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Abstract 27	  
Objective- 28	  
Microtubule-affinity regulating kinase 4 (MARK4) regulates NLR and pyrin containing 29	  
protein 3 (NLRP3) inflammasome activation. The aim of the study is to examine the role of 30	  
MARK4 in hematopoietic cells during atherosclerosis.  31	  
 32	  
Methods and Results- 33	  
We show increased MARK4 expression in human atherosclerotic lesions compared to 34	  
adjacent areas. MARK4 is co-expressed with NLRP3, and the two proteins co-localize in 35	  
areas enriched in CD68 positive but α-smooth muscle actin (SMA) negative cells. Expression 36	  
of MARK4 and NLRP3 in the atherosclerotic lesions is associated with the production of 37	  
active IL-1β and IL-18. To directly assess the role of hematopoietic MARK4 in NLRP3 38	  
inflammasome activation and atherosclerotic plaque formation, low-density lipoprotein 39	  
receptor (Ldlr)-deficient mice were lethally irradiated and reconstituted with either wild-type 40	  
or Mark4-deficient bone marrow cells, and were subsequently fed a high-fat and cholesterol 41	  
diet (HFD) for 9 weeks. Mark4 deficiency in bone marrow cells led to a significant reduction 42	  
of lesion size, together with decreased circulating levels of IL-18 and IFNγ. Furthermore, 43	  
Mark4 deficiency in primary murine bone marrow derived macrophages prevented 44	  
cholesterol crystals - induced NLRP3 inflammasome activation, as revealed by reduced 45	  
caspase-1 activity together with reduced production of IL-1β and IL-18.  46	  
 47	  
Conclusion- 48	  
MARK4-dependent NLRP3 inflammasome activation in the hematopoietic cells regulates the 49	  
development of atherosclerosis.  50	  
 51	  
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Abbreviations 53	  
 54	  
Abbreviation Full name 
NLRP3 Nucleotide-Binding Oligomerization Domain, Leucine Rich Repeat 

