Spirocycles as Rigidified $\mathbf{s p}^{3}$-Rich Scaffolds for a Fragment Collection

Attila Sveiczer, Andrew J. P. North, Natalia Mateu, * Sarah L. Kidd, Hannah F. Sore, and David R. Spring*
Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge, CB2 1EW, UK
*E-mail: spring@ch.cam.ac.uk
*E-mail: nm462@ch.cam.ac.uk

Supporting Information

Table of Contents

General Remarks S1
Procedures and Analytical Data S4
Building block synthesis S4
Synthesis of the cyclohexene intermediate 4 S6
Synthesis of different core heterocycles S8
Synthesis of different carbocycles S11
Enantioselective synthesis of 12 S16
Heterocycle modification S19
Double bond modification S23
Computational Analysis S31
Crystallographic Data S39
NMR Spectra S49

General Remarks

All reactions were carried out under argon or nitrogen atmosphere using oven-dried glassware at room temperature unless otherwise stated. Temperatures of $-78{ }^{\circ} \mathrm{C}$ were maintained using a dry ice acetone
bath. Temperatures of $0{ }^{\circ} \mathrm{C}$ were maintained using an ice-water bath. Room temperature (rt) refers to ambient temperatures. All reagents were used as received from commercial sources or prepared as described in the literature unless otherwise stated. Acetonitrile (MeCN), dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, methanol (MeOH) and toluene were distilled from calcium hydride. Tetrahydrofuran (THF) was dried using sodium wire and distilled from a mixture of calcium hydride and lithium aluminium hydride with triphenylmethane as indicator. Diethyl ether ($\mathrm{Et}_{2} \mathrm{O}$) was distilled from a mixture of calcium hydride and lithium aluminium hydride. Ethyl acetate (EtOAc) was distilled before use; petroleum ether (PE) was distilled before use and refers to the fraction between $40-60^{\circ} \mathrm{C}$. Anhydrous dimethylformamide (DMF), 1,2-dichloroethane (DCE), tert-butyl alcohol ($t \mathrm{BuOH}$) and pentane were purchased from commercial sources and used without further purification. Reactions were monitored by thin layer chromatography (TLC) using pre-coated Merck glass backed silica gel $60 \mathrm{~F}_{254}$ plates and visualised by quenching of UV fluorescence ($\lambda_{\text {Max }}=254 \mathrm{~nm}$) or by staining with potassium permanganate. Retention factors (R_{f}) are quoted to 0.01 . Flash column chromatography was carried out using Merck 9385 Kieselgel $60 \mathrm{SiO}_{2}$ (230-400 mesh) under a positive pressure of dry nitrogen. Yields refer to chromatographically and spectroscopically pure compounds unless otherwise stated.

Melting points (mp) were obtained using a Büchi Melting Point B-545 or Gallenkamp MPD350. BM2. 5 melting point apparatus and are uncorrected. Optical rotations were measured on an Anton Paar MCP 100 Modular Compact Polarimeter. Infrared (IR) spectra were recorded neat on a Perkin-Elmer Spectrum One spectrometer using an ATR sampling accessory either as solids or liquid films. Selected absorptions ($v_{\text {Max }}$) are reported in wavenumbers (cm^{-1}) with the following abbreviations: w , weak; m , medium; s , strong; br, broad. Proton magnetic resonance spectra were recorded using an internal deuterium lock at ambient temperatures on Bruker Avance III HD (400 MHz ; Smart probe), Bruker Avance III (400 MHz ; QNP Cryoprobe) or Bruker Avance III (500 MHz , DUL Cryoprobe) spectrometers. Chemical shifts (δ) are quoted in ppm to the nearest 0.01 ppm and are referenced to the residual non-deuterated solvent peak (CDCl_{3} : 7.26, DMSO- d_{6} : 2.50). Discernable coupling constants (J) are reported as measured values in Hertz, rounded to the nearest 0.1 Hz . Carbon magnetic resonance spectra were recorded using an internal deuterium lock at ambient temperatures on Bruker Avance III HD (101 MHz), Bruker Avance III (101 MHz) or Bruker Avance $500(126 \mathrm{MHz})$ spectrometers with broadband proton decoupling. Chemical shifts (δ) are quoted in ppm to the nearest 0.1 ppm and are referenced to the deuterated solvent peak (CDCl_{3} : 77.16, DMSO- d_{6} : 39.52). Multiplicity is only reported when coupling to ${ }^{19} \mathrm{~F}$ nuclei is observed with the appropriate coupling constant in Hz . Fluorine magnetic resonance spectra were recorded using an internal deuterium lock at ambient temperatures on Bruker Avance Neo Prodigy (376 MHz , Cryoprobe) spectrometer. Chemical shifts (δ) are quoted in ppm to the nearest 0.1 ppm . Data are reported as: chemical shift, number of nuclei, multiplicity and coupling constants. High resolution mass spectrometry (HRMS) measurements
were recorded with a Micromass Q-TOF, Waters Vion IMS Qtof or a Waters LCT Premier TOF mass spectrometer using Electrospray ionisation (ESI) techniques. Mass values are reported within the $\pm 5 \mathrm{ppm}$ error limit.
(R)-3-(but-3-en-1-yl)-5-phenyl-5,6-dihydro-2H-1,4-oxazin-2-one $((\boldsymbol{R})-15)$ was prepared as described in the literature; analytical data were in agreement with those reported. ${ }^{1}$

Ethyl benzimidate hydrochloride was prepared as described in the literature; analytical data were in agreement with those reported. ${ }^{2}$
(1) Fustero, S.; Mateu, N.; Albert, L.; Aceña, J. L. J. Org. Chem. 2009, 74, 4429-4433.
(2) Berger, O.; Wein, S.; Duckert, J.-F.; Maynadier, M.; Fangour, S. El; Escale, R.; Durand, T.; Vial, H.; Vo-Hoang, Y. Bioorg. Med. Chem. Lett. 2010, 20, 5815-5817.

Procedures and Analytical Data

Building block synthesis

Ethyl 2-allyl-2-aminopent-4-enoate (3a)

To a solution of $1(500 \mathrm{mg}, 1.87 \mathrm{mmol})$ in THF (20 mL) at $0^{\circ} \mathrm{C}$ was added $t \mathrm{BuOK}(629 \mathrm{mg}, 5.61 \mathrm{mmol})$ and the reaction stirred for 10 min , followed by the dropwise addition of allyl bromide ($970 \mu \mathrm{~L}, 11.2 \mathrm{mmol}$) at 0 ${ }^{\circ} \mathrm{C}$. The reaction mixture was warmed to rt and stirred overnight. Upon completion, $\mathrm{HCl}(3 \mathrm{M} \mathrm{aq}, 10 \mathrm{~mL})$ was added and the reaction stirred for 10 min before diluting with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$. The reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The aqueous phase was basified with $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{pH} \approx 12)$. The basic aqueous layer was then extracted with $\mathrm{EtOAc}(3 \times 30 \mathrm{~mL})$, and the combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo to yield the crude product 3 a ($229 \mathrm{mg}, 67 \%$) as a colourless oil. The crude product 3a was taken on to the next step without further purification. $R_{f}=0.41$ (EtOAc). IR (ATR) $v_{\text {Max. }} 3379(\mathrm{w}), 3078(\mathrm{w}), 2980(\mathrm{w}), 1729(\mathrm{~s}), 1640(\mathrm{~m}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.75-5.64(2 \mathrm{H}, \mathrm{m}), 5.16$ $-5.10(4 \mathrm{H}, \mathrm{m}), 4.17(2 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}), 2.55(2 \mathrm{H}, \mathrm{br} d \mathrm{~d}, J=13.5,6.5 \mathrm{~Hz}), 2.26(2 \mathrm{H}, \mathrm{br} d \mathrm{~d}, J=13.5,8.3 \mathrm{~Hz})$, $1.67(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 1.27(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.4,132.7,119.6,61.2,60.4,44.2$, 14.5. HRMS (ESI) calcd for $\left[\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{NO}_{2} \mathrm{Na}^{+}\right.$: 206.1151, found 206.1147.

Ethyl 2-allyl-2-aminohex-5-enoate (3b)

To a solution of $\mathbf{1}(10.35 \mathrm{~g}, 38.7 \mathrm{mmol})$ in THF (250 mL) was added $t \mathrm{BuOK}(10.9 \mathrm{~g}, 96.7 \mathrm{mmol})$ and 4-bromo-1-butene ($11.8 \mathrm{~mL}, 116 \mathrm{mmol}$) in three batches over a period of 64 h . Upon completion, the reaction was cooled to $0{ }^{\circ} \mathrm{C}$, $\mathrm{tBuOK}(6.52 \mathrm{~g}, 58.1 \mathrm{mmol}$) was added and stirred for 10 min , followed by the dropwise addition of allyl bromide ($5.03 \mathrm{~mL}, 58.1 \mathrm{mmol}$). The reaction mixture was warmed to rt and stirred for 5 h .

A further amount of t BuOK ($2.17 \mathrm{~g}, 19.3 \mathrm{mmol}$) and allyl bromide $(1.68 \mathrm{~mL}, 19.3 \mathrm{mmol})$ were added and the mixture stirred for 1 h . Upon completion $\mathrm{HCl}(3 \mathrm{M} \mathrm{aq}, 50 \mathrm{~mL})$ was added and the reaction stirred for 10 min before removing the organic solvent in vacuo. The aqueous residue was washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$. The aqueous phase was basified with $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{pH} \approx 12)$. The basic aqueous layer was then extracted with EtOAc ($3 \times 50 \mathrm{~mL}$), and the combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo to yield the crude product $\mathbf{3 b}(4.67 \mathrm{~g}, 61 \%)$ as a pale orange oil. The crude product $\mathbf{3 b}$ was taken on to the following steps without further purification. $R_{f}=0.10$ (PE/EtOAc, 4:1). IR (ATR) $v_{\text {Max. }} 3374$ (w), 3077 (w), 2979 (w), 2925 (w), 1726 (s), $1640(m) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.83-5.61$ ($2 \mathrm{H}, \mathrm{m}$), $5.15-5.09$ $(2 \mathrm{H}, \mathrm{m}), 5.00(1 \mathrm{H}, \mathrm{dq}, J=17.0,1.6 \mathrm{~Hz}), 4.93(1 \mathrm{H}, \mathrm{dq}, J=10.1,1.6 \mathrm{~Hz}), 4.16(2 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}), 2.55(1 \mathrm{H}, \mathrm{br}$ dd, $J=13.5,6.4 \mathrm{~Hz}$), $2.24(1 \mathrm{H}, \mathrm{br} d \mathrm{~d}, \mathrm{~J}=13.5,8.5 \mathrm{~Hz}), 2.17-2.06(1 \mathrm{H}, \mathrm{m}), 1.99-1.88(1 \mathrm{H}, \mathrm{m}), 1.88-1.80$ $(1 \mathrm{H}, \mathrm{m}), 1.67-1.58(3 \mathrm{H}, \mathrm{m}), 1.27(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.6,138.0,132.8,119.6$, 115.0, 61.1, 60.5, 44.5, 39.2, 28.5, 14.4. HRMS (ESI) calcd for [$\left.\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{Na}\right]^{+}$: 220.1313, found 220.1309.

Ethyl 2-allyl-2-aminohept-6-enoate (3c)

To a solution of $1(1.00 \mathrm{~g}, 3.74 \mathrm{mmol})$ in THF $(40 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added $t \mathrm{BuOK}(629 \mathrm{mg}, 5.61 \mathrm{mmol})$ and the reaction stirred for 10 min , followed by the dropwise addition of 5-bromo-1-pentene ($1.33 \mathrm{~mL}, 11.2 \mathrm{mmol}$). The reaction mixture was warmed to rt and stirred overnight. Upon completion, the reaction was diluted with $\mathrm{NH}_{4} \mathrm{Cl}$ (sat. aq, 50 mL) and extracted with EtOAc ($3 \times 50 \mathrm{~mL}$). The combined organic layers were washed with brine (50 mL), dried over MgSO_{4}, filtered and concentrated in vacuo. The residue was purified by flash column chromatography (silica gel, PE/EtOAc, 9:1) to give crude $\mathbf{2 c}(825 \mathrm{mg})$ as a colourless oil. To a solution of crude 2c (550 mg) in THF (20 mL) at $0{ }^{\circ} \mathrm{C}$ was added tBuOK ($276 \mathrm{mg}, 2.46 \mathrm{mmol}$) and the reaction stirred for 10 min , followed by the dropwise addition of allyl bromide ($426 \mu \mathrm{~L}, 4.92 \mathrm{mmol}$). The reaction mixture was warmed to rt and stirred overnight. Upon completion, the reaction was diluted with $\mathrm{NH}_{4} \mathrm{Cl}$ (sat. aq, 25 mL) and extracted with EtOAc ($3 \times 25 \mathrm{~mL}$). The combined organic layers were washed with brine (25 mL), dried over MgSO_{4}, filtered and concentrated in vacuo. The residue was purified by flash column chromatography (silica gel, $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}, 9: 1$) to give a crude intermediate (343 mg) as a colourless oil. To a solution of the crude intermediate (300 mg) in THF (8.0 mL) was added $\mathrm{HCl}(3 \mathrm{M} \mathrm{aq}, 1.0 \mathrm{~mL})$ and the reaction stirred for 10 min before diluting with $\mathrm{H}_{2} \mathrm{O}(25 \mathrm{~mL})$. The reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 25 \mathrm{~mL})$. The aqueous phase was basified with $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{pH} \approx 12)$. The basic aqueous layer was then extracted with EtOAc ($3 \times 25 \mathrm{~mL}$), and the combined organic layers were dried over MgSO_{4}, filtered
and concentrated in vacuo to yield the crude product $3 \mathrm{c}(144 \mathrm{mg}, 31 \%)$ as a colourless oil. The crude product 3c was taken on to the next step without further purification. $R_{f}=0.10$ (PE/EtOAc, 4:1). IR (ATR) $v_{\text {Max. }} 3376$ (w), 2981 (w), 2932 (w), 1728 (s), 1640 (m). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.80-5.60(2 \mathrm{H}, \mathrm{m}), 5.14$ $-5.07(2 \mathrm{H}, \mathrm{m}), 5.00-4.90(2 \mathrm{H}, \mathrm{m}), 4.15(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 2.53(1 \mathrm{H}, \mathrm{brdd}, J=13.5,6.5 \mathrm{~Hz}), 2.21(1 \mathrm{H}, \mathrm{br} \mathrm{dd}$, $J=13.5,8.4 \mathrm{~Hz}), 2.01(1 \mathrm{H}, \mathrm{brq}, J=7.2 \mathrm{~Hz}), 1.78-1.38(5 \mathrm{H}, \mathrm{m}), 1.28-1.15(4 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C} N \mathrm{NRR}(101 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 176.8,138.3,132.9,119.5,114.9,61.1,60.6,44.4,39.6,33.9,23.3,14.4$. HRMS (ESI) calcd for $\left[\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{NO}_{2}\right]^{+}: 212.1644$, found 212.1642 .

Synthesis of the cyclohexene intermediate 4

Ethyl 2-allyl-2-((tert-butoxycarbonyl)amino)hex-5-enoate (S1)

To a solution of $\mathbf{3 b}(1.00 \mathrm{~g}, 5.07 \mathrm{mmol})$ in $\mathrm{THF}(35 \mathrm{~mL})$ was added $\mathrm{Boc}_{2} \mathrm{O}(1.66 \mathrm{~g}, 7.60 \mathrm{mmol})$ and the reaction heated to $50^{\circ} \mathrm{C}$ in a sealed tube overnight. The reaction mixture was concentrated in vacuo and the residue purified by flash column chromatography (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to yield $\mathbf{S 1}(1.28 \mathrm{~g}, 85 \%$) as a transparent viscous oil. $R_{f}=0.37$ (PE/EtOAc, 9:1). IR (ATR) $v_{\text {Max. }} 3426$ (w, br), 3080 (w), 2979 (w), 1714 (s), $1641(w) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.79-5.67(1 \mathrm{H}, \mathrm{m}), 5.67-5.53(1 \mathrm{H}, \mathrm{m}), 5.49(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 5.08-5.01$ $(2 \mathrm{H}, \mathrm{m}), 4.96(1 \mathrm{H}, \mathrm{dq}, J=17.1,1.5 \mathrm{~Hz}), 4.91(1 \mathrm{H}, \mathrm{d}, J=10.1 \mathrm{~Hz}), 4.18(2 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}), 3.04(1 \mathrm{H}, \mathrm{br} s), 2.46$ $(1 \mathrm{H}, \mathrm{dd}, J=13.9,7.4 \mathrm{~Hz}), 2.42-2.28(1 \mathrm{H}, \mathrm{m}), 2.11-1.96(1 \mathrm{H}, \mathrm{m}), 1.90-1.72(2 \mathrm{H}, \mathrm{m}), 1.41(9 \mathrm{H}, \mathrm{s}), 1.26$ $(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.4,153.9,137.7,132.6,118.9,115.1,79.2,63.3,61.8$, 40.0, 34.6, 28.6, 28.5, 14.4. HRMS (ESI) calcd for $\left[\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{Na}\right]^{+}$: 320.1832, found 320.1822.

Ethyl 1-((tert-butoxycarbonyl)amino)cyclohex-3-ene-1-carboxylate (S2)

A solution of crude $\mathbf{S 1}(6.25 \mathrm{~g}, 21.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mathrm{~mL})$ was degassed with argon, followed by the addition of Grubbs II catalyst ($18 \mathrm{mg}, 21 \mu \mathrm{~mol}$). The reaction was heated under reflux for 1 h followed by the addition of another portion of Grubbs II catalyst ($18 \mathrm{mg}, 21 \mu \mathrm{~mol}$) and the reaction was heated under reflux for further 1 h before being concentrated in vacuo. The residue was purified by flash column chromatography (silica gel, PE/EtOAc, 9:1) to yield S2 (3.86 g, 69\%) as a transparent viscous oil. $R_{f}=0.12$ (PE/EtOAc, 9:1). IR (ATR) $v_{\text {Max. }} 3368$ (m, br), 2977 (w), 1706 (s). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.76-5.70(1 \mathrm{H}$, $\mathrm{m}), 5.61-5.55(1 \mathrm{H}, \mathrm{m}), 4.78(1 \mathrm{H}, \mathrm{br} s), 4.26-4.13(2 \mathrm{H}, \mathrm{m}), 2.62-2.53(1 \mathrm{H}, \mathrm{m}), 2.29-2.01(4 \mathrm{H}, \mathrm{m}), 1.95-$ $1.86(1 \mathrm{H}, \mathrm{m}), 1.43(9 \mathrm{H}, \mathrm{s}), 1.26(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.2,155.0,127.2,122.6$, 79.9, 61.2,57.0, 34.2, 28.4, 27.7, 21.9, 14.3. HRMS (ESI) calcd for $\left[\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{NO}_{4}\right]^{+}: 270.1705$, found 270.1718.

tert-Butyl (1-(hydroxymethyl)cyclohex-3-en-1-yl)carbamate (4)

To a solution of $\mathbf{S 2}(3.86 \mathrm{~g}, 14.4 \mathrm{mmol})$ in THF (150 mL) was added $\mathrm{LiBH}_{4}(2 \mathrm{M} \mathrm{in} \mathrm{THF} 14.4 \mathrm{~mL},, 28.8 \mathrm{mmol})$, and the reaction stirred overnight. The reaction mixture was diluted with $\mathrm{NH}_{4} \mathrm{Cl}$ (sat. aq, 150 mL), stirred for 10 min and then extracted with EtOAc ($3 \times 100 \mathrm{~mL}$). The combined organic layers were washed with NaHCO_{3} (sat. aq, 100 mL), brine (100 mL), dried over MgSO_{4}, filtered and concentrated in vacuo to yield the crude product $4(3.28 \mathrm{~g}, 100 \%)$ as a white amorphous solid. The crude product 4 was taken on to the following steps without further purification. $R_{f}=0.26$ (PE/EtOAc, 4:1). IR (ATR) $v_{\text {Max. }} 3265$ (m, br), 3076 (w), 3020 (w), 2968 (w), 2933 (w), 1676 (s). ${ }^{1}$ H NMR ($400 \mathrm{MHz}, ~ D M S O-d_{6}$) $\delta 5.59(1 \mathrm{H}, \mathrm{brd}, J=10.0 \mathrm{~Hz}), 5.50(1 \mathrm{H}$, br d, J = 10.0 Hz), $4.62(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.6 \mathrm{~Hz}), 4.41(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.45-3.36(2 \mathrm{H}, \mathrm{m}), 2.27-1.86(5 \mathrm{H}, \mathrm{m}), 1.57-1.47$ $(1 \mathrm{H}, \mathrm{m}), 1.36(9 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.7,127.6,123.3,80.1,69.3,55.1,34.1,28.5,27.4$, 22.2. HRMS (ESI) calcd for $\left[\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{NO}_{3}\right]^{+}: 228.1600$, found 228.1595.

5

6

7

s3

8

3-Oxa-1-azaspiro[4.5]dec-7-ene-2-one (5)

To a solution of crude $4(3.28 \mathrm{~g}, 14.4 \mathrm{mmol})$ in THF (150 mL) was added tBuOK ($1.62 \mathrm{~g}, 14.4 \mathrm{mmol}$) and the reaction stirred for 1 h . The reaction mixture was diluted with NaHCO_{3} (sat. aq, 150 mL), stirred for 10 min and then extracted with EtOAc ($3 \times 100 \mathrm{~mL}$). The combined organic layers were washed with brine (100 $\mathrm{mL})$, dried over MgSO_{4}, filtered and concentrated in vacuo to yield crude $5(2.05 \mathrm{~g}, 93 \%$ yield) as a white amorphous solid. The crude product was further purified by recrystallization from $\mathrm{Et}_{2} \mathrm{O} /$ pentane $1: 1$ to yield pure 5 ($718 \mathrm{mg}, 33 \%$) as a white crystalline solid. $R_{f}=0.21$ (PE/EtOAc, 1:1). Mp $84-85{ }^{\circ} \mathrm{C}$ ($\mathrm{Et}_{2} \mathrm{O} /$ Pentane). IR (ATR) $v_{\text {Max }} 3235$ (m, br), 3039 (w), 2922 (w), 2904 (w), 2845 (w), 1731 (s). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.77-5.70(1 \mathrm{H}, \mathrm{m}), 5.66-5.59(1 \mathrm{H}, \mathrm{m}), 5.46(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.14(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 4.11(1 \mathrm{H}, \mathrm{d}, J$ $=8.5 \mathrm{~Hz}), 2.34-2.15(4 \mathrm{H}, \mathrm{m}), 1.90-1.82(1 \mathrm{H}, \mathrm{m}), 1.80-1.72(1 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.4$, 127.1, 123.6, 75.6, 56.2, 36.9, 32.3, 22.7. HRMS (ESI) calcd for $\left[\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{NO}_{2} \mathrm{Na}\right]^{+}: 176.0682$, found 176.0676.

