4.11, eq. 4.2):

P(k) =
(

N
k

)
ε

k(1− ε)N−k (4.2)

where N = number of positions with a particular trinucleotide-context
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Figure 4.11 Schematic of trinucleotide context specific error rates.

The problem with comparing the distribution of variant reads to an expected binomial distribution,

however, is that there are ∼175,000 possible base change positions (3 at each position, e.g. C>T,

C>A, C>G) across the panel and calculating a binomial distribution becomes cumbersome for large

N. Because we have both large N and small ε , the binomial distribution can be well-approximated by

a Poisson distribution. To check the null hypothesis, therefore, the distribution of variant reads (k) for

each of the different trinucleotide contexts was compared to an expected Poisson distribution:

P(k) = N
λ ke−k

k!
(4.3)

where λ = Dε, D = mean depth and ε = ∑variant reads/∑depths

Because the distribution of variant reads will be affected by the distribution of depths (i.e. more

variant reads would be expected in a region with greater depth), we take this into account in the

expected Poisson distribution by summing over the expected Poisson distributions for small intervals

of depth (width 100) with ‘mean depth’(D) and N (number of positions with depth in that interval)

calculated separately for each interval (eq. 4.4). The ε (error rate) was calculated across all depths

and was therefore constant across intervals:

P(k) =
C

∑
i=1

Ni
(Dεi)

k

k!
e−Dεi (4.4)

where N and D are interval specific and C=number of depth intervals

When calculating the error rate ε for each position, the assumption is that all the variants seen at

that position are errors. To try to exclude true variants, which would skew the estimated error rate

(particularly SNPs at 50% VAF), samples whose VAF at a particular position was >1% were not

included in the calculation of the error-rate at that position.

As can be seen from Figures 4.12, 4.13 and 4.14, although the distribution of variant reads at

some trinucleotide contexts is consistent with our null hypothesis (e.g. C[C>G]A, C[T>G]A), the

distribution at the majority of contexts is far broader than expected. It seems unlikely, therefore, that

the error-rates are consistently trinucleotide-context dependent.
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Figure 4.12 Distribution of DCS variant reads by trinucleotide context: contexts with C>A and C>G base change.
The darker solid line represents the expected Poisson distribution of variant reads (i.e. if the number of variant reads (errors)
at each trinucleotide context was consistent with binomial sampling). Samples where the total depth at a position was <500
or >10000 were not included in the calculation of the position’s error-rate, nor were their variant reads included in the
histogram.
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Figure 4.13 Distribution of DCS variant reads by trinucleotide context: contexts with C>T and T>A base change.
The darker solid line represents the expected Poisson distribution of variant reads (i.e. if the number of variant reads (errors)
at each trinucleotide context was consistent with binomial sampling). Samples where the total depth at a position was <500
or >10000 were not included in the calculation of the position’s error-rate, nor were their variant reads included in the
histogram.
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Figure 4.14 Distribution of DCS variant reads by trinucleotide context: contexts with T>C and T>G base change.
The darker solid line represents the expected Poisson distribution of variant reads (i.e. if the number of variant reads (errors)
at each trinucleotide context was consistent with binomial sampling). Samples where the total depth at a position was <500
or >10000 were not included in the calculation of the position’s error-rate, nor were their variant reads included in the
histogram.
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4.5.2 Position-specific error model
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Figure 4.15 Schematic of position base-change specific error rates.

We next considered whether error-rates were position specific (e.g. ‘chr 12, pos 25380312, T>C’ and

‘chr1, pos 115256423, G>T’ would have separate defined error rates). Our null hypothesis was that

each base-change at a position in the panel had a specific error rate (ε) and the number of variant reads

(k) observed in a sample at that position would be consistent with binomial sampling at that specific

error rate (Figure 4.15). When considering many samples, the variation in total read depths between

samples makes the distribution of variant reads difficult to interpret and so the distribution of ‘VAFs’

(variant reads/ total depth) across samples at a position base-change was visualised instead. We started

by assuming that all ‘variants’ with the same position base-change could be real if their DCS ‘VAF’

was >1% and then calculated the position’s mean error rate, for that base change, from the ‘VAF’s of

all the other samples. Looking at some example position-specific base-changes from across the panel

(Figure 4.16a), we can see that whilst the majority appear consistent with a binomial position specific
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Figure 4.16 Distribution of sample DCS ‘VAFs’ (error-rates) at example positions. a. Distribution of mean position
error rates across the SNV/indel panel. Samples with a position depth <500 were excluded from the error rate calculation
and positions that had 0 variant reads across all samples at the position base-change are not shown in the distribution.
Example positions across the distribution were chosen (numbered) to examine in more detail. b. 8 positions, that had at
least 1 variant read detected in at least 16 samples with minimum sample depth of 500 and ‘VAF’ <1% were chosen from
the distribution of mean position base-change error rates across the SNV/indel panel (in a.). Each sample’s ‘VAF’ (error
rate) for the base-change at that position is shown in blue (cumulative distribution). If no variant reads were detected for
that base-change in the sample then the error rate was recorded as 0. The orange line represents a binomial distribution,
summed across all samples at the position where n = sample depth and p = mean position base-change error rate.
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error model there are some that appear slightly over-dispersed (Figure 4.16b). The null hypothesis

was therefore adapted to consider a beta-binomial position base-change specific error model, which

allows for a wider variation in the sample errors at a given position base-change, controlled by a

parameter δ :

P(k) =
(

D
k

)
B(k+α,N − k+β )

B(α,β )
(4.5)

where B is the Beta function, D = total depth, α = δ
−1, β =

1− ε

δε

ε = position-specific error rate, k = number of variant reads

The binomial distribution naturally emerges from the beta-binomial distribution in the limit of δε ≪ 1

(Appendix C.1.2) and so an advantage of a beta-binomial model is that it is also able to capture the

behaviour of positions that are consistent with a simple binomial model.

Inferring ε and δ parameters for identification of real variants

A custom Python script was written to infer the error rate (ε) and dispersion (δ ) values for each

possible single nucleotide base-change at each position in the panel (hereafter referred to as simply

‘position’) and samples were called as ‘real’ variants if their variant read count was inconsistent with

this distribution of errors. First, samples with a VAF >10% at the position were automatically called

as real and excluded from the subsequent analysis. Then, the remaining samples at the position were

used to fit either a beta-binomial distribution or a binomial distribution, depending on the number of

samples at the position that had ≥ 1 variant reads.

If there were ≤ 3 samples remaining with ≥ 1 variant reads, there was insufficient data to fit a

beta-binomial distribution and so the distribution of errors was assumed to be binomially distributed

with ε = ∑variant reads/∑depth. The binomial p-values for all the samples with ≥1 variant reads

were calculated and a sample was called as real if its p-value was less than a chosen p-value

threshold.

If there were > 3 samples with ≥ 1 variants reads, a beta-binomial distribution was fitted to all the

samples at the position. First, ε was estimated as ∑variant reads/∑depth across all the samples to be

included in the fit and δ was estimated using the method-of-moments estimator (Box 4.5.2a). These

δ and ε estimates were then used to initialise a maximum likelihood approach which re-inferred

δ and ε by minimising the negative log likelihood of the model (Box 4.5.2b and Appendix C.1.1).

If the method-of-moments estimate for δ was <1, suggesting the data was either undispersed or

underdispersed relative to the binomial, then δ was initialised as 10−4 in the maximum-likelihood

approach. A lower bound for δ was set to limit δ/ε to >10−8 as the distribution had already become

binomial at δε <10−6 and numerical issues occurred below this level due to large α and β values

(Appendix C.1.2). The beta-binomial p-values for all the samples with ≥1 variant reads were

calculated and a sample was called as a real variant if it’s p-value was less than a chosen p-value

threshold.
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Box 4.5.2a: Method of moments estimator for δ

The method of moments estimator for δ can be calculated by noting the 1st and 2nd moments of the

beta-binomial...

µ1 =
Dα

α+β
(1st moment)

µ2 =
Dα[D(1+α)+β ]
(α+β )(1+α+β )

(2nd moment)

where D = mean total depth, α = δ−1, β = 1−ε

δε
and ε = position error rate

Setting these raw moments equal to the 1st and 2nd raw sample moments...

µ̂1 := m1 =
1
S ∑

S
i=1 ki

µ̂2 := m2 =
1
S ∑

S
i=1 k2

i

where S = number of samples and k = number of variant reads in a sample

and solving for α and β we get...

α̂ = Dm1−m2
D(

m2
m1

−m1−1)+m1

β̂ =
(D−m1)(D− m2

m1
)

D(
m2
m1

−m1−1)+m1

Given δ = 1/α , we can use this estimate for α to estimate δ .

Box 4.5.2b: Maximum likelihood approach for inferring ε and δ parameters
For each possible base change at a position, testing different position error rates (ε) and beta-binomial

dispersion values (δ )...

1. For each sample, calculate the beta-binomial likelihood of measuring that number of variant reads

for that base change at that position (k), given the sample depth (D), position specific base change

error rate (ε) and dispersion value (δ ):

f (k | D,ε,δ ) =
(D

k
)B(k+α,D−k+β )

B(α,β )
where B is the Beta function, α = δ−1 and β = 1−ε

δε

2. Calculate the likelihood of the model by multiplying across all the sample Beta-binomial likelihoods:

L(ε,δ ) =
S

∏
i=1

( f (k | D,ε,δ )) where S = total number of samples at that position

This creates very small numbers and so an alternative is to sum across all the sample log(Beta-

binomial likelihoods):

L(ε,δ ) =
S

∑
i=1

log( f (k | D,ε,δ ) where S = total number of samples at that position

3. Find the values of ε and δ that maximise the likelihood of the model (or minimize the negative

likelihood of the model).
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An iterative approach at potential ‘hotspot’ sites

When fitting a binomial or beta-binomial error distribution to a position only once, a problem arises if

more than one sample at the position has a ‘real variant’. The problem is that the lower VAF variants

will not be called as they will be fitted as ‘errors’ within a falsely over-dispersed beta-binomial

distribution or a binomial distribution with a falsely elevated error rate. We therefore chose to use an

iterative approach for positions observed in haematopoietic and lymphoid tissues in COSMIC v92166

(∼ 2% of sites across our custom panel), where we might expect to see more than one sample with a

real variant in our pre-AML cohort.

For positions with ≤ 3 samples with ≥ 1 variant reads, the iterative approach involved fitting a

binomial distribution to all the samples, calling variants as real if their p-value was less than a chosen

threshold, removing the real variants and then fitting the binomial again. This was then continued at

the position until no further real variants were called.

For positions with > 3 samples with ≥ 1 variants reads, the iterative approach was similar except

at each iteration the sample with the highest VAF was excluded from the beta-binomial fit. This

is because our prior probability of there being at least one real variant at these potential ‘hotspot’

positions is higher and if it were at high VAF it would result in a falsely over-dispersed beta-binomial

distribution being fitted and real variants being missed. Beta-binomial p-values were then calculated

for all samples, including the highest VAF sample, and variants were called as real if their p-value

was less than a chosen threshold. This iterative approach (excluding the highest VAF sample from

the beta-binomial fit each time) was then continued at the position until no further real variants were

called. The highest VAF sample was not excluded when fitting beta-binomial distributions at other

positions because we found, when exploring different approaches, that this resulted in an increased

false positive rate (Appendix C.1.3). Similarly, performing an iterative approach also resulted in an

elevated false positive rate (Appendix C.1.3). We therefore chose to use these two adaptations only at

sites where there was an increased prior probability of a variant being real.

An iterative approach for longitudinal samples

In the majority of cases, different timepoint samples from the same individual were sequenced on

different flow-cells. When there was more than one timepoint sample from the same individual on

the same flow-cell, an iterative approach was used for positions at which one of those samples had

been called as a real variant. This is because, for these positions, there is a much higher chance

that one of the other timepoints also contained the same variant, but at a different VAF. Without

an iterative approach, it is likely the sample with the lower VAF would not be called as real. The

iterative approach at the position was continued until no further samples from the individual with

multi-timepoint samples were called as real.
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Choosing an appropriate p-value threshold for calling real variants

To calculate an appropriate p-value threshold, we examined the false discovery rate (FDR) as a

function of p-value threshold. Correctly estimating the FDR relies on the assumption that the

underlying null model is correct, such that the number of false positives reliably increases as the

p-value threshold increases. To check this, a custom Python script was written to simulate 40 samples

across ∼575 positions, with the number of variant reads in each sample chosen from a beta-binomial

distribution with a position specific ε and δ (i.e. all ‘variants’ were errors). Each position had a

different ε and δ , covering regularly distributed combinations of ε between 10−3 and 10−1 and δ

between 10−2 and 1. A beta-binomial distribution (or binomial if ≤ 3 samples with ≥ 1 variant reads)

was fitted at each position (non-iteratively), p-values for each sample calculated and ‘real’ variants

called if the sample’s beta-binomial (or binomial) p-value was less than the p-value being tested. The

number of variants called across all positions was plotted as a function of p-value threshold (Figure

4.17a). This showed that the false positive rate was indeed consistent with what we would expect for

most p-values, although there was a slight decrease at very low p-values. This may be a reflection of

the fitted beta-binomial distribution slightly over-estimating the dispersion (δ ) parameter and provides

further support for our decision to exclude the highest VAF sample when fitting the beta-binomial

distribution at ‘hotspot’ sites.

When we tested a range of different p-value thresholds on our real samples (38 samples from 1

NovaSeq 6000 S4 lane), the false positive rate appeared consistently much lower than expected

(Figure 4.17c). Initial analysis of the position error-rates had shown that most position error rates

were very low, at < 10−4 (Figure 4.16), and so we repeated the simulated false positive analysis (as
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Figure 4.17 Choosing a p-value threshold for calling real variants. The point at which the read data (orange line)
starts to deviate from the blue line, represents the p-value threshold where there are equal numbers of false positives and
true positives. If we lower the p-value threshold further, the proportion of true positives increases, but we also increase the
false negative rate.
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described above), but for positions where the error rate was much lower (ε: 10−4 to 10−3, δ : 10−3

to 1). Interestingly, we saw a similar pattern to the real samples, where the false positive rate was

consistently lower than expected (Figure 4.17b). We reasoned that this may be a consequence of the

analysis being across only 40 samples, which means at very low ε there aren’t any samples that have

≥ 1 variant reads and so no false positive variants are called. Therefore, to chose a p-value threshold,

we chose a p-value that gave an FDR of ∼ 5% (p-value: 6×10−6), with the understanding that the

actual FDR will likely be even lower than this (i.e. FDR <5%) and that it is difficult to accurately

estimate the FDR for this number of samples when the average error-rate is so low.

The prior probability of a variant being real is higher if it has been called as real in a sample collected

at a later timepoint. We therefore used a p-value threshold of 0.1 to call a variant as real if it had

already been called as real with a p-value threshold of 6×10−6 in the final timepoint sample.

Because different sequencing runs could introduce potential sequencing run-related noise, the error

model was applied to samples sequenced on the same sequencing lane (i.e. ∼ 40 samples). An

alternative approach would be to allow greater dispersion.

Position specific distributions of errors

Once the ‘real’ variants had been called at each position, a final beta-binomial or binomial distribution

was fitted to the remaining samples at the position to ascertain each position’s distribution of errors.

Across 20 pre-AML cases and 20 controls, real variants were called at 197 positions out of 174,366

positions (Figure 4.18). Of the positions where no variants were called, ∼60% contained only samples

with 0 variant reads (Figure 4.18: A positions) and ∼ 30% of positions were fitted using a binomial

distribution because there were ≤ 3 samples with ≥ 1 variant reads (Figure 4.18: B, C positions).

The fitted beta-binomial distribution was consistent with a binomial distribution in ∼5% of positions

(Figure 4.18: D-F positions) and a beta-binomial distribution in ∼ 3% of positions (Figure 4.18: G-L

positions). Of the positions where 1 or more real variants were called (197 positions), ∼40% had only

samples with 0 variant reads remaining and ∼ 35% were fitted using a binomial distribution because

there were ≤ 3 samples remaining with ≥ 1 variant reads after the real variants were called. The fitted

beta-binomial distribution was consistent with a binomial distribution in ∼ 11% of positions (Figure

4.18: P, Q positions) and was consistent with a beta-binomial distribution in ∼ 10% of positions

(Figure 4.18: R-T positions). Overall, across all positions, 61% contained only samples with 0

variant reads, 36% were consistent with a binomial distribution of errors, and 3% were consistent

with a beta-binomial distribution of errors. Looking at example positions from across the range of

error distributions, we can see that the model appears to be performing well, appropriately fitting a

beta-binomial distribution to positions whose distribution of errors appears over-dispersed relative to

a binomial (Figure 4.18 subplots).
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Figure 4.18 Position specific error distributions across 20 pre-AML and 20 control UKCTOCS samples. The
relationship between the final position error rate (ε) and δε is shown for positions where no variants were called as real (top
left plot) and positions where 1 or more variants were called as real (top right plot). The number of positions in each area is
shown on the plot. Example positions from different δ and δε regions on the plot (indicated by letters A to T) are shown
below. The final fitted error distribution is plotted as a purple solid line (beta-binomial) or orange dashed line (binomial).
The binomial distribution is also shown for beta-binomially distributed positions for comparison. Samples called as real
variants are shown in red. Samples called as errors are shown in blue.
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Overall panel error rate

The overall error rate across the panel can be calculated as: ∑ variant reads/ ∑ depth for the samples

that were not called as real variants, and was 2.6×10−5 across our initial test of 20 pre-AML cases

and 20 controls (one sequencing lane). This means, on average, we would be unable to call variants at

frequencies lower than this (i.e. VAF detection limit > 0.026%). Categorising the positions by their

base change, we can see that C>T and G>A variants tend to have an error rate ∼5x higher than other

base changes, with error rates as high as ∼10−2 (Figure 4.19). The distribution of position error rates

is quite broad, with some positions having error-rates as high as nearly 10−1, meaning there are some

positions where we would be unlikely to call real variants unless they had a VAF > 10%.
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Figure 4.19 Distribution of final position-specific error rates, grouped by base change. The overall base-change
error-rate is shown (dashed line) and was calculated as ∑ variant reads/ ∑ depth for the samples that were not called as ‘real
variants’ at all the positions with the particular base change.

4.5.3 Post-processing of variant calls

The error model was applied to all the samples sequenced on the same sequencing lane (∼ 40 samples)

and then additional post-processing filters were applied in order to filter out any additional errors that

may have inadvertently been called as real. Variants were excluded if they were detected in only 1

variant read or if the total read depth at the position was less than 2 standard deviations below the

mean read depth for that sample. Variants were also excluded if they were seen in ≥5% of people

(e.g. Figure 4.18 position T), unless the variant had been observed in haematopoietic and lymphoid

tissues in COSMIC v92166.

Having longitudinal samples provided us with additional power for identifying errors, as we were

able to use information from variants that were called, or not called, at multiple timepoints. Variants
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were excluded if their p-value was not < 10−10 at ≥ 1 timepoint, unless the variant was present at

>10% VAF at any timepoint. There were variants that were not detected at some timepoints, but were

detected at the timepoints before and after. The expected growth rate was calculated from the VAFs at

the two detected timepoints (VAF1 at t1 and VAF3 at t3) to determine how many reads (k) the variant

should have been expected to be seen in at the missing timepoint (t2), taking in to account the read

depth of the missing sample:

growth rate (s) =
log

(
VAF3
VAF1

)
t3 − t1

(4.6)

where t1 is the age in years at the time of the VAF1 sample and t3 is the age in years at the time of the VAF3 sample

expected variant reads (k) ≈ VAF1 × es(t2−t1)× sample read depth (4.7)

where t2 is the age in years at the missing timepoint

The chance of not detecting the variant at t2 was then calculated:

chance of not detecting variant = e−k (4.8)

If the chance of not detecting the variant was <10%, then the variants from the preceding timepoints

were excluded, as it was deemed likely to also be an error. If a detected variant was missing from

more than 1/3 of the timepoints, the chance of not detecting the variant was calculated at all the

missing timepoints and if the combined chance of missing all of them was <10%, then the variant was

excluded from all timepoints.

4.5.4 Testing the position-specific method on UKCTOCS samples

Before the in silico noise correction method was applied to our initial 20 pre-AML and 20 control

UKCTOCS final timepoint samples, the number of variants we detected at <1% VAF was ∼100-1000-

fold higher than we expected (Figure 4.20a). After applying the in silico noise correction method,

however, the number of real variants we called was reassuringly in close agreement with that observed

in other studies (Figure 4.20b). The density of variants we detect starts to decline below 0.3% VAF,

suggesting that 0.3% VAF is our reliable limit of detection for the longitudinal final timepoint samples.

Whilst it might seem disappointing that our limit of detection is not as low as the Young 2016 and 2019

studies, these studies used 250 ng input DNA for their SSCS error-corrected sequencing approach,

which is ∼ 5 × more than we used. Also, when calling variants from earlier timepoint samples,

we can use the information from these final timepoint samples to increase our prior for lower VAF

variants being real. Our limit of detection across all the UKCTOCS samples will therefore actually be

much lower and at some positions we should be able to call variants down to almost single molecule

resolution.
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Figure 4.20 Effect of in silico noise reduction method on reducing the number of variant calls for the top 10
mutated CH genes (DNMT3A, TET2, ASXL1, TP53, SRSF2, SF3B1, JAK2, IDH2, KRAS, CBL). The densities of
variants called across these genes in 4 studies (Coombs 2017 75, Desai 201876 and Young 2016 7 & 2019 39) are shown for
comparison (from Figure 2.14, Chapter 2). UKCTOCS DCS variant calls, from 20 pre-AML and 20 controls are shown a.
before in silico noise correction and post-processing. b. after in silico noise correction and post-processing.

4.5.5 Testing the position-specific method on Myeloid DNA Reference Standards.

Whilst the in silico noise correction method appears to perform well on the UKCTOCS samples,

testing it on the Myeloid DNA Reference Standard (Horizon Discovery Ltd.) samples revealed poor

performance, even in the undiluted samples where variants were at ≥ 5% VAF. Further analysis

revealed that this is because the method struggles to identify real variants when two or more samples

at a position have a real variant at approximately the same VAF. This was the case for the Myeloid

DNA Reference Standards, which were all sequenced in replicate on the same NovaSeq 6000 S4

flow cell. The variants in the Myeloid Reference Standards were all COSMIC hotspot sites and so an

iterative beta-binomial approach was used, with exclusion of the highest VAF sample at each iteration.

However, even with exclusion of the highest VAF sample (e.g. 100% Myeloid Reference Standard,

replicate 1), the replicate was still present (e.g. 100% Myeloid Reference Standard, replicate 2) and

so when the beta-binomial distribution was fitted, the dispersion was over-estimated, resulting in all

of the samples being called as errors (Figure 4.21). Whilst this situation might be expected to be rare

with the real data, we tried to minimise the risk of this by sequencing timepoints from the same person

on different flow-cells. Future improvements to the in silico noise correction method will involve

using a prior distribution for δ (which penalises large δ ), particularly at COSMIC hotspot sites, which

will also help to avoid this issue.

4.6 Detecting indels and FLT3-ITD mutations

Developing an error model for indels is more complicated than for single nucleotide variants, given

the variability in length and base insertions/ deletions at a particular site. We plan to explore this

further, but in the meantime, we chose to be quite conservative with which indels we called as real.

Indels were excluded if they were detected in <4 DCS reads, unless they were a known NPM1 exon 12
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Figure 4.21 Difficulty with calling variants when real variants with similar high VAF are present. All Myeloid
Reference Standard dilution replicates were sequenced on the same NovaSeq 6000 S4 flow-cell. When the position-specific
error model was applied to all samples on the same flow-cell, an iterative beta-binomial approach was used for the Myeloid
Reference Standard real variant sites, because they were all COSMIC hotspots (e.g. JAK2 V617F shown). The highest VAF
sample was excluded and a beta-binomial distribution (purple line) fitted to the remaining samples. Because a replicate of
the highest VAF sample was present, however, an over-dispersed beta-binomial distribution was fitted. When the p-values
were calculated for all the samples, none of them were < 6×10−6 and so none of them were called as real.

frameshift hotspot mutation. Indels were also excluded if they were seen in ≥10% of people, unless

the variant had been observed in haematopoietic and lymphoid tissues in COSMIC v92166. Using

information from multiple timepoints, indels were excluded if they were not detected at >4% VAF at

≥1 timepoint and indels that were detected at some timepoints, but not others, were filtered using the

same method as for SNVs (eqs. 4.6-4.8).

FLT3-ITD mutations were called using Pindel184 and were detected in 2-3 SSCS reads of 5 of our

final timepoint UKCTOCS pre-AML samples. Two of these cases also had a FLT3-ITD mutation

detected in their penultimate timepoint sample, but on further inspection, these tandem duplications

were at different positions and of different lengths to those detected in the final timepoint sample.

We were therefore concerned that the majority of these FLT3-ITD calls were errors and so, pending

confirmatory RT-PCR, we only called a FLT3-ITD if it was detected in both the SSCS and DCS. This

meant we only called a FLT3-ITD mutation in one pre-AML case.

4.7 Detecting mosaic chromosomal alterations (mCAs)

Our targeted panel for mCAs, KMT2A-PTD and chromosomal rearrangements contains a ‘SNP

backbone’ which targets ∼10,000 regions (each 120bp) spaced ∼280kb across the genome and each

containing ≥1 common SNPs (at MAF 0.4-0.45 in 1000 genomes168). A custom Python script was

written to enable detection of mCAs from the SSCS reads using the SNP ‘B-allele frequencies’ (BAF)

and read depths (log2R ratios) in these targeted regions.

Calculating log2R ratios (LRR) and B-allele frequencies (BAF)

For each sample, the average read depth across each 120 bp targeted region (SNP region) was

calculated. The average read depth of each SNP region was then normalised to the average read depth

across all targeted regions in the sample, to create ‘sample normalised read depths’ for each SNP
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region. To account for inter-region variation in read depth coverage, due to variability in capture

efficiency, the ∼20 control samples from the same sequencing lane were used as a ‘panel of normals’

to calculate the average normalised read depth for each SNP region. The mean coefficient of variation

(CV) in read depths was calculated across the ‘panel of normals’, for each chromosome, and controls

were excluded from the ‘panel of normals’ if their read depth CV for ≥ 2 chromosomes was more than

1.5 standard deviations above the mean CV. This helped to prevent any samples that had a significant

copy number alteration (i.e. gain or loss event) being included in the ‘panel of normals’. Log2R ratios

(LRR) were then calculated for each SNP region by comparing the region’s ‘sample normalised read

depth’ to the average normalised read depth for that region from the ‘panel of normals’.

The VAF of all targeted SNPs, as well as any SNPs >1% MAF in 1000 genomes168 that were also

covered by the panel, were calculated (from read depth/total depth) and were plotted across the

chromosomes to visualise the B-allele frequency (BAF).

Identifying mCAs as either gain, loss or CN-LOH events

Once BAFs and log2R ratios (LRR) had been calculated, it was possible to identify regions in which

either copy number alterations (i.e loss or gain events) or copy-neutral loss of heterozygosity (CN-

LOH) events had occurred. Loss and gain events result in deviations in both LRR and BAF whereas

CN-LOH events result in BAF deviations without a change in LRR (because there is no change in the

amount of genetic material) (Figure 4.22).

Normal in 10% cells in 50% cells in 100% cells in 10% cells in 50% cells
1.0

0.5

0

BA
F

1.0

0

-1.0

lo
g2

ra
tio

1.0

0.5

0
BA

F
1.0

0

-1.0

lo
g2

ra
tio

0.5

0.5

0.52

0.48
0.4

0.6 0.67

0.33

0.53

0.47
0.33

0.67
1.0

0.0

0.55

0.45

0.75

0.25

1.0

0.0

0 0.07
0.32

0.58

-0.07
-0.42

-1.0

0 0 0

in 100% cells in 10% cells in 50% cells in 100% cells

Gain events Loss events CN-LOH events

Figure 4.22 LRR and BAF deviations for mCA detection. Normal regions (black plot) contain SNPs with B-allele
frequencies (BAFs) of 0 (homozygous AA alleles), 0.5 (heterozygous AB alleles) and 1.0 (homozygous BB alleles) and no
change in read depth (log2ratio of 0). Regions with gain events (red plots) show deviations in BAF, up to a maximum of
±0.17 if a duplication event is in 100% of cells. Gain events result in an increase in read depth (log2ratio > 0), due to the
extra genetic material. Regions with loss events (blue plots) or CN-LOH events (orange plots) also show deviations in BAF
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distinguished by the read depths, which are decreased in loss events (log2ratio < 0) due to loss of genetic material, but are
unchanged in CN-LOH events (log2ratio = 0). Data generated for schematic using simulated samples (100 SNPs per region
with mean read depth across ‘panel’ of 1000 reads).
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Determining length and cell fraction of mCAs

Because BAF deviations could occur due to inadvertent somatic variants at common SNP sites or

variable bait capture, we required BAF deviations (or lack of heterozygosity) in ≥5 consecutive SNPs

for an mCA to be called. With SNPs spaced ∼ 280kb apart, this meant the smallest mCA we could

expect to detect would be ∼ 1.5 MB. The ‘start’ of the mCA was taken as the coordinate of the first

BAF-deviated SNP and the ‘end’ coordinate was taken as the coordinate of the last BAF-deviated

SNP in the affected region.

The proportion of cells (‘cell fraction’) harbouring the mCA was calculated from the heterozygous

BAFs as detailed in Table 4.6. If an mCA was detected at 100% cell fraction in both the latest and

earliest timepoint sample from an individual, then it was deemed likely to be germline.