and Pyrin Domain Containing Protein 3 
AIM2 Absent In Melanoma 2 
MARK4 Microtubule Affinity Regulating Kinase 4 
IL-1β  Interleukin 1β  
IL-18 Interleukin 18 
IFNγ  Interferon γ  
BMDMs Bone Marrow Derived Macrophages 
HFD High Fat Diet 
SMA α-Smooth Muscle Actin 
Ldlr Low-Density Lipoprotein Receptor 
CC Cholesterol Crystals 
  55	  
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Introduction 56	  
Supporting the inflammatory hypothesis of atherosclerosis, the recent results of the 57	  
“Canakinumab Antiinflammatory Thrombosis Outcome Study” (CANTOS) trial highlighted 58	  
the importance of targeting the inflammatory response, more specifically interleukin (IL)-1β, 59	  
to limit recurrent cardiovascular events1. In atherosclerosis, IL-1β is generated upon 60	  
activation of the Nucleotide-Binding Oligomerization Domain, Leucine Rich Repeat and 61	  
Pyrin Domain Containing 3 (NLRP3) inflammasome pathway in response to an array of 62	  
endogenous damage-associated molecular patterns, particularly cholesterol crystals in 63	  
macrophages, causing a sterile inflammatory response2, 3. NLRP3 expression and activation 64	  
in bone marrow-derived cells is required for atherogenesis2. Caspase-1 activation by NLRP3 65	  
leads to the cleavage of pro-interleukin 1β (IL-1β), generating active IL-1β. However, active 66	  
IL-1β is not the only inflammatory output downstream of NLRP3 activation.  Activation of 67	  
Caspase-1 also generates active interleukin 18 (IL-18), a cytokine pathway causally involved 68	  
in atherosclerotic cardiovascular disease4, 5. Global blockade of IL-1β can compromise host 69	  
response to infection1. Thus, alternative strategies that alter NLRP3 inflammasome activation 70	  
upstream of both IL-1β and IL-18 should be explored to address their efficacy and safety in 71	  
limiting pro-atherogenic responses.  72	  
 73	  
In our effort to better understand NLRP3 pathway activation and to seek for alternative 74	  
therapeutic targets, we have recently identified a critical role for microtubule affinity-75	  
regulating kinase 4 (MARK4) in the regulation of NLRP3 activity3. Here, we tested the 76	  
hypothesis that MARK4 is directly involved in atherosclerotic lesion development and could 77	  
be an interesting therapeutic target.  78	  
 79	  
Materials and Methods (The data that support the findings of this study are available from 80	  
the corresponding author upon reasonable request.) 81	  
 82	  
Human carotid samples 83	  
Nine human carotid endarterectomy samples from nine different male patients, age (Mean ± 84	  
SD): 71.2 ± 13.3 (patient demography is supplied in the supplemental table I), were acquired 85	  
and then further separated into atherosclerotic plaques and adjacent control areas respectively 86	  
upon dissection (ethics committee approval number: 97/084).  87	  
 88	  
Western blot 89	  
Nine atherosclerotic lesion samples plus nine control samples were smashed into powders on 90	  
the liquid nitrogen. The tissues were further lysed in the triton lysis buffer (10 mM Tris/HCl 91	  
pH 8.0, 2.5 mM MgCl2, 5 mM EGTA pH 8.0, 0.5 % Triton X-100 (v/v), 1 mM Na3VO4, 50 92	  
mM NaF and protease inhibitor cocktail (Sigma, 11836170001)) for the subsequent western 93	  
blot analysis. MARK4 antibody (Thermo, PA5-17565), NLRP3 antibody (AdipoGen, Cryo-94	  
2), β-actin (cell signalling technology, 3700), IL-1β antibody (R&D, AF-201), and IL-18 95	  
antibody (Abcam, 207324) were used for western blot. Western samples were separated 96	  
using precast NuPAGE Novex 4-12% Bis-Tris gels (Invitrogen), and proteins were 97	  
transferred onto PVDF using iBlot transfer stack provided by Invitrogen. After antibody 98	  
detections, membranes were revealed with ECL. Quantification of western blot bands was 99	  
performed by using ImageJ analyze tool.  100	  
 101	  
Immunohistochemistry and immunofluorescence  102	  
CD68 antibody (clone: KP1; ThermoFisher, MA5-13324), α-smooth muscle actin (αSMA) 103	  
antibody (clone: 1A4; Abcam, ab125057), NLRP3 antibody (Atlas, HPA012878), AIM2 104	  
antibody (eBioscience, 14-6008-93), MARK4 antibody (MRC-PPU), MoMA2 (Abserotec, 105	  
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MCA519G), IL-18 (Abcam, ab71495) were used for immunohistochemistry and 106	  
immunofluorescence. Sirius red staining was performed to detect collagen. Stainings in the 107	  
lesions were quantified as described6.  108	  
 109	  
