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The elastodynamic image forces acting on straight
screw dislocations in the presence of planar phase
boundaries are derived. Two separate dislocations
are studied: (1) the injected, non-moving screw
dislocation, and (2) the injected (or pre-existing),
generally non-uniformly moving screw dislocation.
The image forces are derived for both the case of
a rigid surface and of a planar interface between
two homogeneous, isotropic phases. The case of a
rigid interface is shown to be solvable employing
Head’s image dislocation construction. The case of
the elastodynamic image force due to an interface is
solved by deriving the reflected wave’s contribution
to the global solution across the interface. This
entails obtaining the fundamental solution (Green’s
function) for a point unit force via Cagniard’s method,
and then applying the convolution theorem for a
screw dislocation modelled as a force distribution.
Complete, explicit formulas are provided when
available. It is shown that the elastodynamic image
forces are generally affected by retardation effects, and
that those acting on the moving dislocations display
a dynamic magnification that exceed the attraction
(or repulsion) predicted in classical elastostatic
calculations.

1. Introduction
The presence of phase boundaries fundamentally condi-
tions the motion and generation of dislocations in
crystalline materials. This has a direct impact in the
mechanical response of the material, for the interface may
act as an insurmountable barrier, thereby contributing to
the strain hardening of the original phase [1]; otherwise,
the dislocations may be drawn towards the interface, as
with diffusional creep [1]. Other situations, such as the
behaviour of threading dislocations across epilayers [2,3],
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or the interaction of dislocations with precipitates [1], are also affected by image forces across the
interface that may repel or attract the dislocation.

The conditions upon which a dislocation may display either behaviour depend on the ‘image
forces’ that drive them either towards or away from the interface, depending on the nature of
the interface and the two phases involved [1]. Shear banding and other interfacial phenomena
such as dynamic fracture across phase boundaries typically occur at strain rates high enough
that the study of dislocation interactions across and with the interface warrants the use of fully
inertial descriptions, as opposed to the traditional quasi-static studies where time is not an explicit
variable of the field description.

The image forces receive their name for the image dislocation construction, usually attributed
to Head [4], that is employed in their derivation when using linear elasticity. According to this
construction, the effect an interface has on the dislocation can be construed as the attractive (or
repulsive) force a certain image dislocation, lying across the interface, will exert on the actual
dislocation. The calculation of the image forces has received ample attention in the past (see [1]).
However, to the author’s knowledge, previous work on computing image forces across interfaces
have considered only static equilibrium conditions over both the dislocation and its medium.

In a previous article [5], the author extended this corpus of results to compute the
elastodynamic image forces experienced by dislocations in the presence of a free surface. In that
work, the medium was regarded as fully inertial, with time included as an explicit field variable.
Although the resulting image forces were shown to eventually converge to the conventional
elastostatic image forces, it was shown that the transient state entailed by elastodynamic forces
leads to a dynamic magnification of the image forces that persists even at extremely low speeds.
In particular, the image force was estimated to be over 40% larger than predicted, for dislocations
moving below 50m/s after times of the order of 1− 10ns. This would therefore condition the
interaction between dislocations and free surfaces in ways entirely missed by the conventional
elastostatic treatment of the image force problem.

In light of these results, and given the practical relevance the presence of interfaces has on
determining the mechanical behaviour of many crystalline materials, in this article I focus on
deriving the elastodynamic image forces acting on screw dislocations in the presence of (i) a rigid
interface, which is done in section 2, which will be shown to be amenable to an image dislocation
construction, and of (ii) a planar phase boundary across two separate phases, which needs to be
tackled differently as done in section 3. Both the case of an injected, quiescent (i.e., not-moving,
but newly created) screw dislocation and of an injected, non-uniformly moving screw dislocation
are considered. Owing to space limitations, the case of an edge dislocation will be the subject of
future work. Section 4 offers the main conclusions of this work.

2. Rigid interface
In this section, I consider the case of a right handed screw dislocation, injected in the immediacy
of, or moving towards a phase boundary. As shown in fig.1, the dislocation lies in phase 1, at
a distance l from the phase boundary, beyond which lies phase 2. For simplicity, the origin of
coordinates is placed at the interface itself, along the epicentral line. The screw dislocation is
described as having its cut along the positive x-axis.

(a) Injected, quiescent screw dislocation
Given its greater simplicity, I first study the case of an injected screw dislocation in the immediacy
of a rigid boundary. As is shown in fig.1.a, the dislocation lies in phase 1, whilst phase 2 is deemed
infinitely rigid; this manifests as a boundary condition at the interface specifying that

uz(0, y, t) = 0, (2.1)
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Figure 1. Geometrical of screw dislocations for the derivation of the image forces in the case of a rigid interface. This

construction cannot be applied for a general interface.

to wit, that the interface is perfectly reflective. Hereafter uz(x, y, t) denotes the out-of-plane
displacement field component. The dislocation itself is modelled as a Volterra discontinuity, with
its cut surface in the direction of the positive x axis, so that

uz(x, y, t) =
B

2
H(x+ l)H(t)δ(y) (2.2)

where B is the magnitude of the Burgers vector, H(·) is the Heaviside step function, and which
describes the screw dislocation as a displacement discontinuity generated at x=−l.