Table 4.6 Expected LRR, heterozygous BAFs and cell fractions for autosomal somatic mCAs. mCA cell
fraction (p) can be calculated directly from the heterozygous BAFs (µ1 and µ2). Adapted from Jacobs et al.30

Somatic mCA (autosomal) LRR Heterozgous BAFs (µ1, µ2) mCA cell fraction (p)

Gain log2

(
2+p

2

)
0.5± p

2(2+p)
2(µ2−µ1)

1−(µ2−µ1)

Loss log2

(
2−p

2

)
0.5± p

2(2−p)
2(µ2−µ1)
1+µ2−µ1

CN-LOH 0 0.5± p
2 µ2 −µ1

Using phasing information to call mCAs at low cell fractions

Because mCA calling relies on the ability to detect deviations in heterozygous BAFs, the noisier the

BAF measurements (e.g. due to low sequencing read depth), the harder it will be to detect subtle

BAF deviations associated with low cell fraction mCAs (e.g. gain event in 10% cells in Figure

4.22). Haplotype phasing, which involves identifying SNPs which lie on the same chromosome and

therefore have the same direction of BAF deviation, can be used to improve the sensitivity of low

cell fraction mCA calling. This approach has been used to call mCAs at cell fractions as low as

1% in UK Biobank participants34,35 by utilising long-range phase information generated from long

identical-by-descent (IBD) tracts shared among distantly related individuals189. This information is

unfortunately not available for the UKCTOCS participants. However, one of the benefits afforded

by having longitudinal samples is the ability to use large BAF deviations from higher-cell fraction

mCAs, detected at timepoints closer to AML diagnosis, to identify which SNPs lie on the same

chromosome in the affected region of interest. This phasing information can then be applied to the

same individual’s samples from earlier timepoints, allowing a much higher sensitivity for detection

of the mCA when it is at lower cell fraction (Figure 4.23). Using this approach we were able to call

mCAs at cell fractions as low as 0.2%.
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4.8 Detecting KMT2A partial tandem duplications (KMT2A-PTD)

Partial tandem duplications in KMT2A (KMT2A-PTD) most commonly involve exons 2 or 3 and

span through exon 9 to 11171. Exon 27, which is the largest exon in KMT2A, is characteristically

not involved. Therefore to detect KMT2A-PTD events a custom Python script was written (using

pysam190 pileup) to calculate the mean read depth across each targeted KMT2A exon. These mean

depths were then normalised to the mean read depth across KMT2A exon 27 and the exon 3:27 ratio

(R) calculated. The fraction of cells harbouring the KMT2A-PTD can then be calculated as:

cell fraction = 2(R−1) (4.9)

A KMT2A-PTD affecting one KMT2A allele in 100% of cells should be easy to detect, with a mean

read depth ratio (R) of 1.5 (Figure 4.24a). At lower cell fractions, however, the ratio becomes quite

small and may become harder to detect (Figure 4.24b), particularly if the read depths within each

exon are highly variable. This is a limitation of our KMT2A-PTD detection method and means we

may not detect KMT2A-PTD events pre-AML diagnosis if they are at low cell fraction. KMT2A-PTD

are effectively small gain events and so SNP BAFs could be used to improve sensitivity, akin to their

use in mCA detection. There are, however, only 10 SNPs at >1% MAF in 1000 genomes168 across

our targeted KMT2A regions and none of these are in exon 3.
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Figure 4.24 Schematic showing the effect of KMT2A-PTD on exon 3: exon 27 read depth ratios. a. KMT2A-PTD
involving exons 3-10 in 100% of cells results in an exon 3: exon 27 read depth ratio of 1.5. b. KMT2A-PTD involving
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4.9 Developing a caller for chromosomal rearrangments

A number of software packages are available for the detection of chromosomal rearrangements

from short-read NGS data, e.g BreakDancer191, CREST192, Delly (EMBL)193, Lumpy194, Manta

(Illumina)195 and GRIDDS196. These packages typically use one of three different methods to detect

chromosomal rearrangements: i) discordant read pairs, ii) split reads or iii) combination methods with

or without local re-assembly.

The ‘discordant read pair’ method involves the identification of read pairs that are mapped in an

abnormal orientation or whose mapped interval is significantly different to the expected library insert

size (Figure 4.25a). A key limitation of this method is its poor breakpoint resolution as well as low

sensitivity for low VAF events. BreakDancer191 is an example of a caller that uses this method.

The ‘split reads’ method looks for regions where there are increased numbers of ‘soft-clipped’

incompletely mapped reads, which may be suggestive of a chimeric read spanning a rearrangement

breakpoint (Figure 4.25b). The soft-clipped reads can then be assembled in to a contig spanning

the translocation breakpoint, which can then be aligned back to the reference genome (‘local re-

assembly’) to determine the breakpoint positions. The benefit of the ‘split reads’ method is its ability

to infer breakpoint positions at single-nucleotide resolution and it has higher sensitivity than the

‘discordant reads’ method, although high sequencing depth is typically needed to obtain sufficient

reads overlapping the breakpoint. CREST192 is an example of a caller that uses this method.

Combination methods typically involve the ‘discordant read pair’ method first, to predict the presence

of chromosomal rearrangements, and then the ‘split read’ method next, with or without local reassem-

bly, to refine the breakpoint positions. The advantage of local reassembly is its ability to reconstruct

novel rearrangements, although low VAF events can be difficult to detect as there may not be sufficient

variant reads present for contig assembly197. Callers that utilise a combination of methods as well as

local realignment, such as Manta195 and GRIDDS196 generally have higher sensitivity and lower false

discovery rates197 than callers that use a single method, e.g. BreakDancer191, which has a sensitivity

of only 20-30% even when the rearrangement is at 100% VAF197. Existing packages generally

struggle with low VAF chromosomal rearrangements, with sensitivity dropping to ∼60% at 10%

100



4.9 Developing a caller for chromosomal rearrangments

chr15: PML chr17: RARA

read 1 chr17

soft-clipped

PML-RARA fusion gene

group soft-clipped reads to create a contig and then remap contigs

chr15 chr15 chr15 read 2

read 1 read 2

chr15: PML chr17: RARA

chr15 chr15

read 1 read 2
chr15 chr17

non-discordant read pair

discordant read pair

PML-RARA fusion gene

chr15: PML chr17: RARA

chr15 chr17

chr15 chr17

chr15 chr17

chr15 chr17

group discordant read pairs to estimate breakpoints

soft-clipped read spanning translocation breakpoint
read 1 chr17chr15 chr15 chr15 read 2

read 1 chr17chr15 chr15 chr15 read 2

read 1 chr17chr15 chr15 chr15 read 2

chr15 contig chr17 contig

Discordant reads method

b

a

Split reads method

Figure 4.25 Common methods utilised for detection of chromosomal rearrangements. a. ‘Discordant reads’ method
identifies read pairs that are mapped in an abnormal orientation or whose mapped interval is significantly different to the
expected library insert size. b. ‘Split reads’ method looks for regions where there are increased number of ‘soft-clipped’
incompletely mapped reads. Many translocation caller packages use a combination of these methods.

VAF in Manta195, Lumpy194 and GRIDDs196, although this is better than Delly193, which reportedly

has zero sensitivity at VAF <10%. Detection of intra-chromosomal translocations is also reportedly

problematic, with BreakDancer191, Delly193, Lumpy194, Manta195 and GRIDDs196 all missing ∼50%

of intra-chromosomal translocation events in a head-to-head performance assessment197.

Given the limitations of these software packages, and our desire for a caller that could reliably

detect chromosomal rearrangements at low VAF (e.g. in the years pre-AML diagnosis) as well as

intra-chromosomal translocations, we sought to develop our own custom caller.

4.9.1 Types of chromosomal rearrangement to detect

We first sought to understand the different types of chromosomal rearrangement we needed to detect.

Chromosomal rearrangements can occur between non-homologous chromosomes (e.g. t(8;21)),

between homologous chromosomes (e.g. t(16;16)) or within a chromosome (e.g. inv(16)). Depending

on whether the rearrangement is between two p-arms (or q-arms) or between a p- and a q-arm, the

relocated region can end up in its original orientation or it can become inverted. For example in

t(8;21) part of RUNX1, which is on chromosome 21q, is relocated without inversion to join next to

part of the RUNX1T1 gene, which is on chromosome 8q. In contrast, in t(9;11) part of KMT2A,

which is on chromosome 11q, is relocated and inverted to join next to the MLLT3 gene, which is

on chromosome 9p. Chromosomal rearrangements can therefore be categorised into four different

classes (Figure 4.26): i) rearrangement between non-homologous chromosomes with the relocated

regions remaining in their original orientation, ii) rearrangement between homologous chromosomes

(or within a chromosome) with the relocated regions remaining in their original orientation, iii)

rearrangement between non-homologous chromosomes with inversion of the relocated regions, and
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Figure 4.26 Categories of chromosomal rearrangement. Chromosomal rearrangements can be grouped into one of four
categories, depending on whether the rearrangement involves non-homologous or homologous chromosomes and whether
or not the relocated regions become inverted compared to their original orientation. The chromosomal rearrangements
targeted by our custom panel include rearrangements in each of these four categories as shown.

iv) rearrangement between homologous chromosomes (or within a chromosome) with inversion of

the relocated regions. The AML-associated chromosomal rearrangements targeted by our custom

panel include rearrangements in each of these categories (Figure 4.26) and so it was important that

our caller could reliably detect all four categories.

4.9.2 Characteristics of paired end reads spanning chromosomal rearrangements

We next sought to understand the features we would expect to see in paired end sequencing data for

each of these four categories of chromosomal rearrangement. A custom Python script was written

to generate simulated ‘samples’, each containing a different chromosomal rearrangement from each

of the four categories, at a defined VAF (Appendix C.2.1). We used the mapped SSCS BAM files

from these samples, which were aligned using BWA180, to understand the features that characterise

reads that span breakpoint regions to ensure that our caller could capture all of these reads. Read

features in the BAM file were systematically explored using pysam190 and Integrative Genomics

Viewer (IGV)198.

Primary alignments and supplementary alignments

If BWA180 encounters a read that maps to two different chromosomes (or different regions of the

same chromosome), e.g. chr22 at one end and chr9 at the other, it will soft-clip the shorter aligned

sequence and report the longer aligned sequence as the ‘primary alignment’ for that read (Figure 4.27).

If the shorter aligned sequence is longer than 30 bp, however, BWA180 also outputs an alternatively
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mapped read in which the longer aligned sequence is soft-clipped and the shorter aligned sequence is

reported as the ‘supplementary alignment’. This means that as long as at least one of the reads in the

pair overlaps the rearrangement breakpoint by >30bp, there will always be a primary alignment and a

supplementary alignment present for the pair of reads. The minimum sequence length of 30bp can

be adjusted, although setting this too short will increase the chance of mis-mapping information in

the supplementary alignment. Supplementary reads can be identified in the BAM file by their SAM

FLAG which is usually four digits starting with a ‘2’ (e.g. 2145 and 2193 in Figure 4.27)199.

chr22: BCR chr9: ABL

BCR::ABL fusion gene soft-clipped

mapped chr22 breakpoint inferable

chr9 breakpoint inferable

supplementary
mapping

22

9

9

22

read 1 forward

read 2 reverse

DNA fragment
97

145

9

22

9

22

read 1 forward

read 2 reverse

2145

2193

chr
mate
chrchr

mate
chr

Supplementary alignmentPrimary alignment

Figure 4.27 Primary and supplementary alignments of a pair of reads spanning a t(9;22) BCR::ABL breakpoint
region. If a read maps to two different chromosomes, or chromosomal regions, BWA 180 assigns the mapping of the longer
aligned sequence as the read’s ‘primary alignment’ and ‘soft-clips’ the shorter sequence that maps to another region. It
also outputs a ‘supplementary alignment’ of the mapping of the shorter aligned sequence with ‘soft-clipping’ of the longer
sequence that maps to another region. The alignment information of a read’s ‘mate’ is that of the ‘mate’ in the primary
alignment (e.g. the ‘mate’ of the supplementary read 1 forward shown is the primary read 2 reverse read). The number
shown within the read is the read’s SAM flag.

Discordant and concordant reads

Read pairs can be defined as ‘discordant’ or ‘concordant’. ‘Discordant reads’ are those whose read

pair ‘mate’ maps to a different chromosome or chromosomal region (e.g. read 1 is mapped to chr22

and read 2 is mapped to chr9 in the primary alignment reads in Figure 4.27). ‘Concordant reads’ are

those whose read pair ‘mate’ maps to the same chromosomal region (e.g. both read 1 and read 2 map

to chr9). It is important to be aware that, for supplementary alignments, the ‘mate’ referred to in the

BAM alignment information is the primary alignment mate, not the supplementary alignment mate

(i.e. the ‘mate’ of a read 1 supplementary alignment is the read 2 primary alignment). For example, in

Figure 4.27, although the supplementary read pairs are mapping to different chromosomes, they are

mapping to the same chromosome as their primary alignment mate and so these supplementary reads

would be classified as ‘concordant’.

The method for identifying discordant read pairs differs slightly depending on the category of chromo-

somal rearrangement. For rearrangements involving non-homologous chromosomes, discordant reads

can simply be identified as those which map to different chromosomes. For rearrangements involving

homologous chromosome(s), discordant read pairs map to the same chromosome, but the ‘template

length’ (reported in the BAM alignment information) is significantly larger than the expected library

insert size. For non-homologous or homologous rearrangements that involve inversion of the relocated
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segment, the discordant reads have the additional feature of being mapped in the same direction (e.g.

read 1 forward and read 2 forward).

Identifying breakpoint partners

Depending on the length of the DNA fragment and where the rearrangement breakpoint lies along

the length of the fragment, several different read pair scenarios can arise (Figures 4.28, 4.29 and

4.30). The scenario to which a read pair belongs can be determined by the reads’ SAM FLAGS

and BAM alignment information as shown in Figure 4.28 (chromosomal rearrangements without

inversion), Figure 4.29 (chromosomal rearrangements with inverted segment on the ‘left’) and Figure

4.30 (chromosomal rearrangements with inverted segment on the ‘right’).

In scenario 1, where the DNA fragment is approximately the same length as the read, the pair of reads

both have their predominant mapping on the same chromosomal region. The primary alignments will

therefore be ‘concordant’ and the supplementary alignments will be ‘discordant’ (‘scenario 1 read

pairs’ in Figures 4.28, 4.29 and 4.30). In this scenario, one of the breakpoint partners can be inferred

from the mapped location of the primary alignment and the other breakpoint partner can be inferred

from the mapped location of the supplementary alignment.

In scenario 2, where the DNA fragment is longer than the read length but the read pairs still overlap,

the pair of reads have their predominant mapping on different chromosomes. The primary alignments

will therefore be ‘discordant’ and the secondary alignments will be ‘concordant’ (‘scenario 2 read

pairs’ in Figures 4.28, 4.29 and 4.30). In this scenario, if both reads overlap the breakpoint region

then both breakpoint partners can be inferred from either the primary or supplementary alignment

(Figure 4.28, read pair d, Figures 4.29 and 4.30, read pair e). If only one of the reads overlaps the

breakpoint then one breakpoint partner can be inferred from the primary alignment and the other

breakpoint partner from the supplementary alignment (Figure 4.28, read pair e, Figures 4.29 and 4.30,

read pairs f-g).

In scenario 3 only one, or none, of the breakpoint partners can be inferred from the reads, either

because the DNA fragment is longer than both reads, or because the breakpoint region lies towards

the end of the DNA fragment (‘scenario 3 read pairs’, Figures 4.28, 4.29 and 4.30). When neither of

the reads span the breakpoint (e.g. because the DNA fragment is very long) it is only possible to infer

bounds on the breakpoint regions (Figure 4.28, read pairs g, Figures 4.29 and 4.30, read pair j). When

only one of the breakpoints can be inferred (e.g. because the soft-clipped region is too short to have

formed a supplementary alignment) the only way to infer the other breakpoint region would be to

remap the short soft-clipped region (Figure 4.28, read pairs f, h, i, Figures 4.29 and 4.30, read pairs h,

i, k, l).
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Figure 4.28 Characteristics of read pairs that span chromosomal rearrangement breakpoint regions, for rear-
rangements that do not involve inversion of the relocated segments (either non-homologous or homologous). In
scenario 1 read pairs, one of the breakpoint partners can be inferred from the primary alignment and the other breakpoint
partner can be inferred from the supplementary alignment. In scenario 2 read pairs, one or both breakpoint partners can be
inferred from either the primary alignment or the supplementary alignment. In scenario 3 read pairs, only one, or none of
the breakpoint partners can be inferred from the reads. 105
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Figure 4.29 Characteristics of read pairs that span chromosomal rearrangement breakpoint regions, for rear-
rangements that involve inversion of the relocated segment on the ‘LEFT’ of the breakpoint fusion (either non-
homologous or homologous). In scenario 1 read pairs, one of the breakpoint partners can be inferred from the primary
alignment and the other breakpoint partner can be inferred from the supplementary alignment. In scenario 2 read pairs, one
or both breakpoint partners can be inferred from either the primary alignment or the supplementary alignment. In scenario 3
read pairs only one, or none of the breakpoint partners can be inferred from the reads.

106



4.9 Developing a caller for chromosomal rearrangments

chr16: MYH11

chr16: MYH11

CBFB::MYH11 fusion gene

c

d

e

a

b

‘DISCORDANTLY’ MAPPED READS ‘CONCORDANTLY’ MAPPED READS
read pairs mapping in di�erent directionsread pairs mapping in the same direction

soft-clipped
(due to translocation)

mapped

CBFB breakpoint inferrable

MYH11 breakpoint inferrable

supplementary mapping

soft-clipped
(due to adapter sequence)

start coordinate of read

g

f

h

DNA fragment

SC
EN

A
RI

O
 2

 R
EA

D
 P

A
IR

S
SC

EN
A

RI
O

 3
 R

EA
D

 P
A

IR
S

SC
EN

A
RI

O
 1

 R
EA

D
 P

A
IR

S

+/-

+/-

Th
e 

pa
ir 

of
 re

ad
s 

ha
ve

 th
ei

r  
pr

ed
om

in
an

t
 m

ap
pi

ng
 c

lo
se

 o
n 

th
e 

sa
m

e 
ch

ro
m

os
om

e/
 c

hr
om

so
so

m
al

 re
gi

on

on
ly

 o
ne

 re
ad

 s
pa

ns
 th

e 
br

ea
kp

oi
nt

bo
th

 re
ad

s 
sp

an
 th

e 
br

ea
kp

oi
nt

D
is

co
rd

an
t m

ap
pe

d 
re

ad
s 

pr
es

en
t 

(re
ad

 p
ai

rs
 m

ap
pi

ng
 in

 th
e 

sa
m

e 
di

re
ct

io
n)

pr
im

ar
y 

m
ap

pi
ng

 o
n

no
n-

in
ve

rt
ed

 re
gi

on
pr

im
ar

y 
m

ap
pi

ng
 o

n
in

ve
rt

ed
 re

gi
on

pr
im

ar
y 

m
ap

pi
ng

 o
n

no
n-

in
ve

rt
ed

 re
gi

on
pr

im
ar

y 
m

ap
pi

ng
 o

n
in

ve
rt

ed
 re

gi
on

Th
e 

pa
ir 

of
 re

ad
s 

ha
ve

 th
ei

r  
pr

ed
om

in
an

t m
ap

pi
ng

 o
n 

di
�e

re
nt

  c
hr

om
os

om
es

 o
r r

eg
io

ns

te
m

pl
at

e 
le

ng
th

 =
 ‘0

’ (
no

n-
ho

m
ol

og
ou

s)
 o

r 
te

m
pl

at
e 

le
ng

th
 =

 +
++

+ 
(h

om
ol

og
ou

s)

bo
th

 re
ad

s 
sp

an
 th

e 
br

ea
kp

oi
nt

on
ly

 o
ne

 re
ad

 s
pa

ns
 th

e 
br

ea
kp

oi
nt

t

read 1 reverse
(and read 2 reverse)

2161 (or 2225)

2177     (or 2113) 

read 2 forward
(and read 1 forward)

‘supplementary, not mapped in proper pair, pairs same strand’ (2113, 2225, 2177, 2161)

+/-

read 1 forward
(and read 2 forward)

2113 (or 2177)

read 2 reverse
(and read 1 reverse)

2225 (or 2161)

+/-

‘supplementary, not mapped in proper pair, pairs same strand’ (2113, 2225, 2177, 2161)

2179 (or 2115)

no supplementary read for read 1 
reverse because soft-clipped 
region <30 bases (or fully mapped)

‘supplementary, mapped in proper pair, pairs same strand’ (2115, 2227, 2163, 2179)

no supplementary read for read 2 
reverse because soft-clipped 

region <30 bases (or fully mapped)

2115 (or 2179)

‘supplementary, mapped in proper pair, pairs same strand’ (2115, 2227, 2163, 2179)

65 (or 129)

129 (or 65)

‘not mapped in proper pair, both forward strand’ (65, 129)

109M 37S

7S 109M 30S

+/-

+/-

97 (or 161)

145 (or 81) 

not mapped in proper pair (97, 145, 161, 81)

not mapped in proper pair (97, 145, 161, 81)

20S 65M 61S

113M 33S
+/-

81 (or 145)

161 (or 97)

+/-

mapped in proper pair (99, 163, 147, 83)

113M 33S83 (or 147)

+/-

99 (or 163) 140M 6S

mapped in proper pair (99, 163, 147, 83)

93M 53S147 (or 83)

+/-

163 (or 99) 140M 6S

108M 38S

86M 60S

2129 (or 2193)

2193 (or 2129)

‘supplementary, not mapped in proper pair, mate forward strand (2129, 2193)

56M 90S2129 (or 2193)

no supplementary read for read 2 
reverse because soft-clipped 

region fully mapped (or <30 bases)

no supplementary read for read 1 
reverse because soft-clipped 
region fully mapped (or <30 bases)

2193 (or 2129) 56M 90S

5S 37M 104S

35S 111M

61M 85S

25S 33M 88S

31M 115S

53M 93S

108M 38S

86M 60S

90M 56S
146M

84MS 62S

146M

read 2 forward
(and read 1 forward)

read 1 forward
(and read 2 forward)

read 2 forward
(and read 1 forward)

read 1 forward
(and read 2 forward)

read 1 forward
(and read 2 forward)

read 2 forward
(and read 1 forward)

65 (or 129)

129 (or 65)

read 1 forward
(and read 2 forward)

read 2 forward
(and read 1 forward)

129 (or 65)

65 (or 129)

read 1 forward
(and read 2 forward)

read 2 reverse
(and read 1 reverse)

read 1 reverse
(and read 2 reverse)

read 2 forward
(and read 1 forward)

read 1 forward
(and read 2 forward)

read 2 reverse
(and read 1 reverse)

read 1 reverse
(and read 2 reverse)

read 2 forward
(and read 1 forward)

read 1 reverse
(and read 2 reverse)

read 2 reverse
(and read 1 reverse)

read 1 reverse
(and read 2 reverse)

read 2 reverse
(and read 1 reverse)

N
o 

di
sc

or
da

nt
 m

ap
pe

d 
re

ad
s 

pr
es

en
t

bo
th

 re
ad

s 
sp

an
th

e 
br

ea
kp

oi
nt

no
 re

ad
s 

sp
an

th
e 

br
ea

kp
oi

nt

pr
im

ar
y 

m
ap

pi
ng

 o
n

in
ve

rt
ed

 re
gi

on

Th
e 

pa
ir 

of
 re

ad
s 

ha
ve

 th
ei

r  
pr

ed
om

in
an

t
 m

ap
pi

ng
 in

 th
e 

sa
m

e 
re

gi
on

pr
im

ar
y 

m
ap

pi
ng

 o
n

no
n-

in
ve

rt
ed

 re
gi

on

146M

142M 4S

read 1 forward
(and read 2 forward)

65 (or 129)

129 (or 65)
read 2 forward
(and read 1 forward)

142M 4S

146M

‘not mapped in proper pair, both forward strand’ (65, 129)

i
129 (or 65)

read 2 foward
(and read 1 forward)

read 1 forward
(and read 2 forward)

65 (or 129)

no supplementary reads because 
soft-clipped region too short to be mapped

no supplementary reads because 
soft-clipped region too short to be mapped

no supplementary reads because 
no soft-clipped regions

no supplementary reads because 
soft-clipped region too short to be mapped

no supplementary reads because 
soft-clipped region too short to be mapped

143M 3S

138M 8S

read 2 reverse
(and read 1 reverse)

163 (or 99)

83 (or 147)

read 1 forward
(and read 2 forward)

135M 11S

140M 6S

99 (or 163)

147 (or 83)

read 1 reverse
(and read 2 reverse)

read 2 forward
(and read 1 forward)

mapped in proper pair (99, 163, 147, 83)

mapped in proper pair (99, 163, 147, 83)

‘not mapped in proper pair, both forward strand’ (65, 129)

j
97 (or 161)

146M

146M

‘not mapped in proper pair, both forward strand’ (65, 129)

129 (or 65)
read 2 forward
(and read 1 forward)

read 1 forward
(and read 2 forward)

65 (or 129)

k

l

direction read is sequenced

orientation of sequence in BAM �le

example
CIGAR example

CIGAR

Figure 4.30 Characteristics of read pairs that span chromosomal rearrangement breakpoint regions, for rear-
rangements that involve inversion of the relocated segment on the ‘RIGHT’ of the breakpoint fusion (either non-
homologous or homologous). In scenario 1 read pairs, one of the breakpoint partners can be inferred from the primary
alignment and the other breakpoint partner can be inferred from the supplementary alignment. In scenario 2 read pairs, one
or both breakpoint partners can be inferred from either the primary alignment or the supplementary alignment. In scenario 3
read pairs, only one, or none of the breakpoint partners can be inferred from the reads.
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Identifying breakpoint coordinates

For reads that span a rearrangement breakpoint, it should be possible to infer the breakpoint coordinates

at single nucleotide resolution for at least one side of the breakpoint from the BAM alignment

information. The way in which we do this depends on whether the ‘unmapped’ soft clipped sequence

is at the beginning or end of the read and whether the relocated region is inverted compared to its

original orientation. The interpretation of the location of the soft-clipped sequence becomes a bit more

complicated for rearrangements involving inversion, as it is also affected by which of the breakpoint

partners is inverted. For example: considering the forward strand of DNA, if the breakpoint partner

on the left side of the rearrangement is inverted, the soft-clipped ‘unmapped’ region will be at the

start of the read, whereas if the right-side breakpoint partner is inverted, the soft-clipped ‘unmapped’

region will be at the end of the read. Which breakpoint partner is inverted also needs to be taken

into account when considering the position of any soft-clipping due to Illumina adapter sequences.

The way in which breakpoint coordinates are inferred and soft-clipping interpreted, for chromosomal

rearrangements involving an inversion, is summarised in Table 4.7.

Table 4.7 Characteristics of reads spanning chromosomal rearrangements involving inversion of one of
the relocated segments. The characteristics differ depending on whether the inverted segment is on the ‘left’
side of the breakpoint fusion or on the right (when considering from the perspective of the forward strand).

Inverted segment on ‘left’ of breakpoint fusion Inverted segment on ‘right’ of breakpoint fusion

∆ read mate coordinates
Discordant reads Different chromosomes or ++++ Different chromosomes or ++++

Concordant reads 0 <template length

Breakpoint coordinate
Forward reads Start coordinate Start coordinate + mapped length of read

Reverse reads Start coordinate Start coordinate + mapped length of read

Breakpoint soft-clipping
Forward reads Beginning of read End of read

Reverse reads Beginning of read End of read

Adapter soft-clipping
Forward reads End of read End of read

Reverse reads Beginning of read Beginning of read

SAM flag pairs (2113, 2225, 2177, 2161) + (97, 145, 161, 181) (2113, 2225, 2177, 2161) + (97, 145, 161, 81)

(2155, 2163, 2179, 2227, 2163) + (83, 99, 147, 163) (2155, 2163, 2179, 2227, 2163) + (83, 99, 147, 163)

(113, 177) + (2145, 2209) (65, 129) + (2129, 2193)
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4.9.3 Chromosomal rearrangement caller

Armed with an understanding of the characteristic features of paired end reads that span chromosomal

rearrangements, a stepwise method was developed that would allow us to call all four possible

categories of chromosomal rearrangement. This stepwise process essentially involves five steps as

summarised below and involves identifying all possible read pair scenarios in Figures 4.28, 4.29 and

4.30, as well as the identification of both breakpoint partners from all of these reads.

Step 1: Discordant read pair identification

In step 1, the discordant reads are identified, as well as their concordant alternate alignments (if

present). This will retrieve all read pairs in Figure 4.28 except h and i.

Step 2: Breakpoint partner identification

In step 2, either one or both breakpoints partners are called, depending on which scenario the read

pair belongs to. In Figure 4.28, both breakpoint partners are identified from scenario 1 and scenario

2 read pairs (read pairs a-e) and one breakpoint partner is identified from read pair g. Breakpoint

bounds are called from read pairs f.

Step 3: Discordant soft-clip remapping

In step 3, soft-clipped regions are remapped for the discordant reads in which only one breakpoint

partner could be called (Figure 4.28, read pair g). The soft-clipped regions of these reads will be

<30 bp, or otherwise a concordant supplementary alignment would be present, and so they are at

high risk of being mis-mapped if an aligner, e.g. BWA, is used for the remapping. To try to avoid

this, information from reads that had already allowed identification of both breakpoint partners in

step 2 were used. If one of these breakpoint partners had the same coordinates as the discordant

soft-clipped read, then the sequence of the other breakpoint partner was compared to the sequence of

the soft-clipped region. If there was > 95% sequence match, then the unknown breakpoint partner in

the discordant soft-clipped read could be identified. To try to further avoid mis-mapping, this process

was only applied to soft-clipped sequences if they were ≥ 10 bp and breakpoint partners from step 2

had to have been identified from a minimum of 3 sets of paired reads in order to be compared to the

sequences of the discordant soft-clipped regions.

Step 4: Concordant read pair identification and concordant soft-clip remapping

In step 4, soft-clipped concordant reads that do not have a discordant alternate alignment, and whose

start coordinate matches a breakpoint position already found, are identified (4.28, read pairs h and i).

The soft-clipped regions of these concordant reads are then remapped, using the same process used in

step 3, except breakpoint partners had to have already been identified from a minimum of 5 sets of

paired reads in order to be compared to the sequences of the concordant soft-clipped regions.
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Step 5: Chromosomal rearrangement VAF calculation

In step 5, VAFs for both sides of the chromosomal rearrangement are calculated as follows:

VAF =
number of read pairs supporting the chromosomal rearrangement

read depth at the breakpoint coordinate for reads with no evidence of chromosomal rearrangement

VAFs for both sides of the rearrangement are calculated in case one of the breakpoint partners has

poor or no panel coverage. The highest of the two VAFs is taken as the final VAF of the chromosomal

rearrangement. An output file is produced which details the type of chromosomal rearrangement,

the identification of both breakpoint partners, the breakpoint coordinates, the VAF and the number

of reads supporting the rearrangement from each of the different read categories in Figure 4.28.

Chromosomal rearrangements were ignored if they were called from less than 3 read pairs.

4.9.4 Testing the chromosomal rearrangement caller using simulated data

To test the sensitivity of the chromosomal rearrangement caller, simulated ‘samples’ were used, each

containing a different chromosomal rearrangement from each of the four categories of rearrangement.

Samples with a range of different VAFs were created (from 5 to 40%), with each sample containing a

different breakpoint position chosen randomly from within the known common breakpoint regions

(Appendix C.2.1). The samples were processed using the custom rearrangement caller, with and

without steps 3 and 4, to assess how the sensitivity was improved by the addition of the discordant

soft-clip remapping and concordant soft-clip remapping steps (steps 3 and 4). If these steps were not

included (Figure 4.31a, b), the caller systematically under-estimated the VAF of the rearrangement.

Addition of these steps, however, resulted in very good concordance between the known and calculated

VAF for each of the samples (Figures 4.31c), although there was some underestimation of the VAF

for intrachromosomal rearrangements at VAFs > 10%. The caller was successfully able to detect

rearrangements in which only one of the breakpoint partners was covered by our custom panel probes

(e.g. because the other breakpoint partner was in a highly repetitive region), although the calculated

VAF was slightly underestimated (Figure 4.31, samples highlighted by a ‘*’).

4.9.5 Testing the chromosomal rearrangement caller using patient samples

To further test the sensitivity, as well as specificity, of the chromosomal rearrangement caller, we

have obtained 7 DNA samples from patients who each have a known AML-associated chromosomal

rearrangement (samples kindly provided by Dr Peter Valk, Erasmus University Medical Centre).