Compound 4 ($313 \mathrm{mg}, 1.38 \mathrm{mmol}$) was dissolved in $\mathrm{HCl}(4 \mathrm{M}$ in dioxane, 10 mL) and stirred at rt for 1 h , then concentrated in vacuo. The residue was dissolved in $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and basified with $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{pH} \approx 12)$. The basic aqueous was then extracted with EtOAc ($3 \times 10 \mathrm{~mL}$), and the combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo. To a solution of the residue in $\mathrm{EtOH}(5 \mathrm{~mL})$ was added $\operatorname{BrCN}(175 \mathrm{mg}, 1.65 \mathrm{mmol})$ and heated under reflux overnight. The reaction mixture was concentrated in vacuo. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, washed with $\mathrm{NaOH}(1 \mathrm{Maq}, 10 \mathrm{~mL})$ and the aqueous extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The combined organic layers were concentrated in vacuo to yield the crude product 6 ($122 \mathrm{mg}, 58 \%$) as an off-white amorphous solid. The crude product was crystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for the single crystal X-ray crystallography analysis. Mp $198-199^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. IR (ATR) $v_{\text {Max. }} 3437(\mathrm{~m}$, br), $2903(\mathrm{w}), 1666(\mathrm{~s}), 1650(\mathrm{~m}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.74-5.66(1 \mathrm{H}, \mathrm{m}), 5.66-5.59(1 \mathrm{H}, \mathrm{m}), 4.17(2 \mathrm{H}$, br s), $4.01(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}), 3.97(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}), 2.34-2.19(2 \mathrm{H}, \mathrm{m}), 2.14-2.02(2 \mathrm{H}, \mathrm{m}), 1.85-1.76$ $(1 \mathrm{H}, \mathrm{m}), 1.69-1.61(1 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.3,127.1,124.8,78.8,66.7,38.0,33.6,23.3$. HRMS (ESI) calcd for $\left[\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}\right]^{+}$: 153.1028, found 153.1025.

2-Phenyl-3-oxa-1-azaspiro[4.5]deca-1,7-diene (7)

Compound 4 ($70.3 \mathrm{mg}, 0.31 \mathrm{mmol}$) was dissolved in $\mathrm{HCl}(4 \mathrm{M}$ in dioxane, 10 mL) and stirred at rt for 1 h , then concentrated in vacuo. A solution of the residue and ethyl benzimidate hydrochloride ($41.4 \mathrm{mg}, 0.28$ mmol) in DCE (1.0 mL) was heated under reflux overnight. The reaction was cooled to rt, filtered and concentrated in vacuo. The residue was purified by flash column chromatography (silica gel, $\mathrm{PE} / \mathrm{EtOAc}, 7: 3$) to yield 7 ($34.0 \mathrm{mg}, 57 \%$) as a white amorphous solid. $R_{f}=0.44$ (PE/EtOAc, 7:3). IR (ATR) $v_{\text {Max. }} 2905$ (w), $1648(\mathrm{~s}), 1581(\mathrm{~m}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.96-7.92(2 \mathrm{H}, \mathrm{m}), 7.48-7.44(1 \mathrm{H}, \mathrm{m}), 7.41-7.37(2 \mathrm{H}$, m), $5.77-5.73(1 \mathrm{H}, \mathrm{m}), 5.69-5.63(1 \mathrm{H}, \mathrm{m}), 4.16(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 4.11(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 2.48-2.43(1 \mathrm{H}$, m), $2.36-2.29(1 \mathrm{H}, \mathrm{m}), 2.17-2.08(2 \mathrm{H}, \mathrm{m}), 2.05-1.98(1 \mathrm{H}, \mathrm{m}), 1.75-1.69(1 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR $(101 \mathrm{MHz}$, CDCl_{3}) δ 162.7, 131.4, 128.4, 128.4, 128.2, 127.3, 124.5, 77.8, 69.5, 37.4, 33.1, 23.0. HRMS (ESI) calcd for $\left[\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NO}\right]^{+}: 214.1226$, found 214.1222.

To a solution of $4(1.19 \mathrm{~g}, 5.24 \mathrm{mmol})$ in THF (50 mL) was added $\mathrm{HCl}(3 \mathrm{M} \mathrm{aq}, 17.5 \mathrm{~mL})$ and heated under reflux for 3 h , then concentrated in vauco. To a solution of the residue in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added $\mathrm{Et}_{3} \mathrm{~N}$ ($2.2 \mathrm{~mL}, 15.7 \mathrm{mmol}$) followed by the dropwise addition of chloroacetyl chloride ($0.42 \mathrm{~mL}, 5.24 \mathrm{mmol}$) at 0 ${ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for 90 min , then diluted with $\mathrm{NH}_{4} \mathrm{Cl}$ (sat. aq, 25 mL) and stirred for further 10 min . The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$ and the combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo. The residue was purified by flash column chromatography (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}, 9: 1$) to yield $\mathbf{S 3}$ ($261 \mathrm{mg}, 24 \%$) as a white amorphous solid. $R_{f}=$ $0.14\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}, 9: 1\right)$. IR (ATR) $v_{\text {Max. }} 3352(\mathrm{~m}, \mathrm{br}), 3271(\mathrm{~m}), 3070(\mathrm{w}), 2938(\mathrm{w}), 1654$ (s$), 1549(\mathrm{~s}) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.67(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 5.81-5.76(1 \mathrm{H}, \mathrm{m}), 5.64-5.59(1 \mathrm{H}, \mathrm{m}), 4.30(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}), 4.04(2 \mathrm{H}$, s), $3.75(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}), 2.25-2.16(3 \mathrm{H}, \mathrm{m}), 2.11-2.02(2 \mathrm{H}, \mathrm{m}), 1.80-1.72(1 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 167.0,127.6,123.0,68.5,57.6,43.1,33.6,27.4,22.0$. HRMS (ESI) calcd for $\left[\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{NO}_{2}{ }^{35} \mathrm{CI}\right]^{+}$: 204.0786, found 204.0776.

4-Oxa-1-azaspiro[5.5]undec-8-en-2-one (8)

To a solution of $\mathbf{S 3}(260 \mathrm{mg}, 1.28 \mathrm{mmol})$ in $t \mathrm{BuOH}(25 \mathrm{~mL})$ at $30^{\circ} \mathrm{C}$ was added $t \mathrm{BuOK}(158 \mathrm{mg}, 1.40 \mathrm{mmol})$ and stirred for 5 h . The reaction mixture was diluted with $\mathrm{NH}_{4} \mathrm{Cl}$ (sat. aq, 20 mL) and stirred for 10 min , then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo to yield the crude product $8(212 \mathrm{mg}, 99 \%)$ as an off-white amorphous solid. $R_{f}=$ 0.12 (PE/EtOAc, 1:1). IR (ATR) $v_{\text {Max. }} 3165$ (m, br), 3072 (w), 2920 (w), 1664 (s$), 1641$ (w). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 5.76-5.70(1 \mathrm{H}, \mathrm{m}), 5.64-5.57(1 \mathrm{H}, \mathrm{m}), 4.20(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.1 \mathrm{~Hz}), 4.14(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.1 \mathrm{~Hz}), 3.69(2 \mathrm{H}$, s), $2.21-1.95(4 \mathrm{H}, \mathrm{m}), 1.82-1.74(1 \mathrm{H}, \mathrm{m}), 1.69-1.61(1 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.1,126.8$, 123.4, 76.3, 48.3, 44.1, 33.3, 28.6, 22.1. HRMS (ESI) calcd for [$\left.\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{NO}_{2} \mathrm{Na}\right]^{+}: 190.0839$, found 190.0833.

4-Oxa-1-azaspiro[5.5]undec-8-en-3-one (9)

Compound 4 ($891 \mathrm{mg}, 3.93 \mathrm{mmol}$) was dissolved in $\mathrm{HCl}(4 \mathrm{M}$ in dioxane, 10 mL) and stirred at rt for 1 h , then concentrated in vacuo. The residue was dissolved in $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and basified with $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{pH} \approx 12)$. The basic aqueous was then extracted with EtOAc ($3 \times 10 \mathrm{~mL}$), and the combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo. To a solution of the residue in $\mathrm{MeCN}(26 \mathrm{~mL})$ was added phenyl bromoacetate ($930 \mathrm{mg}, 4.32 \mathrm{mmol}$) and DIPEA ($1.70 \mathrm{~mL}, 9.83 \mathrm{mmol}$) and stirred at rt for 4 h , then concentrated in vacuo. The residue was purified by flash column chromatography (silica gel, EtOAc) to yield 9 ($282 \mathrm{mg}, 43 \%$) as a white amorphous solid. $R_{f}=0.21$ (EtOAc).IR (ATR) $v_{\text {Max. }} 3317$ (w), 2921 (w), 1730 (s). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.74-5.70(1 \mathrm{H}, \mathrm{m}), 5.62-5.57(1 \mathrm{H}, \mathrm{m}), 4.20(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.0 \mathrm{~Hz}), 4.13(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=11.0 \mathrm{~Hz}), 3.68(2 \mathrm{H}, \mathrm{s}), 2.17-1.97(5 \mathrm{H}, \mathrm{m}), 1.80-1.74(1 \mathrm{H}, \mathrm{m}), 1.67-1.61(1 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , CDCl_{3}) δ 169.1, 126.7, 123.3, 76.2, 48.2, 44.0, 33.2, 28.6, 22.0. HRMS (ESI) calcd for $\left[\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{NO}_{2}\right]^{+}: 168.1019$, found 168.1017.

Synthesis of different carbocycles

Ethyl 2-allyl-2-(3-ethoxy-3-oxopropanamido)pent-4-enoate (S4a)

To a solution of $\mathbf{3 a}(200 \mathrm{mg}, 1.09 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added $\mathrm{Et}_{3} \mathrm{~N}(304 \mu \mathrm{~L}, 2.18 \mathrm{mmol})$ followed by ethyl malonyl chloride ($210 \mu \mathrm{~L}, 1.64 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$ and stirred for 20 min . The reaction mixture was diluted with $\mathrm{NH}_{4} \mathrm{Cl}$ (sat. aq, 10 mL) and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and stirred for 10 min then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 10 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo. The crude
product was purified by flash column chromatography (silica gel, PE/EtOAc, 4:1) to yield S4a ($264 \mathrm{mg}, 81 \%$) as a transparent viscous oil. $R_{f}=0.17$ (PE/EtOAc, 4:1). IR (ATR) $v_{\text {Max. }} 3310(\mathrm{w}, \mathrm{br}), 3074$ (w), 2981 (w), 1733 (s), 1656 (s). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.58(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 5.65-5.53(2 \mathrm{H}, \mathrm{m}), 5.09-5.02(4 \mathrm{H}, \mathrm{m}), 4.24-$ $4.15(4 \mathrm{H}, \mathrm{m}), 3.26(2 \mathrm{H}, \mathrm{s}), 3.15(2 \mathrm{H}, \mathrm{br}$ dd, $J=13.9,7.2 \mathrm{~Hz}), 2.52(2 \mathrm{H}, \mathrm{br} d \mathrm{~d}, \mathrm{~J}=13.9,7.4 \mathrm{~Hz}), 1.29-1.24$ ($6 \mathrm{H}, \mathrm{m}$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.6,168.8,164.0,132.2,119.1,64.4,62.0,61.6,42.6,39.1,14.3$, 14.1. HRMS (ESI) calcd for $\left[\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{NO}_{5}\right]^{+}: 298.1654$, found 298.1644.

Ethyl 2-allyl-2-(3-ethoxy-3-oxopropanamido)hex-5-enoate (S4b)

To a solution of $\mathbf{3 b}(1.0 \mathrm{~g}, 5.07 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{Et}_{3} \mathrm{~N}(1.52 \mathrm{~mL}, 10.9 \mathrm{mmol})$, followed by the dropwise addition of ethyl malonyl chloride ($1.04 \mathrm{~mL}, 8.11 \mathrm{mmol}$) and the reaction stirred for 30 min . The reaction mixture was diluted with $\mathrm{NH}_{4} \mathrm{Cl}$ (sat. aq, 25 mL) and stirred for 10 min then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo. The crude product was purified by flash column chromatography (silica gel, PE/EtOAc, 4:1) to yield $\mathbf{S 4 b}(1.27 \mathrm{~g}, 81 \%)$ as a pale yellow viscous oil. $R_{f}=0.23$ (PE/EtOAc, 4:1). IR (ATR) $v_{\text {Max. }}$ 3337 (w, br), $2980(\mathrm{w}), 1732$ (s$), 1681(\mathrm{~m}), 1650(\mathrm{~m}) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.67(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 5.79-5.67$ $(1 \mathrm{H}, \mathrm{m}), 5.65-5.51(1 \mathrm{H}, \mathrm{m}), 5.10-5.02(2 \mathrm{H}, \mathrm{m}), 5.02-4.94(2 \mathrm{H}, \mathrm{m}), 4.27-4.18(4 \mathrm{H}, \mathrm{m}), 3.29(2 \mathrm{H}, \mathrm{s}), 3.26$ $-3.18(1 \mathrm{H}, \mathrm{m}), 2.61-2.47(2 \mathrm{H}, \mathrm{m}), 2.10-1.97(1 \mathrm{H}, \mathrm{m}), 1.92-1.74(2 \mathrm{H}, \mathrm{m}), 1.32-1.26(6 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.2,168.9,163.9,137.5,132.3,119.0,115.3,64.7,62.1,61.7,42.8,39.5,34.1,28.7$, 14.3, 14.2. HRMS (ESI) calcd for $\left[\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{NO}_{5}\right]^{+}: 312.1811$, found 312.1820.

Ethyl 2-allyl-2-(3-ethoxy-3-oxopropanamido)hept-6-enoate (S4c)

To a solution of $3 \mathrm{c}(100 \mathrm{mg}, 0.473 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{Et}_{3} \mathrm{~N}(132 \mu \mathrm{~L}, 0.946 \mathrm{mmol})$ followed by ethyl malonyl chloride ($91 \mu \mathrm{~L}, 0.710 \mathrm{mmol}$) and the reaction stirred for 20 min . The reaction mixture was diluted with $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{sat} . \mathrm{aq}, 10 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and stirred for 10 min then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}, filtered and concentrated in
vacuo. The crude product was purified by flash column chromatography (silica gel, PE/EtOAc, 4:1) to yield S4c (113 mg, 73\%) as a transparent viscous oil. $R_{f}=0.19$ (PE/EtOAc, 4:1). IR (ATR) $v_{\text {Max. }} 3326$ (w, br), 3081 (w), 2982 (w), 2939 (w), 1734 (s), 1682 (s). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta 7.63$ (1H, br s), $5.78-5.66$ (1H, m), $5.63-5.52(1 \mathrm{H}, \mathrm{m}), 5.07-5.00(2 \mathrm{H}, \mathrm{m}), 5.00-4.90(2 \mathrm{H}, \mathrm{m}), 4.26-4.16(4 \mathrm{H}, \mathrm{m}), 3.27(2 \mathrm{H}, \mathrm{s}), 3.18(1 \mathrm{H}, \mathrm{br}$ dd, $J=14.0,7.2 \mathrm{~Hz}), 2.50(1 \mathrm{H}, \mathrm{br} d \mathrm{~d}, J=14.0,7.5 \mathrm{~Hz}), 2.41(1 \mathrm{H}, \mathrm{br} \operatorname{td}, J=13.0,4.6 \mathrm{~Hz}), 2.08-1.92(2 \mathrm{H}, \mathrm{m})$, $1.82-1.71(1 \mathrm{H}, \mathrm{m}), 1.44-1.32(1 \mathrm{H}, \mathrm{m}), 1.32-1.24(6 \mathrm{H}, \mathrm{m}), 1.14-1.01(1 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 173.4,169.0,163.9,138.3,132.4,119.0,115.0,64.9,62.0,61.7,42.8,39.4,34.5,33.5,23.5,14.4,14.2$. HRMS (ESI) calcd for $\left[\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{NO}_{5} \mathrm{Na}\right]^{+}: 348.1781$, found 348.1770.

5,5-Diallylpyrrolidine-2,4-dione (10a)

To a solution of S4a ($200 \mathrm{mg}, 0.673 \mathrm{mmol}$) in THF (10 mL) was added tBuOK ($113 \mathrm{mg}, 1.01 \mathrm{mmol}$) and the reaction heated under reflux for 2 h . The reaction mixture was diluted with EtOAc (20 mL), $\mathrm{HCl}(3 \mathrm{M} \mathrm{aq}, 10$ mL) and brine $(20 \mathrm{~mL})$ and stirred for 10 min . The organic layer was then separated and the aqueous layer was extracted with EtOAc ($2 \times 20 \mathrm{~mL}$). The combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo. The residue was dissolved in $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}(9: 1,10 \mathrm{~mL})$ and heated under reflux for 1 h, then concentrated in vacuo. The crude product was purified by flash column chromatography (silica gel, $\mathrm{PE} / \mathrm{EtOAc}, 1: 1$) to yield 10a ($104 \mathrm{mg}, 86 \%$) as a white amorphous solid. $R_{f}=0.13$ (PE/EtOAc, 1:1). IR (ATR) $v_{\text {Max. }} 3212$ (w, br), 2981 (w), 1768 (m), 1698 (s), 1640 (m). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.64$ (H, br s), 5.77 $5.64(2 \mathrm{H}, \mathrm{m}), 5.23-5.12(4 \mathrm{H}, \mathrm{m}), 2.89(2 \mathrm{H}, \mathrm{s}), 2.50-2.35(4 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 209.1$, 170.5, 130.5, 121.5, 71.5, 41.7, 41.3. HRMS (ESI) calcd for $\left[\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{NO}_{2}\right]^{+}: 180.1025$, found 180.1021.

5-Allyl-5-(but-3-en-1-yl)pyrrolidine-2,4-dione (10b)

To a solution of S4b ($2.03 \mathrm{~g}, 6.81 \mathrm{mmol}$) in THF (70 mL) was added $t \mathrm{BuOK}(1.15 \mathrm{~g}, 10.2 \mathrm{mmol})$ and the reaction heated under reflux for 1 h . Upon completion, the reaction was diluted with $\mathrm{HCl}(3 \mathrm{M} \mathrm{aq}, 50 \mathrm{~mL})$ and heated under reflux for 30 min . The organic solvent was removed in vacuo and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}, filtered and
concentrated in vacuo. The crude product was purified by flash column chromatography (silica gel, PE/EtOAc, 1:1) to yield 10b ($1.24 \mathrm{~g}, 94 \%$) as a white amorphous solid. $R_{f}=0.10$ (PE/EtOAc, 4:1). IR (ATR) $v_{\text {Max. }} 3282(w, b r), 3081(w), 2921(w), 2848(w), 1639(s) .{ }^{1} H$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90-7.62(1 \mathrm{H}, \mathrm{m})$, $5.74-5.62(2 H, m), 5.17(1 H, d, J=10.4 \mathrm{~Hz}), 5.13(1 \mathrm{H}, \mathrm{d}, J=17.4 \mathrm{~Hz}), 5.00(1 \mathrm{H}, \mathrm{d}, J=17.4 \mathrm{~Hz}), 4.95(1 \mathrm{H}, \mathrm{d}, J$ $=10.4 \mathrm{~Hz}), 2.91(1 \mathrm{H}, \mathrm{d} J=22.3 \mathrm{~Hz}), 2.88(1 \mathrm{H}, \mathrm{d} J=22.3 \mathrm{~Hz}), 2.46-2.31(2 \mathrm{H}, \mathrm{m}), 2.22-2.11(1 \mathrm{H}, \mathrm{m}), 2.03-$ $1.87(2 \mathrm{H}, \mathrm{m}), 1.77-1.67(1 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 209.9,171.6,137.0,130.5,121.3,116.1$, 71.6, 42.8, 41.8, 35.8, 28.4. HRMS (ESI) calcd for $\left[\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{NO}_{2}\right]^{+}: 194.1181$, found 194.1184.

5-Allyl-5-(pent-4-en-1-yl)pyrrolidine-2,4-dione (10c)

To a solution of S4c ($72 \mathrm{mg}, 0.221 \mathrm{mmol}$) in THF (4.0 mL) was added tBuOK ($37 \mathrm{mg}, 0.332 \mathrm{mmol}$) and the reaction heated under reflux for 2 h . The reaction mixture was diluted with $\mathrm{HCl}(3 \mathrm{M} \mathrm{aq}, 4.0 \mathrm{~mL})$ and brine $(10 \mathrm{~mL})$ and stirred for 10 min . The organic layer was then removed and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo. The residue was dissolved in $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}(9: 1,4.0 \mathrm{~mL})$ and heated under reflux for 1 h , then concentrated in vacuo. The crude product was purified by flash column chromatography (silica gel, $\mathrm{PE} / \mathrm{EtOAc}, 1: 1$) to yield $\mathbf{1 0 c}(40 \mathrm{mg}, 87 \%)$ as a transparent viscous oil. $R_{f}=0.22$ (PE/EtOAc, 1:1). IR (ATR) $v_{\text {Max. }} 3196(\mathrm{w}, \mathrm{br}), 2943(\mathrm{w}), 1641(\mathrm{~s}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.68-7.58(1 \mathrm{H}, \mathrm{m}), 5.77-5.62(2 \mathrm{H}, \mathrm{m})$, $5.19-5.09(2 \mathrm{H}, \mathrm{m}), 5.01-4.93(2 \mathrm{H}, \mathrm{m}), 2.91(1 \mathrm{H}, \mathrm{d}, J=22.4 \mathrm{~Hz}), 2.89(1 \mathrm{H}, \mathrm{d}, J=22.4 \mathrm{~Hz}), 2.46-2.31(2 \mathrm{H}$, $m), 2.06-1.98(2 \mathrm{H}, \mathrm{m}), 1.82-1.72(1 \mathrm{H}, \mathrm{m}), 1.65-1.55(1 \mathrm{H}, \mathrm{m}), 1.55-1.43(1 \mathrm{H}, \mathrm{m}), 1.27-1.14(1 \mathrm{H}, \mathrm{m})$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 210.0,171.4,137.6,130.7,121.2,115.6,71.9,41.8,41.7,36.4,33.6,23.0$. HRMS (ESI) calcd for $\left[\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{2} \mathrm{Na}\right]^{+}: 230.1152$, found 230.1146 .