The elastodynamic fields of the injected, quiescent screw dislocation in an infinite medium
have been derived by Gurrutxaga–Lerma and coworkers in [5,6]. Accordingly, in the absence of a
rigid surface, the displacement field corresponding to the dislocation injected at x=−l given by
eqn.2.2 is

ubulk
z (x, y, t) =

B

2π
arctan

 yt

(x+ l)
√
t2 − b2r22

H(t− br2), r22 = (x+ l)2 + y2 (2.3)

where b= 1/ct is the transverse slowness of sound, and cl =
√
µ/ρ the transverse speed of sound

in an isotropic solid for µ the shear modulus and ρ the density. It must be noted that in [6], I
showed that the usual boundary condition with which the injected screw dislocation is modelled
(i.e., eqn.2.2) entails an additional emission of a plane wave along the whole cut surface; this
emission is a direct result of the way the cut surface is enforced alongside the whole negative
half-plane, and it explicitly affects the displacement field alone as

ubulk
z (x, y, t) =

B

2π
arctan

[
yt

(x+ l)
√
t2 − b2r2

]
+
B

2π
sign(x)H(t− by)H(−t+ br)H(−x)︸ ︷︷ ︸

emission

(2.4)

Here, I neglect this contribution on three grounds: (1) that the cut surface of the both the bulk
and the image dislocation can be chosen in such a way that it does not cut the interface; (2) that
the emission may be made to vanish if the boundary condition modelling the injection is such
that the cut surface itself propagates outwards from the injection site at the shear speed of sound;
and (3) that otherwise the emission of the bulk dislocation will be cancelled by that of the image
dislocation because it changes signs across the cut. Furthermore, the emission vanishes identically
upon computing the stress and strain fields, thereby not affecting the image forces.

The boundary condition established by eqn.2.1 may therefore be satisfied as in the static case
(see [1]), via the image dislocation construction shown in fig.1.a: an image dislocation of the same
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sign, located at a distance l away from the surface, is such that

utot
z (x, y, t) = ubulk

z + u
image
z =

B

2π

[
arctan

[
yt

(x+ l)
√
t2 − b2((x+ l)2 + y2)

]
+ arctan

[
yt

(x− l)
√
t2 − b2((x− l)2 + y2)

]]
(2.5)

Clearly, when x= 0 (i.e., at the interface),

utot
z (x, y, t) =

B

2π

[
arctan

[
yt

l
√
t2 − b2(l2 + y2)

]
+ arctan

[
yt

−l
√
t2 − b2(l2 + y2)

]]
= 0 (2.6)

Thus, the image and bulk dislocation’s stress fields are (q.v. [5,6])

σ
image
yz =

µB

2π

t(x− l)
(
t2 − b2

(
(x− l)2 + 2y2

))
r22 (t

2 − b2y2)
√
t2 − b2r22

H(t− br2), r22 = (x− l)2 + y2 (2.7)

σbulk
yz =

µB

2π

t(x+ l)
(
t2 − b2

(
(x+ l)2 + 2y2

))
r21 (t

2 − b2y2)
√
t2 − b2r22

H(t− br1), r21 = (x+ l)2 + y2 (2.8)

σ
image
xz =−µB

2π

ty

r22

√
t2 − b2r22

H(t− br2), r22 = (x− l)2 + y2 (2.9)

σbulk
xz =−µB

2π

ty

r21

√
t2 − b2r21

H(t− br1), r21 = (x+ l)2 + y2 (2.10)

Whereupon the total stress field is

σxz(x, y, t) = σ
image
xz + σbulk

xz =−µB
2π

 ty

r21

√
t2 − b2r21

H(t− br1) +
ty

r22

√
t2 − b2r22

H(t− br2)


(2.11)

σyz(x, y, t) = σ
image
yz + σbulk

yz =

µB

2π

 t(x+ l)
(
t2 − b2

(
(x+ l)2 + 2y2

))
r21 (t

2 − b2y2)
√
t2 − b2r22

H(t− br1) +
t(x− l)

(
t2 − b2

(
(x− l)2 + 2y2

))
r22 (t

2 − b2y2)
√
t2 − b2r22

H(t− br2)


(2.12)

Hence, the image force is given by

Fx(t) = σ
image
yz B =−µB

2

4π

√
t2 − 4b2l2

lt
H(t− 2bl) (2.13)

Writing τ = t
2bl , the effect the time dependent elastodynamic fields have over the image force may

be better appreciated:

Fx(τ) =−
µB2

4π

[
1

l

] [√
τ2 − 1

τ
H(τ − 1)

]
︸ ︷︷ ︸

Dynamic contribution

(2.14)

The factor in the second bracket corresponds with the elastodynamic contribution to the image
force, which in this case is presented as a strong transient decaying towards the static solution
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Figure 2. Evolution of the magnitude of the image force with time.

(see [1]), which is in fact recovered in the t→∞ limit 1 as

lim
t→∞

−µB
2

4π

√
t2 − 4b2l2

lt
H(t− 2bl) =−µB

2

4π

1

l
(2.15)

The image force for this case is represent in fig.2, which shows that the image force has
three distinct behaviours: (1) between the injection at t= 0 and t= 2bl the dislocation does not
experience an image force at all; (2) upon the arrival of the reflected wave at t= 2bl (which is
about 1ns for a dislocation lying a few microns away from the interface in a typical metal), the
dislocation experiences a repulsive image force of increasing magnitude up to about t≈ 5bl, when
(3) the image force saturates towards the elastostatic value.

(b) Injected, moving dislocation
Given that the boundary condition at the interface remains the same, i.e., the interface acts as a
reflective wall via eqn.2.1, the image dislocation construction required in this case is analogous
to that of the quiescent dislocation’s case, with the exception that in this case both the bulk
dislocation and its image will approach the rigid surface. In order to prove this, one first needs
to provide the uz displacement field component for the bulk dislocation that, being injected at
some distance l from the interface, moves non-uniformly according to some past history function
l= l(t) towards the surface.