The overlap coefficient was analyzed by the Zeiss Zen software. Five human atherosclerotic 110	  
plaques were used. One image from each plaque was quantified. 5 to 10 cells were randomly 111	  
chosen on each image, to then be analyzed by Zen software to calculate the overlap 112	  
coefficient. The average overlap coefficient value on each image was used for statistics 113	  
analysis.   114	  
 115	  
Mice and high fat diet (HFD)-induced atherosclerosis 116	  
Mark4-/- mice were described3, 7. All mice were backcrossed to a C57BL/6 background for 4 117	  
generations. Genetic background of backcrossed Mark4-/- strain matches 99.5% of C57BL/6J 118	  
(Single Nucleotide Polymorphism genetic service, Charles River). Mice were kept under a 119	  
12/12 hour light/dark cycle with access to normal laboratory diet (SAFE, DS150) and water 120	  
ad libitum. Cage bedding was from Datesand. The studies were performed following Home 121	  
Office regulation, PPL (PA4BDF775), United Kingdom. All studies were performed within 122	  
the institutional guidelines of the University of Cambridge, and adhered to the 123	  
recommendations set out by the AHA8. Low-density lipoprotein receptor deficient (Ldlr-/-) 124	  
male mice (6-8 week) were purchased originally from Jackson labs. To adhere guidelines as 125	  
described in the ATVB council statement9, male mice were used to consider sex difference as 126	  
a biological variable because previous study has already employed female Ldlr-/- mice in a 127	  
similar model2. Recipient Ldlr-/- mice were lethally irradiated (9.5 Gy) then injected i.v. with 128	  
2x107 bone marrow cells from Mark4+/+ or Mark4 -/- mice. After 4 weeks of recovery, the 129	  
genomic DNA of blood cells was isolated and PCR was employed to confirm the 130	  
replacement of Ldlr-/- mutant sequence with the corresponding wild-type sequence. After 4 131	  
weeks of recovery, mice were fed with a high-fat/high-cholesterol diet (21% fat, 0.15% 132	  
cholesterol) (SDS, 824109) for 9 weeks. The same experiment has been performed twice (7-8 133	  
mice per group per time, thus 14-15 mice per group in total).  All the aorta samples were 134	  
subjected to en face staining and lesion analysis. However, only samples from the second 135	  
batch were available for staining on the aortic root after cryosectioning. At the end of the 136	  
experiment, real-time PCR on spleen samples was performed to confirm the differential 137	  
expression of Mark4 in the chimeric mice with Mark4+/+ or Mark4-/-  bone marrow donors.   138	  
 139	  
Flow Cytometry 140	  
Spleens were collected and the splenocytes were isolated. Cells were stained with markers 141	  
(indicated in the supplemental table II) and subjected to Fortessa Cell Analyser (BD, USA) as 142	  
described6.  143	  
 144	  
Cell culture and treatments 145	  
ATP (Sigma, A7699) and ultrapure LPS (Sigma, L4391) were from Sigma. Cholesterol 146	  
crystals (CC) were made as described10. Bone marrow derived macrophages (BMDMs) from 147	  
either Mark4+/+ or Mark4 -/- mice were treated with CC as previously described3. IL-1β 148	  
production (ELISA, BD Bioscience), IL-18 production (ELISA, eBioscience), and Capsase-1 149	  
activity (FLICA assay, Bio-Rad) were analyzed according to the manufacturer’s instructions.  150	  
 151	  
Biochemical assays  152	  
Mouse IL-1β ELISA kit was from BD biosciences (559603). Mouse IL-18 ELISA kit was 153	  
from eBioscience (BMS618/3). ELISA assays were performed according manufacturer’s 154	  
instructions. Mouse cytokines, lipoprotein profiles and cholesterol levels in serum were 155	  
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measured by core biochemical assay laboratory of Cambridge University Hospitals as 156	  
described6.  157	  
 158	  
Analysis of atherosclerotic lesions 159	  
Aortic atherosclerotic samples from mice were cryo-sectioned and analyzed by Oil Red O as 160	  
previously described2, 6. Histological analysis, immunofluorescence staining, data acquiring 161	  
and image analysis were performed as described2, 3, 6.   162	  
 163	  
Statistics 164	  
Statistical analysis was performed with Prism (Graphpad). Since data did not pass normality 165	  
or equal variance test, comparisons between groups were analyzed by Mann-Whitney test. 166	  
All data are presented as Mean ± SD. P < 0.05 (*), P < 0.01 (**), P < 0.0005 (***), P < 167	  
0.0001 (****).  168	  
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 169	  
