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REVIEWER COMMENTS</B> 

Reviewer #1 (Remarks to the Author): 

Key aim of this study: predicting spatiotemporal tau accumulation in individuals potentially at risk of 

Alzheimer's disease. Predicting a map of future tau (PET) accumulation _rates_ in regions of an 

individual's brain, in vivo. 

The two primary audiences for this paper are "methods developers" (computational/statistical 

researchers) and "applications" researchers in Alzheimer's disease (e.g., patient-facing roles such as 

clinicians). 

Methods: use supervised machine learning (previously published in [19]) to combine relevant features 

from an early Alzheimer's disease cohort (training data) into a scalar score through linear equations, 

which is thresholded into a data-driven cut-point to define biomarker-based subgroups of cognitively 

normal individuals (test data), then calculate group-level associations with future tau accumulation. 

This study is a straightforward application of the method developed by the authors in [19] to a new 

test sample, although the test data here is arguably more challenging because individuals are at an 

earlier stage of disease (cognitively normal here, MCI in [19]). 

Confounders: analyses are adjusted for age, education, and gender norms (although, perhaps the 

authors mean sex rather than gender). 

Data: from 2 or 3 cohorts (two phases of ADNI: GO/2 and 3; plus BACS). I say "2 or 3" because there 

is overlap between the ADNI-GO/2 and ADNI-3 phases. Were the "rollovers" into ADNI-3 excluded 

from the ADNI-3 portion of experiments? The authors do not make this clear. Sample size is good for 

the training set (ADNI-GO/2 n=488), but less so for the test sets (ADNI-3 n=115, BACS n=56). I can't 

help but feel that there might be larger datasets available that would add confidence of generalisability 

of the findings. Bare minimum is to add a discussion on this limitation. How generalisable do the 

authors genuinely expect their findings to be? Justify, and quantify if possible. 

Findings: group-level associations between the individual scalar scores and future tau accumulation 

rates. While these are individual predictions, the results are analysed statistically at the group level, 

which does not align particularly well with the individual-level aims of the study. The results are 

presented clearly, but the implementation of these results in (clinical) practice is unclear (Line 304 

"strong clinical relevance" might be overstating it). The model achieves decent classification 

performance but, in particular, the outlier cases are not discussed, i.e., where the individual 

predictions diverge considerably from the average – how are these model predictions converted to 

clinical decisions for an individual? What are the implications/ramifications for incorrect/poor 

decisions? Is the model itself to blame? How suitable is a linear model for a disease that likely plays 

out in a nonlinear fashion? Perhaps the model inputs are inadequate (more biomarkers?)? 

That being said, the results around Figure 5 are okay because clinical trials are indeed assessed at the 

group level. The particular novelty here is in using a spatiotemporal biomarker (admittedly projected 

into a linear decision space) rather than a simple scalar biomarker. The proof of the pudding would be 

to apply this in an actual clinical trial (obviously a longer-term future aim!). 

In the discussion (line 297) the authors statement about multivariate vs univariate is well-known and 

not novel. What's missing here is a solid baseline/benchmark model for direct comparison (of apples 

with apples, as one might say). For example, comparing performance of the classifier here with that of 

a different multivariate classifier trained on the same multivariate data. 

Summary: I find the results interesting on some levels (mostly in terms of the application), if not 

especially novel (particularly methodologically). Additionally, I have minor question marks over the 



data (small sample size in test set; potential train/test overlap in ADNI-GO/2 and ADNI-3). 

Detailed list of additional thoughts/changes, in no particular order: 

- Please check that no individuals from ADNI-3 were involved in the training set (ADNI-GO/2). If they 

were, remove them from the test set and rerun the experiments. Clarify in manuscript. 

- Discuss individual-level applicability of findings, with particular regard to outliers and clinical decision 

making. 

- Discuss generalisability of findings, with regard to the relatively small sample sizes in the test sets. 

- Change the "demented" terminology to "probable AD", or simply "AD". 

- Add a brief discussion of differences/similarities between FBP/FTP/PIB PET tracers. Specifically, in 

relation to the findings. Perhaps off-target binding is a confounder in some regions of interest 

(perhaps not, which is also worth remarking in the manuscript). 

- Line 458. Please start this paragraph by mentioning SPM, so it's clear. 

- Discuss clinical utility of predicting _rates_ of tau accumulation versus raw tau burden. Two 

individuals could both be accumulating slowly at the same rate, but have completely different tau 

burden - clearly not the same. 

Reviewer #2 (Remarks to the Author): 

Thank you for giving me the opportunity to review this very interesting paper. The authors train a 

series of algorithms with the goal of predicting individualised future regional tau accumulation. This is 

an important effort, in-part due to circumventing issues in binary categorical classifications often 

employed. Using a novel GMLVQ technique, early AD is modelled in a multi-dimensional space, within 

which subgroups are represented by a prototype. Distance from the prototype can be used to 

represent disease on a continuum (scalar projection), and given new instances with the same feature 

vector their scaler projection can be calculated. Thresholding the scalar projection enables 

classification of discrete groups. 

For the current paper, first a GMLVQ is trained to model a stable condition (SC) and early AD (EAD) 

based on the multivariate relationship between amyloid, medial temporal grey matter density and 

APOE 4. Thus, the scalar projection models prognosis on a continuum between the SC prototype and 

EAD prototype based on the input variables. Second, the scalar projections for novel data are 

calculated, and threshold used to classify as EAD or not. For those classified as EAD, brain regions 

accumulating tau were identified, and the future rate of tau accumulation was predicted for each 

region using regions of interest and the scaler projection. Finally, future rate of tau accumulation was 

predicted in an unseen dataset. 

Results detail variance explained globally and in regions of interest of future tau accumulation, only 

found for the EAD group and not SC, supporting this novel approach to stratification that is based on 

underpinning biology, and characterised using a novel machine learning approach using the scalar 

projection (or prognostic index). Interestingly for a hypothetical clinical trial sample size required 

could be reduced by 35% to detect a 25% reduction in future tau accumulation, compared to a 25% 

reduction in future cognitive decline. A reduction of 30% was found when using EAD classification 

compared to amyloid positivity alone. 

Particular strengths of the paper are the use of multiple datasets to train and test, including out of 

sample testing; use of resampling methods to create a balanced dataset to train the GMLVQ scalar 

projection, thus not impacted by confounding variables, and the translational impact of using 

predictions to decrease required sample size for a hypothetical clinical trial. 

I found the methods and results to be exciting. The machine learning and statistical approaches 

utilised are, as the authors state, robust and transparent. The discussion is very well written and 

places the findings in context of known research, including a good discussion of the limitations. I think 



the manuscript could be improved by building on the introduction, which would aid in the flow of the 

paper overall, and by making clearer the groups and subgroups of interest throughout, perhaps with a 

figure. I go into these points in more detail below, along with other minor points. 

1) I was confused by the groups and subgroups listed within the paper. This begins in the 

introduction, line 65, which states “In this framework, evidence of Aβ and pathological tau 

accumulation is sufficient to establish the diagnosis of AD. Cognitively unimpaired individuals (CN: 

cognitively normal) are classified as preclinical AD”. Line 81 states “…classifies and stages early AD 

(i.e. CN and MCI)” and line 86 “early AD (i.e. Aβ positive individuals who are cognitively 

unimpaired…”. I found this explanation a little blunt - we do know that not all of those with AD 

pathology will develop clinical AD (e.g. Bennett et al., 2006) - but understand that this is a definition 

based on evidence of AD pathology, as opposed to a clinical definition. However, I think the 

introduction could be built upon to better describe this focus on pathology/ biology, using terms 

elsewhere in the paper, which would also aid in the flow. The term ‘asymptomatic’ is used readily 

elsewhere, as is reference to CN and MCI as syndromic labels – given the interesting results regarding 

the mismatch between the biological stratification in the paper and these syndromic labels, I feel 

bringing this into the introduction earlier in the paper would aid the reader. 

2) Overall, I think the paper (barring the discussion) is complicated by heavy use of acronyms for 

groups, which hinders readability. I think a figure detailing the different groups utilised, and for which 

analyses, would add clarity. Throughout, even after acronyms have been introduced, sometimes full 

groups labels are used and sometimes acronyms with no consistency, again reducing readability. 

3) Relatedly, the ‘Demented’ group is almost a surprise addition, only briefly mentioned in the 

methodology, but features quite heavily in results and so could be brought in earlier as a group of 

interest. 

4) And, my confusion was further compounded by the Supplementary Materials section GMLVQ – 

Scalar Projection, in which notation returns to progressive/ stable. I wonder if using EAD throughout 

would improve readability. 

5) I felt a brief methodological breakdown of how APOE 4 positivity was defined was missing e.g. does 

the presence of one or two alleles = positivity? 

6) Figure 2 caption could be condensed by stating (for example) ‘the learnt probabilistic boundary that 

separates SC from EAD is indicated by a dashed vertical or horizontal line’, prior to the a, b and c 

descriptions, rather than repeating this information. 

7) Figure 3a uses a dashed black line to represent the threshold for EAD, are the dashed black lines on 

the box plots for each group related to the threshold information? If not perhaps replace them with 

solid lines to avoid confusion. 

8) Line 57 bracket missing after (for reviews…) 

9) Line 156 typo “that’ should be “than” 

10) Line 242 missing a space after 6b). 

11) Line 312 – states a reduction in sample size of 46% based on prognostic index alone vs Aβ status 

alone. I could not seem to find this analysis in the results section, only for EAD classification vs Aβ 

status which was reported as 47% (line 223)? Is the same analysis? 

12) Line 469 typo “RFE))” should be RFE) 

13) Line 425 “cognition for individuals diagnosed as MCI”. This may be personal preference but I 

would replace “as” with “with”. 

14) Line 935 typo “ii )an” should be ii) an. 

15) Line 946 typo “(EAD)in” should be (EAD) in. 

16) Line 952 typo “6c).” should be 6c.) 

Reviewer #3 (Remarks to the Author): 

The authors report findings of applying a machine learning approach to MRI volumetry and amyloid 

PET data and apoE4 carriage status to predict future tau accumulation measured with flortaucipir 



(FTP) PET and cognitive decline obtained for cohorts from the ADNI database. The subjects comprised 

established Alzheimer dementia (AD), early Alzheimer's disease (EAD) and normal stable cases (CS). 

The machine learning derived a predictive index tha stratified individuals based on their future 

pathological tau accumulation. The hypotheses were that future tau accumulation would provides a 

better outcome measure compared to changes in cognition and that stratification based on multimodal 

data compared to β-amyloid alone would reduces the sample size required to detect a clinically 

meaningful change in tau accumulation. After training their algorithm on the ADNI cohort they then 

extended their machine learning approach to derive individualised trajectories of future pathological 

tau accumulation in local early AD patients and an independent sample of cognitively unimpaired 

individuals. The authors conclude that machine learning provides a robust approach for stratification 

and prognostication with translation impact for clinical trial design at asymptomatic and early stages 

of AD. 

This is a novel study but I have difficulties with the design of the study. It would appear that all three 

cohorts contain a mixture of amyloid positive and amyloid negative cases. The CS cases are mainly 

amyloid negative while the EAD and AD groups are mainly, but not all, amyloid positive. Given this the 

machine learning is being trained on mixtures of preclinical, prodromal, and clinical AD mixed in with 

non-AD subjects. This makes interpretation of the findings difficult - the utility of machine learning for 

predicting outcome in terms of tau trajectory or cognitive deficit would be would be far clearer if all 

the cases selected were amyloid positive. A second issue is that an SUVR threshold of 1.1 isw choaen 

for amyloid abnormality with FBP PET. This is low and is likely ot lead to false positives - the figure 

provided suggests 1.2 would still separate AD from normal. Third, the cohort examined after training 

the machine learniong algorithm have amyloid load measured with PiB PET and volumetry assessed 

1.5 tesla MRI so are not represented by the training cohorts. Given all these issues it is difficult to 

accept the study conclusion. 

Reviewer #4 (Remarks to the Author): 

Giorgi & Kourtzi et al., examined the value of a prognostic index comprising beta-amyloid SUVRs, 

APOE e4 carrier status and gray matter density values in the medial temporal lobe in individuals who 

subsequently decline to prodromal or advanced stages of Alzheimer’s Disease or remain stable over 

four years using machine learning and the ADNI2 cohort. They observe that the resulting index is well 

suited to predict faster future tau accumulation an independent cohort (ADNI2/BACS) and that clinical 

definitions of cognitively normal adults or diagnosis of mild cognitive impairment is less predictive of 

tau accumulation compared to the modelled prognostic index. This is a very clever study design, and 

indeed a novel approach. Criticism and dampened enthusiasm exist however as the authors at times 

are not able to make clear what exactly their research question is, which is additionally is complicated 

by the non-stringent use of preclinical AD, cognitively normal non-pathological again. A host of 

methodological and conceptional question are needed to be addressed to further judge the suitability 

for publication See those listen below: 

The authors should define, what they mean with “interactions of beta-amyloid and tau pathology” 

specifically (line 53). As it is written thus far, it may indicate that dependency, despite the fact that 

these events occur particularly in early phases of AD may in fact be independent, but dependency 

occurs later in the disease stage. Please elaborate. 

The authors state: Cognitively unimpaired individuals are classified as preclinical AD (line 66). That 

statement is not true and need to be revised. Specifically, it should be stated somewhere in the 

research goal or aim of the study, which individuals are included with regards to biomarker status and 

how this is defined. 

What do the authors mean, when describing that the clinical syndromic definitions are not sensitive to 



the underlying AD pathology (line 70 ? Why us biomarker at all, if not specific to the pathology? 

The explanation of APOE e4 allele is highly speculative: 

• the authors cite a mouse model that showed this association 

• the authors then only cite reviews on the topic, neglecting to acknowledge evidence that showed 

that APOE carriers showed less elevated in vivo tau pathology compared to APOE non carriers (e.g., 

Mattson, Ossenkoppele et al., Alz Res Therapy, 2018) 

The rational to include both amyloid positives and negatives in the analysis is not very clear. 

Specifically, it appears that the authors suggested that amyloid biomarker positivity is a necessary 

condition for preclinical AD and only in such cases a prognostic index on future tau accumulation 

would make sense. Please elaborate. 

What is meant with the sentence that “MRI data were used for quantitation of PET data”? (line 442) 

As different beta-amyloid tracers were used in these different cohorts, it is imperative to put these on 

the same scale using the centiloid scale. 

How would the SC and EAD multimodal scalar projection look like when amyloid was used as a 

binarized information rather than a continuous one. Although I very much appreciated the continuous 

approach, it would be more accessible to clinicians to evaluate a prognostic index based on binarized 

amyloid information. 

To assess gray matter density values did the authors consider head size differences? 

It is not clear how the threshold of amyloid positivity of SUVR = 1.1 was achieved, in lieu of the 

longitudinal processing of the baseline amyloid data in ADNI. The SUVR values are expected to be 

much lower than displayed in Figure 1 and amyloid positivity would be redefined. Please explain. 

The author report that when deriving the scalar projection for the independent cohorts ADNI 3 

(CN=72; MCI:43) and the BAC (CN=56)) the clinician-based diagnosis and the multimodal scalar 

projection show poor agreement. How do they interpret this finding? Given that the robustness of the 

diagnosis has not been evaluated over multiple time points in the independent cohort, I fail to see the 

additional value gained from this analysis. 

Given that the multimodal scalar projection from the training sample rests on the cognitive change 

compared to cognitive stability over time, I find it surprising that SC and EAD individuals did not 

significantly vary in cognitive measures over time in the independent testing set. What is your 

explanation for this finding? 

Is the rate of tau accumulation significantly different when using the multimodal scalar projection 

compared to the CN/MCI diagnosis? The authors just state that the stratification is better using SC 

and EAD but do not present evidence that sensitivity and specificity measures are indeed better for 

one over the other. 

Although the clinical trial analysis is comprehensive and the “new kid on the block” in the biomarker 

research field, the impression remains that reducing meaningful cognitive decline in combination with 

the reduction of tau, will be more important for the design of clinical trials than just reducing tau 

pathology. Please elaborate on this point. 

The authors claim that the multimodal modelling approach may be better than syndromic labels such 

as preclinical AD, MCI or AD to capture AD related pathology. An issue that arises here is that the 

current multimodal modelling approach rested on exactly those syndromic definitions of CN and 



MCI/AD in the ADNI cohort in the first place to even get to the prognostic index. The authors should 

elaborate on this argument. 

I think it should read diagnosis of dementia not “demented” (e.g., line 414).



Response to reviewers 

Reviewer #1  

 

Key aim of this study: predicting spatiotemporal tau accumulation in individuals potentially at 

risk of Alzheimer's disease. Predicting a map of future tau (PET) accumulation _rates_ in 

regions of an individual's brain, in vivo. 

The two primary audiences for this paper are "methods developers" (computational/statistical 

researchers) and "applications" researchers in Alzheimer's disease (e.g., patient-facing roles 

such as clinicians). 

Methods: use supervised machine learning (previously published in [19]) to combine relevant 

features from an early Alzheimer's disease cohort (training data) into a scalar score through 

linear equations, which is thresholded into a data-driven cut-point to define biomarker-based 

subgroups of cognitively normal individuals (test data), then calculate group-level associations 

with future tau accumulation. This study is a straightforward application of the method 

developed by the authors in [19] to a new test sample, although the test data here is arguably 

more challenging because individuals are at an earlier stage of disease (cognitively normal 

here, MCI in [19]). 

Confounders: analyses are adjusted for age, education, and gender norms (although, perhaps 

the authors mean sex rather than gender). 

We have replaced ‘gender ‘with ‘sex’. 

 

1. Data: from 2 or 3 cohorts (two phases of ADNI: GO/2 and 3; plus BACS). I say "2 or 3" 

because there is overlap between the ADNI-GO/2 and ADNI-3 phases. Were the "rollovers" 

into ADNI-3 excluded from the ADNI-3 portion of experiments? The authors do not make this 

clear.  

We thank the reviewer for this suggestion regarding rollovers into ADNI-3. We had included 

a subset of rollovers that were used to train the original machine learning model. We have now 

removed these individuals from the ADNI2/GO training set and re-run all experiments. We 

have revised the Results section and the figures according to the new analyses. These new 

results are very similar to the results presented in the original submission and all conclusions 

remain the same. 

 

2. Sample size is good for the training set (ADNI-GO/2 n=488), but less so for the test sets 

(ADNI-3 n=115, BACS n=56). I can't help but feel that there might be larger datasets available 

that would add confidence of generalisability of the findings. Bare minimum is to add a 

discussion on this limitation. How generalisable do the authors genuinely expect their findings 

to be? Justify, and quantify if possible. 

Larger AD longitudinal data sets are available; however, data sets with longitudinal FTP-PET 

are much less common due to the tracer not being widely used prior to 2015. This problem is 

exacerbated when targeting cognitively normal individuals with longitudinal FTP. Additional 

validation data sets, in particular data with diverse disease aetiology, will be required to further 

test the generalisability and efficacy of our approach. Here, we chose to validate our model 

predictions in BACS because it comprises an asymptomatic sample rather than an AD research 

cohort. Thus, our results are not driven by the sampling characteristics of ADNI and may have 

real-world efficacy in a larger and more pathologically diverse sample. We now discuss this 

point in the revised manuscript.  

 



In particular the Discussion section (pg 21) writes: ‘Finally, we validated our model—that was 

trained on data from an AD disease-specific cohort—by testing predictions in an independent 

cognitively normal sample. This provides evidence that our results are not driven by the 

sampling characteristics of ADNI, suggesting generalisability of our modelling approach to 

more diverse groups. Our asymptomatic sample size was limited, as publicly available data 

from cognitively normal participants with longitudinal FTP-PET are scarce. Larger samples 

with longitudinal data would increase the generalizability and validate the real-world efficacy 

of our approach.’ 

 

3. Findings: group-level associations between the individual scalar scores and future tau 

accumulation rates. While these are individual predictions, the results are analysed statistically 

at the group level, which does not align particularly well with the individual-level aims of the 

study. The results are presented clearly, but the implementation of these results in (clinical) 

practice is unclear (Line 304 "strong clinical relevance" might be overstating it). The model 

achieves decent classification performance but, in particular, the outlier cases are not discussed, 

i.e., where the individual predictions diverge considerably from the average – how are these 

model predictions converted to clinical decisions for an individual? What are the 

implications/ramifications for incorrect/poor decisions? Is the model itself to blame? How 

suitable is a linear model for a disease that likely plays out in a nonlinear fashion? Perhaps the 

model inputs are inadequate (more biomarkers?)? 

The manuscript reports a) categorical associations separating individuals into either Clinically 

Stable or Clinically Declining b) explicit predictions on the individual level for Clinically 

Declining individuals. We adopt this in accordance with the recent NIA-AA 2018 framework 

for AD as a biological construct categorised along a continuum. First, we presuppose that our 

sample is composed of two separate populations (1) those without AD pathology (i.e. Clinically 

Stable) and (2) those with AD pathology (Clinically Declining + Alzheimer’s Clinical 

Syndrome). Therefore, we introduce an approach to unmix these populations using a threshold 

along a single scalar derived from our machine learning approach (i.e. GMLVQ-scalar 

projection). Following unmixing of the sample, we show that the continuous scalar value for 

the subpopulation with AD pathology (i.e. Clinically Declining) captures individual-level 

information. We test and validate this by predicting individualised rates of tau accumulation 

across the cortex. We present predictions on the individual level in Figures 7 and 8 and 

calculate the goodness of fit of these individual predictions as the shared variance (R2) between 

predicted and real tau accumulation for each individual classified as Clinically Declining. 