In the following, I derive the form of the displacement field component and then procede to
find the form of both the stress fields and the image force.

(i) Displacement field of an injected, non-uniformly moving screw dislocation

Under plane strain conditions, owing to the cylindrical symmetry of the screw dislocation the
governing equation may be reduced to

∂2uz
∂x2

+
∂2uz
∂y2

= b2
∂2uz
∂t2

, (2.16)

which denotes that the material is modelled as being subjected to antiplane shear alone (see [1]).
Other loading situations such as pure plane strain cannot be modelled employing eqn.2.16 alone.

1Given that the elastostatic solution is achieved once the elastic field has propagated to r→∞, it may also be obtained by
letting ρ→ 0 at any one time, since that would define a medium where waves propagate infinitely quickly.
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The dislocation is modelled in the sense of Volterra, so that the boundary condition is

uz(x, 0, t) =
B

2
H(l(t)− x)H(t)≡ B

2
H(η(x)− t)H(t), (2.17)

where η(x) = l−1(t) is the inverse of the past history function.
For mathematical convenience, I rewrite this boundary condition (q.v. [7,8]) as the

superposition of the following two:

(i) An injection contribution, which was solved in [5] and its expression given in section (a)

uz(x, 0, t) =
B

2
H(x)H(t) (2.18)

(ii) A mobile contribution

uz(x, 0, t) =
B

2
[H(η(x)− t)−H(x)]H(t) (2.19)

The solution procedure follows the usual Cagniard-de Hoop method (see [5,6,9]). Define the
following successive Laplace transforms,

f̂(x, y, s) =

∫ ∞
0

f(x, y, t)e−stdt, and F (λ, y, s) =

∫ ∞
−∞

f̂(x, y, s)e−λsxdx, (2.20)

which upon being applied to eqn.2.16, lead to the following equation in Laplace space

β2s2Uz =
∂2Uz
∂y2

, with β2 = b2 − λ2 (2.21)

Assuming that the solution is stable2, it will be of the form

Uz(λ, y, s) =C(λ, s)e−sβy (2.22)

where C(λ, s) is an integration constant, which can be found from the boundary condition,
whereupon

Uz(λ, y, s) =−
B

2s

[∫ ∞
0

e−s(η(ξ)−λξ)dξ
]
e−sβy (2.23)

The inversion of Uz is performed using the Cagniard-de Hoop technique. Inverting the spatial
variable

ûz(x, y, s) =
1

2πi

∫ i∞

−i∞

−B
2

[∫ ∞
0

e−s(η(ξ)−λξ)dξ
]
e−s(βy−λx)dλ (2.24)

Reorganising

ûz(x, y, s) =
−B
2

∫ ∞
0

dξe−sη(ξ)
1

2πi

∫ i∞

−i∞
dλe−s(βy−λ(x−ξ)) (2.25)

The integral in λ may be rewritten as an integral in τ = βy − λx̃, with x̃= x− ξ, by adequately
distorting the integration path into a Cagniard path along the hyperbola branches prescribed by

2I.e., that limy→∞ UZ = 0
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λ±. This results in the inversion integral written in Cagniard form as

ûz(x, y, s) =
−B
2π

∫ ∞
0

e−sτ̃dτ
∫ ∞
0

H(τ̃ − br̃)Im
[
∂λ+
∂τ

]
dξ (2.26)

where τ̃ = τ − η(ξ), r̃2 = x̃2 + y2. Upon inverting in time via the Bromwich integral, the following
mobile field is obtained by inspection

uz(x, y, t) =
−B
2π

∫ ∞
0

H(t̃− br̃) t̃y

r̃2
√
t̃2 − b2r̃2

dξ (2.27)

The corresponding stress fields are given in [5]:

σyz(x, y, t) =
µB

2π

∂

∂t

∫ ∞
0

H(t̃− br̃) t̃
2(x̃2 − y2)− b2r̃2x̃2

r̃4
√
t̃2 − b2r̃2

dξ (2.28)

σxz(x, y, t) =−
µB

2π

∂

∂t

∫ ∞
0

H(t̃− br̃) x̃y(b
2r̃2 − 2t̃2)

r̃4
√
t̃2 − b2r̃2

dξ (2.29)

These expressions must then be superimposed with the injected (or pre-existing) dislocation’s
field components to obtain the full field description of an injected (or pre-existing), non-uniformly
moving dislocation.

Both eqn.2.27 (and eqns. 2.28 and 2.29) describe a dislocation that is injected at the origin
and moves according to η(x), along the positive x axis. The image dislocation construction will
consist of a like-signed screw dislocation moving towards the bulk dislocation with the same
past history. However, given that the mobile fields are not symmetrical any longer, in order to
preserve the convention upon which eqn.2.27 has been derived, here I use the image dislocation
construction shown in fig.1.b. The general coordinate axis is located at the rigid interface, along
the epicentral line. The bulk dislocation is located at x=−l at t= 0, and starts to move along the
positive direction of the local x1 axis with a past history function x1 = l(t). Here x1 = x+ l, and
y1 = y. The image dislocation is a positive screw dislocation that moves in the positive direction
of the x2 axis with the same mobility law x2 = l(t); however, here the local coordinate system is
x2 =−x+ l, y2 =−y.

Thus, the total displacement field at x= 0 will be

utot
z (0, y, t) = ubulk

z (0, y, t) + uim
z (0, y, t) =

=
−B
2π

[∫ ∞
0

H(t̃− br̃1)
t̃y

r̃21
√
t̃2 − b2((l + ξ)2 + y2)

dξ +
∫ ∞
0

H(t̃− br̃2)
−t̃y

r̃22
√
t̃2 − b2((l + ξ)2 + y2)

dξ

]
= 0

(2.30)

since r̃1 =
√
x̃21 + y21 , r̃2 =

√
x̃22 + y22 and r̃1|x=0 = r̃2|x=0 =

√
(l + ξ)2 + y2.