These 7 samples include all of the AML-translocations covered by our panel, except for t(16;16) and

t(15;17). We plan to process these samples in the same way as the UKCTOCS samples and then

determine if our chromosomal rearrangement caller can detect the known rearrangements. This work

is still ongoing. Pending validation of our chromosomal rearrangement caller on samples with known

rearrangements, we also used Manta195 to call rearrangements in the UKCTOCS samples.
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Figure 4.31 Calling chromosomal rearrangements using simulated samples in each of the four rearrangement
categories, with sequential improvement in VAF concordance with the addition of discordant soft-clip remapping
and concordant soft-clip remapping. a. Concordance between actual and inferred VAFs when the caller did not perform
any remapping of soft-clipped regions. b. Concordance between actual and inferred VAFs when the caller remapped
soft-clipped regions of discordant reads, but not concordant reads. c. Concordance between actual and inferred VAFs when
the caller remapped soft-clipped regions of both discordant and concordant reads. Samples in which one of the breakpoint
partners was not covered by the custom panel are highlighted with an ‘*’.
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4.10 Discussion

Wanting to trace the clonal evolution to AML through time, using longitudinal pre-AML blood

samples, meant we needed to be able to detect a comprehensive array of genomic changes and we

needed to be able to detect them when they were in just a small number of cells. In this chapter we

described the development of an integrated approach, using duplex sequencing and in silico noise

correction methods to allow reliable detection of gene mutations, chromosomal rearrangements and

mCAs when they are present at very low cell fraction. Optimisation of this method is still ongoing

and there are several aspects that can be further improved.

Whilst the in silico noise correction method allows us to identify real variants from amongst errors,

the lowest VAF at which a variant could be detected is, for some positions, determined by the

position’s overall error-rate. The use of duplex sequencing helps to reduce this error-rate, but whilst

the theoretical error rate of duplex sequencing is often quoted as < 10−9 error per bp (which would

theoretically mean we could detect VAFs nearly as low as this, if we started with sufficient DNA

molecules), we and others have found that the error rate is actually significantly higher14,141. Our

overall error-rate across our panel was 2.6×10−5, although some positions had error rates as high as

∼ 10−2. The source of these errors is thought to be library preparation artefacts e.g. due to sonication,

end-repair and mapping errors14,141,188 which can all slip through the duplex error correction. A

recently published whole-genome duplex error-corrected method, called NanoSeq by Abascal et al,

provided a detailed analysis of these errors and described ways in which they could be reduced141.

This enabled them to reduce their duplex error rate from ∼ 2×10−7 to < 5×10−9. Three of the key

adaptations they incorporated were i) avoiding end-repair, ii) blocking nick extension and iii) reducing

mapping errors.

‘End-repair’ is a necessary step during library preparation after the DNA has been fragmented (using

either sonication or fragmentation enzymes) and can result in single-stranded DNA damage being

converted into double stranded errors. Abascal et al141 managed to avoid this by using specific

fragmentation enzymes which create blunt ends, thus avoiding the need for any end-repair. A

disadvantage of this approach is the incomplete genome coverage of the endonucleases and so an

alternative approach they suggested was to use sonication combined with digestion of the overhanging

ends using Mung Bean exonuclease. This approach is good for applications requiring whole-genome

coverage, but comes at the cost of poor library yields: 10-50× lower than using fragmentation

enzymes141. Because we have limited amounts of DNA available for our UKCTOCS samples, we

need to maximise our yield as much as possible, which is why we use enzymatic fragmentation

rather than sonication. In our library preparation we currently use proprietary fragmentation enzymes

provided by Twist Biosciences. Changing these fragmentation enzymes for a selection of blunt-end-

creating endonucleases (each covering a range of genomic regions), could be an option to attempt to

reduce errors introduced during end-repair.

112



4.10 Discussion

‘Nick extension’ involves A-tailing of DNA fragments prior to adapter ligation and involves a DNA

polymerase and deoxyadenosine triphosphates (dATPs). Abascal et al141 observed increased levels

of C>A, G>A and T>A base changes at restriction enzyme sites and reasoned that when the double-

stranded DNA was nicked by the restriction enzymes (as an intermediate step in the double-strand

cleave), 3’-to-5’-exonuclease or pyrophosphylation of the dNTP 3’ of the nick occurs and a dATP

is incorporated during the A-tailing step, resulting in a G>A, C>A or T>A error. To resolve this

issue they replaced dATP with a mixture of dATP and dideoxynucleotides triphosphates (ddNTPs),

ddCTP, ddGTP, ddTTP, during the A-tailing step. In contrast to deoxynucleotides triphosphates

(dNTPs), dideoxynucleotides triphosphates (ddNTPs) lack 3’-OH groups and so are are unable to

form phosphodiester bonds with the next nucleotide. This means that when the DNA polymerase

attempts to extend at the internal nick sites, the incorporation of a ddNTP results in a strand that is

unamplifiable. Further work is needed to determine if this ‘nick extension’ is introducing a significant

amount of errors in to our workflow, because although our G>A error rates are high, our C>A and

T>A error rates are comparatively low (Figure 4.9 and 4.19). Nonetheless, incorporating ddNTPs into

our A-tailing step is an adaptation we could consider.

Abascal et al141 observed that unambiguous mapping could result in miscalculation of error rates,

particularly in highly repetitive regions. To avoid this, they discarded reads in which the minimum

difference between the primary alignment score and the secondary alignment score was <50 and

discarded variant calls within 8 bp of the ends of reads, where unreliable mapping was more likely141.

They also excluded read pairs that were ‘improperly paired’. In our workflow, we already excluded

variants whose mean position in the read was <8 bp and only included read pairs that were flagged as

being ‘mapped in a proper pair’ by BWA. With our targeted exonic SNV/ indel panel, mismapping

due to highly repetitive regions is unlikely to be as much of a problem as in whole genome duplex

sequencing, but, nonetheless, incorporating this step may help to reduce our error rates, as it may

explain why we observed some positions with error rates as high as 10−1. Further work is required to

further explore the cause of errors at these positions.

There are also ways in which our in silico noise correction method can be improved. Our approach

is similar to the method used in Shearwater200, a variant caller which estimates position-specific

error profiles using a beta-binomial distribution, and uses prior information about mutational hotspots

from the COSMIC database. Shearwater estimates the beta-binomial dispersion parameter using the

method-of-moment estimator whereas we chose to use the method-of-moment estimate to initialise a

maximum likelihood approach for estimating the dispersion, as we found this yielded more accurate

estimates, particularly for positions with high dispersion (Appendix C.1.1). Our approach uses an

iterative approach at COSMIC166 sites, whereas Shearwater takes into account the prior probability

that a variant exists from the distribution of observed somatic mutations at the site in COSMIC166.

Even with the iterative approach at COSMIC sites, our method risks missing real variants if there are

two or more samples at the position with similarly high VAFs (Figure 4.21), due to the fitting of a
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falsely over-dispersed beta-binomial distribution. It is possible that Shearwater may also miss these

variants, but incorporating aspects of the Shearwater approach for COSMIC sites is something that

we may adopt. At COSMIC sites it seems sensible to adjust the p-value threshold according to how

frequently the mutation is observed in COSMIC. It would also be prudent to set a prior on the fitted

dispersion parameter, to try to avoid real variants being interpreted as errors.

We have been fairly conservative with our variant calling approach thus far, choosing to minimise our

false discovery rate as much as possible (to <5%). However this likely comes at the cost of increased

false negatives rates and so it is possible that we have inadvertently filtered out some real variants.

Incorporating the above-mentioned error-reducing adaptations to our library preparation and further

optimising our in silico noise correction method should allow us to decrease our position-specific error

rates even further and allow us to identify any additional real variants that we might have otherwise

missed.

Overall, our integrated approach combines the genomic breadth required to detect an array of key pre-

AML associated genomic changes, with the depth and accuracy of error-correcting techniques to detect

the mutations when they are present in only a small number of cells. Considering the breadth and

depth that the approach achieves, its current cost of ∼£225 per sample (including sequencing) is not

cost-prohibitive. Our approach enables us to comprehensively trace the clonal evolution of mutations

over time in the years preceding AML diagnosis, which should allow us to disentangle the whole

evolutionary process, from acquisition of the first driver mutation through to AML diagnosis.
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5.1 Introduction

5.1 Introduction

For the majority of individuals with clonal haematopoiesis, the presence of pre-leukaemic mutations

will be of little or no consequence. However, if further mutations are acquired and clonal expansion

occurs, then clonal haematopoiesis can progress to acute myeloid leukaemia (AML)17,18,24. For

individuals with a somatic mutation ≥2% VAF, progression to AML (or other haematological ma-

lignancy) occurs, on average, at a rate of ∼ 0.5-1% per year29. AML is an aggressive blood cancer,

which despite recent advances in treatments, still has an overall 5 year survival of <30%201. If we can

understand how and why clonal haematopoiesis progresses in some individuals and not others then

we may be able to intervene early and stop AML in its tracks before it fully develops.

The genomic landscape at the time of AML diagnosis has been well-characterised, with an average of

5 ± 3 (SD) mutations in recurrently mutated genes being found at the time of diagnosis20,21. Based on

known pathways and functional analyses, genes recurrently mutated in AML are typically grouped into

functional-biologic categories with shared co-occurrences and exclusive dissociations: NPM1, DNA

methylation (e.g. DNMT3A, TET2), chromatin modifiers (e.g. ASXL1, EZH2), myeloid transcription

factors (e.g. RUNX1, CEBPA), tumour-suppressors (e.g. TP53, WT1), spliceosome-complex (e.g.

SRSF2, SF3B1), cohesin-complex (e.g. STAG2, RAD21) and activated cell signalling-pathway

(e.g. FLT3, KRAS) gene mutations21. The genomic landscape of clonal haematopoiesis is also

well-described3,4,7,9,75,202, including an understanding of the fitness effects and mutations rates of

recurrently mutated genes and mCAs93 (Chapter 2 and Chapter 3). How the mutational landscape

differs in individuals who progress to AML was explored in recent studies, using blood samples

collected from up to 3 timepoints pre-diagnosis37–39. These studies highlighted key features associated

with increased AML risk, which were detectable in the blood ∼10 years prior to AML diagnosis.

Pre-AML cases showed enrichment for mutations in IDH1, IDH2, TP53, DNMT3A, TET2 and

spliceosome genes. VAFs tended to be higher in pre-AML cases, with ∼40% having a mutation at

>10% VAF, compared to only ∼4% of controls37. Clonal complexity was also greater in pre-AML

cases, with ≥1 mutations detectable in nearly 50% of cases compared to only ∼5% of controls, the

majority of whom had 0 mutations ('1% VAF)38.

These studies captured ‘snapshots’ of the pre-leukaemic evolutionary process, but what we don’t have

is a complete view of the whole evolutionary process from acquisition of the first driver mutation

through to AML diagnosis. Several key questions remain unanswered (Figure 5.1): At what age

does the initiating driver mutation occur? How long does it take to acquire the 2nd mutation? Are

the fitness effects conferred by specific mutations predictable from person-to-person and how do

fitness effects change with additive mutations? What is the pattern of clonal evolution through to

AML? Knowing the answers to these questions is important if we want to develop risk stratification

methods for individuals with clonal haematopoiesis and identify individuals that may benefit from

early intervention studies.
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Figure 5.1 Pre-leukaemic evolution: Unanswered questions.

To try to answer these questions we identified 50 women from the United Kingdom Collaborative

Trial of Ovarian Cancer Screening (UKCTOCS) who were cancer-free at enrolment but subsequently

developed AML during the >12 years follow-up, at an average age of 71. These women had provided

yearly blood samples during their involvement in the trial, some at up to 11 timepoints (average 5

timepoints). We obtained all of their pre-AML yearly blood samples as well as blood samples from

50 age and timepoint matched controls (see Chapter 4 Section 4.1.1).

In this chapter we describe our preliminary findings from the analysis of this unique set of longitudinal

blood samples. We find that there are four main evolutionary patterns in the years preceding AML

diagnosis: linear evolution, evolution with clonal interference, static evolution and late evolution. We

calculate the age of acquisition of the first and second mutations and whilst the initial driver mutation

is often acquired early in life, there are some very fit ‘uber drivers’ which appear to occur as the

initial event just ∼ 4 years pre-diagnosis. The 20 variants, which we identified as ‘highly fit’ in clonal

haematopoiesis93 (Chapter 2 Section 2.5.1) are significantly enriched in pre-AML cases compared to

controls and we determine how the fitness effects change with the acquisition of subsequent mutations.

These findings reveal key insights into the evolutionary dynamics of clones in the years preceding

AML development.

5.2 Reconstruction of clonal evolutionary histories

The longitudinal blood samples were processed and sequenced using our custom comprehensive

sequencing panel, using duplex error-corrected sequencing and in silico noise correction methods,

as described in Chapter 4. Having samples from multiple timepoints allowed us to visualise clear

trajectories of the clonal evolution in the years pre-AML diagnosis, as well as in the controls (Figure

5.2 and Appendix D.1). Clonal composition could be inferred in many individuals by using VAF

information and growth trajectory dynamics. For example, if the combined VAF of 2 mutations was

>50% in a later timepoint, then they could be inferred to have arisen in the same clone. Similarly, if

two mutations followed the same growth trajectory, this also increased the likelihood of them being

present in the same clone.
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Figure 5.2 Pre-AML trajectory of clonal evolution. In this example, an SRSF2 P95L and IDH2 R140Q mutation are
both detectable at nearly 50% VAF ∼ 6 months before AML diagnosis. Their summed VAFs are >50% and so we can
infer that they must be present in the same clone. Tracing their trajectories back in time we can see the order in which they
co-occurred and can estimate their age at acquisition (see Section 5.3).

5.2.1 Clonal complexity and clonal relationships of driver mutations

Consistent with previous studies, the number of mutations detected, at any VAF, was significantly

greater in pre-AML cases than in controls, as far back as 8 years pre-diagnosis (Figure 5.3a) with an

average of 2.6 mutations in pre-AML cases and 1.3 mutations in controls (p = 0.011, unpaired T-test).

This was particularly prominent when considering mutations at ≥10% VAF, which was significantly

greater in pre-AML cases even >10 years pre-diagnosis, with an average of 0.8 mutations >10% VAF

in pre-AML cases and 0.2 in controls (p = 0.027, unpaired T-test) (Figure 5.3b). The closer the sample

was taken to diagnosis, the more significant the difference between pre-AML cases and controls, with

1.7 mutations >10% VAF in pre-AML cases 0-2 years pre-diagnosis, compared to 0.15 in controls

(p = 1.3×10−5) (Figure 5.3b).
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Tracing the evolution to AML using longitudinal pre-diagnosis blood samples

Multiple mutations within the same gene were detected in a number of samples and having the ability

to reconstruct clonal composition, from VAF measurements and clonal trajectory dynamics, meant

we could determine the clonal relationships for many of these mutations. Multiple TET2 mutations

were particularly common in pre-AML cases, being observed in 20% of pre-AML cases, compared

to only 4% of controls (Figure 5.4). These appeared to be in separate clones in the controls, but but

appeared to co-occur in the same clone in all the pre-AML cases (as either 2 somatic, 1 somatic/ 1

germline or 2 germline), consistent with the well-described presence of biallelic TET2 mutations

in myeloid neoplasms203 (Appendix Figure D.1). One pre-AML case had 3 WT1 mutations and at

least 2 of these were present within the same clone, consistent with previous work describing biallelic

involvement of WT1 in AML204.

The presence of two or more DNMT3A mutations was recently reported to be associated with

a significant increased odds ratio of AML (odds ratio 12.6)76 and whilst we found that multiple

DNMT3A mutations were common in our cohort, they appeared to be less common in pre-AML

cases than in controls (8% of pre-AML cases and 16% of controls) (Figure 5.4). These multiple

DNMT3A mutations appeared to be present in the same clone in ∼1/2 of the pre-AML cases and ∼
1/3 of controls (Appendix Figure D.1). Whilst biallelic DNMT3A mutations are found in >60% of

patients with T cell acute lymphoblastic leukaemia (T-ALL), biallelic DNMT3A mutations in myeloid

neoplasms are much less common, which is thought to be due to the requirement for DNMT3A

activity for myeloid lineage choice205. The lack of enrichment for biallelic DNMT3A mutations in

our pre-AML cases is consistent with this.

Previous bulk sequencing and single-cell studies have reported a tendency to mutual exclusivity for

DNMT3A, TP53, TET2 and ASXL1, which is presumed to be due to functional redundancy21,38,206.

Whilst our numbers are too small to draw firm conclusions for most of these relationships, we did not

observe clear evidence for this for DNMT3A, which was detected in the same clone as TET2, ASXL1

and TP53 in at least 3 separate pre-AML cases (Figure, 5.4, Appendix Figure D.1).
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Tracing the evolution to AML using longitudinal pre-diagnosis blood samples

5.2.2 Evolutionary patterns of AML development

By reconstructing the clonal evolution trajectories for all 50 pre-AML and control samples, it was

visually evident that there were four main evolution patterns: i) linear evolution, ii) evolution with

clonal interference, iii) static evolution and iv) late evolution.

Linear evolution

The linear evolution pattern was most common and was observed in 21 out of 50 pre-AML cases and

18 out of 50 controls. In this evolution scenario, successive mutations were acquired in a step-wise

manner in a single dominant clone, with clear evidence of unopposed exponential growth across all

sample timepoints.

Some samples that showed linear evolution can be see in Figure 5.5. For example, in Figure 5.5a,

a quadruple-mutant clone containing an SF3B1, DNMT3A and 2 different TET2 mutations was

already detectable 7 years before AML diagnosis. Mutation acquisition order can be inferred from

the VAFs and reveals that the DNMT3A mutation occurred first, followed by SF3B1 then TET2,

followed by another TET2 mutation. This quadruple-mutant clone grew unopposed across all the

timepoints, reaching nearly 40% VAF ∼ 18 months before diagnosis (Figure 5.5a). In Figure 5.5b, a

double-mutant clone containing a JAK2 and SF3B1 mutation was detectable 8 years before AML

diagnosis. This clone can be seen growing exponentially, until it acquired an NPM1 frameshift

mutation 2 years pre-diagnosis followed by 2 WT1 mutations ∼ 1 year pre-diagnosis, which resulted

in a dramatic increase in growth rate with considerable clonal expansion.

Evolution with clonal interference

The clonal interference pattern was observed in 9 out of 50 pre-AML cases, but only 2 out of 50

controls. In this evolution scenario there are multiple clones present, with clear evidence of clonal

competition between them.

Some samples that showed evolution with clonal interference are shown in Figure 5.6. For example, in

Figure 5.6a, an SRSF2 P95H mutation has already clonally expanded to 45% VAF (90% cell fraction)

8 years pre-AML diagnosis. This clone then acquires a JAK2 V617F mutation, which confers a

significant growth advantage to the SRSF2/JAK2 clone, but this starts to be outcompeted by the

acquisition of a 19p CN-LOH event in a different SRSF2 subclone. The SRSF2/JAK2 clone acquires

an additional 9p CN-LOH event, however, which shows signs of starting to become the dominant

clone again ∼ 2 years before AML diagnosis. In Figure 5.6b multiple subclones, which have arisen

on the background of an SRSF2 mutant clone, are detectable 7-8 years pre-AML diagnosis, with the

TET2 Q917X subclone (light green) having a significant fitness advantage over the others. The TET2

N1266S subclone (dark green) then gains a competitive advantage, however, and outcompetes the
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5.2 Reconstruction of clonal evolutionary histories

TET2 Q917X clone (light green), becoming the dominant clone in the year prior to AML diagnosis. No

new mutations were detected to explain the TET2 N1266S subclone’s competitive advantage.

In two of the samples that showed a clonal interference evolution pattern (Figure 5.6b and c), the

clonal competition appears to occur within a constrained fraction of the total number of cells. In

Figure 5.6b, the TET2 Q917X clone has seemingly reached its maximum size at age ∼ 66, seemingly

resulting in a decrease in the size of the other SRSF2 subclones. Yet the ‘wild-type’ haematopoietic

stem cells still make up 34% of the cells at this point and the SRSF2 subclones would be expected to

outcompete these before they were reduced in size by the TET2 Q917X subclone. Similarly, in Figure

5.6c, as the MPL clone starts to increase in size, the KRAS clone decreases in size, but this clonal

competition is constrained within ∼40% of the cells across all the timepoints.

Static evolution

The static evolution pattern was observed in 4 out of 50 pre-AML cases and 7 out of 50 controls. In

this evolution scenario, the clones have clearly undergone clonal expansion, in order to reach a level

where they were detectable, but showed no growth across a number of sequential timepoints.

Some samples that showed static evolution can be seen in Figure 5.7. For example, in Figure 5.7a, a

TP53 mutant clone, which has clonally expanded to ∼ 9.5% VAF by the age of 64, shows no growth

at all across 3 timepoints spanning a 1 year period. Similarly, an ASXL1 mutant clone in the same

individual, which had clonally expanded to ∼1% VAF by the age of 64, also shows no growth over

the same period. In Figure 5.7d, a TET2 mutant clone can be seen growing exponentially during the

first ∼2 years of samples (4-5 timepoints), from a VAF of 8% to 27%, but the clone then seems to

stop growing and remains the same size for the next ∼ 2.5 years (5 timepoints), ∼ 5 years before

AML diagnosis. No obvious clonal competitor was detected, from within our targeted panel, in any of

the samples that showed a static evolution pattern.

Late evolution

The late evolution pattern was observed in 13 out of 50 pre-AML cases. In this evolution scenario

there were either no mutations detectable, or mutations were only detected in the 1-2 sample(s) closest

to the time of AML diagnosis.

Some samples that showed late evolution can be seen in Figure 5.8. For example, in Figure 5.8a,

no mutations are detected until ∼ 18 months before diagnosis, when an NPM1 frameshift mutation

becomes detectable, followed very quickly by a WT1 mutation with significant clonal expansion to

∼8% VAF over the course of 1 year. An additional FLT3-ITD mutation then becomes detectable

∼ 3 months before diagnosis. In Figure 5.8c, no mutations were detected until ∼ 3 months before

diagnosis, when a WT1 frameshift mutation becomes detectable at 13% VAF, having been undetectable

just 1 year previously.
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Figure 5.5 Examples of samples showing a linear evolution pattern. Vertical dashed lines indicate the timings of the
blood samples. Clonal relationships were determined from the clonal trajectories, which can be found in Appendix D.1.
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Figure 5.7 Examples of samples showing a static evolution pattern. Vertical dashed lines indicate the timings of the
blood samples. Clonal relationships were determined from the clonal trajectories, which can be found in Appendix D.1.
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Figure 5.8 Examples of samples showing a late evolution pattern. Vertical dashed lines indicate the timings of the
blood samples. Clonal relationships were determined from the clonal trajectories, which can be found in Appendix D.1.
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We wondered whether different clonal evolution patterns were characteristic of specific gene mutations.

The sample numbers are too small to draw firm conclusions, but we did not see any static evolution

occurring in individuals with mutations in spliceosome or cell signalling genes (Figure 5.4).

5.3 Age at acquisition and fitness effects of initiating driver mutations

By reconstructing the clonal composition of the samples that showed linear and late evolution, it is

possible to estimate the timings of the key steps in the evolution to AML for these two evolutionary

scenarios. Fitness effects for the initial driver mutations can also be estimated, as well as the effect on

fitness of acquisition of additional mutations. Estimating these parameters is more complex for the

samples with a clonal interference pattern of evolution, due to the variation in growth rates caused

by clonal competition. It is also difficult to estimate these parameters for the samples that showed a

static pattern of evolution, due to uncertainties regarding the growth dynamics that preceded the halt

in growth, or at what age it occurred.

5.3.1 Linear evolution pattern

For samples that show a linear evolution pattern, the age at acquisition of the first and second driver

mutations can be determined by effectively extrapolating the exponential trajectories of the first two

mutations back in time. At age T , the number of cells containing the first mutation alone (n1), acquired

at age t1, is expected to be:

n1 =
es1(T−t1)−1

s1
(5.1)

where s1 is the fitness effect of the clone containing just the first mutation

and the number of cells containing the second mutation (n2), acquired at age t2, is:

n2 =
es2(T−t2)−1

s2
(5.2)

where s2 is the fitness effect of the clone containing both the first and the second mutation

Before the second mutation is acquired (i.e. T < t2), the total number of cells containing the first

mutation is simply n1. However, after the second mutation is acquired (i.e. T ≥ t2) the number of

cells containing the first mutation also includes the cells that acquired the second mutation. Therefore

when T ≥ t2 the number of cells containing the first mutation is n1 + n2.

The VAF for the cells containing the first mutation (VAF1) can therefore be calculated as:

VAF1 (when T < t2) =
n1

2(N +n1)
VAF1 (when T ≥ t2) =

n1 +n2

2(N +n1 +n2)
(5.3)

where N is the total number of wild-type haematopoietic stem cells
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5.3 Age at acquisition and fitness effects of initiating driver mutations

and the VAF for the cells containing the second mutation (VAF2) can be calculated as:

VAF2 (when T ≥ t2) =
n2

2(N +n1 +n2)
(5.4)

A maximum likelihood approach was used, minimising the L2 norm between the observed and

expected VAFs, to extrapolate the trajectories. These inferred trajectories fit the observed VAFs very

well, consistent with exponential growth, and enabled us to determine the age at acquisition of the

first and second mutations (t1 and t2) and the fitness effect of the single-mutant clone (s1) and double

mutant clone (s2) (e.g. Figure 5.9). These estimates naturally depend on the number used for N (total

number of wild-type haematopoietic stem cells), a number which is not definitively known. However,

work by us93 and others92,124 has estimated it to be ∼ 20,000 to 200,000 and so we used an estimate

of N = 100,000 in our maximum likelihood estimations. Increasing the value used for N would result

in greater estimates for the fitness effects (s1 and s2) and/ or younger estimates for the acquisition

ages (t1 and t2).
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Figure 5.9 Estimation of acquisition age and fitness effects for mutations showing a linear evolution pattern. Solid
colour datapoints indicate the measured VAF from the blood samples at each timepoint (each timepoint indicated by
a vertical grey dashed line). The dashed coloured lines indicate the extrapolated trajectories inferred using maximum
likelihood approaches, which allow estimation of the acquisition age for the first (SRSF2) and second (IDH2) mutation, as
well as the fitness effect (s) of the single-mutant (SRSF2) and double-mutant (SRSF2/IDH2) clone. The error measurement
shown for the acquisition ages is ± 1/s. Any other mutations present in the sample are shown as faded out datapoints.

Linear evolution: Age at acquisition of driver mutations

By applying this method to all the samples that showed a linear evolution pattern (Appendix D.2),

we find that the average age at acquisition of the first driver mutation is ∼ 22 years old (range 0 - 55

years) in the pre-AML cases and ∼ 19 years old (range 0 - 62 years) in the controls (not statistically

significantly different, p = 0.30, two-sample Kolmogorov-Smirnov test) (Figure 5.10, left plot).

In the pre-AML cases, it takes on average ∼ 21 years (range 0 - 42 years) from the first mutation to

acquire the second mutation (Figure 5.10, middle plot) and then the time between acquiring the second

mutation and diagnosis of AML is ∼ 30 years (range 12 - 60 years) (Figure 5.10, right plot).
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Tracing the evolution to AML using longitudinal pre-diagnosis blood samples

Although our sample numbers are too small to determine clear patterns regarding typical acquisition

ages for classes of gene mutations, the age at acquisition of DNA methylation (e.g. DNMT3A, TET2)

and tumour suppressor (e.g. TP53, CHEK2) gene mutations, as the first driver mutation, were spread

across the range of acquisition ages in both pre-AML cases and controls (Figure 5.10, left plot: blue

and purple datapoints). Chromatin modifier gene mutations (e.g. ASXL1, EZH2), which were seen

as the first driver mutation in two controls, but no pre-AMLs, were both acquired under the age of

20 (EZH2 age 0-17, ASXL1 age 0-15) (Figure 5.10, left plot: orange datapoints). Spliceosome gene

mutations (e.g. SRSF2, SF3B1) which were observed as the first driver mutation in 3 pre-AMLs, but

no controls, were acquired across a range of ages (Figure 5.10, left plot: pink datapoints).
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Figure 5.10 Timings for the key steps in the evolution to AML: Linear evolution pattern. The colour of the datapoint
indicates the gene class of the mutation. For the time between the first and second mutation, the colour of the datapoint
represents the gene class of the first mutation. For the time between the second mutation and AML, the colour of the
datapoint represents the gene class of the second mutation. The vertical line in the violin plots represents the mean of the
distribution and the thick horizontal bar represents the interquartile range.

Linear evolution: Fitness effects of driver mutations

For samples that showed a linear evolution pattern, there was a range of fitness effects in both pre-AML

cases and controls. The average fitness effect of the first driver mutation was higher in pre-AML cases

at 22% per year (range 8 - 83%) compared to 16% per year (range 5 - 41%) in controls, although the

differences in the distribution of fitness effects did not meet statistical significance with our small set

of samples (p = 0.15, two sample Kolmogorov-Smirnov test) (Figure 5.11, left plot). After acquisition

of the second mutation in pre-AML cases, there was a broad range of double-mutant clone fitness

effects. The average fitness effect of the double-mutant clone was 66% per year, but ranged from

15% to 292% per year (Figure 5.11, middle plot). Some of the double-mutant clone fitness effects

were greater than would be expected if fitness effects were simply additive and suggests that some

mutations behave synergistically to increase fitness.
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Figure 5.11 Fitness effects of single- and double-mutant clones: Linear evolution pattern. The colour of the datapoint
indicates the gene class of the mutation. The vertical line in the violin plot represents the mean of the distribution and the
thick horizontal bar represents the interquartile range. The error bars on the time to AML diagnosis are calculated as ±1/s,
where s is the fitness effect per year. The grey solid line on the time to AML diagnosis plot is the expected time to sweep
(tsw), based on a mutation’s fitness effect, under a simple branching process model of HSC dynamics: tsw = log(Nτs)/s.

There was correlation between the fitness effect of the initial driver mutation and time to AML

diagnosis, with higher fitness effects associated with shorter times to progress (Figure 5.11, right plot).

The time to AML diagnosis was broadly consistent with the expected time for a mutation, with fitness

effect s, to sweep (tsw), under a simple branching process model of HSC dynamics (Figure 5.11, right

plot, grey solid line). In this model (Chapter 2 Section 2.2, Appendix 1 Section A.1), where beneficial

mutations increase the average offspring per HSC generation from 1 to 1+ s, the characteristic clone

size, after t generations is:

n ∼ est −1
s

⇒ n ∼ est

s
when st ≫ 1 (5.5)

When a mutation has swept, n = N, which means:

N ∼ est

s
⇒ t =

log(Ns)
s

(5.6)

Considering the time to sweep (tsw) in years, rather than HSC generations, this gives:

tsw =
log(Nτs)

s
(5.7)

where τ = time in years between successive symmetric differentiation divisions

This is the line shown in Figure 5.11 (fitness effect vs. time to AML diagnosis).
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Tracing the evolution to AML using longitudinal pre-diagnosis blood samples

DNA methylation mutations were seen as both the first and second mutations in 4 of the pre-AML

cases with linear evolution. These were DNMT3A/DNMT3A mutations in two individuals and

TET2/TET2 or DNMT3A/IDH2 in the other two individuals. For all 4 individuals, the effect of the

second mutation on the fitness effect of the clone was only modest, with the greatest increase observed

in the DNMT3A/IDH2 sample, whose fitness increased from 14% per year in the DNMT3A single-

mutant clone to 21% per year in the DNMT3A/IDH2 double mutant clone (Figure 5.12, light blue/

light blue datapoints). A minimal increase in fitness effect was also observed in the control sample

which acquired a chromatin modifier gene mutation (ASXL1) first, followed by a DNA methylation

gene (TET2) mutation, with the fitness increasing from only 6% to 9% per year (Figure 5.12, orange/

light blue datapoint). For two of the samples (TET2/TET2 and DNMT3A/DNMT3A), although the

similar growth trajectory dynamics suggested the two mutations were in the same clone, the combined

VAFs were <50% meaning it was difficult to exclude the possibility that the two mutations were in

separate clones. If they were, the reason they have similar fitness effects could be simply because the

two mutations have a similar effect within the gene.