Results  170	  
We first compared human carotid atherosclerotic plaques to their corresponding adjacent 171	  
control areas without visible lesions (Supplementary Figure IA) for the expression of 172	  
MARK4, NLRP3, IL-1β and IL-18 by western blotting (Figure 1A). We found higher 173	  
expression of MARK4, NLRP3, active IL-1β and active IL-18 in extracts of atherosclerotic 174	  
lesions as compared with the control areas (Figure 1A, 1B), indicating that the expression of 175	  
MARK4 and NLRP3 is associated with cleavage of pro-IL-1β and pro-IL-18 in human 176	  
atherosclerotic lesions. Moreover, there was a significant correlation between MARK4 177	  
expression and active IL-18 level (Supplementary Figure IB). 178	  
 179	  
To start addressing the contribution of MARK4 to NLRP3 activation in atherosclerosis, we 180	  
examined the interaction between NLRP3 and MARK4 in human atherosclerotic lesions. We 181	  
found that both MARK4 and NLRP3 were expressed in areas enriched in CD68+ αSMA- 182	  
cells (Figure 1C and Supplementary Figure IC). Co-staining revealed that both of them were 183	  
highly expressed and co-localized in CD68+ cells (Figure 1D and Supplementary Figure ID-184	  
IF), suggesting that they might functionally interact in the phagocytic cells. As expected from 185	  
our previous work3, MARK4 co-localized with NLRP3 but not Absent In Melanoma 2 186	  
(AIM2) (Supplementary Figure IE and IF), another inflammasome shown to play a role in 187	  
atherosclerotic plaque development11. 188	  
 189	  
As shown previously3, MARK4 is also expressed in murine BMDMs (Supplementary Figure 190	  
IIA). We therefore investigated the role of hematopoietically-derived MARK4 on 191	  
atherosclerosis development. After 4 weeks of recovery post-irradiation and reconstitution 192	  
with bone marrow cells from Mark4+/+ or Mark4 -/- mice, Ldlr-/- mice were fed a HFD for 9 193	  
weeks and atherosclerotic lesions were analyzed as previously described2, 6. Using several 194	  
antibodies against MARK4 and immunofluorescence, we could not detect a differential 195	  
expression pattern of MARK4 in plaque macrophages between Ldlr-/- mice reconstituted with 196	  
Mark4+/+ or Mark4 -/- bone marrow (data not shown). This could be due to technical issues, 197	  
given that we were able to confirm a successful, although sub-optimal, reconstitution of the 198	  
lethally irradiated Ldlr-/- mice with bone marrow-derived cells from Mark4+/+ or Mark4 -/- 199	  
mice (Supplementary Figure IIB and IIC). We found that Mark4 deficiency in bone marrow 200	  
cells significantly reduced atherosclerosis burden in both the thoracic aorta (Figure 2A) and 201	  
the aortic root (Figure 2B), despite no difference in plasma cholesterol levels (Mark4+/+: 82.6 202	  
± 21.35; Mark4-/-: 70.13 ± 18.65, Mean ± SEM, mmol/L). We observed no differences in 203	  
immune cell composition (B cells, T cells, dendritic cells, monocytes, neutrophils, and red 204	  
pulp macrophages) in the spleen between both groups (Supplementary Figure IIIA-IIIH). 205	  
Production of IL-1β and IL-18 is tightly controlled by NLRP3 inflammasome2, 3, and IL-18 206	  
has been first identified as an inducing factor for interferon γ (IFNγ)12, another pro-207	  
atherogenic cytokine13.  IL-1β could not be detected in serum in any of the experimental 208	  
mice. However, we could detect both IL-18 and IFNγ, and their serum levels were 209	  
significantly reduced in mice with Mark4 deficiency in hematopoietic cells (Figure 2C and 210	  
2D). 211	  
 212	  
Further analysis of the aortic root revealed that foam cell accumulation (shown by MOMA2 213	  
positive staining) (Figure 2E, 2F) as well as IL-18 expression in foam cells (Figure 2E, 6G) 214	  
were significantly reduced in the absence of Mark4, indicating that foam cell formation and 215	  
inflammation were affected by Mark4 deficiency. Nevertheless, smooth muscle cell (Figure 216	  
2H and Supplementary Figure III I) and collagen (Figure 2I and Supplementary Figure III J) 217	  
content in the lesions were comparable between the two groups.  218	  
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 219	  
To directly test the role of MARK4 in the regulation of cholesterol crystal induced NLRP3 220	  
activation, BMDMs from Mark4+/+ and Mark4-/- deficient mice were treated with cholesterol 221	  
crystals as previously described3. Mark4 deficiency in BMDMs significantly reduced 222	  