Having proven that the image dislocation construction is valid for a moving dislocation, the
stress fields can be written as

σtot
yz =

µB

2π

∂

∂t

∫ ∞
0

H(t̃− br̃1)
t̃2((x+ l − ξ)2 − y2)− b2r̃21(x+ l − ξ)2

r̃41

√
t̃2 − b2r̃21

dξ +

+

∫ ∞
0

H(t̃− br̃2)
t̃2((−x+ l − ξ)2 − y2)− b2r̃22(−x+ l − ξ)2

r̃42

√
t̃2 − b2r̃22

dξ

 (2.31)
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Figure 3. Evolution of the magnitude of the image force with time for a uniformly moving screw dislocation at different

Mt. The vertical lines signify the instant in time when the dislocation reaches the interface.

σtot
xy =−

µB

2π

∂

∂t

∫ ∞
0

H(t̃− br̃1)
(x+ l − ξ)y(b2r̃2 − 2t̃2)

r̃41

√
t̃2 − b2r̃21

dξ−

−
∫ ∞
0

H(t̃− br̃2)
(−x+ l − ξ)y(b2r̃22 − 2t̃2)

r̃42

√
t̃2 − b2r̃22

dξ

 (2.32)

As stated before, these field components must be superimposed with either the injected
contribution (or the pre-existing, elastostatic field) of a dislocation of opposite sign, in order
to recover the full field solution of the injected (or pre-existing) and non-uniformly moving
dislocation’s.

The resulting image force will there for the non-uniformly moving and uniformly moving case
are as follows

Fx(t) = σim
yz

∣∣∣
x=−l,y=0

B =
µB2

2π

∂

∂t

∫ ∞
0

H(t̃− b|2l − ξ|)
√
t̃2 − b2(2l − ξ)2

(2l − ξ)2
dξ − µB2

4π

t

l
√
t2 − 4b2l2

H(t− 2bl)

=
µB2

2π

∫ ∞
0

H(t̃− b|2l − ξ|) t̃

(2l − ξ)2
√
t̃2 − b2(2l − ξ)2

dξ − µB2

4π

t

l
√
t2 − 4b2l2

H(t− 2bl) (2.33)

The particular case when the dislocation moves uniformly merits some consideration to clarify
what eqn.2.33 entails. Therefore, let η(ξ) = d · ξ, where d= 1/vglide = constant is the slowness with
which the screw dislocation glides uniformly. That the image dislocation construction is valid is
ensured by the fact that eqn.2.30 trivially contains the case when η(ξ) = d · ξ. The image fields will
then be

σtot
yz =

µB

2π

 t3x1 + dt2(y2 − x21)− b2tx1(x21 + 2y2) + b2dr21x
2
1

r21

√
t2 − b2r21(t2 − 2dtx1 − b2y2 + d2r21)

H(t− br1)+

+
t3x2 + dt2(y2 − x22)− b2tx2(x22 + 2y2) + b2dr22x

2
2

r22

√
t2 − b2r22(t2 − 2dtx2 − b2y2 + d2r22)

H(t− br2)

 (2.34)

σtot
xy =

µB

2π

 y(t3 − 2dt2x1 − b2ty2 + b2dr21x1)

r21

√
t2 − b2r21(t2 − 2dtx1 − b2y2 + d2r21)

H(t− br1)−
y(t3 − 2dt2x2 − b2ty2 + b2dr22x2)

r22

√
t2 − b2r22(t2 − 2dtx2 − b2y2 + d2r22)

H(t− br2)


(2.35)
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Figure 4. Screw dislocation located in phase 1 at a distance l from the interface. The dislocation can be regarded as a

source of waves, that will be reflected and transmitted upon being scattered by the interface.

where again x1 = x+ l, x2 =−x+ l, r1 =
√
x21 + y2 and r2 =

√
x22 + y2. Again, these fields must

be superimposed to the injected dislocation’s.
The image force for the injected, uniformly moving dislocation will therefore be

Fx(t) =−
µB2

4π

d
√
t2 − 4b2l2

2dlt− t2
H(t− 2bl) (2.36)

or in terms of the non-dimensional variables τ = t/2bl and the transverse Mach numberMt = b/d

Fx(t) =−
µB2

2π

[
1

2l

][ √
τ2 − 1

τ −Mtτ2
H(τ − 1)

]
︸ ︷︷ ︸

Dynamic contribution

(2.37)

The resulting Fx(t) is shown in fig.3. As can be seen, the quiescent case is recovered when
Mt→ 0. As in the quiescent case, the dislocation does not experience a repulsive image force
until the reflected wave has had enough time to reach the dislocation anew, at τ = 2bl. Once
this happens, the image force increases in magnitude, but unlike in the quiescent case, it does
not saturate but tends to grow to the point of divergence when the dislocation reaches the
rigid boundary. Thus, the image force is expected to be of much larger magnitude than the
one predicted with elastostatics. This is solely due to the dynamic contribution highlighted on
eqn.2.37. The significance of this magnification cannot be overstated: a dislocation located 1µm
away from the interface, and moving at 20m/s towards it, will after 1ns experience a repulsive
image force that is 40% larger than its elastostatic counterpart.

