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Abstract

In this paper, we set η(G) to be the number of conjugacy classes
of maximal cyclic subgroups of G. We prove that if G is a p-group
of order pn and nilpotence class l, then η(G) is bounded below by a
linear function in n/l.
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1 Introduction

Unless otherwise stated, all groups in this paper are finite. Motivated by the
research area of classifying spaces of families of subgroups of infinite groups,
von Puttkamer asks [5, Question 5.0.9]: does the number of conjugacy classes
of maximal cyclic subgroups of a finite p-group for a prime p > 2 grow
with the order of the group? Clearly, the question is considering noncyclic
groups. More precisely, one can ask whether the number of conjugacy classes
of maximal cyclic subgroups of a noncyclic p-group of order pn is at least n
when p is an odd prime. This work was initiated by X. Wu asking the second
author this question in a private communication.

The question can be phrased in terms of the size of a particular type of
covering of a group. Recall, a covering of a group G is a set of proper sub-
groups {Hi}, called components, such that G ⊆

⋃
iHi. A covering is called

irredundant if removing any component means the set is no longer a covering.
A normal covering of G is a covering that is invariant under conjugation by G.
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Note that the components of a normal covering are not normal, but refers to
the fact that the components form orbits under conjugacy. Often, one takes
only one representative of each conjugacy class of components. Our question
above considers normal coverings where all the components of the cover are
cyclic. It is not difficult to see that the set of maximal cyclic subgroups is
the only irredundant covering by cyclic subgroups.

With this in mind, we introduce the following definition. Let G be a finite
group. Denote the number of conjugacy classes of maximal cyclic subgroups
of G by η(G). We note that the questions of von Puttkamer and Wu have
negative answers. In [2], the second and third authors along with Yiftach
Barnea and Mikhail Ershov find for every prime p > 3 and every integer
n ≥ 3, groups of order pn that all have η = p+2. For p = 2, we also find that
η(G) = 3 when G is a dihedral 2-group, a generalized quaternion 2-group,
or a semi-dihedral 2-group. For p = 3, there is an infinite family of 3-groups
with η = 9. See Theorem 7.12 of [2].

On the other hand, we believe it is extremely rare for this to occur. In
particular, we prove that if we fix the nilpotence class of a p-group G, then
η(G) will grow proportionally to logp(|G|). The theorem we prove is the
following.

Theorem 1.1 Let G be a noncyclic p-group of nilpotence class l ≥ 1 and
order pn. Then η(G) ≥ (p− 1)(n/l − 2) + p+ 1.

The authors would like to thank Emanuele Pacifici for a number of help-
ful conversations while working on this paper. The first author is partially
supported by INDAM-GNSAGA. We would like to thank Avinoam Mann for
pointing out [3].

2 Abelian groups

As noted in the introduction, when considering abelian groups calculating
η(G) is the same as calculating the maximum number of subgroups in an
irredundant cyclic covering of G. In [4, Proposition 6 (ii)] the author gives
a formula, which involves the Euler totient function, for calculating this
number.

We take a slightly different approach; so we are including our results. We
will show for abelian p-groups that a function in η(G) gives a lower bound
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for |G|. We begin by computing η(G) when G is the direct product of two
cyclic p-groups.

We consider the set G{p} = {gp | g ∈ G}. For an element g ∈ G, it is not
difficult to see that that 〈g〉 is a maximal cyclic subgroup of G if and only if
g ∈ G \G{p}.

Lemma 2.1 Suppose G ∼= Cpa × Cpb with a ≥ b. Then

η(G) = p(b−1)((a− b)(p− 1) + p+ 1) ≥ a+ b.

Proof. Let G = 〈x〉 × 〈y〉 with x of order pa and y of order pb. Let
C be a cyclic subgroup of G. Either C is a subgroup of 〈(1, y)〉 or there
exist integers n and c so that C is generated by (xp

n
, yc) for 0 ≤ n < a and

0 ≤ c < pb. We claim that C is maximal exactly when n = 0, or c is relatively
prime to p, or C = 〈(1, y)〉. To see this, observe that in each of these cases, a
generator of C does not lie in G{p}, so C is maximal. Furthermore, we claim
that the generator for a maximal cyclic subgroup is unique if we make the
additional restriction that 0 ≤ c < min(pb, pa−n). First note for an integer
l that (xp