1-Azaspiro[4.4]non-7-ene-2,4-dione (11)

A solution of 10a ($95 \mathrm{mg}, 0.530 \mathrm{mmol}$) in toluene (25 mL) was degassed with argon and heated to $70^{\circ} \mathrm{C}$, followed by the addition of Grubbs II catalyst ($17 \mathrm{mg}, 0.020 \mathrm{mmol}$) and the reaction stirred for 90 min , then concentrated in vacuo. The residue was purified by flash column chromatography (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ then

EtOAc) to yield 11 ($55.0 \mathrm{mg}, 69 \%$) as a brown amorphous solid. $R_{f}=0.23$ (EtOAc). Mp $154-155^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right)$. IR (ATR) $v_{\text {Max. }} 3180$ (w, br), 3083 (w), 2949 (w), 2846 (w), 1764, (s), 1702 (s), 1673 (s). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 6.89(1 \mathrm{H}, \mathrm{br} s), 5.69(2 \mathrm{H}, \mathrm{s}), 3.08(2 \mathrm{H}, \mathrm{s}), 2.97(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=15.9 \mathrm{~Hz}), 2.53(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=15.9 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \mathrm{NMR}$ ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 210.1,169.9,127.6,73.4,45.5,40.5$. HRMS (ESI) calcd for $\left[\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{NO}_{2}\right]^{+}: 152.0712$, found 152.0710.

1-Azaspiro[4.5]dec-7-ene-2,4-dione (12)

A solution of $\mathbf{1 0 b}(1.12 \mathrm{~g}, 5.78 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(250 \mathrm{~mL})$ was degassed with argon, followed by the addition of Grubbs II catalyst ($49.1 \mathrm{mg}, 0.058 \mathrm{mmol}$) and the reaction heated under reflux for 1 h , then concentrated in vacuo. The residue was purified by flash column chromatography (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ then EtOAc) to yield 12 ($950 \mathrm{mg}, 99 \%$) as a pale brown amorphous solid. $R_{f}=0.23$ (EtOAc). IR (ATR) $v_{\text {Max. }} 3177$
 $\mathrm{m}), 5.72-5.66(1 \mathrm{H}, \mathrm{m}), 3.12(1 \mathrm{H}, \mathrm{d}, J=22.1 \mathrm{~Hz}), 3.06(1 \mathrm{H}, \mathrm{d}, J=22.1 \mathrm{~Hz}), 2.46-2.31(2 \mathrm{H}, \mathrm{m}), 2.22-2.11$ $(1 \mathrm{H}, \mathrm{m}), 2.03-1.87(2 \mathrm{H}, \mathrm{m}), 1.77-1.67(1 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 209.5,170.7,126.8,123.1$, 66.3, 40.3, 33.5, 29.4, 21.4. HRMS (ESI) calcd for $\left[\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{NO}_{2}\right]^{+}: 166.0868$, found 166.0869.

1-Azaspiro[4.6]undec-7-ene-2,4-dione (13)

A solution of $\mathbf{1 0 c}(38 \mathrm{mg}, 0.183 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was degassed with argon, followed by the addition of Grubbs II catalyst ($15 \mathrm{mg}, 0.018 \mathrm{mmol}$) and the reaction heated under reflux for 30 min , then concentrated in vacuo. The residue was purified by flash column chromatography (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ then PE/EtOAc, 1:1) to yield 13 ($25.5 \mathrm{mg}, 78 \%$) as a pale brown amorphous solid. $R_{f}=0.15$ (PE/EtOAc, 1:1). IR (ATR) $v_{\text {Max. }} 3199(\mathrm{w}, \mathrm{br}), 2929(\mathrm{w}), 2836(\mathrm{w}), 1630(\mathrm{~s}) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.68(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.11$ $6.03(1 \mathrm{H}, \mathrm{m}), 5.67-5.58(1 \mathrm{H}, \mathrm{m}), 3.08(2 \mathrm{H}, \mathrm{s}), 2.66-2.59(1 \mathrm{H}, \mathrm{m}), 2.35-2.25(1 \mathrm{H}, \mathrm{m}), 2.22-2.11(2 \mathrm{H}, \mathrm{m})$, $2.06-1.95(1 \mathrm{H}, \mathrm{m}), 1.95-1.85(1 \mathrm{H}, \mathrm{m}), 1.85-1.74(1 \mathrm{H}, \mathrm{m}), 1.41-1.29(1 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 209.0,169.5,136.2,125.2,67.4,39.7,39.0,34.5,28.1,20.7$. HRMS (ESI) calcd for $\left[\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{2} \mathrm{Na}\right]^{+}$: 202.0839, found 202.0832.

(3R,5R)-3-Allyl-3-(but-3-en-1-yl)-5-phenyImorpholine-2-one ((R)-15)

To a solution of $(\boldsymbol{R}) \mathbf{- 1 4}(1.45 \mathrm{~g}, 6.32 \mathrm{mmol})$ in DMF (50 mL) at $0^{\circ} \mathrm{C}$ was added activated zinc powder (620 $\mathrm{mg}, 9.48 \mathrm{mmol}$), followed by the dropwise addition of allyl bromide ($820 \mu \mathrm{~L}, 9.48 \mathrm{mmol}$). The reaction was stirred at $0{ }^{\circ} \mathrm{C}$ for further 1 h . Upon completion, the reaction was diluted with $\mathrm{NH}_{4} \mathrm{Cl}$ (sat. aq, 100 mL) and extracted with EtOAc ($3 \times 100 \mathrm{~mL}$). The combined organic layers were concentrated in vacuo, the residue was redissolved in EtOAc (10 mL) and washed with LiCl ($10 \% \mathrm{aq}, 3 \times 10 \mathrm{~mL}$), brine (10 mL), dried over MgSO_{4} and concentrated in vacuo. The crude product was purified by flash column chromatography (silica gel, PE/EtOAc, 9:1) to yield (R)-15 (1.20 g, 70\%) as a transparent viscous oil. $R_{f}=0.24$ (PE/EtOAc, 9:1). IR (ATR) $v_{\text {Max. }} 3326$ (w), 3076 (w), 2978 (w), 2927 (w), 2849 (w), 1731 (s), 1639 (m). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46-7.31(5 \mathrm{H}, \mathrm{m}), 5.91-5.77(2 \mathrm{H}, \mathrm{m}), 5.21(1 \mathrm{H}, \mathrm{dd}, J=10.2,1.8 \mathrm{~Hz}), 5.15(1 \mathrm{H}, \mathrm{ddt}, J=17.1,1.8,1.2 \mathrm{~Hz})$, $5.09(1 \mathrm{H}, \mathrm{ddt}, J=17.1,1.8,1.2 \mathrm{~Hz}), 5.00(1 \mathrm{H}, \mathrm{ddt}, J=10.2,1.8,1.2 \mathrm{~Hz}), 4.36(1 \mathrm{H}, \mathrm{dd}, J=8.4,5.5 \mathrm{~Hz}), 4.28-$ $4.20(2 \mathrm{H}, \mathrm{m}), 2.85(1 \mathrm{H}, \mathrm{br} \mathrm{dd}, \mathrm{J}=13.7,8.1 \mathrm{~Hz}), 2.61-2.45(2 \mathrm{H}, \mathrm{m}), 2.21-2.01(2 \mathrm{H}, \mathrm{m}), 1.83(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 1.57$ $(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=13.3,11.3,4.6 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.6,138.3,138.1,132.1,129.0,128.8$, 127.3, 120.9, 115.1, 75.0, 63.3, 53.2, 43.5, 39.5 (12), 29.0. HRMS (ESI) calcd for [$\left.\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NO}_{2}\right]^{+}: 272.1645$, found 272.1643. $[\alpha]_{D}{ }^{20}+12.5^{\circ}\left(\mathrm{c}=0.600, \mathrm{CHCl}_{3}\right)$.

To a solution of $(\boldsymbol{R})-15(1.10 \mathrm{~g}, 4.05 \mathrm{mmol})$ in $\mathrm{MeOH}(40 \mathrm{~mL})$ was added thionyl chloride ($588 \mathrm{LL}, 9.60$ mmol) and the reaction stirred for 2 h at rt , then concentrated in vacuo. The residue was dissolved in EtOAc (50 mL) and NaHCO_{3} (sat. aq, 50 mL) and stirred for 20 min . The layers were separated and the aqueous extracted with EtOAc ($3 \times 50 \mathrm{~mL}$). The combined organic layers were washed with brine (50 mL), dried over MgSO_{4}, filtered and concentrated in vacuo to yield the crude intermediate. To a solution of the crude intermediate in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(2: 1,45 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{Pb}(\mathrm{OAc})_{4}(2.51 \mathrm{~g}, 5.67 \mathrm{mmol})$ and the reaction stirred for 1 h . The reaction was diluted with $\mathrm{HCl}(2 \mathrm{M} \mathrm{aq}, 80 \mathrm{~mL})$, warmed to rt and stirred for 2 h . The reaction mixture was filtered through a pad of Celite before separating the layers, the aqueous was further extracted with EtOAc ($3 \times 50 \mathrm{~mL}$) and the organic layers were discarded. The aqueous phase was basified with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (until pH ≈ 12 obtained). The basic aqueous layer was then extracted with EtOAc (3 x 50 mL), and the combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo to yield the crude product (\boldsymbol{R}) - $\mathbf{3 d}$ ($680 \mathrm{mg}, 92 \%$) as a transparent oil. The crude product (\boldsymbol{R}) - $\mathbf{3 d}$ was taken on to the next step without further purification. $R_{f}=0.09$ (PE/EtOAc, 4:1). IR (ATR) $v_{\text {Max. }} 3336$ (w), 2928 (w), 2855 (w), 1731 (s), 1639 (m), 1589 (m). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.81-5.62(2 \mathrm{H}, \mathrm{m}), 5.18-5.11(2 \mathrm{H}$, $\mathrm{m}), 5.04-4.98(1 \mathrm{H}, \mathrm{m}), 4.96-4.91(1 \mathrm{H}, \mathrm{m}), 3.71(3 \mathrm{H}, \mathrm{s}), 2.57(1 \mathrm{H}, \mathrm{brdd}, J=13.6,6.6 \mathrm{~Hz}), 2.35(1 \mathrm{H}, \mathrm{br} \mathrm{dd}, J$ $=13.6,8.3 \mathrm{~Hz}$), $2.27-1.67(6 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 175.8, 137.6, 132.1, 120.2, 115.3, 61.3, 52.4, 43.7, 38.4, 28.3. HRMS (ESI) calcd for $\left[\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{NO}_{2}\right]^{+}$: 184.1338, found 184.1335. $[\alpha]_{\mathrm{D}}{ }^{20}+27.0^{\circ}$ ($\mathrm{c}=$ $\left.0.300, \mathrm{CHCl}_{3}\right)$.

Methyl (R)-2-allyl-2-(3-ethoxy-3-oxopropanamido)hex-5-enoate ((R)-S4d)

To a solution of $(\boldsymbol{R})-\mathbf{3 d}(140 \mathrm{mg}, 0.764 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added a solution of $\mathrm{Et}_{3} \mathrm{~N}(213$ $\mu \mathrm{L}, 1.53 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$, followed by the dropwise addition of a solution of ethyl malonyl chloride ($147 \mu \mathrm{~L}, 1.15 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ and the reaction stirred for 30 min . The reaction mixture was diluted with $\mathrm{NH}_{4} \mathrm{Cl}$ (sat. aq, 10 mL) and stirred for 10 min then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL}$). The combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo. The crude product
was purified by flash column chromatography (silica gel, PE/EtOAc, 4:1) to yield (R)-S4d ($105 \mathrm{mg}, 46 \%$) as a transparent viscous oil. $R_{f}=0.33$ (PE/EtOAc, 2:1). IR (ATR) $v_{\text {Max. }} 3327$ (w, br), 3080 (w), 2980 (w), 1735 (s), $1656(\mathrm{~s}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.65(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 5.78-5.67(1 \mathrm{H}, \mathrm{m}), 5.65-5.53(1 \mathrm{H}, \mathrm{m}), 5.10-5.03$ $(2 \mathrm{H}, \mathrm{m}), 4.98(1 \mathrm{H}, \mathrm{dq}, J=17.2,1.5 \mathrm{~Hz}), 4.93(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=10.1 \mathrm{~Hz}), 4.22(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 3.77(3 \mathrm{H}, \mathrm{s}), 3.29$ $(2 \mathrm{H}, \mathrm{s}), 3.20(1 \mathrm{H}, \mathrm{br}$ dd, $J=13.9,7.3 \mathrm{~Hz}), 2.59-2.48(2 \mathrm{H}, \mathrm{m}), 2.09-1.99(1 \mathrm{H}, \mathrm{m}), 1.93-1.75(2 \mathrm{H}, \mathrm{m}), 1.29$ $(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.7,169.0,164.0,137.4,132.3,119.1,115.3,64.8,61.8$, 52.9, 42.7, 39.5, 34.1, 28.7, 14.2. HRMS (ESI) calcd for $\left[\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}_{5} \mathrm{Na}\right]^{+}: 320.1474$, found 320.1473. [$\left.\alpha\right]_{\mathrm{D}}{ }^{20}$ $+13.3^{\circ}(c=0.120, \mathrm{MeOH})$.
(R)-5-Allyl-5-(but-3-en-1-yl)pyrrolidine-2,4-dione ((R)-10b)

To a solution of (\boldsymbol{R})-S4d ($95 \mathrm{mg}, 0.319 \mathrm{mmol}$) in THF (2.5 mL) was added a solution of t BuOK ($54 \mathrm{mg}, 0.479$ $\mathrm{mmol})$ in THF (1.0 mL), and the reaction heated under reflux for 2 h . The reaction mixture was diluted with EtOAc (10 mL) and $\mathrm{HCl}(1 \mathrm{M} \mathrm{aq}, 10 \mathrm{~mL})$ and stirred for 10 min . The organic layer was then separated and the aqueous layer was extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo to give a colourless oil (78 mg). A solution of the oil (70 mg) in $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}$ (9:1, 3.5 mL) was heated under reflux for 1 h , then concentrated in vacuo. The crude product was purified by flash column chromatography (silica gel, PE/EtOAc, 1:1) to yield (R)-10b ($51 \mathrm{mg}, 92 \%$) as a transparent viscous oil. Analytical data matched that of 10b. $[\alpha]_{\mathrm{D}}{ }^{20}+111.9^{\circ}(\mathrm{c}=0.176, \mathrm{MeOH})$.

(R)-1-Azaspiro[4.5]dec-7-ene-2,4-dione ((R)-12)

A solution of $(\boldsymbol{R}) \mathbf{- 1 0 b}(39 \mathrm{mg}, 0.202 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was degassed with argon, followed by the addition of Grubbs II catalyst ($17 \mathrm{mg}, 0.020 \mathrm{mmol}$) and the reaction heated under reflux for 1 h , then concentrated in vacuo. The residue was purified by flash column chromatography (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ then EtOAc) to yield (\boldsymbol{R}) $\mathbf{- 1 2}$ ($32.5 \mathrm{mg}, 97 \%$) as a brown amorphous solid. Analytical data matched that of $\mathbf{1 2}$. $[\alpha]_{D}{ }^{20}+45.4^{\circ}(c=0.410, \mathrm{MeOH})$.

Heterocycle modification

1-(4-Methoxybenzyl)-3-oxa-1-azaspiro[4.5]dec-7-ene-2-one (16)

To a solution of pure 5 ($718 \mathrm{mg}, 4.69 \mathrm{mmol}$) in DMF (50 mL) was added $\mathrm{NaH}(60 \mathrm{w} / \mathrm{w} \%$ dispersion in mineral oil, $281 \mathrm{mg}, 7.03 \mathrm{mmol}$) and the reaction stirred for 1.5 h at $50^{\circ} \mathrm{C}$, followed by the addition of 4methoxybenzyl chloride ($953 \mu \mathrm{~L}, 7.03 \mathrm{mmol}$) and stirred overnight at $50{ }^{\circ} \mathrm{C}$. The reaction mixture was quenched by NaHCO_{3} (sat. aq, 50 mL), stirred for 10 min , and then diluted with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$, brine (100 mL) and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 200 \mathrm{~mL})$. The combined organic layers were concentrated in vacuo, the residue dissolved in $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$, washed with $\mathrm{LiCl}(10 \% \mathrm{aq}, 3 \times 25 \mathrm{~mL})$, dried over MgSO_{4}, filtered and concentrated in vacuo. The residue was purified by flash column chromatography (silica gel, $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}, 1: 1$ to $0: 1$) to yield $16(1.23 \mathrm{~g}, 96 \%)$ as a white amorphous solid. $R_{f}=0.43\left(E t_{2} \mathrm{O}\right)$. IR (ATR) $v_{\text {Max. }} 3033(\mathrm{w}), 2926(\mathrm{w})$, 2902 (w), 2835 (w), 1736 (s), 1613 (w), 1514 (s). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28-7.22$ (2H, m), 6.86 -
$6.81(2 \mathrm{H}, \mathrm{m}), 5.68-5.58(1 \mathrm{H}, \mathrm{m}), 5.58-5.48(1 \mathrm{H}, \mathrm{m}), 4.40(1 \mathrm{H}, \mathrm{d}, J=15.5 \mathrm{~Hz}), 4.30(1 \mathrm{H}, \mathrm{d}, J=15.5 \mathrm{~Hz})$, $4.04(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 4.01(1 \mathrm{H}, \mathrm{dd}, J=8.4,0.8 \mathrm{~Hz}), 3.79(3 \mathrm{H}, \mathrm{s}), 2.32-2.14(2 \mathrm{H}, \mathrm{m}), 2.14-2.00(1 \mathrm{H}, \mathrm{m})$, $2.00-1.90(1 \mathrm{H}, \mathrm{m}), 1.86-1.75(1 \mathrm{H}, \mathrm{m}), 1.58-1.50(1 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.1,158.5$, 130.6, 129.1, 126.8, 123.8, 114.0, 73.0, 60.0, 55.4, 43.8, 33.4, 30.6, 23.1. HRMS (ESI) calcd for $\left[^{\mathrm{C}_{16}} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{Na}\right]^{+}: 296.1257$, found 296.1247.

4-Ethoxy-1-azaspiro[4.5]deca-3,7-dien-2-one (17)

To a solution of $12(100 \mathrm{mg}, 0.61 \mathrm{mmol})$ in $\mathrm{THF}(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added KHMDS $(0.5 \mathrm{M}$ in toluene, 1.22 $\mathrm{mL}, 0.61 \mathrm{mmol})$ and stirred for 10 min , then $\operatorname{EtBr}(90 \mu \mathrm{~L}, 0.73 \mathrm{mmol})$ and 18-crown-6 (176 mg, 0.66 mmol$)$ were added. The reaction was warmed to $r t$ and stirred overnight, then concentrated in vacuo. The residue was purified by flash column chromatography (silica gel, EtOAc) to yield 17 (64.1 mg , 54\%) as a yellowwhite amorphous solid. $R_{f}=0.24$ (EtOAc). IR (ATR) $v_{\text {Max. }} 3188$ (w), 3060 (w), 2933 (w), 1672 (s). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.82-5.69(2 \mathrm{H}, \mathrm{m}), 4.91(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.7 \mathrm{~Hz}), 4.01(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}), 2.61(1 \mathrm{H}, \mathrm{dsex}, J=$ $17.3,2.3 \mathrm{~Hz}), 2.33-2.11(2 \mathrm{H}, \mathrm{m}), 1.98-1.83(2 \mathrm{H}, \mathrm{m}), 1.62-1.54(1 \mathrm{H}, \mathrm{m}), 1.39(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 180.5,173.3,126.6,124.3,92.2,67.3,60.0,33.7,29.3,22.7,14.2$. HRMS (ESI) calcd for $\left[\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{NO}_{2}\right]^{+}: 194.1176$, found 194.1181.

2-Oxo-1-azaspiro[4.5]deca-3,7-dien-4-yl trifluoromethanesulfonate (S5)

To a solution of $12(100 \mathrm{mg}, 0.61 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{Et}_{3} \mathrm{~N}(0.25 \mathrm{~mL}, 1.82 \mathrm{mmol})$ and $\mathrm{Tf}_{2} \mathrm{O}(300 \mu \mathrm{~L}, 1.82 \mathrm{mmol})$ dropwise, and stirred for 1 h , then concentrated in vacuo. The residue was purified by flash column chromatography (silica gel, PE/Et ${ }_{2} \mathrm{O}, 3: 7$ to $1: 9$) to yield $\mathbf{S 5}(107 \mathrm{mg}, 59 \%$) as a white amorphous solid. $R_{f}=0.18$ ($\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}, 3: 7$). IR (ATR) $v_{\text {Max. }} 3164$ (w), 2926 (w), 1698 (s), 1634 (s), 1332 (s). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.44(1 \mathrm{H}, \mathrm{br} s), 5.94(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.8 \mathrm{~Hz}), 5.88-5.82(1 \mathrm{H}, \mathrm{m}), 5.79-5.72(1 \mathrm{H}$, m), $2.64(1 \mathrm{H}, \mathrm{dsex}, J=17.2,2.3 \mathrm{~Hz}), 2.43-2.33(1 \mathrm{H}, \mathrm{m}), 2.29-2.17(1 \mathrm{H}, \mathrm{m}), 2.03-1.93(2 \mathrm{H}, \mathrm{m}), 1.73-$ $1.66(1 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{CNMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.6,168.1,126.8,123.2,118.6(\mathrm{q}, \mathrm{J}=321.5 \mathrm{~Hz}), 107.5,60.9$,
32.8, 28.8, 22.5. ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-72.5 (3F, s). HRMS (ESI) calcd for $\left[\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}_{4} \mathrm{~F}_{3} \mathrm{~S}^{+}\right.$: 298.0355, found 298.0361.