The most significant incremental increase in fitness effects from single- to double-mutant clone was

observed when the first and/or second mutation was either a spliceosome gene mutation (e.g. SRSF2,

SF3B1) and/or a cell signalling gene mutation (e.g. JAK2, MPL), with one of the pre-AML cases

increasing their SRSF2 P95H single-mutant clones fitness from 83% per year to 293% per year with

the acquisition of an MPL Y591D mutation (Figure 5.12, pink/ dark blue datapoint).
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Figure 5.12 Fitness effect of single and double mutant clones in samples with linear evolution pattern. The two
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by black circles and controls are represented by grey circles (only 1 control sample).

5.3.2 Late evolution pattern

Estimating the age at acquisition and fitness effect of the initial driver mutation for samples that

show a late evolution pattern was a little more complicated because the mutations were typically only

detected at the final timepoint, meaning there was no trajectory to extrapolate. However, we can set
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5.3 Age at acquisition and fitness effects of initiating driver mutations

an upper bound on the VAF at the preceding timepoint by knowing that it is unlikely to be greater

than ∼1/read depth, otherwise it would have been detected (Figure 5.13). Taking this as the VAF at

the preceding timepoint enables us to apply the method described for the linear evolution samples

(Section 5.3.1), with the understanding that the inferred fitness effects and acquisition ages for these

late evolution samples are ‘lower bounds’ on what they are actually likely to be.
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Figure 5.13 Estimation of acquisition age and fitness effects for mutations showing a late evolution pattern. Solid
colour datapoint indicates the measured VAF from the blood samples at the final timepoint (each timepoint indicated by
a vertical grey dashed line). The VAF limit of detection at the preceding timepoint was used to estimate the maximum
VAF at that timepoint. The dashed coloured line indicates the extrapolated trajectory inferred using maximum likelihood
approaches, which allow estimation of the acquisition age and fitness effect (s) of the WT1 mutant clone. The error
measurement shown for the acquisition ages is ± 1/s.

Late evolution: Age at acquisition of driver mutations

By applying this method to all the pre-AML samples that showed a late evolution pattern (Appendix

D.3), and had a mutation detectable in the final timepoint sample, we find that the average age at

acquisition of the first driver mutation was ∼ 62 years old (range 46 - 75 years) (Figure 5.10, left plot).

We did not observe the acquisition of the second driver mutation in most cases, but we can calculate

the average time to progression of AML from the first mutation, which on average is ∼ 4 years (range

2 - 6 years) (Figure 5.14, right plot).

Late evolution: Fitness effects of driver mutations

For the pre-AML samples that showed a late evolution pattern, the initiating driver mutations had

markedly higher fitness effects than those with a linear evolution pattern, with an average fitness effect

of 410% per year (range 99 - 755% per year) (Figure 5.15, left plot). The higher the fitness effect of

the first mutation, the shorter the time to diagnosis of AML (Figure 5.15, right plot). As was the case

for samples that showed a linear evolution pattern, the time to AML diagnosis was broadly consistent

with the expected time for a mutation, with fitness effect s, to sweep (tsw), under a simple branching

process model of HSC dynamics (Figure 5.15, right plot, grey solid line).
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Figure 5.15 Fitness effects of single- and double-mutant clones: Late evolution pattern. The colour of the datapoint
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5.4 Highly fit clonal haematopoiesis variants are enriched pre-AML

While many of the genes mutated in pre-AML cases were also mutated in controls, the specific

variants detected in pre-AML tended to be known ‘hotspot’ sites recurrently mutated in haematological

malignancies and/or variants we inferred to be highly fit in clonal haematopoiesis. Indeed, the group

of 20 variants we inferred to be highly fit in clonal haematopoiesis (Chapter 2)93 were significantly

enriched in pre-AML cases compared to controls, even 8 to >10 years pre-diagnosis (Figure 5.16).

The odds ratio of detecting one or more of these variants was 4.4 (95% confidence interval 1.1 to

16.9) at 8 to >10 years pre-diagnosis, which increased to an odds ratio of 9.8 (95% confidence interval

2.1 to 46.4) in the 2 years pre-diagnosis.
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Figure 5.16 Highly fit clonal haematopoiesis variants are enriched in pre-AML samples. a. Total number of pre-
AML and control samples with each of the highly fit clonal haematopoiesis variants (from Chapter ?? and Watson et al
2020 93). b. Odds ratios (with 95% confidence intervals) of detecting one or more of the 20 highly fit variants in pre-AML
vs control samples.

5.5 Detection of AML-specific mutations pre-AML diagnosis

Whilst many pre-leukaemic mutations are also found in clonal haematopoiesis, there are some

mutations, such as FLT3-ITD and NPM1 exon 12 frameshift mutations, that have only ever been

found in individuals with AML20,142,143. The absence of these mutations in healthy individuals,

together with evidence from single cell sequencing studies, suggests that these mutations occur ‘late’

in AML development, but how late they occur is unknown. Using our deep error-corrected sequencing

approach we were able to detect NPM1 exon 12 frameshift mutations in 3 individuals (1 with linear

evolution pattern, 2 with a late evolution pattern) and using our method to infer acquisition age and

fitness effects (Section 5.3) could infer that these mutations occurred ∼ 4 - 6 years pre-diagnosis.

We detected a FLT3-ITD mutation in 1 individual (with a late evolution pattern), but as discussed in

Chapter 4, there may also be additional individuals with FLT3-ITD mutations (RT-PCR validation of

these samples is still pending).
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5.6 Discussion

Having access to blood samples collected at multiple timepoints pre-AML diagnosis, combined with

an error-corrected sequencing approach that allows low frequency detection of a comprehensive array

of genetic changes, provides us with the ability to study the pre-leukaemic evolutionary process over

time. This allows us to see the progression to AML unfold, from acquisition of the initial driver

mutation through to just before diagnosis of AML. Recent single cell sequencing studies have inferred

AML evolutionary history using samples collected at the time of diagnosis206,207, and whilst this

enabled reconstruction of pre-AML lineages, it did not provide any information on mutation timings.

Also, because AML diagnosis samples are naturally dominated by the AML clone, the presence

of intermediate clones that were outcompeted during the course of preleukaemic evolution may be

missed, resulting in an incomplete picture of the preleukaemic evolutionary process.

Four different patterns of pre-leukaemic evolution can all lead to AML

By analysing the clonal trajectories generated from blood samples collected at multiple timepoints

pre-AML, we found four main patterns of pre-leukaemic clonal evolution, which could all give rise to

AML: linear evolution, evolution with clonal competition, late evolution and static evolution. The

‘linear evolution’ pattern was most common and is consistent with the stereotypical model of cancer

evolution2,208, where sequential acquisition of driver mutations occurs, with each new driver mutation

increasing the fitness effect of the clone, which causes it to outcompete the preceding clones. In this

evolution pattern the limiting factor in progression appears to be the time it takes for the next mutation

to occur. In contrast, in the ‘clonal interference’ pattern of evolution there is no shortage of mutations

and the limiting factor in progression appears to be waiting for clones to outcompete each other to

become the dominant clone. Clonal interference is a common evolution pattern observed in a number

of cancer types and is typically associated with poorer survival209 and increased therapy resistance210.

The mechanisms underlying the clonal interference process remain unclear, although some have

considered clonal interference to be a proxy for greater mutational instability, faster evolution and/ or

interclonal co-operativity211. Clonal interference is expected to occur when Nτµ ≫ 145,212, which

suggests the mutation rate (µ) and/ or HSC population size (Nτ) may be increased in the individuals

whose pre-AML evolution showed a clonal interference pattern.

In the ‘late evolution’ pattern, pre-AML samples appear genetically indistinguishable from control

samples, up until 1-2 years prior to AML diagnosis, when the emergence of highly fit driver mutations

(‘uber drivers’) results in significant clonal expansion. The limiting factor in progression in ‘late

evolution’ appears to be the time it takes for this driver mutation to occur. This ‘late evolution’

pattern is similar to the ‘punctuated’ evolution pattern described in other cancer types, such as

breast213 and prostate cancer214, which are thought to be caused by a sudden catastrophic genomic

event such as chromothripsis215,216, chromoplexy214 or kataegis57, which occur on a permissive anti-

apoptotic background. ‘Punctuated evolution’ is typically characterised by chromosomal structural
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rearrangements, however, which we did not observe in any of the pre-AML samples with late evolution.

This suggests that, in AML, stochastic acquisition of a highly fit mutation may be sufficient to trigger

the initiation of rapid evolution to AML. It is possible that we are missing key events, which occur

earlier in the pre-leukaemic evolution in these individuals, due to our targeted panel. Whole-genome

sequencing of the samples from these individuals may be helpful to determine whether this is the

case.

In the ‘static evolution’ pattern clones show no growth at all, and yet must have had at least a

moderate fitness effect to have reached the VAFs at which they were observed. This finding has

also been observed in other pre-AML studies77 and a slowing of DNMT3A clonal expansion with

age has recently been reported in clonal haematopoiesis103. Whilst this could be due to an unseen

clonal competitor not covered by our panel, the competitor would need to have the same fitness

effect as the static clone in order to explain the unchanging VAF measurements. Whilst this is not

implausible, it seems unlikely that this is the explanation in all of the samples that showed this pattern

of evolution.

Another possible explanation for the static evolution pattern is that the mutated cell of origin is not

an HSC, but a long-lived lineage-restricted progenitor cell (eg. common myeloid progenitor) that

also has the ability to self-renew. This would cause the mutations to be lineage-restricted and so their

clonal expansion could be confined to the proportion of blood cells derived from that lineage. Whilst

single-cell sequencing could ascertain if this was the case, this is unfortunately not possible with our

samples. Instead, DNA methylation patterns could be analysed, to attempt to estimate the proportion

of different haematopoietic cell types present217 and determine if this was consistent with the cell

fraction in which the clonal expansion appeared to be constrained.

Another explanation is that an external influence, such as the immune system, ‘holds back’ clonal

expansion once it reaches a certain size, until a final AML-triggering mutation occurs. This ‘holding

back’ of clonal expansion is analogous to ‘tumour mass dormancy’, which has been described in

other cancers218,219 and can be mediated by the immune system or inefficient nutrient supply to the

cells. In this scenario, clonal growth is still occurring, but at the same rate as immune (or hypoxia)-

mediated cell death. Whilst this is possible, clonal growth and cell death would need to be perfectly

balanced, to explain the static trajectories, which seems perhaps unlikely. ‘Cellular dormancy’ is also

a possibility, in which cells transition to a quiescent, cell cycle-arrest state, but retain the capacity

for self-renewal when reactivated. This has been described in chronic myeloid leukaemia (CML)

leukaemia stem cells, mediated by ‘supportive signals’ secreted by non-transformed bone marrow

niche cells220–222. The bone marrow microenvironment/ niche provides regulatory signals that tightly

control self-renewal, quiescence, differentiation and migration of haematopoietic stem cells223 and so

may play an important role in promoting ‘cellular dormancy’, and thus a ‘static’ pattern of evolution,

in some individuals.
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Whether periods of stasis occur in all pre-leukaemic clones, but only coincided with the timings of

some of the samples, or whether specific genetic or epigenetic factors predispose to stasis is unclear

and would be an interesting area for future research. Understanding this better might also shed light

on why clonal competition seemed to occur within a constrained fraction of cells in some samples

that showed a ‘clonal interference’ pattern of evolution.

Highly fit initiating driver mutations result in faster progression to AML

One of the principles underlying our understanding of pre-cancerous mutation acquisition and clonal

expansion is that the greater the fitness effect of a mutation, the faster the clone will expand and the

more likely it is that subsequent mutations will be acquired within the same clone. Consistent with

this, we found that the higher the fitness effect of the initial driver mutation, the shorter the time to

progress to AML. This was particularly evident for samples that showed a late evolution pattern, in

which the initial driver mutations had fitness effects as high as 600-800% per year. Fitness effects this

great would result in the clone size doubling approximately every 6 weeks.

Interestingly, for both ‘linear’ and ‘late’ evolution samples, the relationship between the fitness effect

of the first mutation and the time to progress to AML was broadly consistent with the predicted

amount of time it would take for the mutation to sweep, under a simple branching process model of

HSC dynamics. This suggests that once the initial mutation has swept, progression to AML occurs

shortly after. Given we can see a gradual step-wise accumulation of mutations in the linear evolution

pattern, and the average time from acquisition of the 2nd mutation to AML diagnosis is ∼ 30 years,

this finding is hard to explain and further work is required to explore this further.

Early detection of AML-specific mutations

Using deep error-corrected duplex sequencing, we were able to detect NPM1 and FLT3 mutations

up to 2 years pre-AML diagnosis. Whilst some of these cases were individuals that showed ‘late’

evolution, who would likely be unidentifiable as high-risk until these mutations occurred, some

of these mutations occurred in individuals that had already acquired several mutations, which had

expanded to high VAF. Detection of NPM1 or FLT3 mutations 1-2 years before diagnosis in these

individuals potentially provides a window of opportunity for early intervention studies, to try to

prevent progression to overt AML. Our early detection of these mutations also highlights the benefit

afforded by deep error-corrected low VAF variant calling, particularly in high-risk individuals.

Initial driver mutations can occur at any age

Using multi-timepoint clonal trajectories and insights from evolutionary theory, we were able to

estimate the age at acquisition of the first AML driver mutation. In individuals with a linear evolution

pattern, the average age at acquisition was ∼ 22 years old, but could occur anywhere between 0 and

62 years old. In individuals with a late evolution pattern, the average age at acquisition was ∼ 62
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years old, which was, on average, only ∼ 4 years before AML diagnosis. These results highlight that,

whilst the presence of multiple pre-leukaemic mutations is certainly associated with an increased risk

of AML, the absence of detectable pre-leukaemic mutations at, e.g. age 60, does not necessarily mean

that an individual is not at risk. It also suggests that early detection may not be possible in all cases of

pre-AML.

Age- and sex- differences in AML development

AML in older individuals (≥60 years old) has been found to be genetically distinct from AML in

younger individuals224,225, with higher rates of mutations in spliceosome components, epigenetic

regulators and in DNA repair factors226. The average age at AML diagnosis in our UKCTOCS cohort

was 71 years old and so it is important to bear in mind that our findings may not be generalisable to

younger patients with AML. Similarly, sex biases are known to occur for certain pre-leukaemic gene

mutations and AML is significantly more common in men than women201. In particular, DNMT3A,

TP53, NPM1 and FLT3-ITD mutations are known to be more common in women77,227 and ASXL1,

SRSF2 and U2AF1 more common in men227. The mechanism underlying these gender biases is not

fully understood, but may be related to bone marrow microenvironment differences between men and

women, as suggested by the different mutational signatures observed between men and women for

certain pre-leukaemic gene mutations227. All of the participants of the UKCTOCS are women and so

it is important to bear this in mind if attempting to generalise these findings to men as well.

Future work

Analysis of the data generated from this unique set of pre-leukaemic longitudinal samples is still

ongoing. Thus far we have inferred clonal composition by simply using VAF measurements and clonal

trajectory dynamics, a benefit afforded by having longitudinal samples. For example, observing two

or more mutations whose combined VAFs were >50% (in the absence of copy number change) at later

timepoints allowed us to infer that these mutations were present in the same clone across all preceding

timepoints. For mutations whose combined VAFs were not >50% at any timepoint, we could infer

clonal co-localisation if their growth trajectories were the same, or indeed clonal independence if

they showed divergent trajectories. Whilst this approach allowed us to infer the clonal composition

for many of the samples, there were some mutations, e.g. those present at low VAFs across all

timepoints, for which this was not possible. Bayesian clustering approaches (e.g. Dirichlet process

models)228–230, directed acyclic graph networks231,232 and matrix deconvolution frameworks233 are

all possible methods that can be used to estimate phylogenetic relationships between clones and

determining whether adaptations of these approaches could be applied to our longitudinal samples is

an area for future work.
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At the moment we have only determined the acquisition age and fitness effects for the first two

mutations and another area for future work is to extend this to include additional subsequent mutations

as well.

AML can be defined as ‘secondary’ (s-AML), ‘therapy-related’ (t-AML) or ‘do novo’. s-AML arises

following transformation of antecedent myelodysplastic syndrome (MDS) or myeloproliferative

neoplasm (MPN), t-AML arises after exposure to leukaemogenic therapy and de novo AML arises

without any known exposure or preceding condition. It is possible that some of the UKCTOCS

participants developed MDS or MPN before they developed AML. Indeed, 20% of our pre-AML cases

had suspected biallelic TET2 mutations, which are often associated with chronic myelomonocytic

leukaemia (CMML)203 and 42% of the pre-AML cases had mutations in SRSF2, SF3B1, U2AF1,

ZRSR2, ASXL1 or EZH2, which have been previously shown to be >95% specific for a diagnosis of

secondary AML234. It is also possible that some of the participants may have received leukaemogenic

therapy for a previous solid cancer. Unfortunately we will not be able to obtain information on blood

counts/ haematological parameters at any of the timepoints, but we can obtain information from the

Office of National Statistics (ONS) National Cancer Registry and NHS Hospital Episode Statistics

(HES) database regarding any antecedent diagnoses and should also be able to identify if there had

been any prior leukaemogenic therapy. This will be important for determining whether particular

pre-leukaemic evolution patterns are associated with particular types of AML.

Our ratio of pre-AML cases to controls is currently 1:1. Given the rarity of AML (4.3 cases per

100,000 individuals per year201 relative to clonal haematopoiesis, and therefore the low risk of

progression of clonal haematopoiesis to AML, future work involving the analysis of a greater number

of controls should be considered. The associated increased cost that this would incur would also need

to be taken in to account.

At the moment, the closest samples we have to AML diagnosis are ∼ 3 months prior, which means

we are unlikely to have visualised the full evolutionary history preceding AML. We are attempting

to obtain surplus bone marrow aspirate slides from the time of AML diagnosis, which would be

invaluable for determining the events that trigger the final stage of evolution to AML.

140



6
Summary & Discussion

141





6.1 Summary and Discussion

6.1 Summary and Discussion

Whilst clonal haematopoiesis has been described as an inevitable consequence of ageing9, over

the past decade its potential clinical significance as a precancerous state has become increasingly

recognised, representing the first of a multistep process that in some individuals can progress to a

blood cancer, such as AML3,4,29. The hope is that if we can identify high risk individuals, we might

be able to prevent progression to AML, which, once it occurs, sadly claims the lives of 70-80% of

patients within five years of diagnosis201.

To identify the individuals most at risk of progression to AML, it is important to understand the

evolutionary dynamics of clonal haematopoiesis in the years, or decades, before AML occurs and

how this differs from the dynamics of clonal haematopoiesis in individuals that remain cancer-free.

To do this we set out to gain a quantitative understanding of each stage of the step-wise process to

AML, from acquisition and clonal expansion of the initial driver mutation (using data from ∼50,000 -

500,000 individuals) all the way through to pre-leukaemic evolution (using longitudinal blood samples

collected in the decade preceding AML diagnosis).

6.1.1 Acquisition and expansion of the initial clonal haematopoiesis mutation

Clonal haematopoiesis can result from clonal expansion of single nucleotide variants, insertions/

deletions (indels) or larger chromosomal changes such as mCAs3,4,31,35. Over the past decade, the

decreasing costs of high-throughput sequencing have resulted in a dramatic increase in the amount of

blood sequencing data generated from a number of large population-based studies, such that we now

have single nucleotide variant data from the blood of >50,000 individuals3,4,6–9,38,39,75 and mCA data

from ∼500,000 individuals35. Having clonal haematopoiesis data from this many people provided us

with the unparalleled opportunity to study how mutation rates, genetic drift and fitness differences

combine to shape the genetic diversity observed in healthy blood and provided insights in to the first

stage of the multi-step process that in some individuals can lead to AML.

Using evolutionary models to understand haematopoietic stem cell dynamics

Models for measuring and predicting clonal evolution are often adapted from the field of evolutionary

theory and population genetics, where the principles of mutation, fitness and genetic drift are equally

as important43–46. These models often build on evolutionary principles proposed by Darwin and

Mendel235 and enable us to not only test underlying model assumptions, but also infer key parameters,

such as mutation rates, fitness effects and population size (HSC numbers).

In the work presented here, we considered a simple branching process model of HSC dynamics, based

on evolutionary theory43–46, but adapted to take into account a spectrum of ages and a spectrum

of fitness effects (Chapter 2). In this model, HSCs make the stochastic decision to divide either

symmetrically (self-renewal or differentiation) or asymmetrically with each cell division. Mutations
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are acquired at a constant rate throughout life and each mutation confers a fitness effect, which, if > 0

(non-neutral), biases the HSC cell fate towards symmetric self-renewal. This eventually results in

exponential growth of the mutant cells, at a rate determined by the fitness effect. This simple model

produces predictions for the clone size (VAF or cell fraction) distribution across individuals, as well

as how the population prevalence of mutations should increase with age.

We found that the VAF spectra of single nucleotide variants (from ∼50,000 individuals) and the cell

fraction spectra for mCAs (from ∼500,000 individuals) were consistent with our simple model of

HSC dynamics (Chapter 2 and Chapter 3), revealing that positive selection, not drift, is the major

force shaping clonal haematopoiesis. Mutations appear to be acquired at a roughly constant rate

throughout life and, if they confer a positive fitness, result in exponential growth. Contrary to the view

that clonal haematopoiesis is driven by ageing-related alterations in the stem cell niche202, the data are

consistent with the age dependence of clonal haematopoiesis being driven simply by a continuing risk

of mutations and subsequent clonal expansions that lead to increased detectability at older ages. These

findings have subsequently been corroborated using single-cell-derived colonies of HSC/MPPs from

individuals across a range of ages92, as well as longitudinal clonal haematopoiesis data103.

HSC numbers and division rates

Having an estimate for the total number of HSCs is important for developing quantitative models

of cancer risk, but this number has historically been hard to measure, with most attempts involving

extrapolation from animal models or calculation of relative proportions of cells, with estimates ranging

from 102 to 109 cells60–67. Our framework allows us to measure this. We estimate Nτ (HSC number

× years between symmetric differentiation divisions) to be 100,000± 30,000, which is in close

agreement with other recent estimates from single cell phylogenies48,92. Estimating N separately from

τ is challenging (for all population genetic analyses), but by estimating bounds for τ from mutation

rates in development and adulthood48, we can estimate that the total number of HSCs is between

25,000 and 1.3 million (Chapter 2).

Identification of high risk clonal haematopoiesis mutations

Determining mutation growth rates usually requires multi-timepoint data, but we showed that it is

possible to quantify the fitness effects of individual variants and mCAs from single timepoint data

using our framework. We present a league table of the fittest and potentially most pathogenic variants

and mCAs and quantify the distribution of fitness across key clonal haematopoiesis genes. Many

of the fitness effects we inferred are consistent with the fitness effects subsequently inferred, by

us (Chapter 5) and others103, using longitudinal blood samples. We found mCA loss events and

spliceosome variants (SF3B1 and SRSF2) to be some of the fittest mutations, with fitness effects as

high as ∼23% per year, which would result in a doubling of the number of effected stem cells every

∼ 3.5 years. We were able to infer the fitness effect of ∼ 60% of all possible mCAs, of which most
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were highly fit with fitness effects in the range 10-20% per year. In contrast, we found the distribution

of fitness effects for variants across DNMT3A, TET2, ASXL1 and TET2 to be highly skewed, with

most mutations in these genes conferring either a weak or no fitness effect. The 20 highly fit variants

that we identified conferred a significantly increased risk of AML and we found correlation between

mCA fitness and risk of subsequent blood cancer (Chapter 2 and Chapter 3).

The mechanism by which clonal haematopoiesis variants lead to clonal expansions is not fully

understood. Cancer-associated mutations are classically categorised as ‘tumour suppressor’ genes or

‘oncogenes’. Whilst JAK2, GNAS and GNB1 could be considered oncogenes, and TP53 a tumour

suppressor gene, mutations in these genes account for <10% of the mutations observed in clonal

haematopoiesis3,4,6–9,38,39,75. The vast majority of clonal haematopoiesis mutations affect genes

involved in DNA methylation, epigenetic regulation or RNA splicing. One theory proposes that

mutations in these genes result in altered expression of genes involved in HSC self-renewal236.

Another theory proposes that by altering DNA methylation and chromosomal architecture of enhancer

regions, mutations in these genes disrupt differentiation and lineage specification236. Elucidating the

mechanisms by which these genes cause clonal expansions will be important for designing potential

therapeutic strategies.

Deviation from model expectations reveals sex-specific differences in behaviour

Having ascertained that the blood sequencing data, across ∼50,000-500,000 individuals, was consis-

tent with a simple model of HSC dynamics, our framework served as a useful null model to identify

variants or mCAs whose behaviour deviated from model predictions. In contrast to the strong age

dependence observed in single nucleotide variant prevalence in blood, we found the age dependence

of some mCAs was more variable, particularly in women. This pointed to a violation of the underlying

assumptions of our model and suggests that the risk of acquisition and/or expansion of certain mCAs

is non-uniform throughout life and is influenced by gender-specific factors (Chapter 3).

Other evidence already exists for gender-specific factors playing a role in mutation acquisition and/

or clonal expansion in clonal haematopoiesis and AML. AML, for example, is significantly more

common in men and this male predominance increases further with age201. Certain genes, such as

ASXL1, BCOR, RUNX1, SRSF2 and U2AF1 are more commonly mutated in men, whereas others

such as TP53, DNMT3A, NPM1, and FLT3-ITD are more commonly mutated in women227. The

precise mechanism behind these gender-differences and whether they are caused by mutation rate

or fitness differences is not known. Higher levels of bone marrow fat in younger men compared

to younger women has been proposed as a theory227,237. Another theory, based on the different

mutational signatures observed between men and women in certain genes, is that tissue inflammation,

or activity of AID/APOBEC may play a role227. Further work is needed to ascertain the cause of

these gender differences and will be important for building quantitative models of cancer risk as well

as potential therapeutic interventions.
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Model limitations

It is important to bear in mind that our model, as with any model, is a simplified version of what is

likely a complex, intricately controlled process. Whilst our model appears to capture the behaviour of

mutations across all ∼50,000-500,000 individuals it involves a number of assumptions that may not

be valid at an individual level in certain situations.

One assumption our model makes is that each mutation has a specific mutation rate and that this rate

is constant throughout life. Studies involving solid tumours have shown that this may not always be

the case and has provided evidence that mutational processes can cluster in time238–240.

Another assumption our model makes is that beneficial mutations (with a fitness effect >0) cause

cells to grow exponentially. Whilst we know from our longitudinal pre-AML and control samples

that this seems to be true most of the time, we do see clear evidence of situations when this is not

the case (e.g. pre-AML and control samples that showed a static evolution pattern, Chapter 5). We

have not identified a particular gene or mutation that behaves in this way and so it is possible that

cell-extrinsic factors are the cause. Other evidence for non-exponential growth comes from a recent

study showing that the growth of certain DNMT3A mutant clones slows down with age, in the context

of an increasingly competitive oligoclonal landscape103.

Our model also does not take in to account the effect of ageing on HSC behaviour or fitness effects.

Ageing has been shown to have numerous effects within the haematopoietic system, including myeloid

proliferation bias241, decreased bone marrow cellularity242, reduced lymphopoiesis243 and reduced

erythropoiesis244. Previous work has also shown that HSC self-renewal and differentiation capacity

reduce with age245,246, such that any ageing HSCs that have retained their ability to self-renew are

most likely to expand. Ageing has also been shown to affect fitness, with B-lymphopoiesis showing

a dramatic decrease in fitness with age247. The increasing acquisition of mutations with age is also

thought to impact the fitness of mutations248, most likely due to competition between clones. Whilst

the clonal haematopoiesis data across ∼50,000-500,000 individuals appears to be consistent with a

simple model in which the fitness effect conferred by a mutation is constant throughout life, more

complex models that allow for age-related variations in fitness effects could be used to further validate

this. These more complex models would require a greater number of parameters, however, and it

is likely that data from more individuals, and from multiple timepoints, would be required to allow

robust discrimination between models.

Another limitation of our model is that it focuses on cell-intrinsic fitness effects. While the data

across ∼ 50,000-500,000 individuals is quantitatively consistent with cell-intrinsic fitness effects

playing the major role in shaping the variation in VAFs and cell fractions that we see between

individuals, it is important to bear in mind that cell-extrinsic effects such as chemotherapy75,96–98,

acute infection99,100 and inflammation101 likely play a role in certain contexts. Indeed, variants in
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certain genes (e.g. PPM1D, TP53, CHEK2 and ASXL1) have been shown to be strongly influenced

by external factors97,98,102.

There are also features of the data that our simple model cannot explain. One of these is the larger

than expected number of mutations observed between individuals (ranging from 0 to >10 for the

same detection limit)7, which has also been observed in other tissues. Indeed, recent work involving

the bladder epithelium, has shown extensive inter-person variation in mutation burden, mutational

signatures and selection, which may be due to variability in environmental exposures or genetic

background, or an interplay between the two249. Differences in germline predisposition may also

be important. Indeed, germline loss of MBD4 has been found to predispose to leukaemia due to a

mutagenic cascade driven by 5-methylcytosine (5-mc)250. These individuals sustain high levels of

damage from 5mc deamination and experience clonal expansions decades earlier that age-matched

counterparts with normal MBD4.

6.1.2 Progression of clonal haematopoiesis to AML

Analysing blood samples across thousands of individuals, unselected for haematological malignancy,

provided us with insights into the first stage of the multistep process that precedes AML development.

To determine how and why some individuals then acquire additional mutations and progress to AML,

we identified longitudinal blood samples that had been collected annually at multiple timepoints (mean

5, range 2-11) from 50 individuals who subsequently developed AML, as well as 50 age-matched

controls who remained blood cancer free. We developed a custom comprehensive targeted NGS panel,

which could detect an array of clonal haematopoiesis and AML-associated genetic changes, including

gene mutations, mCAs and chromosomal rearrangements. To ensure we could detect mutations as far

back in time as possible, we used duplex error-corrected sequencing and developed a custom in silico

noise correction method, which allowed us to call variants down to single molecule resolution. We

developed a custom chromosomal rearrangement caller, for accurate translocation and inversion VAF

estimation and harnessed the power of the longitudinal samples to phase SNPs on an individual basis,

enabling us to call mCAs at cell fractions as low as 0.1% (Chapter 4).