3. Two phases
Consider now the case where a screw dislocation lies at some distance l from the interface between
phase 1 (where the material is injected in), and phase 2, as is shown in fig.4. Phase 1 is defined
by the elastic constants Λ1 and µ1 for Lamé’s first and second parameter, ρ1 for the density, and
b1 = 1/ct1 =

√
ρ1/µ1 for the shear slowness of sound. Analogously, phase 2 is defined by the

elastic constants Λ2 and µ2, ρ2, and b2 = 1/ct2 =
√
ρ2/µ2. The boundary conditions require that

displacements be compatible and that the tractions be continuous across the interface (i.e., that
the materials be welded at the interface):

u
(1)
z (0, y, t) = u

(2)
z (0, y, t) (3.1)
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σ
(1)
xz (0, y, t) = σ

(2)
xz (0, y, t) (3.2)

The boundary conditions cannot simply be satisfied by invoking an image dislocation
construction such as the one used in sections (a) and (b) – the interface acts as an acoustic
refraction boundary, and the acoustic impedances of the media are not necessarily the same.
However, the problem can still be solved through similar means, by treating the screw dislocation
as a source of antiplane elastic waves (see [9]) that will be reflected by and transmitted across the
interface. The wave component that is reflected back into phase 1 is the one responsible for the
image force.

In order to solve this problem, I will therefore first find the the fundamental solution for a force
line source located in phase 1. Then I will invoke the linearity of the medium to find the reflected
elastodynamic field of the dislocation, which immediately leads to the image force.

(a) Fundamental solution to a line source
The response of phase 1 is governed by

∂2u
(1)
z

∂x2
+
∂2u

(1)
z

∂y2
= b21

∂2u
(1)
z

∂t2
(3.3)

The medium is excited by a source of the form

u
(1)
z (x, y, t) = δ(x− x0)δ(y − y0)δ(t− t0), (3.4)

where δ(·) is Dirac’s delta function, and which describes a line source located at (x0, y0) on phase
1 and acting at time t0. Note that this does not model a dislocation, but a point source. This source
term is a unitary force proper, so that to all effects, eqn.3.3 may be rewritten as

∂2u
(1)
z

∂x2
+
∂2u

(1)
z

∂y2
− b21

∂2u
(1)
z

∂t2
=

1

µ1
δ(x− x0)δ(y − y0)δ(t− t0) (3.5)

The response of phase 2 is governed by

∂2u
(2)
z

∂x2
+
∂2u

(2)
z

∂y2
= b22

∂2u
(2)
z

∂t2
(3.6)

Both media are coupled via eqns.3.1 and 3.2, which define a welded interface.
In order to study this problem, I define the following integral transforms, applied in

succession:

f̂(x, y, s) =

∫ ∞
0

f(x, y, t)e−stdt, F (kx, ky, s) =

∫ ∞
−∞

dx
∫ ∞
−∞

dyf̂(x, y, s)e−i(kxx+kyy) (3.7)

Transforming eqn.3.3 leads to

U
(1,S)
z (kx, ky, s) =

1

µ1

e−st0−i(kxx0+kyy0)

k2x + k2y + s2b21
(3.8)

where the superindex S denotes that this is the source term in the Laplace-Fourier space.
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The first inversion in x may be solved invoking Cauchy’s residue theorem (and Jordan’s
lemma):

µ1U
(1,S)
z (x, ky, s) =

1

2π

∫ ∞
−∞

e−st0−i(kxx0+kyy0)

k2x + k2y + s2b21
eikxxdkx =

= e−st0−ikyy0

 1

2π

∫ ∞
−∞

e−ikx(x0−x)(
kx + i

√
k2y + b21s

2

)(
kx − i

√
k2y + b21s

2

)


= e−st0−ikyyRes

 e−ikx(x0−x)(
kx + i

√
k2y + b21s

2

)(
kx − i

√
k2y + b21s

2

)

kx=i

√
k2y+b

2
1s

2

=
1

2
e−st0−ikyy0

e
−
√
k2y+b

2
1s

2(x−x0)√
k2y + b21s

2
(3.9)

The inversion in y is

µ1U
(1,S)
z (x, y, s) =

1

2π

∫ ∞
−∞

1

2
e−st0−ikyy0

e
−
√
k2y+b

2
1s

2(x−x0)√
k2y + b21s

2
eikyydky (3.10)

This integral may be rewritten in the same form used in sections (a) and (b) when discussing the
Cagniard-de Hoop inversion, by setting ky = isλ, whereupon

µ1U
(1,S)
z (x, y, s) =

1

2πi

∫ i∞

−i∞

e−s(t0+β1(x−x0)+λ(y−y0)

2β1
dλ=

1

2πi

∫ i∞

−i∞
U1,Se

−s(λy+β1(x−x0))dλ

(3.11)
where β21 = b21 − λ2, and

U1,S =
e−s(t0−λy0)

2β1

Upon reaching the interface at x= 0, the source term will be scattered, leading to a reflected
wave in phase 1, and to a wave transmitted into phase 2 [9]. Without loss of generality, these
reflected U (1,R)

z and transmitted U (2,T )
z terms may be written as being of the form (cf. [9]):

µ1U
(1,R)
z =

1

2πi

∫ i∞

−i∞
U1,Re

−s(λy+β1(x+x0))dλ (3.12)

µ1U
(2,T )
z =

1

2πi

∫ i∞

−i∞
U2,T e

−s(λy+β2x+β1x0)dλ (3.13)

(3.14)

The coefficients U1,R and U2,T can then be found by imposing the compatibility conditions at
the interface, x= 0. The conditions are that

U
(1,R)
z + U

(1,S)
z =U

(2,T )
z at x= 0 (3.15)

and that σ(1)xz = σ
(1)
xz . Using σxz = µ∂uz∂x , this entails

µ1
∂U

(1,R)
z

∂x
+ µ1

∂U
(1,S)
z

∂x
= µ2

U
(2,T )
z

∂x
at x= 0 (3.16)

Operating in Laplace space, it is easy to show that these conditions lead to (see [9])

U1,R =
µ1β1 − µ2β2
µ1β1 + µ2β2

U1,Se
−sβ1(x+x0) (3.17)
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Figure 5. Integration paths depending on the relative values of µ1, ρ1 and µ2, ρ2. The branch cuts are represented in

color.

