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DECLARATION OF ORIGINALITY

The whole content of my thesis is based on work which I have done jointly with my

supervisor, Dr. Michael Tehranchi.

In Chapter 1, the idea of adding consumption in a time-consistent manner to the defi-

nition of forward utility functions (i.e. in the manner described in Definition 1.1.1) is

novel and to the best of my knowledge has not been exploited before. Therefore, all the

results of Chapter 1 which relate to forward utility and consumption functions are orig-

inal. The last section of Chapter 1, especially Theorem 1.4.1 and its corollaries on the

characterization of decreasing forward dynamic utilities (without consumption) as inte-

gral transforms of positive measures, is also original and has given rise to the preprint

[1].

The main results of Chapter 2, i.e. Theorem 2.5.2, Theorem 2.6.15 and Theorem 2.6.18

and the associated examples are based on similar results of Carmona and Tehranchi ([7],

[8]) on infinite dimensional interest rates models, but are derived in the quite different

setup of variance swaps modelling, and are therefore new.



ABSTRACT

Financial Mathematics is often presented as being composed of two main branches:

one dealing with investment and consumption, with the aim of answering the now an-

cient question of how people should invest and spend their money, and the other dealing

with the pricing and hedging of derivative instruments. This distinction between both

branches of Financial Mathematics is reflected in my thesis, which is a compilation of

two very different subjects on which I have worked during the past three years.

The first chapter, entitled “Forward Utility and Consumption Functions”, contributes

to the investment branch of Financial Mathematics. Forward utilities have been intro-

duced (under different names) a few years ago by Musiela and Zariphopoulou on the

one hand, and by Henderson and Hobson on the other hand. Their idea is to define fam-

ilies (indexed by time and randomness) of utility functions which make the investment

decisions of agents consistent over time. The contribution of this chapter is to extend

the definition of forward utilities by adding consumption into the story and by giving

explicit ways of constructing consumption functions from utilities and vice versa. The

last part of this first chapter characterizes, in a Laplace integral form, the decreasing

forward utilities (without consumption, and subject to some regularity conditions).

The second chapter, entitled “Hedging with Variance Swaps in Infinite Dimensions”,

contributes to the derivatives pricing and hedging branch of Financial Mathematics. It

is at the interface between the works of Buehler, who has shown that one could apply

the HJM framework to model (forward) variance swaps curves, and the works of Car-

mona and Tehranchi, who have proved that infinite dimensional interest rates models

can display theoretically nice features which are absent from their finite dimensional

counterpart, such as uniqueness and maturity-specific properties of hedging portfolios

for contingent claims. After an introductory section on terminology and after explaining

the Buehler-HJM framework, I give a concrete example of finite dimensional model and

show its (theoretical) shortcomings. I then port some results of Carmona and Tehranchi

from interest rates modelling to variance swaps modelling in infinite dimensions and



finally give a concrete example of model and of classical payoffs to which the results

apply.

Because many results and prerequisites to this chapter are quite technical, I have added a

short appendix, giving modest introductions to infinite dimensional stochastic analysis,

Malliavin calculus and SPDEs in Hilbert spaces.
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Chapter 1

Forward Utility and Consumption

Functions

Abstract: Recently, the notion of time-consistent utility functions has appeared in

the mathematical finance literature, independently introduced by Zariphopoulou and

Musiela (under the original name of “forward dynamic utilities”, and later renamed into

“forward performance”) and by Henderson and Hobson (under the name of “horizon-

unbiased utility functions”). To summarize, their idea has been to define utility functions

U(t, x, ω), depending on time, on an agent’s level of (discounted) wealth and on ran-

domness, and for which the classical problem of finding the optimal strategy π, which

maximizes the expected utility of wealth Et

[
U(T, X(π)

T (ω), ω)
]
, gives results which are

independent of the horizon T .

In this chapter, we broaden their definition by introducing consumption in the story: our

agent does not only invest in a financial market, but also consumes a part of her wealth

at each instant. This gives rise to the definition of forward utility and consumption func-

tions. We aim then at studying and finding pairs of utility and consumption functions

U and U (c) for which the optimal strategy and consumption (π, c) which maximize the

quantity:

Et

[
U(T, X(π,c)

T ) +

∫ T

u=t
U (c)(u, cu)du

]
1



are independent of the horizon T .

The plan is as follows: the first section serves as an introduction, setting up the in-

vestment world, and stating a few assumptions on our market model that will hold all

along. We then give our definition of forward utility and consumption functions and

show that this definition is sound, in the sense that pairs of functions that satisfy this

definition indeed lead to solutions for the utility maximization problem which are inde-

pendent of the horizon considered. We finish the introductory section by showing that

utility and consumption functions do exist so that it makes sense to study them.

The second section gives a sufficient condition on a consumption function U (c) that

one could check and that guarantees the existence of an associated utility function U.

We then build some examples via this sufficient condition.

The third section takes the opposite view compared to section 2: we start from a utility

function U and give a sufficient condition that guarantees the existence of an associated

consumption U (c). Here again, we give examples built via this sufficient condition.

Finally, the fourth section deals with utility functions without consumption. We charac-

terize in a Laplace integral form all the decreasing forward utility functions (subject to

some smoothness assumptions (i.e. C1,3) and satisfying the Inada conditions).

2



1.1 Introduction and setup

1.1.1 Motivation

In the classical investment setup, as in the case of the famous lifetime portfolio selection

problem of Merton [31], an agent invests in a financial market and consumes part of her

wealth up to an horizon T , supposed to represent the time at which she retires. In this

setup, we postulate that the utility derived by the agent is the sum of her consumption

utility between time 0 and time T and of her terminal wealth’s utility. The total utility

U derived is thus given by an expression of the form:

U = E
[ ∫ T

u=0
U (c)(u, cu

)
du + U

(
T, X(π,c)

T
)]

(1.1.1)

where π and c are the investment and consumption strategies between times 0 and T ,

X(π,c)
T is the agent’s wealth at time T , and where the map x 7→ U(T, x) and each of the

maps x 7→ U (c)(t, x) for t ∈ [0,T ] are utility functions (i.e. strictly increasing and con-

cave functions). Solving the investment/consumption problem consists then in looking

for the optimal investment/consumption strategy up to time T so as to maximize U.

That is, we try to find (π, c) which maximizeU. Solving this problem is either done di-

rectly making use of the dynamic programming principle which leads to the famous HJB

equation or by making use of the duality theory where the maximization problem over

investment/consumption processes is replaced by a minimization problem over density

processes of equivalent martingale measures. For an account of the first method, the

reader is referred to Merton’s seminal paper [31] and Karatzas and Shreve [26]. For an

account of the second method, the reader is referred to Karatzas and Shreve [26] again

or to Kramkov and Schachermayer [25].

In many cases, this classical approach is certainly fine, but there are also problems of in-

terest where the introduction of an horizon time T seems rather artificial. For instance,

a fund manager may just aim at having her portfolio’s value grow gradually as time

passes, and consume a part of it (e.g. for her salary), but without having any terminal

date T in mind. In such a case (and others described in [33] and [21] for instance), it

3



may be better to have a framework in which no horizon date T plays a particular role

nor affects the problem’s solution.

Indeed, if we consider our fund manager’s problem, we see easily that a priori (unless

the functions U (c) and U have some particular time consistency properties), the choice

of the horizon date T would affect the solution. For instance, if our fund manager was

to solve the investment/consumption problem from year to year, each time fixing T one

year ahead, or if she was to solve the problem by periods of two years at a time, she

would probably end up taking different decisions.

This is the motivation for introducing forward utility and consumption functions. Namely,

we are interested in pairs of (random) functions U (c) and U for which the optimal argu-

ments that maximize (1.1.1) are independent of the horizon T .

1.1.2 Setup

Investment world

Let (Ω,F , (Ft)t≥0,P) be a filtered probability space supporting an adapted N-dimensional

Brownian motion Wt B (W (1)
t , ...,W (N)

t ). We assume that Ft satisfies the usual conditions

and thatF0 is trivial. The investment world is composed of N+1 assets
(
P(0), P(1), ..., P(N))

whose prices are strictly positive continuous semi-martingales. P(0)
t is taken as a nu-

meraire, in units of which all other prices, wealths and consumptions are expressed. To

simplify notation, but without loss of generality, we can therefore (and do) consider that:

P(0)
t = 1

The N other “risky” assets P(i)
t , i ∈ {1, ...,N} have the following Ito decomposition:

dP(i)
t = P(i)

t

(
µ(i)

t dt +

N∑
j=1

σ
(i, j)
t dW ( j)

t

)
where the coefficients

{
µ(i)

t
}
i∈{1,...,N} and

{
σ

(i, j)
t

}
(i, j)∈{1,...,N}2 are Ft-adapted processes satis-

fying suitable conditions for the above SDEs to have well defined positive solutions.

Notice that we do not assume that the market is complete, i.e. Ft may well be (strictly)

larger than F (W)
t , the filtration generated by the Brownian motion W.

4



We further assume that for all t, almost surely, the matrix σt B (σ(i, j)
t )(i, j)∈{1,...,N}2 is

invertible, and we define the “market price of risk” vector:

Θt = σ−1
t µt

where µt B (µ(1)
t , ..., µ(N)

t ). We will assume that ||Θt|| is bounded from above uniformly

in t and ω. We will later use the notation At(ω) B 1
2

∫ t

u=0
||Θu(ω)||2du and A′t(ω) to denote

the derivative of A with respect to t, i.e. A′t(ω) = 1
2 ||Θt(ω)||2. We will finally assume that,

almost surely, limt→∞ At = ∞. This guarantees that the change of time t(ω) 7→ τ(ω) that

we will do at a later point by defining τ(ω) B At(ω) is bijective from [0,∞) into itself.

It is interesting to note that all along, we will never change numeraire. P(0) is and

remains our “reference” asset. For an analysis of what happens under change of nu-

meraire, the reader is invited to refer to El Karoui and M’rad [16] and Musiela and

Zariphopoulou [33].

Equivalent martingale measure

We denote by Z the martingale:

Zt = exp
(
−

∫ t

u=0
ΘT

u dWu −
1
2

∫ t

u=0
||Θu||

2du
)
C E

(
−

∫ t

u=0
ΘT

u dWu
)

where we use E as a notation for the Doleans exponential local-martingale. Zt is the

density process of an equivalent martingale measure. Notice that our assumption that

Θ is bounded implies that Z is a true martingale, and not only a local-martingale. No-

tice also that Z corresponds to the Follmer-Schweizer minimal martingale measure (see

[19]). We do not make any completeness assumption, and therefore Z is not necessarily

the unique (density process of an) equivalent martingale measure.

Investment strategies, consumptions, wealths and admissible strategies

We identify any RN-valued, measurable, adapted and P-integrable process
(
πu

)
u≥0 and

any measurable, adapted, scalar positive integrable process
(
cu

)
u≥0 with, respectively, an

investment strategy and a consumption process. Their interpretation is as follows: for

i ∈ {1, ...,N}, π(i)
u represents the quantity of asset P(i) held by the agent at time u, and for

5



any times t,T with t ≤ T ,
∫ T

t
cudu represents the quantity of wealth consumed by the

agent between time t and time T . We define the wealth process of an agent following

the investment strategy π and consuming c by her initial wealth X0, and then by the

relation: Xt B X0 +
∫ t

u=0
πudPu −

∫ t

u=0
cudu. Although notationally heavier, we generally

write X(π,c)
t to stress the dependency of Xt on the strategy and consumption followed by

the agent.

For any two times t,T with 0 ≤ t ≤ T ≤ ∞, any x > 0 representing the wealth of

the agent at time t, we denote by A(x)
t,T the set of investment strategies

(
πu

)
u∈[t,T ] and of

consumptions
(
cu

)
u∈[t,T ] which lead to positive wealths at all times, i.e. such that, almost

surely for all τ ∈ [t,T ]:

X(π,c)
τ = x +

∫ τ

u=t
πudPu −

∫ τ

u=t
cudu ≥ 0

Not only such a restriction makes sense from an economic point of view (the agent is

not allowed to go in debt), but it is also mathematically convenient (because the agent

cannot implement doubling strategies in finite time). Finally we can remark thatA(x)
t,T is

a convex set for all t,T, x, by linearity of Riemann and Ito integrals.

1.1.3 Definition

Forward utility and consumption functions

Definition 1.1.1 Two measurable functions U and U (c) from
(
[0,∞)×(0,∞)×Ω,B[0,∞)×

B
(
0,∞

)
× F

)
to

(
R,B(R)

)
are called forward utility and consumption functions (asso-

ciated with each other) if:

1. For each x > 0, (t, ω) 7→ U(t, x, ω) and (t, ω) 7→ U (c)(t, x, ω) are stochastic

processes adapted to the filtration (Ft)t≥0.

2. The maps x 7→ U(t, x, ω) and x 7→ U (c)(t, x, ω) are strictly increasing and strictly

concave for Leb[0,∞) × P-almost all (t, ω) ∈ [0,∞) ×Ω

3. For all x > 0, all T ≥ t ≥ 0 and all (π, c) ∈ A(x)
t,T :

U(t, x) ≥ Et

[
U(T, X(π,c)

T ) +

∫ T

u=t
U (c)(u, cu)du

]
6



4. For all x > 0, all T ≥ t ≥ 0, there exists an optimal (π∗, c∗) ∈ A(x)
t,T such that:

U(t, x) = Et

[
U(T, X(π∗,c∗)

T ) +

∫ T

u=t
U (c)(u, c∗u)du

]

Uniqueness of optimal strategy, consumption and wealth

From the above definition, it is not entirely obvious that the optimal solution to (1.1.1) is

independent of T . That was what motivated us to define forward utility and consumption

functions though, therefore we ought to check that this is indeed the case, and state

precisely in what sense this is true:

Theorem 1.1.2 Uniqueness of optimal solution

Let (U,U (c)) be associated utility and consumption functions. Then, for all x > 0, all

t ≥ 0, there exist an optimal strategy/consumption pair
((
π∗u

)
u≥t,

(
c∗u

)
u≥t

)
∈ A

(x)
t,∞, and an

associated optimal wealth process
(
X∗u

)
u≥t B

(
X(π∗,c∗)

u
)

u≥t such that the process:

MT B U(T, X∗T ) +

∫ T

u=t
U (c)(u, c∗u)du

is an
(
FT

)
T≥t-martingale.

Moreover, if
(
X∗∗T

)
T≥t,

(
c∗∗T

)
T≥t,

(
π∗∗T

)
T≥t are wealth, consumption and investment strategy

processes for which the same property is true, then it holds that:

•
(
X∗T

)
T≥t and

(
X∗∗T

)
T≥t are indistinguishable,

• c∗ = c∗∗ P × Leb[t,∞) almost surely, and

• π∗ = π∗∗ P × Leb[t,∞) almost surely.

Proof of Theorem 1.1.2:

Let t,T1 and T2 be three times satisfying t ≤ T1 ≤ T2. Let x > 0. Let π(1) and c(1) denote

an optimal strategy and consumption in A(x)
t,T1

, and let π(2) and c(2) denote an optimal

7



strategy and consumption inA(x)
t,T2

. Such optima exists by (4) of Definition 1.1.1.

Then by optimality of π(1) and c(1), it holds that:

Et

[
U(T1, X

(π(2),c(2))
T1

) +

∫ T1

u=t
U (c)(u, c(2)

u )du
]
≤ Et

[
U(T1, X

(π(1),c(1))
T1

) +

∫ T1

u=t
U (c)(u, c(1)

u )du
]

= U(t, x)

But we also have, by the tower property of conditional expectations, that:

U(t, x) = Et

[
U(T2, X

(π(2),c(2))
T2

) +

∫ T2

u=t
U (c)(u, c(2)

u )du
]

= Et

[
ET1

[
U(T2, X

(π(2),c(2))
T2

) +

∫ T2

u=t
U (c)(u, c(2)

u )du
]]

= Et

[
ET1

[
U(T2, X

(π(2),c(2))
T2

) +

∫ T2

u=T1

U (c)(u, c(2)
u )du

]
+

∫ T1

u=t
U (c)(u, c(2)

u )du
]

≤ Et

[
U(T1, X

(π(2),c(2))
T1

) +

∫ T1

u=t
U (c)(u, c(2)

u )du
]

Combining both inequalities, we get that:

U(t, x) = Et

[
U(T1, X

(π(2),c(2))
T1

) +

∫ T1

u=t
U (c)(u, c(2)

u )du
]

= Et

[
U(T1, X

(π(1),c(1))
T1

) +

∫ T1

u=t
U (c)(u, c(1)

u )du
]

Therefore,
(
X(π(1),c(1))

T1
, π(1), c(1)) and

(
X(π(2),c(2))

T1
, π(2), c(2)) are both optimum arguments which

maximize the quantity:

esssupξ,π,c Et

[
U(T1, ξ) +

∫ T1

u=t
U (c)(u, cu)du

]
with the following constraints: ξ(π, c) = x +

∫ T1

u=t
πudPu −

∫ T1

u=t
cudu and (π, c) ∈ A(x)

t,T1
.

This implies that X(1)
T1

= X(2)
T1

almost surely, for otherwise, by convexity of the set

A
(x)
t,T1

, the agent could use the admissible strategy/consumption (π∗, c∗) = 1
2

(
(π(1), c(1)) +

(π(2), c(2))
)

which would be a strictly better optimizer (for the above optimization prob-

lem) than both strategies/consumption (π(1), c(1)) and (π(2), c(2)), a contradiction.

The continuity of wealth processes and the representation XT = x+
∫ T

u=t
πudPu−

∫ T

u=t
cudu

yield then the uniqueness statement. �
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1.1.4 Do forward utility and consumption functions exist at all?

We may indeed wonder whether this is ever possible to construct associated forward

utility and consumption functions. The answer is fortunately yes. Actually, it is not

too difficult to find examples based on the setup of Merton’s lifetime portfolio and

consumption selection problem (see [31]) where the stock is assumed to be evolv-

ing as a geometric Brownian motion, i.e. P satisfies the constant coefficients SDE:

dPt = Ptµdt + PtσdWt where W is a scalar Brownian motion. We can consider without

loss that the short interest rate r is constant equal to 0. It is then possible to verify that

for any γ ∈ (−∞, 1), γ , 0, the following utility and consumption functions are forward

utility and consumption functions associated with one another:

U(t, x) = U (c)(t, x) = e−ρt xγ

γ

where ρ is given by:

ρ = 1 − γ −
γ

2(γ − 1)
Θ2 (1.1.2)

where Θ B µ

σ
is the (constant) market price of risk. We can indeed look for pairs of

associated utility and consumption functions in that setup, of the form U(t, x) = e−ρt xγ
γ

and U (c)(t, c) = e−ηt cδ
δ

, for some constants ρ, η, γ and δ. We can then proceed as in the

original paper from Merton by deriving and solving the HJB equation. It leads us to the

conclusion that for U and U (c) to be forward utility and consumption associated with

each other, the only possibility is that ρ = η, γ = δ. Moreover, ρ and γ have to be related

through the above equation (1.1.2). Notice that condition (1.1.2) implies that, in order

to keep the time consistency between utilities at different times, we cannot choose arbi-

trarily the time decay coefficient ρ as is generally done in the case of traditional utility

and consumption functions. ρ has to be related to the market price of risk Θ and the risk

aversion coefficient γ. This was already observed by Henderson and Hobson in ([21]).

Examples without consumption (i.e. U (c) ≡ 0) have also been constructed and studied

by Henderson and Hobson [21] in the context of an asset sale problem and by Musiela

and Zariphopoulou ([33], [34]).
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1.2 Constructing U from U(c)

1.2.1 Using Merton’s infinite horizon problem

Given some consumption function U (c), does there exist an associated utility U and

can we build it from U (c)? We will partially answer this question in this section, by

giving a sufficient condition on U (c) which guarantees the existence of an associated U,

and tells us how to construct it. The idea is based on Merton’s infinite horizon problem.

Indeed, if we could let T go to infinity in point (4) of the definition of forward utility and

consumption functions, and if we had that limT→∞ EtU(T, X(π∗,c∗)
T ) = 0 then we would

have a direct relation between U and U (c): the utility of wealth U(t, Xt) at time t would

simply be the total utility of (optimal) consumption over the infinite horizon [t,∞). We

use this observation to state the following proposition:

Proposition 1.2.1 Constructing U from U (c)

Let U (c) be a measurable function from
(
[0,∞) × (0,∞) ×Ω,B[0,∞) × B(0,∞) × F

)
to(

R,B(R)
)
:
(
t, x, ω

)
→ U (c)(t, x, ω), strictly increasing and strictly concave in x for all t

and all ω, such that U (c)(., x, .) is adapted for all x > 0, and such that for all t ≥ 0, all

x > 0, there exists (π∗, c∗) ∈ A(x)
t,∞ such that:

Et

∫ ∞

u=t
U (c)(u, c∗u)du = esssup(π,c)∈A(x)

t,∞
Et

∫ ∞

u=t
U (c)(u, cu)du < ∞

Then, the function U defined by:

U(t, x) B Et

∫ ∞

u=t
U (c)(u, c∗u)du

is a forward utility associated with U (c).

Proof of Proposition 1.2.1:

Property (1) of Definition 1.1.1 is true by hypothesis for U (c) and by the definition of

conditional expectations for U. We have to show that properties (2), (3) and (4) of

Definition 1.1.1 are satisfied: we begin by proving the monotonicity of the map x 7→

U(t, x): let 0 < x1 < x2, t ≥ 0. Let us denote by π(1), c(1) and by π(21), c(21) the optimal

10



trading strategy/consumption pairs associated with initial wealth x1 and x2− x1. Clearly,

we haveA(x1)
t,∞ +A

(x2−x1)
t,∞ ⊆ A

(x2)
t,∞ . Therefore:

U(t, x2) ≥ Et

∫ ∞

u=t
U (c)(u, c(1)

u + c(21)
u )du

Then, by the strict monotonicity of U (c), we get that:

U(t, x2) > Et

∫ ∞

u=t
U (c)(u, c(1)

u )du = U(t, x1)

We continue the proof of point (2) by proving the concavity of the map x 7→ U(t, x):

let 0 < x1 < x2, t > 0, λ ∈ (0, 1). Let us denote by π(1), c(1) and by π(2), c(2) the optimal

trading strategy/consumption pairs associated with initial wealth x1 and x2. Clearly, we

have λA(x1)
t,∞ + (1 − λ)A(x2)

t,∞ ⊆ A
(λx1+(1−λ)x2)
t,∞ . Therefore,

U(t, λx1 + (1 − λ)x2) ≥ Et

∫ ∞

u=t
U (c)(u, λc(1)

u + (1 − λ)c(2)
u )du

Then by the strict concavity of U (c), we get that:

U(t, λx1 + (1 − λ)x2) > λEt

∫ ∞

u=t
U (c)(u, c(1)

u )du + (1 − λ)Et

∫ ∞

u=t
U (c)(u, c(2)

u )du

= λU(t, x1) + (1 − λ)U(t, x2)

We now prove points (3) and (4) of the definition: let x > 0, T ≥ t ≥ 0. Let (π, c) ∈ A(x)
t,T .

Let us denote by (π∗, c∗) the optimal strategy and consumption between times t and ∞.