AML as an evolutionary process

By reconstructing the clonal evolution trajectories for all 50 pre-AML and control samples we found

there were four main pre-leukaemic evolution patterns (Chapter 5). ‘Linear evolution’ was most

common and involved the successive acquisition of mutations, with each new mutation increasing

the fitness of the clone, causing it to outcompete the preceding clones. This pattern of evolution is

consistent with the stereotypical model of cancer evolution2,208 and is typical of small-to-moderate-

sized HSC populations in which beneficial mutations are sufficiently rare45. In the ‘clonal interference’

pattern, multiple clones were present with clear evidence of clonal competition between them, in

a pattern of evolution that is typical of large HSC populations and/or high mutation rates45. In the
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‘late evolution’ pattern, pre-AML samples were indistinguishable from controls up until 1-2 years

before AML diagnosis, when the emergence of highly fit driver mutations resulted in considerable

clonal expansion. This pattern of evolution is similar to a punctuated evolution pattern observed in

other cancer types, although this is usually caused by a sudden catastrophic genomic event. In the

static evolution pattern, clones that had already expanded to a moderate size appeared to have stopped

growing and showed no growth at all across the sample timepoints.

Static evolution has also been observed in other studies3,251 and several theories exist to explain

why this occurs. Most theories focus on either cell-extrinsic factors218,219, such as the immune

system or inefficient nutrient supply, or cell-intrinsic factors, in which cells transition to a quiescent,

cell-cycle arrest state220–222. The bone marrow microenvironment provides regulatory signals that

can trigger quiescence and so may play an important role223. Indeed, there is some evidence that the

microenvironment can help to stop cancer developing252.

Constrained clonal evolution

Another, perhaps more plausible explanation for some cases of static evolution, is that the mutations

have occurred within a long-lived lineage-restricted progenitor cell with the ability to self-renew. This

may also be the explanation for some of samples that showed a clonal interference evolution pattern,

but in which the clonal competition appeared to be constrained to within 40-60% of the cells.

Whilst HSCs are classically considered the cell of origin for clonal haematopoiesis, there is some

evidence that this may not always be the case. Clonal haematopoiesis mutations are often found in

granulocytes, monocytes and NK cells, but are not always present in B cells and are rarely present

in T-cells253. There may also be a gene-specific pattern to the cell type in which mutations are

found. For example, JAK2 mutations are found in the T-cells of the majority of MPN patients254–256,

whereas DNMT3A mutations are found in the T-cells of only 30-50% of individuals with clonal

haematopoiesis253,257 and TET2, ASXL1 and SF3B1 are rarely found in T-cells253. Whilst these

findings could provide evidence of mutations occurring in myeloid-lineage restricted progenitors,

it is also possible that the mutations simply cause a myeloid bias258. It is also possible that the

mutations which are not seen in T-cells are mutations that arose in middle-age, after the age at which

T-lymphopoiesis has largely ceased258. Against this is the finding that, in some of our longitudinal

samples that showed a linear evolution pattern, TET2 mutations appeared to be acquired within the

first decade of life (i.e. before T-lymphopoiesis has ceased).

Fitness effects correlate with time to progress to AML

We find that the fitness effect of the initial driver mutation correlates with the time it takes to progress

to AML. This was particularly evident for mutations in the ‘late evolution’ samples in which fitness

effects were as high as 600-800% per year. Interestingly, for both ‘linear’ and ‘late’ evolution samples,

the relationship between the fitness effect of the first mutation and the time to progress to AML was
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broadly consistent with the predicted amount of time it would take for the mutation to sweep, under a

simple branching process model of HSC dynamics. This suggests that once the initial mutation has

swept, progression to AML occurs shortly after. Given we can see a gradual step-wise accumulation

of mutations in the linear evolution pattern, and the average time from acquisition of the 2nd mutation

to AML diagnosis is ∼ 30 years, this finding is hard to explain (Chapter 5). Further work is required

to explore this further.

Early detection of AML

The ‘holy grail’ of clonal haematopoiesis is the ability to definitively predict who will progress

to AML. This would allow us to identify high risk individuals who need closer monitoring and

may benefit from early intervention, whilst safely reassuring low risk individuals. Because clonal

haematopoiesis is so common7,93 and AML is relatively rare (4.3 cases per 100,000 individuals per

year201) it is important that any early detection test has a very high positive predictive value, otherwise

the false positive rate could be considerable.

Using our longitudinal samples we found that the initial driver mutation could occur at any age. For

example in the linear evolution pattern, the average age of mutation acquisition was ∼ 22 years old,

but could occur anywhere between 0 and 62 years old. In individuals with a late evolution pattern,

the average age at acquisition was only ∼ 4 years before AML diagnosis. Given these individuals

were indistinguishable from controls >2 years pre-AML diagnosis, it seems that early detection of

AML may not be possible in all individuals. Indeed, in Jaiswal et al’s population-based study, several

individuals with longitudinal samples that were diagnosed with a haematological malignancy, within

an 8 year period of follow-up, did not have any evidence of clonal haematopoiesis in their baseline

sample3, although some of this may be attributable to them predominantly focusing on hotspot

variants and their VAF limit of detection, which was only 3.5%.

For those that do have clonal haematopoiesis mutations detectable, a key challenge is determining who

is high risk. Recent studies have shown that particular gene mutations are associated with increased

risk76,77 and we can see from our analyses that the presence of one or more of our ‘top 20 fittest

variants’ is associated with particularly high risk. These ‘top 20’ variants are significantly enriched in

pre-AML individuals, even 8-10 years pre-diagnosis (Chapter 2 and Chapter 5). Clonal complexity

is also associated with increased risk76,77, although this may only be significantly different between

cases and controls <8 years pre-AML diagnosis (Chapter 5). Higher VAF mutations have been

consistently associated with greater risk76,77, but whilst studies have not found an association between

very low VAF mutations and AML, this could be because the study follow-up length was insufficient.

Depending on the age at acquisition of the mutation, however, the individual may pass away from

another cause before they found themselves at imminent risk of AML. Using ultra-deep error corrected

sequencing of longitudinal samples we found that it is possible to detect NPM1 mutations, which

characteristically occur late in AML development and have never been seen in individuals who do
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not progress to AML, as early as 2 years pre-AML diagnosis. Whilst ultra-deep error-corrected

sequencing will not be cost-effective in all individuals, this finding highlights the benefit afforded

by low VAF variant calling, particularly in high-risk individuals. Longitudinal sampling, e.g. 1-2

years apart, to determine the growth rate of clones, would be useful to aid in risk stratification in some

individuals, particularly those with rare mutations whose typical growth rate is unknown.

All the risk factors mentioned thus far rely on risk stratification using blood sequencing data. This

is not a problem if the individual has already had their blood sequenced, e.g. as part of a cohort

study or as part of a solid malignancy work-up, but the majority of individuals in the population, who

may be at risk, will not routinely have access to blood sequencing. Until regular whole population

DNA sequencing becomes a feasible option, we need to have a way of pre-screening potentially

high-risk individuals. Certain red blood cell parameters (red cell distribution width, RDW and

mean corpuscle cell volume, MCV) have been found to be associated with high risk77,259, as is

the presence of peripheral blood cytopenias. For individuals with peripheral blood cytopenias

without clonal haematopoiesis, termed ‘idiopathic cytopenias of uncertain significance’ (ICUS), the

5-year probability of progression to myeloid malignancy is ∼9%260,261 . In the setting of clonal

haematopoiesis, termed ‘clonal cytopenia of unknown significance’ (CCUS), this risk increases to

82%260,261. Therefore, at present, a simple regular full blood count to identify individuals with

an abnormal RDW or MCV seems a reasonable pre-screening test to identify potentially high-risk

individuals for sequencing. Given clonal haematopoiesis is not just associated with blood cancer,

but also cardiovascular disease, type 2 diabetes, ischemic stroke and overall non-cancer related

mortality3, pursuing the feasibility of screening using population-level DNA sequencing does not

seem an unreasonable goal.

Early AML interception

Clonal haematopoiesis clinics already exist in the USA (e.g. MSKCC, Dana-Farber) and are in

nascent stages in the UK. With the current lack of a clinically validated tool to predict who is at

high-risk of AML, however, current management of these individuals largely consists of counselling

and monitoring. The ultimate goal would be to provide high-risk tolerable targeted treatment that

could stop pre-AML in its tracks before it progresses. The term ‘cancer interception’ was first coined

in 2011 and refers to the ‘detection of pre-cancerous lesions followed by mechanistically based

interventions to prevent the formation of cancer’262.

Whilst historically pharmaceutical companies haven’t been interested in pre-malignant conditions,

"because people don’t die of pre-malignancy"263,264, they are increasingly recognising their impor-

tance. The earlier a cancer is diagnosed and treated, the better the outcome, because the further

the cancer (or pre-cancer) has progressed, the greater the genetic complexity and ability to evade

therapeutics263. A fine balance needs to be struck between treating suspected pre-AML early enough

when genetic complexity is low, but late enough to be certain that the individual is at high risk.
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Within the past 5 years a number of targeted therapies have emerged which, whilst largely intended

for treatment of de facto AML, might offer promise in high-risk clonal haematopoiesis. These include

IDH1 inhibitors (Ivosidenib), IDH2 inhibitors (Enasidenib)265, and JAK2 inhibitors (Ruxolitinib,

Fedtratinib). Hypomethylating agents have been demonstrated to have particular efficacy against

TET2 mutant myeloid malignancies266,267 and high dose vitamin C supplementation has been shown

to limit expansion of TET2-deleted HSPCs268. Splicing factor drugs269,270 and small molecules that

bind to TP53 to restore its normal function271,272 are currently undergoing clinical trials in AML

patients. Allele specific inhibitors that trap and inactivate mutant KRAS (G12C) have also been

described273.

Clinical trials are needed to test these therapies in high risk clonal haematopoiesis. The typical long

latency before AML develops makes it difficult to determine study end-points, although surrogate

end-points such as change in VAF could be used. Great care must be taken to ensure the targeted

therapy is not providing a selective pressure that leads to the emergence of more aggressive clones

resulting in more rapid progression to malignancy.

6.2 Key unanswered questions

Here, using single-timepoint blood sequencing data amassed from ∼50,000-500,0000 individuals

and longitudinal blood samples from 50 pre-AML individuals, we have attempted to map out pre-

leukaemic evolution, from acquisition of the first driver mutation through to just before AML diagnosis.

We have revealed key evolutionary parameters, inferred which specific variants and mCAs are the

fittest and determined the timings of key steps in the evolution to AML. However, several key questions

remain unanswered:

What happens in the final stages in the progression to AML?

The closest longitudinal sample we have to AML diagnosis is ∼ 3 months which means we are

unlikely to have visualised the full evolutionary history preceding AML. We are attempting to obtain

surplus bone marrow aspirate slides from the time of AML diagnosis, which will be invaluable for

determining the events that trigger the final stage of evolution to AML.

What determines the different patterns of pre-leukaemic evolution?

Why some individuals showed a particular pre-leukaemic evolution pattern and others showed a

different one is unknown. Is it due to inter-person variability in overall mutation rates, the specific

combination and sequence of mutations acquired or bone marrow microenvironment differences? It is

possible that some of the individuals in UKCTOCS developed MDS or MPN before they developed

AML and that these are associated with particular evolutionary patterns, although why this would

be requires further research. We are attempting to obtain information from NHS Hospital Episode
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Statistics (HES) database and the Office of National Statistics (ONS) to determine if MDS or MPN

preceding AML in any of the individuals. It is also unclear what triggers ‘late’ AML to occur. Is a

single mutation sufficient to progress to AML and they were just unlucky that this occurred? Are

there earlier drivers that we have missed with our targeted approach? Do they have a permissive

germline background that results in considerable clonal expansion when a driver mutation occurs?

Obtaining the diagnostic bone marrow aspirate slides, performing whole genome sequencing and

analysing germline mutations will all shed light on these questions.

What role does the immune system play in clonal dynamics?

The extent to which the immune system shapes pre-leukaemic evolution is also an important area

for further research. ‘Tumour mass dormancy’, where clonal growth and immune-mediated cell

death occur at similar rates has been described in other cancers218,219, and may explain the static

evolution observed in samples. Selective pressures exerted by the immune system are also likely to

be important. Indeed, recent work in the lung has highlighted the strong selection pressure exerted

by the immune microenvironment, producing multiple routes to immune evasion, including loss of

heterozygosity in human leucocyte antigens (HLA) and/or depletion of expressed neoantigens274.

Analysis of 26 tumour types from TCGA data has shown that immune-mediated negative selection

acts on MHC-exposed regions of native epitopes275.

The importance of the ‘systemic inflammatory landscape’ in clonal haematopoiesis has become in-

creasingly recognised. Individuals with TET2 mutations have been found to have increased circulating

levels of IL-8, IL-6 and IL1-β 112,276,277. Individuals with DNMT3A or ASXL1 mutations also have

elevated IL-6 and individuals with SF3B1 have elevated IL-18277. Evidence from TET2 knockout

mice suggests that dysregulated inflammation (e.g. due to infection or inflammatory disorder) confers

a selective advantage to the mutant clone, but that the mutant clones themselves then contribute to

the inflammatory milieu, setting in motion a perpetuating cycle of expansion and inflammation278.

The precise way in which infection and inflammation interact with clonal dynamics is unknown.

To investigate this we have set up a small cohort study (‘LEGACY’: Longitudinal Evaluation of

the Growth and Acquisition of Clones over Years) of initially 20 individuals, who will all supply a

blood and saliva sample once every 6 weeks, as well as answer a questionnaire related to their health,

lifestyle, medications and infections. They will also be provided with a Fitbit to monitor activity

levels. By undertaking DNA sequencing, cytokine analysis and immunoprofiling, this study will

hopefully shed some light on how health and lifestyle, including infection and inflammation, interact

with clonal haematopoiesis.

6.3 Conclusion

Our quantitative analysis of clonal haematopoiesis, combined with an integrated assessment of genetic

changes in longitudinal blood samples from individuals who progress to AML reveals important
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insights into the evolutionary dynamics of mutations in the years preceding AML. As we get closer to

understanding which features distinguish pre-malignant from benign clonal evolution it is incumbent

that prospective clinical trials of potential tolerable therapeutics continues alongside. With the advent

of targeted therapies, the vision of treating high-risk pre-AML may soon become a reality and pre-

AML will simply become a chronic disease. In the words of Jan et al, over time, hopefully ‘we will

spend less time treating malignant catastrophes and more time preventing them’236.
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To determine the expected distribution of clone sizes (VAFs) at a particular time (t), under the

branching process model of HSC dynamics, it is important to consider:

• How large a clone is that has survived to time t

• How likely is it that a clone survives to time t

A.1.1 Neutral mutations (s = 0)

We first consider the behaviour of cells that have acquired a neutral mutation, and are thus behaving

according to normal homeostasis (i.e. when the average offspring per stem cell division is 1).

How large is a neutral clone that has survived to time t?

If the variance in the number of offspring from 1 cell per generation, is σ2, then the variance in

the number of offspring from n cells per generation, is nσ2 and after t generations is tnσ2. If, for

example, we want to know how long it takes for the number of cells to double (i.e. n to increase to

n2), then:

n2 = tnσ
2 ⇒ t =

n
σ2 ⇒ t = n (A.1)

(for a Poisson distribution, σ
2 = 1)

Therefore it takes approximately n generations for a clone of size n to change by n cells. From this

we can infer, that if there are n cells in a clone (with no fitness effect), then the clone originated as a

single cell t = n generations ago and grew roughly linearly by drift.

How likely is it that a neutral clone survives to time t, due to drift?

Because the average offspring per stem cell per generation is 1, we can infer:

1 = P(alive|t)× size at time t if alive)+P(extinct|t)× size at time t if extinct)

1 = P(alive|t)× t)+P(extinct|t)×0)

P(alive|t) = 1
t

because we know t = n, P(n|t) = 1
n

(A.2)

Therefore for a single neutral clone, the probability of still being alive after time t is ∼ 1
t and the size

of the clone is t.
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What is the distribution of VAFs at time t, due to drift?

Clones with sizes in the interval range dn must have entered the population n generations ago, with

the probability of the clone surviving being 1
n . Therefore, if a neutral mutation occurs in the cells at a

rate of Nµ (total number of HSCs × mutation rate), the number of mutant cells alive in the interval

dn can be calculated as follows:

Probability of mutant cells being alive at time t =
1
n

Number of mutant cells born n generations ago = Nµdt

Number of mutant clones alive in the interval dn = P(alive|t)×number born

=
Nµ

n
dn

This assumes that clones can be infinitely old, when in fact the oldest a clone can be after time t is t

and so there is an exponential ‘cut-off’ due to the distribution of those single mutants that entered at

time t = 0, i.e:

=
Nµ

n
e

n
t dn (A.3)

Changing ‘cell numbers’ to variant allele frequencies ( f ) requires the substitution:

f =
n

2N
and d f =

dn
2N

and dn = 2Nd f

This gives the following distribution for the VAFs of neutral mutations (changing by drift):

ρ( f ) =
2Nµ

f
e−

f
φ where φ =

t
2N

(A.4)

A.1.2 Beneficial mutations (s > 0)

We next consider how the behaviour of cells changes if a beneficial mutation (s > 0) is acquired, such

that the average offspring per generation changes from 1 to 1+ s.

How large is a beneficial clone that has survived to time t?

When considering the characteristic size of a clone with a beneficial mutation, that has been alive for t

generations, we have to account for exponential growth, such that characteristic size of the clone after

time t is:

n ∼ est −1
s

(A.5)
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When st ≪ 1 (i.e. early in the clone’s life):

est −1
s

≈ st
s

⇒ n ∼ t (A.6)

So, when st ≪ 1), the clone behaves neutrally and grows linearly with time.

When st ≫ 1, however, the size of the clone is dominated by:

n ∼ est

s
(A.7)

Therefore when st ≫ 1, selection dominates over drift and the clone grows exponentially over time.

The point at which this occurs (1/s) is called the ‘establishment’ time (Figure A.1). The greater the

fitness effect (s), the quicker clones will ‘establish’.

drift dominates over selection
selection dominates over drift

“establishment time”
when n > 1/s

cl
on

e 
si

ze

0 10 20 30 40 50 60 70 80

100,000

10,000

1000

100

10

1

time (generations)

Figure A.1 Growth trajectory of a mutant clone with fitness effect s. When n < 1/s, drift dominates over selection
and the mutant clone grows linearly with time. When n > 1/s, the clone ‘establishes’ and grows exponentially.

What is the distribution of VAFs at time t for beneficial mutations?

This distribution of VAFs for beneficial mutations is the same as for neutral mutations, except φ now

takes into account the exponential growth of the clones:

ρ( f ) =
2Nµ

f
e−

f
φ where φ =

est −1
2Ns

(A.8)

This expression, for the distribution of VAFs, assumes that the expanding clone does not contribute to

the total number of cells. A more accurate expression is to change 2 f = n
N to 2 f = n

(n+N) , giving:

ρ( f ) =
2Nµ

f (1−2 f )
e−

f
φ(1−2 f ) where φ =

est −1
2Ns

(A.9)

Considering time in years, rather than HSC generations, this gives the expression shown in the main

text:

ρ( f ) =
2Nτµ

f (1−2 f )
e−

f
φ(1−2 f ) where φ =

est −1
2Nτs

(A.10)
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b

a

Figure A.2 Panel ‘footprint’ for DNMT3A and TET2 for each of the studies included in our analysis. Each vertical
line represents an amino acid position at which a variant had the potential to be called in that study. A missense variant is
possible at any amino acid position and so an absence of missense vertical lines represents sites that were not included by
the study. Not all amino acid positions have potential nonsense variants and so an absence of nonsense vertical lines could
either represent a position that does not have the potential to have a nonsense variant or a position that was not included
by the study. a. DNMT3A panel footprints. Missense variants shown in light blue, nonsense variants in dark blue and
DNMT3A R882H variants in red. PWWP: Pro-Trp-Trp-Pro domain, ADD: ATRX-DNMT3A-DNMT3L domain, MTase:
Methyltransferase domain. b. TET2 panel footprints. Missense variants shown in light green, nonsense variants in dark
green. The majority of studies annotated variants using the NM_001127208 transcript (top plot), although the NM_017628
transcript was used by Genovese 20144 (bottom plot). McKerrel 20156 did not target TET2 in their panel.
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b

a

Figure A.3 Panel ‘footprint’ for ASXL1 and TP53 for each of the studies included in our analysis. Each vertical
line represents an amino acid position at which a variant had the potential to be called in that study. A missense variant is
possible at any amino acid position and so an absence of missense vertical lines represents sites that were not included by
the study. Not all amino acid positions have potential nonsense variants and so an absence of nonsense vertical lines could
either represent a position that does not have the potential to have a nonsense variant or a position that was not included by
the study. a. ASXL1 panel footprints. Missense variants shown in light purple, nonsense variants in dark purple. The
majority of studies annotated variants using the NM_015338 transcript. McKerrel 20156 did not target ASXL1 in their
panel. b. TP53 panel footprints. Missense variants shown in light grey, nonsense variants in dark grey. The majority of
studies annotated variants using the NM_001126112 transcript. McKerrel 20156 did not target TP53 in their panel.
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Trinucleotide frequencies across the genome were calculated in R/Bioconductor using the Biostrings

package279, using BS.genome.Hsapiens.UCSC.hg19.

Table A.1 Trinculeotide frequencies across the genome.

Site % of genome Site % of genome Site % of genome Site % of genome

AAA 3.8356 CAA 1.8905 GAA 1.9703 TAA 2.0782
AAC 1.4548 CAC 1.5012 GAC 0.9439 TAC 1.1341
AAG 1.9933 CAG 2.0254 GAG 1.6834 TAG 1.2903
AAT 2.4910 CAT 1.8364 GAT 1.3358 TAT 2.0626
ACA 2.0131 CCA 1.8426 GCA 1.4395 TCA 1.9583
ACC 1.1622 CCC 1.3141 GCC 1.1901 TCC 1.5432
ACG 0.2510 CCG 0.2761 GCG 0.2381 TCG 0.2209
ACT 1.6076 CCT 1.7769 GCT 1.3983 TCT 2.2134
AGA 2.2100 CGA 0.2205 GGA 1.5441 TGA 1.9589
AGC 1.3978 CGC 0.2379 GGC 1.1896 TGC 1.4408
AGG 1.7749 CGG 0.2761 GGG 1.3154 TGG 1.8462
AGT 1.6097 CGT 0.2516 GGT 1.1636 TGT 2.0205
ATA 2.0605 CTA 1.2886 GTA 1.1347 TTA 2.0814
ATC 1.3343 CTC 1.6834 GTC 0.9452 TTC 1.9728
ATG 1.8365 CTG 2.0269 GTG 1.5049 TTG 1.8981
ATT 2.4945 CTT 1.9972 GTT 1.4607 TTT 3.8502
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Table A.2 Variant-specific mutation rates for the top 20 most commonly observed variants. Calculated
using the site-specific mutation rates (Table 2.2 in Section 2.3.1) for the nucleotide change (and its trinucleotide
context) that gives rise to the variant.

Variant Trinucleotide Context µ (×10−9 /year)

DNMT3A R320* C[C>T]G 14.15
DNMT3A R326C C[C>T]G 14.15
DNMT3A R598* G[C>T]G 18.82
DNMT3A R729W C[C>T]G 14.15
DNMT3A Y735C T[A>G]C 0.88
DNMT3A R736C C[C>T]G 14.15
DNMT3A R736H C[G>A]C 18.82
DNMT3A R771* G[C>T]G 18.82
DNMT3A R882C C[C>T]G 14.15
DNMT3A R882H C[G>A]C 18.82
DNMT3A W860R A[T>A]G, A[T>C]G 1.99
DNMT3A P904L C[C>T]G 14.15
GNB1 K57E C[A>G]A 0.54
IDH2 R140Q C[G>A]G 14.15
JAK2 V617F T[G>T]T 1.33
SF3B1 K666N A[G>T]A, A[G>C]A 0.97
SF3B1 K700E G[A>G]A 0.54
SRSF2 P95H C[C>A]C 0.81
SRSF2 P95L C[C>T]C 2.65
SRSF2 P95R C[C>G]C 0.46

Table A.3 Study-specific mutation rates for non-synonymous DNMT3A, TET2, ASXL1, TP53 variants
and all synonymous variants. Calculated by summing the site-specific mutation rates (Table 2.2 in Section
2.3.1) across the regions of the gene covered by each study.

Non-synonymous µ (×10−9 /year) Synonymous µ

(×10−9 /year)DNMT3A TET2 ASXL1 TP53

Jaiswal 20143 894 523 625 787 -
Genovese 20144 6130 557 609 609 -
McKerrel 20156 36 - - - -
Zink 20179 1600 1960 1140 1620 -
Coombs 201775 8470 13100 12000 3430 -
Acuna-Hidalgo 20178 819 313 178 927 2730
Young 2016 & 20197,39 8470 13000 7100 3430 85000
Desai 201838 8470 13000 11900 3430 -
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Figure A.4 Parameter estimation for the top 20 most commonly observed CH variants: part 1. Nτ and the standard
deviation of ages (σ ) were fixed to that inferred from DNMT3A R882H and maximum likelihood approaches were used to
infer s for each variant, as well as the increase of µ relative to the µ estimated from the variant’s site-specific trinucleotide
context (Table A.2). Each study is represented by a shaped symbol as described in Figure 2.6 (Section 2.4).
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Figure A.5 Parameter estimation for the top 20 most commonly observed CH variants: part 2. Nτ and the standard
deviation of ages (σ ) were fixed to that inferred from DNMT3A R882H and maximum likelihood approaches were used to
infer s for each variant, as well as the increase of µ relative to the µ estimated from the variant’s site-specific trinucleotide
context (Table A.2). Each study is represented by a shaped symbol as described in Figure 2.6.
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A.4.2 Parameter estimation for distribution of fitness effects in CH genes

Supplementary material for Section 2.5.2
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Figure A.6 Parameter estimation for distribution of fitness effects of nonsynonymous variants within
commonly mutated CH genes. a. DNMT3A. b. TET2. c. ASXL1. d. TP53. Each study is represented by a
shaped symbol as described in Figure 2.6 (Section 2.4).
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A.5 Highly fit variants are enriched in pre-AML

A.5 Highly fit variants are enriched in pre-AML

Supplementary material for Section 2.12

Table A.4 Number of individuals with high-fitness or lower-fitness variants in Desai 201838, Abelson
201877 and Young 201939. ‘High-fitness variant’ refers to any of the 20 highly fit variants we identified
in Figure 2.8 (Section 2.5.1). ‘Lower-fitness variant’ refers to any other single nucleotide variant (SNV). If
an individual had both a high-fitness and a low-fitness variant they were included in only the ’high-fitness’
category.

Desai 201838 AML cases controls

no. of individuals in study 188 181
High fitness variant 63 11
Lower fitness variant 66 37

Abelson 2018 77 AML cases controls

no. of individuals in study 124 676
High fitness variant 27 28
Lower fitness variant 56 184

Young 201939 AML cases controls

no. of individuals in study 34 69
High fitness variant 16 15
Lower fitness variant 18 49

TOTAL AML cases controls

no. of individuals 346 926
High fitness variant 106 54
Lower fitness variant 148 306
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Figure B.1 mCAs detected among ∼ 500,000 UK Biobank participants: part 1. Each mCA is represented as a
horizontal line. Gain events are shown in red, loss events in blue and CN-LOH events in yellow. Genes recurrently mutated
in clonal haematopoiesis or haematological malignancies which may be putative target genes for loss, gain or CN-LOH
events are labelled in blue, red and orange respectively.
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Figure B.2 mCAs detected among ∼ 500,000 UK Biobank participants: part 2. Each mCA is represented as a
horizontal line. Gain events are shown in red, loss events in blue and CN-LOH events in yellow. Genes recurrently mutated
in clonal haematopoiesis or haematological malignancies which may be putative target genes for loss, gain or CN-LOH
events are labelled in blue, red and orange respectively.
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Table B.1 Fitness effects and mutation rates for gain events. The fitness effects and mutation rates were only calculated
if the mCA was observed at least 8 times. Fitness effects and mutation rates were only calculated using data from individuals
who had a single mCA.

Observed number Fitness effect (s)
(% per year)

Mutation rate (µ)
(×10−9/ year)

mCA Single mCA + 1 other + ≥ 2 other s s 95% C.I. µ µ 95% C.I.

1p+ 23 2 1 14.19 13.13 - 17.21 0.37 0.11 - 0.70
1q+ 15 7 14 14.13 12.71 - 20.43 0.15 0.03 - 0.28
2p+ 8 2 6 14.74 13.27 - 47.55 0.15 0.00 - 0.37
3+ 30 39 32 15.95 14.88 - 18.55 0.16 0.08 - 0.23
3p+ 8 0 4 13.67 12.45 - 47.55 0.32 0.00 - 0.97
3q+ 17 17 26 14.3 12.77 - 20.04 0.14 0.04 - 0.25
5+ 21 0 6 9.13 8.30 - 11.35 1.66 0.34 - 3.97
5p+ 32 5 4 10.3 9.52 - 11.66 1.91 0.63 - 3.66
5q+ 9 5 5 15.71 13.86 - 47.64 0.08 0.01 - 0.18
6p+ 13 4 5 14.47 12.59 - 46.02 0.29 0.01 - 0.74
6q+ 8 0 0 12.86 11.98 - 47.52 0.72 0.01 - 2.00
8+ 75 15 30 17.84 17.14 - 18.96 0.32 0.24 - 0.40
9+ 46 14 10 18.44 17.43 - 20.29 0.16 0.11 - 0.22
9p+ 8 5 2 13.35 11.89 - 47.46 0.11 0.00 - 0.25
9q+ 18 5 4 14 12.59 - 18.96 0.15 0.04 - 0.25
12+ 276 112 100 16.68 16.32 - 17.11 1.14 1.00 - 1.28
12q+ 16 7 7 14.71 13.21 - 23.5 0.15 0.03 - 0.28
14q+ 147 8 7 14.35 13.89 - 14.87 1.38 1.08 - 1.66
15q+ 206 15 2 12.62 12.27 - 12.98 2.71 2.19 - 3.22
17q+ 9 5 5 15.06 13.27 - 46.73 0.14 0.01 - 0.31
18+ 47 44 80 13.84 13.04 - 15.15 0.38 0.23 - 0.52
18q+ 10 7 10 15.71 13.55 - 46.12 0.07 0.01 - 0.13
21q+ 125 13 14 11.15 10.73 - 11.65 2.61 1.86 - 3.34
22q+ 155 23 13 11.1 10.77 - 11.48 5.17 3.72 - 6.68
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Table B.2 Fitness effects and mutation rates for loss events. The fitness effects and mutation rates were only calculated
if the mCA was observed at least 8 times. Fitness effects and mutation rates were only calculated using data from individuals
who had a single mCA.

Observed number Fitness effect (s)
(% per year)

Mutation rate (µ)
(×10−9/ year)

mCA Single mCA + 1 other + ≥ 2 other s s 95% C.I. µ µ 95% C.I.