U2,T =
2µ1β1

µ1β1 + µ2β2
U1,Se

−s(β2x+β1x0) (3.18)

Of interest here is the inversion of the fundamental solution to the reflected wave problem,
which gives rise to the image force. The inversion of U1,R can be performed via Cagniard-de
Hoop, as in the previous section. The term to invert is

µ1U1,R(x, λ, s) =
µ1β1 − µ2β2
µ1β1 + µ2β2

e−s(t0−λy0−β1x0)

2β1
(3.19)

The first inversion, in x, is

µ1û1,R(x, y, s) = e−st0
1

2πi

∫ i∞

−i∞

µ1β1 − µ2β2
µ1β1 + µ2β2

1

2β1
e−s(λ(y−y0)+β1(x+x0))dλ (3.20)

where, letting x̃= x+ x0, ỹ= y − y0, one can define a Cagniard path given by τ = λỹ + β1x̃, i.e.,
such that

λ
(1)
± =

τ ỹ ± ix̃
√
τ2 − b21r̃2

r̃2
(3.21)

where r̃2 = x̃2 + ỹ2, and the superindex (1) is used to emphasise that λ depends on b1 (i.e., that
it corresponds to phase 1.

Equation 3.21 defines a hyperbola in the λ(1)-plane, parametrised by x̃ and ỹ (or τ ). Two
branches are defined, one for ỹ > 0 when Re[λ(1)]< 0 and one for ỹ < 0 when Re[λ(1)]> 0; for
brevity, here I focus on the ỹ < 0 case (i.e., the positive half λ(1)-plane), which is what is depicted
on fig.5. The vertex of the two hyperbola branches are accordingly located at λ=∓b1ỹ/r̃ for
τ = b1|r̃|.

The integration path on eqn.3.22 runs long the imaginary λ(1) axis; this integration path may
be connected to either of the hyperbola branches via circumferential segments at infinity, thereby
forming a closed contour of integration. Provided that no poles or branch cuts are left inside the
contour, Cauchy’s theorem may be invoked to show that the contour integral vanishes. Invoking
Jordan’s lemma, the integral along the circumferential segments at infinity needs to vanish as
well, which thereby proves that the integral along the imaginary axis must be of the same value
as that along the hyperbola branch. This is advantageous because the hyperbola branch maps
into a line integral from τ = b1r̃ to τ →∞ in the real τ -plane, which enables writing eqn.3.22 in
its Cagniard form.

However, the integrand in eqn.3.22 has branch cuts starting at λ(1)A =±b1, which can therefore

be avoided, and at λ(1)B =±b2, which may or may not be entirely avoidable depending on whether
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b2 > b1 or not. In the event that b2 < b1, the branch cut cannot be avoided for t > tp, where

tp =−b2y ± x
√
b21 − b22

The resulting integration paths are depicted in fig.5. In addition, the integrand has poles at λ(1)p1 =

b1 (coinciding with the branch cut, which is therefore entirely avoidable), and at

λ
(1)
p2 =±

√
b21µ

2
1 − b22µ22
µ21 − µ22

Depending on the relative value of µ1, ρ1 and µ2, ρ2, this pole may contribute to the integration
path. If b1 < b2 and µ2 <µ1, then the pole falls along the imaginary axis, and must be avoided
by surrounding it; the same happens if b2 < b1 and µ2 >µ1. If b1 < b2 and µ2 >µ1, the pole falls
along the real axis but prior to λ

(1)
B , so it will leave a residue; the same goes if b1 > b2 when

µ2 <µ1.
The most immediate solution arises if the integration path need not be distorted beyond the

hyperbola Cagniard path (i.e., either if t < tp with b2 < b1, or if entirely b1 > b2). In that case, the
integration path is as described in fig.5.b, and

µ1û1,R(x, y, s) = e−st0
1

π

∫ ∞
+r̃b1

Im

[
µ1β1 − µ2β2
µ1β1 + µ2β2

1

2β1

∂λ(1)

∂τ

]
e−sτdτ (3.22)

Upon taking the inverse in time via the Bromwich integral

µ1u1,R(x, y, t) =
1

2πi

∫
Br

[
e−st0

1

π

∫ ∞
+r̃b1

Im

[
µ1β1 − µ2β2
µ1β1 + µ2β2

1

2β1

∂λ(1)

∂τ

]
e−sτdτ

]
e−stdt, (3.23)

and invoking the properties of the Laplace transform, one finally obtains

µ1u1,R(x+ x0, y − y0, t− t0) =
1

π
Im

[
µ1β1 − µ2β2
µ1β1 + µ2β2

1

2β1

∂λ(1)

∂t̃

]
H(t̃− b1r̃) (3.24)

where t̃= t− t0. The explicit form of u1,R is given in the Appendix.
In the event t > tp with b2 > b1, the integration path needs to be distorted as shown in fig.5.