Then we have that:

U(t, x) = Et

∫ ∞

u=t
U (c)(u, c∗u)du = Et

[ ∫ T

u=t
U (c)(u, c∗u)du + ET

∫ ∞

u=T
U (c)(u, c∗u)du

]
But it is easy to see that (π∗, c∗) is a better strategy than (π, c)1[t,T ] + (π(T∗), c(T∗))1[T,∞),

where (π(T∗), c(T∗)) is the optimal strategy inA(X(π,c)
T )

T,∞ . Therefore, we have that:

U(t, x) ≥ Et

[ ∫ T

u=t
U (c)(u, cu)du + ET

∫ ∞

u=T
U (c)(u, c(T∗)

u )du
]

= Et

[ ∫ T

u=t
U (c)(u, cu)du + U(T, X(π,c)

T )
]

11



Obviously, if we take the optimal (π∗, c∗) on [t,∞), we get that:

U(t, x) = Et

[ ∫ T

u=t
U (c)(u, c∗u)du + U(T, X(π∗,c∗)

T )
]
�

1.2.2 Classical CRRA examples

Using the previous Proposition 1.2.1, we can build examples based on the classical

CRRA family of utility functions: let αt be a scalar process satisfying suitable conditions

so that: Mt B E
(
−

∫ t

u=0
αuθ

T
u dWu

)
is a martingale. Let f : [0,∞) → (0,∞) be an

integrable function, i.e. satisfying
∫ ∞

u=0
f (u)du < ∞, and let us denote by F the opposite

of its antiderivative (up to a constant), i.e. we set F : t 7→
∫ ∞

s=t
f (s)ds. The following

examples then satisfy the hypothesis of Proposition 1.2.1:

• U (c)
log(t, c) B Mt f (t) log

(
c
)

• U (c)
pow(t, c) B Zγ

t M1−γ
t f (t)1−γ cγ

γ

where γ < 1, γ , 0. Indeed, let t and x = Xt be given. We can then check that the

optimum consumption, wealth and trading strategy are given for the above functions

by:

• c∗u = xZt Mu f (u)
Zu MtF(t)

• X∗u = xZt MuF(u)
Zu MtF(t)

• π∗u = X∗u
(
1 − αu

)(
σT

u
)−1

Θu

The associated forward utilities are given by:

• Ulog(t, x) = MtFt log
(
x
)

+ Et

∫ ∞
s=t

Ms f (s) log
(Zt Ms f (s)

Zs MtFt

)
ds

• Upow(t, x) =
F(t)1−γ

f (t)1−γ U (c)
pow(t, x)

1.2.3 Combining utilities by convex duality

We now show how to combine different already known utility/consumption pairs to

build new ones. If U (c)
1 and U (c)

2 are two consumption functions satisfying the assump-

tion of Proposition 1.2.1, we could define Ũ(t, x) B esssup(π,c)∈A(x)
t,∞
Et

∫ ∞
s=t

[
U (c)

1 (s, cs) +

12



U (c)
2 (s, cs)

]
ds. However, because the optimal consumptions for U (c)

1 and U (c)
2 have no

reason to be the same, there is little hope that Ũ so constructed be a utility associated

with U (c) B U (c)
1 + U (c)

2 . In order to combine different already known utilities, we will

make use of duality arguments: let us suppose that U and U (c) are a pair of associated

utility and consumption functions satisfying the assumptions of Proposition 1.2.1, and

that they are C1 in x. Let us denote byZt the set of positive martingales
(
Ys

)
s≥t such that(

XT YT +
∫ T

s=t
csYsds

)
T≥t is a positive super-martingale for all admissible consumption and

wealth processes (c, X). We have then the dual inequality, valid for all y > 0:

V(t, y) ≤ inf
Y∈Zt
Et

∫ ∞

u=t
V (c)(u, y

Yu

Yt
)du (1.2.1)

where V and V (c) are the convex conjugates of U and U (c). If, in addition, there exists

an optimizer Y∗ ∈ Zt such that, for all y > 0:

•
(
c̃∗s

)
s≥t B

(
− V (c)

y (s, yY∗s
Y∗t

)
)

s≥t is an admissible consumption process (with wealth

starting from some x at time t), and

• −Vy(t, y) = Et

∫ ∞
s=t

c̃∗s
Y∗s
Y∗t

ds

then we have that Y∗ gives equality in the dual inequality (1.2.1), i.e. we have that:

V(t, y) = Et

∫ ∞

u=t
V (c)(u, y

Y∗u
Y∗t

)du

Based on these observations, we can give sufficient conditions on the convex conjugate

V (c) of U (c), which may be in some cases more straightforward to check than their primal

counterparts, and which allow us to guarantee the existence of an associated utility U:

Proposition 1.2.2 Constructing U from U (c) - dual formulation

Let U (c) be a measurable function from
(
[0,∞) × (0,∞) × Ω,B[0,∞) × B(0,∞) × F

)
to

(
R,B(R)

)
:
(
t, x, ω

)
→ U (c)(t, x, ω), strictly increasing, strictly concave and of class

C1 in x for all t and all ω, such that U (c)(., x, .) is adapted for all x > 0. We denote by

V (c)(t, y) its convex conjugate. Let us suppose that for all t ≥ 0, y > 0 and almost all ω,

there is an optimizer Y∗ ∈ Zt such that:

V(t, y) B Et

∫ ∞

u=t
V (c)(u, y

Y∗u
Y∗t

)du = essinfY∈Zt Et

∫ ∞

u=t
V (c)(u, y

Yu

Yt
)du
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and that this infimum is well defined (i.e. neither ∞ nor −∞). Let us also assume that

for all x > 0, T ≥ t ≥ 0, almost all ω, we can find y > 0 such that:

• Vy(t, y) = Et

∫ ∞
u=t

Y∗u
Y∗t

V (c)
y (u, yY∗u

Y∗t
)du = −x

•
(
c̃u

)
u∈[t,T ] B

(
− V (c)

y (u, yY∗u
Y∗t

)
)

u∈[t,T ] and X̃T B −Vy(T, y
Y∗T
Y∗t

) are admissible consump-

tion and (time T) wealth, starting from t, x.

Then U, the concave conjugate of V(t, y) B Et

∫ ∞
u=t

V (c)(u, yY∗u
Y∗t

)du is a utility function

associated to U (c).

Proof of Proposition 1.2.2: Let x > 0 and t,T ≥ 0, t ≤ T be given, and
(
cu, πu

)
u∈[t,T ] ∈

A
(x)
t,T and

(
Xu

)
u∈[t,T ] the associated admissible wealth. Let y B −Ux(t, x). By definition

of convex/concave conjugation, it holds that:

U(t, x) − xy = V(t, y) = Et

[ ∫ T

u=t
V (c)(u, y

Y∗u
Y∗t

)du +

∫ ∞

u=T
V (c)(u, y

Y∗u
Y∗t

)du
]

≥ Et

[ ∫ T

u=t

(
U (c)(u, cu) − cuy

Y∗u
Y∗t

)
du + V(T, y)

]
≥ Et

[ ∫ T

u=t

(
U (c)(u, cu) − cuy

Y∗u
Y∗t

)
du + U(T, XT ) − XT y

Y∗T
Y∗t

]
From the budget constraint, we now get that:

U(t, x) ≥ Et

[ ∫ T

u=t
U (c)(u, cu)du + U(T, XT )

]
Finally, we can obtain equality in place of the inequalities in all of the above if we use

the optimal consumption and the optimal wealth given in the proposition (and which are

admissible by assumption). �

Now we can see that in the case of our earlier CRRA examples, although they do not

have the same “primal” optimizer c∗ (i.e. different values of γ correspond to differ-

ent optimal consumptions), they on the other hand have the same “dual” optimizer Y∗,

namely the minimal martingale Z. That means that we can combine our CRRA-like con-

sumptions by taking convex combinations of their convex conjugate, then define V , the

appropriate associated convex conjugate utility as in Proposition 1.2.2 and finally define
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U the concave conjugate of V . The following family of forward utility and consumption

functions is based on this method:

Proposition 1.2.3 First parametric family of forward utility and consumption functions

Let:

• ν be a positive Borel measure such that
∫

r>0
y−rν(dr) < ∞ for all y > 0.

• δ be a function from (0,∞) into itself, bounded away from 0.

• M(α)
t be a strictly positive martingale started at 1 given by dM(α)

t = −M(α)
t αtΘ

T
t dWt,

for some scalar process αt.

Then, the two functions:

V(t, y) B
∫

r>0
Mt

1 −
( y

Zt

)1−r

δ(r)(1 − r)
e−δ(r)tν(dr)

and

V (c)(t, y) B
∫

r>0
Mt

1 −
( y

Zt

)1−r

1 − r
e−δ(r)tν(dr)

are the convex conjugates of associated forward utility and consumption functions.

Proof of Proposition 1.2.3:

The functions V and V (c) defined as above are smooth functions of y, and are strictly

decreasing and convex in y. We can define U and U (c) the concave conjugates of V and

V (c) which are then strictly increasing and concave in x. Remains to prove properties (3)

and (4) of Definition 1.1.1.

Fubini’s theorem, as everything is explicit, allows us to show that, for all z > 0:

V(t, z) = Et

∫ ∞

u=t
V (c)(u, z

Zu

Zt
)du

This, plus the budget constraint over [t,∞) and the definition of convex conjugates yield,

for any y, x > 0 and any admissible consumption
(
cu

)
u≥t:

V(t, y) + yx ≥ Et

∫ ∞

u=t

(
V (c)(u, y

Zu

Zt
) + y

Zu

Zt
cu

)
du ≥ Et

∫ ∞

u=t
U (c)(u, cu)du

15



Taking the infimum over y > 0, we get:

U(t, x) ≥ Et

∫ ∞

u=t
U (c)(u, cu)du

To get equality in place of all of the above inequalities, we can take the optimal con-

sumption:

c∗u = −V (c)
y (u, y

Zu

Zt
) =

Mu

Zu

∫
r>0

y−r

Z−r
t

e−δ(r)uν(r)

where y is the unique solution of:

x = −Vy(t, y)

and take the optimal wealth

X∗u =
Mu

Zu

∫
r>0

y−r

Z−r
t

e−δ(r)u

δ(r)
ν(dr)

which is attainable with consumption c∗ as above along with the following optimal

trading strategy:

π∗u = X∗u(1 − αu)(σ−1
u )T ΘT

u

�
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1.3 Recovering U(c) from U

We now look at the inverse problem compared to the previous section, i.e. given

a utility function U, does there exists an associated consumption function U (c), and

can we recover it from U? Here again, we partially answer the question, by giving

sufficient conditions under which we can recover an associated consumption function

U (c) from U. We will place ourselves in a particular setting where we assume U to

be two times continuously differentiable in x and once continuously differentiable in

t, and where U(t, ., ω) is assumed to satisfy the Inada conditions for all t and ω (i.e.

limx→0 Ux(t, x, ω) = ∞ and limx→∞Ux(t, x, ω) = 0).

We begin by showing that under these assumptions, any pair (U,U (c)) of associated

utility and consumption functions must satisfy a random non-linear partial differential

equation (PDE), and that this PDE becomes linear if we change U and U (c) into their

respective convex conjugate V and V (c). We start with the random non linear PDE:

Proposition 1.3.1 Non-Linear PDE

Let (U,U (c)) be associated utility and consumption functions. Suppose further that U

is two times continuously differentiable with respect to x and one time continuously

differentiable with respect to t. Then, for all x > 0 and all t ≥ 0, the following random

non-linear PDE must hold P-almost surely:

Ut(t, x) −
1
2
||Θ(t, ω)||2

U2
x(t, x)

Uxx(t, x)
+ V (c)(t,Ux(t, x)) = 0 (1.3.1)

where V (c) is the convex conjugate of U (c).

Proof of Proposition 1.3.1:

The variation of our agent’s wealth, taking into account the budget and self-financing

constraints, is equal to:

dX(π,c)
u =

[
πT

uσuΘu − cu

]
du + πT

uσudWu (1.3.2)
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Thus, using the generalized Ito’s formula (see Theorem 3.3.1 of Kunita’s book [28] for

instance), we get:

U(T, X(π,c)
T ) = U(t, x) +

∫ T

u=t
Ut(u, X(π,c)

u )du

+

∫ T

u=t
Ux(u, X(π,c)

u )
[
(πT

uσuΘu − cu)du + πT
uσudWu

]
+

1
2

∫ T

u=t
Uxx(u, X(π,c)

u )||πT
uσu||

2du.

By definition of forward utility and consumption functions, U(t, X(π,c)
t )+

∫ t

u=0
U (c)(u, cu)du

is a super-martingale for all (π, c), and a martingale for (π∗, c∗), which together with the

above decomposition, imply that:

(1) For all (π, c) ∫ T

u=t

[
Ut(u, X(π,c)

u )du + Ux(u, X(π,c)
u )

(
πT

uσuΘu − cu
)

+
1
2

Uxx(u, X(π,c)
u )||πT

uσu||
2 + U (c)(u, cu)

]
du ≤ 0

(2) For the optimal (π∗, c∗)∫ T

u=t

[
Ut(u, X∗u)du + Ux(u, X∗u)

(
(π∗u)TσuΘu − c∗u

)
+

1
2

Uxx(u, X∗u)||(π∗u)Tσu||
2 + U (c)(u, c∗u)

]
du = 0 (1.3.3)

We now define a locally optimal solution by taking, for times u between t and T :

c+
u = (U (c)

x )−1(u,Ux(u, x))1{X+
u ≥0}

π+
u = −(σT

u )−1Θu
Ux(u, x)
Uxx(u, x)

1{X+
u ≥0}

By definition (thanks to the indicator function), this strategy/consumption pair is admis-

sible. The super-martingale property for U(t, X+
t ) +

∫ t

u=0
U (c)(u, c+

u )du yields:

∫ T

u=t

[
Ut(u, X+

u ) + Ux(u, X+
u )

(
−

Ux(u, x)
Uxx(u, x)

ΘT
uσ
−1
u σuΘu1{X+

u ≥0}

)
+

1
2

Uxx(u, X+
u )||

Ux(u, x)
Uxx(u, x)

ΘT
uσ
−1
u σu1{X+

u ≥0}||
2

− (U (c)
x )−1(u,Ux(u, x))1{X+

u ≥0}Ux(u, X+
u )

+ U (c)(u, (U (c)
x )−1(u,Ux(u, x))1{X+

u ≥0})
]
du ≤ 0
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Letting now T tend to t and by continuity of all the quantities involved, we get that:

Ut(t, x) −
1
2

U2
x(t, x)

Uxx(t, x)
||Θt||

2

− (U (c)
x )−1(t,Ux(t, x)

)
Ux(t, x) + U (c)

(
t, (U (c)

x )−1(t,Ux(t, x)
))
≤ 0 (1.3.4)

This last inequality must be true for all t ≥ 0 and all x > 0.

Making use of this, applied to the optimal strategy/consumption and combining it with

the equality (1.3.3), we get that:

0 ≤
∫ T

u=t

{1
2
||Θu||

2 U2
x(u, X∗u)

Uxx(u, X∗u)
+ Ux(u, X∗u)(π∗u)TσuΘu

+
1
2

Uxx(u, X∗u)||(π∗u)Tσu||
2

+ U (c)(u, c∗u) − c∗uUx(u, X∗u) −
[
U (c)

(
u, (U (c)

x )−1(u,Ux(u, X∗u)
))

−
(
U (c)

x
)−1(u,Ux(u, X∗u))Ux(u, X∗u)

]}
du

which is after close inspection a sum of two negative terms, and that finally shows that

the locally optimal strategy was actually the optimal one, i.e. we have:

c∗u = (U (c)
x )−1(u,Ux(u, X∗u))

π∗u = −(σT
u )−1Θu

Ux(u, X∗u)
Uxx(u, X∗u)

This optimal solution is the only one which gives equality in (1.3.4), and this yields the

PDE announced in the proposition. �

We now linearize the above PDE by introducing V , the convex conjugate of U. This

gives rise to the following proposition:

Proposition 1.3.2 Linear PDE

Let (U,U (c)) be two utility and consumption functions, such that U is twice continuously

differentiable in x and once continuously differentiable in t, and such that U(t, ., ω) sat-

isfies the Inada conditions for all t and ω.
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Then, for all y > 0 and all t ≥ 0, the following random PDE must hold P-almost

surely:

Vt(t, y, ω) +
1
2

y2||Θ(t, ω)||2Vyy(t, y, ω) + V (c)(t, y, ω) = 0 (1.3.5)

where V and V (c) are the convex conjugates of, respectively, U and U (c).

Proof of Proposition 1.3.2:

We do the following change of variable in the random PDE of Proposition 1.3.2:

(t, x, ω) 7→ (t, y B Ux(t, x, ω), ω)

Notice that this change of variable is bijective from [0,∞)×(0,∞)×Ω into itself because

of the Inada conditions assumption.

Then, we can make the observation that:

−
1
y2 =

∂ 1
y

∂y
=
∂ 1

Ux(t,x)

∂x
∂x
∂y

=
Uxx(t, x)
U2

x(t, x)
Vyy(t, y)

and thus:

−
U2

x(t, x)
Uxx(t, x)

= y2Vyy(t, y) (1.3.6)

We also have that:

V(t, y) = U(t,U−1
x (t, y)) − xU−1

x (t, x)

Differentiating with respect to t, we get:

Vt(t, y) = Ut(t, x) +
∂U−1

x (t, x)
∂t

Ux(t,U−1
x (t, x)) − x

∂U−1
x (t, x)
∂t

= Ut(t, x) + xUx(t,U−1
x (t, x)) − xUx(t,U−1

x (t, x))

And therefore:

Vt(t, y) = Ut(t, x) (1.3.7)

Replacing (1.3.6) and (1.3.7) in the random non-linear PDE of the previous section, we

get Proposition 1.3.2. �
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The PDE of Proposition 1.3.2 is a necessary condition for U and U (c) to be forward util-

ity and consumption functions (provided they satisfy the conditions of the proposition).

Combined with conditions which ensure that we can solve the optimization problem

(1.1.1), the PDE can be used as a sufficient condition to recover U (c) from a suitable

function U, as the next proposition shows:

Proposition 1.3.3 Recovering U (c) from U

Let U be a measurable function from
(
[0,∞) × (0,∞) × Ω,B[0,∞) × B(0,∞) × F

)
to(

R,B(R)
)

satisfying the assumptions of Proposition 1.3.2. Suppose that, in addition, U

satisfies the following conditions (where V denotes the convex conjugate of U):

1. V (c)(t, y) B −Vt(t, y) − 1
2y2||Θt||

2Vyy(t, y) is strictly decreasing and strictly convex

in y.

2.
(
V(u, yZu

Zt
) +

∫ u

s=t
V (c)(s, yZs

Zt
)ds

)
u≥t is an

(
Fu

)
u≥t-martingale for all y > 0, t ≥ 0.

3. for all T ≥ t ≥ 0 and x > 0, there exists (π, c) ∈ A(x)
t,T such that

• X(π,c)
T = −Vy(T,Ux(t, x)ZT

Zt
)

• cu = −V (c)
y (u,Ux(t, x)Zu

Zt
)

• Et

[
X(π,c)

T ZT +
∫ T

u=t
cuZudu

]
= xZt

Then, U (c), the concave conjugate of V (c) is a forward consumption function associated

with U.

Proof of Proposition 1.3.3:

We can define U (c) the concave conjugate of V (c). U and U (c) have the correct monotonic-

ity and concavity properties by assumption. We need only check the super-martingale

and martingale properties (3) and (4) of Definition 1.1.1. Let then x > 0, T ≥ t ≥ 0

and (π, c) ∈ A(x)
t,T be given. For any y > 0, condition 2 of the proposition, along with the

budget constraint give us that:

V(t, y) + xy ≥ Et

[
V(T, y

ZT

Zt
) +

∫ T

u=t
V (c)(u, y

Zu

Zt
)du + yX(π,c)

T
ZT

Zt
+

∫ T

u=t
ycu

Zu

Zt
du

]
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By definition of convex conjugates, the right hand side (RHS) is larger than:

RHS ≥ Et

[
U(T, X(π,c)

T ) +

∫ T

u=t
U (c)(u, cu)du

]
Now, taking the infimum of V(t, y) + xy over y > 0, we get finally that:

U(t, x) ≥ Et

[
U(T, X(π,c)

T ) +

∫ T

u=t
U (c)(u, cu)du

]
Taking the optimal (π, c) as in condition 3 of the proposition, which is admissible by

assumption, we get equality in place of the inequalities in all of the above and the proof

is complete. �

Using Proposition 1.3.3, we can build the following example of a family of forward

utility and consumption functions:

Proposition 1.3.4 Second parametric family of forward utility and consumption func-

tions

Let:

• ν be a positive Borel measure such that
∫

r>0
y−rν(dr) < ∞ for all y > 0.

• δ be a function from (0,∞) into itself, of polynomial growth as r → ∞ and such

that limr→1
δ(r)
1−r < ∞.

Then, the two functions:

V(t, y) B
∫

r>0

1
1 − r

(
1 − y1−re[r(1−r)−δ(r)]At(ω)

)
ν(dr)

and

V (c)(t, y) B
∫

r>0

−y1−r

1 − r
A′tδ(r)e[r(1−r)−δ(r)]At(ω)ν(dr)

are the convex conjugates of associated forward utility and consumption functions.

Proof of Proposition 1.3.4:

The functions U and U (c), conjugate convexes of V and V (c) satisfy all the conditions of

Proposition 1.3.3, and therefore are forward utility and consumption functions associ-

ated with each other. �
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1.4 A characterization of decreasing forward utility func-

tions

Finally, in this last section, we are interested in answering the following question: given

some strictly increasing and strictly concave function u0 on [0,∞), does there exist a

forward utility U (without consumption) such that U(0, x) = u0(x)? We partially answer

this question by giving a family of functions u0 which correspond exactly to (all of) the

time 0 values of forward utilities of a certain family (i.e. the forward utility functions

which are C1 in t, C3 in x and which satisfy the Inada conditions). For more details and

full proofs of the propositions of this section, the reader is referred to the preprint [1]

by the author and Rogers and Tehranchi. Notice that the differentiability in t of U(t, x)

a.s. implies that U(t, x) is a decreasing function of t, a.s. Indeed, from the definition,

U(t, x) is a super-martingale for each x and therefore has a decreasing drift term in its

semi-martingale decomposition. The differentiability assumption implies that the local-

martingale term is zero and therefore implies that a.s. the paths of U(t, x) are decreasing.

We place ourselves again in the setup of the previous section (U three times continu-

ously differentiable in x, differentiable in t and satisfying the Inada conditions). Propo-

sition 1.3.2 still holds, but here of course with V (c) = 0. However in this case, it is

possible to characterize exactly the decreasing and convex solutions of this (simpler)

random linear PDE. We get the following Theorem and its corollaries:

Theorem 1.4.1 Characterization of Decreasing Forward Utilities

Let U be a forward utility, C1 in t, C3 in x and satisfying the Inada conditions. Then,

there exists a positive measure ν on (0,∞) such that
∫

r>0
y−rν(dr) < ∞ ∀y > 0 and a

constant C such that:

V(t, y, ω) =

∫
r∈(0,∞)

1
1 − r

(
1 − y1−rer(1−r)At(ω)

)
ν(dr) + C

Corollary 1.4.2 Time 0 Utilities

A utility function u0 is the time 0 value of a forward utility U satisfying the conditions
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of Theorem 1.4.1 if and only if:

v0(y) =

∫
r∈(0,∞)

1 − y1−r

1 − r
ν(dr) + C

for some finite positive Borel measure ν on (0,∞) and a constant C, where v0 is the

convex conjugate of u0.

Notice that these time 0 utilities also correspond to the time 0 utilities of the parametric

family of Proposition 1.3.4. Therefore, any function u0 as above can be seen as the time

0 of a FDU with or without consumption.

Corollary 1.4.3 Dual Formulation

Let U be a forward utility function satisfying the conditions of Theorem 1.4.1, then it

holds that, for all y > 0:

Et

[
V(T, y

ZT

Zt
)
]

= V(t, y)

where V is the convex conjugate of U

Corollary 1.4.4 Mutual Fund

Let U be a forward utility satisfying the conditions of Theorem 1.4.1, then an optimal

investment strategy is given by:

π∗s = (σ−1
s )T ΘT

s

∫
r>0

r
(
y

Zs

Zt

)−r
er(1−r)Asν(dr)

and the optimal wealth is then equal to:

X∗s =

∫
r>0

(
y

Zs

Zt

)−r
er(1−r)Asν(dr)

where y is as earlier the conjugate of x which is given by V(t, y) = U(t, x) − xy.

Outline of proof of Theorem 1.4.1:

V satisfies the PDE Vt(t, y)+ 1
2y2Vyy(t, y)||Θt||

2 = 0. We do the following bijective change

of variable (t, y, ω) 7→ (τ, z, ρ) from [0,∞) × (0,∞) ×Ω into [0,∞) × R ×Ω:

• τ = At(ω)
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• z = log(y) + At(ω)

• ρ = ω

and we set W(τ, z, ρ) B V(t, y, ω)

Then it is easy to see that W satisfies the Backward Heat Equation:

Wzz(τ, z, ρ) + Wτ(τ, z, ρ) = 0

and so does Wz, which in addition has to be negative because of the decreasing mono-

tonicity of V . Therefore, by Widder’s characterization of positive solutions of the Back-

ward Heat Equation (see [44] or [45]), it must hold that:

Wz(τ, z) =

∫
r∈R
−erz−r2τν(dr) + D

for some positive finite Borel measure ν and some constant D. Notice that to be precise,

from the equation above, there is no reason why ν should not depend on ρ. However,

properties (3) and (4) of Definition 1.1.1 imply that U(t, x) is a super-martingale, thus

adapted. As we have assumed F0 to be trivial, U(0, x) has to be independent of ω, and

so have to be V(0, y) and W(0, z). Therefore, ν has to be the identical across ρ ∈ Ω.

Integrating with respect to z and taking into account the fact that W must also be solution

of the Backward Heat Equation, we get:

W(τ, z) =

∫
r∈R

1
r

(1 − erz−r2τ)ν(dr) + C

for some constant C. Going back to V and observing that the Inada conditions and

convexity of V can hold only if ν is null on [1,∞), we get that it must hold that

V(t, y) =

∫
r∈(0,∞)

1
1 − r

(
1 − y1−rer(1−r)At(ω)

)
η(dr) + C

for some positive measure η, defined on [0,∞) such that η(0) = 0.

It remains now to verify that such a V is the convex conjugate of a forward utility.