1p- 17 6 19 14.32 12.92 - 47.58 0.23 0.04 - 0.39
1q- 19 8 15 16.02 14.33 - 48.45 0.32 0.08 - 0.51
2p- 106 25 16 14.30 13.62 - 15.56 3.08 1.70 - 4.34
2q- 34 7 11 18.94 16.48 - 48.51 0.31 0.15 - 0.47
3p- 26 7 9 23.27 17.86 - 48.47 0.17 0.11 - 0.29
3q- 15 2 5 15.55 14.64 - 48.43 0.27 0.06 - 0.42
4q- 85 16 13 16.29 14.99 - 41.81 1.21 0.43 - 1.80
5q- 121 18 16 14.19 13.64 - 15.11 1.44 1.01 - 1.83
6p- 18 5 5 16.77 15.10 - 48.45 0.17 0.06 - 0.27
6q- 33 14 34 13.61 12.71 - 16.70 0.47 0.18 - 0.72
7p- 24 9 4 16.49 15.10 - 48.45 0.21 0.08 - 0.31
7q- 65 32 32 14.47 13.69 - 16.35 0.78 0.42 - 1.09
8p- 20 9 22 16.97 15.71 - 48.37 0.13 0.05 - 0.18
8q- 8 4 4 20.30 14.98 - 48.41 0.09 0.04 - 0.26
9q- 28 4 6 15.37 14.33 - 47.67 0.34 0.09 - 0.51
10q- 252 8 19 11.97 11.69 - 12.29 4.35 3.54 - 5.06
11p- 28 7 7 14.19 13.17 - 27.40 0.60 0.11 - 1.06
11q- 178 34 26 13.03 12.65 - 13.49 2.56 1.96 - 3.05
12p- 17 4 9 12.70 11.63 - 45.92 0.70 0.05 - 1.67
12q- 24 5 15 13.97 13.27 - 45.92 0.51 0.08 - 0.81
13q- 337 128 102 15.85 15.19 - 16.85 3.79 2.90 - 4.51
14q- 68 50 39 15.96 14.90 - 39.39 0.78 0.28 - 1.10
15q- 16 11 14 12.77 11.63 - 46.73 0.34 0.04 - 0.72
16p- 104 19 11 14.86 14.18 - 16.79 3.19 1.50 - 4.80
16q- 28 7 6 18.16 16.53 - 48.37 0.23 0.11 - 0.35
17p- 9 79 78 19.71 15.71 - 48.37 0.05 0.02 - 0.09
17q- 44 7 6 14.30 13.52 - 21.60 2.10 0.38 - 3.77
18p- 10 10 10 11.47 10.57 - 47.43 0.26 0.02 - 0.54
18q- 10 8 4 16.78 14.90 - 48.37 0.14 0.04 - 0.24
20- 14 0 2 9.02 8.28 - 42.01 1.51 0.03 - 3.69
20q- 364 32 24 14.21 13.85 - 14.63 6.01 4.83 - 7.06
21q- 22 4 32 13.56 12.45 - 45.10 0.22 0.05 - 0.37
22q- 60 42 33 16.40 14.90 - 46.73 0.73 0.26 - 1.06

.
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Table B.3 Fitness effects and mutation rates for CNLOH events. The fitness effects and mutation rates were only
calculated if the mCA was observed at least 8 times. Fitness effects and mutation rates were only calculated using data from
individuals who had a single mCA.

Observed number Fitness effect (s)
(% per year)

Mutation rate (µ)
(×10−9/ year)

mCA Single mCA + 1 other + ≥ 2 other s s 95% C.I. µ µ 95% C.I.

1= 64 6 1 11.52 10.90 - 12.53 0.66 0.42 - 0.86
1p= 588 35 19 12.39 12.15 - 12.64 5.71 5.09 - 6.29
1q= 432 22 10 11.49 11.24 - 11.73 5.25 4.56 - 5.91
2= 12 1 0 7.84 6.84 - 45.41 1.01 0.02 - 3.10
2p= 95 4 2 11.99 11.50 - 12.71 1.12 0.80 - 1.43
2q= 139 8 3 11.12 10.71 - 11.63 2.21 1.64 - 2.77
3p= 106 8 4 10.85 10.42 - 11.40 1.74 1.24 - 2.26
3q= 92 7 3 10.81 10.29 - 11.43 1.75 1.20 - 2.33
4= 19 7 1 12.61 11.15 - 45.87 0.17 0.04 - 0.28
4p= 39 1 3 13.22 12.28 - 17.01 0.40 0.16 - 0.57
4q= 161 13 1 15.18 14.30 - 16.95 0.94 0.68 - 1.13
5p= 14 0 0 11.70 10.19 - 47.46 0.19 0.03 - 0.36
5q= 109 3 2 12.48 11.93 - 13.21 1.05 0.77 - 1.31
6p= 211 15 6 11.58 11.27 - 11.98 3.02 2.43 - 3.53
6q= 55 4 10 11.31 10.62 - 12.36 1.01 0.60 - 1.41
7p= 59 1 2 13.65 12.71 - 16.01 0.45 0.26 - 0.59
7q= 95 10 4 11.68 11.14 - 12.37 1.34 0.95 - 1.72
8p= 31 1 0 13.77 12.45 - 45.10 0.26 0.08 - 0.38
8q= 84 4 2 12.08 11.56 - 12.87 1.22 0.80 - 1.62
9= 59 4 5 9.44 8.82 - 10.29 1.31 0.77 - 1.89
9p= 275 38 14 14.82 14.22 - 15.76 2.28 1.75 - 2.68
9q= 286 17 7 12.86 12.48 - 13.28 2.70 2.25 - 3.05
10p= 37 2 1 13.17 12.28 - 17.31 0.30 0.13 - 0.42
10q= 74 9 4 12.17 11.56 - 13.11 0.96 0.63 - 1.25
11= 15 2 0 10.05 8.76 - 42.98 0.28 0.03 - 0.55
11p= 452 19 4 13.41 13.07 - 13.80 3.98 3.46 - 4.44
11q= 346 28 9 12.52 12.21 - 12.88 3.59 3.06 - 4.10
12= 9 1 2 6.39 5.00 - 47.00 2.47 0.02 - 17.89
12p= 35 5 1 12.04 11.14 - 14.08 0.50 0.22 - 0.77
12q= 186 8 4 12.43 12.04 - 12.96 1.80 1.44 - 2.13
13q= 380 43 20 13.04 12.69 - 13.42 3.41 2.93 - 3.83
14q= 636 44 24 12.43 12.19 - 12.66 5.98 5.31 - 6.56
15q= 383 20 4 11.15 10.89 - 11.39 5.39 4.59 - 6.01
16= 40 1 2 9.90 9.22 - 11.060 0.99 0.50 - 1.60
16p= 222 13 10 12.09 11.73 - 12.46 2.95 2.35 - 3.42
16q= 171 5 6 11.42 11.08 - 11.86 2.41 1.87 - 2.86
17= 10 1 3 8.77 8.00 - 47.00 0.39 0.02 - 0.84
17p= 84 8 6 13.16 12.52 - 14.46 0.91 0.58 - 1.17
17q= 305 13 5 12.36 12.07 - 12.73 3.28 2.75 - 3.78
18p= 14 0 0 10.05 8.76 - 44.73 0.62 0.03 - 1.78
18q= 70 6 2 11.96 11.38 - 12.85 1.05 0.66 - 1.43
19p= 139 2 6 11.36 10.98 - 11.84 2.45 1.81 - 3.05
19q= 159 18 9 12.33 11.92 - 12.84 2.14 1.61 - 2.59
20= 10 2 0 13.47 12.35 - 48.33 0.07 0.02 - 0.10
20p= 38 1 0 11.75 10.96 - 13.41 0.75 0.35 - 1.14
20q= 143 6 4 12.34 11.92 - 12.96 1.68 1.27 - 2.06
21q= 131 6 1 11.61 11.22 - 12.14 2.24 1.64 - 2.77
22q= 292 26 7 14.22 13.73 - 14.92 2.30 1.87 - 2.69
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Figure B.3 Parameter estimation for individual mCAs: gains: part 1. The cell fraction probability density histogram
is shown for each mCA (datapoints) with the theory distribution (solid line) fitted using maximum likelihood approaches.
Error bars represent sampling noise. Grey vertical dashed line shows the fitted φ parameter ( est−1

Ns ), where the exponential
fall-off in densities occurs. The white cross on the maximum likelihood heatmap marks the most likely µ and s.
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Figure B.4 Parameter estimation for individual mCAs: gains: part 1. The cell fraction probability density histogram
is shown for each mCA (datapoints) with the theory distribution (solid line) fitted using maximum likelihood approaches.
Error bars represent sampling noise. Grey vertical dashed line shows the fitted φ parameter ( est−1

Ns ), where the exponential
fall-off in densities occurs. The white cross on the maximum likelihood heatmap marks the most likely µ and s.
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Figure B.5 Parameter estimation for individual mCAs: losses: part 1. The cell fraction probability density histogram
is shown for each mCA (datapoints) with the theory distribution (solid line) fitted using maximum likelihood approaches.
Error bars represent sampling noise. Grey vertical dashed line shows the fitted φ parameter ( est−1

Ns ), where the exponential
fall-off in densities occurs. The white cross on the maximum likelihood heatmap marks the most likely µ and s.
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Figure B.6 Parameter estimation for individual mCAs: losses: part 2. The cell fraction probability density histogram
is shown for each mCA (datapoints) with the theory distribution (solid line) fitted using maximum likelihood approaches.
Error bars represent sampling noise. Grey vertical dashed line shows the fitted φ parameter ( est−1

Ns ), where the exponential
fall-off in densities occurs. The white cross on the maximum likelihood heatmap marks the most likely µ and s.
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Figure B.7 Parameter estimation for individual mCAs: losses: part 3. The cell fraction probability density histogram
is shown for each mCA (datapoints) with the theory distribution (solid line) fitted using maximum likelihood approaches.
Error bars represent sampling noise. Grey vertical dashed line shows the fitted φ parameter ( est−1

Ns ), where the exponential
fall-off in densities occurs. The white cross on the maximum likelihood heatmap marks the most likely µ and s.
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Figure B.8 Parameter estimation for individual mCAs: CN-LOH: part 1. The cell fraction probability density
histogram is shown for each mCA (datapoints) with the theory distribution (solid line) fitted using maximum likelihood
approaches. Error bars represent sampling noise. Grey vertical dashed line shows the fitted φ parameter ( est−1

Ns ), where the
exponential fall-off in densities occurs. The white cross on the maximum likelihood heatmap marks the most likely µ and s.
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Figure B.9 Parameter estimation for individual mCAs: CN-LOH: part 2. The cell fraction probability density
histogram is shown for each mCA (datapoints) with the theory distribution (solid line) fitted using maximum likelihood
approaches. Error bars represent sampling noise. Grey vertical dashed line shows the fitted φ parameter ( est−1

Ns ), where the
exponential fall-off in densities occurs. The white cross on the maximum likelihood heatmap marks the most likely µ and s.
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Figure B.10 Parameter estimation for individual mCAs: CN-LOH: part 3. The cell fraction probability density
histogram is shown for each mCA (datapoints) with the theory distribution (solid line) fitted using maximum likelihood
approaches. Error bars represent sampling noise. Grey vertical dashed line shows the fitted φ parameter ( est−1

Ns ), where the
exponential fall-off in densities occurs. The white cross on the maximum likelihood heatmap marks the most likely µ and s.
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Figure B.11 Parameter estimation for individual mCAs: CN-LOH: part 4. The cell fraction probability density
histogram is shown for each mCA (datapoints) with the theory distribution (solid line) fitted using maximum likelihood
approaches. Error bars represent sampling noise. Grey vertical dashed line shows the fitted φ parameter ( est−1

Ns ), where the
exponential fall-off in densities occurs. The white cross on the maximum likelihood heatmap marks the most likely µ and s.
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B.3 Sex differences in mCA fitness effects and mutation rates

Supplementary material for Section 3.4.1

Table B.4 Sex-specific fitness effects and mutation rates for gain events. The fitness effects and mutation rates were
only calculated if the mCA was observed at least 10 times. Fitness effects and mutation rates were only calculated using
data from individuals who had a single mCA. The ‘observed number’ refers to the number of individuals who had the mCA
as their only mCA. p-values were calculated from the area under the distribution of difference probability curve where the
difference ≤ 0.

Observed number Fitness effect (s) (% per year) mCA-specific mutation rate (µ) (×10−9/ year)

mCA Men Women Male
s

Male s
95% C.I.

Female
s

Female s
95% C.I.

p-value
(s)

Male
µ

Male µ

95% C.I.
Female

µ

Female µ

95% C.I.
p-value

(µ)

1p+ 9 14 - - 14.17 13.27 - 31.22 - - - 0.47 0.02 - 1.03 -
1q+ 5 10 - - 14.96 13.27 - 45.92 - - - 0.13 0.01 - 0.24 -
3+ 20 10 16.14 14.85 - 20.57 7.93 6.90 - 45.10 2.3×10−1 0.25 0.09 - 0.39 1.54 0.01 - 5.08 1.1×10−1

5+ 14 7 7.68 6.63 - 14.39 - - - 7.46 0.15 - 29.65 - - -
5p+ 20 12 9.91 9.14 - 12.57 11.39 10.19 - 39.84 1.0×10−1 3.58 0.56 - 9.62 0.55 0.01 - 1.23 2.5×10−2

8+ 30 45 17.49 16.24 - 20.29 17.27 16.29 - 18.90 3.8×10−1 0.28 0.15 - 0.40 0.38 0.24 - 0.52 1.4×10−1

9+ 27 19 16.66 15.45 - 19.69 19.99 18.57 - 29.29 2.9×10−2 0.27 0.13 - 0.38 0.09 0.03 - 0.14 5.2×10−3

9q+ 7 11 - - 12.51 11.43 - 43.14 - - - 0.23 0.01 - 0.43 -
12+ 148 128 17.17 16.64 - 17.79 14.08 13.61 - 14.65 < 10−10 1.17 0.98 - 1.35 1.85 1.44 - 2.23 1.1×10−3

12q+ 3 13 - - 15.18 13.27 - 41.02 - - - 0.18 0.02 - 0.36 -
14q+ 87 60 14.89 14.29 - 15.66 13.15 12.46 - 14.14 3.2×10−3 1.54 1.12 - 1.96 1.36 0.87 - 1.91 3.3×10−1

15q+ 162 44 11.75 11.42 - 12.15 14.26 13.42 - 15.77 4.7×10−8 6.64 5.14 - 8.30 0.57 0.34 - 0.77 < 10−10

18+ 23 24 12.77 11.69 - 15.86 14.01 12.79 - 16.86 2.0×10−1 0.49 0.18 - 0.81 0.35 0.14 - 0.55 2.3×10−1

21q+ 85 40 11.62 11.14 - 12.36 8.12 7.51 - 9.08 6.7×10−6 3.03 2.04 - 4.01 16.33 4.94 - 35.56 1.1×10−3

22q+ 68 87 10.31 9.85 - 10.97 11.42 10.93 - 12.06 8.2×10−3 7.51 4.24 - 11.38 4.45 2.88 - 6.21 5.5×10−2

Table B.5 Sex-specific fitness effects and mutation rates for loss events. The fitness effects and mutation rates were
only calculated if the mCA was observed at least 10 times. Fitness effects and mutation rates were only calculated using
data from individuals who had a single mCA. The ‘observed number’ refers to the number of individuals who had the mCA
as their only mCA. p-values were calculated from the area under the distribution of difference probability curve where the
difference ≤ 0.

Observed number Fitness effect (s) (% per year) mCA-specific mutation rate (µ) (×10−9/ year)

mCA Men Women Male
s

Male s
95% C.I.

Female
s

Female s
95% C.I.

p-value
(s)

Male
µ

Male µ

95% C.I.
Female

µ

Female µ

95% C.I.
p-value

(µ)

1q- 10 9 16.53 14.08 - 48.37 - - - 0.39 0.09 - 0.91 - - -
2p- 42 64 14.53 13.47 - 22.65 14.30 13.47 - 16.59 3.4×10−1 2.12 0.50 - 3.68 3.41 1.34 - 5.16 1.8×10−1

2q- 19 15 20.47 16.53 - 48.37 20.14 15.71 - 48.37 4.9×10−1 0.28 0.15 - 0.48 0.24 0.12 - 0.51 3.8×10−1

3p- 11 15 22.23 16.33 - 48.47 28.15 17.09 - 48.47 4.7×10−1 0.16 0.09 - 0.35 0.15 0.10 - 0.27 5.2×10−1

3q- 5 10 - - 14.14 13.27 - 48.37 - - - 0.46 0.06 - 0.81 -
4q- 40 45 15.46 14.08 - 46.73 17.35 15.71 - 48.37 2.8×10−1 1.49 0.37 - 2.43 0.90 0.37 - 1.3 2.1×10−1

5q- 35 86 15.94 14.9 - 47.55 13.53 12.98 - 14.45 3.1×10−3 0.56 0.21 - 0.80 2.26 1.46 - 2.96 1.9×10−5

6p- 7 11 - - 19.37 15.71 - 48.37 - - - 0.14 0.06 - 0.26 -
6q- 20 13 13.63 12.29 - 46.57 13.12 12.29 - 48.29 6.1×10−1 0.54 0.10 - 0.87 0.41 0.05 - 0.75 4.0×10−1

7p- 6 18 - - 18.13 15.71 - 48.37 - - - 0.21 0.09 - 0.3 -
7q- 33 32 15.25 14.08 - 45.92 13.25 12.45 - 16.12 4.9×10−2 0.74 0.21 - 1.14 0.91 0.33 - 1.5 2.6×10−1

8p- 12 8 15.68 14.08 - 48.37 - - - 0.22 0.06 - 0.33 - - -
9q- 11 17 17.36 14.9 - 48.37 14.41 13.27 - 48.37 3.3×10−1 0.14 0.05 - 0.22 0.60 0.10 - 1.05 7.2×10−2

10q- 55 197 11.81 11.14 - 12.86 11.39 11.07 - 11.75 1.4×10−1 2.12 1.21 - 2.98 8.15 6.42 - 9.99 3.5×10−8

11p- 16 12 13.37 12.45 - 47.55 16.15 14.90 - 48.37 2.6×10−1 0.92 0.11 - 1.77 0.26 0.07 - 0.42 1.2×10−1

11q- 118 60 13.38 12.92 - 14.08 12.06 11.47 - 12.94 9.0×10−3 3.23 2.35 - 4.13 2.14 1.29 - 3.05 6.9×10−2

12q- 11 13 15.71 14.08 - 48.37 13.35 12.45 - 48.37 3.6×10−1 0.22 0.06 - 0.34 0.81 0.07 - 1.60 1.5×10−1

13q- 195 142 15.58 14.86 - 16.94 16.35 15.35 - 19.16 1.6×10−1 5.25 3.52 - 6.47 2.32 1.38 - 2.97 5.1×10−4

14q- 38 30 14.93 14.08 - 44.29 18.36 16.53 - 48.37 1.3×10−1 1.16 0.29 - 1.76 0.4 0.19 - 0.58 4.6×10−2

16p- 29 75 15.36 14.08 - 48.37 14.87 14.14 - 17.86 1.2×10−1 1.77 0.35 - 3.02 3.76 1.36 - 5.85 1.1×10−1

16q- 17 11 27.96 17.35 - 48.37 14.47 13.27 - 48.37 3.5×10−1 0.21 0.15 - 0.39 0.29 0.05 - 0.49 6.1×10−1

17q- 18 26 14.01 13.27 - 47.55 14.53 13.27 - 47.55 4.8×10−1 1.70 0.17 - 3.01 2.19 0.25 - 4.66 4.6×10−1

20q- 241 123 14.39 13.98 - 15.02 13.84 13.36 - 14.64 1.2×10−1 7.77 5.93 - 9.40 4.22 2.84 - 5.55 2.0×10−3

21q- 9 13 - - 14.30 13.27 - 48.37 - - - - - 0.19 0.04 - 0.28 -
22q- 27 33 18.67 16.53 - 48.37 15.86 14.90 - 47.55 3.2×10−1 0.47 0.23 - 0.70 0.79 0.23 - 1.22 2.9×10−1
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Table B.6 Sex-specific fitness effects and mutation rates for CNLOH events. The fitness effects and mutation rates
were only calculated if the mCA was observed at least 10 times. Fitness effects and mutation rates were only calculated
using data from individuals who had a single mCA. The ‘observed number’ refers to the number of individuals who had
the mCA as their only mCA. p-values were calculated from the area under the distribution of difference probability curve
where the difference ≤ 0.

Observed number Fitness effect (s) (% per year) mCA-specific mutation rate (µ) (×10−9/ year)

mCA Men Women Male
s

Male s
95% C.I.

Female
s

Female s
95% C.I.

p-value
(s)

Male
µ

Male µ

95% C.I.
Female

µ

Female µ

95% C.I.
p-value

(µ)

1= 25 39 9.99 9.02 - 12.33 12.21 11.43 - 14.29 3.4×10−2 0.95 0.33 - 1.59 0.57 0.30 - 0.82 1.2×10−1

1p= 274 314 12.02 11.69 - 12.38 12.63 12.30 - 12.99 1.1×10−2 6.21 5.14 - 7.19 5.06 4.30 - 5.69 4.1×10−2

1q= 208 224 11.41 11.07 - 11.81 11.37 11.03 - 11.72 4.4×10−1 5.61 4.59 - 6.58 4.92 4.01 - 5.77 1.7×10−1

2p= 42 53 12.35 11.63 - 14.08 10.98 10.33 - 11.92 2.3×10−2 0.99 0.51 - 1.46 1.55 0.89 - 2.17 9.2×10−2

2q= 61 78 11.53 10.90 - 12.53 10.95 10.39 - 11.69 1.3×10−1 1.72 1.05 - 2.40 2.30 1.53 - 3.16 1.5×10−1

3p= 55 51 11.11 10.44 - 12.07 10.14 9.47 - 11.12 6.0×10−2 1.72 1.03 - 2.42 2.02 1.15 - 3.11 3.0×10−1

3q= 48 44 10.62 9.92 - 11.76 11.01 10.35 - 12.26 2.8×10−1 2.07 1.13 - 3.09 1.32 0.72 - 1.92 1.1×10−1

4= 12 7 10.13 8.76 - 46.49 - - - 0.57 0.05 - 1.35 - - -
4p= 18 21 12.76 11.51 - 47.49 11.89 10.57 - 39.71 2.3×10−1 0.53 0.10 - 0.91 0.52 0.09 - 0.91 5.7×10−1

4q= 73 88 16.83 15.73 - 47.77 13.96 13.29 - 15.53 7.1×10−3 0.76 0.43 - 0.96 1.07 0.70 - 1.35 6.1×10−2

5q= 55 54 12.93 12.14 - 14.57 11.26 10.60 - 12.35 9.3×10−3 0.94 0.55 - 1.29 1.50 0.88 - 2.15 5.9×10−2

6p= 94 117 11.45 10.96 - 12.13 11.73 11.27 - 12.34 2.5×10−1 2.92 2.01 - 3.76 2.79 2.08 - 3.53 4.1×10−1

6q= 26 29 12.24 11.40 - 17.09 9.97 9.21 - 11.64 1.3×10−2 0.68 0.21 - 1.05 1.90 0.66 - 3.54 2.6×10−2

7p= 24 35 13.82 12.45 - 46.73 11.97 11.20 - 13.96 3.4×10−2 0.37 0.11 - 0.55 0.80 0.38 - 1.21 3.0×10−2

7q= 43 52 11.89 11.14 - 13.43 11.51 10.82 - 12.61 2.8×10−1 1.04 0.57 - 1.46 1.52 0.85 - 2.17 1.3×10−1

8p= 13 18 13.42 12.45 - 48.37 14.46 13.27 - 48.37 4.7×10−1 0.25 0.06 - 0.38 0.22 0.07 - 0.31 4.9×10−1

8q= 44 40 12.23 11.43 - 13.86 11.48 10.71 - 13.00 1.7×10−1 1.43 0.71 - 2.11 1.11 0.57 - 1.70 2.8×10−1

9= 26 33 10.15 9.29 - 12.41 8.39 7.71 - 9.71 2.2×10−2 0.88 0.33 - 1.50 2.26 0.88 - 3.94 3.3×10−2

9p= 150 125 15.77 14.84 - 18.69 13.74 13.07 - 14.87 5.9×10−3 2.34 1.53 - 2.96 2.18 1.53 - 2.77 4.2×10−1

9q= 128 158 12.13 11.64 - 12.71 13.25 12.73 - 13.96 4.9×10−3 3.06 2.32 - 3.80 2.43 1.86 - 2.97 9.7×10−2

10p= 18 19 11.90 10.51 - 44.73 12.15 11.39 - 44.73 4.6×10−1 0.45 0.08 - 0.77 0.36 0.07 - 0.58 3.6×10−1

10q= 28 46 11.69 10.80 - 14.39 12.22 11.43 - 13.68 3.4×10−1 0.80 0.31 - 1.30 1.09 0.57 - 1.62 2.5×10−1

11= 12 3 10.57 9.63 - 47.37 - - - 0.37 0.04 - 0.67 - - -
11p= 223 229 13.58 13.14 - 14.21 13.24 12.84 - 13.8 1.9×10−1 3.90 3.09 - 4.55 3.76 3.02 - 4.44 4.0×10−1

11q= 187 159 12.32 11.91 - 12.83 12.64 12.21 - 13.23 1.8×10−1 4.31 3.42 - 5.09 2.83 2.18 - 3.45 4.6×10−3

12p= 10 25 8.94 7.76 - 47.24 12.38 11.63 - 36.94 4.5×10−1 1.32 0.04 - 4.22 0.58 0.12 - 0.91 1.1×10−1

12q= 91 95 12.93 12.32 - 13.95 11.65 11.13 - 12.36 5.5×10−3 1.58 1.09 - 1.99 2.15 1.52 - 2.75 7.4×10−2

13q= 196 184 12.58 12.16 - 13.08 13.44 12.92 - 14.16 1.3×10−2 4.26 3.42 - 5.02 2.59 2.03 - 3.02 7.1×10−4

14q= 299 337 12.13 11.83 - 12.48 12.58 12.28 - 12.93 4.0×10−2 6.41 5.47 - 7.30 5.39 4.57 - 6.04 6.2×10−2

15q= 189 194 11.82 11.44 - 12.24 10.15 9.82 - 10.53 7.5×10−9 4.14 3.33 - 4.81 8.21 6.34 - 9.93 1.1×10−5

16= 16 24 9.76 8.42 - 21.37 10.33 9.47 - 12.65 4.4×10−1 0.81 0.09 - 1.67 0.86 0.28 - 1.48 5.1×10−1

16p= 105 117 11.01 10.55 - 11.59 12.7 12.22 - 13.45 5.6×10−5 4.38 3.12 - 5.58 2.32 1.69 - 2.86 2.0×10−3

16q= 84 87 11.31 10.80 - 12.02 11.39 10.86 - 12.14 4.3×10−1 2.67 1.81 - 3.48 2.10 1.44 - 2.77 1.6×10−1

17p= 42 42 12.93 12.14 - 15.57 12.96 12.14 - 15.86 4.8×10−1 0.91 0.40 - 1.30 0.95 0.40 - 1.40 4.6×10−1

17q= 139 166 11.84 11.42 - 12.40 12.66 12.21 - 13.29 1.5×10−2 3.77 2.86 - 4.65 2.84 2.19 - 3.40 5.2×10−2

18p= 10 4 10.51 9.63 - 47.37 - - - 0.78 0.04 - 1.66 - - -
18q= 25 45 11.40 10.43 - 14.29 12.14 11.35 - 13.67 2.9×10−1 0.85 0.29 - 1.50 1.17 0.60 - 1.72 2.6×10−1

19p= 56 83 11.33 10.73 - 12.30 10.98 10.49 - 11.65 2.3×10−1 2.29 1.35 - 3.30 2.90 1.89 - 3.86 2.2×10−1

19q= 81 78 12.73 12.10 - 13.69 11.78 11.22 - 12.61 4.0×10−2 1.96 1.30 - 2.55 2.30 1.51 - 3.07 2.6×10−1

20p= 15 23 11.93 10.67 - 46.65 11.5 10.63 - 15.86 2.2×10−1 0.54 0.07 - 1.04 0.88 0.19 - 1.69 2.4×10−1

20q= 68 75 12.71 12.02 - 13.96 11.99 11.40 - 12.87 1.0×10−1 1.43 0.92 - 1.89 1.79 1.19 - 2.36 2.0×10−1

21q= 62 69 10.71 10.12 - 11.55 11.97 11.40 - 12.87 1.1×10−2 3.37 2.02 - 4.86 1.82 1.16 - 2.51 2.3×10−2

22q= 129 163 13.65 13.01 - 14.66 14.63 13.92 - 15.96 6.7×10−2 2.38 1.69 - 2.96 2.12 1.53 - 2.59 2.7×10−1
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Figure B.12 Sex differences in fitness effects and mutation rates: gains. Only gain events which were observed 10 or
more times in men (with a single mCA) and 10 or more times in women (with a single mCA) are shown. Shaded area,
between the grey dashed vertical lines on the small subplots indicates the 95% confidence interval for the estimated s and µ

values. The coloured vertical dashed line indicates the most likely s and µ values.