Upon changing the sign of x, there will be an additional contribution to the integral along the real
axis, for real values of λ(1) and τ ∈ (tp, b1r̃). Accordingly, there will be an additional contribution
of the form

µ1u
tp
1,R(x+ x0, y − y0, t− t0) =

1

π
Im

[
µ1β1 − µ2β2
µ1β1 + µ2β2

1

2β1

∂λ(1)

∂t̃

] (
H(t̃− tp)−H(t̃− b1r̃)

)
Given that in this case t̃ < b1r̃, λ(1) = r̃−2

(
−τ ỹ + x̃

√
b21r̃

2 − τ2
)

, this may be rewritten as

µ1u1,R(x+ x0, y − y0, t− t0) =
1

π
Re

[
µ1β1 − µ2β2
µ1β1 + µ2β2

1

2β1

∂λ(1)

∂t̃

] (
H(t̃− tp)−H(t̃− b1r̃)

)
(3.25)

and retain the same expression of λ(1) as before. The Appendix provides an explicit expression of
this term.

The possible poles entailed by the denominator µ1β1 + µ2β2 do not contribute to the
integration path. When b1 < b2 and µ2 <µ1 (or when b2 < b1 and µ2 >µ1), they are located along
the imaginary axis at

±λim =±i b
2
2µ

2
2 − b21µ21
µ21 − µ22

If the integration path along the imaginary axis is distorted to avoid them via two additional
semi-circumferences Γε,± of radius ε→ 0, each located about ±λim, then making the change of
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variable λ=∓λim + reiθ

lim
ε→0

∫
Γε,±

µ1

√
b21 − λ2 − µ2

√
b21 − λ2

(λ+ λim)(λ− λim)
e−s(x

√
b21−λ2−λy)dλ=

=

∫ π/2

−π/2

1

±2λim

[(
µ1

√
b21 − λ2im − µ2

√
b22 − λ2im

)
eλimsy−sx

√
b21−λ2

im

]
dθ=

=± π

2λim

[(
µ1

√
b21 − λ2im − µ2

√
b22 − λ2im

)
eλimsy−sx

√
b21−λ2

im

]
(3.26)

so that each pole’s contribution is of opposite sign, and it vanishes upon summing one with the
other. Equally, the case where the pole is located along the real axis but before λ(1)B does not leave
a residue.

Thus, the fundamental solution for the reflected wave is given by

gz(x+ x0, y − y0, t− t0) = µ1(u1,R + u
tp
1,R) (3.27)

(b) Image force calculation for a injected, quiescent screw dislocation
As stated when defining eqn.3.5, the fundamental solution is the system’s response to a unit
point force. Here, I am concerned with a screw dislocation, which in section (a) was defined via a
displacement boundary condition of the form:

uz(x, y, t) =
B

2
H(x− l)H(t)δ(y) (3.28)

where here the dislocation is injected at position x= l to accommodate it to the coordinate system
shown in fig.4.

In order to employ the fundamental solution derived above, one needs to express this
displacement boundary condition in terms of its body force equivalent of the displacement
boundary condition is given, in the sense of distributions, by (see [10]):

fz(x, y, t) =
B

2
H(x− l)H(t)δ′(y). (3.29)

where δ′(y) = ∂δ(y)
∂y .

The reflected displacement due to the dislocation will therefore be

u
(1,R)
z (x, y, t) =

∫ ∞
−∞

dt0
∫
R×R

B

2
H(x0 + l)H(t0)δ

′(y0)gz(x− x0, y − y0, t− t0)dx0dy0

=
B

2

∫ ∞
0

[∫
∂

∂y
gz(x, y, t− t0)dx

]
x7→l−x

dt0 (3.30)

where the sifting properties of the delta function, its derivative, and the step function have been
used.

The σzy stress component of interest here, in turn, will be

σ
(1)
zy (x, y, t) =

µ1B

2π

∂

∂y

∫ ∞
0

[∫
∂

∂y
gz(x, y, t− t0)dx0

]
x 7→l−x

dt0 (3.31)

The corresponding image force, evaluate at x=−l, y= 0, is

Fx(t) =
µ1B

2

2π

∂

∂y

∫ ∞
0

[∫
∂

∂y
gz(x, y, t− t0)dx

]
x=2l,y=0

dt0 (3.32)
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Figure 6. Image force for a screw dislocation in the presence of a dual phase interface. The vertical line at t= 2b1lmarks

the onset of the response. For simplicity in the plot, it has been assumed that ρ1 = ρ2, so that b2/b1 = µ1/µ2. Note

how the free surface case is recovered as b2/b1 → 0, and the rigid interface case as b2/b1 →∞.

The asymptotic limit when t→∞ of this expression renders the elastostatic image force for
these situations

lim
t→∞

Fx(t) = lim
t→∞

µ1B

2π

∂

∂y

∫ ∞
0

[∫
∂

∂y
gz(x, y, t− t0)dx0

]
x7→l−x

dt0 =
µ1B

2

4π

µ2 − µ1
µ2 + µ1

1

l
(3.33)

It is also immediate to check that when b2/b1→ 0 the case of an infinitely rigid interface solved in
section (a) is recovered; equally, when b2/b1→∞ the case of a free surface is recovered.

A lengthy, but closed-form expression of this expression is given in the Appendix, in terms
of elliptic integrals of the first kind. The image force is plotted in fig.6. As in the rigid interface’s
case, the resulting image force is zero until the reflected wave scattered by the interface reaches
the dislocation at t= 2b1l. Thereafter its magnitude increases steadily towards the asymptotic
limit given in eqn.3.33. As can be seen in fig.6, the image force remains repulsive if b2 > b1 (and
µ2 <µ1), whereas it becomes attractive if b2 < b1 (and µ2 >µ1). The image force tends to converge
to its asymptotic value faster if the values of b2 and b1 are similar.