n
, yc)1+lpa−n

= (xp
n
, yc+clpa−n

). Since c is coprime to p, as l runs
through the integers modulo pb, then also cl will run through all of Zpb . So
we are getting as the exponents for y, all elements in the coset c + pa−nZpb

in Zpb . It is not difficult to see that {0, 1, ..., pa−n − 1} is a transversal for
pa−nZpb in Zpb . Hence, there exists an integer c′ with 0 ≤ c′ ≤ pa−n − 1 so
that c′+ pa−nZpb = c+ pa−nZpb . It follows that (xp

n
, yc

′
) will lie in 〈(xpn , yc)〉

and since it has the same order, it will be a generator.
So, we claim the following are distinct maximal cyclic subgroups of G,

〈(x, yc)〉 for 0 ≤ c ≤ pb − 1 and 〈(1, y)〉

〈(xpn , yc)〉 for 1 ≤ n < a, 0 ≤ c < min(pb, pa−n) and gcd(c, p) = 1.

To count the number of subgroups of the form 〈(xpn , yc)〉 we consider two
cases, when 1 ≤ n ≤ a− b and when a− b+ 1 ≤ n < a. For 1 ≤ n ≤ a− b we
have φ(pb) = pb−1(p−1) such subgroups where φ is the Euler totient function.
For a− b+ 1 ≤ n ≤ a− 1 we have φ(pa−n) maximal cyclic subgroups of the
form 〈xpn , yc〉 where p does not divide c and 1 ≤ c ≤ pa−n. With this range
on b, we obtain 1 ≤ a − n ≤ b − 1. Observe that φ(pa−n) = pa−n−1(p − 1).
We can view this as pi−1(p− 1) for i running from 1 to b− 1 or pi(p− 1) for
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i running from 0 to b− 2. So, in total we have

pb + (a− b)p(b−1)(p− 1) +
b−2∑
i=0

pi(p− 1) + 1

= pb + (a− b)p(b−1)(p− 1) + [(p(b−1) − 1)/(p− 1)](p− 1) + 1

= pb + (a− b)p(b−1)(p− 1) + p(b−1)

= p(b−1)((a− b)(p− 1) + p+ 1)

maximal cyclic subgroups, as desired. A simple inductive argument shows
that p(b−1)((a− b)(p− 1) + p+ 1) ≥ a+ b. 2

It is useful to have a function which encodes this value. Let p be a prime,
and let a and b be positive integers. We take k = max(a, b) and l = min(a, b).
We set gp(a, b) = p(l−1)((k − l)(p − 1) + p + 1), so gp(a, b) = η(G) when
G = Cpa ×Cpb . In this next lemma, we obtain the lower bound that we need
to prove the general lower bound for abelian groups.

Lemma 2.2 Let a and b be positive integers and p a prime. Then gp(a, b) ≥
(p− 1)(a+ b− 2) + p+ 1 ≥ a+ b+ 1.

Proof. Without loss of generality, we may assume a ≥ b. Set n = a+ b,
so that a = n− b. We work to show gp(a, b) ≥ (p− 1)(n− 2) + p+ 1 ≥ n+ 1.
We have 1 ≤ b ≤ n/2. We see that gp(n−b, b) = pb−1((n−2b)(p−1)+p+1).
We can view n as fixed, and this becomes a function in one variable:

f(x) = gp(n− x, x) = px−1((n− 2x)(p− 1) + p+ 1).

We want to find the minimal value for f(x) on [1, n/2]. We use calculus to
see that

f ′(x) = px−1(((ln p)(n− 2x)− 2)(p− 1) + (ln p)(p+ 1)).

Setting this equal to 0, we obtain the critical value of

x = n/2 + (p+ 1)/(2(p− 1))− 1/(ln p).

We claim that (p+ 1)/(2(p− 1))− 1/(ln p) is positive for all primes p. (This
can be shown using calculus or graphing using a computer.) Hence, this
critical point is not in our interval.
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Now, f(1) = ((n − 2)(p − 1)) + p + 1 = p(n − 1) − n + 3 and f(n/2) =
pn/2−1(p + 1). Recall that Fermat’s theorem tells us that any local extreme
values would occur when the derivative was zero. Since the derivative of
this function is never zero on this interval, we know that our minimum is
the smallest of these two values. Set f1(x) = ((x − 2)(p − 1)) + p + 1 and
fn/2(x) = px/2−1(p+ 1) for x ≥ 2. Then f1(2) = fn/2(2), but f ′n/2(x) > f ′1(x);

so fn/2(x) > f1(x) for x > 2. Thus, gp(n − b, b) ≥ (p − 1)(n − 2) + p + 1.
Finally, note that (p− 1)(n− 2) + p+ 1 ≥ n− 2 + 3 = n+ 1. 2

We also need a refinement on the value of η of a direct product of an
abelian p-group with a cyclic p-group.