Let us then take V as in the Theorem. It is obvious that V is strictly decreasing and
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convex. Remains to verify properties (3) and (4) of Definition 1.1.1: the check goes as

in the previous cases with consumption. (3) is checked by appealing to the definition

of convex/concave conjugates and Corollary 1.4.3, which can be proved by direct com-

putation given that everything is explicit. Finally, (4) is checked by using the optimal

wealth and admissible trading strategy given in Corollary 1.4.4. �
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Chapter 2

Hedging with Variance Swaps in

Infinite Dimensions

Abstract: It has been shown recently by Buehler that variance swaps can be modelled,

jointly with the stock on which they are written, in a manner strikingly similar to the

HJM interest rates framework. We apply this technique to model the (forward) variance

swaps curve by a stochastic partial differential equation (SPDE) in a Hilbert space, and

apply the tools of Malliavin calculus to give an explicit representation of the hedging

portfolio for a class of exotic contingent claims written on the stock and variance instru-

ments (variance swaps or forward variance swaps). We also show that under suitable

conditions on the SPDE and SDE satisfied respectively by the forward variance swaps

curve and by the stock price, the (self-financing and admissible) hedging portfolio is

unique and satisfies a maturity-specific property similar to the one proved by Carmona

and Tehranchi for interest rates contingent claims in the context of infinite dimensional

models.
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2.1 Introduction

2.1.1 Motivation

One of the goals financial mathematicians have been trying to achieve in recent years has

been to build and study stochastic arbitrage-free market models, where they can jointly

model, in a consistent manner, the prices of an underlying (say a stock for instance)

and liquid derivatives written on this underlying. Much research has focused on call (or

put) options market models (see for instance Cont, Fonseca and Durrleman [12] who

studied empirical and statistical features of the call surface to model the implied volatil-

ity, Davis [14] who studied complete market models of stochastic volatility, Wissel [47]

and Schweizer and Wissel [41] and [42] who studied arbitrage-free market models for

call surfaces, and Carmona and Nadtochiy (see [5] and [6]) who studied local volatility

market models.) However, call surface market models are very difficult to study be-

cause of consistency conditions which are imposed on the different assets we are trying

to model (the stock should be recovered from the call with strike 0, there are boundary

conditions at maturity of the calls, as maturity tends to infinity, as the strike tends to

infinity, etc). Buehler [4], on the other hand, focused his attention on another type of

market models: variance swaps models. It turns out that the modelling is not only much

simpler than in the call surface case (which is not too surprising because there is only

the maturity dimension, versus maturity and strike dimensions for call surface models),

but it is also very close to the famous HJM framework for forward rates modelling. In

this chapter, we apply Buehler’s modelling idea to model a stock and (forward) variance

swaps written on this stock, and look at the problem of hedging discretely monitored

exotic European options with the stock and (forward) variance swaps. Very much as

Carmona and Tehranchi [7] did in the case of interest rates contingent claims, we fo-

cus on genuine infinite dimensional models, which have two interesting features which

are absent in classical finite dimensional models (provided some assumptions on the

model’s parameters): the hedging portfolio for a given contingent claim is unique, and

it makes only use of variance swaps maturing on, or before the maturity of the option.

Let us assume for instance that we are trying to hedge a look-back option, paying the
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difference between the maximum and the minimum of the stock, observed daily at the

close of market, over a period of one year. Such an option seems to be a measure in

some sense of the volatility of the stock over the period of one year from now, so it cer-

tainly seems like a reasonable thing to do to use variance swaps to hedge it (we do not

worry about transaction costs here). It would however, seem unnatural to use as hedging

instruments variance swaps maturing in 2 years, 3 years, etc, because there should be (at

least intuitively) more correlation between the look-back option we are trying to hedge

and variance swaps maturing within a year than between the look-back option and vari-

ance swaps whose maturity exceeds that of the look-back option. Finite dimensional

models, because they are complete (provided we can trade as many variance swaps as

there are independent Brownian motions underlying the model), do not preclude such

an unnatural choice of hedging instruments. Infinite dimensional models can be made

to preclude it.

2.1.2 Organization of this chapter

We now shortly describe how this chapter is organized: in the second section, we start

by giving the definition of variance swaps and explain why they have become actively

traded. We also give a short overview of Buehler’s quite recent discovery that variance

swaps can be modelled in an HJM framework, similarly to what is done in interest rates

when one models the forward curve. In the third section we will have a short look at

an example of finite dimensional stochastic volatility model where the market can be

completed by trading in the stock and in a finite number of arbitrary chosen variance

swaps. This shows that although of practical importance, finite dimensional models

have the unsatisfying theoretical property that the hedging instruments can be chosen

independently of the claim to hedge. This leads us, in the fourth section, to introduce

variance swaps models in infinite dimensional spaces. From that point on we follow

very closely the work of Carmona and Tehranchi on interest rates modelling in infinite

dimensions: we start by listing the assumptions we need to make on the function spaces

in which the (forward) variance curve will live and on the stochastic equation that gov-
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erns its evolution. In section 5, we discuss the meaning we should give to portfolios

in this infinite dimensional setup and explain how the classical self-financing condition

can be extended in order to be consistent with common sense. We show that under some

conditions on the SPDE satisfied by the forward variance swaps curve, portfolios lead-

ing to a given wealth at some fixed time in the future are unique.

In section 6, we use Malliavin calculus and in particular the Clark-Ocone formula to

derive an expression for the hedging portfolios of contingent claims written on the

stock and the variance instruments. We show that under additional assumptions on

the volatility operator of the forward variance swaps curve and on the correlation be-

tween the stock and the (forward) variance swaps, the unique hedging portfolio satisfies

a maturity-specific property which was absent in finite dimensional models. Finally in

the seventh and last section, we give a concrete example of model that satisfies all the

assumptions we listed in sections 4, 5 and 6. We also give some examples of classical

payoffs involving the stock and the variance instruments and which fit in the framework

we have presented.

An important appendix gives short introductions to the mathematical tools we have used

in the main text, namely stochastic analysis in infinite dimensions, Malliavin calculus

for Hilbert space valued random variables and existence, uniqueness and Malliavin dif-

ferentiability of mild solutions to SPDEs in Hilbert spaces. The propositions and the-

orems discussed there are important, but rather technical, so we chose to relegate them

to the appendix in order to lighten the main text. Although these results can be found in

the literature, we thought it convenient to have them detailed here, so that the chapter is

reasonably self-contained.
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2.2 Variance swaps and consistent HJM models

2.2.1 Variance swaps and forward variance swaps

All along we will consider a risky asset P, whose price process
(
Pt

)
t≥0 is assumed to be

a continuous positive local-martingale of the form:

Pt = P0E
( ∫ t

u=0

√
ςudWu

)
(2.2.1)

where
(
Wt

)
t≥0 is a scalar Brownian motion defined on a complete filtered probability

space
(
Ω,F ,

{
Ft

}
t≥0,P

)
satisfying the usual conditions, where the square root of the

variance process
(
ςt
)

t≥0 is W-stochastically integrable, and where E denotes the Doleans

exponential local-martingale. Notice that
{
Ft

}
t≥0 may be larger than the augmented fil-

tration generated by W. We make the assumption that interest rates are constant and

equal to 0.

For any partition T B {t j}
N
j=0 of the time interval [0,T ], i.e. such that 0 = t0 ≤ ... ≤

tN = T and for each n ≤ N, we define the variance swap V (tn)
T
, n ≤ N to be the financial

contract paying at time tn the quantity:

VT (tn, tn) B
n∑

j=1

(
log

Pt j

Pt j−1

)2

and will write VT (t, tn) for the value of this contract at any time t ≤ tn. The average

payoff 1
tn

VT (tn, tn) is an estimator of 1
tn
E

∫ tn
u=0

ςudu and is generally referred to as the “re-

alized variance”. Variance swaps, such as we have just defined them, are quite actively

traded on some major stocks and indices. In reality however, they pay the difference be-

tween VT (tn, tn) and some pre-agreed constant value, which may for instance be chosen

in such a way that the original value of the variance swap is null. From a mathematical

standpoint however, the addition of this constant does not make any difference so that

we will ignore it to make things simpler. T is generally running through the trading

days (Monday to Friday) of a given period ( e.g. three months, a year, etc). Other prod-

ucts which have become popular are the forward variance swaps, which pay the realized
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variance between two dates in the future. We define then for any n,m ∈ {0, ...,N}, with

n < m, the forward variance swap v(tn,tm)
T

as the contract paying at time tm the quantity:

vT (tm, tn, tm) B
1

tm − tn

m−1∑
j=n

(
log

Pt j+1

Pt j

)2
.

Similarly to variance swaps, we denote its value at time t ≤ tm by vT (t, tn, tm). Of course

it is easy to observe that having the prices of the family of variance swaps
{
V (tn)
T

}N

n=1
, or

those of the family of forward variance swaps
{
v(tn,tm)
T

}
n<m∈{0,...,N}

are equivalent, because

of the relations:

V (tn)
T

=

n−1∑
j=0

(
t j+1 − t j

)
v(t j,t j+1)
T

(2.2.2)

v(tn,tn+1)
T

=
V (tn+1)
T
− V (tn)

T

tn+1 − tn
(2.2.3)

which are just respectively a discrete integral and a discrete derivative.

Let us now consider a family T (n) B {t j}
N(n)

j=0 of increasing partitions of the time in-

terval [0,T ], and let us denote by ||T || the maximum step of partition T B {t j}
N
j=0, that

is:

||T || B max j∈{1,...,N}|t j − t j−1|

It is well known that if

lim
n→∞
||T (n)|| = 0,

then:

lim
n→∞

VT (n)(τ, τ) =< log(P) >τ,

this last limit being understood in the sense of ucp convergence (i.e. uniformly on com-

pacts, in probability). See Protter [38] p. 66 for instance for this result. τ in the above

can be chosen to be any point in T (∞) B
⋃∞

n=0 T
(n), which is dense in [0,T ] by the

assumptions that ||T (n)|| 7→ 0 and that the partitions are increasing.
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Because of these remarks, we will consider as an approximation of the real world that

for any two instants t ≤ T , we can trade at time t a product paying at time T the quadratic

variation of the log of the stock price: < log(P) >T . We will continue to call this product

the variance swap maturing at time T and denote its price at time t by V(t,T ). From a

practical perspective, we can remark that the approximation is only sensible for large

values of T − t, but we shall ignore this issue.

Obviously for all t ≥ 0, the curve T 7→ V(t,T ), defined on [t,∞), is increasing, and

therefore is differentiable Lebesgue-almost everywhere. If V(t, .) is differentiable at T0,

and to keep consistency with our earlier definition of real forward variance swaps, we

will use the notation: v(t,T0) B ∂V(t,T )
∂T

∣∣∣∣
T0

and call this quantity the (t-time value of the)

forward variance swap maturing at time T0. In particular, and by analogy with interest

rates theory, we will call v(t, t) the short variance at time t.

Neuberger [35] showed that in the context of continuous models of the form (2.2.1),

which are fairly general, one can replicate the quadratic variation of the log of the stock

by trading continuously in the stock, in a model-independent manner, and by taking a

long position in an option paying the logarithm of the stock. Indeed, an application of

Ito’s formula gives that:∫ T

u=0
ςudu = 2

∫ T

u=0

dPu

Pu
+ 2

[
log(P0) − log(PT )

]
This formula, combined with the well known fact that European options depending only

on the terminal value PT (namely log(PT )) can be replicated by a model-independent

static position in call and put options, is probably one of the reasons that explain why

variance swaps have become popular. Indeed in the case of the log contract, we can

show using integration by parts that we have the following identity, holding for any

K > 0:

log(PT ) = log(K) +
PT − K

K
−

∫ K

k=0

(u − PT )+

u2 du −
∫ ∞

k=K

(PT − u)+

u2 du

which means that one can replicate statically the log contract by holding log(K) of the

bond, 1/K of the forward contract struck at K, selling 1/u2 of the put option struck at u

33



for each u ≤ K and selling 1/u2 of the call option struck at u for each u ≥ K.

As pointed out by Neuberger [35] however, traders were already betting on variance

even before the appearance of variance swaps, generally using other options like strad-

dles, or via delta-hedging strategies, which were providing a less direct and less perfect

exposure to realized variance (see also the survey article on volatility trading by Carr

and Madan [9]).

2.2.2 Buehler-HJM market models

Buehler, in his PhD thesis and subsequent papers such as [4], has shown that the HJM

methodology could be applied to variance swaps modelling. Suppose that we start with

a stock
(
Pt

)
t≥0 modelled as a strictly positive and continuous local-martingale of the

form:

PT = P0 exp
( ∫ T

u=0

√
ςudWu −

1
2

∫ T

u=0
ςudu

)
(2.2.4)

for some Brownian motion W and some variance process ς (which may not be adapted

to the filtration generated by W, for instance if we wanted to have an incomplete market

model). As explained in the previous section, we can then define the (approximated)

variance swaps at time t maturing at time T by:

V(t,T ) B Et

[ ∫ T

u=0
ςudu

]
and under some mild regularity conditions, it may make sense to define the forward

variance swaps as:

v(t,T ) B ∂TEt

[ ∫ T

u=0
ςudu

]
which would also be strictly positive local-martingales (i.e. for each T ≥ 0,

(
v(t,T )

)
t∈[0,T ]

is a local-martingale). We can remark then that v(t, t) = ςt. The discovery of Buehler

is that we could go backward instead: we could start by defining the forward variance

swaps as a family (indexed by T ) of (say) strictly positive martingales
(
v(t,T )

)
t∈[0,T ] via

a family of SDEs. Then we could define the variance swaps by integration, and finally
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define the stock via equation (2.2.4), where W is an arbitrary Brownian motion (whose

dependence on the randomness driving the forward variance swaps may be chosen as

we wish). This construction guarantees that all assets’ prices are (local) martingales,

and we have of course that for all t ≤ T < ∞, V(t,T ) = < log P >T . This means that

we are building a market model, where we describe the joint evolution of a stock and a

family of derivatives written on this stock, in a consistent and arbitrage-free manner.

The advantage of this methodology is that it allows one to find prices of complex exotic

options in terms of a stock and some actively traded derivatives on the stock (i.e. vari-

ance swaps). This may therefore be of interest to traders because it allows them to work

out how to hedge exotic options not only by trading in the stock, but also by trading in

variance swaps (although some may argue that transaction costs on variance swaps may

rule out such practice. We do not address these practical issues in this chapter however).

From the point of view of an economist finally, it is also satisfying to have models which

are incomplete, with potentially an arbitrary number of random factors, but where the

additional factors which render the market complete can be related to quantities directly

observable in the market (i.e. the variance swaps prices), rather than having, like in more

conventional stochastic volatility models, factors which are non observable or which at

the very best can only be estimated.

2.2.3 Musiela’s time to maturity notation

We finish this introductory section by a point of notation: exactly as in the interest rates

world, it may be convenient (and we will actually do it in the sequel) to work in terms

of “time to maturity” rather than in terms of “time of maturity”. We will therefore use

Musiela’s notation:

Vt(x) B Vt(T − t) B V(t,T )

vt(x) B vt(T − t) B v(t,T )
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where x denotes therefore the time to maturity. The advantages (time-independent curve

domain) and disadvantages (have generally to deal with SPDEs instead of SDEs) of

both conventions are well discussed in the literature, and the interested reader may for

instance consult [32].
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2.3 Shortcomings of finite dimensional models

This section, on continuous finite dimensional variance swaps models, serves as a justi-

fication for introducing infinite dimensional models. Instead of looking at generic finite

dimensional models however, we give a particular example in which many computations

can be done in closed form. The reader can then generalize to other finite dimensional

models which for obvious reasons (there are more traded assets than there are underly-

ing (scalar) Brownian motions) cannot guarantee uniqueness of hedging portfolios for

contingent claims and therefore cannot exhibit any maturity-specific risk feature.

2.3.1 Concrete example of a complete finite dimensional model

Buehler [4] (following Filipovic [18] very closely) studies finite dimensional realiza-

tions of variance swaps HJM models. Precisely, he is interested in knowing if there

exist models of the whole forward variance swaps curve x 7→ vt(x) which can be written

as vt(x) = G(Zt; x) for some smooth function G and some finite dimensional diffusion

Zt, which may represent factors (observable or not, tradable or not). He found that a

necessary condition is that G satisfies a PDE (unsurprisingly close to the heat equation)

whose coefficients are linked to those of the SDE satisfied by Zt. In addition, he gives

numerous examples of such models, which fit in the so-called polynomial-exponential

family. The famous stochastic volatility model by Heston [22] is probably the simplest

and most well known example.

We show in this section a model where, given any set of N variance swaps of different

maturities, we can replicate any European (possibly path dependent) option by trading

in the stock and these N variance swaps. Moreover, for a very large class of discretely

monitored options, the holding in each hedging instrument can be computed explic-

itly. From a practical perspective this may be interesting because the parameters of

such models could be optimized to (best) fit an initial set of variance swaps, call and

put options, and then used to hedge exotic options with the available variance swaps.

Very recently, Heston et al have studied a two-dimensional version of this same model

[10] and have shown that it improves on the 1-dimensional case with regard to captur-
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ing features of the volatility smile (i.e. it is possible to fit better the smile’s shape and

deformation over time).

The model

Let
(
Ω,F , (Ft)t≥0,P

)
be a probability space supporting a N + 1-dimensional Brownian

motion W =
(
Wt

)
t≥0, and where (Ft)t≥0 is the augmented filtration generated by W and

F = F∞. We look at W as living in the Euclidean space RN+1, and we will write its

components as (W (0)
t , ...,W (N)

t )

We define the stock (Pt)t≥0 and the N short volatility components
{
(B(n)

t )t≥0
}
n∈{1,...,N} to

be the strong solutions (starting respectively at the positive values P0,B(1)
0 ,...,B(N)

0 ) of the

following SDEs:

dPt = Pt

N∑
n=1

√
B(n)

t dW̃ (n)
t (2.3.1)

and

∀n ∈ {1, ...,N}, dB(n)
t = k(n)(Θ(n) − B(n)

t )dt + σ(n)
√

B(n)
t ∨ 0 dW (n)

t

where W̃ (1)
t B ρW (0)

t +
√

1 − ρ2W (1)
t , for some constant ρ ∈ (−1, 1), where {k(n)}n={1,...N},

{Θ(n)}n={1,...N}, and {σ(n)}n={1,...N}, are positive constants, and W̃ (n)
t = Wn

t , n ≥ 2 (the con-

stant ρ gives the correlation between the variance and the stock). We will in addition

make the following assumptions on the coefficients of the SDEs:

Assumption 2.3.1 The values of the coefficients {k(n)}n∈{1,...,N} are all distinct from each

other.

Assumption 2.3.2 ∀n ∈ {1, ...,N},
(
σ(n))2

< 2k(n)Θ(n)

Assumption 2.3.2 is the well known “Feller condition” that ensures that the processes

(B(n)
t )t≥0, n ∈ {1, ...,N} remain strictly positive at all times, almost surely (see for instance

[17]). That the SDEs for
{
(B(n)

t )t≥0
}
n∈{1,...,N} have strong unique solutions is far from

being obvious, especially because of the square root term, which prevents us from using

classical theorems on SDEs with Lipschitz coefficients. However, a proof of that fact
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can be found in Ikeda and Watanabe [23], Theorem IV.2.3 page 173 and Theorem IV.3.2

page 182 as well as Example IV.8.2 page 235. A proof of the Feller condition can be

found in Example 8.2 page 235 and is based on a technical result on explosion times of

paths of diffusions which can be found in Theorem VI.3.1 page 447.

Completeness

We make Assumption 2.3.1 for the following reason:

Theorem 2.3.3 Let {Tm}m∈{1,...,N} be N given times, distinct from one another and let

us denote by T their minimum. Then the market composed of the stock Pt and the N

variance swaps {Vt(Tm − t)}m∈{1,...,N} maturing at times {Tm}m∈{1,...,N} is complete on [0,T )

if and only if Assumption 2.3.1 holds.

Notice that by complete on [0,T ) we mean that any contingent claim ξτ which is Fτ-

measurable for some τ ∈ [0,T ) can be replicated by trading in the above mentioned

assets.

Proof of Theorem 2.3.3:

Let us first remark that the SDE for the stock Pt can be rewritten as:

dPt = Pt

√
v0

t dZt

where v0
t B

√∑N
n=1 B(n)

t is the short variance, and where Zt, defined by

dZt B

∑N
n=1

√
B(n)

t dW̃ (n)
t√∑N

n=1 B(n)
t

is easily seen to be a 1-dimensional Brownian motion, by Levy’s characterization of

Brownian motion.

This allows us to compute quite easily the variance swaps prices (a rigorous computation

can be found in the paper by Potter [37] who studies a class of 2-dimensional complete

stochastic volatility models where he assumes both the stock and an additional option
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(closely related to a variance swap) to be tradable): the result, in our notation, is that for

t, x ≥ 0, the time t price Vt(x) of the variance swap maturing at time t + x is given by:

Vt(x) =

∫ t

u=0
v0

udu +

N∑
n=1

[
Θ(n)x + (B(n)

t − Θ(n))
1 − exp(−k(n)x)

k(n)

]
(2.3.2)

Remark 2.3.4 It can be noticed that the above depends on Vt(0) =
∫ t

u=0
v0

udu, which

makes the dependence of Vt(x) on the factors of our SDEs non Markovian. For con-

creteness, one would need to keep track of the accumulated variance from 0 to t in order

to compute the value of Vt(x) by the above formula. This is one of the reasons why

Potter [37] prefers to use another option to complete the market and derive hedging

portfolios, rather than using a variance swap. On the other hand, the option he uses

is an approximation of a variance-related object that requires the calls of all strikes

to be traded which is also a bit unrealistic, and this has to be added to the fact that

the variance-related objects that we are considering are already themselves approxima-

tions of real-world payoffs (the real-world variance swaps are computed using discretely

monitored values of the stock).

Remark 2.3.5 Notice that equation (2.3.2) can of course be written as

Vt(x) = G(Vt(0), Bt; x)

for some suitable smooth function G. The multi-dimensional Heston model belongs

therefore to the finite dimensional HJM realizations family.
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From (2.3.2) and from the SDE (2.3.1) satisfied by the stock P, we get that the vector of

assets (Pt,Vt(T1 − t), ...,Vt(TN − 1)) satisfies the SDE:

dPt

dVt(T1 − t)

.

.

.

dVt(TN − t)


=



Ptρ

√
B(1)

t Pt

√
1 − ρ2

√
B(1)

t Pt

√
B(2)

t . Pt

√
B(N)

t

0 1−exp (−k(1)(T1−t))
k(1) σ(1)

√
B(1)

t . . 1−exp (−k(N)(T1−t))
k(N) σ(N)

√
B(N)

t

. . . . .

. . . . .

. . . . .

0 1−exp (−k(1)(TN−t))
k(1) σ(1)

√
B(1)

t . . 1−exp (−k(N)(TN−t))
k(N) σ(N)

√
B(N)

t





dW (0)
t

dW (1)
t

.

.

.

dW (N)
t


C AtdWt

We can now observe that the matrix At is invertible for all t < T B infn≤N
{
Tn

}
and for

all ω ∈ Ω if and only if no two coefficients k(n), n ∈ {1, ...,N} are equal. Indeed, doing a

Laplace expansion of At along the first column, we see that At is invertible if and only

if: 

1−exp (−k(1) x1)
k(1) σ(1)

√
B(1)

t . . . 1−exp (−k(N) x1)
k(N) σ(N)

√
B(N)

t

. . . . .

. . . . .

. . . . .

1−exp (−k(1) xN )
k(1) σ(1)

√
B(1)

t . . . 1−exp (−k(N) xN )
k(N) σ(N)

√
B(N)

t
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is, where we have used xn as a short-hand notation for Tn − t. Simplifying factors which

are common across lines or columns, we see that At is invertible if and only if:

1 − exp (−k(1)(x1)) . . . 1 − exp (−k(N)(x1))

. . . . .

. . . . .

. . . . .

1 − exp (−k(1)(xN)) . . . 1 − exp (−k(N)(xN))


is. And finally, this means that At is invertible if and only if the following generalized

Vandermonde matrix is itself invertible, a classical fact (see Gantmacher [20] p. 87).

1 1 1 1 1 1

1 exp (−k(1)x1) . . . exp (−k(N)x1)

. . . . . .

. . . . . .

. . . . . .

1 exp (−k(1)xN) . . . exp (−k(N)xN)


�

One can easily observe that the matrix At becomes singular if t = T as one of the

column (the one corresponding to n such that Tn = T ) will converge to a multiple of

the first column. On the other hand, if we let the maturities go to ∞, then the matrix

becomes also singular because the terms in 1−exp (−k(n)(Tn−t))
k(n) would converge to 1

k(n) . What

this means is that this model allows one to hedge any contingent claim ξτ with the stock

plus any N variance swaps of maturities strictly greater than τ. However, if the ma-

turities are too far away from τ then the hedging portfolio would most likely become

really risky and unnatural, i.e. with very large positive and negative holdings in each

instrument due to the matrix becoming singular.

To conclude on this example of finite dimensional model, we see that it may be use-

ful from a practical perspective because it gives us a complete market model where one
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can hedge fairly general European options with the stock and some variance swaps. As

we have seen, the hedging portfolio may become very unnatural if we choose as hedg-

ing instruments variance swaps whose maturities are much larger than the maturity of

the option to be hedged, which is in some sense a weak maturity-specific risk property.

However, we would like to have models with a stronger maturity-specific risk property,

i.e. in which it is not possible to replicate an FT -measurable contingent claims by trad-

ing in variance swaps maturing later than T . Only by moving to infinite dimensional

models do we have some hope of finding such models.