(c) Moving screw dislocation; two phases
This case may also be obtained from the convolution of the body force equivalent to the screw
dislocation with the fundamental solution for the reflected wave obtained in section (a). The body
force equivalent in this case is

fz(x, y, t) =
B

2
H(x− (l(t)− l))H(t)δ′(y). (3.34)

whereupon the reflected displacement field in this case will be

uz(x, y, t) =
B

2

∫ ∞
0

dt0
∫
R

∂

∂y
gz(x0 − (l(t) + l), y, t− t0)dx0 (3.35)

Fx(t) =
B2

2π

∫ ∞
0

∫ ∞
−∞

∂2

∂y2
gz(l − x0, y, t− t0)

∣∣∣∣
y=0

dt0dx0 (3.36)

The uniformly moving dislocation’s case may be recovered setting l(t) = v · t. Figure 7 shows
the resulting image force values for different ratios b1/b2 and different constant glide speeds,
attained by numerical integration of eqn.3.36. As can be see in the figure, the image force tends
to increase in magnitude over time, and unlike the quiescent cases, it does not saturate to its
static counterpart: it tends to diverge as the dislocation approaches the interface. The dynamic
magnification of the image force is stronger the larger the difference between b1 and b2 is,
bracketed in between the two limiting cases of the infinitely rigid interface and the free surface
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Figure 7. Image force for a screw dislocation uniformly gliding towards a dual phase interface. For simplicity in the plot, it

has been assumed that ρ1 = ρ2, so that b2/b1 = µ1/µ2. Here Mt = v/ct1 .

(the free surface solutions can be found in [5]). It is worth pointing out that within t= 4bl, the
magnitude of the image forces for dislocations moving at 25% of the transverse speed of sound
(about 700m/s in most metals) is doubled relative to the one predicted by elastostatic. Although
it is not represented in the figure, at glide speeds of the order of Mt = 0.03 (i.e.,≈ 100m/s in most
metals), the magnitude of the force is doubled within t≈ 7bl. This entails that even for low speed
dislocations, elastodynamic predicts considerably stronger image forces than those predicted in
elastostatics.

4. Conclusions
This article has derived the expressions for the elastodynamic image forces of screw dislocations
in the presence of a rigid boundary and two welded halfspaces of different material constants.
Both the case of a injected, quiescent (non-moving) and the case of the non-uniformly moving
dislocation have been studied. It has been shown that the rigid interface case may be solved
using Head’s image dislocation constructions but that, generally, the bimaterial case cannot be
tackled with it due to wave scattering across the interface. For this case, the fundamental solution
to the antiplane bimaterial solid has been explicitly derived, and then used in combination with
the force representation of the screw dislocation, both moving and injected, to achieved closed-
form solutions to the image force problem. The bimaterial case lies in between the two asymptotic
limits of the free surface and the rigid surface; depending on the ratio of elastic constants across
the interface, the dislocation may be attracted towards (if b2 < b1) or repelled by (if b1 > b2) the
interface. The quiescent dislocation’s case tends to converge towards the elastostatic solution, but
displays retardation effects related to the arrival time and reflection of the elastic wave from the
rigid boundary. The moving dislocation’s image force is also affected by retardation, but it has
been shown not to converge to the elastotatic solution: it tends to diverge in magnitude as the
dislocation approaches the interface, and well before that happens the magnitude of the image
force is seen to surpass the one predicted in elastostatics. This dynamic magnification effect is
brought about by the Doppler-like effect the elastodynamic field of the dislocation displays in its
motion: ahead of the dislocation core and in the direction of motion, the magnitude of the elastic
field is stronger [8]; because it is this component of the field that reaches the interface first and is
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subsequently reflected (thereby giving rise to the image force), the image force itself is magnified.
Therefore, the effect is not related to the fact that in its motion towards the surface the dislocation
is increasingly closer to the interface, but to the asymmetric nature of the elastodynamic fields,
brought about by inertial effects displayed by moving dislocations. Crucially, it has been shown
that the dynamic magnification effect is strong even at very low glide speeds, quickly surpassing
the elastostatic prediction’s magnitude.

This effect, that extends from the free surface case to the rigid boundary case, suggests that
careful consideration must be given to dynamic effects affecting dislocations approaching phase
boundaries: the image forces they are subjected to are much larger than predicted by elastostatics
over timescales and glide speed ranges that are of relevance even to low strain rate dislocation
mediated processes. The significance of this finding and its potential impact is dual, since it
demarcates a crucial distinction in the way image force constructions ought to be employed. On
the one hand, the equilibrium configuration of dislocations in the presence of interfaces (such as
those brought about by misfit and threading dislocations in layered materials), where dislocations
achieve specific lattice positions in order to accommodate misfit strains along the interface,
may still be treated via elastostatics, so long as the dislocations affected by the image forces
do not contribute to the plastic slip of the material. On the other hand however, if dislocations
move in the presence of an interface, as could be the case in the presence of shear bands or
martensitic bands, the conventional treatment of image forces as elastostatic will likely prove
to underestimate the magnitude of the image forces, which could be corrected employing the
expressions provided in this work.

The current derivations may immediately be extended to the study of screw dislocations with
cut surfaces along any general direction. Furthermore, the results in section 3 may be employed to
study further antiplane shear phenomena such as wave reflections by mode III cracks. However,
a more general treatment is required for the study of general loading problems. Future work will
focus on deriving analogous expressions for the edge dislocation, and on exploring the effect
multiple phase boundaries have on the findings of this article.
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Appendix
The form of the displacement field’s fundamental solution is
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For x= 2l, the injected image force of the quiescent dislocation
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where F (·|·) is an elliptic integral of the first kind, and E(·|·) of the second kind.
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