Caspase-1 activation (Figure 2J) and dampened the production of both IL-1β (Figure 2K) and 223	  
IL-18 (Figure 2L) in response to cholesterol crystals as compared with wild type control 224	  
macrophages.  225	  
 226	  
Discussion  227	  
IL-18, as one of the key cytokines regulated by NLRP3 inflammasome activation, is highly 228	  
expressed in atherosclerotic plaque macrophages4, is associated with human plaque 229	  
instability4, and is causally linked to cardiovascular disease in humans5. MARK4 is expressed 230	  
in macrophages and is involved in regulating NLRP3 positioning and NLRP3 inflammasome 231	  
activation in a microtubule-dependent manner3. Here, we show that MARK4 regulates active 232	  
IL-18 production in the context of atherosclerosis. Consistent with the finding that MARK4 233	  
deficiency dampens IL-18 production upon NLRP3 inflammasome activation by cholesterol 234	  
crystals in vitro, we found a reduced IL-18 level in plaque foam cells in vivo. Although we do 235	  
not know whether macrophages are the only source of IL-18, the significant systemic 236	  
reduction of IL18 in the absence of hematopoietic MARK4 suggests an important role for 237	  
bone marrow derived cells. From these results, we conclude that expression of MARK4 by 238	  
hematopoietic cells contributes to atherosclerotic lesion inflammation. IL-18 can act as an 239	  
inducing factor for IFNγ12, which is involved in the initiation and modulation of a variety of 240	  
pre-dominantly pro-atherogenic immune responses as well13. Our results suggest that 241	  
MARK4 may regulate IL-18-dependent IFNγ production in atherosclerotic mice. Thus, a 242	  
major pro-atherogenic IL-18/IFNγ  appears to be controlled by MARK4 during 243	  
atherosclerosis development. 244	  
 245	  
Mark4 was shown to play a role in cell cycle progression14. However, we did not observe any 246	  
change of immune cell subsets in the spleen, indicating the protective effect of MARK4 247	  
deficiency was not caused by limited proliferation or accumulation of those immune cell 248	  
subsets. We also did not observe any impact of MARK4 deficiency on macrophage 249	  
differentiation3. 250	  
 251	  
Our results were obtained in male mice. However, there is little reason to believe that the 252	  
results would be different in females. The first study that established a pro-atherogenic role of 253	  
bone marrow-derived NLRP3 used a very similar model, which is bone marrow transfer of 254	  
Nlrp3-/- cells into Ldlr-/- mice, except for the fact that the recipient were female Ldlr-/- mice2. 255	  
 256	  
Some discrepant results regarding the role of NLRP3 in murine atherosclerosis should be 257	  
acknowledged2, 15. For example, whole body deletion of Nlrp3 on the Apoe-/- background had 258	  
no impact on advanced atherosclerotic lesion development after a long high-fat diet feeding15. 259	  
As discussed elsewhere16,17, most of the studies that showed little beneficial impact (and in 260	  
some cases, a detrimental impact) of deletion of the components of NLRP3/IL-1β pathway 261	  
on atherosclerosis, used Ldlr-/- or mostly Apoe-/- mice subjected to prolonged high fat and 262	  
high cholesterol feeding resulting in very severe and prolonged hypercholesterolemia. In 263	  
contrast, the pro-atherogenic role of NLRP3/IL-1β pathway was mostly established in Apoe-/- 264	  
mice fed a normal laboratory diet or Ldlr-/- mice fed a high fat diet for limited periods of 265	  
time. Thus, extreme and prolonged hypercholesterolemia appears to blunt the pro-atherogenic 266	  
role of NLRP3 activation. We also propose that the function of NLRP3 inflammasome and its 267	  
MARK4-dependent component need to be further delineated beyond hematopoietically-268	  
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derived cells, especially to include vascular cells which are key actors in atherosclerotic 269	  
lesion development and progression. 270	  
 271	  
In conclusion, hematopoietically-derived MARK4 promotes NLRP3-dependent sterile 272	  
inflammation and atherosclerotic lesion development. Hence, we propose MARK4 as an 273	  
interesting therapeutic target to limit atherosclerosis and cardiovascular complications.    274	  
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Highlights 342	  
• The expression of MARK4 and NLRP3 increases in human atherosclerotic lesions. 343	  
• MARK4 and NLRP3 are co-localized in the phagocytes in human atherosclerotic 344	  