Indeed, quite informally, if we choose models of the form: dV(., t) = σdWt where

now W is an infinite dimensional Brownian motion living in a space G (say), the curves

T 7→ V(T, t) live in an infinite dimensional space of curves F, and σ is an appropriate

operator taking G into F, we can see that we now have the possibility of choosing σ

with adjoint operator of trivial kernel. Indeed, still informally, what we would like to be

able to write is that, for a trading strategy
(
φt

)
t∈[0,T ], if φtσt = 0, then φt = 0 (which is

exactly saying that the kernel of σ∗ is trivial!). That would indeed guarantee that two

trading strategies
(
ψt

)
t∈[0,T ] and

(
ηt
)

t∈[0,T ] giving the same trading gains on the interval

[0,T ], i.e. satisfying
∫ T

t=0
ψtσtdWt =

∫ T

t=0
ηtσtdWt, would satisfy ψ = η.

We will see however that the task is not so easy. Firstly, we have to make sense mathe-

matically of trading strategies
(
φt

)
t∈[0,T ] making use of infinitely many instruments and

check that the quantity
∫ T

t=0
φtσtdWt can indeed be interpreted as the trading gain of fol-

lowing strategy φ. Secondly, the obvious choice of taking σ bijective from G to F is not

available to us, because infinite dimensional stochastic integration theory tells us that σ

should be an Hilbert-Schmidt operator from G to F and hence cannot be bijective. For-

tunately, we can still make σ dense-range, which is good enough for us, as this means

the adjoint σ∗ will have trivial kernel.
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2.4 The infinite dimensional setup

2.4.1 Probability space and sources of randomness

LetG be a separable infinite dimensional Hilbert space, and (Wt)t≥0 B
(
{W (n)

t }
∞
n=1

)
t≥0 aG-

cylindrical Brownian motion, defined on a filtered probability space (Ω,
(
Ft

)
t≥0,F ,P),

where
(
Ft

)
t≥0 is assumed to be the completion of the filtration generated by W, and

where F B F∞.

For any G∗-valued adapted process
(
λt

)
t≥0 of norm 1, we will denote by W (λ) the scalar

Brownian motion defined by W (λ)
t B

∫ t

u=0
λudWu.

Notice that the nature of the Hilbert space G is completely irrelevant to us. The only

thing that will play a role in the following is that it is separable and genuinely infinite

dimensional. For simplicity and concreteness, the reader may consider without loss that

G = l2, the set of square integrable real-valued sequences. We will denote by {gn}
∞
n=1 an

orthonormal basis of G.

Finally some notation that will be used quite often: for any metric space S, we denote

by B
(
S
)

its Borel σ−algebra. For any F and G Hilbert spaces, we denote by LHS (G,F)

the Hilbert space of Hilbert-Schmidt operators from G to F, and by F ⊗ G the tensor

product Hilbert space of F and G. Notice that LHS (G,F) and F ⊗ G may be identified

with each other.

2.4.2 State spaces

We will model the variance swaps curve Vt(.) and the forward variance swaps curve vt(.)

as stochastic processes valued respectively in F̃ and F, two separable Hilbert spaces of

continuous functions and satisfying some assumptions that we will introduce shortly.

Notice that it could seem at first sight more natural to have our curve of assets valued

in C B C
(
[0,∞)

)
, the space of continuous functions on the interval [0,∞) (see for
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instance the paper by De-Donno and Pratelli [15] and the older paper by Bjork et al

[3]). However, C (endowed with the supremum norm) is (only) a Banach space, so we

will find it more convenient and easier to consider instead Hilbert space valued assets.

We really only observe in the market a discrete (and indeed finite) subset of the variance

swaps curves (or of bond prices/yield curves in interest rate theory for instance), so that

the additional smoothness assumptions imposed on the curves to make the state spaces

Hilbert spaces is not really making the model less realistic.

Notice that we may restrict ourselves to modelling Vt without having to think about vt

but it may not be easy to construct directly a solution Vt that has the required properties

(especially Vt(.) must be a positive and increasing function for all t). We therefore follow

instead the approach of starting, and indeed working almost exclusively with a model for

vt(.) (which only need be positive), and simply keeping in mind that the corresponding

model for Vt can be easily obtained via integration.

All along, we will impose the following on the state spaces F and F̃:

Assumption 2.4.1 F is a separable Hilbert space, and a subset of C, the sets of contin-

uous functions on R+.

Assumption 2.4.2 The family of left shifts {S t}t≥0, defined by S t f (.) B f (t + .), forms a

strongly continuous semigroup on F. We will denote the infinitesimal generator of
(
S
)

t≥0

by A. Notice that whenever f ∈ F is differentiable, then f ′ = A f .

Assumption 2.4.3 The evaluation functionals δx : f 7→ f (x) are continuous linear

functionals on F. The set
{
||δx||F

}
x≥0 is uniformly bounded by some constant K.

We define then F̃, the space in which Vt will be valued, as: F̃ B
{
f ∈ C1([0,∞)

)
, f ′ ∈ F

}
,

and we endow F̃ with the norm: || f ||2
F̃
B f (0)2 + || f ′||2F. It can be seen with this definition

that the following properties hold (the reader can look at the concrete example of state

space F we give later, for which we prove these facts):

Property 2.4.4 F̃ so defined is also a Hilbert space, subset of C1, the sets of continu-

ously differentiable functions on R+, and the left shift operator family {S t}t≥0 also forms

a strongly continuous semigroup on F̃.

45



Property 2.4.5 The integration functional J defined by:

J : F → C1

g 7→
(
x 7→

∫ x

u=0
g(u)du

)
is a bijective bounded linear operator from F to F̃0, the closed subspace of F̃ constituted

of functions started at 0.

Property 2.4.6 The differentiation operator D defined by:

D : F̃ → C

g 7→ g′

is a bounded linear operator from F̃ into F.

We will denote by F+ the Borel subset of F of strictly positive functions, and by F̃↗

the Borel subset of F̃ of strictly increasing functions. That these two subsets are Borel

subsets come from the separability of the real numbers, the continuity of the evaluation

functionals
{
δx

}
x≥0 on F (Assumption 2.4.3) and the continuity of the differentiation op-

erator D from F̃ to F (Property 2.4.6).

As a final remark on these state spaces, it is worth noticing that because F is a subset

of C and is likely to contain S, the space of functions of rapid decrease (see Reed and

Simon [39]), we can look at F∗ as a space of distribution (i.e. a subset of the tempered

distributions) which contains the finite signed measures (i.e. which contains C∗).

2.4.3 The model

Dynamics of the forward variance swaps curve process
(
vt
)

t≥0

Let v0 be an element of F+ and σ a measurable map from
(
R+ × Ω × F+,P × B(F+)

)
into

(
LHS (G,F),B

(
LHS (G,F)

))
, where P denotes the usual predictable sigma algebra

of R+ ×Ω. We assume that there exists a constant K such that:
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Assumption 2.4.7 σ is globally Lipschitz of coefficient K: for all t ≥ 0, ω ∈ Ω and all

( f1, f2) ∈ F2
+:

||σ(t, ω; f1) − σ(t, ω; f2)||LHS (G,F) ≤ K|| f1 − f2||F

Assumption 2.4.8 σ has linear growth: for all t ≥ 0, ω ∈ Ω and all f ∈ F+:

||σ(t, ω; f )||LHS (G,F) ≤ K(1 + || f ||F)

Assumption 2.4.9 For all t, x ≥ 0, ω ∈ Ω and all f ∈ F+:

||δxσ(t, ω; f )||G∗ ≤ K f (x)

Remark 2.4.10 Unconventional notation:

Notice that we use the notation ||δxσ(t, ω; f )||G∗ , which is of course equivalent to the

more conventional ||σ(t, ω; f )∗δx||G.

We define vt, the forward variance swaps curve, to be the unique continuous mild solu-

tion in F, started at v0 (see Proposition C.0.3 in the appendix) of the stochastic evolution

equation:

dvt = Avtdt + σ(t, ω; vt)dWt

We recall here that this means that
(
vt
)

t≥0 is the (unique continuous) solution of the

equation:

vt = S tv0 +

∫ t

u=0
S t−uσ(u, ω; vu)dWu (2.4.1)

Let us give some motivation behind the assumptions we have made on σ:

• Assumption 2.4.7 and Assumption 2.4.8 guarantee that we can apply Proposition

C.0.3 and therefore that vt is well defined, continuous and has moments of all

orders.
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• Assumption 2.4.9 guarantees that, almost surely, the curve vt(.) remains positive

for all t ≥ 0. Indeed, the assumption allows us to define, for each T ≥ 0, the

(positive) Doleans exponential local martingale:
(
E
( ∫ t

u=0
δT−uσu
vu(T−u)dWu

))
t∈[0,T ], as the

integrand δT−uσu
vu(T−u) is, in norm, smaller than K. Using Ito’s formula shows easily

that this Doleans exponenatial satisfies the same SDE as
(
vt(T − t)

)
t∈[0,T ].

Notice that we will often use the notation
(
σt

)
t≥0 for the (now well defined) stochastic

process (t, ω) 7→ σ(t, ω; vt(ω)). However, this does not mean that we consider σ to be

non random, nor independent of vt.

Remark 2.4.11 The trivial case where σ = 0 and where v0(.) is a constant function

corresponds to the Black and Scholes model. This choice of σ satisfies of course the

three assumptions above, but it is a 1-dimensional model. Recasting the (1-dimensional)

Heston model in the above formulation would lead to δxσ being proportional to
√

vt(x)

and therefore would not satisfy Assumption 2.4.9. We will see later that the model

we propose here has finite moments at all times, i.e. for any T ≥ 0 and any p ≥ 1,

EPp
T < ∞, which is not the case of Heston’s model. Empirical evidence seem to favor

models which display moments explosions (see for instance Keller-Ressel’s paper [27]

on moments explosion for affine stochastic volatility models), so that our model may be

unrealistic. However, our assumption is mathematically convenient.

Definition and dynamics of the variance swaps curve process
(
Vt

)
t≥0

For all (t, x) ≥ 0, we define the variance swaps by:

Vt(x) B
∫ t

s=0
vs(0)ds +

∫ x

s=0
vt(s)ds

and we claim the following:

Proposition 2.4.12 The variance swaps curve process
(
Vt

)
t≥0 is an F̃-valued stochastic

process, unique continuous mild solution of the stochastic equation:

V0(.) =

∫ .

s=0
v0(s)ds

dVt = AVtdt + Σ(t, ω; Vt)dWt
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where the map Σ, defined by:

Σ(u, ω; V) B Jσ(u, ω; DV) (2.4.2)

is measurable from
(
R+ × Ω × F̃↗,P × B(F̃↗)

)
into

(
LHS (G, F̃),B

(
LHS (G, F̃)

))
and

satisfies, mutatis mutandis, Assumption 2.4.7, Assumption 2.4.8 and Assumption 2.4.9.

Proof of Proposition 2.4.12:

By definition of V , we have for all t ≥ 0 and all x ≥ 0:

Vt(x) =

∫ t

s=0
vs(0)ds +

∫ x

s=0
vt(s)ds

So that replacing vs(0) and vt(s) by their expression as stochastic integrals gives:

Vt(x) =

∫ t

s=0

(
(S sv0)(0) + δ0

∫ s

u=0
S s−uσudWu

)
ds

+

∫ x

s=0

(
(S tv0)(s) + δs

∫ t

u=0
S t−uσudWu

)
ds

=

∫ t

s=0
v0(s)ds +

∫ x

s=0
v0(t + s)ds

+

∫ t

s=0

( ∫ s

u=0
δ0S s−uσudWu

)
ds +

∫ x

s=0

( ∫ t

u=0
δsS t−uσudWu

)
ds

=

∫ t+x

s=0
v0(s)ds +

∫ t

u=0

( ∫ t

s=u
δs−uσuds

)
dWu +

∫ t

u=0

( ∫ x

s=0
δt+s−uσuds

)
dWu

=
(
S tV0

)
(x) +

∫ t

u=0

( ∫ t+x−u

s=0
δsσuds

)
dWu

= δx(S tV0) + δx

∫ t

u=0
S t−uJσ(u, ω; DVu)dWu

= δx

(
S tV0 +

∫ t

u=0
S t−uΣudWu

)
Notice that we have made use of the Stochastic Fubini theorem in the above calcula-

tion, and this is justified by Assumption 2.4.8 which, together with the finiteness of

supt≤T E||vt||
2, imply that for all T ≥ 0:

E

∫ T

u=0
||σu||

2
LHS (G,F)du < ∞

The Lipschitz property of Σ can be easily seen by the following computation, which

makes use of Property 2.4.6 which guarantees the boundedness of the derivative operator
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D and of Property 2.4.5 which guarantees the boundedness of the integration functional

J: for all (V1,V2) ∈ F̃, all t ∈ R+ and all ω ∈ Ω, we have:

||Σ(t, ω; V1) − Σ(t, ω; V2)||LHS (G,F̃) ≤ ||J||L(F,F̃)||σ(t, ω; DV1) − σ(t, ω; DV2)||LHS (G,F)

≤ K||J||L(F,F̃)||D||L(F̃,F)||V1 − V2||F̃

C KΣ||V1 − V2||F̃

The boundedness of Σ in the sense of Assumption 2.4.8 is also easy to show. We indeed

have for all (V, t, ω) ∈ F̃ × R+ ×Ω that:

||Σ(t, ω; V)|| ≤ ||J||L(F,F̃)K(1 + ||D||L(F̃,F)||V ||F̃)

≤ K̃Σ(1 + ||V ||F̃)

where K̃Σ is any constant greater than K||J||L(F,F̃) and K||J||L(F,F̃)||D||L(F̃,F).

We now show that Assumption 2.4.9 holds, almost surely, for Σ: let t,T, x > 0 be

given (Note the strict inequality which was not necessary in the case of σ, because vt

was strictly positive almost surely, whereas V0(0) = 0). Let us remark that VT (x) =∫ T

s=0
vs(0)ds +

∫ x

s=0
vT (s)ds ≥

∫ x

s=0
vT (s)ds = δxJvT . Therefore, it holds almost surely

that:

||δxΣt||G∗

δxVt
≤
||δxJσt||G∗

δxJvt
=
||
∫ x

s=0
σt(s)ds||G∗∫ x

s=0
vt(s)ds

≤

∫ x

s=0
||δsσt||G∗ds∫ x

s=0
δsvtds

≤ K

where K is as in Assumption 2.4.9.�

Let us make two additional remarks on Σ: firstly it is obvious that Σtg ∈ F̃0 for all

g ∈ G, which means that Σ is actually valued in the space
(
LHS (G, F̃0)

)
. Secondly, if for

all (t, ω, v) ∈ R+ × Ω × F+, σ(t, ω; v) is dense-range in F (this assumption will actually

appear naturally later in order to get uniqueness of hedging portfolios), then Σ(t, ω; V)

is dense-range in F̃0 for all (t, ω,V) ∈ R+ ×Ω × F̃↗.
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Remark 2.4.13 Let us finally remark that by construction, V has the correct proper-

ties to preclude arbitrage, since
(
Vt(T − t)

)
t∈[0,T ] is a martingale for all T ≥ 0. The

construction also guarantees that the variance swaps curve Vt(.) is increasing for all t.

Definition and dynamics of the stock process
(
Pt

)
t≥0

Finally, we define the stock Pt as follows: let P0 > 0 be the initial value of the stock,

and let
(
λt

)
t≥0 be a G∗-valued stochastic process, adapted and of norm 1. We then define

the stock price process
(
Pt

)
t≥0 to be the local-martingale Doleans exponential:

Pt = P0E
( ∫ t

u=0

√
vu(0)λudWu

)
C P0E

( ∫ t

u=0

√
vu(0)dW (λ)

u

)
Remark 2.4.14 So far, there is no reason to believe that

(
Pt

)
t≥0 is a martingale. How-

ever, notice that it is a well defined positive local-martingale. Indeed, from Theorem

C.0.3 and Assumption 2.4.3, we get that for all T ≥ 0:

E

∫ T

u=0
vu(0)du ≤ ||δ0||F

√
T AT,2 < ∞.

Rationale behind the Hilbert space valued SPDE

For the reader unfamiliar with Musiela’s notation and SPDE’s in Hilbert spaces, it may

be unclear why we chose to model vt(.) via an equation of the form (2.4.1). We explain

here, informally, the rationale behind this model: as we are working directly under

a pricing measure, we could start off with a model where for any T ,
(
v(t,T )

)
t≥0 is a

local-martingale, constant after T . This could be achieved by taking v(t,T ) solution of

a family (indexed by T ) of stochastic differential equations (SDE), where for each T ,

v(.,T ) is solution of:

v(t,T ) = v(0,T ) +

∫ t∧T

u=0
µ(T )

u dWu (2.4.3)

for some finite dimensional or infinite dimensional Brownian motion W defined (cylin-

drically) in a (separable) Hilbert space G.

Of course, requirements would have to be imposed on the family (indexed by T ) of
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processes µ(T ) to ensure that v(t,T ) has the desired properties (positive at all times, ab-

solutely continuous in T , etc). Another approach is to see
(
v(t, .)

)
t≥0 as a stochastic

process evolving in some Hilbert space F of appropriate functions (i.e. for each t, v(t, .)

is a curve). We can then rewrite (2.4.3) as a stochastic differential equation in F, under

the form:

v(t, .) = v(0, .) +

∫ t

u=0
ηudWu (2.4.4)

where ηu is a suitable Hilbert-Schmidt operator from G to F (readers not familiar with

stochastic integration in infinite dimension may consult the appendix). Under some

suitable assumptions of course, we could identify µ(T )
u with δTηu (the composition of

δT , the evaluation functional at T , and η, the volatility of the swap curve, so that in

some sense, both ways of doing (family of SDEs versus SDE in a Hilbert space) are

equivalent.

Let us consider that we start from (2.4.4), where ηu is an appropriate integrand. We now

would like to see what equation should vt satisfy, where vt(.) is v(t, .) expressed in the

Musiela notation introduced earlier: vt(x) B v(t, t + x). Notice that, because for each

T , v(.,T ) is constant after T , we can pass without loss of information from the family(
vt
)

t≥0 to the family
(
v(t, .)

)
t≥0 and vice versa. Getting from v(t, .) to vt(.) is done easily

via the left shift operator S t defined by S t f (.) B f (t + .). Getting the other way can be

done via the right shift operators
(
S −t

)
t≥0 defined by (S −t f )(x) = f (x − t) for x ≤ t and

(S −t f )(x) = f (0) if x < t, and then modifying the (irrelevant) parts of t 7→ v(t,T ) for

t ∈ [0,T ] so that each v(.,T ) is constant after T .

The fact that v(.,T ) is constant for t ≥ T also implies that δvηu = 0 for all v ≤ u.

This means that we can, without loss, apply S −u ◦ S u to ηu (which is in general not true,

because doing this would cut off the initial part of the curve to which we apply S −u◦S u).

This observation justifies the following calculation and the definition of σ:

vt(.) = S tv(t, .) = S tv(0, .) +

∫ t

u=0
S tηudWu

= S tv0(.) +

∫ t

u=0
S tS −uS uηudWu

= S tv0(.) +

∫ t

u=0
S t−uσudWu
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where we define:

σu B S uηu

Therefore, the equivalent of (2.4.4) in Musiela’s notation is:

vt(.) = S tv0(.) +

∫ t

u=0
S t−uσudWu (2.4.5)

�
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2.5 Uniqueness of hedging portfolio and market incom-

pleteness

2.5.1 Trading strategies and the self-financing condition

Our assumption that for any time t ≥ 0 there exists a variance swap maturing at any

later time T lead us to model directly the whole variance swaps curve as the solution

to a SDE in a function space F̃. Continuing further with this functional analysis ap-

proximation of the real world, we will assume that traders can not only hold “atomic”

portfolios, consisting of a finite number of variance swaps maturing at different times in

the future, but that they can also hold more general portfolios valued in the dual space of

F̃. Notice that this is the same kind of trick, introduced for mathematical convenience,

as the one we generally follow when passing from trading strategies valued in the space

of simple integrands to trading strategies valued in the space of predictable square in-

tegrable processes. Of course in the real world, only simple integrands make sensible

trading strategies, but that space is not complete and is therefore not well suited to per-

form mathematical analysis.

We have assumed throughout that interest rates are null, and therefore, in addition to

trading in the variance swaps curve V(t, .) and in the stock Pt, we can also hold a certain

amount of cash, which plays the role of the usual bank account (paying no interest).

We will therefore authorize ourselves to hold portfolios of the form φ = (φ(C), φ(P), φ(V))

valued in R×R× F̃∗, by which we mean that we hold φ(C) in cash, φ(P) units of the stock

P and φ(V) of the variance swaps curve V . The wealth associated with portfolio φ is then

defined by: X(φ) B φ(C) + φ(P)P+ < φ(V),V >F̃, or more shortly: X(φ) =< φ, (1, P,V) >H,

where the Hilbert space product in H B R × R × F̃∗ is defined in the obvious way.

We now would like to define the self-financing condition in such a way that we can

talk about H∗-valued self-financing trading strategies and that it is consistent with com-

mon sense. That is, our definition should mean that whenever the trading strategy is

an atomic measure of H∗ (i.e. we hold cash, the stock and a finite number of variance
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swaps) and is a simple integrand, then our portfolio’s value is changing only through

changes in the assets’ value, not because of any additional expense or income.

We already know from classical theory what the self-financing condition is for contin-

uous time trading in a scalar asset (the stock P), so we can focus on the condition for

trading in the variance swaps curve alone. Now, by linearity of the infinite dimensional

stochastic integral, we see that it is clearly sufficient to take three times T1 < T2 < T

and to define the self-financing condition in the case of the atomic simple strategy

φ(V)
t = 1[T1,T2](t)δT−t. This strategy consists simply in holding between times T1 and

T2 the variance swap that matures at time T . In this case, the self-financing condition

means:

XT2 − XT1 = VT2(T − T2) − VT1(T − T1)

= δT−T2

(
S T2V0 +

∫ T2

u=0
S T2−uΣudWu

)
− δT−T1

(
S T1V0 +

∫ T1

u=0
S T1−uΣudWu

)
= V0(T ) +

∫ T2

u=0
δT−T2S T2−uΣudWu − V0(T ) −

∫ T1

u=0
δT−T1S T1−uΣudWu

=

∫ T2

u=0
δT−uΣudWu −

∫ T1

u=0
δT−uΣudWu

=

∫ T2

u=T1

δT−uΣudWu =

∫ T

u=0
φ(V)

u ΣudWu

This leads us to the following definition that we adopt in order to extend to our setup the

classical notions of trading strategies and of self-financing portfolios:

Definition 2.5.1 An H∗-valued stochastic process
(
φt

)
t≤0 =

(
φ(C)

t , φ(P)
t , φ(V)

t
)

t≤0 is called

an admissible trading strategy if:

• φ is predictable in the sense that, as a mapping from (R+ × Ω) to H∗, (t, ω) 7→

φ(t, ω) is P/B(H∗) measurable.

• φ is stochastically integrable in the (strong) sense that for all T ≥ 0:

E

∫ T

u=0

(
φ(P)

u
)2P2

uvu(0)du + E

∫ T

u=0
||φ(V)

u Σu||
2
G∗du < ∞.

(
φt

)
t≤0 is in addition said to be self-financing if, for all T ≥ 0:

< φT , (1, PT ,VT ) >H = < φ0, (1, P0,V0) >H +

∫ T

u=0
φ(P)

u Pu

√
vu(0)dW (λ)

u +

∫ T

u=0
φ(V)

u ΣudWu.
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and when this holds, we define the wealth X(φ)
T at time T of an investor following the

self-financing trading strategy φ by:

X(φ)
T B< φT , (1, PT ,VT ) >H .

It is interesting to notice that from a mathematical perspective, the definition of the

stochastic integral
∫ T

u=0
φ(V)

u ΣudWu does not require that φ(V)
u be F̃∗-valued. It would in-

deed be enough that φ(V)
u be in the closure of the space of F̃∗-valued adapted processes

(the closure being understood with respect to the norm |||φ(V)
u |||Σ,T B

∫ T

u=0
||φ(V)

u Σu||
2
G∗du).

This requirement is rather justified by us wanting to interpret < φT , (1, PT ,VT ) >H as

the time T wealth of a trader following strategy φ, and therefore, we need to be able to

make sense of < φ(V)
u ,Vu >F̃ as a real number.

2.5.2 Equivalence of trading strategies in vt and Vt

Notice that we have chosen for our state space F̃ a relatively smooth space, and in

particular smooth enough that the point-wise differential operators are continuous. This

means that we authorize ourselves to hold portfolios such as ∂
∂x

∣∣∣
x=x0

Vt(.), which amounts

to holding the forward variance swap vt(x0).

In our setup, it actually turns out that the notions of trading strategies in Vt and in vt

are equivalent, so that we will in the sequel examine everything as if we were holding

portfolios of forward variance swaps. Indeed, let us suppose that φ(V)
t is an admissible

self-financing trading strategy in the variance swaps curve. Then we can simply define

φ(v)
t B φ(V)

t J, which can easily be seen to be an admissible self-financing strategy in the

forward variance swaps curve, and leading to the same wealth at all times. Conversely,

if we start with an admissible self-financing trading strategy φ(v)
t in the forward variance

curve, then we can define φ(V)
t B φ(v)

t D, etc.