4-(4-Methoxyphenyl)-1-azaspiro[4.5]deca-3,7-dien-2-one (18)

To a solution of $\mathbf{S 5}(50.0 \mathrm{mg}, 0.170 \mathrm{mmol})$ and (4-methoxyphenyl)boronic acid ($38.3 \mathrm{mg}, 0.250 \mathrm{mmol}$) in THF $(1.7 \mathrm{~mL})$ was added $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(9.7 \mathrm{mg}, 8.0 \mu \mathrm{~mol})$ and a solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}(39.2 \mathrm{mg}, 0.37 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}$ $(0.2 \mathrm{~mL})$. The reaction was stirred at rt for 40 min then heated under reflux for 3 h . The reaction mixture was cooled to rt and filtered through Celite, washed with EtOAc, and concentrated in vacuo. The residue was purified by flash column chromatography (silica gel, $\mathrm{Et}_{2} \mathrm{O}$ to EtOAc) to yield $\mathbf{1 8}$ ($31.5 \mathrm{mg}, \mathbf{7 3 \%}$) as a yellow-white amorphous solid. The product was crystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for the single crystal X-ray crystallography analysis. $R_{f}=0.11$ ($\mathrm{Et}_{2} \mathrm{O}$). Mp $196-197^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. IR (ATR) $v_{\text {Max. }} 3160(\mathrm{w}), 3035(\mathrm{w}), 2924$ (w), 1680 (s), 1607 (m), $1511(\mathrm{~m}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44(2 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}), 6.93(2 \mathrm{H}, \mathrm{d}, J=8.9$ $\mathrm{Hz}), 6.35(1 \mathrm{H}, \mathrm{br} s), 6.18(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.9 \mathrm{~Hz}), 5.89-5.82(1 \mathrm{H}, \mathrm{m}), 5.82-5.75(1 \mathrm{H}, \mathrm{m}), 3.84(3 \mathrm{H}, \mathrm{s}), 2.80(1 \mathrm{H}$, dqui, $J=17.6,2.7 \mathrm{~Hz}$), $2.39-2.17(3 \mathrm{H}, \mathrm{m}), 2.02-1.92(1 \mathrm{H}, \mathrm{m}), 1.77-1.68(1 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR $(101 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 172.1,165.5,160.7,129.1,126.8,124.8,124.8,120.5,114.3,63.6,55.5,34.9,30.5,23.3$. HRMS (ESI) calcd for $\left[\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NO}_{2}\right]^{+}: 256.1338$, found 256.1331.

4-Hydroxy-1-azaspiro[4.5]dec-7-en-2-one (19)

To a suspension of $\mathrm{NaBH}_{4}(38.9 \mathrm{mg}, 1.03 \mathrm{mmol})$ in $\mathrm{MeOH}(2.0 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added $12(100 \mathrm{mg}, 0.61$ $\mathrm{mmol})$, then warmed to rt and stirred for 1 h . The reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}, filtered, and concentrated in vacuo. The residue was purified by flash column chromatography (silica gel, EtOAc) to yield an inseparable mixture of diastereomers $19(23 \mathrm{mg}, 23 \%$; $\mathrm{dr}=3.1: 1)$ as a white amorphous solid. $R_{f}=0.06$ (EtOAc). IR (ATR) $v_{\text {Max. }} 3368$ (m), 3194 (m, br), 2950 (w), 1698 (s$), 1662(\mathrm{~s}) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.95$ $-5.69(2 \mathrm{H}, \mathrm{m}), 5.65-5.59(1 \mathrm{H}, \mathrm{m}), 4.19(1 \mathrm{H}, \mathrm{m}), 2.75(1 \mathrm{H}, \mathrm{dd}, J=17.2,6.9 \mathrm{~Hz}), 2.39(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=17.1,5.2$ $\mathrm{Hz}), 2.35-2.27(2 \mathrm{H}, \mathrm{m}), 2.23-2.08(1 \mathrm{H}, \mathrm{m}), 2.02(1 \mathrm{H}, \mathrm{m}), 2.02-1.95(1 \mathrm{H}, \mathrm{m}), 1.89-1.81(1 \mathrm{H}, \mathrm{m}), 1.79-$
$1.72(1 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.1,127.7,124.1,73.8,60.9,39.4,36.4,26.6,22.6$. HRMS (ESI) calcd for $\left[\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{NO}_{2} \mathrm{Na}\right]^{+}: 190.0844$, found 190.0841.

1-Azaspiro[4.5]deca-3,7-dien-2-one (20)

A solution of $19(23.0 \mathrm{mg}, 0.14 \mathrm{mmol})$ in TFAA ($67 \mu \mathrm{~L}, 0.48 \mathrm{mmol}$) and heated under reflux for 12 h , then concentrated in vacuo. To a solution of the residue in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.25 \mathrm{~mL})$ was added $\mathrm{Et}_{3} \mathrm{~N}(24 \mu \mathrm{~L}, 0.17 \mathrm{mmol})$ and stirred at rt for 12 h , followed by the addition of a solution of $\mathrm{KHCO}_{3}(36 \mathrm{mg}, 0.36 \mathrm{mmol})$ in MeOH $(0.25 \mathrm{~mL})$ and stirred for a further 2 h . The reaction mixture was diluted with $\mathrm{CHCl}_{3}(5 \mathrm{~mL})$ and washed with $\mathrm{HCl}(1 \mathrm{M} \mathrm{aq}, 5 \mathrm{~mL}) \mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and brine (5 mL). The organic layer was dried over MgSO_{4}, filtered and concentrated in vacuo. The residue was purified by flash column chromatography (silica gel, EtOAc) to yield 20 ($6.3 \mathrm{mg}, 30 \%$) as an off-white amorphous solid. $R_{f}=0.18$ (EtOAc). The product was crystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for the single crystal X-ray crystallography analysis. Mp $75-76{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. IR (ATR) $v_{\text {Max. }} 3170(\mathrm{~m})$, $3030(\mathrm{w}), 2926$ (w), 1682 (s), 1655 (s). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.08$ ($1 \mathrm{H}, \mathrm{brd}, \mathrm{J}=5.6 \mathrm{~Hz}$), $6.15(1 \mathrm{H}, \mathrm{br} \mathrm{s})$, $6.03(1 \mathrm{H}, \mathrm{brd}, J=5.6 \mathrm{~Hz}), 5.84-5.78(1 \mathrm{H}, \mathrm{m}), 5.76-5.70(1 \mathrm{H}, \mathrm{m}), 2.39-2.31(1 \mathrm{H}, \mathrm{m}), 2.31-2.15(2 \mathrm{H}, \mathrm{m})$, $2.11-2.02(1 \mathrm{H}, \mathrm{m}), 1.85-1.75(1 \mathrm{H}, \mathrm{m}), 1.75-1.67(1 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.8^{*}, 154.8$, 126.8, 125.8*, 124.4, 62.4, 34.5, 31.0, 23.7 ppm; *only observed in HSQC and HMBC. HRMS (ESI) calcd for $\left[\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{NO}\right]^{+}: 150.0919$, found 150.0918.

4-Oxa-1-azaspiro[5.5]undeca-1,8-dien-3-one (21)

To a solution of $9(100 \mathrm{mg}, 0.60 \mathrm{mmol})$ in $\mathrm{MeCN}(6 \mathrm{~mL})$ was added $\mathrm{Pb}(\mathrm{OAc})_{4}(345 \mathrm{mg}, 0.78 \mathrm{mmol})$ and stirred at rt for 30 min , then diluted with $\operatorname{EtOAc}(10 \mathrm{~mL})$ and filtered through Celite. The filtrate was washed with NaHCO_{3} (sat. aq, 20 mL), brine (20 mL), dried over MgSO_{4}, filtered and concentrated in vacuo. The residue was purified by flash column chromatography (silica gel, PE/EtOAc, 4:1) to yield 21 (60 mg , 60%) as a yellow oil. $R_{f}=0.25$ (PE/EtOAc, 4:1). IR (ATR) $v_{\text {Max. }} 2923$ (w), 1737 (s), 1622 (m). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.82(1 \mathrm{H}, \mathrm{s}), 5.84-5.75(1 \mathrm{H}, \mathrm{m}), 5.72-5.63(1 \mathrm{H}, \mathrm{m}), 4.29(1 \mathrm{H}, \mathrm{d}, J=11.6 \mathrm{~Hz}), 4.25(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $11.6 \mathrm{~Hz}), 2.32-2.20(2 \mathrm{H}, \mathrm{m}), 2.16-2.03(2 \mathrm{H}, \mathrm{m}), 2.03-1.94(1 \mathrm{H}, \mathrm{m}), 1.71-1.63(1 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR (101
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 154.8,151.2,126.7,123.1,72.1,56.0,32.8,30.3,22.2$. HRMS (ESI) calcd for $\left[\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{2} \mathrm{Na}\right]^{+}$: 188.0682, found 188.0681 .

Double bond modification

27a: $\mathrm{R}=\mathrm{PMB}$ 28: R=H 27b

1-(4-Methoxybenzyl)-3-oxa-1-azaspiro[4.5]decane-2,7-dione (22a), 1-(4-Methoxybenzyl)-3-oxa-1-azaspiro[4.5]decane-2,8-dione (22b), 8-hydroxy-1-(4-methoxy-benzyl)-3-oxa-1-azaspiro[4.5]decan-2-one (S6), (5R*, $7 S^{*}$)-7-Hydroxy-1-(4-methoxy-benzyl)-3-oxa-1-azaspiro[4.5]decan-2-one (S7) and 8-hydroxy-1-(4-methoxybenzyl)-3-oxa-1-azaspiro[4.5]decan-2-one (S8)

16 (109 mg, 0.400 mmol) was added to a solution of iron(II) acetylacetonate ($20.4 \mathrm{mg}, 0.08 \mathrm{mmol}$) and poly(methylhydrosiloxane) $(272 \mu \mathrm{~L})$ in $t \mathrm{BuOH}(4.0 \mathrm{~mL})$ and the reaction stirred for 24 h at $50^{\circ} \mathrm{C}$. The reaction mixture was then quenched by silica gel, stirred for 10 min , and concentrated in vacuo. The residue was purified by flash column chromatography (silica gel, PE/EtOAc, 9:1 to 0:1) to yield unreacted 16 ($8.8 \mathrm{mg}, 8 \%$), ketones 22a ($32.5 \mathrm{mg}, 28 \%$) and 22b ($17.0 \mathrm{mg}, 15 \%$) as white solids, and a mixture of alcohols $\mathbf{S 6}$, $\mathbf{S 7}$ and $\mathbf{S 8}$ ($38.5 \mathrm{mg}, 33 \%$ combined) as a transparent viscous oil. The individual alcohol isomers were separated by preparative TLC (silica gel, eluting with either $5 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or EtOAc). S6 appeared as a transparent viscous oil, $\mathbf{S 7}$ and $\mathbf{S 8}$ as white amorphous solids. $\mathbf{S 7}$ was crystallised from $\mathrm{Et}_{2} \mathrm{O}$ for the single crystal X-ray crystallography analysis. $\mathbf{S 6}$ and $\mathbf{S 8}$ gave viscous oils or fibrous materials after each attempted crystallisation, that were not suitable for single crystal X-ray crystallography analysis, therefore their geometry could not be assigned.

Analytical data for 22a: $R_{f}=0.49$ (EtOAc). Mp $100-101{ }^{\circ} \mathrm{C}$ ($\left.\mathrm{Et}_{2} \mathrm{O}\right)$. IR (ATR) $v_{\text {Max. }} 2962$ (w), $2930(\mathrm{w}), 1717$ (s), 1615 (w) , 1514 (s$).{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29-7.22(2 \mathrm{H}, \mathrm{m}), 6.89-6.82(2 \mathrm{H}, \mathrm{m}), 4.43(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $16.2 \mathrm{~Hz}), 4.42(1 \mathrm{H}, \mathrm{d}, J=16.2 \mathrm{~Hz}), 3.98(1 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}), 3.96(1 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}), 3.80(3 \mathrm{H}, \mathrm{s}), 2.49(1 \mathrm{H}, \mathrm{d}, J$ $=13.6 \mathrm{~Hz}), 2.39-2.29(2 \mathrm{H}, \mathrm{m}), 2.20(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=14.0,6.1 \mathrm{~Hz}), 2.08-1.91(2 \mathrm{H}, \mathrm{m}), 1.81-1.72(1 \mathrm{H}, \mathrm{m}), 1.44$ $(1 \mathrm{H}, \mathrm{qt}, \mathrm{J}=13.5,4.0 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 206.9,159.4,157.7,129.7,129.1,114.3,71.7,63.7$, $55.4,50.3,44.0,40.2,33.6,20.0$. HRMS (ESI) calcd for $\left[\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NO}_{4}\right]^{+}: 290.1392$, found 290.1399.

Analytical data for 22b: $R_{f}=0.44$ (EtOAc). Mp $121-122^{\circ} \mathrm{C}$ (crystal decomposition), $136-137^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right) . \mathrm{IR}$ (ATR) $v_{\text {Max. }} 2906$ (w), 1732 (s), 1706 (s), 1616 (w), 1513 (s). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.25-7.21$ ($2 \mathrm{H}, \mathrm{m}$), $6.86-6.82(2 \mathrm{H}, \mathrm{m}), 4.37(2 \mathrm{H}, \mathrm{s}), 4.36(2 \mathrm{H}, \mathrm{s}), 3.79(3 \mathrm{H}, \mathrm{s}), 2.43-2.29(4 \mathrm{H}, \mathrm{m}), 2.04(2 \mathrm{H}, \mathrm{td}, \mathrm{J}=13.4,5.5 \mathrm{~Hz})$, $1.86(2 \mathrm{H}$, dqui, $J=13.8,3.0 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 207.3,159.4,157.9,130.1,129.0,114.3,71.2$, 60.4, 55.4, 44.0, 37.2, 33.0. HRMS (ESI) calcd for $\left[\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NO}_{4}\right]^{+}: 290.1392$, found 290.1402.

Analytical data for S6: $R_{f}=0.29$ ($5 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). IR (ATR) $v_{\text {Max. }} 3358$ (w, br), 2921 (w), $2852(\mathrm{w}), 1728$ (s), $1660(\mathrm{w}), 1513(\mathrm{~s}) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28(2 \mathrm{H}, \mathrm{dt}, \mathrm{J}=8.7,2.5 \mathrm{~Hz}), 6.84(2 \mathrm{H}, \mathrm{dt}, \mathrm{J}=8.7,2.5 \mathrm{~Hz})$, $4.37(2 \mathrm{H}, \mathrm{s}), 4.10(2 \mathrm{H}, \mathrm{s}), 4.02(1 \mathrm{H}, \mathrm{sex}, J=2.5 \mathrm{~Hz}), 3.79(3 \mathrm{H}, \mathrm{s}), 2.07(2 \mathrm{H}, \mathrm{td}, J=13.5,4.0 \mathrm{~Hz}), 1.81(2 \mathrm{H}, \mathrm{br} \mathrm{d}$, $J=16.4 \mathrm{~Hz}), 1.47(2 \mathrm{H}, \mathrm{tdd}, J=14.3,3.7,2.6 \mathrm{~Hz}), 1.34(2 \mathrm{H}$, dqui, $J=13.1,2.0 \mathrm{~Hz}), 1.17(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.1,158.3,130.8,129.1,114.0,71.6,63.7,61.4,55.4,43.6,29.5,27.7$. HRMS (ESI) calcd for $\left[\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NO}_{4}\right]^{+}:$292.1549, found 292.1544.

Analytical data for S7: $R_{f}=0.23\left(5 \% \mathrm{MeOH}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). Mp $134-135^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right) . \mathrm{IR}(\mathrm{ATR}) v_{\text {Max. }} 3472(\mathrm{w}, \mathrm{br})$, 2921 (w), 2851 (w), 1728 (s$), 1613$ (w$), 1510(\mathrm{~s}) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25(2 \mathrm{H}, \mathrm{dt}, J=9.6,2.5 \mathrm{~Hz}$), $6.84(2 \mathrm{H}, \mathrm{dt}, J=9.6,2.5 \mathrm{~Hz}), 4.37(1 \mathrm{H}, \mathrm{d}, J=15.9 \mathrm{~Hz}), 4.33(1 \mathrm{H}, \mathrm{d}, J=15.9 \mathrm{~Hz}), 4.05(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 4.04$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 3.79(3 \mathrm{H}, \mathrm{s}), 3.58-3.48(1 \mathrm{H}, \mathrm{m}), 1.97-1.92(1 \mathrm{H}, \mathrm{m}), 1.92-1.87(1 \mathrm{H}, \mathrm{m}), 1.79-1.73(1 \mathrm{H}$,
$\mathrm{m}), 1.55-1.47(3 \mathrm{H}, \mathrm{m}), 1.45-1.37(1 \mathrm{H}, \mathrm{m}), 1.27-1.16(1 \mathrm{H}, \mathrm{m}), 1.14-1.04(1 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , CDCl_{3}) $\delta 159.2,158.1,130.4,129.0,114.2,72.1,67.7,62.1,55.4,43.7,43.5,34.2,33.0,19.6$. HRMS (ESI) calcd for $\left[\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NO}_{4}\right]^{+}:$292.1549, found 292.1553.

Analytical data for S8: $R_{f}=0.23$ (EtOAc). IR (ATR) $v_{\text {Max. }} 3441$ (w, br), 2940 (w), 2861 (w), 1720 (s), 1612 (w), 1511 (s). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.23(2 \mathrm{H}, \mathrm{brd}, J=8.6 \mathrm{~Hz}), 6.84(2 \mathrm{H}, \mathrm{brd}, J=8.6 \mathrm{~Hz}), 4.32(2 \mathrm{H}, \mathrm{s}), 4.13$ $(2 \mathrm{H}, \mathrm{s}), 3.79(3 \mathrm{H}, \mathrm{s}), 3.59-3.48(1 \mathrm{H}, \mathrm{m}), 1.99-1.90(2 \mathrm{H}, \mathrm{m}), 1.68-1.51(5 \mathrm{H}, \mathrm{m}), 1.32-1.19(2 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.1,158.3,130.5,128.9,114.1,71.9,69.0,60.9,55.4,43.7,32.1,31.8$. HRMS (ESI) calcd for $\left[\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NO}_{4}\right]^{+}$: 292.1549, found 292.1545.
($5 R^{*}, 7 R^{*}, 8 S^{*}$)-7,8-Dihydroxy-1-(4-methoxybenzyl)-3-oxa-1-azaspiro[4.5]decan-2-one (23a) and ($5 R^{*}, 7 S^{*}, 8 R^{*}$)-7,8-dihydroxy-1-(4-methoxybenzyl)-3-oxa-1-azaspiro[4.5]-decan-2-one (23b)

23a

23b

To a solution of 16 ($55 \mathrm{mg}, 0.20 \mathrm{mmol}$) in THF (1.0 mL) was added 4-methylmorpholine N -oxide (47 mg , $0.40 \mathrm{mmol})$, citric acid ($77 \mathrm{mg}, 0.40 \mathrm{mmol}$), $\mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{~mL})$ and $\mathrm{OsO}_{4}(2.5 \mathrm{w} / \mathrm{w} \%$ solution in $t \mathrm{BuOH}, 20 \mu \mathrm{~L}, 2.0$ $\mu \mathrm{mol}$) and the reaction stirred for 2 h at rt . The reaction mixture was quenched by $\mathrm{Na}_{2} \mathrm{SO}_{3}$ (sat. aq, 1.0 mL), stirred for 10 min , and then diluted with brine (1.0 mL) and extracted with EtOAc ($3 \times 3.0 \mathrm{~mL}$). The combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo to yield a crude mixture of $\mathbf{2 3}$ b and $\mathbf{2 3}$ ($63 \mathrm{mg}, \mathbf{2 3 b} / \mathbf{2 3} \mathbf{a}=\mathbf{1 : 2 . 5}$) as a transparent oil. The crude product was purified by flash column chromatography (silica gel, EtOAc to $5 \% \mathrm{MeOH}$ in $\mathrm{Et}_{2} \mathrm{O}$) to yield 23b (12.6 mg), 23a(33.2 mg) and a mixture of 23b and $\mathbf{2 3}$ (15 mg) all as white solids. Overall yield: 23b+23a(60.8 mg , 99%). 23b spontaneously crystallised from $\mathrm{C}_{6} \mathrm{D}_{6}$ and the co-crystals formed were used for the single crystal X-ray crystallography analysis.

Analytical data for 23a: $R_{f}=0.13$ (EtOAc). Mp $120-121{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right)$. IR (ATR) $v_{\text {Max. }} 3422(\mathrm{w}, \mathrm{br}), 3305(\mathrm{w}, \mathrm{br})$, 2956 (w), 2898 (w), 1717 (s), 1613 (w), 1511 (s). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25(2 \mathrm{H}, \mathrm{dt}, J=8.6,2.5 \mathrm{~Hz}$), $6.83(2 \mathrm{H}, \mathrm{dt}, J=8.6,2.5 \mathrm{~Hz}), 4.33(2 \mathrm{H}, \mathrm{s}), 4.07(1 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 4.05(1 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 3.92-3.88(1 \mathrm{H}, \mathrm{m})$, $3.78(3 \mathrm{H}, \mathrm{s}), 3.56(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J}=10.7 \mathrm{~Hz}), 2.39(1 \mathrm{H}, \mathrm{br}$ s), $2.31(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.02-1.89(3 \mathrm{H}, \mathrm{m}), 1.57(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}$ $=12.2,4.4,1.9 \mathrm{~Hz}), 1.43-1.23(2 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.1,158.2,130.3,129.1,114.1$,
72.0, 68.8, 67.1, 61.8, 55.4, 43.6, 36.2, 26.3, 26.0. HRMS (ESI) calcd for $\left[\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NO}_{5}\right]^{+}: 308.1498$, found 308.1484.