211



Supplementary material for Chapter 3
re

la
tiv

e 
de

ns
ity

 o
f  

m
CA

s

106

105

104

103

102

101

0.1 1 10

2p-

fraction of cells (%)
100

female s = 14.3%
female μ = 3.41 x 10-9

 

male s = 14.5%
male μ = 2.12 x 10-9 

male
female

μ (per year)
10-9 10-8

pr
ob

ab
ili

ty

0.08

0.06

0.04

0.02

0

s (% per year)
15 20 25 30

pr
ob

ab
ili

ty

0.16

0.12

0.08

0.04

0

male
female

male
female

re
la

tiv
e 

de
ns

ity
 o

f  
m

CA
s

106

105

104

103

102

101

0.1 1 10

2q-

fraction of cells (%)
100

female s = 20.1%
female μ = 2.36 x 10-10

 

male s = 20.5%
male μ = 2.78 x 10-10 

male
female

pr
ob

ab
ili

ty

0.025
0.020
0.015
0.010
0.005

0

s (% per year)
10 20 30 40 50

pr
ob

ab
ili

ty

0.16

0.12

0.08

0.04

0

μ (per year)
10-10 10-9

male
female

male
female

re
la

tiv
e 

de
ns

ity
 o

f  
m

CA
s

106

105

104

103

102

101

0.1 1 10

3p-

fraction of cells (%)
100

female s = 28.2%
female μ = 1.47 x 10-10

 

male s = 22.2%
male μ = 1.57 x 10-10 

male
female

μ (per year)
10-10 10-9

pr
ob

ab
ili

ty 0.12

0.08

0.04

0

s (% per year)
20 30 40 50

pr
ob

ab
ili

ty

0.025
0.020
0.015
0.010
0.005

0

male
female

male
female

re
la

tiv
e 

de
ns

ity
 o

f  
m

CA
s

106

105

104

103

102

101

0.1 1 10

4q-

fraction of cells (%)
100

female s = 17.4%
female μ = 8.98 x 10-10

 

male s = 15.5%
male μ = 1.49 x 10-9 

male
female

pr
ob

ab
ili

ty

0.16

0.12

0.08

0.04

0

s (% per year)
20 30 40 5010

pr
ob

ab
ili

ty 0.12

0.08

0.04

0

μ (per year)
10-9

male
female

male
female

re
la

tiv
e 

de
ns

ity
 o

f  
m

CA
s

106

105

104

103

102

101

0.1 1 10

5q-

fraction of cells (%)
100

female s = 13.5%
female μ = 2.26 x 10-9

 

male s = 15.9%
male μ = 5.59 x 10-10 

male
female

μ (per year)
10-10 10-9

pr
ob

ab
ili

ty

0.08

0.06

0.04

0.02

0

s (% per year)
10 20 30 40 50

pr
ob

ab
ili

ty

0.12

0.08

0.04

0

male
female

male
female

re
la

tiv
e 

de
ns

ity
 o

f  
m

CA
s

106

105

104

103

102

101

0.1 1 10

6q-

fraction of cells (%)
100

female s = 13.1%
female μ = 4.12 x 10-10

 

male s = 13.6%
male μ = 5.39 x 10-10 

male
female

pr
ob

ab
ili

ty

0.20

0.15

0.10

0.05

0

s (% per year)
10 20 30 40 50

pr
ob

ab
ili

ty

0.10
0.08
0.06
0.04
0.02

0

μ (per year)
10-10

male
female

male
female

re
la

tiv
e 

de
ns

ity
 o

f  
m

CA
s

106

105

104

103

102

101

0.1 1 10

7q-

fraction of cells (%)
100

female s = 13.3%
female μ = 9.08 x 10-10

 

male s = 15.3%
male μ = 7.37 x 10-10 

male
female

μ (per year)
10-10 10-9

pr
ob

ab
ili

ty

s (% per year)

pr
ob

ab
ili

ty

0.16

0.12

0.08

0.04

0

male
female

male
female

re
la

tiv
e 

de
ns

ity
 o

f  
m

CA
s

106

105

104

103

102

101

0.1 1 10

9q-

fraction of cells (%)
100

female s = 14.4%
female μ = 5.99 x 10-10

 

male s = 17.4%
male μ = 1.45 x 10-10 

male
female

pr
ob

ab
ili

ty

0.08

0.06

0.04

0.02

0

pr
ob

ab
ili

ty 0.12
0.08
0.04
0.02

0

μ (per year)
10-10 10-9

male
female

male
female

re
la

tiv
e 

de
ns

ity
 o

f  
m

CA
s

106

105

104

103

102

101

0.1 1 10

10q-

fraction of cells (%)
100

female s = 11.4%
female μ = 8.15 x 10-9

 

male s = 11.8%
male μ = 2.12 x 10-9 

male
female

μ (per year)
10-9 10-8

pr
ob

ab
ili

ty

0.10
0.08
0.06
0.04
0.02

0

s (% per year)
10 11 12 13 14

pr
ob

ab
ili

ty

0.08

0.06

0.04

0.02

0

male
female

male
female

re
la

tiv
e 

de
ns

ity
 o

f  
m

CA
s

106

105

104

103

102

101

0.1 1 10

11p-

fraction of cells (%)
100

female s = 16.2%
female μ = 2.61 x 10-10

 

male s = 13.4%
male μ = 9.24 x 10-10 

male
female

pr
ob

ab
ili

ty 0.12

0.08

0.04

0

s (% per year)
20 3010 40 50

pr
ob

ab
ili

ty

0.12

0.08

0.04

0

μ (per year)
10-10

male
female

male
female

0.08

0.06

0.04

0.02

0

7 x 10-9

10-9

10 20 30 40 50
s (% per year)

10 20 30 40 50

10-11

10-9

Figure B.13 Sex differences in fitness effects and mutation rates: losses: part 1. Only loss events which were observed
10 or more times in men (with a single mCA) and 10 or more times in women (with a single mCA) are shown. Shaded area,
between the grey dashed vertical lines on the small subplots indicates the 95% confidence interval for the estimated s and µ

values. The coloured vertical dashed line indicates the most likely s and µ values.
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Figure B.14 Sex differences in fitness effects and mutation rates: losses: part 2. Only loss events which were observed
10 or more times in men (with a single mCA) and 10 or more times in women (with a single mCA) are shown. Shaded area,
between the grey dashed vertical lines on the small subplots indicates the 95% confidence interval for the estimated s and µ

values. The coloured vertical dashed line indicates the most likely s and µ values.
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Figure B.15 Sex differences in fitness effects and mutation rates: CNLOH: part 1. Only CNLOH events which were
observed 10 or more times in men (with a single mCA) and 10 or more times in women (with a single mCA) are shown.
Shaded area, between the grey dashed vertical lines on the small subplots indicates the 95% confidence interval for the
estimated s and µ values. The coloured vertical dashed line indicates the most likely s and µ values.

214



B.3 Sex differences in mCA fitness effects and mutation rates

re
la

tiv
e 

de
ns

ity
 o

f  
m

CA
s

106

105

104

103

102

101

0.1 1 10

7p=

fraction of cells (%)
100

female s = 12.0%
female μ = 8.01 x 10-10

 

male s = 13.8%
male μ = 3.65 x 10-10 

male
female

pr
ob

ab
ili

ty

0.16

0.12

0.08

0.04

0

s (% per year)
10 20 30 40 50

pr
ob

ab
ili

ty

0.08

0.06

0.04

0.02

0

μ (per year)

male
female

male
female

re
la

tiv
e 

de
ns

ity
 o

f  
m

CA
s

106

105

104

103

102

101

0.1 1 10

7q=

fraction of cells (%)
100

female s = 11.5%
female μ = 1.52 x 10-9

 

male s = 11.9%
male μ = 1.04 x 10-9 

male
female

μ (per year)
10-9

pr
ob

ab
ili

ty

0.08
0.06
0.04
0.02

0

s (% per year)
10 12

pr
ob

ab
ili

ty

0.10
0.08
0.06
0.04
0.02

0

male
female

male
female

re
la

tiv
e 

de
ns

ity
 o

f  
m

CA
s

106

105

104

103

102

101

0.1 1 10

8p=

fraction of cells (%)
100

female s = 14.5%
female μ = 2.18 x 10-10

 

male s = 13.4%
male μ = 2.46 x 10-10 

male
female

pr
ob

ab
ili

ty

0.06

0.04

0.02

0

pr
ob

ab
ili

ty

0.10
0.08
0.06
0.04
0.02

0

μ (per year)
10-10

male
female

male
female

re
la

tiv
e 

de
ns

ity
 o

f  
m

CA
s

106

105

104

103

102

101

0.1 1 10

8q=

fraction of cells (%)
100

female s = 11.5%
female μ = 1.11 x 10-9

 

male s = 12.2%
male μ = 1.43 x 10-9 

male
female

μ (per year)
10-9

pr
ob

ab
ili

ty

0.08

0.06

0.04

0.02

0

s (% per year)
8 10 12

pr
ob

ab
ili

ty

0.10
0.08
0.06
0.04
0.02

0

male
female

male
female

re
la

tiv
e 

de
ns

ity
 o

f  
m

CA
s

106

105

104

103

102

101

0.1 1 10

9=

fraction of cells (%)
100

female s = 8.4%
female μ = 2.26 x 10-9

 

male s = 10.2%
male μ = 8.78 x 10-10 

male
female

pr
ob

ab
ili

ty

0.10
0.08
0.06
0.04
0.02

0

s (% per year)
6 8 10 12 14 16

pr
ob

ab
ili

ty

0.08

0.06

0.04

0.02

0

μ (per year)

male
female

male
female

re
la

tiv
e 

de
ns

ity
 o

f  
m

CA
s

106

105

104

103

102

101

0.1 1 10

9p=

fraction of cells (%)
100

female s = 13.7%
female μ = 2.18 x 10-9

 

male s = 15.8%
male μ = 2.34 x 10-9 

male
female

μ (per year)
10-9

pr
ob

ab
ili

ty

s (% per year)

pr
ob

ab
ili

ty

0.10
0.08
0.06
0.04
0.02

0

male
female

male
female

re
la

tiv
e 

de
ns

ity
 o

f  
m

CA
s

106

105

104

103

102

101

0.1 1 10

9q=

fraction of cells (%)
100

female s = 13.3%
female μ = 2.43 x 10-9

 

male s = 12.1%
male μ = 3.06 x 10-9 

male
female

pr
ob

ab
ili

ty

0.10
0.08
0.06
0.04
0.02

0

pr
ob

ab
ili

ty 0.08
0.06
0.04
0.02

0

μ (per year)

male
female

male
female

re
la

tiv
e 

de
ns

ity
 o

f  
m

CA
s

106

105

104

103

102

101

0.1 1 10

10p=

fraction of cells (%)
100

female s = 12.2%
female μ = 3.62 x 10-10

 

male s = 11.9%
male μ = 4.48 x 10-10 

male
female

μ (per year)
10-9

pr
ob

ab
ili

ty 0.06

0.04

0.02

0

pr
ob

ab
ili

ty

0.25
0.20
0.15
0.10
0.05

0

male
female

male
female

re
la

tiv
e 

de
ns

ity
 o

f  
m

CA
s

106

105

104

103

102

101

0.1 1 10

10q=

fraction of cells (%)
100

female s = 12.2%
female μ = 1.09 x 10-9

 

male s = 11.7%
male μ = 7.98 x 10-10 

male
female

pr
ob

ab
ili

ty

0.12

0.08

0.04

0

s (% per year)
10 12 2014 16 18

pr
ob

ab
ili

ty 0.06

0.04

0.02

0

μ (per year)

male
female

male
female

0.08

0.06

0.04

0.02

0

10-9

12 14 16 18 20

female s = 10.0%
female μ = 1.90 x 10-9

 

male s = 12.2%
male μ = 6.83 x 10-10 

re
la

tiv
e 

de
ns

ity
 o

f  
m

CA
s

0.1 1 10

6q=

fraction of cells (%)
100

106

105

104

103

102

101

male
female

pr
ob

ab
ili

ty 0.12

0.08

0.04

0

s (% per year)
10 15 2520

pr
ob

ab
ili

ty 0.08
0.06
0.04
0.02

0

μ (per year)
10-10

male
female

male
female

5 x 10-9

10-9

14 16

2 x 10-10

16

5 x 10-9

11 12 13 14 15

10-8 10-10 10-9

s (% per year)
10 20 30 40 50

10-9

14

10-810-10

22

5 x 10-9

16

2 x 10-9

s (% per year)
10 20 30 40 50

10-10 10-910-10

Figure B.16 Sex differences in fitness effects and mutation rates: CNLOH: part 2. Only CNLOH events which were
observed 10 or more times in men (with a single mCA) and 10 or more times in women (with a single mCA) are shown.
Shaded area, between the grey dashed vertical lines on the small subplots indicates the 95% confidence interval for the
estimated s and µ values. The coloured vertical dashed line indicates the most likely s and µ values.
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Figure B.17 Sex differences in fitness effects and mutation rates: CNLOH: part 3. Only CNLOH events which were
observed 10 or more times in men (with a single mCA) and 10 or more times in women (with a single mCA) are shown.
Shaded area, between the grey dashed vertical lines on the small subplots indicates the 95% confidence interval for the
estimated s and µ values. The coloured vertical dashed line indicates the most likely s and µ values.
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Figure B.18 Sex differences in fitness effects and mutation rates: CNLOH: part 4. Only CNLOH events which were
observed 10 or more times in men (with a single mCA) and 10 or more times in women (with a single mCA) are shown.
Shaded area, between the grey dashed vertical lines on the small subplots indicates the 95% confidence interval for the
estimated s and µ values. The coloured vertical dashed line indicates the most likely s and µ values.
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B.4 Age dependence of individual mCAs

Supplementary material for Section 3.5

After a threshold age determined by the limit of detection, the prevalence of a specific mCA is

expected to increase roughly linearly at a rate determined by the mCA’s fitness effect (reference

Supplementary material 5: age dependence of individual mCAs). The limits of detection are different

for each class of mCA, and even within a class, the limits of detection appear to be different (likely

due to length of mCA, amongst other factors). The ‘limit of detection’ used for the age dependence

plots was the lowest cell fraction observed for that mCA, multiplied by 1.5 (to try to take in to account

the higher false negative rate at the lowest cell fractions).
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Figure B.19 Predicted age dependence for gain events calculated using sex-specific µ and s estimtes. Only gain
events which were observed 30 or more times in both men and women are shown. The cell fraction limit of detection used
was the minimum cell fraction observed for the mCA, multiplied by 1.5.
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Figure B.20 Predicted age dependence for loss events calculated using sex-specific µ and s estimates. Only loss
events which were observed 30 or more times in both men and women are shown. The cell fraction limit of detection used
was the minimum cell fraction observed for the mCA, multiplied by 1.5.
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Figure B.21 Predicted age dependence for CNLOH events calculated using sex-specific µ and s estimates: part 1.
Only CNLOH events which were observed 30 or more times in both men and women are shown. The cell fraction limit of
detection used was the minimum cell fraction observed for the mCA, multiplied by 1.5.
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B.4 Age dependence of individual mCAs
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Figure B.22 Predicted age dependence for CNLOH events calculated using sex-specific µ and s estimates: part 2.
Only CNLOH events which were observed 30 or more times in both men and women are shown. The cell fraction limit of
detection used was the minimum cell fraction observed for the mCA, multiplied by 1.5.
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B.4.1 Exploring mCAs that show deviation from expected age dependence

Supplementary material for Section 3.9

Can decline in prevalence with age be explained by acquisition of additional mCAs?

Several mCAs (10q-, 2q=, 3p= (women), 7q= (women), 8q= (women), 17p= (women), 20q= (men),

21q= (women)), seem to have a flat, or even decreasing, prevalence with increasing age. Could this be

because individuals with these mCAs are more likely to acquire additional mCAs with increasing

age, resulting in a decline in prevalence of the ’single mCA’ with age? To look at this, we looked at

the prevalence of these mCAs in individuals that ≥ 1 mCA (if the cell fraction difference between

the mCAs was >2 %) and compared this observed prevalence to the expected prevalence based on

the mCAs inferred fitness effect and mutation rate (Figure B.23). The poor age dependence persists,

suggesting the reason is not the acquisition of additional mCAs.
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Figure B.23 Age and sex dependence of mCAs with poor age dependence, but including people with multiple
mCAs. The cell fraction limit of detection used was the minimum cell fraction observed for the mCA, multiplied by 1.5.
The predicted prevalence is for ‘at least 1’ mCA .
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Table C.2 Genomic coordinates of regions targeted in the custom SNV/ indel panel

Gene Transcript Chromosome Location Start End

ASXL1 ENST00000375687.4 20 exon 11 31021086 31021720
ENST00000375687.4 20 exon 12 31022234 31025141

BCOR ENST00000378444.4 X exon 2 39937096 39937182
ENST00000378444.4 X exon 3 39935705 39935785
ENST00000378444.4 X exon 4 39931601 39934433
ENST00000378444.4 X exon 5 39930889 39930943
ENST00000378444.4 X exon 6 39930225 39930412
ENST00000378444.4 X exon 7 39923588 39923852
ENST00000378444.4 X exon 8 39922860 39923205
ENST00000378444.4 X exon 9 39921998 39922324
ENST00000378444.4 X exon 10 39921391 39921646
ENST00000378444.4 X exon 11 39916407 39916574
ENST00000378444.4 X exon 12 39914620 39914766
ENST00000378444.4 X exon 13 39913508 39913586
ENST00000378444.4 X exon 14 39913137 39913295
ENST00000378444.4 X exon 15 39910500 39911653

BCORL1 ENST00000540052.1 X exon 1 129139207 129139293
ENST00000540052.1 X exon 2 129146553 129146644
ENST00000540052.1 X exon 3 129146925 129150189
ENST00000540052.1 X exon 4 129154959 129155125
ENST00000540052.1 X exon 5 129156871 129156952
ENST00000540052.1 X exon 6 129158964 129159354
ENST00000540052.1 X exon 7 129162609 129162836
ENST00000540052.1 X exon 8 129171341 129171508
ENST00000540052.1 X exon 9 129173111 129173257
ENST00000540052.1 X exon 10 129184691 129184769
ENST00000540052.1 X exon 11 129185834 129185991
ENST00000540052.1 X exon 12 129189828 129190113

CBL ENST00000264033.4 11 exon 8 119148875 119149007
ENST00000264033.4 11 exon 9 119149219 119149423
ENST00000264033.4 11 exon 16 119170204 119170491

CEBPA ENST00000498907.2 19 exon 1 33792243 33793326

CHEK2 ENST00000328354.6 22 exon 1 29137756 29137832
ENST00000328354.6 22 exon 2 29130390 29130715
ENST00000328354.6 22 exon 3 29121230 29121355
ENST00000328354.6 22 exon 4 29120964 29121112
ENST00000328354.6 22 exon 5 29115382 29115473
ENST00000328354.6 22 exon 6 29107896 29108005
ENST00000328354.6 22 exon 7 29105993 29106047
ENST00000328354.6 22 exon 8 29099492 29099554
ENST00000328354.6 22 exon 9 29095825 29095925
ENST00000328354.6 22 exon 10 29092888 29092975
ENST00000328354.6 22 exon 11 29091697 29091861
ENST00000328354.6 22 exon 12 29091114 29091230
ENST00000328354.6 22 exon 13 29090019 29090105
ENST00000328354.6 22 exon 14 29085122 29085203
ENST00000328354.6 22 exon 15 29083731 29083974

CSF3R ENST00000373106.1 1 exon 14 36933422 36933563
ENST00000373106.1 1 exon 15 36933158 36933252
ENST00000373106.1 1 exon 16 36932830 36932912
ENST00000373106.1 1 exon 17 36931957 36932428

DDX41 ENST00000507955.1 5 exon 1 176943919 176943948
ENST00000507955.1 5 exon 2 176943725 176943836
ENST00000507955.1 5 exon 3 176943288 176943448
ENST00000507955.1 5 exon 4 176943119 176943194
ENST00000507955.1 5 exon 5 176942929 176942990
ENST00000507955.1 5 exon 6 176942685 176942822
ENST00000507955.1 5 exon 7 176942186 176942259
ENST00000507955.1 5 exon 8 176941916 176942070
ENST00000507955.1 5 exon 9 176941701 176941838
ENST00000507955.1 5 exon 10 176940685 176940848
ENST00000507955.1 5 exon 11 176940353 176940485
ENST00000507955.1 5 exon 12 176940011 176940083
ENST00000507955.1 5 exon 13 176939780 176939877
ENST00000507955.1 5 exon 14 176939496 176939646
ENST00000507955.1 5 exon 15 176939322 176939394
ENST00000507955.1 5 exon 16 176939096 176939207
ENST00000507955.1 5 exon 17 176938788 176938928

DNMT3A ENST00000321117.5 2 exon 23 25457147 25457289
ENST00000321117.5 2 exon 22 25458575 25458694
ENST00000321117.5 2 exon 21 25459804 25459874
ENST00000321117.5 2 exon 20 25461998 25462084
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Gene Transcript Chromosome Location Start End

DNMT3A (cont.) ENST00000321117.5 2 exon 19 25463170 25463319
ENST00000321117.5 2 exon 18 25463508 25463599
ENST00000321117.5 2 exon 17 25464430 25464576
ENST00000321117.5 2 exon 16 25466766 25466851
ENST00000321117.5 2 exon 15 25467023 25467207
ENST00000321117.5 2 exon 14 25467408 25467521
ENST00000321117.5 2 exon 13 25468121 25468201
ENST00000321117.5 2 exon 12 25468888 25468933
ENST00000321117.5 2 exon 11 25469028 25469178
ENST00000321117.5 2 exon 10 25469488 25469645
ENST00000321117.5 2 exon 9 25469919 25470027
ENST00000321117.5 2 exon 8 25470459 25470618
ENST00000321117.5 2 exon 7 25470905 25471121
ENST00000321117.5 2 exon 6 25497809 25497956
ENST00000321117.5 2 exon 5 25498368 25498412
ENST00000321117.5 2 exon 4 25505309 25505580
ENST00000321117.5 2 exon 3 25523007 25523112
ENST00000321117.5 2 exon 2 25536781 25536853

EZH2 ENST00000320356.2 7 exon 2 148544273 148544397
ENST00000320356.2 7 exon 3 148543561 148543690
ENST00000320356.2 7 exon 4 148529725 148529842
ENST00000320356.2 7 exon 5 148526819 148526940
ENST00000320356.2 7 exon 6 148525831 148525972
ENST00000320356.2 7 exon 7 148524255 148524358
ENST00000320356.2 7 exon 8 148523545 148523724
ENST00000320356.2 7 exon 9 148516687 148516779
ENST00000320356.2 7 exon 10 148514968 148515209
ENST00000320356.2 7 exon 11 148514313 148514483
ENST00000320356.2 7 exon 12 148513775 148513870
ENST00000320356.2 7 exon 13 148512597 148512638
ENST00000320356.2 7 exon 14 148512005 148512131
ENST00000320356.2 7 exon 15 148511050 148511229
ENST00000320356.2 7 exon 16 148508716 148508812
ENST00000320356.2 7 exon 17 148507424 148507506
ENST00000320356.2 7 exon 18 148506401 148506482
ENST00000320356.2 7 exon 19 148506162 148506247
ENST00000320356.2 7 exon 20 148504737 148504798

FLT3 ENST00000241453.7 13 exon 20 28592603 28592726
ENST00000241453.7 13 exon 17 28601224 28601378
ENST00000241453.7 13 exon 16 28602314 28602425
ENST00000241453.7 13 exon 15 28608023 28608128
ENST00000241453.7 13 exon 14 28608218 28608351
ENST00000241453.7 13 exon 13 28608437 28608544
ENST00000241453.7 13 exon 12 28609631 28609810
ENST00000241453.7 13 exon 11 28610071 28610180
ENST00000241453.7 13 exon 8 28623520 28623674
ENST00000241453.7 13 exon 6 28624231 28624359
ENST00000241453.7 13 exon 3 28636003 28636206

GATA2 ENST00000487848.1 3 exon 5 128202702 128202848
ENST00000487848.1 3 exon 6 128200661 128200787
ENST00000487848.1 3 exon 7 128199861 128200161

GNAS ENST00000371100.4 20 exon 1 57427769 57430388
ENST00000371100.4 20 exon 2 57470666 57470739
ENST00000371100.4 20 exon 3 57473994 57474040
ENST00000371100.4 20 exon 4 57478585 57478640
ENST00000371100.4 20 exon 5 57478726 57478846
ENST00000371100.4 20 exon 6 57480437 57480535
ENST00000371100.4 20 exon 7 57484216 57484271
ENST00000371100.4 20 exon 8 57484404 57484478
ENST00000371100.4 20 exon 9 57484575 57484634
ENST00000371100.4 20 exon 10 57484738 57484859
ENST00000371100.4 20 exon 11 57485005 57485136
ENST00000371100.4 20 exon 12 57485388 57485456
ENST00000371100.4 20 exon 13 57485737 57486247

GNB1 ENST00000378609.4 1 exon 5 1747194 1747301

IDH1 ENST00000345146.2 2 exon 6 209108150 209108328
ENST00000345146.2 2 exon 4 209113092 209113384

IDH2 ENST00000330062.3 15 exon 8 90628506 90628619
ENST00000330062.3 15 exon 4 90631818 90631979

JAK2 ENST00000381652.3 9 exon 6 5050685 5050831
ENST00000381652.3 9 exon 12 5069924 5070054
ENST00000381652.3 9 exon 14 5073697 5073785

KIT ENST00000288135.5 4 exon 1 55524181 55524248
ENST00000288135.5 4 exon 2 55561677 55561947
ENST00000288135.5 4 exon 7 55575589 55575705
ENST00000288135.5 4 exon 8 55589749 55589864
ENST00000288135.5 4 exon 9 55592022 55592216
ENST00000288135.5 4 exon 10 55593383 55593490
ENST00000288135.5 4 exon 11 55593581 55593708
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Gene Transcript Chromosome Location Start End

KIT (cont.) ENST00000288135.5 4 exon 12 55593988 55594093
ENST00000288135.5 4 exon 13 55594176 55594287
ENST00000288135.5 4 exon 16 55598036 55598164
ENST00000288135.5 4 exon 17 55599235 55599358

KRAS ENST00000256078.4 12 exon 5 25368371 25368494
ENST00000256078.4 12 exon 4 25378547 25378707
ENST00000256078.4 12 exon 3 25380167 25380346
ENST00000256078.4 12 exon 2 25398207 25398329

MPL ENST00000372470.3 1 exon 9 43814513 43814673
ENST00000372470.3 1 exon 10 43814933 43815030
ENST00000372470.3 1 exon 11 43817886 43817974
ENST00000372470.3 1 exon 12 43818188 43818443

NPM1 ENST00000296930.5 5 exon 11 170837530 170837569

NRAS ENST00000369535.4 1 exon 3 115256420 115256599
ENST00000369535.4 1 exon 2 115258670 115258781

PPM1D ENST00000305921.3 17 exon 1 58677775 58678247
ENST00000305921.3 17 exon 5 58733959 58734202
ENST00000305921.3 17 exon 6 58740355 58740913

PTPN11 ENST00000351677.2 12 exon 3 112888121 112888316
ENST00000351677.2 12 exon 7 112910747 112910844
ENST00000351677.2 12 exon 8 112915454 112915534
ENST00000351677.2 12 exon 13 112926827 112926979

RAD21 ENST00000297338.2 8 exon 2 117878824 117878969
ENST00000297338.2 8 exon 3 117875368 117875498
ENST00000297338.2 8 exon 4 117874079 117874179
ENST00000297338.2 8 exon 5 117870590 117870697
ENST00000297338.2 8 exon 6 117869505 117869712
ENST00000297338.2 8 exon 7 117868884 117869010
ENST00000297338.2 8 exon 8 117868404 117868527
ENST00000297338.2 8 exon 9 117866483 117866707
ENST00000297338.2 8 exon 10 117864787 117864947
ENST00000297338.2 8 exon 11 117864186 117864335
ENST00000297338.2 8 exon 12 117862856 117863006
ENST00000297338.2 8 exon 13 117861184 117861268
ENST00000297338.2 8 exon 14 117859737 117859930

RUNX1 ENST00000344691.4 21 exon 6 36164431 36164907
ENST00000344691.4 21 exon 5 36171597 36171759
ENST00000344691.4 21 exon 4 36206706 36206898
ENST00000344691.4 21 exon 3 36231770 36231875
ENST00000344691.4 21 exon 2 36252853 36253010
ENST00000344691.4 21 exon 1 36259139 36259409

SF3B1 ENST00000335508.6 2 exon 24 198257695 198257912
ENST00000335508.6 2 exon 18 198265438 198265660
ENST00000335508.6 2 exon 16 198266465 198266612
ENST00000335508.6 2 exon 15 198266708 198266854
ENST00000335508.6 2 exon 14 198267279 198267550
ENST00000335508.6 2 exon 13 198267672 198267759
ENST00000335508.6 2 exon 6 198281464 198281635
ENST00000335508.6 2 exon 5 198283232 198283312
ENST00000335508.6 2 exon 4 198285151 198285266
ENST00000335508.6 2 exon 3 198285752 198285857

SRSF2 ENST00000392485.2 17 exon 2 74732242 74732546
ENST00000392485.2 17 exon 1 74732880 74733242

STAG2 ENST00000371160.1 X exon 3 123156477 123156521
ENST00000371160.1 X exon 4 123159689 123159768
ENST00000371160.1 X exon 5 123164810 123164975
ENST00000371160.1 X exon 6 123171376 123171473
ENST00000371160.1 X exon 7 123176418 123176495
ENST00000371160.1 X exon 8 123179013 123179218
ENST00000371160.1 X exon 9 123181203 123181355
ENST00000371160.1 X exon 10 123182854 123182928
ENST00000371160.1 X exon 11 123184035 123184159
ENST00000371160.1 X exon 12 123184970 123185069
ENST00000371160.1 X exon 13 123185164 123185244
ENST00000371160.1 X exon 14 123189977 123190085
ENST00000371160.1 X exon 15 123191715 123191827
ENST00000371160.1 X exon 16 123195073 123195191
ENST00000371160.1 X exon 17 123195620 123195724
ENST00000371160.1 X exon 18 123196751 123196844
ENST00000371160.1 X exon 19 123196965 123197055
ENST00000371160.1 X exon 20 123197697 123197901
ENST00000371160.1 X exon 21 123199725 123199796
ENST00000371160.1 X exon 22 123200024 123200112
ENST00000371160.1 X exon 23 123200205 123200286
ENST00000371160.1 X exon 24 123202413 123202506
ENST00000371160.1 X exon 25 123204998 123205173
ENST00000371160.1 X exon 26 123210181 123210321
ENST00000371160.1 X exon 27 123211806 123211908
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STAG2 (cont.) ENST00000371160.1 X exon 28 123215229 123215378
ENST00000371160.1 X exon 29 123217270 123217399
ENST00000371160.1 X exon 30 123220396 123220620
ENST00000371160.1 X exon 31 123224424 123224614
ENST00000371160.1 X exon 33 123227867 123227994
ENST00000371160.1 X exon 34 123229221 123229299
ENST00000371160.1 X exon 35 123234423 123234447

TET2 ENST00000380013.4 4 exon 3 106155099 106158508
ENST00000380013.4 4 exon 4 106162495 106162587
ENST00000380013.4 4 exon 5 106163990 106164084
ENST00000380013.4 4 exon 6 106164726 106164935
ENST00000380013.4 4 exon 7 106180775 106180926
ENST00000380013.4 4 exon 8 106182915 106183005
ENST00000380013.4 4 exon 9 106190766 106190904
ENST00000380013.4 4 exon 10 106193720 106194075
ENST00000380013.4 4 exon 11 106196204 106197676

TP53 ENST00000269305.4 17 exon 11 7572925 7573008
ENST00000269305.4 17 exon 10 7573926 7574033
ENST00000269305.4 17 exon 9 7576852 7576926
ENST00000269305.4 17 exon 8 7577018 7577155
ENST00000269305.4 17 exon 7 7577498 7577608
ENST00000269305.4 17 exon 6 7578176 7578289
ENST00000269305.4 17 exon 5 7578370 7578554
ENST00000269305.4 17 exon 4 7579311 7579590
ENST00000269305.4 17 exon 3 7579699 7579721
ENST00000269305.4 17 exon 2 7579838 7579912

U2AF1 ENST00000291552.4 21 exon 6 44514764 44514898
ENST00000291552.4 21 exon 2 44524424 44524512

WT1 ENST00000332351.3 11 exon 1 32456245 32456892
ENST00000332351.3 11 exon 2 32450042 32450165
ENST00000332351.3 11 exon 3 32449501 32449604
ENST00000332351.3 11 exon 4 32439122 32439200
ENST00000332351.3 11 exon 5 32438035 32438086
ENST00000332351.3 11 exon 6 32421493 32421590
ENST00000332351.3 11 exon 7 32417802 32417953
ENST00000332351.3 11 exon 8 32414211 32414301
ENST00000332351.3 11 exon 9 32413517 32413610
ENST00000332351.3 11 exon 10 32410603 32410725

ZRSR2 ENST00000307771.7 X exon 1 15808617 15808659
ENST00000307771.7 X exon 2 15809056 15809136
ENST00000307771.7 X exon 3 15817994 15818076
ENST00000307771.7 X exon 4 15821810 15821919
ENST00000307771.7 X exon 5 15822233 15822320
ENST00000307771.7 X exon 6 15826355 15826394
ENST00000307771.7 X exon 7 15827322 15827441
ENST00000307771.7 X exon 8 15833799 15834013
ENST00000307771.7 X exon 9 15836709 15836765
ENST00000307771.7 X exon 10 15838329 15838439
ENST00000307771.7 X exon 11 15840853 15841383

rs10789158 1 63936188 63936308
rs3916765 6 32749936 32750056
rs1364429 7 134714538 134714658
rs2286510 17 9259404 9259524
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Table C.3 ‘SNP backbone’ for mCA detection. Supplementary material for Section 4.2.2.

number of targeted SNPs mean gap between SNPs (kb)

chr1 811 305
chr2 877 277
chr3 735 269
chr4 683 280
chr5 665 272
chr6 639 267
chr7 559 285
chr8 524 279
chr9 422 334
chr10 491 276
chr11 483 279
chr12 475 282
chr13 367 262
chr14 341 256
chr15 298 276
chr16 280 322
chr17 283 287
chr18 291 268
chr19 196 300
chr20 227 277
chr21 127 303
chr22 122 279
chrX 430 355

total = 10326 SNPs overall mean = 286 kb
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Table C.4 Regions targeted for detection of chromosomal rearrangements and KMT2A-PTD. The percentage of
each region missing due to non-targetable highly repetitive sequences is shown. Supplementary material for Section 4.2.2.