lesions. 345	  
• MARK4 deficiency in haematopoietic cells alleviates atherosclerosis development 346	  

and reduces plaque inflammation.  347	  
  348	  
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Figure legends 349	  
Figure 1. MARK4 and NLRP3 are expressed in human atherosclerotic lesions. 350	  
A-B, Representative examples of western blot analysis (A) and quantification (B) of the 351	  
expression levels of MARK4, NLRP3, IL-1β and IL-18 in protein extracts from human 352	  
carotid atherosclerotic plaques and adjacent control tissue. The same amount of total protein 353	  
was loaded in each lane. 9-10 samples from each category were tested, and 3 representative 354	  
western blot samples of each (lesion area and control area) are shown. The quantification of 355	  
expression level is presented as normalized fold change. C, Immunohistochemistry on 356	  
sections of advanced human atherosclerotic lesions was preformed using the indicated 357	  
antibodies. A thin layer of fibrotic cap (FC) was revealed with SMA positive staining. 358	  
NLRP3 and MARK4 were shown to be present in the CD68 positive but SMA negative cells. 359	  
L indicates the vessel lumen. Scale bar= 100 µm.   D, MARK4 (shown in red) and NLRP3 360	  
(shown in green) co-localization in macrophages (shown by CD68 staining in white) in 361	  
human atherosclerotic lesions. Both MARK4 and NLRP3 were highly expressed in the CD68 362	  
positive cells. “Merge” denotes the image with merged channels of NLRP3, MARK4 and 363	  
DAPI. Scale bar = 10 µm. 364	  
 365	  
Figure 2. MARK4 deficiency in bone marrow cells alleviates the development of 366	  
atherosclerosis and reduces plaque inflammation in mice. 367	  
A-B, After high fat feeding for 9 weeks, Ldlr-/- mice transferred with Mark4-/- bone marrow 368	  
cells displayed reduced lesion size in both the thoracic aorta (en face in A) and aortic sinus 369	  
(B). Data in A were from 2 separate experiments (Mark4+/+ n=14; Mark4-/- n=15). Data of 370	  
aortic sinus lesion size (B) were available from only one experiment (Mark4+/+ n=6; Mark4-/- 371	  
n=6). C-D, Serum levels of IL-18 (C) and IFNγ (D) were shown. E-I, Examples of 372	  
immunofluorescence staining (E) and quantification of foam cells shown by MOMA2 373	  
staining (F) and IL-18 expression in foam cells (G). Scale bar = 10 µm. Quantification of 374	  
smooth muscle cell (H) and collagen contents (I) in lesions after immunofluorescence 375	  
staining for αSMA and sirius red staining, respectively. NS indicates that data between 376	  
groups are not significant.   J-L, Primary bone marrow derived macrophages deficient in 377	  
MARK4 were primed with LPS (100 ng/mL) for 5 hours, and then treated with cholesterol 378	  
crystals (CC) (250 mg/mL) for 3 hours. MARK4 deficiency caused reduction of Caspase-1 379	  
activity (J), IL-1β (K), and IL-18 (L) in response to NLRP3 activation by cholesterol 380	  
crystals.  381	  
 382	  
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Supplementary materials: MARK4-dependent inflammasome activation in bone 1	  
marrow-derived cells regulates the development of atherosclerosis 2	  
  3	  