Lemma 2.3 Suppose G ∼= H × Cpa where H is an abelian p-group, then
η(G) ≥ (a+ 1)η(H) + 1.

Proof. We write Y = 〈y〉 ∼= Cpa , so that G = H × Y . Let {hi}, for 1 ≤
i ≤ η(H), be representatives of generators for the maximal cyclic subgroups
of H. We now prove that 〈(hi, yp

c
)〉 for 0 ≤ c ≤ a and 1 ≤ i ≤ η(H),

along with 〈(1, y)〉 are distinct maximal cyclic subgroups of G. This gives
the required count for the lower bound.

First note that hi ∈ H\H{p}, since 〈hi〉 is maximal in H, and thus, (hi, 1),
(hi, y

pc), and (1, y) all lie in G \ G{p} for c ∈ {0, . . . , a}. (It is not difficult
to see that G{p} = {(α, β) | α ∈ H{p}, β ∈ 〈yp〉}.) Thus, each of these ele-
ments generate a maximal cyclic subgroup of G. We need to show that they
generate different cyclic subgroups of G. Suppose 〈(hi, yp

c
)〉 = 〈(hj, yp

d
)〉 for

0 ≤ c, d ≤ a. In both cases, by projecting into H, it is not difficult to see that
〈hi〉 = 〈hj〉, and thus, i = j. We are left to consider 〈(hi, yp

c
)〉 = 〈(hi, yp

d
)〉.

Projecting into Y , this forces 〈ypc〉 = 〈ypd〉, and thus, c = d as required. 2

We now obtain our lower bound on logp(|G|) when G is an abelian p-group
in terms of η(G).

Theorem 2.4 Let G be an abelian, noncyclic group of order pn. Then

η(G) ≥ (p− 1)(n− 2) + p+ 1 ≥ n+ 1.

Proof. We work by induction on |G|. Suppose first that G = Cpa × Cpb

for positive integers a and b. By Lemma 2.1, we have η(G) = gp(a, b) and
applying Lemma 2.2, we have gp(a, b) ≥ (p−1)(a+ b−2) +p+ 1 ≥ a+ b+ 1.
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Now suppose H is not cyclic and |H| = ph and G = H × Cpa . We have
by induction, η(H) ≥ (p− 1)(h− 2) + p+ 1.

By Lemma 2.3,

η(G) = η(H × Cpa) ≥ (a+ 1)η(H) + 1

≥ (a+ 1)((h− 2)(p− 1) + p+ 1) + 1

= (a+ 1)(h− 2)(p− 1) + a(p+ 1) + p+ 1 + 1

= (a+ 1)(h− 2)(p− 1) + a(p− 1) + 2a+ p+ 2

= ((a+ 1)(h− 2) + a)(p− 1) + 2a+ p+ 2

≥ (h− 2 + a)(p− 1) + p+ 1

since n = h+ a, this gives the result.
Finally, note that (p− 1)(n− 2) + p+ 1 ≥ n− 2 + 3 = n+ 1. 2

When p is odd, we can improve the inequality in Theorem 2.4.

Corollary 2.5 If p odd and G is a noncyclic, abelian group of order pn, then

η(G) ≥ (
p+ 1

2
)n.

Proof: We apply the result from Theorem 2.4:

(p− 1)(n− 2) + p+ 1 = (p− 1)n− 2p+ 2 + p+ 1

= (p+ 1)n/2 + (p− 3)n/2− p+ 3

= (p+ 1)n/2 + (p− 3)(n− 2)/2.