Chromosomal rearrangement Gene Transcript Chromosome Location Start End % missing due to
repetitive regions

t(6;9); DEK-NUP214 DEK ENST00000397239.3 6 intron 9-10 18226473 18236682 66
NUP214 ENST00000359428.5 9 intron 17-18 134027281 134034769 46

t(8;21); RUNX1-RUNX1T1 RUNX1T1 ENST00000265814.3 8 intron 1-2 93029591 93088192 7
RUNX1 ENST00000300305.3 21 intron 5-6 36206898 36231770 8

t(9;22); BCR-ABL ABL1 ENST00000318560 9 intron 1-2 133710912 133729450 21
ABL1 ENST00000318560 9 intron 2-3 133729624 133730187 0
BCR ENST00000305877.8 22 intron 1-2 23524426 23595985 14
BCR ENST00000305877.8 22 intron 13-14 23631808 23632525 0
BCR ENST00000305877.8 22 intron 14-15 23632600 23634727 17
BCR ENST00000305877.8 22 intron 19-20 23654023 23655073 0

t(15;17); PML-RARA PML ENST00000268058.3 15 intron 3-4 74315749 74317197 0
PML ENST00000268058.3 15 exon 6 74325496 74325755 0
PML ENST00000268058.3 15 intron 6-7 74325755 74326818 0
RARA ENST00000394089.2 17 intron 2-3 38487648 38504567 16

inv(16) or t(16;16); CBFB-MYH11 CBFB ENST00000290858.6 16 intron 5-6 67116242 67132612 27
CBFB ENST00000290858.6 16 intron 4-5 67100701 67116115 29
MYH11 ENST00000396324.3 16 intron 28-29 15820911 15826420 48
MYH11 ENST00000396324.3 16 intron 29-30 15818849 15820704 12
MYH11 ENST00000396324.3 16 intron 30-31 15818656 15818744 0
MYH11 ENST00000396324.3 16 intron 31-32 15818266 15818503 0
MYH11 ENST00000396324.3 16 intron 32-33 15815491 15818017 19
MYH11 ENST00000396324.3 16 intron 33-34 15814908 15815278 0
MYH11 ENST00000396324.3 16 intron 34-35 15814169 15814695 35

inv(3) or t(3;3); GATA2, MECOM 3 intergenic region 128294928 128324929 22

t(9;11); KMT2A-MLLT3 MLLT3 ENST00000380338.4 9 intron 5-6 20365742 20413718 7
MLLT3 ENST00000380338.4 9 intron 8-9 20354877 20360739 4
MLLT3 ENST00000380338.4 9 intron 4-5 20414423 20448120 5
MLLT3 ENST00000380338.4 9 intron 9-10 20353594 20354805 0
MLLT3 ENST00000380338.4 9 intron 6-7 20363603 20365666 11
KMT2A ENST00000534358.1 11 intron 7-8 118352807 118353136 0
KMT2A ENST00000534358.1 11 intron 8-9 118353210 118354897 56
KMT2A ENST00000534358.1 11 intron 9-10 118355029 118355576 0

Other KMT2A rearrangements KMT2A ENST00000534358.1 11 intron 10-11 118355690 118359328 29
KMT2A ENST00000534358.1 11 intron 11-12 118359475 118360506 23

KMT2A partial tandem duplication KMT2A ENST00000534358.1 11 exon 2 118339489 118339559 0
KMT2A ENST00000534358.1 11 exon 3 118342376 118345030 0
KMT2A ENST00000534358.1 11 exon 4 118347519 118347697 0
KMT2A ENST00000534358.1 11 exon 5 118348681 118348916 0
KMT2A ENST00000534358.1 11 exon 6 118350888 118350953 0
KMT2A ENST00000534358.1 11 exon 7 118352429 118352807 0
KMT2A ENST00000534358.1 11 exon 8 118353136 118353210 0
KMT2A ENST00000534358.1 11 exon 9 118354897 118355029 0
KMT2A ENST00000534358.1 11 exon 10 118355576 118355690 0
KMT2A ENST00000534358.1 11 exon 11 118359328 118359475 0
KMT2A ENST00000534358.1 11 exon 12 118360506 118360602 0
KMT2A ENST00000534358.1 11 exon 13 118360843 118360964 0
KMT2A ENST00000534358.1 11 exon 14 118361910 118362033 0
KMT2A ENST00000534358.1 11 exon 15 118362458 118362643 0
KMT2A ENST00000534358.1 11 exon 16 118363771 118363945 0
KMT2A ENST00000534358.1 11 exon 17 118365002 118365113 0
KMT2A ENST00000534358.1 11 exon 18 118365408 118365482 0
KMT2A ENST00000534358.1 11 exon 19 118366414 118366608 0
KMT2A ENST00000534358.1 11 exon 20 118366975 118367082 0
KMT2A ENST00000534358.1 11 exon 21 118368650 118368788 0
KMT2A ENST00000534358.1 11 exon 22 118369084 118369243 0
KMT2A ENST00000534358.1 11 exon 23 118370017 118370135 0
KMT2A ENST00000534358.1 11 exon 24 118370549 118370628 0
KMT2A ENST00000534358.1 11 exon 25 118371701 118371862 0
KMT2A ENST00000534358.1 11 exon 26 118372386 118372572 0
KMT2A ENST00000534358.1 11 exon 27 118373112 118377361 0
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Table C.5 Variants present in Myeloid Reference Standard (Horizon Discovery Ltd) that should be detectable with
our custom SNV/ indel panel. The reference standard was sequenced undiluted (100% reference standard), as well as
diluted to 10%, 1% and 0.1% by mixing it with sample DNA from a 65 year old individual. Supplementary material for
Section 4.4

Expected VAF (%) in reference standard dilution

Gene Variant Variant type undiluted 25% dilution 1% dilution 0.1% dilution

ASXL1 W796C SNV 5 1.25 0.05 0.005
BCOR Q1174fs*8 Insertion 70 17.5 0.70 0.070
CBL S403F SNV 5 1.25 0.05 0.005
EZH2 R418Q SNV 5 1.25 0.05 0.005
FLT3 D835Y SNV 5 1.25 0.05 0.005
FLT3 Internal Tandem Duplication (ITD) (300 bp) 5 1.25 0.05 0.005
IDH1 R132C SNV 5 1.25 0.05 0.005
IDH2 R172K SNV 5 1.25 0.05 0.005
JAK2 F537-K539>L Deletion 5 1.25 0.05 0.005
JAK2 V617F SNV 5 1.25 0.05 0.005
KRAS G13D SNV 40 10.00 0.40 0.040
NPM1 W288fs*12 Insertion 5 1.25 0.05 0.005
NRAS Q61L SNV 10 2.50 0.10 0.010
RUNX1 M267I SNV 35 8.75 0.35 0.035
SF3B1 G740E SNV 5 1.25 0.05 0.005
TET2 R1261H SNV 5 1.25 0.05 0.005
TP53 S241F SNV 5 1.25 0.05 0.005
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Supplementary material for Chapter 4

C.1 Beta-binomial error model for SNV variant calling

C.1.1 Estimating the ε and δ parameters in the beta-binomial model

Supplementary material for Section 4.5.2.

To determine the error rate (ε) and beta-binomial dispersion (δ ) parameters, for each position in the panel, two
different methods were considered:

• ‘Method 1’ involved estimating ε as ∑variant reads/∑depth across all the samples at the position and
estimating δ parameter using the method-of-moments estimator (Box 4.5.2a, Section 4.5.2).

• ‘Method 2’ involved a maximum likelihood approach to estimate ε and δ , which minimised the negative
log likelihood of the model (Box 4.5.2b, Section 4.5.2). δ was initialised using the method-of-moments
estimator for δ , and ε was initialised as ∑variant reads/∑depth. If the initialised δ was <0, then an
initialisation of δ = 10−4 was used instead. A lower bound for δ was set to limit δ/ε to >10−8, as below
this level the distribution is definitely binomial.

To test the different methods, a custom Python script was written to generate a simulated dataset of 40 samples.
These samples were each ‘sequenced’, at a depth of 1800X, using a ‘panel’ which targeted 2500 positions each
with a different combination of position-specific error rate (ε) and beta-binomial dispersion parameter (δ ) (Box
C.1.1). For each ‘position’, ε and δ were inferred using each of the 2 methods to determine which method
inferred δ and ε values closest to their true values.

Box C.1.1: Creating a simulated dataset containing positions with beta-binomially distributed error rates

• 50 different ε values were chosen, evenly log-spaced between 10−4 and 1.

• 50 different δ values were chosen, evenly log-spaced between 10−5 and 1000.

• For every combination of δ and ε (50 x 50 positions), with a total depth of 5000 in each sample at each position:

– If δε > 10−7:

* A range of variant reads was calculated, which would include 99.999% of the beta-binomial

distribution:

k = np.arange(0, betabinom.ppf(0.0.99999, total depth, α, β))

* The probability of each possible number of variant reads (k) was calculated and then multiplied by

the total number of samples, in order to calculate the expected number of samples with that number

of variant reads:

int(number_samples*(betabinom.pmf(k, total depth, α, β)))

– If δε < 10−7 (i.e. binomial):

* A range of variant reads was calculated, which would include 99.999% of the binomial distribution:

k = np.arange(0, binom.ppf(0.0.99999, total depth, ε))

* The probability of each possible number of variant reads (k) was calculated and then multiplied by

the total number of samples, in order to calculate the expected number of samples with that number

of variant reads:

int(number_samples*(binom.pmf(k, total depth, ε)))
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C.1 Beta-binomial error model for SNV variant calling

Both methods generally yielded similar estimates for ε and δ , over a range of values, although the method-
of-moments estimator tended to overestimate δ when δ was > 102 (Figure C.1a, b). For both methods, when
looking at the inferred δε , a clear distinction can be seen between positions whose error rates are inferred to
be beta-binomially distributed and those inferred are binomially distributed, with the beta-binomial positions
clustering at δε > 10−5. Although both methods appeared to perform well, we chose to use the MLE method
due to its better performance with high δ values.

method of moments

a b

c
actual error rate (ε)

in
fe

rr
ed

 e
rr

or
 ra

te
 (ε

)

actual δε

100

10-2

10-4

10-6

10-6 10-4 10-2 10-0

103

102

101

100

10-1

10-2

10-3

10-4

10-5

10-6

10-7

0 (binomial)

actual δε

103

102

101

100

10-1

10-2

10-3

10-4

10-5

10-6

10-7

0 (binomial)

actual error rate (ε)

in
fe

rr
ed

 e
rr

or
 ra

te
 (ε

)

100

10-2

10-4

10-6

10-6 10-4 10-2 10-0

in
fe

rr
ed

 d
el

ta
 (δ

) 105

103

101

10-1

10-3

10-5

actual delta (δ)
10-5 10-3 10-1 101 1030

actual δε

103

102

101

100

10-1

10-2

10-3

10-4

10-5

10-6

10-7

0 (binomial)

actual δε

103

102

101

100

10-1

10-2

10-3

10-4

10-5

10-6

10-7

0 (binomial)

actual delta (δ)
10-5 10-3 10-1 101 1030

in
fe

rr
ed

 d
el

ta
 (δ

) 103

101

10-1

10-3

10-5

method of moments MLE method of moments MLE

MLE

actual δ

103

102

101

100

10-1

10-2

10-3

10-4

10-5

0 (binomial)

actual δ

103

102

101

100

10-1

10-2

10-3

10-4

10-5

0 (binomial)

actual δ

103

102

101

100

10-1

10-2

10-3

10-4

10-5

0 (binomial)

105

103

101

10-1

10-3

10-5

10-7

actual error rate (ε)
10-6 10-4 10-2 100

0

105

103

101

10-1

10-3

10-5

10-7

0

10-110-310-5

actual error rate (ε)
10-6 10-4 10-2 10010-110-310-5

actual error rate (ε)
10-6 10-4 10-2 10010-110-310-5

in
fe

rr
ed

 δ
ε

in
fe

rr
ed

 δ
ε

in
fe

rr
ed

 δ
ε

actual δε
105

103

101

10-1

10-3

10-5

10-7

0

Figure C.1 Comparison of method-of-moments estimator and maximum likelihood approach (MLE) for inference
of δ and ε using the simulated data (40 samples). a. Correlation between the actual position error rate (ε) and the ε

inferred using ∑variant reads/∑depth across all the samples at the position (left plot). Correlation between the actual ε

and the ε inferred using the maximum likelihood approach (right plot). b. Correlation between the actual beta-binomial
dispersion parameter (δ ) and the δ inferred from the method-of-moments estimator (left plot). Correlation between the
actual δ and the δ inferred using the maximum likelihood approach (right plot). Only positions where inferred δ > 0 are
shown. c. Left plot: The true values for ε vs δε in the simulated samples. Middle plot: The inferred values for ε vs δε using
the method-of-moments approach. Right plot: The inferred values for ε vs δε using the maximum likelihood approach.
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Supplementary material for Chapter 4

C.1.2 Relationship between ε and δ parameters in the beta-binomial model

Supplementary material for Section 4.5.2
The dispersion (δ ) value that brings the beta-binomial distribution closer to binomial is different depending on
the error rate (ε). The lower the ε , the higher the δ value required to bring the distribution closer to binomial.
The parameter that seems to be important is δε , which when <10−6 results in the beta-binomial becoming
binomial. When δε is <10−13 the beta-binomial starts to ‘fall apart’ from the binomial, but this appears to be a
numerical issue when α and β become very large numbers.
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Figure C.2 Relationship between error rate and dispersion parameters. Simulated binomial and beta-binomial
distributions are shown, for 3 different position-specific error rates (top row: 10−4, middle row: 10−3, bottom row: 10−2)
and different values for δε (columns: 10−2, 10−4, 10−6, 10−10, 10−14).
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Figure C.3 δε values at which beta-binomial distribution collapses on to binomial. A mean depth of 2000
was used (different depths were also tried and heatmap looked effectively the same). For different combinations of ε and
δ , the square difference between the beta-binomial likelihood ( f (k | N,ε,δ ) and binomial likelihood ( f (k | N,ε) was
calculated and then summed across a range of variant read numbers (0.01-99.99% of the binomial and beta-binomial for
that ε were calculated and the range of variant reads to sum across was taken from the minimum and maximum). The
square root of the sum of these square differences was calculated (i.e. the L2 norm) and is represented by the colour on
the plot, which shows ε vs δε . Red areas represent ε and δ values where the beta-binomial distribution is closest to the
binomial distribution (i.e. smallest L2 norm).
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C.1.3 Approaches for determining the position-specific error distribution

Supplementary material for Section 4.5.2.
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Figure C.4 Testing different approaches for determining the position-specific error distribution using simulated
samples (all errors). a. A beta-binomial distribution (or binomial distribution if there were ≤ 3 samples with ≥ 1 variants
reads) was fitted to all samples at the position. Samples were called as ‘real’ variants if their beta-binomial (or binomial)
p-value was less than the p-value threshold. b. A beta-binomial distribution (or binomial distribution if there were ≤ 3
samples with ≥ 1 variants reads) was fitted to all samples at the position, except the sample with the highest VAF. Samples
were called as ‘real’ variants if their beta-binomial (or binomial) p-value was less than the p-value threshold. c. An iterative
approach was used, in which a beta-binomial distribution (or binomial distribution if there were ≤ 3 samples with ≥ 1
variants reads) was fitted to all samples at the position, except the sample with the highest VAF, variants were called as ‘real’
if their p-value was less than the p-value threshold; these variants were then excluded and the fitting process repeated. This
was continued until no further ‘real’ variants were called at the position.
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C.2.1 Generating simulated samples containing chromosomal rearrangements

To understand the features we would expect to see in paired end sequencing data from samples containing
a chromosomal rearrangement, as well as to test the performance of our caller, a custom Python script was
written to generate simulated ‘samples’, each containing a different chromosomal rearrangement from each of
the four chromosomal rearrangement categories (Figure 4.26). Simulated sequencing data was then generated
from these samples, using a custom Python workflow that matched the steps of our custom panel workflow as
much as possible.

t(9;22) BCR::ABL: Non-homologous chromosomes with relocated region in original orientation

To generate simulated samples containing t(9;22) BCR-ABL translocations, the full BCR and ABL1 sequences
were downloaded from Ensembl (GRCh37 Release 104)280. To simulate the translocation, a random breakpoint
position was chosen from the most commonly affected BCR and ABL1 breakpoint regions166: intron 1-2 of
ABL1 and intron 14-15 of BCR (Figure C.5). BCR::ABL1 and ABL1::BCR fusion sequences were created by
simply joining the ends of the sequences at the breakpoints together. The appropriate number of copies of BCR,
ABL1, BCR-ABL1 fusion sequence and ABL1-BCR fusion sequence were created, according to the chosen
number of simulated cells and VAF. For example, a simulated sample of 100 cells harbouring a BCR-ABL1
translocation at 25% VAF would contain 150 copies of normal BCR, 150 copies of normal ABL1, 50 copies of
BCR-ABL1 and 50 copies of ABL1::BCR.
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Figure C.5 Generating simulated samples containing t(9;22) BCR::ABL

t(3;3) GATA2::MECOM: Homologous chromosomes with relocated region in original orientation

The baits for targeting the breakpoint regions involved in t(3;3) in our custom panel were unfortunately designed
for the wrong region of chromosome 3, and so it will not be possible to detect t(3;3) with the current version of
our panel. Nonetheless, we wanted to be able to test if our caller could detect rearrangements in this category
(homologous chromosomes with relocated region in original orientation), so when we generated simulated
samples containing t(3;3) GATA2::MECOM rearrangements, we chose random breakpoint positions from
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within the region on chromosome 3 that our panel targeted (3’ breakpoint between chr3 128294928-128295400
and 5’ breakpoint between chr3 128324400-128324929) (Figure C.6a). Although both t(3;3) and inv(3) share
a common 3’ breakpoint region and both result in the relocation of the G2DHE region to near the MECOM
region, the 5’ breakpoint is different between the two rearrangements (Figure C.6). We focused on t(3;3) rather
than inv(3) for our simulated sample because it was the only chromosomal rearrangement we targeted with our
panel that was in the ‘homologous chromosomes with relocated region in original orientation’ class. Fusion
sequences were created by simply joining the ends of the sequences at the breakpoints together. The appropriate
number of copies were chosen according to the chosen number of simulated cells and VAF.
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Figure C.6 Differences between t(3;3) and inv(3) a. t(3;3) GATA2::MECOM b. inv(3) GATA2::MECOM

t(9;11) KMT2A::MLLT3: Non-homologous chromosomes with relocated region inverted

To generate simulated samples containing t(9;11) KMT2A::MLLT3 translocations, the full KMT2A and MLLT3
sequences were downloaded from Ensembl (GRCh37 Release 104)280. To simulate the translocation, a random
breakpoint position was chosen from the most commonly affected KMT2A and MLLT3 breakpoint regions166:
intron 7-8 of KMT2A and intron 5-6 of MLLT3 (Figure C.7). KMT2A is located on the forward strand of the q
arm of chromosome 11 and MLLT3 is located on the reverse strand of the p arm of chromosome 9. The t(9;11)
KMT2A::MLLT3 translocation involves relocation of the end part of the MLLT3 gene to join next to the end of
the first part of the KMT2A gene, with inversion of the relocated MLLT3 segment in the process. Similarly, the
reciprocal translocation involves relocation of the end part of the KMT2A gene to join next to the end of the
first part of the MLLT3 gene, with inversion of the relocated KMT2A segment in the process. If viewing from
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the perspective of the forward strand, the inverted segment is located on the 3’ side of the KMT2A::MLLT3
fusion gene on the q arm of chromosome 11 and is located on the 5’ side of the MLLT3::KMT2A fusion gene
on the p arm chromosome 9. KMT2A::MLLT3 and MLLT3::KMT2A fusion sequences were created to reflect
this and simulated samples were created, each containing 100 simulated cells with the translocation at a chosen
VAF.
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Figure C.7 Generating simulated samples containing t(9;11) KMT2A::MLLT3.

t(16;16) and inv(16) CBFB::MYH11: Homologous chromosomes with relocated region inverted

To generate simulated samples containing t(16;16) CBFB::MY11 and samples containing inv(16) CBFB::MYH11,
the full CBFB and MYH11 sequences were downloaded from Ensembl (GRCh37 Release 104)280. To simulate
the translocation or inversion, a random breakpoint position was chosen from the most commonly affected
CBFB and MYH11 breakpoint regions175: intron 5-6 of CBFB and intron 33-34 of MYH11 (Figure C.8). In
both t(16;16) and inv(16), the relocated gene regions are inverted compared to their original orientation. In
t(16;16) it is because segments from the p and q arms interchange with each other (Figure C.8a), whereas in
inv(16) it is because an inversion within the chromosome occurs (Figure C.8b). Both t(16;16) and inv(16)
result in a CBFB::MYH11 and MYH11:CBFB fusion genes. In t(16;16), if viewing from the perspective of the
forward strand, the inverted segment is located on the 3’ side of the CBFB::MYH11 fusion gene on the q arm
and the inverted segment is located on the 5’ side of the MYH11::CBFB fusion gene on the p arm. In contrast,
in inv(16), the inverted segment is located on the 3’ side of the CBFB::MYH11 fusion gene on the p arm and
on the 5’ side of the MYH11::CBFB fusion gene on the q arm. CBFB::MYH11 and MYH11::CBFB fusion
sequences, for both t(16;16) and inv(16) were created to reflect this and simulated samples were created, each
containing 100 simulated cells with the chromosomal rearrangement at a chosen VAF.

C.2.2 Generating simulated sequencing data from the simulated samples

The sequences from the simulated samples were then ‘fragmented’, producing DNA fragment sizes normally
distributed about 200 bp, which matches the size distribution obtained in our actual custom panel library
preparation workflow. The sequences of our actual custom panel probes were then used to ‘capture’ the
simulated DNA fragments if at least 30 consecutive nucleotides matched the sequence of the probe. An
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Figure C.8 Generating simulated samples containing t(16;16) or inv(16). a. t(16;16) CBFB::MYH11 b.
inv(16) CBFB::MYH11

interleaved fastq file was then produced, to simulate paired end 150 bp ‘sequencing’ of the fragments, containing
read1 and read2 sequences from both the forward and reverse reads, with 3bp UMI (duplex) at the start of
each read. If the DNA fragment was <150 bp in length, then Illumina adapter sequences were appended to
the end of the read, so that the total length of the read was 150 bp. The fastq files were then processed using
the first part of our computational workflow to produce a mapped SSCS BAM file (Section 4.3.1). Illumina
adapter sequences were hard-clipped and their position information stored in the ‘XT’ tag of the BAM file.
UMI information was stored in the ‘RX’ tag of the BAM file. The mapped SSCS BAM files were used for
exploring the types of reads present in each of the different four classes of chromosomal rearrangement and for
testing our custom caller.
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Figure D.1 Clonal trajectories for pre-AML cases and matched controls: Part 1. Grey vertical lines indi-
cate blood sample timepoints. Error bars represent sampling error, taking in to account logistic growth of clones
(±

√
(variant depth× (1−VAF))/position depth). Trajectories are coloured according to their class gene class (see legend).
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Figure D.2 Clonal trajectories for pre-AML cases and matched controls: Part 2. Grey vertical lines indi-
cate blood sample timepoints. Error bars represent sampling error, taking in to account logistic growth of clones
(±

√
(variant depth× (1−VAF))/position depth). Trajectories are coloured according to their class gene class (see legend).
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Figure D.3 Clonal trajectories for pre-AML cases and matched controls: Part 3. Grey vertical lines indicate the
blood sample timepoints. Error bars are ±

√
(variant depth× (1−VAF))/position depth. Datapoints and trajectories are

coloured according to their class of mutation (see legend).
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Figure D.4 Clonal trajectories for pre-AML cases and matched controls: Part 4. Grey vertical lines indi-
cate blood sample timepoints. Error bars represent sampling error, taking in to account logistic growth of clones
(±

√
(variant depth× (1−VAF))/position depth). Trajectories are coloured according to their class gene class (see legend).

248



D.1 Clonal trajectories for pre-AML cases and matched controls

NPM1 DNA methylation Chromatin modi�ers Transcription factors Transcriptional corepressors Tumour suppressors
Spliceosome Cohesin Cell signalling mCA

NPM1 DNA methylation Chromatin modi�ers Transcription factors Transcriptional corepressors Tumour suppressors
Spliceosome Cohesin Cell signalling mCA

C92_045 CNTRL_197

C92_047

C92_048

C92_049

C92_050

C92_051

CNTRL_166

CNTRL_202

CNTRL_177

CNTRL_190

CNTRL_178

pre-AML matched controls

Figure D.5 Clonal trajectories for pre-AML cases and matched controls: Part 5. Grey vertical lines indi-
cate blood sample timepoints. Error bars represent sampling error, taking in to account logistic growth of clones
(±

√
(variant depth× (1−VAF))/position depth). Trajectories are coloured according to their class gene class (see legend).
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Figure D.6 Clonal trajectories for pre-AML cases and matched controls: Part 6. Grey vertical lines indi-
cate blood sample timepoints. Error bars represent sampling error, taking in to account logistic growth of clones
(±

√
(variant depth× (1−VAF))/position depth). Trajectories are coloured according to their class gene class (see legend).
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Figure D.7 Clonal trajectories for pre-AML cases and matched controls: Part 7. Grey vertical lines indi-
cate blood sample timepoints. Error bars represent sampling error, taking in to account logistic growth of clones
(±

√
(variant depth× (1−VAF))/position depth). Trajectories are coloured according to their class gene class (see legend).
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Figure D.8 Clonal trajectories for pre-AML cases and matched controls: Part 8. Grey vertical lines indi-
cate blood sample timepoints. Error bars represent sampling error, taking in to account logistic growth of clones
(±

√
(variant depth× (1−VAF))/position depth). Trajectories are coloured according to their class gene class (see legend).
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Figure D.9 Clonal trajectories for pre-AML cases and matched controls: Part 9. Grey vertical lines indi-
cate blood sample timepoints. Error bars represent sampling error, taking in to account logistic growth of clones
(±

√
(variant depth× (1−VAF))/position depth). Trajectories are coloured according to their class gene class (see legend).
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D.2 Mutation acquisition age and fitness for linear evolution samples
Supplementary material for Section 5.3.1
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Figure D.10 Estimation of acquisition age and fitness for mutations showing a linear evolution pattern: Part 1.
Grey vertical lines indicate blood sample timepoints. Trajectories are coloured according to their class gene class (see
legend). Dash coloured lines indicate the extrapolated trajectories inferred using maximum likelihood approaches. The error
measurement shown for the acquisition ages is ±1/s. Other mutations present in the sample are shown as faded datapoints.
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Figure D.11 Estimation of acquisition age and fitness for mutations showing a linear evolution pattern: Part 2.
Grey vertical lines indicate blood sample timepoints. Trajectories are coloured according to their class gene class (see
legend). Dash coloured lines indicate the extrapolated trajectories inferred using maximum likelihood approaches. The error
measurement shown for the acquisition ages is ±1/s. Other mutations present in the sample are shown as faded datapoints.
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Figure D.12 Estimation of acquisition age and fitness for mutations showing a linear evolution pattern: Part 3.
Grey vertical lines indicate blood sample timepoints. Trajectories are coloured according to their class gene class (see
legend). Dash coloured lines indicate the extrapolated trajectories inferred using maximum likelihood approaches. The error
measurement shown for the acquisition ages is ±1/s. Other mutations present in the sample are shown as faded datapoints.
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Figure D.13 Estimation of acquisition age and fitness for mutations showing a linear evolution pattern: Part 4.
Grey vertical lines indicate blood sample timepoints. Trajectories are coloured according to their class gene class (see
legend). Dash coloured lines indicate the extrapolated trajectories inferred using maximum likelihood approaches. The error
measurement shown for the acquisition ages is ±1/s. Other mutations present in the sample are shown as faded datapoints.
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Figure D.14 Estimation of acquisition age and fitness for mutations showing a linear evolution pattern: Part 5.
Grey vertical lines indicate blood sample timepoints. Trajectories are coloured according to their class gene class (see
legend). Dash coloured lines indicate the extrapolated trajectories inferred using maximum likelihood approaches. The error
measurement shown for the acquisition ages is ±1/s. Other mutations present in the sample are shown as faded datapoints.
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Figure D.15 Estimation of acquisition age and fitness for mutations showing a linear evolution pattern: Part 6.
Grey vertical lines indicate blood sample timepoints. Trajectories are coloured according to their class gene class (see
legend). Dash coloured lines indicate the extrapolated trajectories inferred using maximum likelihood approaches. The error
measurement shown for the acquisition ages is ±1/s. Other mutations present in the sample are shown as faded datapoints.
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Figure D.16 Estimation of acquisition age and fitness for mutations showing a linear evolution pattern: Part 7.
Grey vertical lines indicate blood sample timepoints. Trajectories are coloured according to their class gene class (see
legend). Dash coloured lines indicate the extrapolated trajectories inferred using maximum likelihood approaches. The error
measurement shown for the acquisition ages is ±1/s. Other mutations present in the sample are shown as faded datapoints.
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Late evolution: pre-AML

Figure D.17 Estimation of acquisition age and fitness for mutations showing a late evolution pattern: Part 1. Grey
vertical lines indicate blood sample timepoints. Trajectories are coloured according to their class gene class (see legend).
Dash coloured lines indicate the extrapolated trajectories inferred using maximum likelihood approaches. The error
measurement shown for the acquisition ages is ±1/s. Other mutations present in the sample are shown as faded datapoints.
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Figure D.18 Estimation of acquisition age and fitness for mutations showing a late evolution pattern: Part 2. Grey
vertical lines indicate blood sample timepoints. Trajectories are coloured according to their class gene class (see legend).
Dash coloured lines indicate the extrapolated trajectories inferred using maximum likelihood approaches. The error
measurement shown for the acquisition ages is ±1/s. Other mutations present in the sample are shown as faded datapoints.
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