2.5.3 Uniqueness of self-financing strategies

In finite dimension, we had no chance of having uniqueness of the self-financing hedg-

ing portfolio for a given claim, because the adjoint σ∗ of the volatility of the variance
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swaps curve has a kernel which is necessarily non trivial. In infinite dimensions, the

situation is very different as the following theorem, which is the first main result of this

chapter, shows (see Proposition 6.6 in Carmona and Tehranchi [8] for the equivalent

proposition in infinite dimensional interest rates modelling).

Theorem 2.5.2 Uniqueness of hedging portfolios:

Suppose that the following assumptions hold:

Assumption 2.5.3 For almost all (t, ω) ∈
(
R+ ×Ω

)
:

ker
[
σ(t, ω; vt(ω))∗

]
= {0F}.

Assumption 2.5.4 For almost all (t, ω) ∈
(
R+ ×Ω

)
:

λt(ω)∗ < [kerσ(t, ω; vt(ω))]⊥.

Let φt and ψt be two self-financing trading strategies such that, for some T > 0:

X(φ)
T = X(ψ)

T almost surely.

Then it must hold for almost all (t, ω) ∈ [0,T ] ×Ω, that:

φt(ω) = ψt(ω).

Proof of Theorem 2.5.2:

Let us consider the self-financing trading strategy ζt(ω) B φt(ω)−ψt(ω). Then we have

that:

X(ζ)
T =

∫ T

t=0
ζ(P)

t Pt

√
vt(0)dW (λ)

t +

∫ T

t=0
ζ(v)

t σtdWt = 0 (2.5.1)
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This implies, by Ito’s isometry, that for almost all (t, ω):

ζ(P)
t Pt

√
vt(0)λt + ζ(v)

t σt = 0 (2.5.2)

But because of the assumption that for almost all (t, ω), λt(ω)∗ < [kerσ(t, ω; vt(ω))]⊥,

we can find an element gt(ω) ∈ G such that σt(ω)gt(ω) = 0, and λt(ω)gt(ω) > 0. This

implies that, for almost all (t, ω):

ζ(P)
t Pt

√
vt(0)λtgt(ω) = 0

Pt

√
vt(0)λtgt(ω) > 0

and thus ζ(P)
t (ω) = 0 for almost all (t, ω). Equation (2.5.2) now gives that ζ(v)

t σt = 0 for

almost all (t, ω), which finally together with the assumption that ker
[
σ(t, ω; vt(ω))∗

]
=

{0F} for almost all (t, ω) means that ζ(v)
t (ω) = 0 a.s.. �

2.5.4 Incompleteness

The uniqueness of hedging portfolios discussed above has strong implications in terms

of market completeness of course. Unlike the finite dimensional case, where the market

can always be completed by adding new instruments (most likely, d instruments in a d-

dimensional continuous model will lead to a complete model, for instance like we have

seen a variance swap along with the stock will complete a Heston model), the infinite

dimensional model we have here cannot be complete, no matter how many variance

swaps (of different maturities) we choose as tradable instruments. Indeed, even if we

could trade N different variance swaps
{
vt(Tn− t)

}
n∈{1,...,N}, for some (possibly very large)

integer N, by the uniqueness of trading strategies, we can always choose T different

from all the Tn’s, and the time T payoff ξ B vT (T ) is not replicable by any trading

strategy in terms of the other N variance swaps. In that respect, continuous infinite

dimensional models are more realistic than continuous finite dimensional models. Of

course, in infinite dimensional setups, one generally considers that agents can hold port-

folios valued in the dual space of the space in which the asset (curve) is valued, so we

do not limit ourselves to atomic portfolios. The question of which family of contingent
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claims can be replicated is then complicated and in general there is no market com-

pleteness, but only approximate completeness. The reader is referred to the papers by

Taflin [43] and De-Donno and Pratelli [15] for instance, for a definition and a detailed

discussion of approximate completeness.
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2.6 Characterization of hedging portfolios

In this section, we derive an explicit representation of the hedging portfolio for a class

of contingent claims written on the stock and variance instruments, in the specific case

where the model is Markovian. We also show that under some conditions on the volatil-

ity operator σ and on the correlation vector λ, the (unique) hedging portfolio satisfies a

maturity-specific property which we have seen was lacking in finite dimensional mod-

els. Notice that we will limit our study to contingent claims ξ of the form:

ξ = g(PT1 , ..., PTn , vTn+1 , ..., vTn+m) (2.6.1)

where n and m are integers, {T j}
n+m
j=1 is a sequence of times, and where the function g is

measurable from
(
Rn

+ ×F
m
+ ,B(Rn

+)×B(Fm
+)

)
into

(
R,B(R)

)
and sufficiently well behaved

(i.e. Lipschitz).

Remark 2.6.1 Because many (real world) payoffs of interest are more naturally ex-

pressed in terms of the variance swaps curve VT , we will also explain how the formula

we derive for hedging claims of the form (2.6.1) can be modified to hedge options of the

form:

ζ = h(PT1 , ..., PTn ,VTn+1 , ...,VTn+m) (2.6.2)

As we intend to make use of the Clark-Ocone formula on ξ, we see that we will have

first to prove that the T -time prices of the different assets PT , vT and VT are Malliavin

differentiable, and then use some chain rule to differentiate ξ. In our setup, it actually

turns out that PT , vT and VT belong to the appropriate D1,∞ spaces. This makes things

simpler when it comes to expressions involving products or powers of such quantities,

as those will also automatically belong to D1,∞. Of course, the reason why we choose

to specialize to Markovian coefficients σ and λ is that it allows us to make use of chain

rules for the Malliavin derivative. Precisely, we make the assumption that:

σu = σ(u; vu), λu = λ(u; vu).

We will also make the further assumption that λ is globally Lipschitz, in the sense that:
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Assumption 2.6.2 There exists a constant L ≥ 0 such that for all (t, v1, v2) ∈ R+ × F
2
+:

∣∣∣∣∣∣λ(t, v1) − λ(t, v2)
∣∣∣∣∣∣
G∗
≤ L

∣∣∣∣∣∣v1 − v2

∣∣∣∣∣∣
F
.

2.6.1 Malliavin differentiability of the variance instruments

We start with two lemmas that will be useful later when we will prove that q-powers of

variance swaps and forward variance swaps are Malliavin differentiable. Notice that the

exponent q in these two propositions can take negative values as well as positive.

Lemma 2.6.3 For any T, x ≥ 0:

sup
t≤T
E
[
vt(x)q] < ∞, ∀ q ∈ R

Lemma 2.6.4 For any T ≥ 0 and any y > 0:

sup
t≤T
E
[
Vt(y)q] < ∞, ∀ q ∈ R

Proofs of Lemma 2.6.3 and Lemma 2.6.4:

For any T ≥ t ≥ 0, we have that:

vt(T − t) = v0(T ) +

∫ t

u=0
δT−uσudWu

Because of Assumption 2.4.9, we can rewrite vt(T − t) in a more convenient form, which

shows by the way its positivity:

vt(T − t) = v0(T )E
( ∫ t

u=0

δT−uσu

vu(T − u)
dWu

)
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where E denotes the usual Doleans exponential local-martingale.

By the Cauchy-Schwarz inequality, we get:

E
[
vt(T − t)q] ≤ v0(T )q

√
EE

(
2q

∫ t

u=0

δT−uσu

vu(T − u)
dWu

)
.

√
E exp

{
q(2q − 1)

∫ t

u=0

||δT−uσu||
2
G∗

vu(T − u)2 du
}

C v0(T )q
√
EQ(T )

t

√
ER(T )

t

The right hand side is composed of three terms. The first one is constant, the second

one is smaller than 1 given that
(
Q(T )

t
)

t∈[0,T ] is a positive local-martingale (and thus a

super-martingale) started at 1. The last term is bounded, as R(T )
t is itself bounded by

exp
{
|q|(2|q|+1)T K2

}
where K is as in Assumption 2.4.9. It is now enough to set T = t+x

in the above to get that, for an arbitrary real number q and an arbitrary t ≥ 0:

E
[
vt(x)q] ≤ v0(t + x)q exp

[1
2
|q|(2|q| + 1)tK2

]
Consequently, we get that, for q and an arbitrary T ≥ 0:

sup
t≤T
E
[
vt(x)q] ≤ max

t≤T

{
v0(t + x)q} exp

[1
2
|q|(2|q| + 1)T K2

]
< ∞

The proof of Lemma 2.6.4 is similar. �

The following proposition and its corollaries give us formulae for the Malliavin deriva-

tives of forward variance swaps related quantities in terms of the operator σ:

Proposition 2.6.5 For all T ≥ 0, vT ∈ D
1,∞(F), and DtvT is given by the formula:

DtvT = 1{t≤T }Yt,T .σt

where (Yt,T )0≤t≤T is the family (indexed by t,T) of strong L
(
F
)
-valued random variables,

solutions of the family of equations:

Yt,T = S T−t +

∫ T

u=t
S T−uOσuYt,u.dWu (2.6.3)
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Moreover, for any T ≥ t ≥ 0, p ≥ 2 and ft ∈ Lp(Ω;F), it holds that:

E sup
u∈[t,T ]

∣∣∣∣∣∣Yt,u ft

∣∣∣∣∣∣p
F
≤ CT,p

∣∣∣∣∣∣ ft

∣∣∣∣∣∣p
F

for some constant CT,p depending only on T and p.

Corollary 2.6.6 For all T, x ≥ 0 and all q ∈ R,
[
vT (x)

]q
∈ D1,∞, and Dt[vT (x)

]q is given

by the formula:

Dt[vT (x)
]q

= 1{t≤T }q[vT (x)
]q−1

δxYt,Tσt

Lemma 2.6.7 For all T ≥ 0, VT B
∫ T

u=0
vudu ∈ D1,∞(F), and DtVT is given by the

formula:

DtVT = 1{t≤T }

( ∫ T

u=t
Yt,u.du

)
σt

Corollary 2.6.8 For all T, x ≥ 0, VT (x) =
∫ T

u=0
vu(x)du ∈ D1,∞, and DtVT (x) is given

by the formula:

DtVT (x) = 1{t≤T }

(
δx

∫ T

u=t
Yt,u.du

)
σt

Proposition 2.6.9 For all (T, x) ≥ 0, AT (x) B
∫ T

u=0

√
vu(x)dW (λ)

u ∈ D
1,∞, and DtAT (x)

is given by the formula:

DtAT (x) =
√

vt(x)λt +
( ∫ T

u=t

1
2
√

vu(x)
δxYt,u.dW (λ)

u

)
σt +

( ∫ T

u=t

√
vu(x)OλuYt,u.dWu

)
σt

We have of course a proposition and a corollary similar to 2.6.5 and 2.6.6 for the vari-

ance swaps curve:
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Proposition 2.6.10 For all T ≥ 0, VT ∈ D
1,∞(F̃), and DtVT is given by the formula:

DtVT = 1{t≤T }Zt,Tσt

where (Zt,T )0≤t≤T is the family (indexed by t,T) of strong L
(
F, F̃

)
-valued random vari-

ables, solutions of the family of equations:

Zt,τ = S T−tJ +

∫ τ

u=t
S T−uJOσuZt,udWu (2.6.4)

Corollary 2.6.11 For all T ≥ 0, y > 0 and q ∈ R, [VT (y)]q ∈ D1,∞, and Dt[VT (y)]q is

given by the formula:

Dt[VT (y)]q = 1{t≤T }q[VT (y)]q−1δyZt,Tσt

Proof of Proposition 2.6.5:

This proposition is a direct application of Theorem C.0.4, which can be found in the

appendix. �

Proof of Corollary 2.6.6: Let T, x ≥ 0 and q ∈ R be given. It is clear that the candidate

for the Malliavin derivative of
[
vT (x)

]q is q
[
vT (x)

]q−1
δxDtvT . By Proposition B.3.2, this

candidate will indeed be the Malliavin derivative of
[
vT (x)

]q if E
∣∣∣∣∣∣[vT (x)

]q−1
δxDtvT

∣∣∣∣∣∣
F⊗U

<

∞ (the reader may consult Appendix B for definitions and notations related to Malliavin

calculus, that we will be using in this section, for instance for a definition of the space

U). That this holds follows from Holder’s inequality and the finiteness of E
[
vT (x)

]q for

any real number q, and of E
∣∣∣∣∣∣DtvT

∣∣∣∣∣∣p
F

for any p ≥ 1. �

Proofs of Lemma 2.6.7 and Corollary 2.6.8: Let T ≥ 0 be given. We are interested

in taking the Malliavin derivative of the quantityVT B
∫ T

u=0
vudu. We first have to show

that this quantity makes sense. For this Bochner integral to be well defined, it is clearly

sufficient to show that
∫ T

u=0
||vu||Fdu is finite P-almost surely. But this is true because of
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(see Theorem C.0.3) the existence of a constant AT,2 such that supu≤T E
{
||vu||

2
F

}
≤ AT,2.

The following computation shows that
(
Vt

)
t≤T is the unique continuous mild solution

of a stochastic evolution equation in F, and will help us identify the Malliavin derivative

ofVT :

VT =

∫ T

u=0

[
S uv0 +

∫ u

t=0
S u−tσtdWt

]
du

=

∫ T

u=0
S uv0du +

∫ T

t=0

∫ T−t

u=0
S uσtdu dWt

Because of the uniform boundedness of the shift operators S u, u ≤ T , it is clear that we

can apply exactly the same reasoning as for Proposition 2.6.5 to deduce thatVT belongs

to D1,∞(F) and to deduce the formula giving DtVT . Corollary 2.6.8 is then obvious as

VT (x) = δxVT . �

Proof of Proposition 2.6.9:

We want to make use of Proposition B.2.1 on AT (x) B
∫ T

t=0

√
vt(x)λtdWt. Let us fix

T ≥ 0 and p ≥ 2. We have already seen that for any q ∈ R, supt≤T E
√

vt(x)q < ∞. More-

over, ||λt||G∗ = 1. Therefore, by a simple application of Cauchy-Schwartz’s inequality, it

is clear that E
∫ T

t=0

∣∣∣∣∣∣√vt(x)λt

∣∣∣∣∣∣p
G∗

dt < ∞. It remains only to prove that:

E

∫ T

t=0

∣∣∣∣∣∣D( √
vt(x)λt

)∣∣∣∣∣∣p
G∗⊗U

dt < ∞ (2.6.5)

By the product rule of the Malliavin derivative, and the already established facts that
√

vt(x) ∈ D1,∞ and that vt ∈ D
1,∞ along with formulae for their derivatives, we get that

for u ≤ t:

Du
( √

vt(x)λt
)

=
√

vt(x)OλtYu,tσu +
1

2
√

vt(x)
δxYu,tσuλt

The bound (2.6.5) follows then from the uniform boundedness, in (u, t) ∈ [0,T ]2, u ≤ t,

of the quantities
√

vt(x), 1
√

vt(x)
, λt and Yu,tσu, in the appropriate Lp-norms, from the

Lipschitz bound L on Oλt, from the boundedness of δx and from the application again

of Cauchy-Schwartz’s inequality. �

Proofs of Proposition 2.6.10 and Corollary 2.6.11:
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The proofs are exactly similar to the ones of Proposition 2.6.5 and Corollary 2.6.6, using

the fact that

VT = S T Jv0 +

∫ T

u=0
S T−uJσudWu

�

2.6.2 Malliavin differentiability of the stock price

From now on, we assume that in addition to the conditions already listed previously, σ

satisfies the following:

Assumption 2.6.12 For all (T, p) ≥ 0:

E exp
[
p
∫ T

u=0

∫ T

t=0
||δtσu||

2
G∗dtdu

]
< ∞

Under the above additional assumption, we will start by proving that the stock has all

its (positive) moments finite:

Lemma 2.6.13 For all T, p ≥ 0

E
[
Pp

T
]
< ∞

The following proposition then proves that the stock is Malliavin differentiable and gives

us a convenient formula for its derivative in terms of the operators λ and σ:

Proposition 2.6.14 Under it holds that for all T ≥ 0, PT ∈ D
1,∞, and DtPT is given by

the formula:

DtPT = 1{t≤T }(t,T )PT

[ √
vt(0)λt +

∫ T

u=t

1
2
√

vu(0)
δ0Yt,uσtdW (λ)

u

+

∫ T

u=t

√
vu(0)OλuYt,uσtdWu −

1
2

∫ T

u=t
δ0Yt,uσtdu

]
(2.6.6)
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Proof of Lemma 2.6.13:

The p-power of the stock at time T is given by:

Pp
T = Pp

0 exp
[
p
∫ T

u=0

√
vu(0)dW (λ)

u −
p
2

∫ T

u=0
vu(0)du

]
so that, using the Cauchy-Schwarz inequality and the same introduction of a super-

martingale started at 1 as earlier for the finiteness of EvT (x)q, we get:

EPp
T ≤ Pp

0

√
E exp

[
2p2

∫ T

u=0
vu(0)du

]
= Pp

0

√
E exp

[
2p2

∫ T

u=0

(
v0(u) + 2p2

∫ u

t=0
δu−tσtdWt

)
du

]
Using the fact that

∫ T

u=0
v0(u)du = V0(T ), and stochastic Fubini’s theorem for the second

term, justified by Assumption 2.6.12 and Theorem 4.18 of Da-Prato and Zabczyk [13],

we get therefore that:

EPp
T ≤ Pp

0 exp
{
p2V0(T )

}√
E exp

[
2p2

∫ T

t=0

∫ T

u=t
δu−tσtdudWt

]
which, using again the super-martingale trick to get rid of the stochastic integral and

Jensen’s inequality to justify us putting the norm inside the integrals, is smaller than:

Pp
0 exp

[
p2V0(T )

][
E exp

(
(8p4 + 4p2)

∫ T

t=0

∫ T−t

u=0
||δuσt||

2
Gdudt

)]1/4

Finally, to make things simpler, we can find an upper bound by letting u go from 0 to T

in the inner integral instead of 0 to T − t, and we get as final word:

EPp
T ≤ Pp

0 exp
[
p2V0(T )

][
E exp

(
(8p4 + 4p2)

∫ T

t=0

∫ T

u=0
||δuσt||

2
Gdudt

)]1/4

and the right hand side is finite by Assumption 2.6.12. �

Proof of Proposition 2.6.14: Because of Theorem B.3.2, and of Lemma 2.6.13, it is

sufficient to show that
(

log PT
)
/PT is Malliavin differentiable and of finite Lp(Ω;U∗)-

norm for all p ≥ 2.

But we have that: (
log PT

)
/PT =

∫ T

u=0

√
vu(0)dλWu −

1
2

∫ T

u=0
vu(0)du

= AT (0) −
1
2
VT (0).
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It is now enough to recall Corollary 2.6.8 and Proposition 2.6.9 (where the quantities

AT (x) andVT (x) are defined) to conclude. �

2.6.3 Explicit hedging portfolio formula

We now state the second main result of this chapter, which gives the explicit hedging

portfolio for contingent claims of the type (2.6.1):

Theorem 2.6.15 Explicit characterization of the hedging portfolio for discretely mon-

itored claims:

Let
(
vt
)

t≥0 and
(
Pt

)
t≥0 be the forward variance swaps curve process and its associated

stock price process, defined as in the previous sections. Let ξ be a contingent claim of

the form:

ξ = g(PT1 , ...PTn , vTn+1 , ..., vTn+m) (2.6.7)

for some positive integers n and m, some function g measurable from
(
Rn

+ × F
m
+ ,B(Rn

+ ×

Fm
+)

)
into

(
R,B(R)

)
and some positive times T1, ...,Tn+m, the maximum of which we will

denote by T .

Assume that g either satisfies:

• (i) the conditions of Proposition B.3.1.

• (ii) the conditions of Proposition B.3.2 and Og is a well defined (Rn ×Fm)∗-valued

random variable with finite (positive) moments.

In either case, ξ ∈ D1,∞ and there exists an (Rn × Fm)∗-valued random variable Og with

finite moments such that:

Dtξ = OgDt(PT1 , ..., PTn , vTn+1 , ..., vTn+m)
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Then, the unique hedging portfolio for ξ is given at any time t ∈ [0,T ] by:

φ(P)
t =

n∑
j=1

1{t≤T j}

1
Pt
Et

[
Og

∣∣∣
(R, j)

PT j

]
, and (2.6.8)

φ(v)
t =

n∑
j=1

1{t≤T j}Et

[
PT jOg

∣∣∣
(R, j)

∫ T j

u=t

( 1
2
√

vu(0)
δ0Yt,u.λu +

√
vu(0)OλuYt,u.

)
dWu

− PT jOg
∣∣∣
(R, j)

1
2

∫ T j

u=t
δ0Yt,u.du

]
+

m∑
j=1

1{t≤Tn+ j}Et

[
Og

∣∣∣
(F, j)

Yt,Tn+ j

]
. (2.6.9)

where
(
Yt,T

)
0≤t≤T<∞ is the family of strong L(F)-valued random operators defined pre-

viously by equation (2.6.3), and where the operators Og
∣∣∣
(R, j)

, j ≤ n and Og
∣∣∣
(F, j)

, j ≤ m,

valued in R and F∗ are defined by:

Og C
(
Og

∣∣∣
(R,1)

, ...,Og
∣∣∣
(R,n)

,Og
∣∣∣
(F,1)

, ...,Og
∣∣∣
(F,m)

)

Remark 2.6.16 Remark on the condition on g in Theorem 2.6.15: The reason for al-

lowing g not to be Lipschitz is that many payoffs are not globally Lipschitz, some not

even locally (i.e. at 0). For instance, many contracts are written on the realized volatil-

ity, the square root of realized variance, such as call options on realized volatility. We

want our theorem to apply in these important cases too.

Proof of Theorem 2.6.15:

In order to simplify the notation slightly, but without loss, we prove the theorem in the

case where n = m = 1, and E
(
ξ
)

= 0. By the Clark-Ocone formula for Malliavin

differentiable Hilbert space valued random variables (see Theorem 4.1 of Carmona and

Tehranchi [8]), we have that:

ξ = E
(
ξ
)

+

∫ T

t=0
Et

[
Dtg(PT1 , vT2)

]
dWt

thus:

ξ =

∫ T

t=0
Et

[
OgDt(PT1 , vT2)

]
dWt (2.6.10)
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We now recall Proposition 2.6.14 and Proposition 2.6.5 which tell us what the Malliavin

derivatives of PT1 and vT2 are. Plugging these expressions in equation (2.6.10), we get:

ξ =

∫ T

t=0
Et

[
Og

∣∣∣
(R,1)

DtPT1

]
dWt +

∫ T

t=0
Et

[
Og

∣∣∣
(F,1)

DtvT2

]
dWt

=

∫ T1

t=0
Et

[
Og

∣∣∣
(R,1)

PT1/Pt

]
Pt

√
vt(0)λtdWt

+

∫ T1

t=0
Et

[
Og

∣∣∣
(R,1)

∫ T1

u=t

1
2
√

vu(0)
δ0Yt,udWu

]
σtdWt (2.6.11)

+

∫ T1

t=0
Et

[
Og

∣∣∣
(R,1)

∫ T1

u=t

√
vu(0)OλuYt,udWu

]
σtdWt (2.6.12)

−

∫ T1

t=0
Et

[
Og

∣∣∣
(R,1)

1
2

∫ T1

u=t
δ0Yt,udu

]
σtdWt (2.6.13)

+

∫ T2

t=0
Et

[
Og

∣∣∣
(F,1)

Yt,T2

]
σtdWt (2.6.14)

C

∫ T1

t=0
φ(P)

t dPt +

∫ T2

t=0
φ(v)

t σtdWt

where we set, by definition, φ(P)
t and φ(v)

t as in the theorem. All that remains to prove is

that φ(P) and φ(v) indeed define an admissible trading strategy. We start with φ(P): several

applications of Jensen’s and Cauchy-Schwartz’s inequalities, along with the uniform

boundedness of the moments of vt on [0,T1] and the finiteness of all moments of PT1

justify the following calculation:

E

∫ T1

t=0

(
φ(P)

t
)2P2

t vt(0)dt = E

∫ T1

t=0

[
EtOg

∣∣∣
(R,1)

PT1/Pt

]2
P2

t vt(0)dt

≤ E

∫ T1

t=0

[
EtOg

∣∣∣2
(R,1)

P2
T1
/P2

t

]
P2

t vt(0)dt

≤

√
E

∫ T1

t=0

(
EtOg

∣∣∣2
(R,1)

P2
T1

)2dt

√
E

∫ T1

t=0
vt(0)2dt

≤

√
E

∫ T1

t=0
EtOg

∣∣∣4
(R,1)

P4
T1

dt

√
E

∫ T1

t=0
vt(0)2dt

≤ T1

(
E
∣∣∣∣∣∣Og

∣∣∣
(R,1)

∣∣∣∣∣∣8)1/4(
EP8

T1

)1/4(
sup
u≤T1

Evu(0)2
)1/2

< ∞

As for
(
φ(v)

t
)

t≤T2
, what we have to check is that it is a well defined adapted F∗-valued

stochastic process, and that E
∫ T2

u=0
||φ(v)

u σu||
2
LHS (G,F)du < ∞. The contribution to φ(v) of

term (2.6.14) is the easiest to deal with: if f ∈ F and t ≤ T2, then using the constant
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CT2,4 defined in Theorem C.0.4, we have that:∣∣∣∣Et

[
Og|(F,1)Yt,T2

]
f
∣∣∣∣ ≤ √

Et

∣∣∣Og|(F,1)Yt,T2 f
∣∣∣2

≤
4
√
Et

∣∣∣∣∣∣Og|(F,1)