Analytical data for 23b: $R_{f}=0.20$ (EtOAc). Mp $122-123^{\circ} \mathrm{C}$ ($\mathrm{Et}_{2} \mathrm{O}$). IR (ATR) $v_{\text {Max. }} 3434$ (w, br), 3356 (w, br), 2917 (w), 2851 (w), 1704 (s$), 1611$ (w), 1511 (s$).{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.22(2 \mathrm{H}, \mathrm{dt}, J=8.7,2.5 \mathrm{~Hz}$), $6.84(2 \mathrm{H}, \mathrm{dt}, J=8.7,2.5 \mathrm{~Hz}), 4.41(1 \mathrm{H}, \mathrm{d}, J=15.9 \mathrm{~Hz}), 4.33(1 \mathrm{H}, \mathrm{dd}, J=9.4,1.2 \mathrm{~Hz}), 4.26(1 \mathrm{H}, \mathrm{d}, J=9.4 \mathrm{~Hz})$, $4.21(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=15.9 \mathrm{~Hz}), 3.99(1 \mathrm{H}, \mathrm{br} s), 3.79(3 \mathrm{H}, \mathrm{s}), 3.61-3.54(1 \mathrm{H}, \mathrm{m}), 2.30(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 1.91-1.82(2 \mathrm{H}, \mathrm{m})$, $1.79-1.66(3 \mathrm{H}, \mathrm{m}), 1.66-1.52(2 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.1,158.6,130.5,128.8,114.2$, $73.4,70.5,69.5,60.4,55.4,43.5,37.9,30.9,25.1$. HRMS (ESI) calcd for $\left[\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NO}_{5}\right]^{+}: 308.1498$, found 308.1513 .
($\left.1 R^{*}, 3 R^{*}, 6 S^{*}\right)$-7,7-Difluoro-3'-(4-methoxybenzyl)spiro-[bicycle[4.1.0]heptane-3,4'-oxazolidin]-2'-one (24a) and ($1 R^{*}, 3 S^{*}, 6 S^{*}$)-7,7-difluoro-3'-(4-methoxybenzyl)spiro[bicyclo[4.1.0]heptane-3,4'-oxazolidin]-2'-one (24b)

24a

24b

To a solution of $\mathbf{1 6}(55 \mathrm{mg}, 0.20 \mathrm{mmol})$ in THF (0.30 mL) was added anhydrous $\mathrm{Nal}(6.0 \mathrm{mg}, 0.040 \mathrm{mmol})$ and $\mathrm{TMSCF}_{3}(74 \mu \mathrm{~L}, 0.50 \mathrm{mmol})$ and the reaction stirred at $65^{\circ} \mathrm{C}$ in a sealed tube. After 6 h , the reaction was cooled to rt and opened to air, then more $\mathrm{TMSCF}_{3}(74 \mu \mathrm{~L}, 0.50 \mathrm{mmol})$ was added, the tube sealed and heated to $65^{\circ} \mathrm{C}$ overnight. The reaction was then cooled to rt again and opened to air followed by the removal of solvent in vacuo. The residue was dissolved in $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ and washed with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, $\mathrm{Na}_{2} \mathrm{SO}_{3}$ (sat. aq, 10 mL), NaHCO_{3} (sat. aq, 10 mL) and $\mathrm{H}_{2} \mathrm{O}\left(10 \mathrm{~mL}\right.$), dried over MgSO_{4}, filtered and concentrated in vacuo. The residue was purified by flash column chromatography (silica gel, $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}$ 1:1 to 1:4) to yield unreacted $\mathbf{1 6}$ ($31.4 \mathrm{mg}, 58 \%$) as a white solid, $\mathbf{2 4 b}(0.8 \mathrm{mg}, 1 \%)$ as a transparent viscous oil and $\mathbf{2 5 a}$ ($16.2 \mathrm{mg}, 25 \%$) as a white solid. Overall yield based on recovered starting material: 24b $\mathbf{~ + 2 4 a}$ (17.0 mg , 62\%). 24a was crystallised from $\mathrm{Et}_{2} \mathrm{O}$ for the single crystal X -ray crystallography analysis.

Analytical data for 24a: $R_{f}=0.04$ ($\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}$ 1:1). Mp $90-91^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right)$. IR (ATR) $v_{\text {Max. }} 2931$ (w), 1736 (s), 1614 (w), 1514 (s). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.23(2 \mathrm{H}, \mathrm{dt}, J=8.9,2.5 \mathrm{~Hz}), 6.85(2 \mathrm{H}, \mathrm{dt}, J=8.9,2.5 \mathrm{~Hz}), 4.34$ $(1 \mathrm{H}, \mathrm{d}, J=15.6 \mathrm{~Hz}), 4.23(1 \mathrm{H}, \mathrm{d}, J=15.6 \mathrm{~Hz}), 4.16(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 3.95(1 \mathrm{H}, \mathrm{dd}, J=8.5,1.7 \mathrm{~Hz}), 3.79(3 \mathrm{H}$, s), $2.10-2.03(1 \mathrm{H}, \mathrm{m}), 1.87-1.72(2 \mathrm{H}, \mathrm{m}), 1.68-1.55(3 \mathrm{H}, \mathrm{m}), 1.53-1.44(1 \mathrm{H}, \mathrm{m}), 1.33-1.26(1 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$

NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.3,158.1,130.2,129.4,114.1,113.9(\mathrm{dd}, \mathrm{J}=287.3,284.0 \mathrm{~Hz}), 71.5(\mathrm{~d}, \mathrm{~J}=1.5$ $\mathrm{Hz}), 59.0(\mathrm{~d}, \mathrm{~J}=3.6 \mathrm{~Hz}), 55.4,43.8,29.0(\mathrm{dd}, J=4.6,1.0 \mathrm{~Hz}), 23.2(\mathrm{~d}, J=3.1 \mathrm{~Hz}), 16.2(\mathrm{t}, J=11.3 \mathrm{~Hz}), 16.1(\mathrm{t}$, $J=11.3 \mathrm{~Hz}), 15.5 .{ }^{19} \mathrm{~F} \mathrm{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-127.2(1 \mathrm{~F}, \mathrm{dtd}, J=157.7,14.1,1.2 \mathrm{~Hz}),-150.4(1 \mathrm{~F}, \mathrm{~d}, J=$ 157.7 Hz). HRMS (ESI) calcd for $\left[\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}_{3} \mathrm{~F}_{2}\right]^{+}: 324.1411$, found 324.1418.

Analytical data for 24b: $R_{f}=0.06$ (PE/Et ${ }_{2} \mathrm{O}$ 1:1). IR (ATR) $v_{\text {Max. }} 2933(\mathrm{w}), 1738(\mathrm{~s}), 1612(\mathrm{w}), 1512(\mathrm{~s}) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.23(2 \mathrm{H}, \mathrm{br} \mathrm{d}, J=8.7 \mathrm{~Hz}), 6.85(2 \mathrm{H}, \mathrm{br} \mathrm{d}, J=8.7 \mathrm{~Hz}), 4.49(1 \mathrm{H}, \mathrm{d}, J=15.9 \mathrm{~Hz}), 4.32(1 \mathrm{H}$, $\mathrm{d}, J=15.9 \mathrm{~Hz}), 4.03(1 \mathrm{H}, \mathrm{dd}, J=8.9,1.3 \mathrm{~Hz}), 3.94(1 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}), 3.80(3 \mathrm{H}, \mathrm{s}), 2.06-1.97(1 \mathrm{H}, \mathrm{m}), 1.96$ $(1 \mathrm{H}, \mathrm{dd}, J=15.3,8.3 \mathrm{~Hz}), 1.73(1 \mathrm{H}, \mathrm{d}, J=15.3 \mathrm{~Hz}), 1.68-1.50(4 \mathrm{H}, \mathrm{m}), 1.44-1.36(1 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.2,158.4,130.3,128.6,114.3,114.1(\mathrm{dd}, \mathrm{J}=287.3,284.2 \mathrm{~Hz}), 73.8(\mathrm{~d}, \mathrm{~J}=11.5 \mathrm{~Hz}), 59.1$ $(\mathrm{d}, J=2.1 \mathrm{~Hz}), 55.4,44.2,29.8(\mathrm{dd}, J=2.6,0.6 \mathrm{~Hz}), 24.9(\mathrm{dd}, J=2.0,0.6 \mathrm{~Hz}), 18.0(\mathrm{t}, J=11.7 \mathrm{~Hz}), 16.9(\mathrm{t}, J=$ $11.5 \mathrm{~Hz}), 13.8(\mathrm{~d}, \mathrm{~J}=3.2 \mathrm{~Hz}) .{ }^{19} \mathrm{~F} \mathrm{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-127.3(1 \mathrm{~F}, \mathrm{dt}, J=157.4,13.8 \mathrm{~Hz}),-149.4(1 \mathrm{~F}, \mathrm{~d}, J=$ 157.4 Hz). HRMS (ESI) calcd for $\left[\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}_{3} \mathrm{~F}_{2}\right]^{+}: 324.1411$, found 324.1419.
($1 R^{*}, 3 S^{*}, 6 S^{*}$)-3'-(4-Methoxybenzyl)-7-tosyl-7-azaspiro-[bicycle[4.1.0]heptane-3,4'-oxazolidin]-2'-one (25a) and ($1 R^{*}, 3 R^{*}, 6 S^{*}$)-3'-(4-methoxybenzyl)-7-tosyl-7-azaspiro[bicyclo[4.1.0]heptane-3,4'-oxazolidin]-2'-one (25b)

25a

25b

To a solution of $\mathbf{1 6}(55 \mathrm{mg}, 0.20 \mathrm{mmol})$ in $\mathrm{MeCN}(1.0 \mathrm{~mL})$ was added chloramine T trihydrate ($62 \mathrm{mg}, 0.22$ mmol) and trimethylphenylammonium tribromide ($7.5 \mathrm{mg}, 0.020 \mathrm{mmol}$) and the reaction stirred at rt over 4 Å molecular sieves overnight. The reaction mixture was filtered and concentrated in vacuo, the residue was purified by flash column chromatography (silica gel, $\mathrm{Et}_{2} \mathrm{O}$) to yield $\mathbf{2 5 a}$ ($34.5 \mathrm{mg}, \mathbf{3 9 \%}$) and $\mathbf{2 5 b}$ (25.1 $\mathrm{mg}, 28 \%$) both as white amorphous solids. 25b was crystallised from $\mathrm{Et}_{2} \mathrm{O}$ for the single crystal X -ray crystallography analysis.

Analytical data for 25a: $R_{f}=0.19$ ($\mathrm{Et}_{2} \mathrm{O}$). Mp $177-178{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right)$. IR (ATR) $v_{\text {Max. }} 2952$ (w), 2936 (w), 2921 (w), 1729 (s), 1615 (w), 1513 (s). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.75(2 \mathrm{H}, \mathrm{dt}, J=8.3,1.7 \mathrm{~Hz}$), $7.34(2 \mathrm{H}, \mathrm{br} \mathrm{d}, J=8.3$ $\mathrm{Hz}), 7.19(2 \mathrm{H}, \mathrm{dt}, J=8.7,2.5 \mathrm{~Hz}), 6.83(2 \mathrm{H}, \mathrm{dt}, J=8.7,2.5 \mathrm{~Hz}), 4.37(1 \mathrm{H}, \mathrm{d}, J=15.8 \mathrm{~Hz}), 4.19(1 \mathrm{H}, \mathrm{d}, J=15.8$ $\mathrm{Hz}), 4.06(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.4 \mathrm{~Hz}), 3.96(1 \mathrm{H}, \mathrm{dd}, J=9.4,0.7 \mathrm{~Hz}), 3.79(3 \mathrm{H}, \mathrm{s}), 3.02(1 \mathrm{H}, \mathrm{ddd}, J=6.9,3.2,1.7 \mathrm{~Hz})$, $2.95(1 \mathrm{H}, \mathrm{t}, J=6.7 \mathrm{~Hz}), 2.46(3 \mathrm{H}, \mathrm{s}), 2.14(1 \mathrm{H}, \mathrm{dtd}, J=15.9,7.1,1.8 \mathrm{~Hz}), 1.93-1.77(3 \mathrm{H}, \mathrm{m}), 1.50(1 \mathrm{H}, \mathrm{td}, J=$ $12.7,7.7 \mathrm{~Hz}), 1.39(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=13.4,7.0,1.8 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.3,158.1,145.0,135.2$,
130.2, 130.1, 128.9, 127.7, 114.2, 72.3, 60.0, 55.4, 43.7, 40.9, 36.7, 32.3, 28.2, 21.8, 20.2. HRMS (ESI) calcd for $\left[\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}^{+}: 443.1641\right.$, found 443.1622.

Analytical data for 25b: $R_{f}=0.12\left(\mathrm{Et}_{2} \mathrm{O}\right) . \mathrm{Mp} 122-123^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right)$. IR (ATR) $v_{\text {Max. }} 2962$ (w), 2934 (w), 1733 (s), $1615(\mathrm{w}), 1514(\mathrm{~s}) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.77(2 \mathrm{H}, \mathrm{brd}, \mathrm{J}=8.2 \mathrm{~Hz}), 7.35(2 \mathrm{H}, \mathrm{brd}, \mathrm{J}=8.2 \mathrm{~Hz}), 7.18$ $(2 \mathrm{H}, \mathrm{dt}, J=8.6,2.4 \mathrm{~Hz}), 6.78(2 \mathrm{H}, \mathrm{dt}, J=8.6,2.4 \mathrm{~Hz}), 4.34(1 \mathrm{H}, \mathrm{d}, J=15.5 \mathrm{~Hz}), 4.10(1 \mathrm{H}, \mathrm{d}, J=15.5 \mathrm{~Hz}), 4.00$ $(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 3.87(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.4,1.4 \mathrm{~Hz}), 3.78(3 \mathrm{H}, \mathrm{s}), 2.97(1 \mathrm{H}, \mathrm{br} d, J=6.7 \mathrm{~Hz}), 2.88(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.7$ $\mathrm{Hz}), 2.47(3 \mathrm{H}, \mathrm{s}), 2.10-2.02(1 \mathrm{H}, \mathrm{m}), 1.92(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=15.2,6.8,2.0 \mathrm{~Hz}), 1.81-1.71(2 \mathrm{H}, \mathrm{m}), 1.67(1 \mathrm{H}, \mathrm{ddd}$, $J=14.5,4.2,2.9 \mathrm{~Hz}), 1.24-1.17(1 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.2,157.9,144.9,135.1,130.0$, 129.9, 129.3, 127.8, 114.1, 73.0, 58.8, 55.4, 43.7, 38.4, 37.4, 29.5, 27.2, 21.8, 20.4. HRMS (ESI) calcd for $\left[\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{5}\right]^{+}: 443.1641$, found 443.1629.
$\left(1 R^{*}, 3 R^{*}, 6 S^{*}\right)$-7-Oxaspiro[bicyclo[4.1.0]heptane-3,4'-oxazolidin]-2'-one (26a) and ($1 R^{*}, 3 S^{*}, 6 S^{*}$)-7-oxaspiro[bicyclo[4.1.0]heptane-3,4'-oxazolidin]-2'-one (26b)

26a

26b

To a solution of $5(30.6 \mathrm{mg}, 0.200 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ was added mCPBA ($69.0 \mathrm{mg}, 0.400 \mathrm{mmol}$) and $\mathrm{NaHCO}_{3}(50.4 \mathrm{mg}, 0.600 \mathrm{mmol})$ and the reaction stirred at rt overnight. The reaction mixture was quenched by a mixture of NaHCO_{3} (sat. aq, 8.0 mL) and $\mathrm{Na}_{2} \mathrm{SO}_{3}$ (sat. aq, 2.0 mL), stirred for 10 min then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with the same aqueous mixture as above ($2 \times 10 \mathrm{~mL}$), $\mathrm{NaCl}(\mathrm{sat} . \mathrm{aq}, 10 \mathrm{~mL})$, dried over MgSO_{4}, filtered and concentrated in vacuo. The residue was purified by flash column chromatography (silica gel, 1 to $2 \% \mathrm{MeOH}^{2} \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to yield $\mathbf{2 6 b}$ ($1.9 \mathrm{mg}, 6 \%$) and crude $\mathbf{2 6 a}$, both as a white amorphous solids. Crude $\mathbf{2 6 a}$ was purified by flash column chromatography (silica gel, PE/EtOAc, 1:1 to 0:1) to yield 26a ($15.5 \mathrm{mg}, 46 \%$) as a white solid. 26a was crystallised from $\mathrm{Et}_{2} \mathrm{O}$ for the single crystal X -ray crystallography analysis.

Analytical data for 26a: $R_{f}=0.25$ ($5 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). $\mathrm{Mp} 110-111^{\circ} \mathrm{C}$ (crystal decomposition), $116-117$ ${ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right) . \operatorname{IR}(\mathrm{ATR}) v_{\text {Max. }} 3299(\mathrm{~m}), 3008(\mathrm{w}), 2910(\mathrm{w}), 1734(\mathrm{~s}) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.74(1 \mathrm{H}, \mathrm{br} \mathrm{s})$, $4.03(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.3 \mathrm{~Hz}), 4.02(1 \mathrm{H}, \mathrm{d}, J=9.3 \mathrm{~Hz}), 3.29(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.23-3.20(1 \mathrm{H}, \mathrm{m}), 2.29(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=15.0$ Hz), $2.14-2.09(2 \mathrm{H}, \mathrm{m}), 1.94(1 \mathrm{H}, \mathrm{brd}, J=15.0 \mathrm{~Hz}), 1.78-1.72(1 \mathrm{H}, \mathrm{m}), 1.45-1.37(1 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.0,75.9,55.6,53.1,51.0,35.5,30.7,20.7$. HRMS (ESI) calcd for $\left[\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{NO}_{3}\right]^{+}: 170.0812$, found 170.0810 .

Analytical data for 26b: $R_{f}=0.27$ ($5 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). IR (ATR) $v_{\text {Max. }} 3289$ (m), 3000 (w), 2919 (w), 2851 (w), 1737 (s), 1708 (s). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.01$ ($1 \mathrm{H}, \mathrm{br} \mathrm{s}$), $4.14(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.1 \mathrm{~Hz}), 4.09(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $9.1 \mathrm{~Hz}), 3.26-3.23(1 \mathrm{H}, \mathrm{m}), 3.20-3.17(1 \mathrm{H}, \mathrm{m}), 2.22(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J}=15.3 \mathrm{~Hz}), 2.18-2.02(3 \mathrm{H}, \mathrm{m}) 1.69(1 \mathrm{H}$, $\mathrm{dtd}, J=13.1,6.6,0.9 \mathrm{~Hz}), 1.53(1 \mathrm{H}, \mathrm{br} \mathrm{dt}, J=13.8,6.9 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.9,75.1,55.6$, $51.8,50.7,36.6,30.1,21.1$. HRMS (ESI) calcd for $\left[\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{NO}_{3}\right]^{+}: 170.0812$, found 170.0808.
($5 R^{*}, 7 S^{*}, 8 S^{*}$)-7,8-Dibromo-1-(4-methoxybenzyl)-3-oxa-1-azaspiro[4.5]decan-2-one (27a) and ($5 R^{*}, 7 R^{*}, 8 R^{*}$)-7,8-dibromo-1-(4-methoxybenzyl)-3-oxa-1-azaspiro[4.5]-decan-2-one (27b)

27a

27b

To a solution of $\mathbf{1 6}(54.7 \mathrm{mg}, 0.200 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added trimethyl-phenylammonium tribromide ($75.2 \mathrm{mg}, 0.200 \mathrm{mmol}$) and the reaction stirred at $0^{\circ} \mathrm{C}$ for 2 h , then warmed to rt and stirred overnight. The reaction mixture was filtered and concentrated in vacuo, the residue was purified by flash column chromatography (silica gel, $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O} 1: 1$ to $0: 1$) to yield $\mathbf{2 7 a}(76.0 \mathrm{mg}$), a mixture of $\mathbf{2 7 a}$ and $\mathbf{2 7 b}$ (3.7 $\mathbf{m g}, \mathbf{2 7 a} / \mathbf{2 7 b}=4.9: 1$) and 27b (3.4 mg) all as white amorphous solids. Overall yield: 27a $+\mathbf{2 7 b}$ (83.1 mg , 96%). 27a was crystallised from $\mathrm{Et}_{2} \mathrm{O}$ for the single crystal X -ray crystallography analysis.

Analytical data for 27a: $R_{f}=0.49$ ($\left.\mathrm{Et}_{2} \mathrm{O}\right) . \mathrm{Mp} 108-109{ }^{\circ} \mathrm{C}$ ($\left.\mathrm{Et}_{2} \mathrm{O}\right)$.IR (ATR) $v_{\text {Max. }} 2998$ (w), 2960 (w), 2927 (w), $2838(\mathrm{w}), 1737(\mathrm{~s}), 1610(\mathrm{w}), 1509(\mathrm{~s}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.28(2 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}), 6.85(2 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J}$ $=8.7 \mathrm{~Hz}), 4.62-4.54(3 \mathrm{H}, \mathrm{m}), 4.38(1 \mathrm{H}, \mathrm{d}, J=9.1 \mathrm{~Hz}), 4.33(1 \mathrm{H}, \mathrm{dd}, J=9.1,1.4 \mathrm{~Hz}), 4.20(1 \mathrm{H}, \mathrm{d}, J=15.8$ $\mathrm{Hz}), 3.80(3 \mathrm{H}, \mathrm{s}), 2.91(1 \mathrm{H}, \mathrm{dd}, J=15.4,3.9 \mathrm{~Hz}), 2.45(1 \mathrm{H}, \mathrm{dddd}, J=15.4,13.2,3.4,3.0 \mathrm{~Hz}), 2.18(1 \mathrm{H}, \mathrm{tdd}, J=$ $13.6,3.9,1.2 \mathrm{~Hz}), 2.04-1.96(1 \mathrm{H}, \mathrm{m}), 1.89-1.82(1 \mathrm{H}, \mathrm{m}), 1.64-1.57(1 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 159.3, 158.0, 130.4, 129.0, 114.3, 73.5, 60.7, 55.4, 51.2, 49.6, 43.8, 35.5, 26.2, 25.4. HRMS (ESI) calcd for $\left[\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NO}_{3}{ }^{79} \mathrm{Br}_{2}\right]^{+}: 431.9804$, found 431.9800.