 

The focus of our analyses is early-stage stratification for patients with AD pathology. In 

particular, we developed a modelling approach that is sensitive and specific to the AD 

topography of tau accumulation. The clinical relevance of this work is mainly related to the 

design of intervention trials that target tau accumulation. We have now clarified this throughout 

the revised manuscript  

 

Our modelling approach combines three biomarkers in a linear way; as a result the model has 

limited freedom to make poor decisions due to its architecture. The reviewer is correct about 

the non-linear fashion of AD pathological change. The proposed AD cascade suggests that tau 



accumulation follows a sigmoidal shape over time, therefore the hypothesised rate of change 

will follow an inverted U shape (Jack et al., 2013, 2010) with the rate of tau accumulation 

increasing rapidly prior to severe cognitive impairment (i.e. AD dementia). In our work, we 

investigated the relationship of the scalar projection with the rate of tau accumulation for 

individuals who are cognitively normal or MCI. For this sample at earlier AD stages, tau 

accumulation over time (i.e. rate of tau accumulation) is likely to be prior to the plateau of tau 

accumulation (i.e. within the linear portion of the rate of tau accumulation curve) that is 

hypothesised for later stage AD (Jack et al., 2013, 2010). Thus, we tested whether a linear 

model captures the relationship between the scalar projection and individual rate of future tau 

accumulation for our early-stage AD sample. Further, we derived the rate of future tau 

accumulation using the linear least squares fit of regional FTP-PET over time. Given the 

sampling frequency of FTP-PET for our sample it is difficult to fit a higher order (i.e. quadratic 

or spline) rate of tau accumulation as only 5 individuals in our sample had more than 3 visits. 

For the ADNI cohort, the number of follow-up FTP-PET scans n (2 FTP-PET scans) =93, n (3 

FTP-PET scans) =17, n (4 FTP-PET scans) =5. For the BACS cohort, the number of follow-

up FTP-PET scans n (2 FTP-PET scans) =37, n (3 FTP-PET scans) =19. 

 

For these samples only a small number of outliers were identified (n=2 ADNI 3, n=1 BACS). 

These individuals could not be specified within our linear prediction framework, particularly 

for the periods of observation we used, which would be typical of a clinical trial. These outliers 

fall far from the Clinically Declining mean and have high amyloid burden, medial temporal 

atrophy and likely APOE4 positivity; therefore, these individuals are closer to individuals with 

late-stage AD (i.e. Alzheimer’s Clinical Syndrome) (Figure 4). These outliers highlight that 

the clinical syndromic definitions are not sensitive to the severity of AD related pathology as 

they are either CN or MCI (ADNI 3). Within the context of a clinical trial these individuals 

have more advanced AD pathology than the majority of early AD individuals and therefore 

may not be ideal candidates for enrolment into an intervention trial targeting tau accumulation 

in early-stage AD. A carefully constructed and constrained complex fit may be preferred when 

predicting future tau accumulation for a sample including cognitively normal, MCI and 

probable AD dementia individuals. We have now included a discussion on these points in the 

revised manuscript.  

 

In particular the Discussion section (Pg 20) now writes: ‘Fourth, our linear modelling 

approach, focusing on data from cognitively normal and MCI individuals, captures the linear 

portion of the hypothesised biomarker trajectory for tau accumulation. This model fits the 

majority of individual predictions with only a small number of outlier cases due to a high scalar 

projection (ADNI 3: n=2, BACS: n=1). These outliers represent Clinically Declining 

individuals with more advanced AD pathology who may not be ideal candidates for clinical 

interventions targeting early AD pathological changes. Further model development including 

late AD samples with longitudinal FTP-PET is required to cover the full AD spectrum and 

accurately predict non-linear trajectories of tau accumulation.’ 

 

Additional biomarkers can be incorporated into the model, e.g. more biomarkers from different 

PET tracers that include hypometabolism or neuroinflammatory responses i.e. FDG-PET, 



PK11195-PET. Further, additional MRI measures can be included in the model as well as data 

from cognitive measures. Here, we focused on specific well-studied biomarkers (i.e. Aß, 

medial temporal grey matter density and APOE 4) to make robust predictions, as evidenced by 

the generalisability of our results across samples with different Aß tracers (i.e. FBP in ADNI 

and PiB in BACS) and MRI field strengths. However, additional biomarkers may improve 

model performance and economic viability. We discuss this point further in the manuscript.  

 

In particular the Discussion section (Pg 19) now writes: ‘Second, we focussed on specific well-

studied biomarkers (i.e. Aß, medial temporal grey matter density and APOE 4)—rather than 

interrogating the predictive power of a wider range of markers—to make robust predictions, 

as evidenced by the generalisability of our results across samples with different Aß tracers (i.e. 

FBP in ADNI and PiB in BACS) and MRI field strength. Our previous work—consistent with 

other studies—has shown that neuropsychological data are predictive of MCI progression to 

dementia due to AD 36,51–56, with improved predictive performance when including biological 

information 36,57–59. Further, recent studies have shown that blood based AD biomarkers have 

substantial predictive power in modelling AD trajectories 60,61. Extending our modelling 

approach to integrate less-costly (i.e. plasma) and non-invasive (i.e. cognitive) data has strong 

potential for stratification at asymptomatic or early stages of AD.’ 

 

4. That being said, the results around Figure 5 are okay because clinical trials are indeed 

assessed at the group level. The particular novelty here is in using a spatiotemporal biomarker 

(admittedly projected into a linear decision space) rather than a simple scalar biomarker. The 

proof of the pudding would be to apply this in an actual clinical trial (obviously a longer-term 

future aim!). 

We thank the reviewer for acknowledging the novelty of the spatiotemporal biomarker derived 

in our study. We look forward to the opportunity to test our approaches in a clinical trial. 

 

5. In the discussion (line 297) the authors statement about multivariate vs univariate is well-

known and not novel. What's missing here is a solid baseline/benchmark model for direct 

comparison (of apples with apples, as one might say). For example, comparing performance of 

the classifier here with that of a different multivariate classifier trained on the same multivariate 

data. 

It is generally accepted that multimodal predictive models are preferred when making 

classifications in AD. However, a recent study suggests that amyloid status alone may be the 

optimal stratification for enrolment into a clinical trial specifically targeting future tau 

accumulation (Jack et al., 2020). Our modelling approach captures predictive covariance (via 

the metric tensor) highlighting that the multivariate integration of the same predictors presented 

in the Jack 2020 paper provides a benefit over amyloid status alone. We have now further 

clarified this point in the revised Discussion section.  

 

In particular the text writes (Pg 18-19): ‘Finally, our multimodal prognostic index—compared 

to Aβ status alone—reduces the sample size required to observe a clinically meaningful change 

in the stereotypical pattern of pathological tau accumulation by 44%, extending recent work 

showing that Aß status is an optimal independent biomarker for stratification based on future 



tau accumulation 43. Our modelling approach captures predictive disease related covariance 

in biomarkers, demonstrating the benefits of using a) multivariate biomarker information 

compared to Aß status alone when predicting future tau accumulation, b) machine learning to 

model interactive pathophysiological processes in AD. These benefits have been previously 

demonstrated in the context of predicting future changes in cognition 44–49. In particular, 

previous studies have shown that: a) grey matter atrophy and cortical A burden relate to 

separable patterns of future cognitive decline 44,45,48,49, b) longitudinal changes in tau relate to 

cognitive decline in preclinical AD 19. Thus, our results support the benefit of combining 

continuous values of A and medial temporal grey matter density for prognostication, 

demonstrating the potential of our approach to inform the design of clinical trials targeting 

pathophysiological changes at the earliest stages of AD.’ 

 

Direct comparison of diverse machine learning approaches remains challenging as cross-

validation methodology, sample sizes and sample heterogeneity have a significant effect on 

model performance metrics. Our modelling approach focuses on both continuous predictions 

and discrete classification of individuals. Thus, our predictions are not directly comparable to 

those of models performing only binary classifications based on syndromic diagnosis. Further, 

our multivariate approach (GMLVQ-scalar projection) extracts continuous predictions from a 

discrete class of classifiers (GMLVQ) enabling us to both classify and continuously stage 

individuals. To compare performance of our modelling approach we compared our multimodal 

baseline stratification with two common approaches to stratify individuals in the early stages 

of AD: 1) syndromic definitions and 2) amyloid status. This comparison focusses on the data 

used to perform stratification (i.e. biological vs. syndromic  and multimodal vs. unimodal) and 

demonstrates that the multimodal baseline stratification using biological data has higher 

predictive power than these standard baseline classification schemes. We have now indicated 

that these schemes serve as model benchmarks in Figure 1. 

 We further discuss this point in the revised manuscript.  

 

In particular the Discussion section (pg 19-20) writes: ‘Third, our work focussed on the 

GMLVQ-scalar projection machine leaning framework. Machine learning-guided modelling 

in AD is a rapidly expanding field with most studies investigating binary changes in syndromic 

labels from baseline (for review: 27,62–65). Direct comparison of diverse machine learning 

approaches remains challenging, as cross-validation methodology, sample sizes and sample 

heterogeneity have a significant effect on model performance metrics (i.e. accuracy or receiver 

operator characteristics) 66. Prediction challenges across a range of different tasks offer a 

more unbiased approach for determining the efficacy of prediction models (e.g. TADPOLE 67). 

However, as our modelling approach makes continuous predictions and stages individuals 

using an adapted discrete classification framework (GMLVQ), it is not directly comparable to 

binary classification models that make predictions based on syndromic diagnosis. To validate 

our approach, we compared our multimodal classification against two standard stratification 

approaches for AD; a) baseline syndromic labels (i.e. CN and MCI) and, b) unimodal 

stratification by Aß positivity.  This allows us to draw conclusions that are relevant for patient 

stratification and the design of clinical trials; that is, a) determining treatment groups based 



on syndromic labels may result in variability in pathological state across groups and, b) 

unimodal stratification based on Aß alone is underpowered compared to the multimodal 

stratification derived based on our prognostic index.’ 

 

6. Summary: I find the results interesting on some levels (mostly in terms of the application), 

if not especially novel (particularly methodologically). Additionally, I have minor question 

marks over the data (small sample size in test set; potential train/test overlap in ADNI-GO/2 

and ADNI-3). 

We thank the reviewer for their interest in our results and hope that we have successfully 

addressed their concerns with regards to the data used. 

 

Detailed list of additional thoughts/changes, in no particular order: 

7. Please check that no individuals from ADNI-3 were involved in the training set (ADNI-

GO/2). If they were, remove them from the test set and rerun the experiments. Clarify in 

manuscript. 

We have removed the roll-overs from the data used to train the scalar projection model. 

We chose to retain the rollovers in the ADNI 3 tau sample and remove them from the 

ADNI2/GO training sample for the GMLVQ scalar projection model. This is due to the 

relatively smaller sample size of individuals with longitudinal FTP-PET. As stated above all 

results remain the same. 

 

8.Discuss individual-level applicability of findings, with particular regard to outliers and 

clinical decision making. 

Please refer to revised text and response to comment 3 shown above. 

 

9.Discuss generalisability of findings, with regard to the relatively small sample sizes in the 

test sets. 

Please refer to revised text and response in comment 2 shown above. 

 

 

10. Change the "demented" terminology to "probable AD", or simply "AD". 

We have now changed the terminology to Alzheimer’s clinical syndrome consistent with 

current recommendations for clinical diagnosis without biomarkers. 

 

11. Add a brief discussion of differences/similarities between FBP/FTP/PIB PET tracers. 

Specifically, in relation to the findings. Perhaps off-target binding is a confounder in some 

regions of interest (perhaps not, which is also worth remarking in the manuscript). 

We harmonised the different amyloid tracers using the centiloid approach. Using the centiloid 

approach Klunk et al show that FBP and PiB amyloid tracers are reasonably interchangeable 

(Klunk et al., 2015). In addition, off target binding within the white matter is consistently 

observed across FBP and PiB tracers. The analysis pipelines to derive FBP SUVR and PiB 

DVR are built to account for this; therefore, we do not anticipate that this affects our results.  

 



We believe that it is unlikely that our results are confounded by FTP off target binding, as FTP 

PET measures largely correspond to pathological spreading of AD related tau (Schöll et al., 

2016) and we used an unbiased selection of ROIs. In particular, we made no a priori selections 

of composite regions containing structures with high off target binding (i.e. striatum and 

hippocampi). Further, a study by Lowe et al. 2019 highlights that the association between 

antemortem FTP uptake and NFT load postmortem is highly similar with or without partial 

volume correction (Lowe et al., 2020). In light of this we did not correct for partial volume 

effects.  

 

To account for potential off target binding in healthy cognitively normal individuals we used a 

reference region from eroded subcortical white matter regions. Using uptake values from three 

subcortical ROIs (Putamen Thalamus ChPlex) Baker et al showed that 60% of the variation in 

non-partial volume corrected global FTP uptake in healthy amyloid negative cognitively 

normal individuals is removed (Baker et al., 2019). Therefore, we favoured a subcortical 

reference region over the standard cross sectional reference region of the inferior cerebellar 

grey matter to account for potential off target binding that may affect cognitively normal non-

AD individuals. We now address these points in the revised Methods section (pg 29-30).  

 

In particular the text now writes: ‘To quantify cortical amyloid burden we utilised multiple PET 

tracers. To derive a robust scalar metric for predictions we first harmonised Aß PET values 

using the centiloid approach. Using this approach it has been shown that FBP and PiB amyloid 

tracers are interchangeable once scaled linearly onto a common scale (i.e. centiloids) 72.  . … 

To model patient trajectories of future tau accumulation we used longitudinal FTP-PET. The 

association between antemortem FTP uptake and neurofibrillary tangles load post-mortem has 

been shown previously 74. However, FTP retention is associated with significant off target 

binding. To mitigate this, we used a reference region from eroded subcortical white matter 

regions. Previous work has shown that FTP-PET uptake in subcortical regions accounts for 

60% of the variation global FTP uptake in healthy amyloid negative cognitively normal 

individuals 75.’ 

 

12. Line 458. Please start this paragraph by mentioning SPM, so it's clear. 

We have now included this. In particular the Methods (Pg 26) now write: ‘All structural MRI 

pre-processing was performed using Statistical Parametric Mapping 12 

(http://www.fil.ion.ucl.ac.uk/spm/).’ 

 

 

13. Discuss clinical utility of predicting _rates_ of tau accumulation versus raw tau burden. 

Two individuals could both be accumulating slowly at the same rate, but have completely 

different tau burden - clearly not the same. 

We thank the reviewer for this suggestion. We discuss this point in the revised manuscript (pg 

4).  

 

In particular the revised text writes: ‘Further, reducing cognitive decline is often considered 

as a primary outcome measure for interventions targeting asymptomatic AD populations 18; 

http://www.fil.ion.ucl.ac.uk/spm/


yet, targeting upstream pathological changes has potential to benefit clinical translation. In 

particular, tau is strongly linked to both future neurodegeneration and to cognitive decline 19, 

making reduction of future tau accumulation a potential intervention target, as evidenced by 

anti tau drugs entering the clinical trial pipeline 20,21. Recent evidence suggests that there are 

consistent patterns of tau spread (measured in-vivo by longitudinal FTP-PET) across early AD 

(i.e. prior to severe cognitive impairment) cohorts 22–24. That is, tau initially accumulates within 

the temporal cortex then spreads to the superior and medial regions of the parietal cortex prior 

to severe cognitive impairment 22–24. Thus, slowing rates of tau accumulation within these key 

regions, similar to slowing rates of cognitive decline, could be a meaningful biomarker 

outcome. Further, as evidenced by failures of anti-amyloid interventions to halt clinical 

decline, simply clearing already deposited protienopathies may be insufficient to stop 

downstream events 21. Therefore, targeting individuals with the highest risk of depositing tau 

rather than those burdened with tau, may increase the likelihood of successfully modifying 

downstream clinical decline.’   

 

 

  



Reviewer #2  

Thank you for giving me the opportunity to review this very interesting paper. The authors 

train a series of algorithms with the goal of predicting individualised future regional tau 

accumulation. This is an important effort, in-part due to circumventing issues in binary 

categorical classifications often employed. Using a novel GMLVQ technique, early AD is 

modelled in a multi-dimensional space, within which subgroups are represented by a prototype. 

Distance from the prototype can be used to represent disease on a continuum (scalar 

projection), and given new instances with the same feature vector their scaler projection can 

be calculated. Thresholding the scalar projection enables classification of discrete groups. 

 

For the current paper, first a GMLVQ is trained to model a stable condition (SC) and early AD 

(EAD) based on the multivariate relationship between amyloid, medial temporal grey matter 

density and APOE 4. Thus, the scalar projection models prognosis on a continuum between 

the SC prototype and EAD prototype based on the input variables. Second, the scalar 

projections for novel data are calculated, and threshold used to classify as EAD or not. For 

those classified as EAD, brain regions accumulating tau were identified, and the future rate of 

tau accumulation was predicted for each region using regions of interest and the scaler 

projection. Finally, future rate of tau accumulation was predicted in an unseen dataset. 

 

Results detail variance explained globally and in regions of interest of future tau accumulation, 

only found for the EAD group and not SC, supporting this novel approach to stratification that 

is based on underpinning biology, and characterised using a novel machine learning approach 

using the scalar projection (or prognostic index). Interestingly for a hypothetical clinical trial 

sample size required could be reduced by 35% to detect a 25% reduction in future tau 

accumulation, compared to a 25% reduction in future cognitive decline. A reduction of 30% 

was found when using EAD classification compared to amyloid positivity alone. 

 

Particular strengths of the paper are the use of multiple datasets to train and test, including out 

of sample testing; use of resampling methods to create a balanced dataset to train the GMLVQ 

scalar projection, thus not impacted by confounding variables, and the translational impact of 

using predictions to decrease required sample size for a hypothetical clinical trial. 

 

I found the methods and results to be exciting. The machine learning and statistical approaches 

utilised are, as the authors state, robust and transparent. The discussion is very well written and 

places the findings in context of known research, including a good discussion of the limitations. 

I think the manuscript could be improved by building on the introduction, which would aid in 

the flow of the paper overall, and by making clearer the groups and subgroups of interest 

throughout, perhaps with a figure. I go into these points in more detail below, along with other 

minor points. 

We thank the reviewer for their suggestion of a figure to help readability and their interest in 

the results and methods presented. We have now included a figure with the groups and analysis 

that were performed (Figure 1). We have also rewritten the introduction to clarify our approach 

and motivation of the study. 



  

1) I was confused by the groups and subgroups listed within the paper. This begins in the 

introduction, line 65, which states “In this framework, evidence of Aβ and pathological tau 

accumulation is sufficient to establish the diagnosis of AD. Cognitively unimpaired individuals 

(CN: cognitively normal) are classified as preclinical AD”. Line 81 states “…classifies and 

stages early AD (i.e. CN and MCI)” and line 86 “early AD (i.e. Aβ positive individuals who 

are cognitively unimpaired…”. I found this explanation a little blunt - we do know that not all 

of those with AD pathology will develop clinical AD (e.g. Bennett et al., 2006) - but understand 

that this is a definition based on evidence of AD pathology, as opposed to a clinical definition. 

However, I think the introduction could be built upon to better describe this focus on pathology/ 

biology, using terms elsewhere in the paper, which would also aid in the flow. The term 

‘asymptomatic’ is used readily elsewhere, as is reference to CN and MCI as syndromic labels 

– given the interesting results regarding the mismatch between the biological stratification in 

the paper and these syndromic labels, I feel bringing this into the introduction earlier in the 

paper would aid the reader. 

We thank the reviewer for this suggestion. We have now re-written the introduction to re-focus 

the paper and included the suggested figure. In addition, we have made a clear distinction 

between the baseline syndromic definitions (CN and MCI), longitudinal syndromic definitions 

used as classes to build the machine learning model (i.e. Clinically Stable and Clinically 

Declining) and how these relate to the underlying biology. 

 

2) Overall, I think the paper (barring the discussion) is complicated by heavy use of acronyms 

for groups, which hinders readability. I think a figure detailing the different groups utilised, 

and for which analyses, would add clarity. Throughout, even after acronyms have been 

introduced, sometimes full groups labels are used and sometimes acronyms with no 

consistency, again reducing readability. 

We thank the reviewer for these suggestions, in the revised manuscript we have tried to be 

consistent in our use of terminology and reduce the use of acronyms. In addition, we have 

included the suggested figure (Figure 1) for clarity. 

 

3) Relatedly, the ‘Demented’ group is almost a surprise addition, only briefly mentioned in the 

methodology, but features quite heavily in results and so could be brought in earlier as a group 

of interest. 

We now introduce this group earlier and more clearly in the results section. 

In particular the results (pg 7) writes: ‘An additional 181 individuals diagnosed with AD (which 

we refer to as Alzheimer’s Clinical Syndrome) were included to cover the full spectrum of 

longitudinal AD diagnoses. These individuals received a stable diagnosis of AD dementia 

across follow-ups and are used as a reference population of late-stage AD.’ 

 

4) And, my confusion was further compounded by the Supplementary Materials section 

GMLVQ – Scalar Projection, in which notation returns to progressive/ stable. I wonder if using 

EAD throughout would improve readability. 

 



We have now amended the supplementary materials to carry through the terminology of 

clinically stable and clinically declining 

 

5) I felt a brief methodological breakdown of how APOE 4 positivity was defined was missing 

e.g. does the presence of one or two alleles = positivity? 

APOE 4 positivity was defined as the presence of one or two alleles. We have now included 

this in the Results (Pg 6) section of the manuscript: ‘APOE 4 genotype (presence of one or two 

alleles)’ 

 

6) Figure 2 caption could be condensed by stating (for example) ‘the learnt probabilistic 

boundary that separates SC from EAD is indicated by a dashed vertical or horizontal line’, 

prior to the a, b and c descriptions, rather than repeating this information. 

We have now amended the figure caption. In particular the caption now writes: 

‘Figure 3: Relationship of scalar projection with biological predictors. ADNI2/GO sample: 

Blue dots indicate individuals in the Clinically Stable group, red dots indicate individuals in 

the Clinically Declining group the dashed vertical line indicates the learnt probabilistic 

boundary that separates Clinically Stable from Clinically Declining. a. Relationship of scalar 

projection with FBP centiloids (A), the solid horizontal line indicates the ADNI threshold for 

A positivity (SUVR=1.11). b. relationship of scalar projection with medial temporal grey 

matter density. c. relationship of scalar projection with APOE 4 status.’ 

 

7) Figure 3a uses a dashed black line to represent the threshold for EAD, are the dashed black 

lines on the box plots for each group related to the threshold information? If not perhaps replace 

them with solid lines to avoid confusion. 

We have now amended this figure accordingly. 

 

Typos 

We thank the reviewer for their considerate revision of our text and have amended all the typos 

that were identified. 

 

8) Line 57 bracket missing after (for reviews…) 

We have now amended the introduction accordingly.  

 

9) Line 156 typo “that’ should be “than” 

We have now amended the results accordingly.  

 

10) Line 242 missing a space after 6b). 

We have now amended the results accordingly.  

 

11) Line 312 – states a reduction in sample size of 46% based on prognostic index alone vs Aβ 

status alone. I could not seem to find this analysis in the results section, only for EAD 

classification vs Aβ status which was reported as 47% (line 223)? Is the same analysis? 

 



We have now clarified this in the Discussion, accurately reporting the reduction in sample size 

based on the revised analysis. In particular the Discussion (pg 18) now writes: ‘Finally, our 

multimodal prognostic index—compared to Aβ status alone—reduces the sample size required 

to observe a clinically meaningful change in the stereotypical pattern of pathological tau 

accumulation by 44%.’ 

 

12) Line 469 typo “RFE))” should be RFE) 

We have now amended the methods accordingly.  

 

13) Line 425 “cognition for individuals diagnosed as MCI”. This may be personal preference 

but I would replace “as” with “with”. 

We have now amended the methods accordingly.  

 

14) Line 935 typo “ii )an” should be ii) an. 

We have now amended the figure caption for figure 7 accordingly.  

 

15) Line 946 typo “(EAD)in” should be (EAD) in. 

This text has now been removed from the figure caption for figure 8.  

 

16) Line 952 typo “6c).” should be 6c.) 

We have now amended the figure caption for figure 8 accordingly.  

 

 

 

 

 

  



Reviewer #3  

 

The authors report findings of applying a machine learning approach to MRI volumetry and 

amyloid PET data and apoE4 carriage status to predict future tau accumulation measured with 

flortaucipir (FTP) PET and cognitive decline obtained for cohorts from the ADNI database. 

The subjects comprised established Alzheimer dementia (AD), early Alzheimer's disease 

(EAD) and normal stable cases (CS). The machine learning derived a predictive index that 

stratified individuals based on their future pathological tau accumulation. The hypotheses were 

that future tau accumulation would provides a better outcome measure compared to changes in 

cognition and that stratification based on multimodal data compared to β-amyloid alone would 

reduces the sample size required to detect a clinically meaningful change in tau accumulation. 

After training their algorithm on the ADNI cohort they then extended their machine learning 

approach to derive individualised trajectories of future pathological tau accumulation in local 

early AD patients and an independent sample of cognitively unimpaired individuals. The 

authors conclude that machine learning provides a robust approach for stratification and 

prognostication with translation impact for clinical trial design at asymptomatic and early 

stages of AD. 

 

1. This is a novel study but I have difficulties with the design of the study.  

We thank the reviewer for acknowledging the novelty of our study. We have now re-written 

the introduction to discuss the aim and structure of the study, emphasising bridging the gap 

between the biological and syndromic frameworks of AD. 

 

2. It would appear that all three cohorts contain a mixture of amyloid positive and amyloid 

negative cases. The CS cases are mainly amyloid negative while the EAD and AD groups are 

mainly, but not all, amyloid positive. Given this the machine learning is being trained on 

mixtures of preclinical, prodromal, and clinical AD mixed in with non-AD subjects. This 

makes interpretation of the findings difficult - the utility of machine learning for predicting 

outcome in terms of tau trajectory or cognitive deficit would be would be far clearer if all the 

cases selected were amyloid positive.  

We agree that an AD predictive model defined only by biomarkers should include amyloid 

positivity. However, the aim of our study was to build a predictive model using labels based 

on longitudinal clinical syndromic definitions that are blind to biomarker status (i.e. amyloid 

positivity), as this best reflects the clinical situation in most cases. In particular, our study 

design aims to extract a predictive continuous biomarker from a model trained to predict 

longitudinal decline in clinical diagnosis. Using this continuous multimodal biomarker we 

show that predicting future pathological changes (i.e. future rate of tau accumulation) is 

improved over Aß positivity defined using a strict threshold. 

 

Further, determining amyloid positivity using an SUVR threshold is inherently probabilistic, 

therefore some sub threshold individuals theoretically will be amyloid positive. In light of this, 

including slightly subthreshold amyloid negative individuals is preferable for modelling as it 

ensures that our model is not overly sensitive to the threshold of amyloid positivity.  

 



Finally, among the sample of amyloid negative individuals in the Clinically Declining group 

(n=26), there are individuals well below the SUVR threshold of positivity and therefore are 

likely afflicted by non-AD pathology. The inclusion of these individuals in the Clinically 

Declining group is due to an inherently noisy syndromic clinical definition. Our results 

demonstrate that these syndromic labels are poor descriptors of baseline biology and future tau 

accumulation. Our modelling approach is not biased by the inclusion of these individuals, 

thanks to its low number of degrees of freedom, in contrast to highly parameterised machine 

learning models that may be negatively affected by this noise in outcome label (i.e. target 

uncertainty). Please see also response to reviewer 4 comment 16 for more detail on how the 

model extracts a sensitive prognostic marker from noisy labels. For these reasons, we chose to 

include these individuals, as removing them would diverge from our study design which 

focusses on training a model using noisy clinical diagnoses to derive a sensitive and specific 

multimodal biomarker. We have now clarified this point in the revised manuscript.  

 

In particular, the Discussion (pg 21) writes: ‘Despite these potential limitations, our machine 

learning approach successfully capitalises on longitudinal data to make sensitive and specific 

predictions of early-stage AD trajectories based on baseline pathophysiology. Further, our 

approach provides two key advances: a) combines multimodal continuous biological measures 

to capture trajectories for individuals who may be on the threshold of unimodal biomarker 

positivity but likely to follow AD related trajectories 17, b) harmonises longitudinal data 

collected using syndromic diagnostic criteria 6,7 (e.g ADNI 26)  by combining continuous 

biomarkers into a biologically informative prognostic index in an interpretable and clinically 

meaningful way. ’ 

 

Further, the text in the Supplementary Methods (pg 13) writes: ‘The GMLVQ-scalar projection 

approach addresses three inherent issues with prognostic models in AD research. 1.) The 

GMLVQ-scalar projection approach is able to account for target uncertainty. This is achieved 

by having a model that learns a low-parameter task-dependent scaling matrix (metric tensor), 

and only two locations in hyperdimensional space (prototypes). These univariate (diagonal) 

and multivariate (off diagonal) relationships are learnt to separate the two classes (Clinically 

Stable vs Clinically Declining) as best possible from a global perspective (vs local metric 

tensors) without over constraining the predictor data. Similarly, by defining only one position 

in this learnt space that best determines if a person is Clinically Stable or Clinically Declining, 

the model must ignore subtle differences for any given target, learning a broad location that 

best describes Clinically Stable / Clinically Declining populations. By not over constraining 

the data, this type of model will not be sensitive enough to overfit based on subtle difference in 

diagnostic criteria. ‘ 

 

3. A second issue is that an SUVR threshold of 1.1 is chosen for amyloid abnormality with 

FBP PET. This is low and is likely to lead to false positives - the figure provided suggests 1.2 

would still separate AD from normal.  

The threshold of SUVR = 1.1 is the standard positivity threshold used in ADNI and was chosen 

a priori, rather than based on the data used in this study. This value equates to a centiloid value 

approximately 20-25 (depending on processing method), which is also a standard published 



range for amyloid positivity as documented on the ADNI website http://adni.loni.usc.edu and 

elsewhere. We now reference this within the manuscript (Joshi et al., 2012; Navitsky et al., 

2018). 

  

To address the differences in amyloid PET tracers (FBP & PiB), we have now converted both 

cohorts to centiloids and re-run all analyses (Klunk et al., 2015). The results are highly similar 

to those reported in the previous submission and all conclusions remain the same. We 

previously addressed the differences in amyloid tracers in our original submission by variance 

normalising within each cohort by the mean and standard deviation of cognitively unimpaired 

individuals. We have now replaced this analysis with conversion to centiloids. 

 

 We believe that it is unlikely that our results are confounded by MRI field strength between 

samples. Within the BACS sample 13 of the 56 individuals had 1.5T MRI from which the MTL 

grey matter density value was estimated. To determine the effects of MRI field strength, we 

investigated the contribution of MTL grey matter density to the multivariate and pathologically 

predictive scalar projection. First, we tested if the MTL value captures similar variance of the 

scalar projection in BACS as the MTL value in the ADNI2/GO training sample. Supplementary 

Figure 1a (below), shows that the MTL grey matter score and the scalar projection have a 

shared variance of R2= 34%. This value is similar to the shared variance of MTL grey matter 

density and the scalar projection in ADNI2/GO training sample (R2=40%). Next, we calculated 

the error of the fit for each participant and compared these errors within the BACS sample 

using 1.5T or 3.T. Supplementary Figure 1b (below) shows that the error of the fit is distributed 

evenly about zero highlighting that there doesn’t appear to be any systematic effect of MRI 

field strength. Finally, we performed a two sample t-test between the error of the fit using for 

MTL grey matter density measured using 1.5T MRI and 3T (t(54)=0.394, p=0.695). As there 

was no significant difference between the two distributions, it is unlikely that any systematic 

differences were introduced by using 1.5T MRI data. We consider the robust nature of these 

field-independent findings to be a strength of our method. We address these points further in 

the revised manuscript.  

 

In particular the Results section (pg 9) writes: ‘Further, we tested whether difference in MRI 

filed strength for the BACS sample introduced a systematic bias to the multimodal scalar 

projection. A two sample t-test comparing the residual of the fit of the medial temporal grey 

matter density and the scalar projection showed no significant differences between 1.5T and 

3T MRI in BACS (t(54)=0.394, p=0.695) (Supplementary Figure 1), suggesting that our 

multimodal approach is robust across differences in MRI acquisition.’  

 

The Discussion section (Pg 19) writes: ‘Second, we focussed on specific well-studied 

biomarkers (i.e. Aß, medial temporal grey matter density and APOE 4)—rather than 

interrogating the predictive power of a wider range of markers—to make robust predictions, 

as evidenced by the generalisability of our results across samples with different Aß tracers (i.e. 

FBP in ADNI and PiB in BACS) and MRI field strength.’ 

 

http://adni.loni.usc.edu/
http://adni.loni.usc.edu/


The Methods section writes: ‘To quantify cortical amyloid burden we utilised multiple PET 

tracers. To derive a robust scalar metric for predictions we first harmonised Aß PET values 

using the centiloid approach. Using this approach it has been shown that FBP and PiB amyloid 

tracers are interchangeable once scaled linearly onto a common scale (i.e. centiloids) 40.  

 
Supplementary Figure 1. Effect of MRI filed strength on scalar projection (BACS) a. 

highlights that there is a contribution of the MTL grey matter density score to the multimodal 

scalar projection. The black line indicates the linear best fit of these two variables. Black dots 

represent individuals who are scanned using 3T MRI and red dots are individuals who are 

scanned using 1.5T MRI. b. Shows the residual of the fit of the MTL grey matter density score 

and the scalar projection for individuals scanned on 1.5T vs 3T MRI. The redline is the median 



of the fit, the solid black box represents the 25th to 75th percentile and the dashed black lines 

represents the range of the data.   

 

4. Third, the cohort examined after training the machine learning algorithm have amyloid load 

measured with PiB PET and volumetry assessed 1.5 tesla MRI so are not represented by the 

training cohorts. Given all these issues it is difficult to accept the study conclusion. 

We appreciate that variability in data across training and validation groups is a challenge for 

machine learning modelling. However, we provide evidence that our approach makes robust 

and meaningful predictions in a sample that has slight variations in how data are collected i.e. 

BACS vs ADNI 3 (1.5T and PiB vs. FBP). We believe that this variability strengthens rather 

than biases our results for the following main reasons. Previous work comparing the reliability 

of different PET tracers has shown that PiB and FBP can be used interchangeably when the 

appropriate scaling has been conducted (Klunk et al., 2015). Further, we show that there are no 

systematic differences between 1.5T and 3T data in the relationship of MTL density score to 

our prognostic index. Finally, this variability is expected to add noise to the results, biasing our 

findings towards the null rather than resulting in false positive findings, thus strengthening the 

predictive power of our approach. 

 

 

  



Reviewer #4  

 

Giorgio & Kourtzi et al., examined the value of a prognostic index comprising beta-amyloid 

SUVRs, APOE e4 carrier status and gray matter density values in the medial temporal lobe in 

individuals who subsequently decline to prodromal or advanced stages of Alzheimer’s Disease 

or remain stable over four years using machine learning and the ADNI2 cohort. They observe 

that the resulting index is well suited to predict faster future tau accumulation an independent 

cohort (ADNI2/BACS) and that clinical definitions of cognitively normal adults or diagnosis 

of mild cognitive impairment is less predictive of tau accumulation compared to the modelled 

prognostic index. This is a very clever study design, and indeed a novel approach.  

 

1. Criticism and dampened enthusiasm exist however as the authors at times are not able to 

make clear what exactly their research question is, which is additionally is complicated by the 

non-stringent use of preclinical AD, cognitively normal non-pathological again.  

We thank the reviewer for this suggestion. We have now clarified the research question in our 

revised introduction. We have also taken care to have consistent terminology dissociating 

between syndromic labels and biological classifications. 

 

2. A host of methodological and conceptional question are needed to be addressed to further 

judge the suitability for publication See those listen below: 

The authors should define, what they mean with “interactions of beta-amyloid and tau 

pathology” specifically (line 53). As it is written thus far, it may indicate that dependency, 

despite the fact that these events occur particularly in early phases of AD may in fact be 

independent, but dependency occurs later in the disease stage. Please elaborate. 

We have now amended the introduction, removing this statement which was not relevant to 

our approach. 

 

 

3. The authors state: Cognitively unimpaired individuals are classified as preclinical AD (line 

66). That statement is not true and need to be revised. Specifically, it should be stated 

somewhere in the research goal or aim of the study, which individuals are included with regards 

to biomarker status and how this is defined. 

We have now included the aims of our study in the introduction and explained that we did not 

use biomarker status for assigning individuals to the training sample; instead, groups were 

assigned based on longitudinal changes in clinical syndromic labels. 

 

 

4. What do the authors mean, when describing that the clinical syndromic definitions are not 

sensitive to the underlying AD pathology (line 70 ? Why us biomarker at all, if not specific to 

the pathology? 

By “clinical syndrome” we mean a diagnosis of normal, MCI, or probable AD dementia, 

traditionally deployed without taking into account biomarker status -note that the current 

research framework is targeted to research and most clinicians do not widely employ 

biomarkers-. Previous work interrogating the sensitivity and specificity of these clinical 



syndromes, i.e. a diagnosis of probable AD ante mortem, shows that diagnoses of probable AD 

have a sensitivity to postmortem AD pathology between 70.9% and 87.3% and a specificity 

between 44.3% and 70.8% (Beach et al., 2012). In contrast, PET biomarkers of β-amyloid and 

tau have been shown to have high sensitivity and specificity (over 90%) for the relevant brain 

pathology. 

 

5.The explanation of APOE e4 allele is highly speculative: 

• the authors cite a mouse model that showed this association 

• the authors then only cite reviews on the topic, neglecting to acknowledge evidence that 

showed that APOE carriers showed less elevated in vivo tau pathology compared to APOE non 

carriers (e.g., Mattson, Ossenkoppele et al., Alz Res Therapy, 2018) 

We agree that the relationship between APOE and tau is not straightforward. We did not 

include APOE in our algorithm simply because of its relationship to tau, but rather because it 

is associated with AD pathological processes. We have removed the statement in question and 

clarified our choice.  

 

In particular the Introduction (pg 5) writes: ‘Here, we employ this trajectory modelling 

approach to quantify the multivariate relationships between key biomarkers that underlie the 

pathogenesis of AD: A, tau and neurodegeneration, together with measurement of the major 

genetic risk factor for late onset AD, the 4 allele of the Apolipoprotein E gene 37.’ 

 

6. The rational to include both amyloid positives and negatives in the analysis is not very clear. 

Specifically, it appears that the authors suggested that amyloid biomarker positivity is a 

necessary condition for preclinical AD and only in such cases a prognostic index on future tau 

accumulation would make sense. Please elaborate. 

We have now clarified why we retain amyloid negative individuals; that is our training sample 

is defined using longitudinal syndromic definitions independent of biomarker status. Further, 

we have removed the misleading reference from the introduction. Please also see our response 

to reviewer 3 comment 2 for more details on our motivation to retain amyloid negatives. 

 

7. What is meant with the sentence that “MRI data were used for quantitation of PET data”? 

(line 442) 

PET data were coregistered to MR images and regions of interest determined on the MR images 

used to extract the PET data for quantitation. We have now clarified this in the revised Methods 

section describing the PET analysis.  

 

In particular the text (Pg 28-29) writes: ‘FBP data were realigned, and the mean of all frames 

was used to co-register FBP data to each participant’s structural MRI.’… ‘For each subject, 

a global cortical PIB index was derived from the native-space DVR image coregistered to the 

MRI using FreeSurfer (5.3) parcellations using the Desikan-Killiany atlas 65 to define frontal 

(cortical regions anterior to the precentral sulcus), temporal (middle and superior temporal 

regions), parietal (supramarginal gyrus, inferior/superior parietal lobules, and precuneus), 

and anterior/posterior cingulate regions- ROIs combined as a weighted average.’ 



 

8. As different beta-amyloid tracers were used in these different cohorts, it is imperative to put 

these on the same scale using the centiloid scale. 

We thank the reviewer for this suggestion. We have now converted both cohorts to centiloids 

and re-run the analyses. The results are highly similar as the previous submission and all 

conclusions remain the same. To address this issue in our previous analysis we had variance 

normalised within each cohort by the mean and standard deviation of cognitively unimpaired 

individuals. Following the reviewer’s suggestion, we now present all data using the centiloid 

scale. 

 

9. How would the SC and EAD multimodal scalar projection look like when amyloid was used 

as a binarized information rather than a continuous one. Although I very much appreciated the 

continuous approach, it would be more accessible to clinicians to evaluate a prognostic index 

based on binarized amyloid information. 

We appreciate the need for discrete clinical decisions based on biomarker information. We 

favoured an approach to discretise our multimodal index after continuous information from 

multiple biomarkers (MRI and PET) were integrated into a single continuous scalar, rather than 

discretising biomarkers into positive or negative.  Using the multimodal scalar projection we 

present a threshold value (>0.34) where there is a greater than 50% chance that an individual 

will be Clinically Declining. We show the efficacy of this binarized stratification in the ADNI 

3 sample. We demonstrate that fort his sample the Clinically Declining group will have 

declining cognition and accumulate pathological tau, whereas the Clinically Stable group 

showed no progressive AD pathology (i.e. stable cognition and no significant accumulation of 

tau). Therefore, we present a multimodal prognostic index that when thresholded can guide 

clinical decision to separate individuals who will have progressive AD pathology and 

symptomology (i.e. Clinically Declining) vs. those who will not (i.e. Clinically Stable). 

 

We binarised the scalar projection using continuous amyloid values vs. binary values to capture 

trajectories for individuals who may be on the boarder of positivity. In particular, determining 

amyloid positivity using an SUVR threshold is inherently probabilistic and some sub-threshold 

individuals could in theory be amyloid positive. In light of this, including slightly sub-threshold 

amyloid negative individuals is preferable for modelling, as it ensures that our model is not 

overly sensitive to the threshold of amyloid positivity. 

 

10. To assess gray matter density values did the authors consider head size differences? 

Supplementary Figure 3 shows the relationship between the MTL grey matter density values 

and total intracranial volume for the ADNI2/GO training sample. The shared variance between 

these two variables is R2=3.7%. This result is not surprising as our pre-processing pipeline for 

the T1 structural scans omitted the modulation of the data following previous work (Radua et 

al., 2014); thus, we avoided introducing a proxy of volumetric differences in grey matter voxel 

values. In omitting this step, the MTL metric derived is from the weighted average of voxel 

values represented by the probability of being GM. This gives a concentration or density value 

to each voxel rather than volume. Therefore, we do not observe a strong effect of TIV on the 

MTL density metric used. A more detailed description of the process followed to derive this 



metric can be found in our previously published work (Giorgio et al., 2020). We have now 

addressed this point in the revised manuscript.  

 

In particular the Methods section writes (Pg 27): ‘To generate an individual’s score of medial 

temporal grey matter density we performed a matrix multiplication of the previously derived 

voxel weights matrix and each subject’s pre-processed T1 weighted MRI scans. Given that this 

value represents density and not regional volume, the medial temporal grey matter density 

score is not effected by head size differences (Supplementary Figure 3).’ 

 

 

 
Supplementary Figure 3. Relationship of medial temporal lobe (MTL) grey matter 

density score and total intracranial volume (TIV). The relationship between the MTL grey 

matter density values and total intracranial volume for the ADNI2/GO training sample. The 

shared variance between these two variables is R2=3.7%.  

 

11. It is not clear how the threshold of amyloid positivity of SUVR = 1.1 was achieved, in lieu 

of the longitudinal processing of the baseline amyloid data in ADNI. The SUVR values are 

expected to be much lower than displayed in Figure 1 and amyloid positivity would be 

redefined. Please explain. 

As we used only cross sectional amyloid PET we used the widely used threshold of SUVR 

=1.1 for a reference region taken from the whole cerebellum as described in (Joshi et al., 2012). 

We had incorrectly written the reference region used in the original submission of the 

manuscript. We have now clarified this in the revised manuscript. Please also see our response 

to reviewer 3 comment 3.  

 



In particular the revised Methods text (pg 27) writes: ‘Cortical Standardised Uptake Value 

Ratios (SUVR)s were generated by averaging FBP retention in a standard group of ROIs 

defined by FreeSurfer v5.3 (lateral and medial frontal, anterior and posterior cingulate, lateral 

parietal, and lateral temporal cortical grey matter) and dividing by the average uptake from 

the whole cerebellum to create an index of global cortical FBP burden (A) for each subject 
71.’ 

 

12. The author report that when deriving the scalar projection for the independent cohorts 

ADNI 3 (CN=72; MCI:43) and the BAC (CN=56)) the clinician-based diagnosis and the 

multimodal scalar projection show poor agreement. How do they interpret this finding? Given 

that the robustness of the diagnosis has not been evaluated over multiple time points in the 

independent cohort, I fail to see the additional value gained from this analysis. 

We agree that longitudinal observations have the potential to form a more robust and confident 

clinical diagnosis. The comparison focuses on how well baseline syndromic definitions capture 

baseline biomarker characterisation. Our results show that the baseline syndromic definition is 

not sensitive to the baseline biology, suggesting that clinical syndromic definitions are not 

specific to AD biology or future tau accumulation. This finding is relevant for clinical trials as 

large and expensive trials targeting early biological processes in AD are increasingly aimed at 

asymptomatic or mildly symptomatic individuals (i.e. CN/MCI). We show that these 

syndromic labels—used to constrain recruitment into clinical trials—are not consistent with 

baseline biology that predicts clinical decline (i.e. classifying based on longitudinal syndromic 

changes) or future pathological changes. Thus, our modelling approach has two key advantages 

over syndromic guided recruitment: a) includes biologically relevant biomarker data b) makes 

use of longitudinal clinical observation. This allows us to make predictions both clinically and 

biologically relevant using a single time point (baseline) observation that provides a more 

sensitive and specific stratification than syndromic labels. We discuss this point further in the 

revised manuscript.  

 

In particular the discussion (pg 17-18) now writes: ‘Our approach has potential relevance for 

the design of clinical trials in three main respects. First, we demonstrate that our multimodal 

modelling approach is more sensitive in capturing early-stage AD related pathology than a 

classification based on baseline syndromic labels. The poor sensitivity and specificity of 

syndromic labels to AD pathology 10–13 has led to the introduction of a biological framework 

for AD classification 8. We show that syndromic labels are not consistent with baseline biology 

that predicts clinical decline (i.e. changes in longitudinal syndromic changes) or future 

pathological changes (i.e. tau accumulation). Thus, our multimodal modelling approach has 

potential impact for drug discovery trials that recruit asymptomatic or mildly symptomatic 

individuals (i.e. CN/MCI) to target early biological processes in AD 18.’ 

  

13. Given that the multimodal scalar projection from the training sample rests on the cognitive 

change compared to cognitive stability over time, I find it surprising that SC and EAD 

individuals did not significantly vary in cognitive measures over time in the independent testing 

set. What is your explanation for this finding? 

 



We agree with the reviewer and had expected to see a difference in cognition between SC and 

EAD individuals. Re-analysing the data following the suggestions of reviewer 1 showed a 

significant difference between the two groups. To explain this difference in our findings we 

show the distribution of the rate of cognitive decline for the SC and EAD from the initial 

analysis (Figure 1-response) and the distribution of the rate of cognitive decline for the SC 

(now referred to as Clinically Stable) and EAD (now referred to as Clinically Declining) from 

the current analysis (Figure 2-response). The lack of significant differences we initially 

reported was largely driven by a few outlier cases (Figure 1-response Circled) in the SC group, 

these outlier cases were on the border of our probabilistic boundary in the previous submission 

(see figure 1-response below). Re-analysing the data following the suggestions of reviewer 1 

showed that the probabilistic boundary shifted and these two cases (circled in Figure 1-

response) cross the threshold to be classified as EAD (now referred to as Clinically Declining). 

Figure 2-response shows differences between future cognition in the revised analysis; the 

outliers are now removed from the SC distribution and the comparison of the two groups is 

significantly different t(100)=2.48, p=0.015. We have now revised the manuscript to include 

this result.  

 

In particular the Results section (Pg 11) writes: ‘We next investigated if the classification of 

Clinically Stable vs. Clinically Declining is sensitive to future cognitive change (as measured 

by future annualised change in Preclinical Alzheimer’s Cognitive Composite i.e. PACC) over 

the same time period. We observed a significant difference in future cognition between 

individuals classified as Clinically Stable(mean=0.13/year) vs. Clinically Declining(mean=-

0.86/year) (t(100)=-2.48, p=0.015), with individuals classified as Clinically Declining 

showing significant worsening (i.e. rate of PACC change significantly less than 0) in future 

cognitive ability (one tail t-test t(50)=-2.65, p=0.0054). Taken together, our results show that 

a classification of Clinically Stable vs. Clinically Declining using our prognostic index based 

on baseline multimodal data is sensitive and specific to changes in future tau accumulation 

and cognitive decline in an independent sample without longitudinal syndromic information 

(i.e. ADNI 3).’ 

 



 
Figure 1-response. Differences in future rate of PACC change SC vs EAD: Previous 

submission. This figure shows the distribution of the future rate of PACC change for our 

previous submission for SC and EAD groups. The redline is the median of the fit, the solid 

blue box represents the 25th to 75th percentile and the dashed black lines represents the range 

of the data and red crosses indicate outliers. The two outlier cases circled are now classified as 

EAD in the resubmission.  

 

 
Figure 2-response. Differences in future rate of PACC change SC vs EAD: revised 

submission. This figure shows the distribution of the future rate of PACC change for the re-

submission for SC and EAD groups. The redline is the median of the fit, the solid blue box 

represents the 25th to 75th percentile and the dashed black lines represents the range of the data 

 



and red crosses indicate outliers. The two outlier cases circled in figure 1 are now classified as 

EAD and there is now a significant difference in future cognitive change between SC vs EAD.  

 

14. Is the rate of tau accumulation significantly different when using the multimodal scalar 

projection compared to the CN/MCI diagnosis? The authors just state that the stratification is 

better using SC and EAD but do not present evidence that sensitivity and specificity measures 

are indeed better for one over the other. 

To statistically compare these two stratification approaches based on sensitivity and specificity 

for future tau accumulation we now report the interclass correlation coefficient of future 

regional rate of tau accumulation across ROIs. This has been further clarified in the manuscript.  

 

In particular the revised Results section (pg 11-12) now writes: ‘Next, we compared how 

sensitive a baseline syndromic classification of CN vs. MCI is to future changes in tau 

accumulation. Averaging the annualised rate of tau accumulation within each of the 36 

Desikan-Killiany ROIs for CN and MCI groups we contrasted the global rate of tau 

accumulation for CN vs. MCI groups (i.e. independent samples t-test across ROIs for CN vs 

MCI). We observed a marginally significant difference in global tau accumulation between CN 

and MCI groups (t(70)=2, p=0.05), with MCI individuals accumulating global cortical tau 1.9 

times faster than CN individuals. To determine if a classification based on syndromic labels 

(i.e. CN vs. MCI) is specific to future regional rate of tau accumulation, we calculated the 

interclass correlation coefficient of future regional rate of tau accumulation across ROIs. A 

significant interclass correlation coefficient across ROIs (r=0.47 [0.159 0.68], F(35,36)=2.69 

p=0.002) suggests poor specificity to regional tau accumulation for stratification based on 

baseline syndromic definitions. Further, we tested which regions significantly accumulated tau 

(i.e. rate of accumulation significantly greater than 0; one sample (i.e. CN or MCI) one tail t-

tests within each ROI). We showed that both CN and MCI individuals significantly accumulate 

tau, with a high degree of overlap across AD susceptible regions in the temporal and 

posteromedial cortices (Supplementary Table 2, Supplementary Figure 1). To further 

quantify this, we calculated the interclass correlation coefficient between a baseline syndromic 

definition of CN vs. Clinically Declining, and, MCI vs. Clinically Declining. For both 

syndromic definitions, we observed significant overlap in future regional tau accumulation 

with Clinically Declining (CN vs. Clinically Declining r=0.584 [0.323 0.763], F(35,36)=3.81 

p<0.0001; MCI vs. Clinically Declining r=0.86 [0.751 0.928], F(35,36)=13.7 p<0.0001). 

Taken together, our results suggest that stratification based on syndromic diagnosis has poorer 

sensitivity and specificity to future tau accumulation compared to the biological classification 

of Clinically Stable vs. Clinically Declining based on our prognostic index.’ 

 

15. Although the clinical trial analysis is comprehensive and the “new kid on the block” in the 

biomarker research field, the impression remains that reducing meaningful cognitive decline 

in combination with the reduction of tau, will be more important for the design of clinical trials 

than just reducing tau pathology. Please elaborate on this point. 

We thank the reviewer for this suggestion and agree that ultimately clinical outcomes (i.e. 

reducing cognitive decline) are the key measure in clinical trials. In our previous work we have 

already shown that our algorithm predicts future cognitive decline (Giorgio et al., 2020). 



Further, existing data have shown strong relationships between tau deposition and clinical 

outcomes. Using our modelling approach for stratification allows the selection of individuals 

with progressive disease (i.e. showing both cognitive decline and tau accumulation) at a point 

in their disease progression trajectory that could be ameliorated with treatment. Given the well-

established relationship between tau and cognition, one would anticipate an anti-tau drug that 

halts tau accumulation to also halt cognitive decline. Evidence to the contrary would be equally 

important and therefore it would be useful to incorporate both measures. 

We have now discussed this further in the revised manuscript.  

 

In particular the Discussion text now writes (pg 18): ‘Second, using the rate of tau 

accumulation as an outcome measure results in 31% reduction in the sample size for detecting 

a clinically meaningful change at early stages of AD compared to the gold standard cognitive 

instrument (PACC 42). This is consistent with previous work showing that a smaller sample size 

is required to detect a clinically meaningful change in tau accumulation within the “meta-

ROI” for tau accumulation than using a cognitive endpoint  24. Yet, determining the success of 

a trial based on reduction of tau alone may be suboptimal given the failure of amyloid clearing 

treatments to halt clinical decline 21. Therefore, measuring changes in tau and cognition 

simultaneously may be more appropriate for assessing efficacy of anti-tau drug treatments. 

Our machine learning approach is well suited to address this need as it allows us to select 

individuals who are predicted to both accumulate tau and have declining cognition.’ 

 

16. The authors claim that the multimodal modelling approach may be better than syndromic 

labels such as preclinical AD, MCI or AD to capture AD related pathology. An issue that arises 

here is that the current multimodal modelling approach rested on exactly those syndromic 

definitions of CN and MCI/AD in the ADNI cohort in the first place to even get to the 

prognostic index. The authors should elaborate on this argument. 

We thank the reviewer for this comment. To clarify, our findings demonstrate that the 

multimodal baseline index is better than the baseline syndromic labels at predicting future tau 

accumulation and the two baseline stratifications have poor agreement. We have now clarified 

this throughout the revised manuscript. 

 

As the reviewer points out, these baselines or one-shot clinical appraisals are less robust than 

measures taken over time. To increase the reliability of our training labels, we used longitudinal 

clinical appraisal to train our classification algorithm. Yet, these outcome labels may still be 

limited in reflecting the underlying pathology, due to their inherently noisy nature. We believe 

that our machine learning approach is well suited to account for this for the following reasons. 

In particular, we derived the scalar projection by training the model based on ‘noisy’ diagnostic 

labels. However, as our metric learning model has limited freedom (linear low-parameter 

model), separating continuous target values (i.e. individualised trajectories) into two broad 

classes forces the model to extract key multivariate relationships in the data that distinguish 

between target populations, ignoring subtle differences in target values. That is, the model 

cannot learn a set of parameters that fit subtle differences in target values, e.g. an individual 

who is assigned a label of Clinically Declining but has no underlying AD pathology will be 

classified as Clinically Stable. Restricting the model parameter space in this way allows us to 



use noisy diagnostic labels to generate a highly sensitive and specific AD biological index. 

This low parameter model learning based on broad classes results in the model generating 

predictions that capture ‘hidden’ biological changes that occur when diagnostic categories 

change. Further this approach does not afford the model sufficient freedom to overfit the data 

based on binarised labels that do not encompass the rich continuous information that separates 

individuals either between or within diagnostic classes. 

 

Finally, a key benefit of this approach is that it allows us to train a model that can be used to 

make transfer predictions across a class of prediction problems, for example. When predicting 

AD related changes in tau accumulation in cohorts sampled with longitudinal clinical appraisal 

prior to the addition of FTP-PET. A model that trains on data collected prior to the introduction 

of FTP-PET and makes predictions in an independent dataset of participants with FTP-PET 

will support data harmonisation data across cohorts over the last decade. This is discussed 

further in Supplementary Methods. 

 

17. I think it should read diagnosis of dementia not “demented” (e.g., line 414). 

We have now changed this to Alzheimer’s clinical syndrome in the revised manuscript. 
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REVIEWER COMMENTS 

Reviewer #1 (Remarks to the Author): 

The authors have done a decent job of responding to the comments of all reviewers. However, some 

key question marks remain. 

First, a general comment. As pointed out in my first review, I think it's important to consider 

accumulated tau burden in conjunction with tau accumulation rate. Here the authors talk only of the 

rate. If tau accumulation rates will indeed be used as clinical trial outcomes, then that's fine, just add 

a comment early in the paper to make this very clear. If not (and tau burden is also important) then 

the authors need to rework the manuscript. 

Now I'll address the authors' responses to my own comments (starting with numbers provided by the 

authors): 

3. 

a) (my numbering) Regarding the regression lines in Figures 7 and 8: 

The 95% confidence interval in Fig 7c (parietal) seems to suggest that a line of no trend would explain 

the data just as well (statistically speaking). Fig 7d is similar, although the correlation is probably 

significant (for what that's worth: null hypothesis testing was never intended to be confirmatory, but 

that's a fight for another day). 

The question is: how do these results (Figs 7,8) translate to the clinic? Is it that one can say with 95% 

confidence that there is, *at best*, a _weak_ positive trend? This needs clarifying and making explicit 

in the manuscript: the reader needs to be convinced that you are providing a useful model, not merely 

a statistically significant one. Sure, you can use it to reduce the clinical trial sample (great!), but is it 

really that useful? I want to be convinced, but I'm not yet. 

b) "The focus of our analyses is early-stage stratification for patients with AD pathology. In particular, 

we developed a modelling approach that is sensitive and specific to the AD topography of tau 

accumulation." 

See Vogel at al, medRxiv 2020 where four topographic subtypes of tau accumulation were robustly 

identified across multiple cohorts and PET tracers. The authors need to convince the reader that their 

approach is still valuable in that it considers only temporal aspects of an assumed single topography, 

whereas the evidence suggests multiple topographies/subtypes: spatiotemporal heterogeneity of tau 

accumulation (Vogel-2020) and grey-matter atrophy (Young et al, Nature Commun 2018). 

c) Regarding using a linear model: 

"Thus, we tested whether a linear model captures the relationship between the scalar projection and 

individual rate of future tau accumulation for our early-stage AD sample..." 

- I agree that a linear model makes sense on the scale of a few years. (The authors make a strange 

argument that they're looking at "the linear portion" of the tau curve: any curve is locally linear on a 

sufficiently short timescale.) 

- The challenge I pose to the authors is related to the nonlinear nature over longer times that are of 

potential clinical interest. The model, as I understand it, does not explicitly link the linear segments 

from individuals (over short times) to a global nonlinear model of tau accumulation (over longer 

times). For example, consider a new patient assessed by the model to be in the earliest stage of AD 

pathology at their baseline visit. Using a linear prediction is sensible in the short-term, but will likely 

produce highly inaccurate (over)estimates beyond a few years. Perhaps this isn’t a massive problem in 

practice, since the patient might be asked to return for another assessment in, say, one/two years 

from baseline. At which point, the model-based predictions would be updated. Worth making this point 

in the revised manuscript, i.e., if you're motivated by short-time applications of no more than a couple 

of years, such as clinical trials, then that justifies using a linear model. But using a single linear model 

to cover all levels of pathology (over many years) is less convincing. 



d) Revised text on page 19: "as evidenced by the generalisability of our results across samples" 

- Please tone this down a bit. Or qualify it with a comment about (small) sample sizes. Perhaps: "as 

supported by the consistency of our results across (admittedly small) samples." 

e) Revised text: "Extending our modelling approach to integrate less-costly (i.e. plasma) and non-

invasive (i.e. cognitive) data has strong potential for stratification at asymptomatic or early stages of 

AD." 

- I really like this idea. Is something like this feasible for the authors to implement in ADNI? Using 

cognitive data, not "new plasma biomarkers" (since they don't exist in ADNI). If it *is* possible to 

compare how this model performs with different inputs (cognitive test scores versus 

neuroimaging+biomarkers), such a study would add a lot of value to the paper as an additional 

supplementary analysis. 

4. "We look forward to the opportunity to test our approaches in a clinical trial." 

- Have you approached Pharma to get your model included in future trials? 

5. 

a) I understand now: you are directly comparing to Jack-2020. I think this paragraph needs to be 

rewritten to make this more obvious. For example, wording such as “A recent paper claimed that AB 

status alone...We found that...” would avoid the reader being confused (as I was) into thinking that 

you’re saying, simply, that “multivariate is better than univariate”. 

- Where you write "by 44%", the reader would appreciate the raw numbers also being included, e.g., 

"from 100 to 66". 

b) 

"Direct comparison of diverse machine learning approaches remains challenging as cross-validation 

methodology, sample sizes and sample heterogeneity have a significant effect on model performance 

metrics" 

- This sentence misses the point. Perhaps I was unclear when I suggested that you should compare 

your results with a benchmark model. For example, this could be SVM or logistic regression for the 

classification experiments. To make the comparison fair, you would ideally keep all other experimental 

design choices fixed: input features, cross-validation settings, etc. 

"Thus, our predictions are not directly comparable to those of models performing only binary 

classifications based on syndromic diagnosis" 

- To be blunt, this is nonsense. As explained above, and with apologies if I was unclear in my first 

review, your classifier experiments can be compared with SVM/etc. in place of your model. 

Additionally, your prediction results could also be compared with latent-time mixed-effects models 

such as (Donohue et al., Alzheimers Dement 2014; Li et al., Stat Meth Med Res 2017; Lorenzi et al., 

NeuroImage 2017), each of which has public source code available. 

"To compare performance of our modelling approach we compared our multimodal baseline 

stratification with two common approaches to stratify individuals in the early stages of AD: 1) 

syndromic definitions and 2) amyloid status." 

- Seems a reasonable comparison, since your aim is to compete with these in clinical trial settings. 

However, if one can achieve comparable performance with (for example) a SVM (see my points 

above), then the technical contribution of this paper is diminished considerably. The authors are 

strongly encouraged to run these experiments to convince themselves and the reader of their model's 

contribution to knowledge. 

"This allows us to draw conclusions that are relevant for patient stratification and the design of clinical 

trials...variability in pathological state across groups..." 

- Sorry to harp on about it, but your method handles temporal variability (disease stage/pathology 



severity) but doesn’t handle spatial variability (different subtype patterns) in tau accumulation. See 

the four spatiotemporal subtypes of AD: Vogel-2020. 

13. Revised text: "...Recent evidence suggests that there are consistent patterns of tau spread..." 

- Recent evidence suggests, quite strongly, that there are four spatiotemporal subtypes of tau 

accumulation: Vogel-2020 (as mentioned above). Using a much larger tau PET sample size covering 

early through to late AD, across multiple tau-PET tracers and multiple cohorts, Vogel et al. provided 

strong evidence for four spatiotemporal subtypes of tau accumulation in Alzheimer's. 

Check spelling throughout: I found some minor errors, e.g., clinician, proteinopathies. 

Reviewer #2 (Remarks to the Author): 

It is clear that the authors have put a lot of work in to editing this manuscript based on reviewer 

comments, well done. I like the figure you have produced and along with the re-written introduction I 

find the paper much clearer. Readability is much improved, but could be improved further with section 

numbering. I particularly like the sections where you compare the sample sizes needed to detect 

change in tau compared to cognition/ abeta and feel these have improved since the previous 

manuscript. 

I have few minor concerns: 

- In the introduction it states "These clinical syndromic definitions have no discrete demarcations on 

cognitive scales" - do you mean that threshold scores on cognitive testing are not part of the criteria 

for diagnosis? If so, please make clearer. There are cut-offs on routine cognitive tests e.g. the MMSE, 

that are used to demarcate MCI and AD, so this statement as is does not hold. 

Typos: 

- protienopathies should be proteinopathies 

- "we tested whether difference in MRI filed strength" should be field strength 

Reviewer #3 (Remarks to the Author): 

The authors have now revised the manuscript and addressed my concerns satisfactorily. I am happy 

with revised version. 

Reviewer #4 (Remarks to the Author): 

The authors have a done a great and satisfactory job in responding to all critical comments raised. 

Specifically the inclusion of Figure 1 and the cleaning up the introduction with focusing on the goals 

have greatly improved the accessbility of the article itself.



 
 
Responses to Reviewers 

Reviewer 1.  

1. First, a general comment. As pointed out in my first review, I think it's important to 
consider accumulated tau burden in conjunction with tau accumulation rate. Here 
the authors talk only of the rate. If tau accumulation rates will indeed be used as 
clinical trial outcomes, then that's fine, just add a comment early in the paper to 
make this very clear. If not (and tau burden is also important) then the authors 
need to rework the manuscript. 

We thank the reviewer for this suggestion. In designing clinical trials for AD several outcome 
measures are often taken into consideration. Although reduction in cognitive decline is 
invariably a primary outcome, the recent Donanemab trial included change in tau as a 
secondary outcome measure (Mintun et al., 2021). A range of therapeutic interventions, and 
in particular amyloid-lowering immunotherapies, aim to slow down the rate of tau 
accumulation. Our model is well suited to address the needs of clinical trial stratification, as it 
is sensitive to both change in cognition and change in tau from baseline. This will become 
particularly relevant as anti-tau interventions enter the clinical trial phase, where halting the 
rate of accumulation and clearing already accumulated tau are of particular interest.  

Following the reviewer’s suggestion, we investigated whether our baseline multimodal 
stratification using non-tau biomarkers is sensitive to baseline tau burden. Using the model 
derived stratification of Clinically Stable vs. Clinically Declining, we contrasted the baseline 
tau burden between the two groups. We observed that individuals who are classified as 
Clinically Declining have significantly more tau burden than those classified as Clinically 
Stable. For the ADNI 3 sample, this was observed across the cortex as well as in Braak stage 
ROIS (Braak I mean difference = 0.167 SUVR, t(113)=5.6, p<0.001; Braak II mean 
difference = 0.074 SUVR, t(113)=2.6, p=0.01; Braak III mean difference = 0.12 SUVR, 
t(113)=4.77, p<0.001; Braak IV mean difference = 0.08 SUVR, t(113)=3.81, p<0.001; Braak 
V mean difference = 0.07 SUVR, t(113)=3.47, p<0.001; Braak VI mean difference = 0.041 
SUVR, t(113)=2.53, p=0.012) (Supplementary Figure 3, Supplementary Table 1). The 
same stratification in the BACS samples showed that the BACS Clinically Declining group 
has increased tau compared to the Clinically Stable group  (Braak I mean difference=0.0445 
SUVR; Braak II mean difference=0.0274 SUVR; Braak III mean difference=0.0201 SUVR; 
Braak IV mean difference=0.0233 SUVR; Braak V mean difference=0.0324 SUVR; Braak 
IV mean difference= 0.0368 SUVR) (Supplementary Figure 3). Please note that these 
comparisons use the preferred cross sectional reference region of the inferior cerebellum to 
derive SUVR. Further, as there is no partial volume correction the signal from Hippocampus 
(Braak II) may be unreliable. 

Here, we show that our model-derived stratification of Clinically Stable vs. Clinically 
Declining using baseline non-tau biomarkers is sensitive to both baseline tau burden as well 
as future rate of tau accumulation. Therefore, we show that our single stratification approach 
is sensitive to: 1. Baseline Tau, 2. Future change in cognition 3. Future change in tau 
accumulation, providing converging evidence that our stratification approach is relevant to a 
wide range of clinical trial outcome measures. Further, our results provide a quantitative link 



between continuous measures of baseline medial temporal atrophy, amyloid burden and 
APOE 4 status, and baseline tau as well as future changes in tau and cognition. As our 
stratification approach is sensitive to a range of AD pathology and AD related changes, it is 
relevant for stratification in future clinical trials (particularly those with multiple outcome 
measures; i.e. clearing tau, halting tau accumulation and halting cognitive decline). Finally, 
we provide evidence that machine learning tools are well suited to combining interactive 
biomarkers in a meaningful way that predicts changes in biomarkers that are not explicitly 
modelled (i.e. tau, cognition). 

In particular the text now writes (Introduction)  

“Thus, slowing rates of tau accumulation within these primary regions common to the 
different spatiotemporal profiles, similar to slowing rates of cognitive decline, could serve as 
an attractive biomarker outcome.” 

 (Results) 

“First, we contrasted baseline tau for Clinically Stable vs Clinically Declining individuals 
(Supplementary Results: Differences in baseline tau burden Clinically Stable vs. Clinically 
Declining). These analyses show that individuals classified as Clinically Declining have 
significantly greater baseline tau across the cortex (Braak I mean difference = 0.167 SUVR, 
t(113)=5.6,p<0.001; Braak II mean difference = 0.074 SUVR, t(113)=2.6, p=0.01; Braak III 
mean difference = 0.12 SUVR, t(113)=4.77 ,p<0.001; Braak IV mean difference = 0.08 
SUVR, t(113)=3.81,p<0.001; Braak V mean difference = 0.07 SUVR, t(113)=3.47,p<0.001; 
Braak VI mean difference = 0.041 SUVR, t(113)=2.53, p=0.012) (Supplementary Figure 2, 
Supplementary Table 1). This pattern of increased baseline tau was also observed in the 
BACS Clinically Declining sample (Supplementary Figure 3).” 

 (Discussion) 

“cognitive decline is considered as a primary outcome measure for clinical trials(Sperling et 
al., 2014), recent trials indicate a potential future role for biomarkers in drug discovery (e.g. 
Aβ in the case of the recently FDA approved aducanumab). Recent trials in early AD 
participants have also investigated downstream effects of Aβ lowering immunotherapies on 
both cognitive decline and changes in cortical tau burden measured with [18F]-flourtaucipir 
PET (FTP-PET)(Mintun et al., 2021). As tau is strongly linked to both future 
neurodegeneration and cognitive decline(Hanseeuw et al., 2019) this makes reduction of 
future tau accumulation a relevant intervention target and potential outcome measure. This is 
further evidenced by anti tau drugs entering the clinical trial pipeline(Cummings et al., 2019; 
Long and Holtzman, 2019). Given the failures of anti-amyloid interventions to halt clinical 
decline, simply clearing already deposited tau may be insufficient to stop downstream 
events(Long and Holtzman, 2019). Therefore, measuring changes in tau and cognition 
simultaneously may be more appropriate for assessing efficacy of anti-tau drug treatments. 
That is, targeting individuals with the highest risk of depositing tau rather than those 
burdened with tau, may increase the likelihood of successfully modifying downstream clinical 
decline.” 

 (Supplementary Results) 

“Differences in baseline tau burden for Clinically Stable vs. Clinically Declining  



Using the model derived classification of Clinically Stable vs. Clinically Declining, we 
contrasted the baseline tau burden between the two groups. FTP data were realigned, and 
the mean of all frames was used to coregister FTP to each participant’s MRI acquired closest 
to the time of the FTP-PET. FTP standardised uptake value ratio (SUVR) images were 
normalised to inferior cerebellar grey matter (Baker et al., 2017). MR images were 
segmented and parcellated into 72 ROIs taken from the Desikan-Killiany atlas using 
Freesurfer (V5.3). These ROIs were then used to extract regional SUVR data from the 
cerebellar normalised FTP-PET images. Left and right hemisphere ROIs were averaged to 
generate 36 ROIs for further analysis. SUVR values in six aggregate Braak staging regions 
were also derived averaging uptake across individual Freesurfer region of interests (ROIs) 
comprising each Braak region (Maass et al., 2017).   

Contrasting the baseline tau burden for Clinically Stable (n=59) vs. Clinically Declining 
(n=56) individuals showed increased baseline tau across the cortex for the Clinically 
Declining group (Supplementary Figure 2a, Supplementary Table 1). This overall pattern 
was consistent across all Braak regions, with a greater difference observed in earlier Braak 
regions (Braak I mean difference = 0.167 SUVR, t(113)=5.6,p<0.001; Braak II mean 
difference = 0.074 SUVR, t(113)=2.6, p=0.01; Braak III mean difference = 0.12 SUVR, 
t(113)=4.77 ,p<0.001; Braak IV mean difference = 0.08 SUVR, t(113)=3.81,p<0.001; Braak 
V mean difference = 0.07 SUVR, t(113)=3.47,p<0.001; Braak VI mean difference = 0.041 
SUVR, t(113)=2.53, p=0.012) (Supplementary Figure 2b,  Supplementary Table 1). This 
pattern of increased baseline tau for the Clinically Declining group was also observed in the 
BACS sample (Braak I mean difference=0.0445 SUVR; Braak II mean difference=0.0274 
SUVR; Braak III mean difference=0.0201 SUVR; Braak IV mean difference=0.0233 SUVR; 
Braak V mean difference=0.0324 SUVR; Braak IV mean difference= 0.0368 SUVR) 
(Supplementary Figure 3). Note that, as there is no partial volume correction,  the signal 
from Hippocampus (Braak II) may be unreliable.”  



Supplementary Figure 2. ADNI 3 difference in baseline tau burden Clinically Declining 
vs. Clinically Stable. a. mean difference in baseline tau burden across the 36 Desikan-
Killiany in the ADNI 3 sample. b. group differences in baseline tau burden across the six 
Braak stages, blue boxes show the distribution of baseline SUVR for the clinically stable 
group, red boxed show the distribution of baseline SUVR for the Clinically Declining group. 

 

 

Braak  Mean Mean t-stat t-stat p-val p-val 



Stage Clinically 
Stable 

Clinically 
Declining 

ROI Braak ROI Braak 

1 ENTORHINAL 1.108 1.275 5.596 5.596 <0.001 <0.001 

2 HIPPOCAMPUS 1.251 1.325 2.568 2.568 0.012 0.012 

 

3 

PARAHIPPOCAMPAL 1.111 1.214 4.366  

4.773 
 

<0.001  

<0.001 
FUSIFORM 1.193 1.308 4.185 <0.001 

LINGUAL 1.095 1.152 3.219 0.002 

AMYGDALA 1.214 1.397 5.058 <0.001 

 
 
 
 

4 
 

MIDDLETEMPORAL 1.168 1.278 3.576  
 
 
 

3.81 

0.001  
 
 
 

<0.001 

CAUDALANTERIORCINGULATE 1.058 1.098 2.026 0.045 

ROSTRALANTERIORCINGULATE 1.084 1.125 1.961 0.052 

POSTERIORCINGULATE 1.098 1.187 3.723 <0.001 

ISTHMUSCINGULATE 1.095 1.196 3.820 <0.001 

INSULA 1.116 1.178 3.039 0.003 

INFERIORTEMPORAL 1.205 1.335 3.890 <0.001 

TEMPORALPOLE 1.103 1.195 3.593 <0.001 

 
 
 
 
 
 
 
 
 

5 

SUPERIORFRONTAL 0.995 1.077 3.707  
 
 
 
 
 
 
 
 

3.469 

<0.001  
 
 
 
 
 
 
 
 

<0.001 

LATERALORBITOFRONTAL 1.194 1.258 2.964 0.004 

MEDIALORBITOFRONTAL 1.121 1.185 3.118 0.002 

FRONTALPOLE 0.973 1.022 2.061 0.042 

CAUDALMIDDLEFRONTAL 1.031 1.143 3.628 <0.001 

ROSTRALMIDDLEFRONTAL 1.049 1.134 3.107 0.002 

PARSOPERCULARIS 1.087 1.159 2.786 0.006 

PARSORBITALIS 1.144 1.186 1.884 0.062 

PARSTRIANGULARIS 1.115 1.164 2.190 0.031 

LATERALOCCIPITAL 1.095 1.181 2.730 0.007 

SUPRAMARGINAL 1.087 1.149 2.747 0.007 

INFERIORPARIETAL 1.130 1.237 3.475 0.001 

SUPERIORTEMPORAL 1.087 1.149 2.931 0.004 

SUPERIORPARIETAL 1.028 1.097 3.227 0.002 

PRECUNEUS 1.112 1.211 3.976 <0.001 

BANKSSTS 1.211 1.316 3.193 0.002 

TRANSVERSETEMPORAL 1.035 1.048 0.725 0.470 

 
 

6 
 

PERICALCARINE 1.119 1.168 2.666  
 

2.534 

0.009  
 

0.012 

POSTCENTRAL 0.979 0.998 1.179 0.241 

CUNEUS 1.102 1.146 2.216 0.029 

PRECENTRAL 1.001 1.040 2.171 0.032 

PARACENTRAL 1.022 1.074 2.776 0.006 

 

Supplementary Table 1. ADNI 3 difference in baseline tau burden Clinically Declining vs. 
Clinically Stable. Measures of baseline regional tau SUVR the Desikan Killiany atlas for 
ADNI 3 individuals grouped in the 6 Braak stages. The average tau burden and two sample t-
t-test statistics describing whether a region has significantly greater tau for individuals 
classified as Clinically Declining 



 

 
Supplementary Figure 3. BACS difference in baseline tau burden Clinically Declining vs. 
Clinically Stable. a. mean difference in baseline tau burden across the 36 Desikan-Killiany 
in the BACS sample. b. group differences in baseline tau burden across the six Braak stages, 
blue boxes show the distribution of baseline SUVR for the clinically stable group, red boxes 
show the distribution of baseline SUVR for the Clinically Declining group. 

 



 

 

2. a) (my numbering) Regarding the regression lines in Figures 7 and 8: 
The 95% confidence interval in Fig 7c (parietal) seems to suggest that a line of no 
trend would explain the data just as well (statistically speaking). Fig 7d is similar, 
although the correlation is probably significant (for what that's worth: null 
hypothesis testing was never intended to be confirmatory, but that's a fight for 
another day).  
The question is: how do these results (Figs 7,8) translate to the clinic? Is it that one 
can say with 95% confidence that there is, *at best*, a _weak_ positive trend? This 
needs clarifying and making explicit in the manuscript: the reader needs to be 
convinced that you are providing a useful model, not merely a statistically 
significant one. Sure, you can use it to reduce the clinical trial sample (great!), but 
is it really that useful? I want to be convinced, but I'm not yet. 

We test longitudinal biomarker prediction with potential translational impact for the design of 
clinical trials, rather than implementation in routine clinical practice.  

First, our work provides evidence that combining continuous baseline multimodal non-tau 
biomarkers using machine learning predicts future individualised rates of tau accumulation. 
Using simple linear regression models that over the time spans typical of clinical trials (i.e. 1-
3 years), we determine a linear subspace that allows us to infer risk of future tau 
accumulation across regions susceptible to tau accumulation in asymptomatic and early AD. 
This linear subspace relates to individual variability in future tau accumulation within the 
primary seeding regions of tau spread in early AD. We present individual data for two 
aggregate regions within the parietal and temporal cortex. In addition, we calculate these 
trend lines within individual ROIs in ADNI 3 and generate explicit predictions of 
individualised rates of tau accumulation in the BACS sample, with R2 values that explain 
40% of the variance. Our individualised prediction results within these ROIs show a positive 
relationship in ADNI 3 demonstrating that larger scalar projection values, indicating higher 
distance from the Clinically Stable prototype, relate to faster rates of tau accumulation. The 
same relationship was also observed in the BACS asymptomatic sample. Note that the linear 
subspace that captures degrees of freedom needed to span individual variability in future tau 
accumulation has been learnt solely on ADNI 2. Making reliable predictions on independent 
cohort samples (ADNI 3, BACS) by applying the same learned subspace suggests generalised 
validity of the learnt feature interactions coded in the subspace basis.   

Second, common stratification approaches are constrained by unimodal stratifications based 
on ß-amyloid alone or by clinical diagnoses. Our results show that these stratification 
approaches are limited. Using multimodal biomarkers, we generate a stratification that has 
greater sensitivity to future changes in tau accumulation than typical unimodal stratification 
approaches. In particular our multimodal modelling approach shows higher statistical power 
and reduced sample sizes for stratification based on future rates of tau accumulation. 
Optimising group membership has the potential to reduce sample size and costs incurred in 
phase 3 human trials. Further, determining groups based on 1. baseline tau, 2. future changes 
in cognition and 3. rate of tau accumulation in early AD regions has the potential to reduce 



the heterogeneity in treatment groups, increasing the sensitivity of clinical trials in assessing 
drug efficacy. 

Finally, our findings demonstrate that using the scalar projection value derived from 
modelling multimodal baseline data, we can re-stratify individuals based on their 
individualised predicted rates of future tau accumulation (i.e. no, slow, intermediate or rapid 
anticipated accumulation of tau). These results have relevance to clinical trials, as higher 
multimodal biomarker severity relates to increased rate of change in tau accumulation in 
asymptomatic and early AD. Therefore, trials may increase statistical power to detect 
treatment effects (i.e. reduction in future tau accumulation) if they select samples with larger 
scalar projections (i.e. higher pathological multimodal biomarker values). Further, matching 
individuals at the same baseline pathological state, particularly in regard to anticipated 
change of biomarkers, is highly relevant given recent results of the DIAN-TU study into anti-
amyloid interventions. This study suggests that selecting a narrower range of baseline disease 
severity may have increased statistical power to observe treatment effects in halting 
downstream effects (i.e. cognitive decline) in dominantly inherited AD (Salloway et al., 
2021).  

In particular the text now writes (Discussion) 

“Further, our trajectory modelling approach  shows that there is a linear relationship 
between baseline non-tau biomarkers and future rates of tau accumulation over a short 
timespan (typical of a clinical trial) . This result has particular relevance to clinical trial 
design, as it suggests that patient stratification for clinical trials can be optimised to select 
individuals with the greatest potential treatment effect (i.e. greatest reduction in rate of tau 
accumulation). Thus, our findings demonstrate: a)  the benefit of combining continuous 
values of Aβ and medial temporal grey matter density for prognostication, b) the potential of 
our approach to inform the design of clinical trials targeting pathophysiological changes at 
the earliest stages of AD. “ 

 

3. b) "The focus of our analyses is early-stage stratification for patients with AD 
pathology. In particular, we developed a modelling approach that is sensitive and 
specific to the AD topography of tau accumulation."  
See Vogel at al, medRxiv 2020 where four topographic subtypes of tau 
accumulation were robustly identified across multiple cohorts and PET tracers. The 
authors need to convince the reader that their approach is still valuable in that it 
considers only temporal aspects of an assumed single topography, whereas the 
evidence suggests multiple topographies/subtypes: spatiotemporal heterogeneity of 
tau accumulation (Vogel-2020) and grey-matter atrophy (Young et al, Nature 
Commun 2018). 

 
We address this point in our response to point 13 below.  
 

4. c) Regarding using a linear model: 
"Thus, we tested whether a linear model captures the relationship between the 
scalar projection and individual rate of future tau accumulation for our early-stage 
AD sample..." 



- I agree that a linear model makes sense on the scale of a few years. (The authors 
make a strange argument that they're looking at "the linear portion" of the tau 
curve: any curve is locally linear on a sufficiently short timescale.) 
- The challenge I pose to the authors is related to the nonlinear nature over longer 
times that are of potential clinical interest. The model, as I understand it, does not 
explicitly link the linear segments from individuals (over short times) to a global 
nonlinear model of tau accumulation (over longer times). For example, consider a 
new patient assessed by the model to be in the earliest stage of AD pathology at 
their baseline visit. Using a linear prediction is sensible in the short-term, but will 
likely produce highly inaccurate (over)estimates beyond a few years. Perhaps this 
isn’t a massive problem in practice, since the patient might be asked to return for 
another assessment in, say, one/two years from baseline. At which point, the model-
based predictions would be updated. Worth making this point in the revised 
manuscript, i.e., if you're motivated by short-time applications of no more than a 
couple of years, such as clinical trials, then that justifies using a linear 
model. But using a single linear model to cover all levels of pathology (over many 
years) is less convincing. 

Our aim is to build a predictive model that captures the earliest AD related changes in tau 
accumulation. We believe that a linear model is appropriate because of a) the sampling 
characteristics of the data available (i.e. over a time span of a few years), b) the data we use 
to stratify populations for a typical AD trial (i.e. over a time span of a few years). As the 
reviewer points out, our current linear model is not appropriate to model the non-linear 
trajectories over a longer time span particularly as topologies start to separate into clinical tau 
phenotypes. We have now clarified that our aim is to predict future rate of tau accumulation 
over a timescale typical of AD clinical trials and determine: 1. the optimal data to stratify 
early and asymptomatic AD individuals, 2. whether a multimodal biomarker index can be 
used to determine who is at greatest risk of accumulating tau in early pathological AD 
regions.   

We have now clarified throughout the text that our work is aimed at application over short 
time spans common in early AD clinical trials. In particular the text now writes: 

(Introduction) 

“We test whether our modelling approach predicts longitudinal change in biomarkers (i.e. 
future tau accumulation) using baseline non-tau data over the short timeframes that are 
typical in clinical trials (i.e. 1-3 years) at asymptomatic and mildly impaired stages of AD. … 
suggesting potential benefits of our multimodal biological stratification for the design of 
clinical trials that aim to reduce primary pathological tau spread at the earliest stages of 
AD.” 

(Discussion) 

“Fourth, our linear modelling approach, focusing on data from cognitively normal and MCI 
individuals, captures the earliest changes in tau accumulation on a time-span typical of a 
clinical trial (i.e. only a few years). We show that a linear model predicts individual variation 
in future tau accumulation, within multiple samples and over the timeframe of a clinical trial 
(i.e. early to intermediate pathological stages).” 



 

5. d) Revised text on page 19: "as evidenced by the generalisability of our results 
across samples" 
- Please tone this down a bit. Or qualify it with a comment about (small) sample 
sizes. Perhaps: "as supported by the consistency of our results across (admittedly 
small) samples." 

We have revised the text and comment on the small sample size in the validation data set. In 
particular the text (Discussion) now writes 

“This provides evidence that our results are not driven by the sampling characteristics of 
ADNI, suggesting generalisability (albeit in the small BACS sample) of our modelling 
approach to more diverse groups.” 

6. e) Revised text: "Extending our modelling approach to integrate less-costly (i.e. 
plasma) and non-invasive (i.e. cognitive) data has strong potential for stratification 
at asymptomatic or early stages of AD." 
- I really like this idea. Is something like this feasible for the authors to implement 
in ADNI? Using cognitive data, not "new plasma biomarkers" (since they don't 
exist in ADNI). If it *is* possible to compare how this model performs with 
different inputs (cognitive test scores versus neuroimaging+biomarkers), such a 
study would add a lot of value to the paper as an additional supplementary analysis. 

We have now run an additional set of experiments using cognitive data from the ADNI 
sample. Using the GMLVQ-Scalar projection model we trained our classifier to separate 
individuals who are Clinically Stable (n=99) vs. Clinically Declining (n=156) from the 
ADNI2/ GO sample. We used 4 cognitive test scores to build our model; ADAS Cog, MOCA 
Total, MMSE Total, RAVLT Total. All cognitive assessments were taken within one year of 
the baseline Aß scan. Our model achieved a cross validated class balanced classification 
accuracy of 86% (determined using random resampling of test data). Next, we derived the 
scalar projection score for the ADNI 3 sample with longitudinal tau data available. Of the 115 
individuals 110 (41 MCI, 69 CN) had cognitive assessments within one year of their baseline 
tau scan. 

The model classified 44 individuals as Clinically Declining and 66 as Clinically Stable. 
Comparing the agreement between the classifier and clinical diagnosis (Supplementary 
Results Table 1) showed fair agreement between the clinical diagnoses and the machine 
learning derived classification Cohen's kappa = 0.3295, 95% CI [0.1461, 0.5129] z = 3.4388    
p = 0.0006.  

Next, we tested whether the classification of Clinically Declining vs. Clinically Stable using 
the cognitive scalar projection is sensitive to future tau accumulation. We observed that the 
cognitive model separates individuals who will accumulate tau in the future (Supplementary 
Figure 4.). Further, we observed that there is a low inter-class correlation coefficient for the 
average rate of tau accumulation for Clinically Declining vs Clinically Stable (r=0.07 [-0.26, 
0.38], F(35,36)= 1.1492 p=0.34), suggesting specificity to future rates of tau accumulation 
using a stratification based on cognitive data.  



Finally, we tested whether the scalar projection derived from modelling the cognitive data 
relates to individual variability in future rate of tau accumulation. Unlike the scalar projection 
derived from modelling biological data, we did not observe a relationship between the scalar 
projection derived from cognitive data and individual variability in future rate of tau 
accumulation within ROIs that were shown to significantly accumulate tau (Supplementary 
Results Table 2.). Taken together, we show that a binary stratification based on cognitive 
data is sensitive to future tau accumulation. However, the individualised scalar projection 
score derived from modelling cognitive data is not a sensitive metric for fine scale 
stratification based on future tau accumulation. Thus, our cognitive model predicts whether 
individuals will accumulate tau but does not determine who will accumulate tau at a slow, 
intermediate or rapid rate. 

In particular the text now writes: 

(Results) 

“Predicting future tau accumulation based on cognitive data 

To investigate the predictive power of cognitive data we re-ran our classification experiments 
using data from multiple neuropsychiatric tests as input features (ADAS-Cog, MOCA Total, 
MMSE Total, RAVLT Total). This cognitive classification model reliably separated Clinically 
Stable vs. Clinically Declining (86% class balanced accuracy). Further, using the cognitive 
scalar projection derived in ADNI 3, we show that this prognostic index separates individuals 
who will accumulate tau in the future (Supplementary Results: Cognitive Classification 
Model). These results demonstrate that stratification based on future tau accumulation is 
possible using cognitive (non-biomarker) data. Next, we related the cognitive scalar 
projection to future regional tau accumulation within ROIs that were shown to significantly 
accumulate tau (Supplementary Figure 5). We did not observe a significant relationship 
between the cognitive scalar projection and individual variability in future tau accumulation 
in these ROIs (Supplementary Results: Cognitive Classification Model). Thus, our 
trajectory modelling based on cognitive data separates individuals who will accumulate tau 
in the future; yet,  it is less sensitive in predicting individual variability in future regional tau 
accumulation.” 

(Discussion) 

“Further, we demonstrate that model-derived stratification using either biological or 
cognitive data determines which individuals will accumulate tau in the future. Yet, modelling 
biological rather than cognitive data predicts individualised future rates of tau accumulation 
(i.e. whether an individual will accumulate tau slowly or rapidly). Extending our biomarker 
modelling approach to integrate less-costly (i.e. plasma) and non-invasive (i.e. cognitive) 
data has strong potential to determine the most cost-effective approach for stratification at 
asymptomatic or early stages of AD.” 

(Supplementary Results) 

“Cognitive Classification Model  

Using the GMLVQ-Scalar projection model we trained our classifier to separate Clinically 
Stable (n=99) vs Clinically Declining (n=156) individuals from the ADNI2/ GO sample. We 
used 4 cognitive test scores as predictors to train our model: ADAS Cog, MOCA Total, 



MMSE Total, RAVLT Total. All cognitive assessments were taken within one year of the 
baseline Aβ scan. Our model achieved a cross validated class balanced classification 
accuracy of 86% (determined using random resampling of test data). Next, we derived the 
scalar projection score for the ADNI 3 sample with longitudinal tau data available. Of the 
115 individuals 110 (41 MCI, 69 CN) had cognitive assessments within one year of their 
baseline tau scan. 

The model classified 44 individuals as Clinically Declining and 66 as Clinically Stable. When 
comparing the agreement between the classifier and clinical diagnosis (Supplementary 
Results Table 1) we observed a fair agreement between the clinical diagnoses and the 
machine learning derived classification Cohen’s kappa = 0.3295, 95% CI [0.1461, 0.5129] z 
= 3.4388    p = 0.0006.  

Next, we tested whether the classification of Clinically Declining vs Clinically Stable using 
the scalar projection derived from the cognitive model  is sensitive to future tau 
accumulation. This analysis showed  that the cognitive model separates individuals who will 
accumulate tau in the future (Supplementary Figure 5, Supplementary Results Table 2). 
Further, there was a low interclass correlation coefficient for average rate of tau 
accumulation between  Clinically Declining and Clinically Stable  individuals (r=0.07 [-
0.26, 0.38], F(35,36)= 1.1492 p=0.34).  

 Clinically Stable Clinically Declining

CN 50 19 

MCI 16 25 

Supplementary Results Table 1. Clinician vs. cognitive classifier Confusion matrix. inter-
rater reliability when diagnosing Clinically Declining based on biological predictors (i.e. 
scalar projection) or a clinical diagnosis based on syndromic definitions (i.e. CN or MCI).  

 

Predicting future regional tau accumulation based on  the cognitive scalar projection  

To test if the scalar projection derived from modelling the cognitive data is related to 
individual variability in future rate of tau accumulation we ran multiple regression models 
within the regions that were shown to significantly accumulate tau (Supplementary Figure 5, 
Supplementary Results Table 2). Unlike the biological scalar projection derived from 
modelling biological data, the cognitive scalar projection derived from modelling cognitive 
data did not show a significant relationship  to individual variability in future rate of tau 
accumulation within any of the ROIs that were shown to significantly accumulate tau 
(Supplementary Results Table 3). Although the binary stratification based on cognitive data 
predicts  future tau accumulation, the individualised score captured by the scalar projection 
derived from modelling cognitive data is shown to be  less sensitive for fine scale 
stratification based on future tau accumulation. Although our cognitive model predicts 
whether individuals will accumulate tau in the future, it does not determine whether an 
individual will accumulate tau at a slow, intermediate or rapid rate.” 

  



 

Supplementary Figure 5. Regional future annualised rate of tau accumulation across the 
36 Desikan Killiany ROIs. Classification of Clinically Declining vs Clinically Stable 
individuals using cognitive data from the ADNI 3 sample. a. Mean future annualised rate of 
tau accumulation for Clinically Declining. b. The regions in red are significantly predicted to 
(p<0.05 uncorrected) accumulate tau for Clinically Declining individuals. c. Mean future 
annualised rate of tau accumulation for Clinically Stable (CN). d. The regions in red are 
significantly (p<0.05 uncorrected) predicted to accumulate tau for Clinically Stable 
individuals. 
  



Braak Stage Region 

Clinically Stable (n=44) Clinically Declining (n=66) 

 
Significantly 
Accumulating 
Tau  

Significantly 
Accumulating 
Tau

mean 
accumulation 
(SUVR/Year) t-stat p-val 

mean 
accumulation 
(SUVR/Year) t-stat p-val

1 ENTORHINAL 0.004 1.059 0.147 0.008 1.228 0.113
2 HIPPOCAMPUS 0.005 1.422 0.080 -0.006 -1.279 0.896

3 

PARAHIPPOCAMPAL 0.003 0.908 0.184 0.006 1.180 0.122
FUSIFORM 0.004 1.267 0.105 0.013 2.627 0.006
LINGUAL 0.000 0.122 0.452 0.005 1.136 0.131
AMYGDALA 0.004 0.994 0.162 0.004 0.714 0.240

4 

MIDDLETEMPORAL 0.006 1.566 0.061 0.019 3.642 0.000
CAUDALANTERIORCINGULATE 0.000 -0.149 0.559 0.000 -0.010 0.504
ROSTRALANTERIORCINGULATE -0.003 -1.327 0.905 -0.003 -0.643 0.738
POSTERIORCINGULATE 0.001 0.408 0.342 0.007 2.207 0.016
ISTHMUSCINGULATE 0.002 0.734 0.233 0.008 2.399 0.010
INSULA -0.001 -0.411 0.659 0.004 1.067 0.146
INFERIORTEMPORAL 0.006 1.563 0.061 0.018 3.299 0.001
TEMPORALPOLE -0.005 -1.083 0.858 -0.002 -0.373 0.644

5 

SUPERIORFRONTAL 0.002 0.603 0.274 0.004 1.144 0.129
LATERALORBITOFRONTAL 0.002 0.580 0.282 -0.001 -0.158 0.562
MEDIALORBITOFRONTAL -0.001 -0.307 0.620 -0.006 -1.645 0.946
FRONTALPOLE -0.001 -0.212 0.584 0.008 1.233 0.112
CAUDALMIDDLEFRONTAL 0.001 0.373 0.355 0.012 3.004 0.002
ROSTRALMIDDLEFRONTAL 0.001 0.326 0.373 0.005 1.231 0.113
PARSOPERCULARIS 0.003 1.040 0.151 0.005 1.704 0.048
PARSORBITALIS 0.003 0.564 0.287 0.004 0.816 0.210
PARSTRIANGULARIS 0.002 0.488 0.314 0.004 1.095 0.140
LATERALOCCIPITAL 0.002 0.441 0.330 0.025 3.458 0.001
SUPRAMARGINAL 0.001 0.462 0.323 0.011 2.810 0.004
INFERIORPARIETAL 0.004 1.063 0.146 0.020 3.552 0.000
SUPERIORTEMPORAL -0.001 -0.201 0.580 0.007 1.924 0.030
SUPERIORPARIETAL 0.002 0.415 0.340 0.018 3.482 0.001
PRECUNEUS 0.002 0.768 0.223 0.008 2.436 0.010
BANKSSTS 0.006 1.740 0.043 0.011 2.330 0.012
TRANSVERSETEMPORAL -0.005 -1.457 0.925 -0.004 -0.936 0.823

6 

PERICALCARINE 0.001 0.225 0.411 0.004 1.029 0.155
POSTCENTRAL -0.001 -0.445 0.671 0.007 1.669 0.051
CUNEUS -0.001 -0.247 0.597 0.012 2.282 0.014
PRECENTRAL 0.000 -0.048 0.519 0.006 1.646 0.054

PARACENTRAL 0.003 0.941 0.175 0.005 1.311 0.098

 Mean 0.001  0.007  
Supplementary Results Table 2. Regional future annualised rate of tau accumulation 
Measures of future regional annualised rate of tau accumulation taken from the Desikan 
Killiany atlas for ADNI 3 individuals within the 6 Braak stages. The mean future annualised 
rate of tau accumulation and test statistics describing whether a region significantly 
  



 

 

Braak 
Stage Region 

Beta Estimate 
(SUVR/Year) t-stat p-val 

3 FUSIFORM 0.021 1.414 0.165 

  
4 

MIDDLETEMPORAL 0.019 1.005 0.321 

POSTERIORCINGULATE -0.004 -0.340 0.736 

ISTHMUSCINGULATE 0.001 0.126 0.900 

INFERIORTEMPORAL 0.018 0.942 0.351 

  
  
  
5 
 

CAUDALMIDDLEFRONTAL 0.013 1.152 0.256 

PARSOPERCULARIS 0.002 0.218 0.829 

LATERALOCCIPITAL 0.009 0.396 0.694 

SUPRAMARGINAL 0.007 0.531 0.598 

INFERIORPARIETAL 0.024 1.312 0.197 

SUPERIORTEMPORAL -0.008 -0.608 0.547 

SUPERIORPARIETAL 0.015 0.923 0.361 

PRECUNEUS 0.002 0.178 0.859 

BANKSSTS 0.022 1.471 0.149 

6 CUNEUS -0.009 -0.513 0.611 

Supplementary Results Table 3. Fitting individual variability in regional future annualised 
rate of tau accumulation Parameter estimates and associated statistics for the robust 
regression equations using the cognitive scalar projection to predict regional future tau 
accumulation for individuals from ADNI 3 classified as Clinically Declining. 
 

7. "We look forward to the opportunity to test our approaches in a clinical trial." 
- Have you approached Pharma to get your model included in future trials? 
 

We have established collaborations with Pharma to facilitate the translation of our machine 
learning tools into clinical trials. However this upcoming work is not in the remit of this 
paper. 
 

8. a) I understand now: you are directly comparing to Jack-2020. I think this 
paragraph needs to be rewritten to make this more obvious. For example, wording 
such as “A recent paper claimed that AB status alone...We found that...” would 
avoid the reader being confused (as I was) into thinking that you’re saying, simply, 
that “multivariate is better than univariate”. - Where you write "by 44%", the 
reader would appreciate the raw numbers also being included, e.g., "from 100 to 
66". 

We have clarified this paragraph in the revised manuscript. In particular, we show that using 
the multimodal prognostic index vs. Aß status alone reduces the sample size required to 
observe a clinically meaningful change in pathological tau accumulation by 44% (Clinically 



Declining n=636, Abeta positive n=1139). This result offers a complimentary conclusion to a 
recent study by Jack and colleagues investigating predictors with the most independent utility 
in predicting future rate of tau accumulation (Jack et al., 2020). Jack et al concluded that 
when considering key AD biomarkers (i.e. APOE 4, Aß and neurodegeneration) Aß status 
alone is the optimal independent biomarker for stratification to predict future tau 
accumulation. Our machine learning approach captures predictive disease related covariance 
in biomarkers (via the metric tensor), demonstrating that there is a benefit in using 
multivariate predictors over Aß status alone when stratifying for clinical trials targeting future 
tau accumulation. This provides evidence in support of using machine learning to model 
disease trajectories based on biomarkers of interactive pathophysiological processes in AD. 

In particular the text now writes (Discussion): 

“This result complements a recent study by Jack and colleagues investigating predictors with 
the most independent utility in predicting future rate of tau accumulation(Jack et al., 2020). 
Jack et al concluded that when considering key AD biomarkers (i.e. APOE 4, Aß and 
neurodegeneration) Aß status alone is the optimal independent biomarker for stratification to 
predict future tau accumulation. Our machine learning approach captures predictive disease 
related covariance in biomarkers (via the metric tensor), showing a clear benefit in using 
multivariate predictors over Aß status alone when stratifying for clinical trials targeting 
future tau accumulation.“ 

9. "Direct comparison of diverse machine learning approaches remains challenging 
as cross-validation methodology, sample sizes and sample heterogeneity have a 
significant effect on model performance metrics" 
- This sentence misses the point. Perhaps I was unclear when I suggested that you 
should compare your results with a benchmark model. For example, this could be 
SVM or logistic regression for the classification experiments. To make the 
comparison fair, you would ideally keep all other experimental design choices 
fixed: input features, cross-validation settings, etc. 
 

We thank the reviewer for clarifying this point. Following the reviewer’s suggestion, we 
compared the established GMLVQ classification framework with a linear SVM using 
MATLAB statistics and machine learning toolbox. We fixed all experimental design choices 
(i.e. targets, input features and cross validation settings). Comparing performance of the two 
low parameter linear classifiers showed the same classification performance in the 
ADNI2/GO training sample (Response Figure 1) (GMLVQ: Average Accuracy 88% SVM: 
Average Accuracy 88%, paired t-test across cross folds t(798)=1.5, p=0.13) with a 99.13% 
overlap in the predicted labels in the ADNI 3 sample. These results suggest that the two low 
parameter linear classifiers perform comparably in the same classification task.  

The similar performance between algorithms is likely due to two main reasons. First, both 
classifiers are linear and low parameter as there are only three input features used to classify 
two classes. As the training sample size (n=256) far exceeds the free parameters of each 
model, neither approach is prone to overfitting. Second, the training classes used are 
specifically constructed to have the best chance in finding a robust decision boundary. That 
is, we used multiple clinical appraisals to determine if a training target was stable cognitively 
normal vs. cognitively normal or MCI at baseline but received a diagnosis of Dementia. Here, 



we did not present the model with uncertain classes (i.e. MCI at baseline but cognitively 
normal or MCI at follow-up), increasing the likelihood of each classifier extracting a robust 
decision plane.  

Despite these similarities between SVM and GMLVQ, GMLVQ has a clear advantage: it 
learns the metric tensor providing the subspace based on which individualised projection 
indices (scalar projection values) can be calculated.  

 

Response Figure 1. Comparing classification performance of SVM and GMLVQ. 
Boxplot showing the distribution of class balanced classification accuracies across 
resampling for the SVM (left) and GMLVQ (right).  

 

10. Thus, our predictions are not directly comparable to those of models performing 
only binary classifications based on syndromic diagnosis"  
- To be blunt, this is nonsense. As explained above, and with apologies if I was 
unclear in my first review, your classifier experiments can be compared with 
SVM/etc. in place of your model.  

Please see above for comparison of GMLVQ and SVM classifiers 

11. Additionally, your prediction results could also be compared with latent-time mixed-
effects models such as (Donohue et al., Alzheimers Dement 2014; Li et al., Stat 



Meth Med Res 2017; Lorenzi et al., NeuroImage 2017), each of which has public 
source code available. 

We thank the reviewer for this suggestion. We have now compared our prediction results 
with the latent time joint mixed effects model (LTJMM) introduced in Li et al. 2017 and 
applied in Li et al 2018(Li, Iddi, Thompson, & Donohue, 2019; Li et al., 2018). We used the 
public source code for this model from https://bitbucket.org/mdonohue/ltjmm/src/master/ to 
compare our predictions.  

First, we ran the LTJMM on the longitudinal FTP-PET measures in the ADNI 3 sample 
including as covariates APOE 4, MTL atrophy and FBP PET SUVR taken at the baseline 
FTP-PET scan. We modelled longitudinal FTP-PET accumulation in the 7 ROIs that showed 
significant regression fits between the scalar projection and future tau accumulation (Figure 
7). We found that the mean posterior estimates of the rate of tau accumulation for the 7 ROIs 
are closely associated with the observed rate of tau accumulation (Response Figure 2).  

Next, we extracted the latent time shift (delta) derived from the LTJMM to investigate if the 
model-derived disease stage is related to the scalar projection. We observed a significant 
relationship between the LTJMM latent time shift and the scalar projection 
r(113)=0.42,p<0.0001 (Response Figure 3). This demonstrates that the scalar projection 
derived from only baseline biomarker data is related to the LTJMM disease stage derived 
from both baseline and longitudinal biomarker information. 

These analyses suggest that our prognostic index of disease severity (i.e. scalar projection 
derived from baseline data) relates to the latent time shift derived from the LTJMM. 
However, a key difference is that our scalar projection approach uses baseline non-tau data 
(i.e. APOE 4, medial temporal atrophy and Aß) to make predictions of future tau 
accumulation, while the LTJMM model requires longitudinal FTP-PET data to derive a 
parameter estimate of rate of tau accumulation.  

In particular, from the underlying LTJMM model (shown below) we see that the alpha 1 
parameter representing individualised regional rates of tau accumulation is indexed by k - 
outcome and i- individuals. Therefore, this model requires the observation of longitudinal 
FTP-PET (k) to fit the rate parameter for each individual (i).  

 

In contrast, our approach (shown below) derives this rate of future tau accumulation using 
only baseline non- tau biomarkers. That is, we utilise the scalar projection derived from 
baseline non-tau biomarker data to generate a prediction for the future rate of tau 
accumulation.   

 

 

Thus, our scalar projection approach makes the following novel methodological 
contributions: First, we learn a linear subspace on the ADNI 2/GO sample that does not 
include FTP-PET imaging, showing that the learnt subspace relates to future tau 

݀݁ݐܿ݅݀݁ݎܲ ݁ݐܴܽ ݂݋ ݑܽܶ ݊݋݅ݐ݈ܽݑ݉ݑܿܿܣ ሺܵܥܣܤሻ ோைூ ൌߚሺܫܰܦܣ	3ሻோைூ ∗ ݕ݈݈݈ܽܿ݅݊݅ܥ ݈݃݊݅݊݅ܿ݁ܦ ݎ݈ܽܽܿܵ ሻܵܥܣܤሺ݊݋݅ݐ݆ܿ݁݋ݎܲ ൅ 3ሻோைூ	ܫܰܦܣ଴ሺߚ  



accumulation in two independent samples with longitudinal FTP-PET imaging. That is, the 
learnt subspace of baseline biomarkers that distinguishes Clinically Declining vs Clinically 
Stable allows us to identify individuals who will accumulate tau in the future.   

Second, using this linear subspace and prototypical locations of Clinically Stable vs. 
Clinically Declining individuals we derive a single baseline index of non-tau biomarker 
severity out of sample. Using this index, we generate a series of predictive equations that are 
associated with individualised rates of regionally specific pathological tau accumulation.  

Third, using the linear subspace -derived from ADNI 2/ GO- and the regional regression 
equations -derived from ADNI 3- we explicitly predict future rates of tau accumulation for 
asymptomatic individuals (i.e. BACS sample). To the best of our knowledge this is the first 
approach that is able to predict out of sample individual rates of future regional tau 
accumulation using baseline non-tau biomarkers. As LTJMM uses individualised 
parameters, out-of-sample predictions (i.e.  training on one sample and testing on another) are 
not possible. Generalisation from ADNI 2/ GO and ADNI 3 to an asymptomatic sample 
(BACS) provides evidence that our modelling captures relevant patterns underlying future 
regional tau accumulation that are predictive when weaker signals are considered as in the 
case of asymptomatic individuals. 

Thus, compared to the LTJMM, our approach has two key advantages a) it does not require 
longitudinal FTP-PET scans to derive the future rate of tau accumulation and b) it makes 
explicit predictions of future tau accumulation out-of-sample. 

 



Response Figure 3. Comparing LTJMM model estimations for alpha (rate of tau 
accumulation) and observed rate of tau accumulation. 

 

 

 

 

 

 

 



 

Response Figure 3. Comparing Latent time shift from LTJMM and GMLVQ-Scalar 
projection score. 

 

12. "To compare performance of our modelling approach we compared our 
multimodal baseline stratification with two common approaches to stratify 
individuals in the early stages of AD: 1) syndromic definitions and 2) amyloid 
status." 
- Seems a reasonable comparison, since your aim is to compete with these in 
clinical trial settings. However, if one can achieve comparable performance with 
(for example) a SVM (see my points above), then the technical contribution of this 
paper is diminished considerably. The authors are strongly encouraged to run these 
experiments to convince themselves and the reader of their model's contribution to 
knowledge. 

 Our modelling approach is based on a well-established binary classification framework 
(GMLVQ) that is comparable to other linear classification approaches (e.g. SVM; see 
response to point 9). Yet, the technical contribution of our approach lies in deriving the scalar 
projection from the learned subspace that allows us to estimate individualised disease 
trajectories. That is, GMLVQ learns a metric tensor that zooms into a low dimensional 
subspace to separate the classes. This enables us to construct individual projection indices 
and to project these scalar values back onto the cortex to predict regional individualised rates 
of tau accumulation. These predictions can then be applied out-of-sample in the BACS 
asymptomatic sample, explaining up to 40% of the observed variance in temporal regions.  

Importantly, our binary classification approach makes a strong conceptual contribution to the 
field, delivering 2 key results with potential impact for clinical trial design: 1. multimodal 
biological stratification outperforms unimodal stratification based on Aß, and. 2. syndromic 
definitions that constrain recruitment are not sensitive or specific to AD pathology. Thus, 
training a low parameter, simple linear classifier on longitudinal clinical labels predictions 
can be made out-of-sample across a range of different AD related changes (i.e. baseline and 



future tau accumulation as well as cognitive decline). As these secondary predictions use data 
that are not included in the training of the classifier, our approach can be used to harmonise 
data that was collected using diagnostic criteria to make predictions in data samples with 
missing data (i.e. absence of FTP-PET in the ADNI2/GO training sample).  

Finally, we  show that the standard linear SVM package in MATLAB trained under the same 
conceptual framework (i.e. trained to predict longitudinal changes in diagnoses) performs 
similar to the GMLVQ classifier, within the ADNI2/GO training sample (GMLVQ: Average 
Accuracy 88% SVM: Average Accuracy 88%, paired t-test across cross folds t(798)=1.5, 
p=0.13) with a 99.13% overlap in the predicted labels in the ADNI 3 sample (see response to 
point 9). Thus our approach provides a tool that enables researchers to test implicitly learnt 
predictions out-of-sample by training simple linear and low parameter classifiers on 
longitudinal labels. The barrier to entry for researchers to follow our conceptual framework 
may be reduced, as other widely accessible linear classifiers (e.g. SVM) can be used to make 
the same predictions, increasing the potential impact of our approach. 

To the best of our knowledge, no previous work has used baseline non-tau biomarkers to 
predict regional future rates of tau accumulation. Thus, our approach has both technical and 
conceptual merit as well as strong translational potential in the context of clinical trials. 

In particular the text now writes: 

(Results) 

“Model comparison  

We compared our model derived predictions generated from our GMLVQ-scalar projection 
approach to alternate prediction frameworks.  

First, comparing our GMLVQ binary classification of Clinically Stable vs. Clinically 
Declining to the standard linear Support Vector Machine (SVM) showed similar accuracy 
(mean accuracy GMLVQ: 88% SVM: 88%, t(798)=1.5, p=0.13) and 99.13% agreement in 
the predicted labels for the ADNI 3 sample (Supplementary Results: GMLVQ vs. SVM 
classification). Thus, the SVM classifier corroborates our binary classification results using 
GMLVQ. Yet, the main advantage of GMLVQ is that it learns the metric tensor, providing a 
subspace based on which the individualised prognostic index (i.e. scalar projection values) is 
calculated.  

Second, we compared our trajectory modelling approach based on baseline biomarker data 
to latent time joint mixed effects models (LTJMM) that have been previously shown to infer 
disease stage based on longitudinal biomarker data(Li et al., 2019).   We tested whether our 
scalar projection which incorporates only baseline pathological burden relates to disease 
stage (i.e. latent time shift) extracted from the LTJMM that is derived modelling longitudinal 
tau data. We observed a positive relationship between the LTJMM latent time shift and our 
prognostic index (r(113)=0.42,p<0.0001), suggesting the scalar projection derived using 
only baseline data relates to the LTJMM derived disease stage (Supplementary Results 
GMLVQ-scalar projection vs. LTJMM prediction).  

Taken together, our results  show that  a) our conceptual framework employing machine 
learning to utilise longitudinal changes in syndromic labels and predict biomarker changes is 



corroborated across linear classifiers b) our prognostic index derived using baseline non-tau 
data, is related to disease stage estimated using longitudinal tau accumulation.”  

(Discussion) 

“Third, our modelling approach is based on linear subspace learning and makes continuous 
individual trajectory predictions using an adapted discrete classification framework 
(GMLVQ). Comparing our metric learning approach to other linear classifiers (i.e. SVM) 
corroborates our results, suggesting that low parameter machine learning algorithms trained 
on longitudinal diagnostic labels integrate baseline biomarker data to stratify early AD 
individuals (i.e. without requiring longitudinal diagnoses). Further, we show that our model 
derived prognostic index relates to disease stage, as determined using latent time joint mixed 
effects (LTJMM) models(Li et al., 2019). However, our approach has two main advantages 
compared to LTJMM: a) it derives future rate of tau accumulation based on non-tau 
biomarkers (in contrast to LTJMM that requires longitudinal FTP-PET scans) b) makes 
predictions of future tau accumulation out-of-sample at asymptomatic stages of disease. … 
Our approach provides two key advances: a) it combines multimodal continuous biological 
measures to capture trajectories for individuals who may be on the threshold of unimodal 
biomarker positivity but likely to follow AD related trajectories(Landau et al., 2018), b) it 
harmonises longitudinal data collected using syndromic diagnostic criteria(Albert et al., 
2011; McKhann et al., 2011) (e.g. ADNI(Petersen et al., 2010)) by means of a model-derived 
prognostic index. Further, our multimodal trajectory modelling approach has translational 
impact for clinical trial design compared to standard stratification approaches for AD based 
on a) baseline syndromic labels (i.e. CN and MCI) and, b) unimodal stratification by Aß 
positivity.  Our results propose that:  a) determining treatment groups based on syndromic 
labels may result in variability in pathological state across groups, b) unimodal stratification 
based on Aß alone is underpowered compared to the multimodal stratification derived based 
on our prognostic index.” 

(Supplementary Results) 

“Comparing binary and individualised predictions with alternate modelling approaches 

GMLVQ vs. SVM classification 

We compared the GMLVQ classification results with a linear Support Vector Machine 
(SVM). The SVM was run using the fitcsvm.m function from MATLAB statistics and machine 
learning toolbox. We fixed all experimental design choices when comparing the two 
classifiers. That is, for each resample of the data we ran the two classifiers on the same 
training and hold out data and calculated the class-balanced accuracy on the hold out data. 
To compare the performance of the two linear classifiers we performed a paired t-test on the 
class-balanced accuracy across resampling. Comparing the average classification 
performance in the ADNI2/GO training sample we observed the same model accuracy 
(GMLVQ: Average Accuracy 88% SVM: Average Accuracy 88%). Further, we did not 
observe any significant differences in classification performance across resamplings 
(t(798)=1.5, p=0.13). Finally, we trained each model on the full ADNI2/GO sample and 
generated predicted outcome labels for the ADNI 3 sample. We observe a 99.13% agreement 
in predicted labels for the ADNI 3 sample. Therefore, we conclude that the two low 
parameter linear classifiers perform comparably in the same classification task. This is 



possibly due to the fact that both classification approaches relate to linear subspace learning. 
First, both classifiers are linear and low parameter as there are only three input features 
used for separating two classes. As the training sample size (n=256) far exceeds the free 
parameters of each model, neither approach is prone to overfitting. Second, the training 
classes used were specifically constructed to have the best chance in finding a robust 
decision boundary. That is, we used multiple clinical appraisals to determine if a training 
target was stable cognitively normal vs. cognitively normal or MCI at baseline but received a 
diagnosis of Dementia. Here, we did not present the model with uncertain classes (i.e. MCI at 
baseline but cognitively normal or MCI at follow-up, increasing the likelihood of each 
classifier extracting a robust decision plane. Finally, both approaches can be related to 
subspace learning; that is, GMLVQ determines a basis set and the minimum distance to a 
prototype within this subspace, while SVM can be interpretated as representing the normal 
vector of the class separation hyperplane as a subspace of dimensionality one.  

 

GMLVQ-scalar projection vs. LTJMM prediction 

We compared the GMLVQ-scalar projection derived from baseline biomarker data with the 
model derived disease stage from the latent time joint mixed effects models (LTJMM) 
presented in Li et al. (Li et al., 2019). To run the LTJMM we used the public source code for 
this model from https://bitbucket.org/mdonohue/ltjmm/src/master/.  

First, we ran the LTJMM on the longitudinal FTP-PET measures in the ADNI 3 sample 
including as covariates APOE 4, MTL atrophy and FBP PET SUVR taken at the baseline 
FTP-PET scan. We modelled longitudinal FTP-PET accumulation in 7 ROIs (BANKSSTS, 
INFERIOR TEMPORAL, FUSIFORM, PRECUNEUS, INFERIOR PARIETAL, 
SUPRAMARGINAL, SUPERIOR PARIETAL). We found that the mean  posterior estimates of 
the rate of tau accumulation for the 7 ROIs are closely associated with the observed rate of 
tau accumulation (mean R2=0.81; min R2=0.61; max R2= 0.92). We found that the mean 
posterior estimates of the rate of tau accumulation for the 7 ROIs were closely associated 
with the observed rate of tau accumulation. Next, we extracted the latent time shift (delta) 
derived from the LTJMM to investigate if the model derived disease stage relates to the 
scalar projection. We observed a significant relationship between the LTJMM latent time 
shift and the scalar projection r(113)=0.42,p<0.0001. This highlights that the scalar 
projection derived from only baseline biomarker data relates to the LTJMM disease stage 
derived from both baseline and longitudinal biomarker information.” 

 

13. "This allows us to draw conclusions that are relevant for patient stratification and 
the design of clinical trials...variability in pathological state across groups..." 
- Sorry to harp on about it, but your method handles temporal variability (disease 
stage/pathology severity) but doesn’t handle spatial variability (different subtype 
patterns) in tau accumulation. See the four spatiotemporal subtypes of AD: Vogel-
2020. 
 
Revised text: "...Recent evidence suggests that there are consistent patterns of tau 
spread..." 



- Recent evidence suggests, quite strongly, that there are four spatiotemporal 
subtypes of tau accumulation: Vogel-2020 (as mentioned above). Using a much 
larger tau PET sample size covering early through to late AD, across multiple tau-
PET tracers and multiple cohorts, Vogel et al. provided strong evidence for four 
spatiotemporal subtypes of tau accumulation in Alzheimer's. 

We thank the reviewer for this suggestion in light of the recent Vogel paper. As the reviewer 
points out, our spatiotemporal predictions focus on one topography of longitudinal tau 
accumulation. Our intention is to model future rates of tau accumulation in asymptomatic or 
mildly symptomatic older adults in an age range typical of late onset AD, rather than account 
for clinical subtypes of AD or atypical AD variants.  

The Vogel et al paper uses the SuStain modelling approach in a large sample of older adults 
from several large cohorts with FTP-PET to stage individuals in four distinct spatiotemporal 
subtypes of tau accumulation. It is likely that these spatiotemporal patterns are largely related 
to clinical syndromes that are most often expressed in earlier onset cases of AD and may not 
truly represent the earliest accumulation of tau in the asymptomatic and early phases of 
typical late onset AD. Interestingly, the regions that we showed to accumulate tau 
prospectively are included in the SuStaIn results. Despite the differences in the SuStaIn 
patterns between subtypes, many of these differences reflect relative involvement of a similar 
set of regions. The regions in our Figure 5 overlap substantially with most of the subtype 
regions in Vogel et al Figure 1. 

In contrast, our sample comprises a large number of asymptomatic and early AD participants. 
In the Vogel et al paper, the initial stage of modelling involves removing tau negative (i.e. 
S0) participants resulting in 78.5% of all cognitively normal individuals being removed from 
further subtyping. This reduced the total number of cognitively normal individuals to around 
a third of the remaining tau positive group, resulting in a sample that was biased towards 
fitting symptomatic patients. The retained asymptomatic individuals were predominately 
assigned to earlier SuStain stages. However, the authors show that these individuals (who are 
primarily asymptomatic or mildly impaired) have a significantly lower probability of falling 
into a specific subtype (with CN likelihood statistically lower than MCI and AD). With the 
authors concluding that “In general, early stage individuals were assigned to subtypes with 
less confidence,... This provides some evidence that the earliest phases of each subtype may 
overlap”.  

Thus, the Vogel paper provides evidence for spatiotemporal profiles in predominantly clinical 
AD rather than asymptomatic and preclinical AD, as 1. the model uncovered spatiotemporal 
variability in a predominately symptomatic sample and 2. the majority of the asymptomatic 
sample couldn’t be assigned with high probability to any given subtype. This limitation was 
discussed by the authors in the Vogel paper. “It is noteworthy that we used a fairly 
conservative approach to identify “tau-positive” individuals, and that our subtyping was 
performed primarily on cognitively impaired individuals. It is possible that most variability 
occurs in later disease stages given that early stage individuals were not confidently assigned 
to a subtype” 

Further, when investigating the relative involvement in each subtype by cohort, the different 
spatiotemporal subtypes are less frequent and are expressed less strongly in the ADNI data 
particularly compared to UCSF and Biofinder data. It is possible that variability in the 



assignment to a given subtype is driven by variation in clinical syndromes (i.e. Early onset 
AD, PCA, lvPPA), as the sampling characteristics of ADNI focus on typical late onset AD, 
and there is prevalence of atypical early onset AD variants within the UCSF sample. In the 
Vogel paper (extended data figure 4), the ADNI sample expressed subtype 4 (left temporal) 
to a limited extent and subtype 3 (posterior) to an even lesser extent which is consistent with 
the rare presentation of ADNI participants with focal neurobehavioral syndromes. 

Finally, the Vogel paper investigates whether a previously published epidemic spreading 
model predicts the spreading pattern of tau. When investigating the primary seeding region 
for tau spread across the cortex in early stages (predominantly asymptomatic and early AD  
individuals), 3/4 subtypes had the same best fit seeding region (MTL). This suggests that the 
early stages of tau spread may overlap across most spatiotemporal subtypes, originating in 
temporal regions. A recent publication from the Harvard Aging Brain Study in a group of 
cognitively normal and mildly symptomatic individuals provides further evidence for a 
temporal lobe onset of tau pathology (Sanchez et al., 2021). As our investigations focus on 
early tau spread, our single spatiotemporal profile is not invalidated by the Vogel et al 
findings. Further our out-of-sample prediction in the asymptomatic BACS sample, provides 
additional evidence that our approach captures early stage seeding of tau. This enhances the 
clinical relevance of our approach as our predictions relate to early AD (i.e. prior to 
widespread tau propagation and progression to clinical AD subtypes) where interventions 
may be most effective. 

To demonstrate that our results capture early AD accumulation of tau we present a figure 
adapted from three independent early AD samples (Jack et al., 2018; Pontecorvo et al., 2019; 
Schultz et al., 2018). We show that across these cohorts investigating the earliest changes in 
tau accumulation we observe the same (predictable) pattern of tau accumulation typical of 
early AD.  

In both the ADNI 3 and BACS samples we uncovered regions that largely replicated findings 
from previous studies (Response Figure 4). Using baseline FTP as a proxy for disease 
severity, Pontecorvo et al.  show that in earlier stages of AD increases in FTP were seen 
predominantly in the inferior lateral temporal cortex and in the posterior cingulate 
(Pontecorvo et al., 2019). Further, Schultz et al. show that preclinical AD individuals 
(amyloid positive cognitively unimpaired) accumulate tau in regions extending from the 
amygdala, banks of the superior temporal sulcus, entorhinal, fusiform, inferior parietal, 
inferior temporal cortex parahippocampal gyrus and precuneus (Schultz et al., 2018). This 
largely supports the definition comprising the ‘meta regions’ of tau accumulation described in 
Jack et al (Jack et al., 2018). 

 

 



 

 

Response Figure 4.  Regions that significantly accumulate tau in early AD across different 
cohorts. a. variance explained within our single topography. b. meta regions defined by Jack 
et al 2018. Regions comprising the early Alzheimer’s disease change and temporal meta-
region of interest are indicated in red, blue, aqua, magenta; regions in green are the late AD 
change meta regions. c. longitudinal tau accumulation patterns from Pontecorvo et al. 2019; 
the heat map is the mean voxel-wise change from baseline to 18 months for β-amyloid+ 
subjects with intermediate tau deposition at baseline. d. difference in tauopathy in cognitively 
unimpaired β-amyloid+ cohort compared to β-amyloid; taken from Schultz et al. 2018. 

  



In particular the text now writes: 

(Introduction) 

“Further spatiotemporal patterns of tau are shown to be strongly linked to both future 
neurodegeneration and cognitive decline(Hanseeuw et al., 2019). A recent study proposes four 
distinct spatiotemporal profiles of tau burden in predominantly symptomatic AD(Vogel et al., 2021), 
proposing clinically meaningful topographies of tau burden. Further evidence in early AD (i.e. 
asymptomatic and mildly impaired) cohorts suggests converging patterns of primary tau seeding 
(measured in-vivo by longitudinal FTP-PET)(Jack et al., 2018; Pontecorvo et al., 2019; Sanchez et al., 
2021; Schultz et al., 2018). These studies show that tau initially accumulates within the medial 
temporal cortex then spreads to the superior and medial regions of the parietal cortex prior to severe 
cognitive impairment(Jack et al., 2018; Pontecorvo et al., 2019; Sanchez et al., 2021; Schultz et al., 
2018). … 

Finally, we demonstrate the efficacy of our stratification approach against baseline 1) syndromic 
diagnosis and 2) Aβ positivity, suggesting potential benefits of our multimodal biological 
stratification for the design of clinical trials that aim to reduce primary pathological tau spread at the 
earliest stages of AD.” 

(Discussion) 

“Using this prognostic index we showed that individuals classified as Clinically Declining 
will accumulate tau in a topography-specific manner that reflects the initial spreading of tau 
in early stage AD (i.e. prior to severe cognitive impairment)(Sanchez et al., 2021), accurately 
reproducing the topography reported in numerous independent cohorts corresponding to the 
proposed “meta-ROI” for tau quantitation(Jack et al., 2018; Pontecorvo et al., 2019; Schultz 
et al., 2018). “  



 

Response to reviewer 2. 
 
In the introduction it states "These clinical syndromic definitions have no discrete 
demarcations on cognitive scales" - do you mean that threshold scores on cognitive testing 
are not part of the criteria for diagnosis? If so, please make clearer. There are cut-offs on 
routine cognitive tests e.g. the MMSE, that are used to demarcate MCI and AD, so this 
statement as is does not hold. 
 
We have now amended the introduction removing this statement. In particular the text 
(Introduction) now writes: 

“However, these clinical syndromic definitions are neither specific(Nelson et al., 2011; 
Serrano-Pozo et al., 2014) nor sensitive(Murray et al., 2011; Ossenkoppele et al., 2015) to 
the underlying pathology of AD.” 
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Reviewers' comments: 

Reviewer #1 (Remarks to the Author): 

I again commend the authors on their response to my criticisms, but there are remaining 

questions/concerns that I detail below. In short, I am not convinced of any considerable technical 

contribution because an SVM performed as well as GMLVQ (see below point 9 below, primarily). And I 

remain unconvinced of the application being convincing (see below points 2 and 1, primarily). 

1. The authors may have missed my point slightly. Firstly, individuals having different tau burden can 

have the same rate of accumulation, which means that rate is not a suitable outcome measure (I'd be 

surprised if the FDA/EMA would consider rate alone). Secondly, the analysis presented in this response 

appears to be at the group level (Braak stages). My original comment was about the authors making it 

absolutely clear in their manuscript if they are predicting rate and/or burden. In particular, which 

(rate/burden) is relevant to the clinical trial application that the authors use to sell this work? I agree 

that classifying based on rate is potentially useful for enriching trials, but doubt it would be accepted 

as an outcome measure. Ultimately it will be tau burden itself used as an outcome measure (and likely 

only a secondary outcome for the time being, based on current FDA guidance), which means that 

rate/burden cannot be considered in isolation. 

Action: modify the manuscript text accordingly, please. Multiple places. Including, e.g.,: 

- "This pattern of increased baseline tau was also observed in the BACS Clinically Declining sample 

(Supplementary Figure 3)." 

should read 

"This group-level pattern of increased baseline tau was also observed in the BACS Clinically Declining 

sample (Supplementary Figure 3)." 

- Likewise for text pertaining to rates as outcome measures, which I'm not convinced by as my 

response above hopefully makes clear. 

- When referring to tau burden in group-level analyses the correct adjective is "higher" burden (in one 

group versus the other, e.g., in the Clinically Declining group), not "increased". These analyses (the 

first numbered response) did not involve assessing change, as far as I can tell. Might seem pedantic, 

but this is important. 

2. Just FYI, my comments here about "translation to the clinic" were a bit vague — I include clinical 

trials in this. My query about the practical utility of the "slightly significant" (and uncorrected) trends 

in Figure 7 and especially in Figure 8 remains unanswered. How do these figures relate to the authors' 

rather grandiose claims about their model being predictive of tau accumulation, when it appears that a 

flat curve would fit the data almost as well, statistically speaking? What would the FDA/EMA make of 

these curves if the outcome measure (vertical axis) was to be proposed as a trial outcome? Not much, 

I suspect. 

6. Thanks for running these extra experiments. 

9. Thanks for running these extra experiments on an off-the-shelf classifier to benchmark 

performance. This is an often overlooked, but important task. Since your classifier performed almost 

identically to the SVM, this strongly suggests that your technical contribution (in terms of the method) 

is minimal. 

- I disagree with the following claim made by the authors in their response: "Despite these similarities 

between SVM and GMLVQ, GMLVQ has a clear advantage: it learns the metric tensor providing the 

subspace based on which individualised projection indices (scalar projection values) can be 

calculated." 



To me this sounds similar to the “a generative model is better than a discriminative model” argument, 

i.e., that classification performance is augmented by some additional contribution to knowledge. This 

is fine in principle, e.g., if your study aims to contribute to disease understanding. But here it is a 

direct comparison of two classifiers, with the key selling point (as presented by the authors in the 

manuscript) being the application of their model to clinical trials. If a trained SVM can be applied with 

almost identical performance, that detracts considerably from the study’s primary selling point. 

The revised discussion of the manuscript should certainly downplay the importance/value/contribution 

of GMLVQ (which appears diminished based on these SVM results). Have I misunderstood? Is the 

"metric tensor" somehow super valuable? 

See also my original comment (numbered as point 12 in the authors' response) where I said in my 

previous review that “the technical contribution of this paper is diminished considerably” if an SVM 

performs similarly to GMLVQ. Based on these new SVM experiments, I would say that the technical 

contribution of this manuscript has been diminished considerably. In conjunction with my comments 

above under point 2, I'd say that the overall contribution has been diminished considerably. 

11. Thanks for running these extra experiments. However, to be a fair comparison, you should have 

trained the LTJMM using non-tau data and used it to predict the same outcomes as GMLVQ. 

Additionally, once trained, an LTJMM can use cross-sectional data to assign latent time and perform 

subsequent prediction of tau accumulation in a comparable way to the GMLVQ/SVM experiments. 

13. Thanks for this detailed clarification.



Response to Reviewer 1 

1. I again commend the authors on their response to my criticisms, but there are remaining 

questions/concerns that I detail below. In short, I am not convinced of any considerable 

technical contribution because an SVM performed as well as GMLVQ (see below point 9 

below, primarily).  

The key innovation of our work is deriving a prognostic index; that is, a continuous index 

that quantifies (in a suitable learnt metric) the distance of an individual from the Clinically 

Stable prototype. Our trajectory modelling approach extends beyond binary patient 

classifications that have poor sensitivity to baseline disease severity and carry risk of 

misdiagnosis. We show that our continuous index: a) predicts individualised rates of future 

tau accumulation from non-tau baseline data even before symptoms occur, b) re-stratifies 

populations at greatest risk of accumulating tau in the future with potential application for 

clinical trials (see Figure 8). The predictive power of our prognostic index is validated not 

only against an independent sample that was not used to construct the index (i.e. ADNI 3: 

Cognitively normal, MCI data), but also (without any modifications) on a completely 

separate independent data set from asymptomatic individuals (i.e. BACS). 

To derive this prognostic index, we need to work in a feature subspace that captures possible 

signatures of future tau accumulation. Any machine learning classifier that supports this 

subspace learning could be used. We chose to use GMLVQ over SVM because it naturally 

provides class prototypes and a subspace endowed with an appropriate metric that allows us 

to derive the prognostic index using our scalar projection method. It is this prognostic index 

that provides the key technical contribution of our work; the classifier is simply used as a step 

in the derivation of our prognostic index. The similarity in performance between these binary 

classifiers is not surprising—it would be suspicious if it were otherwise—and does not limit 

the technical contribution of our work. On the contrary, it confirms reproducibility, a key 

challenge in machine learning applications.   

We elaborate on this in our response to point 7 and have revised the manuscript (pg. 5) to 

clarify the novel technical contribution and innovation of our work. 

 

2. And I remain unconvinced of the application being convincing (see below points 2 and 1, 

primarily). 

In the revised manuscript (see Introduction pg. 4-6; Discussion pg. 19-21), we clarify that our 

modelling approach has potential application in clinical trial design; that is, stratifying 

patients for inclusion to clinical trials based on our prognostic index that relates to projected 

rates of tau change reducing heterogeneity and increasing statistical power. In particular, we 

demonstrate that our ML-derived prognostic index of AD allows us to a) identify individuals 

who are at greatest risk of accumulating tau in the future, b) reduce the sample size required 

to determine future tau accumulation. We propose that this prognostic index can be used for 

patient selection in clinical trials (see Figure 8 and point 6 below). Should our modelling 

approach be applied to clinical trials it has the potential to impact drug discovery by a) 

reducing sample heterogeneity that hampers statistical power, b) targeting individuals at 

greatest risk who may benefit the most from clinical intervention c) decreasing the required 

sample size and resulting in more timely and cost-effective clinical trials.  



3. 1. The authors may have missed my point slightly. Firstly, individuals having different tau 

burden can have the same rate of accumulation, which means that rate is not a suitable 

outcome measure (I'd be surprised if the FDA/EMA would consider rate alone). Secondly, the 

analysis presented in this response appears to be at the group level (Braak stages). My 

original comment was about the authors making it absolutely clear in their manuscript if they 

are predicting rate and/or burden. In particular, which (rate/burden) is relevant to the 

clinical trial application that the authors use to sell this work? 

We agree that tau burden and accumulation rate can be dissociated. We demonstrate that our 

modelling approach allows us to stratify patients not only based on tau accumulation but also 

on baseline tau (i.e. tau burden) and future cognitive decline. In particular, we show that the 

Clinically Declining group has greater baseline tau and future rate of tau accumulation. 

Further, our results provide quantitative evidence for the advantages of predicting changes in 

tau accumulation over cognition (a primary outcome measure in AD trials). In particular, we 

show that over the time frame of a standard AD clinical trial (1-3 years) there is greater 

statistical power to detect a clinically meaningful change in tau accumulation vs. cognitive 

decline (PACC change n=917 vs. tau accumulation n=637). These results suggest that tau 

accumulation could be an attractive outcome measure for clinical trials in the earliest stages 

of AD. 

Predicting biomarker outcomes is important for understanding disease pathophysiology. 

Further, the value of predicting rate of tau accumulation for clinical trials has been 

demonstrated by recent trials; for example, the Donanemab trial (Mintun et al., 2021) used 

change in tau over time as a secondary outcome measure. For more details please see our 

response to point 4. In the revised manuscript (Introduction pg. 4), we clarify why we chose 

to focus on individualised future rate of tau accumulation.  

Finally, the reviewer appears to have misunderstood our analysis, suggesting that Braak 

staging was used as group-level outcome. In the analysis investigating baseline tau burden we 

contrasted baseline tau for Clinically Declining vs. Clinically Stable groups within selected 

brain regions that overlap with Braak stages. Our results for these AD relevant brain regions 

show that the Clinically Declining group is burdened with tau at baseline. We have now 

clarified this in the revised manuscript (pg. 9). 

 

4. I agree that classifying based on rate is potentially useful for enriching trials, but doubt it 

would be accepted as an outcome measure. Ultimately it will be tau burden itself used as an 

outcome measure (and likely only a secondary outcome for the time being, based on current 

FDA guidance), which means that rate/burden cannot be considered in isolation. 

The reviewer questions the value of predicting rate of tau accumulation as an outcome 

measure in clinical trials, as regulators (i.e. FDA/EMA) are interested in cognitive decline as 

primary outcome. Below, we clarify that our work predicting changes in biomarker (i.e. tau-

based) outcomes from baseline data is highly timely for application in clinical trials for the 

following reasons. 

First, earlier this summer the FDA approved aducanumab, the first drug to be approved in 20 

years for the treatment of Alzheimer’s disease, based on clinical trials showing its effect on a 

biomarker outcome (i.e. reduction in amyloid-beta). Second, the recent Donanemab trial 



(Mintun et al., 2021) used tau-PET measurements to select individuals who had the highest 

likelihood of responding to an anti-amyloid therapy. Third, the same trial used change in tau-

PET over time (i.e. rate of tau accumulation, as used in our modelling approach) as a 

secondary outcome measure, as increasing tau is thought to be causal in producing effects of 

amyloid on cognition.  

On a more general note, we do not believe it is appropriate for potential FDA/EMA policies 

to serve as a benchmark for research studies. The reviewer appears to have misunderstood the 

clinical application of our findings: our results inform clinical trial design. In particular, our 

ML-derived prognostic index can be used to inform patient selection for clinical trials that 

use change (in tau or cognition) over time as outcome. In the revised manuscript (see section: 

Potential application in clinical trial design; pg. 16-18) we clarify the value of our modelling 

approach for application in clinical trials.  

 

5. Action: modify the manuscript text accordingly, please. Multiple places. Including, e.g.,: 

- "This pattern of increased baseline tau was also observed in the BACS Clinically Declining 

sample (Supplementary Figure 3)."  

should read  

"This group-level pattern of increased baseline tau was also observed in the BACS Clinically 

Declining sample (Supplementary Figure 3)." 

- Likewise for text pertaining to rates as outcome measures, which I'm not convinced by as 

my response above hopefully makes clear. 

- When referring to tau burden in group-level analyses the correct adjective is "higher" 

burden (in one group versus the other, e.g., in the Clinically Declining group), not 

"increased". These analyses (the first numbered response) did not involve assessing change, 

as far as I can tell. Might seem pedantic, but this is important. 

We thank the reviewer and have revised the text following the reviewer’s suggestions. 

 

6. 2. Just FYI, my comments here about "translation to the clinic" were a bit vague — I 

include clinical trials in this. My query about the practical utility of the "slightly significant" 

(and uncorrected) trends in Figure 7 and especially in Figure 8 remains unanswered. How 

do these figures relate to the authors' rather grandiose claims about their model being 

predictive of tau accumulation, when it appears that a flat curve would fit the data almost as 

well, statistically speaking? What would the FDA/EMA make of these curves if the outcome 

measure (vertical axis) was to be proposed as a trial outcome? Not much, I suspect. 

We assess the statistical significance of our results based on out-of-sample cross-validation 

including data from different cohorts (BACS, ADNI 3) than the training sample (ADNI 

2/GO). This is a stringent and robust validation approach. 

We have revised Figures 7 and 8 to focus on regional (rather than aggregate tau across areas) 

rate of tau accumulation. In particular,  the new figures (Figures 6 and 7) show the 



relationship between our prognostic index and  rate of tau accumulation in Fusiform gyrus, a 

region that is known to be susceptible to early pathological tau deposition in AD. 

For Figure 6a, shows a statistically significant relationship when corrected using Bonferroni 

correction (Beta=0.028, t=3.425, p<0.05(FWE), R2=21.1%). Further, as this regression line 

represents the least squares fit, a flat line would not fit the data equally well; the regression 

model learnt that the best fitting line has a positive slope (i.e. Beta=0.028).  

Figure 7a demonstrates out of sample prediction of individualised rates of future tau 

accumulation that account for 41% of the variance in the BACS sample. We generated these 

predictions out of sample, training a model on a completely different sample (ADNI-2/GO) 

using different PET tracers and MRI field strengths. This out-of-sample prediction of future 

tau accumulation in asymptomatic individuals using non tau baseline predictors from a 

patient sample provides a striking validation and a novel result. These results validate our 

trajectory modelling approach and provide evidence that our prognostic index captures 

baseline heterogeneity in disease state that is predictive of future changes in biomarkers (i.e. 

tau accumulation).   

We have now included a new figure (Figure 8) that demonstrates how the curve in figure 7a 

can be used for patient re-stratification in a clinical trial. Focussing on the fusiform gyrus our 

binary stratification of Stable vs. Clinically Declining shows improved statistical power (i.e. 

decrease in required sample size) when: a) stratifying based on multimodal data vs. amyloid 

alone (n=598 vs. n=719), b) predicting changes in tau vs. cognition (n=598 vs. n=917). Yet, 

there is still substantial heterogeneity within the Clinically Declining group. Extending our 

approach to trajectory modelling using a scalar projection method, we show that our 

prognostic index explains 21.1% of this heterogeneity. In particular, we show that a more 

stringent threshold (indicated by the dashed black vertical line) than the probabilistic 

threshold used in the binary classification (indicated by the solid black vertical line) allows us 

to: a) select individuals with increased rate of tau accumulation (rate of accumulation: 0.028 

vs. 0.0136 SUVR/Year), b) reduce sample heterogeneity (Variance: 0.00079 vs. 0.0012), c) 

increase power to detect change, reducing required sample size (n=93 vs. n=598).  

Finally, we clarify, that our results inform clinical trial design rather than the assessment of 

trial outcomes by regulators (see section: Potential application in clinical trial design). Our 

prognostic index of baseline pathological severity is of value for trial design for the following 

main reasons. First, using a continuous index (i.e. the scalar projection) that relates to future 

tau accumulation allows us to identify individuals who will have the greatest future rate of 

change and therefore the best chance for treatment effects. Second, increasing the power to 

detect change reduces the sample sizes required and the subsequent costs. Finally, matching 

samples based on baseline severity reduces the chances of making erroneous inferences in 

intervention trials. In particular, recent studies (e.g. DIAN-TU study into anti-amyloid 

interventions) suggest that selecting a narrower range of baseline disease severity may result 

in increased statistical power to observe treatment effects in dominantly inherited AD 

(Salloway et al., 2021). Further, sample heterogeneity in treatment and placebo groups can 

lead to incorrectly determining treatment efficacy. A recent simulation study demonstrates 

how unexplained heterogeneity in treatment and placebo groups may lead to erroneous 

conclusions in clinical trials (Jutten et al., 2021).  

 



Figure 8. Potential application in clinical trial design. a. cortical maps show average rate of 

tau accumulation for individuals classified as Clinically Stable vs. Clinically Declining (see 

Figure 4). b. Relationship of the scalar projection with future rate of tau accumulation within 

the Fusiform gyrus (as shown in Figure 6a). The solid black vertical line indicates the 

probabilistic boundary used to perform the binary stratification, blue crosses indicate rate of 

tau accumulation for the clinically stable group, black circles indicate future rate of tau 

accumulation for the clinically declining group. Using our prognostic index (i.e. scalar 

projection) we show that re-stratifying to a more stringent threshold—as indicated by the 

dashed black vertical line—a new sample can be selected with higher future rates of tau 

accumulation and lower heterogeneity within the sample.  

 

7. Thanks for running these extra experiments on an off-the-shelf classifier to benchmark 

performance. This is an often overlooked, but important task. Since your classifier performed 

almost identically to the SVM, this strongly suggests that your technical contribution (in 

terms of the method) is minimal. I disagree with the following claim made by the authors in 

their response: "Despite these similarities between SVM and GMLVQ, GMLVQ has a clear 

advantage: it learns the metric tensor providing the subspace based on which individualised 

projection indices (scalar projection values) can be calculated." To me this sounds similar to 

the “a generative model is better than a discriminative model” argument, i.e., that 



classification performance is augmented by some additional contribution to knowledge. This 

is fine in principle, e.g., if your study aims to contribute to disease understanding. But here it 

is a direct comparison of two classifiers, with the key selling point (as presented by the 

authors in the manuscript) being the application of their model to clinical trials. If a trained 

SVM can be applied with almost identical performance, that detracts considerably from the 

study’s primary selling point. The revised discussion of the manuscript should certainly 

downplay the importance/value/contribution of GMLVQ (which appears diminished based on 

these SVM results). Have I misunderstood? Is the "metric tensor" somehow super valuable? 

See also my original comment (numbered as point 12 in the authors' response) where I said 

in my previous review that “the technical contribution of this paper is diminished 

considerably” if an SVM performs similarly to GMLVQ. Based on these new SVM 

experiments, I would say that the technical contribution of this manuscript has been 

diminished considerably. In conjunction with my comments above under point 2, I'd say that 

the overall contribution has been diminished considerably. 

The aim of our trajectory modelling approach is to derive a nuanced continuous 

representation of individual-specific conditions—expressed as an index that can be used to 

infer individualised risk of future tau accumulation from non-tau baseline data—rather than 

simply assign individuals to discrete categories (Clinically Stable vs. Clinically Declining). 

To construct this prognostic index, we need to work in a subspace of the feature space of non-

tau data that captures possible signatures of future tau accumulation, that is, the subspace that 

supports distinguishing between Clinically Stable and Clinically Declining subjects. Further, 

we need the reference points of the two conditions (Clinically Stable and Clinically 

Declining), so that individuals can be assessed based on the degree to which they belong (in 

their subspace representations) to each of the conditions. That is, to construct our prognostic 

index we need: (1) a relevant low-dimensional subspace of the feature space, (2) 

representative prototypes of the two conditions (class prototypes), (3) a quantitative way of 

assessing the degree of similarity between individuals’ feature representations and the class 

prototypes. Any machine learning methodology capable of providing these three key 

ingredients could be used to derive our prognostic index. We chose to employ GMLVQ 

because it naturally provides all the ingredients as fundamental aspects of the trained 

classification model: (i) learnt class prototypes as representatives of the two core conditions 

(Clinically Stable vs. Declining); (ii) learnt metric tensor providing both the relevant 

subspace and the metric (distance) for assessing closeness to the prototypes through our 

scalar projection method.  

In the revised text (pg 12), we clarify that we use the GMLVQ classifier as a stepping-stone 

to construct our prognostic index. Of course, many classifiers exist and, when employed 

appropriately, have the potential to achieve similar classification performance. Thus, it is not 

surprising that SVM has similar performance to GMLVQ. It would be suspicious if it were 

otherwise! This similarity in SVM and GMLVQ performance simply confirms that our 

classifier works as expected. The novelty of our approach lies in constructing our prognostic 

index from the components provided by GMLVQ. We chose GMLVQ over SVM to derive 

our prognostic index because GMLVQ provides naturally what SVM cannot: class prototypes 

and subspace endowed with an appropriate metric. The fact that our prognostic index 

generalises across different samples (as shown by out-of-sample validation on: a) ADNI 3: 



Cognitively normal, MCI data, b) asymptomatic individuals from BACS) is strong evidence 

that it captures patterns related to future tau accumulation. 

 

8.   Thanks for running these extra experiments. However, to be a fair comparison, you 

should have trained the LTJMM using non-tau data and used it to predict the same outcomes 

as GMLVQ. Additionally, once trained, an LTJMM can use cross-sectional data to assign 

latent time and perform subsequent prediction of tau accumulation in a comparable way to 

the GMLVQ/SVM experiments. 

LTJMM requires longitudinal data to model disease trajectories and fit individualised 

parameters, limiting out-of-sample generalisation. A recent implementation of LTJMM in 

predicting AD progression includes the out-of-sample baseline data in the model training 

(Iddi et al., 2019). This relaxation of the notion of out-of-sample can limit the scope for 

clinical applications that necessitate predictions for new patient data. In contrast, our 

modelling approach derives these out-of-sample predictions from baseline data naturally, as 

we provide individualised indices and features rather than constructing individualised 

models. The reviewer’s request for technical treatments that may alleviate shortcomings of 

the LTJMM is well beyond the scope of model comparison and our study. 
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REVIEWERS' COMMENTS

Reviewer #1 (Remarks to the Author): 

Thanks for all the clarifications and detailed explanations. I very much appreciate the authors' efforts 

here. And I hope they agree that my comments have led to an improved manuscript for all readers. 

The clarifications make it much easier for the reader to get the key message: this study is motivated 

by prognostic enrichment of clinical trials, i.e., to identify early "progressors/accumulators" who are on 

an AD-biomarker trajectory, and to do this _better than_ current methods. This focusses on dealing 

with temporal heterogeneity such as detecting sub-threshold AD-pathway individuals who would 

normally be excluded from a clinical trial due to being "amyloid-negative". The authors do this in a 

spatially-curated manner by also considering the locations/topography of pathology accumulation. 

My concerns have been addressed and I have no further objections to publication, subject to the usual 

proof-reading to fix remaining typo's and some minor changes below. 

Minor changes: 

- The main change required is to provide the reader with a comment on the clinical/practical 

meaningfulness for the result on re-stratifying the Clinically Declining sample: how meaningful is the 

size and difference in tau accumulation rates? (SUVR/year of 0.028 vs 0.014) It seems to me from 

Table 3 in Pontecorvo et al., Brain 2019 (ref 20 in the manuscript) that the scale and variability of tau 

accumulation in amyloid-positives is of the same order as these numbers. Please add a comment on 

the implications for clinical trials. 

- Figure 2c: swap axes to match other subfigures, and indeed to match the title of 2c: APOE4 vs 

Scalar Projection (Scalar Projection should be on the horizontal axis).



Response to Reviewer 1

Thanks for all the clarifications and detailed explanations. I very much appreciate the authors' efforts 
here. And I hope they agree that my comments have led to an improved manuscript for all readers. 

The clarifications make it much easier for the reader to get the key message: this study is motivated by 
prognostic enrichment of clinical trials, i.e., to identify early "progressors/accumulators" who are on 
an AD-biomarker trajectory, and to do this _better than_ current methods. This focusses on dealing 
with temporal heterogeneity such as detecting sub-threshold AD-pathway individuals who would 
normally be excluded from a clinical trial due to being "amyloid-negative". The authors do this in a 
spatially-curated manner by also considering the locations/topography of pathology accumulation. 

My concerns have been addressed and I have no further objections to publication, subject to the usual 
proof-reading to fix remaining typo's and some minor changes below. 

We are pleased the reviewer is satisfied with our revision. We thank the reviewer for their 
constructive comments and helpful suggestions. 

Minor changes: 
1. The main change required is to provide the reader with a comment on the clinical/practical 
meaningfulness for the result on re-stratifying the Clinically Declining sample: how meaningful is the 
size and difference in tau accumulation rates? (SUVR/year of 0.028 vs 0.014) It seems to me from Table 
3 in Pontecorvo et al., Brain 2019 (ref 20 in the manuscript) that the scale and variability of tau 
accumulation in amyloid-positives is of the same order as these numbers. Please add a comment on the 
implications for clinical trials. 

We thank the reviewer for this suggestion. To clarify, re-stratifying the clinically declining 
population using model-derived prognostic index results in a) increased mean tau accumulation 
rates (0.028 vs. 0.014 SUVR/year), b) reduced variability of tau accumulation rates (Variance: 
0.00079 vs. 0.0012). Increasing the mean and reducing the variability of tau accumulation rates 
results in increased statistical power to detect change in tau accumulation. This impacts the 
design of clinical trials, as the required sample size for detecting change in tau accumulation is 
substantially reduced (n=93 vs. n=598).  

Direct comparison of tau accumulation values across studies is complicated by differences in 
the data processing pipelines and the selection of the reference region for estimating SUVR 
that impacts the SUVR scale and values. For example, the Pontecorvo et. al. Brain 2019 paper 
uses the PERSI reference region, which is derived using a parametric approach to select a 
subset of voxels for SUVR normalisation 1. Our study uses a reference region taken from  
eroded subcortical white matter regions as this region increases sensitivity to longitudinal 
change in early stages of Alzheimer’s disease 2.  

We clarify this point further in the Results section, focusing on an example region of interest. 
In particular, the text writes: 
‘Focussing on the fusiform gyrus as a potential intervention target region we show that a more 
stringent threshold (Figure 8, dashed black vertical line) than the probabilistic threshold used 
in the binary classification (Figure 8, solid black vertical line) allows us to a) select individuals 
with increased rate of tau accumulation (mean rate of accumulation: 0.028 vs. 0.0136 
SUVR/Year), b) reduce sample heterogeneity (variance: 0.00079 vs. 0.0012), c) increase power 
to detect change in tau accumulation, reducing substantially the required sample size (n=93 
vs. n=598). This more precise patient stratification has potential impact in impact clinical trial 



design, by reducing heterogeneity in the treatment and placebo groups that has been shown to 
hamper statistical power in clinical trials 3.’ 

Also, the Discussion section writes: 
‘Using our prognostic index to select participants within a range of projected tau accumulation 
has potential to a) reduce sample heterogeneity that hampers statistical power, b) target 
individuals at greatest risk who may benefit the most from clinical intervention c) decrease the 
required sample, resulting in more timely and cost-effective clinical trial. Our modelling 
approach can be tailored to trade off sample size, cost (from subjects screened but rejected 
from inclusion), and generalisability for a sample with the highest probability of benefitting 
from treatment.’ 

2. Figure 2c: swap axes to match other subfigures, and indeed to match the title of 2c: APOE4 vs Scalar 
Projection (Scalar Projection should be on the horizontal axis). 

We thank the reviewer for this suggestion. We have now updated this figure following the 
reviewer’s suggestion. 
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