∣∣∣∣∣∣4
F∗

4
√
Et

∣∣∣∣∣∣Yt,T2 f
∣∣∣∣∣∣4
F

≤ MtC
1/4
T2,4

∣∣∣∣∣∣ f ∣∣∣∣∣∣
F
< ∞

where Mt is the almost surely finite random variable 4
√
Et||Og|(F,1)||

4. This shows that

Et

[
Og

∣∣∣
(F,1)

Yt,T2

]
∈ F∗ a.s. We also have that:

E

∫ T2

u=0

∣∣∣∣∣∣∣∣Eu

[
Og

∣∣∣
(F,1)

Yu,T2

]
σu

∣∣∣∣∣∣∣∣2
LHS (G,F)

du ≤ M2
0 K2C1/2

T2,4

√
E

∫ T2

u=0

∣∣∣∣∣∣vu

∣∣∣∣∣∣4
F
du

where K is the Lipschitz bound on σ and M0 is defined as Mt a few lines earlier, evalu-

ated at t = 0. Finally, the uniform boundedness of the fourth moment of vu on [0,T2] by

Theorem C.0.3 concludes. Similar arguments allow us to deal with the three other terms

(2.6.11), (2.6.12) and (2.6.13), because the bounds AT1,p and CT1,p of Theorem C.0.3 and

Theorem C.0.4 apply for all values of p ≥ 2 and uniformly on [0,T1]. Specifically, this

implies, after some computations that we skip, that:

•

∣∣∣∣Et

[
Og

∣∣∣
(R,1)

∫ T1

u=t

√
vu(0)OλuYt,udWu

]
f
∣∣∣∣

≤ L
∣∣∣∣∣∣δ0

∣∣∣∣∣∣1/2(Et

∣∣∣∣∣∣Og
∣∣∣∣∣∣2)1/2(

Et

∫ T1

u=t

∣∣∣∣∣∣vu

∣∣∣∣∣∣2
F
du

)1/4
T 1/4

1 C1/4
T1,4

∣∣∣∣∣∣ f ∣∣∣∣∣∣
F

•

∣∣∣∣Et

[
Og

∣∣∣
(R,1)

1
2

∫ T1

u=t
δ0Yt,udu

]
f
∣∣∣∣

≤
T1

2

∣∣∣∣∣∣δ0

∣∣∣∣∣∣(Et

∣∣∣∣∣∣Og
∣∣∣∣∣∣2)1/2

C1/2
T1,2

∣∣∣∣∣∣ f ∣∣∣∣∣∣
F

•

∣∣∣∣Et

[
Og

∣∣∣
(R,1)

∫ T1

u=t

1
2
√

vu(0)
δ0Yt,udWu

]
f
∣∣∣∣

≤
T 1/4

1

2

∣∣∣∣∣∣δ0

∣∣∣∣∣∣(Et

∣∣∣∣∣∣Og
∣∣∣∣∣∣2)1/2(

Et

∫ T1

u=t
vu(0)−2du

)1/4
C1/4

T1,4

∣∣∣∣∣∣ f ∣∣∣∣∣∣
F
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and

• E

∫ T1

t=0

∣∣∣∣∣∣∣∣Et

[
Og

∣∣∣
(R,1)

∫ T1

u=t

√
vu(0)OλuYt,udWu

]
σt

∣∣∣∣∣∣∣∣2
LHS (G,F)

dt

≤ T 3/2
1 B1/2

T1,4
L2

∣∣∣∣∣∣δ0

∣∣∣∣∣∣K2C1/4
T1,8

(
E
∣∣∣∣∣∣Og

∣∣∣∣∣∣4)1/2(
sup
u≤T
E
∣∣∣∣∣∣vu

∣∣∣∣∣∣4)1/4(
sup
u≤T
E
∣∣∣∣∣∣vu

∣∣∣∣∣∣8)1/4
< ∞

• E

∫ T1

t=0

∣∣∣∣∣∣∣∣Et

[
Og

∣∣∣
(R,1)

1
2

∫ T1

u=t
δ0Yt,udu

]
σt

∣∣∣∣∣∣∣∣2
LHS (G,F)

dt

≤
T 3

1

4

∣∣∣∣∣∣δ0

∣∣∣∣∣∣2(E∣∣∣∣∣∣Og
∣∣∣∣∣∣4)1/2

K2C1/2
T1,4

(
sup
u≤T
E
∣∣∣∣∣∣vu

∣∣∣∣∣∣4)1/2
< ∞

• E

∫ T1

t=0

∣∣∣∣∣∣∣∣Et

[
Og

∣∣∣
(R,1)

∫ T1

u=t

1
2
√

vu(0)
δ0Yt,udWu

]
σt

∣∣∣∣∣∣∣∣2
LHS (G,F)

dt

≤
1
4

T 3/2
1 B1/2

T1,4
L2

∣∣∣∣∣∣δ0

∣∣∣∣∣∣2K2C1/4
T1,8

(
E
∣∣∣∣∣∣Og

∣∣∣∣∣∣4)1/2(
sup
u≤T
E

1
vu(0)4

)1/4(
sup
u≤T
E
∣∣∣∣∣∣vu

∣∣∣∣∣∣8)1/4
< ∞

where L is a Lipschitz bound on λ and the Burkholder constants BT,p are introduced in

appendix A.3. �

Remark 2.6.17 We have seen earlier that trading strategies in terms of the variance

swaps and in terms of the forward variance swaps are equivalent, so it would seem a

bit redundant to consider as well contingent claims depending on variance swaps, as

we already have a formula to hedge contingent claims depending on the stock and the

forward variance swaps. Here are two ways of looking at the problem of hedging a

claim of the form ξT = g(VT ):

• (1) We can start by approximating ξT by a function of points on the curve VT , i.e.

ξT ≈ g̃(VT (y1), ....,VT (yn)) for some points y1, ..., yn. We can therefore focus on the

hedging of contingent claims of the form ψ = g(VT (y)) for some y ≥ 0. We have

by definition that VT (y) = VT (0) +
∫ y

0
vT (u)du ≈

∑N
n=1

(
log

(
PTn+1/PTn

)2
)

+ l
(
vT

)
for some partition

{
Tn

}N−1
n=1 of

[
0,T

]
and some functional l ∈ F∗ so that ξT can

be rewritten in the form: ξT ≈ h(PT1 , ..., PTN , vT ), which makes possible to use

Theorem 2.6.15 directly.

• (2) Without doing any approximation, we can use the expression for DtVT given
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in Proposition 2.6.10 in terms of the family of strong random operators Zt,u. This

leads to a formula similar to that given in (2.6.9).

2.6.4 Analysis of the hedging portfolio and maturity-specific risk

Not surprisingly, we see that if the contingent claim is a function of the variance in-

struments only (i.e. g(x1, v) = g(x2, v) for all x1, x2 and v), then the hedging portfolio

does not involve trading in the stock (i.e. φ(P)
t = 0). This is of course because we are

modelling the forward variance swaps curve as an autonomous process (the equation

governing the evolution of v does not involve the stock price). This feature would of

course have no reason to be true if we had taken σ to be also a function of the stock P.

We now turn to the more interesting question of maturity-specific risk. We have seen

earlier that in finite dimensional models, one can hedge options with a certain (and

finite) number of arbitrarily chosen variance swaps. For instance, the Heston model

would allow us to hedge a look-back option, paying the maximum of the stock between

now and a year in the future, by trading in the stock and a variance swap maturing in

10 years! We also pointed out earlier that we could make this counterintuitive feature

disappear by using infinite dimensional models. We now make this claim precise: under

some conditions on σ and λ, the hedging portfolio φ(v)
t satisfies the same “maturity-

specific” feature as the one proved by Carmona and Tehranchi for interest rates infinite

dimensional models [7]. The following theorem is the third main result of this chapter:

Theorem 2.6.18 Maturity-specific property of hedging portfolios:

Let ξ be a contingent claim of the form ξ = g(PT1 , vT2) satisfying the conditions of

Theorem 2.6.15. In addition, we assume that this contingent claim depends only on

instruments maturing on or before T , that is, it holds that T1 ≤ T, T2 ≤ T and:

{(
v1(y) = v2(y) ∀y ≤ T − T2

)}
⇒{

g(x, v1) = g(x, v2) ∀x > 0
}

73



We also assume that the “volatility” of the forward variance swaps curve σ satisfies, in

addition to all the previous conditions, the following “no-maturity-mixing” condition:

Assumption 2.6.19 For all x ≥ 0, it holds that:

{
v1(y) = v2(y) ∀ y ≤ x

}
⇒{

δxσ(t; v1) = δxσ(t; v2) ∀t ≥ 0
}

Finally, we assume that the stock is correlated to the forward variance swaps curve only

through the short variance, that is, we make the following assumption:

Assumption 2.6.20 λ is of the form:

λu = λ(u, vu(0))

Then the holding φ(v)
t in the forward variance swaps curve (recall that the unique hedg-

ing portfolio φt B (φ(P)
t , φ(v)

t ) is given by the formula of Theorem 2.6.15) has the follow-

ing property:

support
(
φ(v)

t
)
⊆ [0,T − t], P × Leb a.s.

Proof of Theorem 2.6.18:

For any x ≥ 0, we denote by Fx the subset of F of functions null on [0, x]. The continuity

of the evaluation functionals on F implies that Fx is a closed subspace of F. We can

identify (by the Riesz representation lemma) the orthogonal complement of Fx with the

subset of F∗ of bounded linear functional on Fwhich have support included in [0, x]. We

will denote this orthogonal complement by F⊥x . What we want to prove is that for any

t ≤ T0 B max{T1,T2}, we have φ(v)
t ∈ F

⊥
T−t. It was proved by Carmona and Tehranchi
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(see Theorem 6.6 in [8]) that the family of strong random operators
(
Yt,u

)
0≤t≤u satisfies

the following property:

∀(x, t, u) ≤ 0, t ≤ u, ∀ f ∈ Fx+u−t,

Yt,u f ∈ Fx, (2.6.15)

We do not repeat the proof here, but we just mention that this is proved by doing an

induction reasoning on the Picard iterations
{
Y (n)

t,u
}∞
n=1 that we introduce in Section C.2.

Clearly this property means that for any u ∈ [t,T0], Yt,u f ∈ Fx whenever f ∈ Fx+T−t,

because T − t ≥ T0 − u. Therefore, for any f ∈ Fx+T−t, it will hold that:∫ T0

u=t

1
2
√

vu(0)
δ0Yt,u f dW (λ)

u = 0∫ T0

u=t

√
vu(0)OλuYt,u f dWu = 0∫ T0

u=t
δ0Yt,u f du = 0

where the second assertion comes from the fact that Oλu can be written as αuδ0, for

some scalar process α, by the assumption that λu depends on vu only via the short vari-

ance vu(0). But the three terms above are exactly the ones involved in the expressions

(2.6.11), (2.6.12) and (2.6.13) of φ(v)
t , so that φ(v)

t f = 0 whenever f ∈ Fx+T−t and this

proves the theorem. �
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2.7 Concrete examples

2.7.1 Examples of state spaces and infinite dimensional model

We now give an example of a model and of state spaces that satisfy all of the assumptions

listed previously. That is, F satisfies Assumption 2.4.1, Assumption 2.4.2, Assumption

2.4.3, σ satisfies Assumption 2.4.7, Assumption 2.4.8, Assumption 2.4.9, Assumption

2.5.3, Assumption 2.6.12 and Assumption 2.6.19, and λ satisfies Assumption 2.5.4, As-

sumption 2.6.2 and Assumption 2.6.20.

We take for F̃ the weighted Sobolev spaces of continuous functions introduced by Fil-

ipovic (see [18] for instance): let w be a continuous, positive, increasing function such

that: ∫ ∞

u=0
w(u)−1du < ∞

(in particular w diverges), and let us define Fw as the set of all absolutely continuous

functions f defined on R+, whose weak derivative will be denoted by f ′ and which

satisfy: ∫ ∞

u=0
| f ′(u)|2w(u)du < ∞

endowed with the product

< f , g >FwB f (0)g(0) +

∫ ∞

u=0
f ′(u)g′(u)w(u)du

To lighten the notation, we will drop from now on the subscript in Fw and denote this

space, as in the previous subsections, simply as F. We have then the following proposi-

tion:

Proposition 2.7.1 F satisfies Assumption 2.4.1, Assumption 2.4.2 and Assumption 2.4.3.

Proof of Proposition 2.7.1:

By definition, elements of F are continuous functions. It is easily seen that, once en-

dowed with the products < ., . >F, F turns into separable Hilbert space. It is well known
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that the left shift operators form a strongly continuous semigroup of contractions on this

space (see Filipovic [18]). We now prove the uniform boundedness of the evaluation

operators: for x ≥ 0 and f ∈ F given, we have that:

f (x)2 ≤ 2 f (0)2 + 2
( ∫ ∞

u=0

∣∣∣ f ′(u)
∣∣∣du

)2

≤ 2
[
f (0)2 +

∫ ∞

u=0
f ′(u)2w(u)du

∫ ∞

u=0
w(u)−1du

]
and thus:

∣∣∣δx f
∣∣∣ ≤ K

∣∣∣∣∣∣ f ∣∣∣∣∣∣
F

where K2 B 2 max(1,
∫ ∞

u=0
w(u)−1du).

Notice that because the boundedness in the above is uniform in x, this implies that ele-

ments of F are bounded functions and we will use for any element f ∈ F the usual nota-

tion || f ||∞ to denote the finite supremum of {| f (x)|, x ≥ 0}. Notice actually that f (∞) B

limx→∞ f (x) is well defined for all f ∈ F, as it holds that f (∞) = f (0) +
∫ ∞

0
f ′(u)du.

Moreover, the same reasoning as above also implies that δ∞ : f ∈ F 7→ limx→∞ f (x) ∈ R

is a linear bounded operator with norm smaller than the K defined above. �

As in Subsection 2.4.2, we can define F̃ as the set of all continuously differentiable

functions f̃ defined on R+, whose derivative f̃ ′ is in F. F̃ is then endowed with the

product:

< f̃ , g̃ >F̃w
B f̃ (0)g̃(0)+ < f̃ ′, g̃′ >F

We now verify as promised earlier that the properties of F̃ listed in Subsection 2.4.2

hold:

Proof that Property 2.4.5 holds:

For any f ∈ F, we have:

∣∣∣∣∣∣J f
∣∣∣∣∣∣2
F̃

= (J f )(0)2 + (J f )′(0)2 +

∫ ∞

u=0
(J f )′′(u)2w(u)du

= 0 + f (0)2 +

∫ ∞

u=0
f ′(u)2w(u)du =

∣∣∣∣∣∣ f ∣∣∣∣∣∣2
F
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That is, J is an isometric bijection from F to F̃0.

Proof that Property 2.4.6 holds:

For all f̃ ∈ F̃:

∣∣∣∣∣∣D f̃
∣∣∣∣∣∣2
F

= f̃ ′(0)2 +

∫ ∞

u=0
f̃ ′′(u)2w(u)du ≤

∣∣∣∣∣∣ f̃ ∣∣∣∣∣∣2
F̃

�

Although this was not a requirement on the space F, we will find it useful to know that

our example of F is stable by multiplication and that there exists a bound on the ratio
|| f g||F
|| f ||F ||g||F

, uniformly on ( f , g) ∈ F2.

Proof : let ( f , g) ∈ F2. Let ε > 0 be given. f and g being absolutely continuous, we can

find δ > 0 such that:

∞∑
n=1

| f (bn) − f (an)| < ε/(2||g||∞)

and

∞∑
n=1

|g(bn) − g(an)| < ε/(2|| f ||∞)

whenever the series of intervals {[an, bn]}∞n=1 satisfies
∑
|bn − an| < δ. Thus for any such

family of intervals, we have that:∑
| f g(bn) − f g(an)| ≤

∑
| f (bn)||g(bn) − g(an)| +

∑
|g(an)|| f (bn) − f (an)|

≤ || f ||∞
∑
|g(bn) − g(an)| + ||g||∞

∑
| f (an) − f (bn)| ≤ ε

This proves that f g is absolutely continuous, and in this case, we know that the weak

derivative of f g is given by the usual g f ′ + f g′. Finally, we can compute the square

norm of the product || f g||2F:

|| f g||2F = f (0)2g(0)2 +

∫ ∞

u=0
( f g′ + g f ′)(u)2w(u)du

≤ || f ||F||g||F + 2|| f ||∞||g||F + 2||g||∞|| f ||F

≤ (1 + 4K)|| f ||F||g||F
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where K is as before (upper bound on || f ||∞/|| f ||F). This concludes the proof. �

We now give a concrete example of operators σt and λt which work nicely with the

above example of state space F. We recall that G is endowed with a complete orthonor-

mal system which we denote by
{
gn

}∞
n=1. We need first however to make an assumption

on the infinite-end of the initial volatility curve v0(∞) B limx→∞ v0(x) which will guar-

antee that our example of operator σ is a.s. dense range:

Assumption 2.7.2 v0(∞) > 0.

Proposition 2.7.3 Let B be an arbitrary dense-range Hilbert-Schmidt operator from G

to F, such that g1 ∈ ker B, and let l be an arbitrary positive function of C1(R+), bounded

and with bounded derivative, started at 0, and such that
(
x 7→ l( f (x))

)
∈ F+ for all

f ∈ F+. We then define the operator σ B σl,B by:

σl,B :F+ → LHS (G,F)

f 7→
[
g 7→

(
x 7→ l( f (x)).(Bg)(x)

)]
Then σ as defined above is a measurable map from

(
F+,B(F+)

)
into LHS (G,F) and

satisfies Assumption 2.4.7, Assumption 2.4.8, Assumption 2.4.9, Assumption 2.6.12 and

Assumption 2.6.19. Under Assumption 2.7.2, σ also satisfies Assumption 2.5.3.

Remark 2.7.4 Remark that in Proposition 2.7.3, l( f ) is an element of F by hypothesis

(on l), and that l( f ).Bg is an element of F because of the stability of F by multiplication,

which we showed earlier.

Proposition 2.7.5 Let λt be a constant unit vector λ ofG∗, such that λg1 is non zero (i.e.

the first component of λ∗, the Riesz identification of λ in G, is non zero). This choice of

λt satisfies Assumption 2.5.4, Assumption 2.6.2 and Assumption 2.6.20.

Remark 2.7.6 To be even more concrete in our example, notice that we could take

B =
∑∞

j=1 b j f j ⊗ g j+1 for some b ∈ l2, with b j , 0 for all j, and l(.) = arctan(.).
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Proof of Proposition 2.7.3:

Let us first of all show that σ( f ) ∈ LHS (G,F) for all f :

∞∑
n=1

∣∣∣∣∣∣σgn

∣∣∣∣∣∣2
F

=

∞∑
n=1

∣∣∣∣∣∣l( f )Bgn

∣∣∣∣∣∣2
F
≤

∞∑
n=1

K2
∣∣∣∣∣∣l( f )

∣∣∣∣∣∣2
F

∣∣∣∣∣∣Bgn

∣∣∣∣∣∣2
F
≤ K2

∣∣∣∣∣∣l( f )
∣∣∣∣∣∣2
F

∣∣∣∣∣∣B∣∣∣∣∣∣2
LHS (G,F)

< ∞

Proof that Assumption 2.4.8 holds: It is obvious from the above inequality, and the

fact that: ∣∣∣∣∣∣l( f )
∣∣∣∣∣∣
F
≤

∣∣∣∣∣∣l′∣∣∣∣∣∣
∞

∣∣∣∣∣∣ f ∣∣∣∣∣∣
F
.

Proof that Assumption 2.4.7 holds: A similar computation to the one just above, simply

replacing f by f − g gives us∣∣∣∣∣∣σ( f ) − σ(g)
∣∣∣∣∣∣
LHS (G,F)

≤ K
∣∣∣∣∣∣B∣∣∣∣∣∣

LHS (G,F)

∣∣∣∣∣∣l( f − g)
∣∣∣∣∣∣
F
≤ K

∣∣∣∣∣∣B∣∣∣∣∣∣
LHS (G,F)

∣∣∣∣∣∣l′∣∣∣∣∣∣
∞

∣∣∣∣∣∣ f − g
∣∣∣∣∣∣
F

which shows that σ is Lipschitz.

Proof that Assumption 2.4.9 holds: For x ≥ 0, f ∈ F+, we have:∣∣∣∣∣∣δxσ( f )
∣∣∣∣∣∣
G∗

= sup
g∈G,||g||=1

l( f )(x)
∣∣∣Bg(x)

∣∣∣
≤ sup

g∈G,||g||=1
l( f )(x)

∣∣∣∣∣∣B∣∣∣∣∣∣
LHS (G,F)

∣∣∣∣∣∣δx

∣∣∣∣∣∣
F

∣∣∣∣∣∣g∣∣∣∣∣∣
G

≤ K
∣∣∣∣∣∣B∣∣∣∣∣∣

LHS (G,F)

∣∣∣∣∣∣l′∣∣∣∣∣∣
∞

f (x)

where K is a uniform bound on ||δx||F, x ≥ 0, and where the last inequality follows from

the facts that l(0) = 0 and that l′ is bounded, by hypothesis.

Proof that Assumption 2.6.12 holds: for all (t, u) ≤ T :∣∣∣∣∣∣δtσ(vu)
∣∣∣∣∣∣
G∗
≤ sup

g∈G,||g||=1
l(vu)(t)(Bg)(t) ≤

∣∣∣∣∣∣l∣∣∣∣∣∣
∞

∣∣∣∣∣∣B∣∣∣∣∣∣
LHS (G,F)

K
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This implies that:

E exp
(
p
∫ T

t=0

∫ T

u=0

∣∣∣∣∣∣δtσu

∣∣∣∣∣∣
G∗

dudt
)
< exp

(
pT 2

∣∣∣∣∣∣l∣∣∣∣∣∣
∞

∣∣∣∣∣∣B∣∣∣∣∣∣
LHS (G,F)

K
)
< ∞

Proof that Assumption 2.6.19 holds: the “no-maturity-mixing” condition is clear, be-

cause σ( f ) makes use of the curve f simply through pointwise multiplication
(
f being

here of course the F-valued argument
)
.

Proof that Assumption 2.5.3 holds: Finally we prove that for almost all ω, for all t ≥ 0,

σ(vt(ω)) is dense-range in F: let h ∈ F and ε > 0 be given. We want to find g ∈ G such

that ||σ(vt)g − h||F < ε.

Let us first remark that almost surely, vt(∞) B limx→∞ vt(x) exists and is strictly posi-

tive, which along with the continuity and positivity of vt means that almost surely, for

all t ≥ 0, vt is bounded away from 0 (as a function of x). Indeed, from the stochas-

tic equation satisfied by vt and the fact that the operator δ∞ is a bounded linear func-

tional on F, we can see that vt(∞) is a well defined a.s. strictly positive continuous

martingale started at v0(∞) > 0 (thanks to Assumption 2.7.2), and therefore a.s. for

all t ≥ 0, vt(∞) > 0. This implies that for almost all (t, ω), h/l(vt(ω)) ∈ F. Indeed,(
h/l(v)

)′
= h′/l(v) + hv′l′(v)/l(v)2 < M(h′ + v′), where M is a suitable bound, whose

existence is easy to prove as v is bounded from below, and therefore l(v) is as well, and

as l′ is bounded as well. Therefore, we have that:

∣∣∣∣∣∣l(vt(ω))Bg − h
∣∣∣∣∣∣
F
≤

∣∣∣∣∣∣l(vt(ω))
∣∣∣∣∣∣
F

∣∣∣∣∣∣Bg − h/l(vt(ω))
∣∣∣∣∣∣
F

By the dense-range property of B, we can find g ∈ G such that:

∣∣∣∣∣∣Bg − h/l(vt(ω))
∣∣∣∣∣∣
F
< ε/

∣∣∣∣∣∣l(vt(ω))
∣∣∣∣∣∣
F

and this completes the proof. �

We can notice that without the assumption that v0(∞) > 0, i.e. if v0(∞) = 0, then

vt(∞) = 0 a.s. and for all elements h of F such that h(∞) , 0, h/l(vt) would not be an
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element of F (as it would diverge), and therefore, σ could not be dense-range.

Proof of Proposition 2.7.5: That Assumption 2.6.2 and Assumption 2.6.20 hold is clear.

The validity of Assumption 2.5.4 comes from the facts that < λ∗, g1 >G∗ , 0 while

g1 ∈ kerσt. �
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2.7.2 Black & Scholes and Heston models as forward variance swaps

curves models

It is interesting to remark that we can recast the usual models in terms of forward vari-

ance swaps models. This is the case of the Black and Scholes model (although it leads

to a trivial formulation), and of common stochastic volatility models, like the multi-

dimensional model we have presented earlier.

The Black and Scholes model corresponds naturally to the case where the operator σ is

equal to zero, and the initial curve v0 is a constant function equal to the constant short

variance (in the terminology we have used so far). This choice of σ gives rise to the

trivial solution Vt(x) = (t + x)v0(0), and the stock is given by the usual geometric Brow-

nian motion: dPt = Pt
√

v0(0)dWt.