Analytical data for 27b: $R_{f}=0.40\left(\mathrm{Et}_{2} \mathrm{O}\right) . \mathrm{Mp} 68-69{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right)$. IR (ATR) $v_{\text {Max. }} 2932$ (w), 1737 (s), 1611 (w), $1512(\mathrm{~s}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.23(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 6.86(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 4.48(1 \mathrm{H}, \mathrm{d}, J=15.8$ $\mathrm{Hz}), 4.23(1 \mathrm{H}, \mathrm{d}, J=15.8 \mathrm{~Hz}), 4.17(1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 4.10(1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 3.95-3.77(5 \mathrm{H}, \mathrm{m}), 2.47-2.33$ $(2 \mathrm{H}, \mathrm{m}), 2.29-2.13(1 \mathrm{H}, \mathrm{m}), 1.86-1.72(1 \mathrm{H}, \mathrm{m}), 1.64(1 \mathrm{H}, \mathrm{td}, J=13.6,3.5 \mathrm{~Hz}), 1.60-1.52(1 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 159.4,157.6,129.7,129.0,114.4,71.0,61.7,55.5,53.6,51.4,45.0,44.0,34.5$, 33.5.HRMS (ESI) calcd for $\left[\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NO}_{3}{ }^{79} \mathrm{Br}_{2}{ }^{23} \mathrm{Na}\right]^{+}$: 453.9624, found 453.9623.

To a solution of $27 \mathrm{a}(10.8 \mathrm{mg}, 25 \mu \mathrm{~mol})$ in $\mathrm{MeCN}(400 \mu \mathrm{~L})$ and $\mathrm{H}_{2} \mathrm{O}(100 \mu \mathrm{~L})$ was added CAN ($41.1 \mathrm{mg}, 75$ $\mu \mathrm{mol}$) and stirred for 1 h at rt . Upon completion, the reaction mixture was quenched with NaHCO_{3} (sat. aq, $3 \mathrm{~mL})$, diluted with $\mathrm{H}_{2} \mathrm{O}(6 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 10 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}, then filtered through a silica gel, washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to remove the p-anisaldehyde byproduct, then eluted with $\mathrm{Et}_{2} \mathrm{O}$ and concentrated in vacuo to yield $\mathbf{2 8}(7.5 \mathrm{mg}, 96 \%)$ as a white amorphous solid. The product was crystallised from $\mathrm{Et}_{2} \mathrm{O}$ for the single crystal X -ray crystallography analysis. $R_{f}=0.27$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O} 4: 1\right) . \mathrm{Mp} 173-174{ }^{\circ} \mathrm{C}$ (decomposition, $\mathrm{Et}_{2} \mathrm{O}$). IR (ATR) $v_{\text {Max. }} 3197(\mathrm{w}), 3122(\mathrm{w}), 2954(\mathrm{w}), 1741$ (s). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.91(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.55-4.46(1 \mathrm{H}, \mathrm{m}), 4.41(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.35(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.0 \mathrm{~Hz})$, $4.31(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 2.78(1 \mathrm{H}, \mathrm{dd}, J=14.8,3.8 \mathrm{~Hz}), 2.55-2.44(1 \mathrm{H}, \mathrm{m}), 2.22(1 \mathrm{H}, \mathrm{dd}, J=14.8,5.7 \mathrm{~Hz})$, $2.12-1.95(2 \mathrm{H}, \mathrm{m}), 1.92-1.81(1 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.3,75.1,57.5,51.8,50.4,41.0$, 32.8, 28.4. HRMS (ESI) calcd for $\left[\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{NO}_{2}{ }^{79} \mathrm{Br}_{2}\right]^{+}: 311.9229$, found 311.9219.

Computational Analysis

Calculation of the energy minimised conformations for both libraries were performed with Molecular Operating Environment (MOE) software package version 2012.10 using the following parameters:

Conformational Search Settings	
Force field	MMFF94x
Solvation	Born
Method	LowModeMD
Rejection Limit	100
RMS Gradient	0.005
Iteration Limit	10000
MM Iteration Limit	500
RMSD Limit	0.15
Energy Window	3
Conformation Limit	100

The following structural and physicochemical properties were also calculated using MOE 2018.0602:

Parameter	Description	Property*
npr1	Normalised PMI ratio (1) (pmi1 / pmi3)	-
npr2	Normalised PMI ratio (2) (pmi2 / pmi3)	-
a_acc	Number of hydrogen-bond acceptor atoms	HBA
a_aro	Number of aromatic atoms	-
a_don	Number of hydrogen-bond donor atoms	HBD
a_heavy	Number of non-hydrogen heavy atoms	-
b_rotN	Number of rotatable bonds	RBC
chiral	Number of chiral centres	chiral
SlogP	Log octanol/water partition coefficient	SlogP
TPSA	Topological polar surface area (\AA^{2})	TPSA
weight	Molecular weight (Da)	MW

* as appears in Table 1 of the main article

The number of sp^{3} atoms ($\mathrm{sp3} 3$-Atom) was calculated using Osiris Datawarrior version 4.7.3.

The following properties were calculated using Microsoft Excel 2010:

Parameter*	Description
Fsp 3	Fraction of $s p^{3}$ atoms (sp3-Atom / a_heavy)
Far	Fraction of aromatic atoms (a_aro / a_heavy)
npr1 + npr2	Sum of the normalised PMI ratios
Fflat	Fraction of molecules below the 'flat land' line (defined as: npr1 + npr2 $\leq 1.1)$

* as appears in Table 1 of the main article

Spirocyclic library

The spirocyclic library is based on the reported spirocyclic fragments. When applicable, protecting groups were removed yielding compounds numbered in general as X^{\prime}.

Normalised PMI ratios and molecular formulae of the library:

Compound	SMILES	npr1	npr2	Molecular Formula
12	O=C1[C@]2(NC(=O)C1)CC=CCC2	0.5336	0.9195	C9H11NO2
5	O=C1OC[C@]2(N1)CC=CCC2	0.3346	0.9505	C8H11NO2
9	O=C1OC[C@]2(NC1)CC=CCC2	0.2861	0.9367	C9H13NO2
7	c1(C=2OC[C@]3(N=2)CC=CCC3)ccccc1	0.2010	0.9075	C14H15NO
8	O=C1N[C@@]2(COC1)CC=CCC2	0.3961	0.8850	C9H13NO2
6	NC=1OC[C@]2(N=1)CC=CCC2	0.3275	0.9491	C8H12N2O
11	$\mathrm{O}=\mathrm{C} 1 \mathrm{C2}(\mathrm{NC}(=0) \mathrm{C} 1) \mathrm{CC}=\mathrm{CC2}$	0.3879	0.8086	C8H9NO2
13	O=C1[C@]2(NC(=O)C1)CC=CCCC2	0.5826	0.9781	C10H13NO2
18	$\mathrm{O}(\mathrm{C}) \mathrm{c} 1 \mathrm{ccc}(\mathrm{C}=2[\mathrm{C}$ @ $33(\mathrm{NC}(=0) \mathrm{C}=2) \mathrm{CC}=\mathrm{CCC3}) \mathrm{cc1}$	0.2737	0.8730	C16H17NO2
19	O=C1N[C@@]2(C)(0)C1)CC=CCC2	0.4161	0.8470	C9H13NO2
21	O=C1OC[C@]2(N=C1)CC=CCC2	0.2499	0.8763	C9H11NO2
17	$\mathrm{O}(\mathrm{CC}) \mathrm{C}=1[\mathrm{C@}] 2$ ($\mathrm{NC}(=\mathrm{O}) \mathrm{C}=1) \mathrm{CC}=\mathrm{CCC2}$	0.4464	0.7134	C11H15NO2
20	O=C1N[C@@]2(C=C1)CC=CCC2	0.3282	0.9689	C9H11NO
22b'	$\mathrm{O}=\mathrm{C1OCC2}(\mathrm{~N} 1) \mathrm{CCC}(=0) \mathrm{CC2}$	0.2504	0.9771	C8H11NO3
22a'	O=C1OC[C@]2(N1)CC(=O)CCC2	0.2870	0.8968	C8H11NO3
S7'	O=C1OC[C@]2(N1)C[C@@H](O)CCC2	0.3619	0.9290	C8H13NO3
S6'	O=C1OCC2(N1)CCC(0)CC2	0.2614	0.9788	C8H13NO3
S8'	O=C1OCC2(N1)CCC(0)CC2	0.2614	0.9789	C8H13NO3
23a'	O=C1OC[C@]2(N1)C[C@@H](O)[C@@H](O)CC2	0.2965	0.9561	C8H13NO4
23b'	O=C1OC[C@]2(N1)C[C@H](O)[C@H](O)CC2	0.3059	0.9261	C8H13NO4
28	Br[C@@H]1[C@@H](Br)CC[C@@]2(NC(=O)OC2)C1	0.3131	0.7957	C8H11NO2Br2
27b'	Br[C@H]1[C@H](Br)CC[C@@]2(NC(=O)OC2)C1	0.3871	0.7196	C8H11NO2Br2
26a	O=C1OC[C@]2(N1)C[C@H]1O[C@H]1CC2	0.3455	0.9534	C8H11NO3
24a'	FC1(F)[C@H]2[C@@H]1CC[C@@]1(NC(=O)OC1)C2	0.3173	0.8961	C9H11NO2F2
26b	O=C1OC[C@]2(N1)C[C@@H]1O[C@@H]1CC2	0.4577	0.9443	C8H11NO3
24b'	FC1(F)[C@@H]2[C@H]1CC[C@@]1(NC(=O)OC1)C2	0.3725	0.9335	C9H11NO2F2
25a'	O=C1OC[C@]2(N1)C[C@H]1N[C@H]1CC2	0.2416	0.9675	C8H12N2O2
25b'	O=C1OC[C@]2(N1)C[C@@H]1N[C@@H]1CC2	0.4516	0.9439	C8H12N2O2

The distributions of the physicochemical properties of the library are displayed as histograms:

Maybridge core fragment collection

This library is based on the core 1000-member collection within the Maybridge Fragment library. Details of the library (including SMILES and SDF) are available from 'http://www.maybridge.com/' under the 'Ro3 Fragment library section. More details can be found at:
'http://www.maybridge.com/images/pdfs/MB_Ro3_fragment_flyer_2011_EUR_v7.pdf'

The best-matched fragments were chosen based on heavy atom and hetero atom counts compared to the spirocycle library. For heteroatom counts of 2 and 3 , only exact heavy atom matches (i.e. same number of N and O atoms) were used, whereas for heteroatom counts of 4 and 5 no exact matches were found and therefore only the total heteroatom counts were used.

Normalised PMI ratios and molecular formulae of the Maybridge best-matched fragments:

SMILES	npr1	npr2	Molecular Formula
OCCNCc1ccccc1	0.1566	0.9438	C9H13NO
Oc1c2c(nccc2)ccc1	0.3618	0.6382	C9H7NO
$\mathrm{O}=\mathrm{C}(\mathrm{C}) \mathrm{c} 1 \mathrm{cc}(\mathrm{C} \mathrm{\# N}) \mathrm{ccc} 1$	0.2475	0.7561	C9H7NO
O=C1Nc2c(cccc2)CC1	0.2480	0.7704	C9H9NO
OC[C@H](N)Cc1ccccc1	0.2401	0.9471	C9H13NO
Oc1cc2ncccc2cc1	0.2253	0.7747	C9H7NO
O(C)c1cc(CC\#N)ccc1	0.2339	0.8611	C9H9NO
O(C)c1cc2c([nH]cc2)cc1	0.2076	0.7963	C9H9NO
NCc1cc2c(OCC2)cc1	0.2047	0.8484	C9H11NO
N\#Cc1cc2c(occ2)cc1	0.1741	0.8259	C9H5NO
Oc1c(C)cc(C\#N)cc1C	0.3298	0.6775	C9H9NO
c1(-c2ccccc2)ocnc1	0.1600	0.8400	C9H7NO
OCCc1ccc(C\#N)cc1	0.1608	0.9466	C9H9NO
$\mathrm{O}=\mathrm{C}(\mathrm{N}) \mathrm{c1c}(\mathrm{C}) \mathrm{c}(\mathrm{C}) \mathrm{ccc} 1$	0.3472	0.7208	C9H11NO
$\mathrm{O}=\mathrm{C}(\mathrm{N}) \mathrm{c} 1 \mathrm{cc}(\mathrm{C}) \mathrm{c}(\mathrm{C}) \mathrm{cc} 1$	0.2338	0.7872	C9H11NO
OC[C@H]1[C@@H](NCc2ccccc2)CCCC1	0.1717	0.9024	C14H21NO
O[C@@H](%5BC@@H%5D(N)c1ccccc1)c1ccccc1	0.4721	0.7911	C14H15NO
O(c1c(CNC)cccc1)c1ccccc1	0.3960	0.7590	C14H15NO
O(c1ccc(CNC)cc1)c1ccccc1	0.1063	0.9808	C14H15NO
O(Cc1cc(CN) Ccc 1$) \mathrm{c1ccccc} 1$	0.1368	0.9586	C14H15NO
O=C1CC2N(Cc3ccccc3)C(C1)CC2	0.2342	0.9468	C14H17NO
$\mathrm{O}=\mathrm{C}(\mathrm{OCc1} 1 \operatorname{cccc} 1) \mathrm{N}$	0.1520	0.9775	C8H9NO2
$\mathrm{O}=\mathrm{C}(\mathrm{N}) \mathrm{c1ccc}(\mathrm{OC}) \mathrm{cc1}$	0.1434	0.8704	C8H9NO2
O=C1NC(=O)[C@@H]2[C@H]1CC=CC2	0.3972	0.8514	C8H9NO2
O=C(OCC)[C@H]1[C@@H](N)CCC1	0.2814	0.8759	C8H15NO2
$\mathrm{O}=\mathrm{C}(\mathrm{C}) \mathrm{c1c}(\mathrm{O}) \mathrm{cc}(\mathrm{N}) \mathrm{cc} 1$	0.2658	0.7756	C8H9NO2
$\mathrm{O}=\mathrm{C1OCc2c1cc}(\mathrm{~N}) \mathrm{cc} 2$	0.2879	0.7163	C8H7NO2
O=C(N(C)C)C1CCOCC1	0.3110	0.9079	C8H15NO2
$\mathrm{O}=\mathrm{C}(\mathrm{N}) \mathrm{Cc} 1 \mathrm{ccc}(\mathrm{O}) \mathrm{cc} 1$	0.1807	0.9326	C8H9NO2

Nc1cc2c(OCOC2)cc1	0.2340	0.7841	C8H9NO2
N\#Cc1cc2OCOc2cc1	0.1844	0.8194	C8H5NO2
$\mathrm{O}=\mathrm{C}(\mathrm{OC}) \mathrm{c1c}(\mathrm{C})[\mathrm{nH}] \mathrm{c}(\mathrm{C}) \mathrm{c1}$	0.2785	0.7317	C8H11NO2
$\mathrm{O}=\mathrm{C}(\mathrm{N}) \mathrm{COc} 1 \mathrm{ccccc} 1$	0.1227	0.8802	C8H9NO2
$\mathrm{O}=\mathrm{C}(\mathrm{OC}) \mathrm{c1cc}(\mathrm{~N}) \mathrm{ccc} 1$	0.2016	0.8018	C8H9NO2
$\mathrm{O}=\mathrm{C}(\mathrm{O}) \mathrm{c} 1 \mathrm{c}(\mathrm{N}) \mathrm{cc}(\mathrm{C}) \mathrm{cc1}$	0.2578	0.7459	C8H9NO2
O(C)c1cc2nc[nH]c2cc1	0.2120	0.7920	C8H8N2O
$\mathrm{O}=\mathrm{C} 1 \mathrm{~N}(\mathrm{C}) \mathrm{N}=\mathrm{C}(\mathrm{C}(\mathrm{C})(\mathrm{C}) \mathrm{C}) \mathrm{C} 1$	0.2896	0.8515	C8H14N2O
Oc1nc(C(C)C)nc(C)c1	0.4024	0.7353	C8H12N2O
OCC1=Cn2c(ncc2)C=C1	0.1881	0.8499	C8H8N2O
OCc1cc2nc[nH]c2cc1	0.2025	0.8439	C8H8N2O
$\mathrm{O}=\mathrm{C} 1 \mathrm{NN}=\mathrm{Cc} 2 \mathrm{c} 1 \mathrm{cccc} 2$	0.3495	0.6505	C8H6N2O
N\#CCCNCC1OCCC1	0.0719	0.9648	C8H14N2O
OC1(C\#N)C2CCN(C1)CC2	0.5090	0.8849	C8H12N2O
Oc1c(C\#N)c(C)cc(C)n1	0.3510	0.6569	C8H8N2O
OCc1nc(CCCC)[nH]c1	0.1723	0.8988	C8H14N2O
O=C(CC\#N)N1CCCCC1	0.1898	0.8750	C8H12N2O
O=C(NCc1cnccc1) C	0.2305	0.9262	C8H10N2O
$\mathrm{O}=\mathrm{C}(\mathrm{O}) \mathrm{c} 1 \mathrm{cc} 2 \mathrm{c}([\mathrm{nH}] \mathrm{cc} 2) \mathrm{cc} 1$	0.1798	0.8202	C9H7NO2
O=C(OCC)c1ccc(N)cc1	0.1503	0.8545	C9H11NO2
O=C(Nc1ccc(OC)cc1)C	0.1073	0.8974	C9H11NO2
O=C(OCC)[C@H]1[C@H](N)CC=CC1	0.3119	0.8862	C9H15NO2
O=C(OCC)c1c(C)cc(C)[nH]1	0.2959	0.7147	C9H13NO2
$\mathrm{O}(\mathrm{C}(\mathrm{C})(\mathrm{C}) \mathrm{C}) \mathrm{C}(=0) \mathrm{N} 1 \mathrm{CC}=\mathrm{CC1}$	0.2214	0.8897	C9H15NO2
O=C(OCc1ccccc1)CN	0.1301	0.9955	C9H11NO2
$\mathrm{O}=\mathrm{C}(\mathrm{OC}) \mathrm{c1cc}(\mathrm{~N}) \mathrm{c}(\mathrm{C}) \mathrm{cc1}$	0.1827	0.8227	C9H11NO2
O=C1C(CCC\#N)C(=0)CCC1	0.3067	0.7990	C9H11NO2
$\mathrm{O}=\mathrm{C}(\mathrm{C}) \mathrm{N} 1 \mathrm{CCC}(\mathrm{C}=0) \mathrm{C}) \mathrm{CC1}$	0.2330	0.8951	C9H15NO2
$\mathrm{O}=\mathrm{C}(\mathrm{OC}) \mathrm{c1cc}(\mathrm{CN}) \mathrm{ccc} 1$	0.2111	0.8248	C9H11NO2
$\mathrm{O}=\mathrm{C}(\mathrm{OC}) \mathrm{c1cc}(\mathrm{C} \mathrm{\# N}) \mathrm{ccc} 1$	0.2563	0.7466	C9H7NO2
$\mathrm{O}=\mathrm{C}(\mathrm{OCC}) \mathrm{c1c}(\mathrm{C})[\mathrm{nH}] \mathrm{c}(\mathrm{C}) \mathrm{c1}$	0.2602	0.7501	C9H13NO2
$\mathrm{O}=\mathrm{C}(\mathrm{OC}) \mathrm{c1c}(\mathrm{C} \mathrm{\# N}) \mathrm{cccc} 1$	0.3960	0.6518	C9H7NO2
$\mathrm{O}=\mathrm{Nc} 1 \mathrm{c}(\mathrm{O}) \mathrm{ccc} 2 \mathrm{c} 1 \mathrm{cccc} 2$	0.3216	0.6978	C10H7NO2
$\mathrm{O}=\mathrm{C}(\mathrm{Oc} 1 \mathrm{c} 2 \mathrm{c}([\mathrm{nH}] \mathrm{c} 1) \mathrm{cccc} 2) \mathrm{C}$	0.2915	0.7757	C10H9NO2
O=C1O[C@H](%5BC@@H%5D(C)N1)c1ccccc1	0.2327	0.9131	C1OH11NO2
$\mathrm{O}=\mathrm{C}(\mathrm{OC}) \mathrm{c} 1 \mathrm{cc} 2 \mathrm{c}([\mathrm{nH}] \mathrm{cc} 2) \mathrm{cc} 1$	0.1679	0.8345	C1OH9NO2
$\mathrm{O}=\mathrm{C1Oc} 2 \mathrm{c}(\mathrm{C}(\mathrm{C})=\mathrm{C} 1) \mathrm{ccc}(\mathrm{N}) \mathrm{c} 2$	0.2982	0.7046	C10H9NO2
NCc1c2OCCCOc2ccc1	0.4024	0.6688	C10H13NO2
NCc1cc2OCCCOc2cc1	0.2122	0.8505	C1OH13NO2
OCc1noc(-c2ccccc2)c1	0.1157	0.9080	C10H9NO2
OCc1onc(-c2ccccc2)c1	0.1294	0.9000	C10H9NO2
OCC1N(Cc2occc2)CCC1	0.2605	0.8751	C10H15NO2
O=C1OC[C@H](Cc2ccccc2)N1	0.1333	0.9562	C1OH11NO2
OCCN(CCO)c1ccccc1	0.4901	0.7449	C1OH15NO2
O(C)c1c(OC)cc2c(c1)CNCC2	0.3130	0.7029	C11H15NO2
O=C1OC(C)(C)[C@@H](c2ccccc2)N1	0.2965	0.8657	C11H13NO2
$\mathrm{O}=\mathrm{C}(\mathrm{NCC}(=0) \mathrm{C}) \mathrm{Cc} 1 \mathrm{ccccc} 1$	0.2460	0.8973	C11H13NO2