Since p ≥ 3 and n ≥ 2, this is at least (p+ 1)n/2. 2

3 η and nilpotence class

We now show that if we fix the nilpotence class of a p-group G, then a
function of η(G) gives a lower bound for |G|. We will see that this can be
viewed as generalization of Theorem 2.4 for abelian groups. We define the
terms of the lower central series of G inductively as follows, G1 = G and for
i ≥ 1, we set Gi+1 = [Gi, G]. Observe that G is nilpotent of nilpotence class
l if Gl+1 = 1 and Gl > 1.
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We first prove a lemma regarding the order of elements of Gl when G has
nilpotence class l. Taking |G| = pn, note that n ≥ l + 1, so bn/(l + 1)c ≥ 1.
It has been suggested that this next lemma is related to [3].

Lemma 3.1 Let G be a p-group of nilpotence class l ≥ 2 and order pn. Then
Gl has exponent dividing pbn/(l+1)c.

Proof. We work by induction on l. We begin with the case that l =
2. If |G2| ≤ pn/3, then we have the result. Thus, we may assume that
|G2| > pn/3 and so, |G/G2| < p2n/3. We can find a1, . . . , ak ∈ G so that
G/G2 = 〈a1G2〉 × 〈a2G2〉 × · · · × 〈akG2〉. We know that G2 is central, and
so it is abelian. Also, it is generated by {[ai, aj] | 1 ≤ i < j ≤ k}. Since G
is a p-group, it suffices to show that o([ai, aj]) is less than or equal to pn/3

for all 1 ≤ i < j ≤ k. Observe that o(aiG
2)o(ajG

2) divides |G/G2| < p2n/3,
and so, without loss of generality o(aiG

2) is less than or equal to pn/3. Now,

[ai, aj]
bn/3c = [a

bn/3c
i , aj] = 1. This completes the proof when l = 2.

We now assume that l ≥ 2. If |Gl| ≤ pn/(l+1), then the result holds. Thus,
we may assume that |Gl| > pn/(l+1), and so, |G/Gl| < pnl/(l+1). We see that
Gl is generated by the set {[a, b] | a ∈ Gl−1, b ∈ G}. As above, since Gl is cen-
tral (thus abelian) and a p-group, it suffices to show that o([a, b]) ≤ pn/(l+1)

when a ∈ Gl−1 and b ∈ G. By induction, we know since G/Gl has nilpotence
class l− 1 that o(aGl) is less than or equal to p(nl/(l+1))/l = pn/(l+1). We then
have that [a, b]bn/(l+1)c = [abn/(l+1)c, b] = 1. This proves the desired result. 2

We now have what we need to prove the theorem. Notice that when l = 1,
G is abelian and the inequality is the inequality that was proved in Theorem
2.4. Thus, we can use the abelian case as the base case for our induction. We
do need two results that we have proved in [1]: (1) If N is a normal subgroup
of G, then η(G) ≥ η(G/N). (2) If G is a group, then η(G) ≥ η(Z(G)).

Proof. [Proof of Theorem 1.1] We work by induction on l. If l = 1, then
this is Theorem 2.4.

We now suppose that l ≥ 2. Note that G/G′ = G/G2 is not cyclic, so the
induction hypothesis is valid even if l = 2. If |G/Gl| ≥ pn(l−1)/l, then by the
induction hypothesis we have

η(
G

Gl
) ≥ (p− 1)

(
n(l − 1)/l

l − 1
− 2

)
+ p+ 1 = (p− 1)

(n
l
− 2
)

+ p+ 1.
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As we noted before the start of the proof, we have that η(G) ≥ η(G/Gl), and
so we have the conclusion in this case.

Thus, we may assume that |G/Gl| < pn(l−1)/l, and so, |Gl| > p(n/l) >
pn/(l+1). By Lemma 3.1, this implies that Gl is not cyclic. It follows that
|Z(G)| > pn/l and is not cyclic. By Theorem 2.4, we have η(Z(G)) ≥
(p − 1)(n/l − 2) + p + 1, and as we noted before the start of the proof,
we have η(G) ≥ η(Z(G)). This yields the result when n = l and proves the
theorem. 2

Rewriting the inequality in Theorem 1.1, we obtain lnp(|G|) ≤ ((η(G) −
p − 1)/(p − 1) + 2)l; so Theorem 1.1 can be viewed as saying that that the
size of G is bounded in terms of a function of η(G) and the nilpotence class
of G. I.e., if the order of G is growing, then either η or l (or both) must be
growing. If one fixes |G|, then the nilpotence class being small forces η to be
large and vice versa. In this way, it is like the uncertainty principle.
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