1	  

Supplemental Table I: Demography of the patients 4	  
 5	  
 6	  

Male, n (%) 9 (100%) 

Age (Mean ± SD) 71.2 ± 13.3 

Carotid luminal stenosis (Mean ± SD) 78.6% ± 6.6% 

Smoke, n (%) 8 (%) 

Aspirin used before admission, n (%) 7 (%) 

Hypertension, n (%) 5 (50%) 

Ischaemic heart disease, n (%) 4 (40%) 

Atrial fibrillation, n (%) 3 (%) 

Peripheral vascular disease, n (%) 1 (%) 

Diabetes, n (%) 1 (%) 

Chronic obstructive pulmonary disease, n (%) 1 (%) 

Renal impairment, n (%) 0 (%) 

 7	  
  8	  



2	  

Supplemental Table II: Antibodies used for flow cytometry 9	  
Antigen Clone Fluorophore Company 
B220 RA3-6B2 BV605 Biolegend 
CD3 145-2C11 Alexa 488 Biolegend 
CD4 RM4-5 Alexa 700 Biolegend 
CD8 53-6.7 BV785 Biolegend 
CD11c N418 PE-Cy7 Biolegend 
MHCII M5/114.15.2 Efluor450 Biolegend 
CD317 927 APC Biolegend 
Ly6G 1A8 Pacific blue Biolegend 
CD115 AFS98 PE Biolegend 
Ly6B 7/4 Alexa 647 AbD Serotec 
CD11b M1/70 Alexa 700 BD Biosciences 
F4/80 BM8 PE-Cy7 Life Tech 
 10	  



Supplementary Figure I. MARK4 and NLRP3 are co-expressed in human atherosclerotic 
lesions.   
A, Representative examples of atherosclerotic material from human carotid plaques, and the non-
atherosclerotic adjacent control tissue. Scale bar = 0.5 cm. B, MARK4 and active IL-18 were 
quantified upon western blot data. Each dot represents a sample extracted from the atherosclerotic 
area (red dot) or control area (green dot). Correlation was analyzed and Pearson r = 0.5516, and P 
value= 0.0176(*). C, Control data of Figure 1C. Representative examples of the  
immunohistochemical staining using the specific IgG isotype antibodies. D,  Control data of Figure 
1D. Representative examples of the  immunofluorescent staining using the specific IgG isotype 
antibodies. E, MARK4 (shown in red) and AIM2 (shown in green) co-localization in macrophages 
(shown by CD68 staining in white) in human atherosclerotic lesions. AIM2 was expressed in CD68 
positive cells (arrows) at very lower level when compared with its expression in CD68 negative cells 
(arrow heads). “Merge” denotes the image with the merged channels of AIM2, MARK4 and DAPI. 
Scale bar = 10 µm. F, Co-localization signals of MARK4 & NLRP3  or MARK4 & AIM2 in the 
CD68 positive cells were analyzed, and the overlap coefficient is shown.  
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Supplementary Figure II: Reconstitution of lethally irradiated Ldrl-/- mice with bone 
marrow cells from donor Mark4+/+ or Mark4-/- mice with Ldlr+/+ background.  
A, mRNAs were extracted and transcribed to cDNAs from the BMDMs. Those samples were 
subjected to real-time PCR using specific primers targeting the altered region in Mark4-/- mice. 
Quantitative PCR showed Mark4 was not expressed in the samples from Mark4-/- BMDMs. (B-
C), Whole blood samples were taken from the recipient Ldlr-/- mice after 4-week recovery post 
bone marrow transfer with Mark4+/+(W)  or Mark4-/-(K)  bone marrow cells. The spleen samples 
were taken at the end of experiments after HFD feeding. B, The genomic DNAs were extracted 
from the blood cells and then subject to the PCR reaction. The expected wild-type Ldlr band is 
167 bp, and  the expected Ldlr-/- mutant band is 350bp. The wild-type bands appeared in all the 
samples together with reduced mutant bands, indicating  successful replacement of Ldlr-/-  in the 
blood cells.  C, mRNAs were extracted and transcribed to cDNAs from the spleen samples. Those 
samples were subject to real-time PCR using the specific primers targeting at the altered region of 
the Mark4-/- mice. The quantitative PCR showed a significant reduction of Mark4 in the samples 
from Mark4-/- donors when compared with Mark4+/+ donors.  
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Supplementary Figure III. MARK4 deficiency in bone marrow cells has no impact on immune 
cell subsets in spleen, and smooth muscle cell and collagen contents in atherosclerotic lesions. 
Ldlr-/- mice transferred with Mark4-/- bone marrow cells or control Mark4+/+  bone marrow cells were 
fed on high fat diet for 9 weeks. Samples were then collected. A-H, Immune cell subsets from 
spleen were examined between these two groups.   B cells (A), CD4+ T cells (B), CD8+ T cells (C), 
conventional dendritic cells (cDCs) (D), plasmacytoid dendritic cells (pDCs) (E), neutrophils (F), 
monocytes(G), and red pulp macrophages (RPMs) (H) were analyzed as indicated. NS indicates that 
data between groups are not significant. I-J, Representative images of smooth muscle cell (I) and 
collagen contents (J) presence in lesions after immunofluorescence staining for αSMA and sirius red 
staining, respectively.  
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