The case of the multi-dimensional Heston model is more interesting so we look at it in

more details: differentiating equation (2.3.2) with respect to x leads to:

vt(x) =

N∑
n=1

Θ(n) +

N∑
n=1

(B(n)
t − Θ(n)) exp(−k(n)x) C θ +

N∑
n=1

(B(n)
t − Θ(n)) exp(−k(n)x)

which, using Ito’s formula and simplifying slightly, gives:

vt(x) = v0(x + t) + δx

∫ t

u=0
S t−u

( N∑
n=1

exp
(
− k(n)(.)

)
σ(n)

√
B(n)

u ⊗ gn

)
dWu

This means that vt lives in FN , the N +1-dimensional subspace of F spanned by the func-

tions x 7→ exp
(
− k(n)x

)
, n ≤ N and the constant function x 7→ 1. We can finally invert

equation (2.3.2) to express each of the B(n)
u in terms of vu, say as: B(n)

u = f (n)(vu). This

shows that the multi-dimensional Heston model corresponds to the following choice of

σ:

σMultiHeston(t; v) =

N∑
n=1

exp
(
− k(n)(.)

)
σ(n)

√
f (n)(v) ⊗ gn

As we have already seen, there is no unique way of inverting the dependency of Bt in

terms of the curve vt, and in particular, any arbitrarily chosen N points of that curve are

enough to recover Bt B
{
B(n)}N

n=1. This means that, seen as a (forward) variance swaps

curve model, the multi-dimensional Heston model satisfies Assumption 2.6.19. Indeed,
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x > 0 being given, if two curves v1 and v2 of FN are identical up to x, then they are

identical on [0,∞) and thus δxσ(v1) = δxσ(v2). However, if we insist that only N given,

and fixed, forward variance swaps v(t, (Tn), n ≤ N be traded, and we express the model’s

dynamic as:

dv(t,Tn) = σn(t, v(t,T1), ..., v(t,TN))dWt

then it does not satisfy the finite dimensional equivalent of Assumption 2.6.19, which

would require that σn depend only on v(t,T1), ..., v(t,Tn), but not on v(t,Tn+1), ...v(t,TN).

This cannot be the case as the matrix in equation (2.3.2) giving the dependency of
{
vt
}N
n=1

in terms of Bt is not triangular, so its inverse cannot be either.
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2.7.3 Examples of payoffs

We now give some concrete examples of (classical) payoffs for which Theorem 2.6.15

holds.

Options on the stock alone

The following contingent claims satisfy the assumption of the theorem:

• Polynomial options: ξ = g(PT1 , ..., PTn) where g is a polynomial in Rn, of any

degree. We can notice that Og
∣∣∣
R, j

is also a polynomial for each j ≤ n, and therefore

by the boundedness of all moments of the stock, g satisfies hypothesis (ii) of the

theorem.

In particular, it is interesting to look at the case ξ = PT , just to do a sanity check

on the formula of Theorem 2.6.15. By uniqueness, we should have in that case

that φ(P)
t = 1 and φ(v)

t = 0. It is obvious by inspection of the formula that φ(P)
t = 1.

However, the second assertion is far from obvious, but the following calculation

shows that this is indeed the case:

φ(v)
t = Et

[PT

2
δ0

( ∫ T

u=t

1
√

vu(0)
Yt,udW (λ)

u −

∫ T

u=t

√
vu(0)Yt,udu

)
+ PT

∫ T

u=t

√
vu(0)OλuYt,udWu

]
= Et

[PT

2
δ0

∫ T

u=t

1
√

vu(0)
Yt,udW (λ,P)

u

+
(
Pt +

∫ T

u=t
Pu

√
vu(0)λudWu

) ∫ T

u=t

√
vu(0)OλuYt,udWu

]
= PtE

Q
t

[1
2
δ0

∫ T

u=t

1
√

vu(0)
Yt,udW (λ,P)

u

]
+ PtEt

[ ∫ T

u=t

√
vu(0)OλuYt,udWu

]
+ Et

[ ∫ T

u=t
vu(0)PuOλ

∗
uλuYt,udu

]
= 0

where Q is the probability measure equivalent to P defined by dQ
dP

∣∣∣∣
Fu

= Pu
P0

and

where W (λ,P)
t B W (λ)

t −
∫ t

u=0

√
vu(0)du is a Q-Brownian motion. Notice that the last

term on the last line in the above computation vanishes because λ is of norm 1,

and therefore Oλ∗uλu = 0.
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• Call options: ξ = g(PT ) =
(
PT − K

)
+. g is Lipschitz of coefficient 1 and therefore

satisfies assumption (i) of the theorem.

• Forward start options: ξ = (PT2 − PT1)+, for 0 ≤ T1 ≤ T2.

• Spread options: let T ≥ 0 be given, and {T j}
n
j=1 be some partition of [0,T ]. We

then define the spread option ξ = g(PT1 , ..., PTn) = max j∈{1,...n} PT j −min j∈{1,...n} PT j .

That g is Lipschitz can be seen from the following observation: Let us define

h by h(PT1 , ..., PTn) B max j∈{1,...n} PT j . let x = (x1, ..., xn) and y = (y1, ..., yn) be

two vectors in the positive hortant of Rn. Then |h(x) − h(y)| = |xk − yl| for some

k, l ∈ {1, ..., n}. Let us suppose without loss of generality that xk ≥ yl so that

|h(x) − h(y)| = xk − yl. Now, we clearly have that yl ≥ yk, so that |h(x) − h(y)| is

smaller than xk−yk and thus in any case, we have that |h(x)−h(y)| ≤
∑n

j=1 |x j−y j|.

We can deal with the min part of g in the same way, so that g is Lipschitz as sum

of two Lipschitz functions.

Options on the variance instruments alone

The following contingent claims, depending only on the variance swaps and forward

variance swaps curves, satisfy the assumptions of the theorem:

• Powers of variance instruments, such as ξ = [vT (x)]q or ξ = [VT (x)]q for any real

q.

• Call options on volatility or variance swaps, of the form: ξ =
(
VT (x) − K

)
+ or

ξ =
(√

VT (x) − K
)
+

• Forward start on variance or volatility swaps, of the form ξ =
(VT2 (x2)

T2+x2
−

VT1 (x1)
T1+x1

)
+ or

ξ =
(√VT2 (x2)

T2+x2
−

√
VT1 (x1)
T1+x1

)
+
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They all satisfy hypothesis (ii) of the theorem by the finiteness of all moments (positive

and negative) of the variance swaps and the forward variance swaps.

Options depending on both the variance instruments and the stock

Finally, it is possible to design payoffs depending on both the stock and the variance

instruments, and which will satisfy (ii) in the theorem. An example could be a:

• Weighted call option on a volatility swap: ξ =
(√

VT (x)−K
)
+h(PT1 , ..., PTn), where

{T j}
n
j=1 and T are arbitrary times and h is a polynomially bounded function.
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Appendix A

A short introduction to Hilbert space

valued random variables and infinite

dimensional stochastic analysis

For a complete exposition of stochastic analysis in infinite dimensional spaces (i.e. Ba-

nach and Hilbert spaces), the reader is invited to refer to Da-Prato and Zabczyk [13].

The (older) article by Yor [48] gives also a good overview of Brownian motions and

diffusions in Hilbert spaces. We give here the shortest of introductions to stochastic

analysis in Hilbert spaces in order to make the main text self-contained.

A.1 Gaussian measures in Hilbert spaces

Let H be a separable (i.e. having a countable dense subset, or equivalently a countable

basis) Hilbert space with an orthonormal basis {hn}
∞
n=1. We can endow this space with

its Borel σ-algebra B(H), turning
(
H,B(H)

)
into a measurable space. Let (Ω,F ,P) be a

probability space. Any map X, from Ω into H, which is B(H)/F -measurable, is called

an H-valued random variable. We can remark that LX, the law of X, defined as a map

from B(H) into R by the usual LX(B) B P(X−1(B)) for B ∈ B(H) is a probability mea-

sure on
(
H,B(H)

)
. Very often, we can ignore the original probability space (Ω,F ,P)

and equivalently look at (H,B(H),LX) directly as the probability space of interest.
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By extension to the Euclidean case, we can define Gaussian measures on the measurable

space
(
H,B(H)

)
by the following (notice that we cannot define the measure by its den-

sity as there is no equivalent of the Lebesgue measure in infinite dimensional spaces!):

Definition A.1.1 A measure µ on
(
H,B(H)

)
is said to be Gaussian if for all h ∈ H, the

map

x 7→< h, x >H: H→ R

is a (real-valued) Gaussian random variable, i.e. if there exists mh ∈ R and qh ∈ R+

such that:

∀y ∈ R, µ{x ∈ H, < h, x >H ≤ y} =

∫ y

u=−∞

exp −(u−mh)2

2q2
h√

2πq2
h

du

It is not too difficult to prove that the map h 7→ mh is linear and bounded and therefore,

by the Riesz representation lemma, there exists an element m ∈ H such that

mh =< m, h >H ∀h ∈ H.

m is called the mean of the Gaussian measure µ. Similarly, one can show the existence

of a unique symmetric, non negative and trace class operator Q such that:

< Qh, h >H= q2
h ∀h ∈ H.

Q is called the covariance operator of the Gaussian measure µ and it can be easily

observed that it is consistent with the usual covariance matrix definition in the finite

dimensional case. There exists thus a basis in H, which we still denote by {hn}
∞
n=1 and

a sequence λ = {λn}
∞
n=1 of positive real numbers, belonging to l1, such that Qhn = λnhn.

We can therefore regard Gaussian measures as equivalent to a pair (m,Q) and write

µ(m,Q).

Remark A.1.2 It may seem obscure why we requireH to be separable. One of the many

reasons is that, in order to define for instance simple objects such as the expected value
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of EX BC
∫
ω∈Ω

X(ω)dµ(ω), where X is an H-valued random variable, the Lebesgue-

like strategy of approximating X(ω) by a series of simple random variables
{
Xn

}∞
n=1 may

not work if the space is not separable. For if it is not, then we have no guarantee

that we can construct a sequence
{
Xn

}∞
n=1 such that ||Xn − X|| ↓ 0 almost surely. For

interesting discussions of why separability is generally assumed for the state space of

random variables (this state space being generally in the weakest case a separable

metric space), the reader is referred to for instance Chapter 2 of Ledoux and Talagrand

[29], Chapter 1 of Ikeda and Watanabe [23] or Chapter 1 of Da-Prato and Zabczyk

[13].

A.2 Q-Wiener processes and cylindrical Wiener processes

Definition A.2.1 Let Q be a symmetric, non negative, trace class operator on H. A

continuous adapted stochastic process W (Q)
t taking values in H, defined on a filtered

probability space
(
Ω,F , (Ft)t≥0,P

)
, with independent and identically distributed incre-

ments, and such that the law of W1 is µ(0,Q) C µ(Q), is called a Q-Wiener process in

H.

Given µ(Q), it is actually easy to construct a Q-Wiener process. Indeed, the process

defined by Wt B
∑∞

n=1
√
λnW (n)

t hn, for some family of independent scalar Brownian mo-

tions {W (n)
t }
∞
n=1 is easily shown to be a Q-Wiener process.

If we start from a symmetric, non negative and bounded operator Q but which is not

trace class (i.e. with trace(Q) = ∞), we can still informally consider the process W

given by the formula Wt B
∑∞

n=1
√
λnW (n)

t hn, where now λ ∈ l∞ but not necessar-

ily λ ∈ l1. However, for all t ≥ 0, Wt is almost surely not valued in H, or even:

(Wt < H ∀t ≥ 0), a.s.. W would have to be seen as taking values in a larger Hilbert

space in which H is embedded. Notice that this can for instance be achieved by defin-

ing a new space H(γ) whose basis is defined as {h(γ)
n }
∞
n=1 B {γ

−1
n hn}

∞
n=1 for an arbitrary

γ B {γn}
∞
n=1 ∈ l2. Indeed, H is embedded in H(γ), for if x =

∑∞
n=1 xnhn ∈ H, we have

that ||x||2
H(γ) =

∑∞
n=1 x2

nγ
2
n < ∞, so that x ∈ H(γ), but now in this new space H(γ), we
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have that E||Wt||
2
H(γ) = E

∑∞
n=1 ||W

(n)
t

√
λnhn||

2
H(γ) = t

∑∞
n=1 λnγ

2
n ≤ t||λ||∞||γ||l2 < ∞. How-

ever, even in the original space H, it is still the case that for any h ∈ H, the product

< Wt, h >H, defined in the obvious way, is a well defined scalar Brownian motion (be-

cause of the martingale convergence theorem in L2(Ω)). Probably for this reason, W so

defined is generally called a cylindrical Wiener process. Notice that the case where Q

is the identity operator I defines a cylindrical Wiener process in the above sense, and

this is actually the only case we consider outside this section: whenever we talk about a

G-cylindrical Wiener process (or Brownian motion)
(
Wt

)
t≥0, we mean Q = I and it is to

be understood implicitly that Wt is not really valued in G.

A.3 Stochastic integral against a cylindrical Wiener pro-

cess

Let W BC
(
Wt

)
t≥0 be aG-cylindrical Brownian motion, defined on a filtered probability

space
(
Ω,F , (Ft)t≥0,P

)
. We wish to define Ito-like stochastic integrals with respect to

W, say of the form
( ∫ T

u=0
φudWu

)
T≥0, and would like this to be a square integrable F-

valued martingale, where F is also a separable Hilbert space. The question is: what is an

appropriate class of integrands φ B
(
φu

)
u≥0? It turns out that the answer depends only

on G and F (recall that this is not a priori obvious, because W does not really live in

G!). Fortunately, we can take φ to be a predictable square integrable stochastic process

valued in LHS (G,F), the space of Hilbert-Schmidt operators from G to F, i.e. such that

for all T ≥ 0: ∣∣∣∣∣∣∣∣∣φ∣∣∣∣∣∣∣∣∣
T
B

√
E

∫ T

u=0

∣∣∣∣∣∣φu

∣∣∣∣∣∣2
LHS (G,F)

du < ∞ (A.3.1)

The reason why we can define the integral for this family of integrands is that we can

approximate φ (in the topology induced by the norm |||.|||T ) by simple integrands, i.e.

by linear combinations of integrands of the form Xs1(s,t](u) f ⊗ g, where s ≤ t, Xs is an

Fs-measurable real value square integrable random variable and f and g are vectors in

F and G. It is therefore enough to decree that:∫ T

u=0

[
Xs1(s,t](u) f ⊗ g

]
dWu B Xs < g,Wt∧T −Ws∧T >G f (A.3.2)
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The generalization to φ satisfying (A.3.1) is then straightforward once we notice the Ito

isometry:

E
∣∣∣∣∣∣ ∫ T

u=0

[
Xs1(s,t](u) f ⊗ g

]
dWu

∣∣∣∣∣∣2
F

=
∣∣∣∣∣∣∣∣∣Xs1(s,t](u) f ⊗ g

∣∣∣∣∣∣∣∣∣2
T

Let us finally notice that the Burkholder’s inequalities are available for Ito infinite di-

mensional stochastic integrals, and along with Jensen’s inequality implies that for all

T ≥ 0 and p ≥ 2, there exists a constant BT,p depending only on T and p such that:

E
[

sup
t≤T

∣∣∣∣∣∣ ∫ t

u=0
φudWu

∣∣∣∣∣∣p] ≤ BT,p E

∫ T

u=0

∣∣∣∣∣∣φu

∣∣∣∣∣∣p
LHS (G,F)

du

for all sufficiently integrable processes
(
φu

)
u≥T . A proof of this inequality can be found

in Lemma 7.2 of Da-Prato and Zabczyk [13].

A.4 Stochastic convolutions

Let now
(
S T

)
T≥0 be a family of bounded linear operators on F, and suppose further that

for all T ≥ 0,
(
S T−uφu

)
u∈[0,T ] is a well defined predictable LHS (G,F)-valued stochastic

process on [0,T ] satisfying the condition |||
(
S T−uφu

)
u∈[0,T ]|||T < ∞. Then clearly we can

still define, for any fixed value of T ≥ 0, the stochastic integral:∫ T

u=0
S T−uφudWu (A.4.1)

However, because S T−u depends now on the upper bound of integration T , there is no

reason why
( ∫ T

u=0
S T−uφudWu

)
T≥0 should be a martingale (and it is generally not). Inte-

grals such as (A.4.1) are known as stochastic convolutions. In financial modelling where

the asset is valued in a Hilbert space, like it can be the case in interest rates modelling,

or like in the previous chapter, stochastic convolutions are often used with
(
S T

)
T≥0 be-

ing the left shift operators. This trick allows one to pass from the “time of maturity”

notation to Musiela’s “time to maturity” notation. See subsection 2.4.3 for more details

on this.

Although
( ∫ T

u=0
S T−uφudWu

)
T≥0 is no longer (a priori) a martingale, under the additional

assumption that
(
S t

)
t≥0 is a strongly continuous semigroup on F, we still have moments
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inequalities, i.e. for any T ≥ 0 and any p > 2, there exists a constant CT,p depending

only on T and p, such that:

E
[

sup
t≤T

∣∣∣∣∣∣ ∫ t

u=0
S t−uφudWu

∣∣∣∣∣∣p] ≤ CT,p E

∫ T

u=0

∣∣∣∣∣∣φu

∣∣∣∣∣∣p
LHS (G,F)

du

for all sufficiently integrable processes
(
φu

)
u≥T . See Proposition 7.3 of Da-Prato and

Zabczyk [13].
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Appendix B

A short introduction to Malliavin

calculus for Hilbert space valued

random variables

In this section, we give an overview of some classical theorems and results on Malliavin

calculus which have been used in the main text. There is of course no claim of originality

in any of this and these results which in essence can always be found in Nualart’s book

[36] or Malliavin and Thalmaier’s book [30] are just restated here for convenience and

to make this thesis more self-contained than it would otherwise be. Some results may

also be difficult to find in exactly the same setup (infinite dimensional Brownian motion

underlying the isonormal process, Hilbert space valued random variables, Lp spaces

with p ≥ 2) so that it makes sense to detail them here.

B.1 The derivative operator and the D1,p(F) spaces

Let (Ω,F ,
(
Ft

)
t≤T ,P) be a filtered probability space supporting a Brownian motion

(
Wt

)
t≤T

cylindrically defined on a separable infinite dimensional Hilbert space G, which can be

identified without loss of generality with l2. We denote by F another separable Hilbert

space in which the random variables that we will consider are valued. We denote by U

the space of square integrable functions on [0,T ], valued in G∗, that is, u =
(
ut
)

t≤T ∈ U
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means that
∣∣∣∣∣∣u∣∣∣∣∣∣2

U
B

∫ T

t=0
||ut||

2
G∗dt < ∞. We define a process, also called W, which takes

elements of U into L2(Ω), the space of square integrable real-valued random variables,

according to the rule: W(u) B
∫ T

t=0
utdWt. This last integral is to be understood as an Ito

stochastic integral against a cylindrical Brownian motion as constructed earlier. W(.) is

usually called an isonormal process (because it is an isometry that transforms elements

of U into Gaussian random variables). Specifically, the Ito isometry is equivalent to the

following scalar product conservation:

< W(u),W(v) >L2(Ω) = < u, v >U

As a final remark on this setup, we can observe that U is itself a separable Hilbert space.

Given CONS {gn}
∞
n=1 and {ln}

∞
n=1 of respectively G∗ and L2[0,T ], we can see easily that

{ln.gm}
∞
n,m=1 is a countable CONS of U that we can rewrite, after some reordering, with a

single index as {un}
∞
n=1.

We now define the Malliavin derivative operator D as the linear unbounded operator

from
⋂

p≥1 Lp(Ω;F) into
⋂

p≥1 Lp(Ω;F ⊗ U) as follows:

D[W(u)n f ] B nW(u)n−1 f ⊗ u (B.1.1)

for any n ≥ 1, u ∈ U and f ∈ F. Let us call any finite sum of random variables of the

form W(u)n f a “smooth random variable”, and observe that we can define their image

by imposing that D be linear. It is well known that D so defined is well defined and is

closable from Lp(Ω;F) into Lp(Ω;F⊗U) for any p ≥ 1, and we can therefore denote by

D1,p(F) the closure of Lp(Ω;F) for the (classical graph) norm ||.||1,p,F:

||X||p1,p,F B ||X||
p
Lp(Ω;F) + ||DX||pLp(Ω;F⊗U)

We are using the usual notation ⊗ to denote the tensor product. For a definition of tensor

products of Hilbert spaces, the reader can consult “Functional Analysis” by Reed and

Simon [39].

If we were very cautious, we ought to denote the closed extension of D (as defined on

the core of smooth random variables) to D1,p as Dp. However, we can remark easily that
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the ||.||1,p,F norms are increasing with p, and thus the domains D1,p(F) are shrinking with

p increasing. By the closability of D in the different Lp(Ω,F) spaces, we see that if an F-

valued random variable X belongs to D1,p(F) and D1,q(F) then we have that DpX = DqX

and therefore we can ignore the subscript and just write D for the different extensions

of D into the different Lp(Ω;F) spaces.

We will also denote, following Nualart’s notation in [36], by D1,∞(F) the intersection⋂
p≥1D

1,p(F). That this space is non empty is obvious as smooth random variables cer-

tainly belong to it.

Remark B.1.1 It is interesting to remark that a well known basis in L2[0,T ] is the so

called Walsh orthonormal system, given by: l1 B 1/
√

T .1[0,T ], l2 B 1/
√

T .1[0,T/2) −

1/
√

T .1[T/2,T ], l3 B 1/
√

T .1[0,T/4) − 1/
√

T .1[T/4,T/2) + 1/
√

T .1[T/2,3T/4) − 1/
√

T .1[3T/4,T ],

etc...

Looking at the Malliavin derivative of smooth random variables of the form ξn,m =

f
∫ T

t=0
ln(t)⊗gmdWt for some f ∈ F and some m, n ∈ N gives us a very intuitive picture of

what the Malliavin derivative is. This is actually the approach which has been chosen

in the book by Malliavin and Thalmaier [30]: it shows us that Dtξ simply gives the

variations of the random variable ξ resulting from a change in the Brownian motion’s

increment at time t.

The following proposition gives us a means to check (well, sometimes) that a random

variable belongs to D1,p(F). The proof we give here is based on a simple extension of

Lemma 1.2.3 of Nualart [36] from the Hilbert space case (p = 2) to general p > 1,

instead of using the more complicated proof given in Lemma 1.5.3 of that same book

[36] (which in essence is the same, but requires the introduction of other operators).

Proposition B.1.2 Let Xn be a series of random variables converging in Lp(Ω;F) for

some p > 1 to some random variable X. Then:{∣∣∣∣∣∣DXn

∣∣∣∣∣∣
1,p,F

}∞
n=1
∈ l∞ ⇒

(
X ∈ D1,p(F) and DXn → DX

)
96



Proof of Proposition B.1.2:

Let us denote by M an upper bound for the sequence
{∣∣∣∣∣∣DXn

∣∣∣∣∣∣
Lp(Ω;F⊗U)

}∞
n=1

. Let us pick

a countable dense set {ξm}
∞
m=1 in Lq(Ω;F ⊗ U), where q is the adjoint of p, given by the

relation p−1 + q−1 = 1. Notice that this space is the dual (Banach space) of Lp(Ω;F ⊗

U). Also notice that this would not be possible if we had allowed p = 1 as it is well

known that the dual space of a L1 space is L∞, which is, except in degenerate cases, not

separable.

Let us now observe that for any m ∈ N, the sequence {EξmDXn}
∞
n=1 is well defined, by

Holder’s inequality, and bounded by ||ξm||M. It is therefore easy by a diagonal argument

to construct a subsequence {qn}
∞
n=1 such that, for each m, the sequence {EξmDXqn}

∞
n=1 is

converging to a value that we will call cm. We can remark that |cm| is bounded by ||ξm||M

and therefore the map which to ξm associates the value cm can uniquely be extended to

the whole of Lq(Ω;F ⊗U) to a bounded linear functional that we will call G (i.e., G is a

random variable in the space Lp(Ω;F⊗U)). What we have just done here is to construct

a random variable G towards which DXqn converges weakly in Lp(Ω;F ⊗ U). (Notice

that we could also have used directly the Banach-Alaoglu theorem, but the separable

Banach space structure makes it unnecessary. The argument we have given here is the

one given by Banach himself in his book [2], see paragraph 4, Theorem 2 and Theorem

3 from Chapter 8).

Finally, for each n, we can construct X̃n ∈ Cn, the closure (in the ||.||1,p,F norm) of the

convex hull of (Xq1 , ..., Xqn), and such that {X̃n}
∞
n=1 converges in the (strong) Lp(Ω;F)-

norm to X and such that {DX̃n}
∞
n=1 converges in the (strong) Lp(Ω;F ⊗ U)-norm to G

(in short, we can consider (X̃, G̃) the element of C B
⋃∞

k=1 Ck which minimizes the

Lp(Ω;F) × Lp(Ω;F ⊗ U)-distance to (X,G). That such a distance minimizer element

exists and actually belongs to C comes from the fact that C is closed and convex by

construction. It is then not too difficult to argue that the weak convergences of {Xqn}
∞
n=1

to X and of {DXqn}
∞
n=1 to G imply that (X,G) and (X̃, G̃) have to be identical, for instance

by using the contrapositive of the separating hyperplane theorem). This shows of course

that X is an element of D1,p(F) and that DX = G. �
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B.2 Derivative of stochastic integrals

In the main text, when differentiating (in the Malliavin sense) the stock price, we had to

take the derivative of a stochastic integral. The following proposition gives us conditions

under which we can do so and tells us what the derivative of this integral is. Notice that

the formula we get would make sense without the two adjoint symbols “*” but would

be wrong. This is because for a fixed t and if, say, φu is valued in F ⊗ G then Dtφu is

valued in F ⊗ G ⊗ G, so that writing something like
∫ T

u=t
DtφudWu would make perfect

sense, but this is not what we want to do! Despite what we just said, we drop the “*” in

most sections, in order to lighten slightly the notation which is already heavy enough.

Proposition B.2.1 Let T ≥ 0 and p ≥ 2 be given. Let
(
φt

)
t∈[0,T ] be an LHS (G,F)-valued

stochastic process, predictable and satisfying the integrability condition:

E

∫ T

t=0
||φt||

p
LHS (G,F)dt < ∞.

Suppose in addition that for all t ∈ [0,T ], φt ∈ D
1,p(LHS (G,F)) and that:

E

∫ T

t=0
||Dφt||

p
LHS (G,F)⊗Udt < ∞

Then, the F-valued random variable
∫ T

t=0
φtdWt belongs to D1,p(F) and:

D
∫ T

u=0
φudWu = φ(. ∧ T ) +

{ ∫ T

u=0
(Dφu)∗dWu

}∗

Proof of Proposition B.2.1:

Let us show the proposition for elementary integrands of the form

ψu = W(h)n f1(s,t](u) ⊗ g
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where h(u) = 0 for u ≥ s, where s ≤ t, n ∈ N and ( f , g) ∈ F × G:

D
∫ T

u=0
ψudWu = D

[
W(h)n f < g,Wt∧T −Ws∧T >G

]
= W(h)n f D < g,Wt∧T −Ws∧T >G +D

[
W(h)n] f < g,Wt∧T −Ws∧T >G

= W(h)n f1(s,t](. ∧ T ) ⊗ g + nW(h)n−1 < g,Wt∧T −Ws∧T >G f ⊗ h

= W(h)n f1(s,t](. ∧ T ) ⊗ g +

∫ T

u=0
nW(h)n−1 f ⊗ g1(s,t](u)dWu ⊗ h

= ψ(. ∧ T ) +
{ ∫ T

u=0
h ⊗

[
nW(h)n−1 f ⊗ g1(s,t](u)

]
dWu

}∗
= ψ(. ∧ T ) +

{ ∫ T

u=0

[(
nW(h)n−1 f ⊗ g1(s,t](u)

)
⊗ h

]∗dWu

}∗
= ψ(. ∧ T ) +

{ ∫ T

u=0

(
Dψu

)∗dWu

}∗
(B.2.1)

Now, by definition of the stochastic integral, there exists a sequence
{
φ(n)}∞

n=1 of simple

integrands of the form:

φ(n) =

Nn−1∑
k=0

ξ(n)
k 1(t(n)

k ,t(n)
k+1](t)

and which converge to φ in the sense: limn→∞ E
∫ T

t=0
||φt − φ

(n)
t ||

p
LHS (G,F)dt = 0. For each

n ∈ N, Nn is an integer, 0 C t(n)
0 < .... < t(n)

Nn
B T is a partition of [0,T ] and the

ξ(n)
k ’s are LHS (G,F)-valued random variables which are Ft(n)

k
-measurable and of finite

Lp(Ω;LHS (G,F))-norm. By linearity and density arguments, we can extend the above

formula (B.2.1) and get:

D
∫ T

t=0
φ(n)

t dWt = φ(n)
t (. ∧ T ) +

{ ∫ T

u=0

(
Dφ(n)

u
)∗dWu

}∗
Finally, the last line converges as n goes to infinity to φ(. ∧ T ) +

∫ T

t=0
(Dφt)dWt in the

Lp(Ω;F ⊗U)-norm because of the hypothesis of the proposition and the convergence of

φ(n) towards φ. �
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B.3 Chain rules for the Malliavin derivative

Let F and H be two separable Hilbert spaces and let X be an F-valued random variable.

In many applications, we are interested in differentiating (in the Malliavin sense) a ran-

dom variable Y of the form Y = g(X), where g is a measurable function from (F,B(F))

into (H,B(H)). The following proposition is then very useful. (Notice that we still have

in the background (Ω,F ,
(
Ft

)
t≤T ,P), G, U and W which have the same definitions as in

the previous section).

Proposition B.3.1 Let p > 1. If X ∈ D1,p(F), and if g is globally Lipschitz on F in the

sense that:

∃K ≥ 0, ∀(x, y) ∈ F2, ||g(x) − g(y)||H ≤ K||x − y||F

then g(F) ∈ D1,p(H), and there exists Og, an L(F,H)-valued random variable of norm

a.s. smaller than K, such that:

Dg(X) = OgDX a.s.

Proof of Proposition B.3.1:

The proof is similar to that of Proposition 5.2 in Carmona and Tehranchi [8], but with p

arbitrarily strictly larger than 1. �

In many interesting cases, g is unfortunately not globally Lipschitz, so that the pre-

vious proposition does not apply. This is for instance the case when X is a real-valued

random variable and g is one of the following: g(x) = exp(x), g(x) = xp, p > 1 (not

Lipschitz at ∞) or g(x) = xp, 0 < p < 1 (not Lipschitz at the origin). However, the

following proposition may give us a way out in these cases:

Proposition B.3.2 Let p > 1. Let X be a real-valued random variable belonging to

D1,p and taking values in some open interval I B (a, b), where a and b are possibly −∞

and∞. Let g be a positive, increasing, and C1 function on I, not necessarily of bounded
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derivative.

If E||g
′

(X)DX||pU∗ < ∞, then it holds that:

g(X) ∈ D1,p, and

Dg(X) = g′(X)DX

Proof of Proposition B.3.2: Let n0 ∈ N and x0 ∈ I be such that |g(x0)| + |g′(x0)| < n0.

Such values n0 and x0 exist by the assumption that g is C1. We then define for each

n ≥ n0 I(n) B (a(n), b(n)), where
{
a(n)}∞

n=1 ( respectively
{
b(n)}∞

n=1) is a decreasing (resp.

increasing) sequence, bounded above (resp. below) by x0, converging to a (resp. b) and

such that on each interval I(n), g together with its derivative g′ are bounded by n. The

existence of such sequences is also guaranteed by the fact that g is C1. Finally, we define

the truncated approximating functions gn, n ≥ 0 by:

gn(x) = g(a(n))1{x≤a(n)}(x) + g(x)1{x∈[a(n),b(n)]}(x) + g(b(n))1{x≥b(n)}(x)

By definition, g and gn coincide with each other on I(n), and I(n) ↑ I as n ↑ ∞. Therefore

gn(X) converges to g(X) almost surely, and by the bounded convergence theorem, the

convergence is also true in Lp. Also by construction, each of the gn is a Lipschitz

function of coefficient n. Therefore, gn(X) ∈ D1,p. Finally, we have that:

lim
n→∞
E||g′(X)DX − g′n(X)DX||pU∗ = 0

by monotone convergence because ||g′(X)DX−g′n(X)DX|| is non zero only if X(ω) < I(n)

and when it is non zero, it is equal to ||g′(X)DX||U∗ . This proves the proposition. �
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Appendix C

Existence, uniqueness and Malliavin

differentiability of mild solutions to

SPDEs in Hilbert spaces

The following theorem is a particular case of Theorem 7.4 of Da-Prato and Zabczyk

[13] and has been used in the main text to define the forward variance swaps curve. We

detail the proof here for completeness and adapt it to our specific case. Notice that, in

essence, this is still the same usual story as for ordinary differential equations, i.e. using

the fixed point theorem for contractions.

Theorem C.0.3 LetG and F be two separable Hilbert spaces and
(
Wt

)
t≥0 aG-cylindrical

Wiener process defined on a filtered probability space
(
Ω,F , (Ft)t≥0,P

)
. Let

(
S t

)
t≥0 be a

strongly continuous semi-group on F, with infinitesimal generator A. Let σ be a (mea-

surable) map from (R+ ×Ω×F,P×B(F)) into (LHS (G,F),B(LHS (G,F))) satisfying the

global Lischitz and growth conditions:

||σ(t, ω; f1) − σ(t, ω; f2)||LHS (G,F) ≤ K|| f1 − f2||F, ∀(t, ω, f1, f2) ∈ R+ ×Ω × F2

||σ(t, ω; f )||LHS (G,F) ≤ K(1 + || f ||F), ∀(t, ω, f ) ∈ R+ ×Ω × F

for some constant K ≥ 0.

Then, for any v0 ∈ F, there exists a unique (up to indistinguishability) continuous F-
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valued stochastic process
(
vt
)

t≥0 starting at v0 which satisfies the evolution equation:

vT = S T v0 +

∫ T

0
S T−uσ(u, ω; vu)dWu

In addition, for any p ≥ 2, T ≥ 0, there is a positive constant AT,p such that:

sup
t∈[0,T ]

E
{
||vT ||

p} ≤ AT,p

In particular, this implies that vT belongs to
⋂∞

n=1 Lp(Ω;F).

The above solution is said to be a mild solution to the stochastic partial differential

equation:

dvt = Avtdt + σ(t, ω; vt)dWt

with initial condition v0. Let us remark that the term “mild” is here opposed to “strong”

in a sense similar to the distinction made between strong and weak solutions of PDEs

(see Reed and Simon [39] p. 149 for instance), but not in the probabilistic sense. In the

probabilistic sense (see for instance Karatzas and Shreve [24] p. 285), our mild solution

introduced above is a strong solution, i.e. the solution vt to the equation is adapted to the

augmented filtration generated by the cylindrical Brownian motion. This means (see for

instance Williams’s “Probability with Martingales” [46]) that there exists a measurable

map M such that vt = M
(
(Wu)u≤t

)
. The reason why we need to make use of mild

solutions here is that, although it may be impossible to find a solution v such that

vT = v0 +

∫ T

t=0
Avtdt +

∫ T

t=0
σ(t, ω; vt)dWt

(because we cannot guarantee that vt will remain in the domain of A which is likely to

be an unbounded operator), it may still be possible to find v satisfying the mild form

(S t, unlike A, is a linear bounded operator defined on the whole of F).

Proof of Theorem C.0.3:

We outline the proof here for convenience. A full proof with more details can be found

in Da-Prato and Zabczyk [13] p186 to 193. We start by proving uniqueness. Let us

suppose that we have two solutions
(
v(1)

t
)

t≥0 and
(
v(2)

t
)

t≥0. For j ∈ {1, 2}, and arbitrary
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0 ≤ t ≤ T , it holds that:

E

∫ t

u=0
||σ(u, ω; v( j)

u )||2LHS (G,F)du ≤ E
∫ T

u=0
K2(1 + ||v( j)

u ||
2) ≤ K2T (1 + AT,2) < ∞

So it must hold that
∫ T

u=0
||σ(u, ω; v( j)

u )||2
LHS (G,F)du < ∞ a.s. We can therefore define for

any M ≥ 0 the stopping time τM B inf
{
t ≤ T,∃ j ∈ {1, 2},

∫ t

u=0
||σ(u, ω; v( j)

u )||2
LHS (G,F)du ≥

M
}
. Let us denote by ṽ( j)

t , j ∈ {1, 2} the processes killed at the stopping time τM: (ṽ( j)
t ) B

1{t≤τM(ω)}(t, ω)v j
t . Then we have for any t ≤ T :

E||ṽ(2)
t − ṽ(1)

t ||
2
F

≤ E
{
1{t≤τM(ω)}(t, ω)

∫ t

u=0
||1{u≤τM(ω)}(u, ω)S t−u

(
σ(u, ω; v(2)

u ) − σ(u, ω; v(1)
u )

)
||2LHS (G,F)du

}
≤ B2

T K2E
{ ∫ t

u=0
||ṽ(2)

u − ṽ(1)
u ||

2
Fdu

}
where BT denotes a bound on supt≤T

∣∣∣∣∣∣S t

∣∣∣∣∣∣
L(F)

. This implies by Gronwall’s Lemma (and

the finiteness of all quantities in the above inequalities (bounded by a multiple of M))

that E||ṽ(2)
t − ṽ(1)

t ||
2
F = 0 for all t ≤ T . As this holds for arbitrarily large M, we deduce that

E||v(2)
t − v(1)

t ||
2
F = 0 for any t ≤ T as well. Finally, using the continuity of v( j)

t , that implies

that both solutions are indistinguishable.

As for the existence of a continuous solution, it can be proved by making use of the

Picard iterations, i.e. introducing: v(0)
t B S tv0 and then recursively, for n ≥ 1 and all

t ≥ 0:

v(n+1)
t B S tv0 +

∫ t

u=0
S t−uσ(u, ω; v(n)

u )dWu

By induction, we can remark that
(
v(n)

t
)

t≥0 is adapted to the filtration
(
Ft

)
t≥0. We have

then that for any n ≥ 1 and any T ≥ 0:

sup
t≤T
E
∣∣∣∣∣∣v(n+1)

t − v(n)
t

∣∣∣∣∣∣p ≤ K pBp
T BT,p sup

t≤T
E
∣∣∣∣∣∣v(n)

t − v(n−1)
t

∣∣∣∣∣∣p
As we can choose a particular value of T (say T̃ ) that makes the above constant K pBp

T BT,p

strictly less than 1, we have therefore convergence of vn
t on [0, T̃ ] to a limit that we call

vt and which is seen to satisfy the equation, and is bounded in the
(

supt≤T̃ E||vt||
p
)1/p

-

norm. Notice that we can then patch solutions on intervals of the form [0, T̃ ], [T̃ , 2T̃ ],
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etc, to construct the solution on the original interval of interest [0,T ]. �

We needed in the main text to take the Malliavin derivative of the mild solution to a

SPDE in Hilbert space. We made use of the following theorem:

Theorem C.0.4 LetG, F,
(
Wt

)
t≥0,

(
Ω,F , (Ft)t≥0,P

)
,
(
S t

)
t≥0, A and σ be defined as in the

previous Theorem C.0.3. We assume in addition that σ does not depend on ω in a direct

manner, but only through vt, i.e. σ = σ(t; vt(ω)). We denote by (vt)t≥0 the unique con-

tinuous mild solution to the equation dvt = Avtdt + σ(t; vt)dWt with initial condition v0.

Then for any T ≥ 0, vT ∈ D
1,∞(F) and for any t ≥ 0, there exists a unique strong

L(F)-valued random variable Yt,T such that DtvT = Yt,Tσt. The family of random vari-

ables
(
Yt,T

)
0≤t≤T<∞ is the unique solution to the family of equations:

Yt,T = S T−t +

∫ T

u=t
S T−uOσuYt,udWu

Moreover, for any t,T ≥ 0 with t ≤ T, any p ≥ 2, and any F-valued integrable random

variable ft, there exists a positive constant CT,p depending only on T and p such that:

sup
u∈[t,T ]

Et

∣∣∣∣∣∣Yt,u ft

∣∣∣∣∣∣p
F
≤ CT,p

∣∣∣∣∣∣ ft

∣∣∣∣∣∣p
F

(C.0.1)

Proof of Theorem C.0.4:

We give below the proof of the theorem in the general case p ≥ 2. The particular case

p = 2 is treated in Carmona and Tehranchi [8]. Our proof is divided in three parts: we

first show that vT ∈ D
1,∞(F) for all T , and give the F ⊗ U-valued SPDE to which DvT is

solution. Then we explain where the family Y of strong operators is coming from, and

finally we derive the bound (C.0.1). During the proof, we make again use of the Picard

iterations, that is, we define:

v(0)
T B S T v0

and then, by induction, we define for n ≥ 0

v(n+1)
T B S T v0 +

∫ T

u=0
S T−uσ(u; v(n)

u )dWu C S T v0 +

∫ T

u=0
φ(n)

T,udWu
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We have already seen that these iterations are properly defined, and that for any T ≥ 0

and any p ≥ 1, there is uniform convergence on [0,T ] of v(n)
t to vt in the Lp(Ω;F)-norm.

In particular, there exists a constant cT,p such that supn∈N supt≤T E
∣∣∣∣∣∣v(n)

t

∣∣∣∣∣∣p
F
< cT,p.

C.1 Malliavin differentiability of vT and SPDE

We now show that the series
{
Dv(n)

T
}∞
n=1 is bounded in the Lp(Ω;F ⊗ U)-norm so that we

can make use of Proposition B.1.2. We proceed by induction, showing that for each n,

we can use the formula of Proposition B.2.1 to get the Malliavin derivative of v(n)
T and to

compute a bound on the Lp(Ω;F⊗U)-norm of Dv(n)
T . Let us start by noticing that the case

n = 0 is trivial as v(0)
u is non random and thus, Dv(0)

u exists and is equal to 0 for all u ≤ T .

Let us now suppose that n is such that n ≥ 0, v(n)
u ∈ D

1,∞(F), φ(n)
T,u ∈ D

1,∞(LHS (G,F)) for

all u ≤ T , and that
∫ T

u=0

∣∣∣∣∣∣Dφ(n)
T,u

∣∣∣∣∣∣p
LHS (G,F)⊗U

du < ∞ for all p ≥ 2. This assumption allows

us to use Proposition B.2.1 on v(n+1)
T to get that:

Dtv
(n+1)
T = S T−tσ(t; v(n)

t ) +

∫ T

u=t
S T−uOσ(u; v(n)

u )Dtv(n)
u dWu (C.1.1)

and therefore, for any p ≥ 2:

E

∫ T

t=0

∣∣∣∣∣∣Dtv
(n+1)
T

∣∣∣∣∣∣p
F⊗G

dt = E

∫ T

t=0

∣∣∣∣∣∣S T−tσ(t; v(n)
t ) +

∫ T

u=t
S T−uOσ(u; v(n)

u )Dtv(n)
u dWu

∣∣∣∣∣∣p
F⊗G

dt

≤ E

∫ T

t=0
2p

∣∣∣∣∣∣S T−tσ(t; v(n)
t )

∣∣∣∣∣∣p
F⊗G

dt

+ E

∫ T

t=0
2p

∣∣∣∣∣∣ ∫ T

u=t
S T−uOσ(u; v(n)

u )Dtv(n)
u dWu

∣∣∣∣∣∣p
F⊗G

dt

≤ 2pMpE

∫ T

t=0
K p(1 +

∣∣∣∣∣∣v(n)
t

∣∣∣∣∣∣
F

)pdt

+ 2pBT,pE

∫ T

t=0

∫ T

u=t

∣∣∣∣∣∣S T−uOσ(u; v(n)
u )Dtv(n)

u

∣∣∣∣∣∣p
F⊗G

dudt

where we have used M to denote the quantity supu≤T

∣∣∣∣∣∣S u

∣∣∣∣∣∣
F
, K to denote the linear and

Lipschitz bounds on σ and where BT,p is a bound depending only on p and T that

satisfies:

E
∣∣∣∣∣∣ ∫ T

u=t
S T−uOσ(u; v(n)

u )Dtv(n)
u dWu

∣∣∣∣∣∣p
F⊗G
≤ BT,pE

∫ T

u=t

∣∣∣∣∣∣S T−uOσ(u; v(n)
u )Dtv(n)

u

∣∣∣∣∣∣p
F⊗G

du
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We continue simplifying the above inequalities to get that:

E

∫ T

t=0

∣∣∣∣∣∣Dtv
(n+1)
T

∣∣∣∣∣∣p
F⊗G

dt

≤
(
4MK

)pT
(
1 + CT,p

)
+ BT,p(2MK)pE

∫ T

u=0

∫ u

t=0

∣∣∣∣∣∣Dtv(n)
u

∣∣∣∣∣∣p
LHS (G,F)

dtdu

where we have used Fubini’s theorem to interchange the right hand side double integral.

Letting finally aT,p be the maximum of
(
4MK

)pT
(
1 + CT,p

)
and BT,p(2MK)p, and notic-

ing that aT,p can be chosen to be an increasing function of T , we obtain that for t ≤ T :

E

∫ t

u=0

∣∣∣∣∣∣Duv(n+1)
t

∣∣∣∣∣∣p
F⊗G

du ≤ aT,p
(
1 +

∫ t

u=0

∫ u

τ=0

∣∣∣∣∣∣Dτv(n)
u

∣∣∣∣∣∣p
F⊗G

dτdu
)

which allows us to prove by induction that for all n ∈ N, T ≥ 0:

sup
t≤T
E

∫ t

u=0

∣∣∣∣∣∣Duv(n)
t

∣∣∣∣∣∣p
F⊗G

du ≤ aT,p exp(TaT,p) (C.1.2)

Finally, we remark that by Jensen’s inequality:

∣∣∣∣∣∣Duv(n)
t

∣∣∣∣∣∣p
F⊗U
≤ T p/2−1E

∫ t

u=0

∣∣∣∣∣∣Duv(n)
t

∣∣∣∣∣∣p
F⊗G

du

so that:

sup
t≤T
E
∣∣∣∣∣∣Duv(n)

t

∣∣∣∣∣∣p
F⊗U
≤ T p/2−1aT,p exp(TaT,p) (C.1.3)

Using Proposition B.1.2, we conclude that vT ∈ D
1,∞(F) as desired. To conclude the

induction that we have started, we need to establish as well that:∫ T

u=0

∣∣∣∣∣∣Dφ(n+1)
T,u

∣∣∣∣∣∣p
LHS (G,F))⊗U

du < ∞

for all p ≥ 2, but this is now clear from the inequality (C.1.3).

C.2 The family of operators Y

We now turn to the second part of the theorem, introducing the family of strong oper-

ators Yt,T , and establishing the bound (C.0.1). We can let n go to infinity in equation

(C.1.1), because all three quantities involved in that equation converge in Lp(Ω;F ⊗ U)
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(or in Lp(Ω;F) if we look at this equation for a fixed value of t). We get therefore that,

for all t ≤ T :

DtvT = S T−tσ(t; vt) +

∫ T

u=t
S T−uOσ(u; vu)DtvudWu

Let us assume for now that we can define the family Y of strong L(F)-valued operators(
Yt,T

)
0≤t≤T<∞, which satisfies for all f ∈ F, and all t ≤ T :

Yt,T f = S T−t f +

∫ T

u=t
S T−uOσ(u; vu)Yt,u f dWu

Then we can see by uniqueness of the solution to equation (C.1.3) that DtvT and Yt,Tσ(t; vt)

have to be identical, hence the formula of the proposition. It remains only to show that

we can define the family Y and that it satisfies the announced bound: proceeding sim-

ilarly to earlier when we proved the uniform (for t ∈ [0,T ]) convergence of the Picard

iteration v(n)
t to vt in the Lp(Ω;F)-norm, we can define for any f ∈ F the following Picard

iterations:

Y (0)
t,T f B S T−t f

for 0 ≤ t ≤ T < ∞, and then for all n ∈ N we define by induction

Y (n+1)
t,T f B S T−t f +

∫ T

u=t
S T−uOσ(u; vu)Y (n)

t,u f dWu

Exactly by similar arguments to those given earlier, the series
{
E supτ∈[t,T ]

∣∣∣∣∣∣Y (n)
t,τ f

∣∣∣∣∣∣p
F

}∞
n=1

is Cauchy for arbitrary p ≥ 2, which allows us to define
(
Yt,τ f

)
τ∈[t,T ] as the limit of(

Y (n)
t,τ f

)
τ∈[t,T ]. We can finally observe that Yt,τ is linear in f because each Picard iteration

is, and therefore defines a strong operator valued process, solution to the equation:

Yt,τ = S τ−t +

∫ τ

u=t
S τ−uOσ(u; vu)Yt,udWu

provided of course that we set by definition:

( ∫ τ

u=t
S τ−uOσuYt,udWu

)
( f ) B

∫ τ

u=t
S τ−uOσuYt,u f dWu.
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C.3 Bound on Y

Finally, let us proceed by induction to show the bound (C.0.1): let 0 ≤ t ≤ u ≤ T <

∞ and ft an Ft-measurable, integrable F-valued random variable. Then, with still M

denoting supt≤T

∣∣∣∣∣∣S t

∣∣∣∣∣∣
F
, we have that:

Et

∣∣∣∣∣∣Y (0)
t,u ft

∣∣∣∣∣∣p
F

= Et

∣∣∣∣∣∣S t−u ft

∣∣∣∣∣∣p
F
≤ Mp|| ft||

p
F

and then by induction for n ≥ 0:

Et

∣∣∣∣∣∣Y (n+1)
t,u ft

∣∣∣∣∣∣p
F
≤

(
2M

)p∣∣∣∣∣∣ ft

∣∣∣∣∣∣p
F

+
(
2MK

)pBT,pEt

∫ T

u=t

∣∣∣∣∣∣Y (n)
t,u ft

∣∣∣∣∣∣p
F
du

By induction again, we deduce that for all n ∈ N:

sup
u∈[t,T ]

Et

∣∣∣∣∣∣Y (n)
t,u ft

∣∣∣∣∣∣p
F
≤

∣∣∣∣∣∣ ft

∣∣∣∣∣∣p
F
bT,p exp

(
bT,p

)
where bT,p is a constant larger than

(
2M

)p and
(
2MK

)pBT,p. �
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