$\mathrm{O}=\mathrm{C}(\mathrm{OC}) \mathrm{c} 1 \mathrm{ncc} 2 \mathrm{c}(\mathrm{c} 1) \mathrm{cccc} 2$	0.1409	0.8612	C11H9NO2
$\mathrm{O}=\mathrm{C}(\mathrm{C}) \mathrm{c1c}(\mathrm{~N}) \mathrm{c}(\mathrm{CCC}) \mathrm{c}(\mathrm{O}) \mathrm{cc} 1$	0.3040	0.7637	C11H15NO2
O=C(O)CC1(CN(C)C)CCCCC1	0.4960	0.7257	C11H21NO2
OCc1c(C)onc1-c1ccccc1	0.2664	0.7941	C11H11NO2
O(CCN(C)C)c1c(CO)cccc1	0.1946	0.8300	C11H17NO2
$\mathrm{O}(\mathrm{C}(\mathrm{C})(\mathrm{C}) \mathrm{C}) \mathrm{C}(=0) \mathrm{c1cc}(\mathrm{~N}) \mathrm{ccc} 1$	0.1824	0.8858	C11H15NO2
$\mathrm{O}=\mathrm{C}(\mathrm{Nc} 1 \mathrm{ccc}(\mathrm{OCC}=\mathrm{C}) \mathrm{cc} 1) \mathrm{C}$	0.0702	0.9422	C11H13NO2
$\mathrm{O}=\mathrm{C}(\mathrm{Nc} 1 \mathrm{cc} 2 \mathrm{c}(\mathrm{C}(=\mathrm{O}) \mathrm{CC} 2) \mathrm{cc} 1) \mathrm{C}$	0.1551	0.8506	C11H11NO2
$\mathrm{O}=\mathrm{C}(\mathrm{N}(\mathrm{C}) \mathrm{C}) \mathrm{c} 1 \mathrm{c}-2 \mathrm{c}(\mathrm{C}(=0) \mathrm{c} 3 \mathrm{c}-2 \mathrm{cccc} 3) \mathrm{ccc} 1$	0.4483	0.6742	C16H13NO2
O(C)c1ccc(CNCc2ccc(OC)cc2)cc1	0.1178	0.9595	C16H19NO2
O=C(CC12CC3CC(C1)CC(C2)C3)N1CCOCC1	0.1592	0.9586	C16H25NO2
FC(F)(F)c1ccc(CO)cc1	0.1638	0.9439	C8H7OF3
Clc1cc(OCC(=0)O)ccc1	0.1310	0.8709	C 8 H 7 O 3 Cl
Fc1cc2C(=O)C(=O)Nc2cc1	0.2277	0.7723	C8H4NO2F
Fc1c(NC(=O)C)ccc(F)c1	0.2136	0.7891	C8H7NOF2
Clc1c(NC(=0)C)c(F)ccc1	0.4058	0.6018	C8H7NOCIF
Fc1c(OC(=O)C)ccc(F)c1	0.2273	0.8861	C8H6O2F2
S(CC)c1c(C)=O)O)cccn1	0.3754	0.6717	C8H9NO2S
CIC1=NNC(=O)c2c1cccc2	0.4180	0.5820	C8H5N2OCI
O=C(O)c1sc2ncccc2c1	0.1817	0.8183	C8H5NO2S
NCc1nc(-c2sccc2)sc1	0.2239	0.7930	C8H8N2S2
OCc1noc(-c2sccc2)c1	0.1229	0.9019	C8H7NO2S
$\mathrm{O}=\mathrm{C}(\mathrm{O}) \mathrm{c} 1 \mathrm{n}(\mathrm{C}) \mathrm{c} 2 \mathrm{c}(\mathrm{scc} 2) \mathrm{c1}$	0.2212	0.7815	C8H7NO2S
OCc1n[nH]c(-c2sccc2)c1	0.1134	0.8956	C8H8N2OS
N(Cc1scc2OCCOc12)C	0.3228	0.7224	C8H11NO2S
$\mathrm{S}(=\mathrm{O})(=\mathrm{O})(\mathrm{C}) \mathrm{c1ccc}(\mathrm{C} \mathrm{\# N}) \mathrm{cc1}$	0.1549	0.9370	C8H7NO2S
S(C)c1sc2c(n1)ccc(N)c2	0.1548	0.8474	C8H8N2S2
S=C1NCN(C2CCCC2)CN1	0.1229	0.9184	C8H15N3S
Clc1nc(-c2occc2)ccn1	0.1873	0.8127	C8H5N2OCI
Clc1sc(C2=NN(C)CC2)cc1	0.1058	0.9037	C8H9N2CIS
Clc1c(Cl)ccc($\mathrm{NC}(=\mathrm{O}) \mathrm{C}) \mathrm{c1}$	0.1982	0.8037	C8H7NOCl2
Clc1ccc(SCC(=O)O)cc1	0.0971	0.9480	C8H7O2CIS
Clc1c(C)c(C\#N)c(O)nc1C	0.3474	0.6582	C8H7N2OCI
Clc1cc(C(=O)OC)c(O)cc1	0.2323	0.7701	C8H7O3Cl
Fc1ccc(CNC(=O)N)cc1	0.1160	0.9905	C8H9N2OF
FC(F)(F)c1c(CO)cccc1	0.4573	0.6836	C8H7OF3
Clc1c(CO)nc(CCCC)[nH]1	0.2479	0.8232	C8H13N2OCl
$\mathrm{S}=\mathrm{C}(\mathrm{NN}) \mathrm{NC1C2C=CC(C1)C2}$	0.3102	0.8552	C8H13N3S
Clc1cc(Cl)cc(OCC\#N)c1	0.3151	0.6866	C8H5NOCl2
S(CC\#N)c1c(F)cc(F)cc1	0.1607	0.9087	C8H5NF2S
S=C(Nc1c(OC)cccc1)N	0.2920	0.7332	C8H10N2OS
Clc1c(C(=O)OC)ccc(F)c1	0.3007	0.7813	C8H6O2CIF
$\mathrm{O}=\mathrm{C} 1 \mathrm{NN}=\mathrm{C}(\mathrm{c} 2 \mathrm{sccc} 2) \mathrm{CC1}$	0.1465	0.8724	C8H8N2OS
FC(F)(F)c1cc(N)c(OC)cc1	0.2119	0.8552	C8H8NOF3
Fc1cc(F)cc(C(O)C(=O)O)c1	0.3356	0.8586	C8H6O3F2
FC(F)(F)c1nc(C)c(C\#N)cc1	0.1955	0.8740	C8H5N2F3
Clc1ccc(CNS(=O)(=O)C)cc1	0.0957	0.9716	C8H10NO2ClS

$\mathrm{O}=\mathrm{C}(\mathrm{O}) \mathrm{c} 1 \mathrm{nc}(-\mathrm{c} 2 \mathrm{sccc} 2) \mathrm{sc1}$	0.1809	0.8191	C8H5NO2S2
$\mathrm{S}(=\mathrm{O})(=\mathrm{O})(\mathrm{N}) \mathrm{c} 1 \mathrm{cc} 2 \mathrm{c}(\mathrm{cc1}) \mathrm{COC2}$	0.1890	0.8939	C8H9NO3S
Clc1sc(C(OC(C)(C)C)=0)cn1	0.1276	0.9275	C8H10NO2CIS
$\mathrm{ClC=1C}(=0) \mathrm{C}(\mathrm{Cl})=\mathrm{CN}(\mathrm{CCCON}) \mathrm{C}=1$	0.3168	0.7079	C8H6N2OCl2
Clc1cc($\mathrm{NC}(=\mathrm{S}) \mathrm{N}) \mathrm{c}(\mathrm{OC}) \mathrm{cc1}$	0.3658	0.6540	C8H9N2OCIS
FC(F)(F)c1cnc(N(C)C)cc1	0.1554	0.9094	C8H9N2F3
FC(F)(F)Oc1ccc(CO) cc1	0.1400	0.9484	C8H7O2F3
FC(F)(F)Oc1ccc(CC\#N)cc1	0.1403	0.9705	C9H6NOF3
Fc1c(NC($=0$)C)c(C\#N)cc(F)c1	0.3497	0.6673	C9H6N2OF2
Fc1c(F)ccc(-c2nc(N)sc2)c1	0.1461	0.8637	C9H6N2F2S
O=C(0)c1sc(-c2nc(C)sc2)cc1	0.1087	0.8927	C9H7NO2S2
Fc1c(N(C)C)c(F)cc(C(=O)N)c1	0.2561	0.7567	C9H10N2OF2
Clc1c(F)ccc($\mathrm{NC}(=0) \mathrm{CSC}) \mathrm{c} 1$	0.1720	0.8946	C9H9NOCIFS
O=S1(=0)CCN(Cc2sccc2)CC1	0.1538	0.9913	C9H13NO2S2
S(C)c1c(C(=O)C)c(C)c(C(=O)O)s1	0.3663	0.7309	C9H10O3S2
Clc1c(F)ccc(N2C(=0)C=CS2)c1	0.2071	0.7929	C9H5NOCIFS
Clc1c(F)c(N2C(=O)C=CS2)ccc1	0.2380	0.7645	C9H5NOCIFS
Clc1sc([SHO](=O)C)c2C(=O)CCCc12	0.4492	0.6241	C9H9O2CIS2
Clc1c(Cl) $\operatorname{cccc} 1 \mathrm{NC}(=0) \mathrm{N}(\mathrm{C}) \mathrm{C}$	0.2101	0.8023	C9H1ON2OCl2
Clc1ccc(CCNC($=$ S) NN) cc 1	0.1770	0.9074	C9H12N3CIS
Clc1cc2C(=0)CCS($=0$)(=0)c2cc1	0.2936	0.7708	C9H7O3CIS
Clc1ccc(S(=0)(=0)CCC\#N)cc1	0.1325	0.9591	C9H8NO2CIS
Fc1cc2C(=0)CCS(=0)(=0)c2cc1	0.3716	0.7099	C9H7O3FS
FC(F)(F)c1cc(OCC\#N)ccc1	0.1718	0.8767	C9H6NOF3

Crystallographic Data

3-Oxa-1-azaspiro[4.5]deca-1,7-dien-2-amine (6)

Identification code	DS_B1_0020	CCDC	1912267
Empirical formula	$\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}$	Formula weight (Da)	152.20
Temperature (K)	180(2)	Wavelength (\AA)	1.54178
Crystal system	Monoclinic	Space group	P $21 / \mathrm{c}$
Unit cell lengths (A)	$a=10.3028(8)$	Unit cell angles (${ }^{\circ}$)	$\alpha=90$
	$\mathrm{b}=7.6579(5)$		$\beta=91.728$ (5)
	$\mathrm{c}=10.3040$ (8)		$\gamma=90$
Volume (\AA^{3})	812.593	Z	4
Density calculated (gcm^{-3})	1.244	Absorption coefficient (mm^{-1})	0.678
F(000)	328	Crystal size (mm^{3})	$0.250 \times 0.060 \times 0.020$
θ range for data coll. (${ }^{\circ}$)	4.293-66.966	Completeness to $\theta=66.966^{\circ}$	99.9\%
Reflections collected	9075	Independent reflections	1443
Index ranges	$\begin{aligned} & -12 \leq h \leq 12 \\ & -9 \leq k \leq 9 \\ & -12 \leq I \leq 12 \end{aligned}$	Refinement method	Full-matrix leastsquares on F^{2}
Absorption correction	Multi-scan	Max./min. transmission	0.987/0.849
Data/restraints/parameters	1443/0/108		
Goodness of fit F^{2}	1.094	Largest diff. peak/hole (e \AA^{-3})	0.189/-0.184
Final R indices [$1>2 \sigma(\mathrm{I})$]	$\mathrm{R} 1=0.0465$	R indices (all data)	$\mathrm{R} 1=0.0583$
	$\mathrm{wR2}=0.1122$		$w R 2=0.1185$

Identification code	DS_B1_0023	CCDC	1912268
Empirical formula	$\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{2}$	Formula weight (Da)	255.31
Temperature (K)	180(2)	Wavelength (\AA)	1.54178
Crystal system	Triclinic	Space group	P $\overline{1}$
Unit cell lengths (\AA)	$\mathrm{a}=5.9870$ (3)	Unit cell angles (${ }^{\circ}$)	$\alpha=71.715$ (3)
	$\mathrm{b}=9.9585$ (5)		$\beta=83.642(3)$
	$\mathrm{c}=11.5405(6)$		$\gamma=89.345$ (3)
Volume (\AA^{3})	649.10(6)	Z	2
Density calculated (gcm^{-3})	1.306	Absorption coefficient (mm^{-1})	0.687
F(000)	272	Crystal size (mm^{3})	$0.200 \times 0.200 \times 0.100$
θ range for data coll. (${ }^{\circ}$)	4.060-67.188	Completeness to $\theta=67.188^{\circ}$	98.6\%
Reflections collected	6875	Independent reflections	2283
Index ranges	$-7 \leq h \leq 7$	Refinement method	Full-matrix least-
	$-11 \leq k \leq 11$		squares on F^{2}
	$-13 \leq 1 \leq 13$		
Absorption correction	Multi-scan	Max./min. transmission	0.934/0.875
Data/restraints/parameters	2283/0/177		
Goodness of fit F^{2}	1.048	Largest diff. peak/hole (e \AA^{-3})	0.314/-0.261
Final R indices [$1>2 \sigma(\mathrm{I})$]	$\mathrm{R} 1=0.0558$	R indices (all data)	$\mathrm{R} 1=0.0737$
	$w R 2=0.1488$		$w R 2=0.1626$

Identification code	DS_B1_0024	CCDC	1912266
Empirical formula	$\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}$	Formula weight (Da)	149.19
Temperature (K)	180(2)	Wavelength (A)	1.54178
Crystal system	Orthorhombic	Space group	P n a 2_{1}
Unit cell lengths (\AA)	$\mathrm{a}=10.2930$ (5)	Unit cell angles (${ }^{\circ}$)	$\alpha=90$
	$\mathrm{b}=9.8937(5)$		$\beta=90$
	$\mathrm{c}=7.6125(4)$		$\gamma=90$
Volume (\AA^{3})	775.23(7)	Z	4
Density calculated (gcm^{-3})	1.278	Absorption coefficient (mm^{-1})	0.667
F(000)	320	Crystal size (mm^{3})	$0.180 \times 0.080 \times 0.040$
θ range for data coll. (${ }^{\circ}$)	6.204-66.745	Completeness to $\theta=66.745^{\circ}$	99.9\%
Reflections collected	2582	Independent reflections	1285
Index ranges	$-12 \leq h \leq 12$	Refinement method	Full-matrix least-
	$-10 \leq k \leq 11$		squares on F^{2}
	$-8 \leq 1 \leq 9$		
Absorption correction	Multi-scan	Max./min. transmission	0.974/0.889
Data/restraints/parameters	1285/1/104		
Goodness of fit F^{2}	1.075	Largest diff. peak/hole (e \AA^{-3})	0.213/-0.198
Final R indices [$1>2 \sigma(\mathrm{I})$]	$\mathrm{R} 1=0.0446$	R indices (all data)	$\mathrm{R} 1=0.0510$
	$\mathrm{wR2}=0.1130$		$w R 2=0.1194$

Identification code	DS_B1_0022	CCDC	1912287
Empirical formula	$\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{4}$	Formula weight (Da)	291.34
Temperature (K)	180(2)	Wavelength (\AA)	1.54178
Crystal system	Monoclinic	Space group	P $21 / \mathrm{c}$
Unit cell lengths (A)	$\mathrm{a}=9.1715(2)$	Unit cell angles (${ }^{\circ}$)	$\alpha=90$
	$\mathrm{b}=6.6200$ (2)		$\beta=92.5461$ (12)
	$\mathrm{c}=23.5770(6)$		$\gamma=90$
Volume (\AA^{3})	1430.07	Z	4
Density calculated (gcm^{-3})	1.353	Absorption coefficient (mm^{-1})	0.795
F(000)	624	Crystal size (mm^{3})	$0.220 \times 0.100 \times 0.040$
θ range for data coll. (${ }^{\circ}$)	3.753-67.040	Completeness to $\theta=67.040^{\circ}$	99.7\%
Reflections collected	15488	Independent reflections	2545
Index ranges	$\begin{aligned} & -10 \leq h \leq 10 \\ & -7 \leq k \leq 7 \\ & -28 \leq 1 \leq 28 \end{aligned}$	Refinement method	Full-matrix leastsquares on F^{2}
Absorption correction	Multi-scan	Max./min. transmission	0.969/0.845
Data/restraints/parameters	2545/2/204		
Goodness of fit F^{2}	1.306	Largest diff. peak/hole (e \AA^{-3})	0.245/-0.286
Final R indices [$1>2 \sigma(1)$]	$\mathrm{R} 1=0.0654$	R indices (all data)	$\mathrm{R} 1=0.0692$
	$w R 2=0.1474$		

H

Identification code	DS_B1_0015	CCDC	1912286
Empirical formula	$\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{D}_{6} \mathrm{NO}_{5}$	Formula weight (Da)	391.48
Temperature (K)	180(2)	Wavelength (Å)	1.54178
Crystal system	Triclinic	Space group	P $\overline{1}$
Unit cell lengths (\AA)	$\mathrm{a}=6.2880(2)$	Unit cell angles (${ }^{\circ}$)	$\alpha=82.118(3)$
	$\mathrm{b}=7.9649$ (3)		$\beta=87.204(2)$
	$\mathrm{c}=20.1941$ (8)		$\gamma=82.302(2)$
Volume (\AA^{3})	992.33(6)	Z	2
Density calculated (gcm^{-3})	1.310	Absorption coefficient (mm ${ }^{1}$)	0.743
F(000)	412	Crystal size (mm^{3})	$0.120 \times 0.120 \times 0.020$
θ range for data coll. (${ }^{\circ}$)	2.210-66.855	Completeness to $\theta=66.855^{\circ}$	99.5\%
Reflections collected	13031	Independent reflections	3530
Index ranges	$-7 \leq h \leq 7$	Refinement method	Full-matrix least-
	$-9 \leq k \leq 9$		squares on F^{2}
	$-23 \leq 1 \leq 24$		
Absorption correction	Multi-scan	Max./min. transmission	0.985/0.916
Data/restraints/parameters	3530/0/261		
Goodness of fit F^{2}	1.037	Largest diff. peak/hole (e \AA^{-3})	0.234/-0.181
Final R indices [$1>2 \sigma(\mathrm{l})$]	$\mathrm{R} 1=0.0434$	R indices (all data)	$\mathrm{R} 1=0.0681$
	$w R 2=0.0890$		$w R 2=0.0988$

Identification code
Empirical formula
Temperature (K)
Crystal system
Unit cell lengths (\AA)

Volume (\AA^{3})
Density calculated $\left(\mathrm{gcm}^{-3}\right)$
F(000)
θ range for data coll. (${ }^{\circ}$)
Reflections collected
Index ranges

Absorption correction
Data/restraints/parameters
Goodness of fit F^{2}
Final R indices [$1>2 \sigma(I)$]

680
DS_B1_0018
$\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~F}_{2} \mathrm{NO}_{3}$
180(2)
Monoclinic
$\mathrm{a}=13.5002(5)$
b $=12.3831$ (5)
$\mathrm{c}=9.9272(4)$
1550.28(11)
1.385
3.505-66.845

11811
$-16 \leq h \leq 16$
$-14 \leq k \leq 10$
$-11 \leq 1 \leq 11$
Multi-scan
2739/0/228
1.112
$R 1=0.0416$
$w R 2=0.0990$

CCDC
Formula weight (Da)
Wavelength (\AA)
Space group
Unit cell angles (${ }^{\circ}$)

Z
Absorption coefficient (mm^{-1})
Crystal size (mm^{3})
Completeness to $\theta=66.845^{\circ}$
Independent reflections
Refinement method

Max./min. transmission

Largest diff. peak/hole (e \AA^{-3})
R indices (all data)

1912284
323.33
1.54178

P $21 / \mathrm{c}$
$\alpha=90$
$\beta=110.910$ (2)
$\gamma=90$
4
0.934
$0.300 \times 0.180 \times 0.120$
99.6\%

2739
Full-matrix least-
squares on F^{2}
0.896/0.767
0.239/-0.193
$\mathrm{R} 1=0.0453$
$w R 2=0.1012$ (25b)

Identification code	DS_B1_0014	CCDC	1912283
Empirical formula	$\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$	Formula weight (Da)	442.52
Temperature (K)	180(2)	Wavelength (\AA)	1.54178
Crystal system	Triclinic	Space group	P $\overline{1}$
Unit cell lengths (A)	$\mathrm{a}=7.0012$ (2)	Unit cell angles (${ }^{\circ}$)	$\alpha=80.1740(10)$
	$\mathrm{b}=12.6065(4)$		$\beta=75.6130$ (10)
	$\mathrm{c}=12.9625(4)$		$\nu=76.4970$ (10)
Volume (\AA^{3})	1069.83(6)	Z	2
Density calculated (gcm^{-3})	1.374	Absorption coefficient (mm^{-1})	1.668
F(000)	468	Crystal size (mm^{3})	$0.250 \times 0.200 \times 0.150$
θ range for data coll. (${ }^{\circ}$)	3.545-66.774	Completeness to $\theta=66.774^{\circ}$	98.7\%
Reflections collected	8306	Independent reflections	3741
Index ranges	$-7 \leq h \leq 8$	Refinement method	Full-matrix least-
	$-15 \leq k \leq 13$		squares on F^{2}
	$-14 \leq 1 \leq 15$		
Absorption correction	Multi-scan	Max./min. transmission	0.7886/0.681
Data/restraints/parameters	3741/0/282		
Goodness of fit F^{2}	1.038	Largest diff. peak/hole (e \AA^{-3})	0.308/-0.418
Final R indices [$1>2 \sigma(\mathrm{I})$]	$\mathrm{R} 1=0.0353$	R indices (all data)	$\mathrm{R} 1=0.0403$
	$w R 2=0.0894$		$w R 2=0.0931$

Identification code	DS_B1_0021	CCDC	1912289
Empirical formula	$\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{NO}_{3}$	Formula weight (Da)	169.18
Temperature (K)	180(2)	Wavelength (\AA)	1.54178
Crystal system	Monoclinic	Space group	P $21 / \mathrm{n}$
Unit cell lengths (A)	$\mathrm{a}=5.7530$ (2)	Unit cell angles (${ }^{\circ}$)	$\alpha=90$
	$b=12.8809(4)$		$\beta=92.918(2)$
	c = 10.6497 3 ($\gamma=90$
Volume (\AA^{3})	788.16(4)	Z	4
Density calculated (gcm^{-3})	1.426	Absorption coefficient (mm^{-1})	0.919
F(000)	360	Crystal size (mm^{3})	$0.250 \times 0.080 \times 0.070$
θ range for data coll. (${ }^{\circ}$)	5.393-66.842	Completeness to $\theta=66.842^{\circ}$	99.6\%
Reflections collected	5783	Independent reflections	1394
Index ranges	$-7 \leq h \leq 8$	Refinement method	Full-matrix least-
	$-15 \leq k \leq 13$		squares on F^{2}
	$-14 \leq 1 \leq 15$		
Absorption correction	Multi-scan	Max./min. transmission	0.7886/0.681
Data/restraints/parameters	1394/18/132		
Goodness of fit F^{2}	1.137	Largest diff. peak/hole (e \AA^{-3})	0.187/-0.199
Final R indices [$1>2 \sigma(\mathrm{I})$]	$\mathrm{R} 1=0.0415$	R indices (all data)	$\mathrm{R} 1=0.0477$
	$w R 2=0.1001$		$\mathrm{wR2}=0.1035$

Identification code

DS_B1_0019
Empirical formula
Temperature (K)
$\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{Br}_{2} \mathrm{NO}_{3}$
CCDC
1912285
Formula weight (Da)
433.14

Wavelength (\AA)
1.54178

Crystal system
Unit cell lengths (\AA)
180(2)
Monoclinic
$a=6.4606(2)$
$b=12.5480(3)$
c $=20.3610(6)$
Volume (\AA^{3})
1632.61(8)

Density calculated $\left(\mathrm{gcm}^{-3}\right)$
1.762

F(000) 864
θ range for data coll. (${ }^{\circ}$)
Reflections collected
Index ranges

Absorption correction
Multi-scan
Data/restraints/parameters 2886/0/201

Goodness of fit F^{2}	1.092
Final R indices $[I>2 \sigma(I)]$	$R 1=0.0243$
	$W R 2=0.0573$

Largest diff. peak/hole $\left(\mathrm{e}^{-3}\right)$	$0.546 /-0.461$
R indices (all data)	$R 1=0.0264$
	wR2 $=0.0581$

Identification code	DS_B1_0026	CCDC	1912288
Empirical formula	$\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{Br}_{2} \mathrm{NO}_{2}$	Formula weight (Da)	313.00
Temperature (K)	180(2)	Wavelength (A)	1.54178
Crystal system	Monoclinic	Space group	P $21 / \mathrm{c}$
Unit cell lengths (\AA)	$\mathrm{a}=13.0067$ (12)	Unit cell angles (${ }^{\circ}$)	$\alpha=90$
	$\mathrm{b}=6.2766$ (6)		$\beta=103.002$ (6)
	$\mathrm{c}=12.8006(10)$		$\gamma=90$
Volume (\AA^{3})	1018.22(16)	Z	4
Density calculated (gcm^{-3})	2.042	Absorption coefficient (mm^{-1})	9.863
F(000)	608	Crystal size (mm^{3})	$0.300 \times 0.040 \times 0.010$
θ range for data coll. (${ }^{\circ}$)	3.486-66.672	Completeness to $\theta=66.672^{\circ}$	99.7\%
Reflections collected	13072	Independent reflections	1806
Index ranges	$-15 \leq h \leq 15$	Refinement method	Full-matrix least-
	$-7 \leq k \leq 6$		squares on F^{2}
	$-14 \leq 1 \leq 15$		
Absorption correction	Multi-scan	Max./min. transmission	0.908/0.156
Data/restraints/parameters	1806/0/118		
Goodness of fit F^{2}	1.046	Largest diff. peak/hole (e \AA^{-3})	0.945/-0.788
Final R indices [$1>2 \sigma(\mathrm{I})$]	$\mathrm{R} 1=0.0528$	R indices (all data)	$\mathrm{R} 1=0.0884$
	$\mathrm{wR2}=0.1174$		$w R 2=0.1336$

NMR Spectra

Ethyl 2-allyl-2-aminopent-4-enoate (3a)

${ }^{1} \mathrm{H}$ NMR $, \mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

Ethyl 2-allyl-2-aminopent-4-enoate (3a)

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 101 \mathrm{MHz}$

Ethyl 2-allyl-2-aminohex-5-enoate (3b)

${ }^{1} \mathrm{H} \mathrm{NMR}, \mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

Ethyl 2-allyl-2-aminohex-5-enoate (3b)

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 101 \mathrm{MHz}$

Ethyl 2-allyl-2-aminohept-6-enoate (3c)

${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

Ethyl 2-allyl-2-aminohept-6-enoate (3c)

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 101 \mathrm{MHz}$

Ethyl 2-allyl-2-((tert-butoxycarbonyl)amino)hex-5-enoate (S1)

${ }^{1} \mathrm{H} \mathrm{NMR}, \mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

(

Ethyl 2-allyl-2-((tert-butoxycarbonyl)amino)hex-5-enoate (S1)

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 101 \mathrm{MHz}$

Ethyl 1-((tert-butoxycarbonyl)amino)cyclohex-3-ene-1-carboxylate (S2)

${ }^{1} \mathrm{H} \mathrm{NMR}, \mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

Ethyl 1-((tert-butoxycarbonyl)amino)cyclohex-3-ene-1-carboxylate (S2)

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 101 \mathrm{MHz}, \mathrm{LB}=10 \mathrm{~Hz}$

tert-Butyl (1-(hydroxymethyl)cyclohex-3-en-1-yl)carbamate (4)

${ }^{1} \mathrm{H}$ NMR, DMSO- $\mathrm{d}_{6}, 400 \mathrm{MHz}$

tert-Butyl (1-(hydroxymethyl)cyclohex-3-en-1-yl)carbamate (4)

${ }^{13}$ C NMR, CDCl $3,101 \mathrm{MHz}$

-

$\stackrel{\text { n. }}{\stackrel{\text { ñ }}{\sim}}$

3-Oxa-1-azaspiro[4.5]dec-7-ene-2-one (5)

${ }^{1} \mathrm{H} \mathrm{NMR}, \mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

3-Oxa-1-azaspiro[4.5]dec-7-ene-2-one (5)

${ }^{13}$ C NMR, $\mathrm{CDCl}_{3}, 101 \mathrm{MHz}$

3-Oxa-1-azaspiro[4.5]deca-1,7-dien-2-amine (6)

${ }^{1} \mathrm{H} \mathrm{NMR}, \mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

3-Oxa-1-azaspiro[4.5]deca-1,7-dien-2-amine (6)

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 101 \mathrm{MHz}$

2-Phenyl-3-oxa-1-azaspiro[4.5]deca-1,7-diene (7)

${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

2-Phenyl-3-oxa-1-azaspiro[4.5]deca-1,7-diene (7)

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 101 \mathrm{MHz}$

2-Chloro-N-(1-(hydroxymethyl)cyclohex-3-en-1-yl)acetamide (S3)

${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$

2-Chloro-N-(1-(hydroxymethyl)cyclohex-3-en-1-yl)acetamide (S3)

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 126 \mathrm{MHz}$

4-Oxa-1-azaspiro[5.5]undec-8-en-2-one (8)

${ }^{1} \mathrm{H} \mathrm{NMR}, \mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

4-Oxa-1-azaspiro[5.5]undec-8-en-2-one (8)

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 101 \mathrm{MHz}$

4-Oxa-1-azaspiro[5.5]undec-8-en-3-one (9)

${ }^{1} \mathrm{H} \mathrm{NMR}, \mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

4-Oxa-1-azaspiro[5.5]undec-8-en-3-one (9)

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 101 \mathrm{MHz}$

Ethyl 2-allyl-2-(3-ethoxy-3-oxopropanamido)pent-4-enoate (S4a)

${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

Ethyl 2-allyl-2-(3-ethoxy-3-oxopropanamido)pent-4-enoate (S4a)

${ }^{13}$ C NMR, CDCl $3,101 \mathrm{MHz}$

Ethyl 2-allyl-2-(3-ethoxy-3-oxopropanamido)hex-5-enoate (S4b)

${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

Ethyl 2-allyl-2-(3-ethoxy-3-oxopropanamido)hex-5-enoate (S4b)
${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 101 \mathrm{MHz}$

Ethyl 2-allyl-2-(3-ethoxy-3-oxopropanamido)hept-6-enoate (S4c)

${ }^{1} \mathrm{H} \mathrm{NMR}, \mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

Ethyl 2-allyl-2-(3-ethoxy-3-oxopropanamido)hept-6-enoate (S4c)

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 101 \mathrm{MHz}$

5,5-Diallylpyrrolidine-2,4-dione (10a)

${ }^{1} \mathrm{H} \mathrm{NMR}, \mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

5,5-Diallylpyrrolidine-2,4-dione (10a)

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 101 \mathrm{MHz}$

5-Allyl-5-(but-3-en-1-yl)pyrrolidine-2,4-dione (10b)

${ }^{1} \mathrm{H} \mathrm{NMR}, \mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

5-Allyl-5-(but-3-en-1-yl)pyrrolidine-2,4-dione (10b)

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 101 \mathrm{MHz}$

5-Allyl-5-(pent-4-en-1-yl)pyrrolidine-2,4-dione (10c)

${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

5-Allyl-5-(pent-4-en-1-yl)pyrrolidine-2,4-dione (10c)

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 101 \mathrm{MHz}$

1-Azaspiro[4.4]non-7-ene-2,4-dione (11)

${ }^{1} \mathrm{H} \mathrm{NMR}, \mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

1-Azaspiro[4.4]non-7-ene-2,4-dione (11)

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 101 \mathrm{MHz}$

1-Azaspiro[4.5]dec-7-ene-2,4-dione (12)

${ }^{1} \mathrm{H} \mathrm{NMR}, \mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

1-Azaspiro[4.5]dec-7-ene-2,4-dione (12)

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 101 \mathrm{MHz}$

1-Azaspiro[4.6]undec-7-ene-2,4-dione (13)

${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

1-Azaspiro[4.6]undec-7-ene-2,4-dione (13)

${ }^{13}$ C NMR, CDCl $3,101 \mathrm{MHz}$

(3R,5R)-3-Allyl-3-(but-3-en-1-yl)-5-phenylmorpholine-2-one ((R)-15)

${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

(3R,5R)-3-Allyl-3-(but-3-en-1-yl)-5-phenylmorpholine-2-one ((R)-15)

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 101 \mathrm{MHz}$

Methyl (R)-2-allyl-2-aminohex-5-enoate ((R)-3d)

${ }^{1} \mathrm{H} \mathrm{NMR}, \mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

Methyl (R)-2-allyl-2-aminohex-5-enoate ((R)-3d)

${ }^{13}$ C NMR, $\mathrm{CDCl}_{3}, 101 \mathrm{MHz}$

Methyl (R)-2-allyl-2-(3-ethoxy-3-oxopropanamido)hex-5-enoate ((R)-S4d)

${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

Methyl (R)-2-allyl-2-(3-ethoxy-3-oxopropanamido)hex-5-enoate ((R)-S4d)

${ }^{13}$ C NMR, CDCl $3,101 \mathrm{MHz}$

1-(4-Methoxybenzyl)-3-oxa-1-azaspiro[4.5]dec-7-ene-2-one (16)

${ }^{1} \mathrm{H} \mathrm{NMR}, \mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

1-(4-Methoxybenzyl)-3-oxa-1-azaspiro[4.5]dec-7-ene-2-one (16)

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 101 \mathrm{MHz}$

4-Ethoxy-1-azaspiro[4.5]deca-3,7-dien-2-one (17)

${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

Coss)

4-Ethoxy-1-azaspiro[4.5]deca-3,7-dien-2-one (17)

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 101 \mathrm{MHz}$
O

$\stackrel{6}{m}$
$\stackrel{0}{\circ} \underset{\sim}{\sim}$
$\stackrel{7}{\sim}$
$\mid 1$ シั $\stackrel{\Gamma}{m} \stackrel{m}{\tilde{m}} \stackrel{\stackrel{\Gamma}{\sim}}{\tilde{\sim}} \stackrel{\sim}{\dot{-}}$

2-Oxo-1-azaspiro[4.5]deca-3,7-dien-4-yl trifluoromethanesulfonate (S5)

${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

2-Oxo-1-azaspiro[4.5]deca-3,7-dien-4-yl trifluoromethanesulfonate (S5)

${ }^{13}$ C NMR, $\mathrm{CDCl}_{3}, 101 \mathrm{MHz}$

2-Oxo-1-azaspiro[4.5]deca-3,7-dien-4-yl trifluoromethanesulfonate (S5)

${ }^{19} \mathrm{~F} \mathrm{NMR}, \mathrm{CDCl}_{3}, 376 \mathrm{MHz}$

4-(4-Methoxyphenyl)-1-azaspiro[4.5]deca-3,7-dien-2-one (18)

${ }^{1} \mathrm{H} \mathrm{NMR}, \mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

4-(4-Methoxyphenyl)-1-azaspiro[4.5]deca-3,7-dien-2-one (18)

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 101 \mathrm{MHz}$

-55.5
-34.9
-30.5
-23.3

4-Hydroxy-1-azaspiro[4.5]dec-7-en-2-one (19)

${ }^{1} \mathrm{H} \mathrm{NMR}, \mathrm{CDCl}_{3}, 500 \mathrm{MHz}$

4-Hydroxy-1-azaspiro[4.5]dec-7-en-2-one (19)

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 126 \mathrm{MHz}$

1-Azaspiro[4.5]deca-3,7-dien-2-one (20)

${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

1-Azaspiro[4.5]deca-3,7-dien-2-one (20)

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 101 \mathrm{MHz}$

4-Oxa-1-azaspiro[5.5]undeca-1,8-dien-3-one (21)

${ }^{1} \mathrm{H} \mathrm{NMR}, \mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

4-Oxa-1-azaspiro[5.5]undeca-1,8-dien-3-one (21)

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 101 \mathrm{MHz}$

1-(4-Methoxybenzyl)-3-oxa-1-azaspiro[4.5]decane-2,7-dione (22a)

${ }^{1} \mathrm{H} \mathrm{NMR}, \mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

1-(4-Methoxybenzyl)-3-oxa-1-azaspiro[4.5]decane-2,7-dione (22a)

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 101 \mathrm{MHz}$

[^0]
1-(4-Methoxybenzyl)-3-oxa-1-azaspiro[4.5]decane-2,8-dione (22b)

${ }^{1} \mathrm{H} \mathrm{NMR}, \mathrm{CDCl}_{3}, 500 \mathrm{MHz}$

1-(4-Methoxybenzyl)-3-oxa-1-azaspiro[4.5]decane-2,8-dione (22b)

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 126 \mathrm{MHz}$

$\stackrel{\square}{\square}$

8-Hydroxy-1-(4-methoxy-benzyl)-3-oxa-1-azaspiro[4.5]decan-2-one (S6)

${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$

8-Hydroxy-1-(4-methoxy-benzyl)-3-oxa-1-azaspiro[4.5]decan-2-one (S6)

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 126 \mathrm{MHz}$

Cosers)

(5R*,7S*)-7-Hydroxy-1-(4-methoxy-benzyl)-3-oxa-1-azaspiro[4.5]decan-2-one (S7)

${ }^{1} \mathrm{H} \mathrm{NMR}, \mathrm{CDCl}_{3}, 500 \mathrm{MHz}$

(5R*,7S*)-7-Hydroxy-1-(4-methoxy-benzyl)-3-oxa-1-azaspiro[4.5]decan-2-one (S7)

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 126 \mathrm{MHz}$

8-Hydroxy-1-(4-methoxybenzyl)-3-oxa-1-azaspiro[4.5]decan-2-one (S8)

${ }^{1} \mathrm{H} \mathrm{NMR}, \mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

8-Hydroxy-1-(4-methoxybenzyl)-3-oxa-1-azaspiro[4.5]decan-2-one (S8)

${ }^{13}$ C NMR, CDCl $3,101 \mathrm{MHz}$

($5 R^{*}, 7 R^{*}, 8 S^{*}$)-7,8-Dihydroxy-1-(4-methoxybenzyl)-3-oxa-1-azaspiro[4.5]decan-2-one (23a)

${ }^{1} \mathrm{H} \mathrm{NMR}, \mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

($5 R^{*}, 7 R^{*}, 8 S^{*}$)-7,8-Dihydroxy-1-(4-methoxybenzyl)-3-oxa-1-azaspiro[4.5]decan-2-one (23a)

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 101 \mathrm{MHz}$

(5R*, $7 S^{*}, 8 R^{*}$)-7,8-Dihydroxy-1-(4-methoxybenzyl)-3-oxa-1-azaspiro[4.5]-decan-2-one (23b)

${ }^{1} \mathrm{H} \mathrm{NMR}, \mathrm{CDCl}_{3}, 500 \mathrm{MHz}$

(5R*, $7 S^{*}, 8 R^{*}$)-7,8-Dihydroxy-1-(4-methoxybenzyl)-3-oxa-1-azaspiro[4.5]-decan-2-one (23b)

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 126 \mathrm{MHz}$

$-0 \quad V^{-0.0}$

$\left(1 R^{*}, 3 R^{*}, 6 S^{*}\right)-7,7$-Difluoro-3'-(4-methoxybenzyl)spiro-[bicycle[4.1.0]heptane-3,4'-oxazolidin]-2'-one (24a)

${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 126 \mathrm{MHz}$

$\left(1 R^{*}, 3 R^{*}, 6 S^{*}\right)-7,7$-Difluoro-3'-(4-methoxybenzyl)spiro-[bicycle[4.1.0]heptane-3,4'-oxazolidin]-2'-one (24a)

${ }^{19}$ F NMR, $\mathrm{CDCl}_{3}, 376 \mathrm{MHz}$

(12 $\left.{ }^{*}, 3 S^{*}, 6 S^{*}\right)$-7,7-Difluoro-3'-(4-methoxybenzyl)spiro[bicyclo[4.1.0]heptane-3,4'-oxazolidin]-2'-one (24b)

${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$

(1R*, $\left.3 S^{*}, 6 S^{*}\right)$-7,7-Difluoro-3'-(4-methoxybenzyl)spiro[bicyclo[4.1.0]heptane-3,4'-oxazolidin]-2'-one (24b)

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 126 \mathrm{MHz}$

(1R*,3S* $\mathbf{6}{ }^{*}$)-7,7-Difluoro-3'-(4-methoxybenzyl)spiro[bicyclo[4.1.0]heptane-3,4'-oxazolidin]-2'-one (24b)

${ }^{19}$ F NMR, $\mathrm{CDCl}_{3}, 376 \mathrm{MHz}$

($\left.1 R^{*}, 3 R^{*}, 6 S^{*}\right)-3^{\prime}$-(4-Methoxybenzyl)-7-tosyl-7-azaspiro[bicyclo[4.1.0]heptane-3,4'-oxazolidin]-2'-one (25a)

${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 126 \mathrm{MHz}$

$\left(1 R^{*}, 3 S^{*}, 6 S^{*}\right)-3^{\prime}-(4-M e t h o x y b e n z y l)-7-t o s y l-7-a z a s p i r o-[b i c y c l e[4.1 .0] h e p t a n e-3,4$ '-oxazolidin]-2'-one (25b)

${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

VVNV

(12*,3S*,6S*)-3'-(4-Methoxybenzyl)-7-tosyl-7-azaspiro-[bicycle[4.1.0]heptane-3,4'-oxazolidin]-2'-one (25b)

${ }^{13}$ C NMR, $\mathrm{CDCl}_{3}, 101 \mathrm{MHz}$

「.

($1 R^{*}, 3 R^{*}, 6 S^{*}$)-7-Oxaspiro[bicyclo[4.1.0]heptane-3,4'-oxazolidin]-2'-one (26a)

${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$

($1 R^{*}, 3 R^{*}, 6 S^{*}$)-7-Oxaspiro[bicyclo[4.1.0]heptane-3,4'-oxazolidin]-2'-one (26a)

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 126 \mathrm{MHz}$

(12 ${ }^{*}, \mathbf{3 S ^ { * } , 6 S ^ { * }) \text { -7-Oxaspiro[bicyclo[4.1.0]heptane-3,4'-oxazolidin]-2'-one (26b) }}$

${ }^{1} \mathrm{H} \mathrm{NMR}, \mathrm{CDCl}_{3}, 500 \mathrm{MHz}$

(12 ${ }^{*}, \mathbf{3 S ^ { * } , 6 S ^ { * }) \text { -7-Oxaspiro[bicyclo[4.1.0]heptane-3,4'-oxazolidin]-2'-one (26b) }}$

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 126 \mathrm{MHz}$

[^1]
(5R*, $7 S^{*}, 8 S^{*}$)-7,8-Dibromo-1-(4-methoxybenzyl)-3-oxa-1-azaspiro[4.5]decan-2-one (27a)

${ }^{1} \mathrm{H} \mathrm{NMR}, \mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

(5R*, $7 S^{*}, 8 S^{*}$)-7,8-Dibromo-1-(4-methoxybenzyl)-3-oxa-1-azaspiro[4.5]decan-2-one (27a)

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 126 \mathrm{MHz}$

(5R*, $7 R^{*}, 8 R^{*}$)-7,8-Dibromo-1-(4-methoxybenzyl)-3-oxa-1-azaspiro[4.5]-decan-2-one (27b)

${ }^{1} \mathrm{H} \mathrm{NMR}, \mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

($5 R^{*}, 7 R^{*}, 8 R^{*}$)-7,8-Dibromo-1-(4-methoxybenzyl)-3-oxa-1-azaspiro[4.5]-decan-2-one (27b)

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 101 \mathrm{MHz}$

(5R*, $7 S^{*}, 8 S^{*}$)-7,8-Dibromo-3-oxa-1-azaspiro[4.5]decan-2-one (28)

${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

 1

(5R*, $7 S^{*}, 8 S^{*}$)-7,8-Dibromo-3-oxa-1-azaspiro[4.5]decan-2-one (28)

${ }^{13}$ C NMR, $\mathrm{CDCl}_{3}, 101 \mathrm{MHz}$

[^0]:

[^1]:

