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Forecasting whether or not initial reports of disease will be followed by a
severe epidemic is an important component of disease management. Stan-
dard epidemic risk estimates involve assuming that infections occur
according to a branching process and correspond to the probability that
the outbreak persists beyond the initial stochastic phase. However, an
alternative assessment is to predict whether or not initial cases will lead to
a severe epidemic in which available control resources are exceeded. We
show how this risk can be estimated by considering three practically relevant
potential definitions of a severe epidemic; namely, an outbreak in which: (i) a
large number of hosts are infected simultaneously; (ii) a large total number
of infections occur; and (iii) the pathogen remains in the population for a
long period. We show that the probability of a severe epidemic under
these definitions often coincides with the standard branching process
estimate for the major epidemic probability. However, these practically
relevant risk assessments can also be different from the major epidemic
probability, as well as from each other. This holds in different epidemiologi-
cal systems, highlighting that careful consideration of how to classify a
severe epidemic is vital for accurate epidemic risk quantification.

1. Introduction

Infectious disease epidemics in populations of humans, animals and plants
represent a recurring risk worldwide [1-7]. An important aim for policy-
makers near the start of an outbreak is to assess the risk posed by the invading
pathogen, including whether initial cases will lead to a major epidemic or
whether the pathogen will die out rapidly instead [8,9]. An important practical
consequence is that, if an outbreak is likely simply to fade out, then costly
interventions such as vaccination [10,11], culling/felling/roguing of plants or
agricultural animals [12-18] and workplace or school closure [19] may be
unnecessary [20].

There is a well-known estimate for the probability of a major epidemic when
a pathogen is newly arrived in a host population, which in its simplest form is
given by

1\/©
Prob(major epidemic) = 1 — (R_) , (1.1)
0
in which Ry is the basic reproduction number of the pathogen and I(0) is the
number of individuals that are currently infected. The estimate in equation
(1.1) applies to a wide range of models, including the commonly used stochastic
susceptible-infected—susceptible (SIS) and susceptible-infected—removed (SIR)
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Figure 1. Schematic diagrams illustrating the population structures for the different models considered, and an example distribution of final sizes for the stochastic
SIR model. (@) The SIS model. (b) The SIR model. (¢) The host—vector model of Zika virus transmission. (d) Distribution of final sizes in the stochastic SIR model,
with population size N = 1000, Ry =2, /(0) =1 and the rest of the population susceptible initially. The x-axis has been split into bars of width 20 (so that, for
example, the first bar corresponds to the probability that between 1 and 20 individuals are ever infected).

models [21]. It is derived by assuming that infections occur
according to a branching process (see Methods). For the com-
monly used susceptible-exposed—-infectious—
removed model, the exponent in equation (1.1) would
change from I(0) to E(0) + I(0) [9]. More sophisticated estimates
based on branching process approximations can be derived for

stochastic

models including additional epidemiological detail, such as
more complex population structure [22-24] and/or infectious
periods that are not exponentially distributed [25,26].

The quantity in equation (1.1), and particularly the version
in which I(0) =1, is used extensively in the epidemiological
modelling literature [8,9,21,26-35]. It is increasingly used in
real-time during emerging outbreaks. For example, it was
used during the 20142016 epidemic of Ebola virus disease
in West Africa to estimate the chance that, if the virus arrived
in Nigeria, sustained transmission would follow in that
country [30]. It was considered in the context of flare-ups
in new locations for the 2018-2020 Ebola epidemic in the
Democratic Republic of the Congo [26]. Branching process
models were also used at the start of the COVID-19 pandemic
before cases were detected outside China to assess the risk
of epidemics elsewhere [36,37], including the application of
equation (1.1) [36].

However, while the major epidemic probability in
equation (1.1) is useful to assess whether or not an outbreak
is likely to persist beyond the initial stochastic phase, becom-
ing a major epidemic does not guarantee that the outbreak
will overwhelm available control resources. Over many out-
breaks under identical conditions, if the population size is
large and Ry is much greater than one, then the distribution
of possible epidemic sizes is bimodal according to simple epi-
demic models such as the stochastic SIR model (figure 1d—
see also [38—42]). In other words, the final size of any single

outbreak is almost always in one of two possible ranges.
For example, in figure 1d, virtually all outbreaks either lead
to 1-20 hosts ever infected or to 700-860 hosts ever infected,
where the precise ranges depend on the population size
and the value of R,. The estimate for the probability of a
major epidemic in equation (1.1) corresponds approximately
to the proportion of outbreaks that have a final size in the
higher of these ranges. The outbreaks within the higher
range, however, do not necessarily represent outbreaks in
which available control resources are exceeded. For practical
assessments of the threat from an invading pathogen, it
would often therefore be appropriate for the notion of a
severe epidemic to be grounded in consequences for disease
control, depending on the specific system and outbreak
under consideration.

Here, we assess whether or not outbreaks are likely to
develop into severe epidemics according to three possible
metrics that might be practically relevant in different
outbreak scenarios. Specifically, these are:

Concurrent size. In this assessment, a severe epidemic is an
outbreak in which the number of individuals infected
simultaneously exceeds the capacity for treatment.

Total infections. In this assessment, a severe epidemic is an
outbreak in which the total number of infections exceeds
the number of available treatments.

Duration. In this assessment, a severe epidemic is an outbreak
that is not contained quickly and therefore persists for an
unacceptably long period.

We compare the probability of a severe epidemic under
each of these definitions, as well as calculate the branching
process estimate for probability of a major epidemic
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(hereafter, we differentiate between the ‘probability of a
severe epidemic’ calculated using one of the metrics above
and the ‘probability of a major epidemic’ calculated by
assuming that infections occur according to a branching pro-
cess). In our main analyses, as examples we consider three
stochastic epidemiological models that are representative of
different host responses to infection and capture different
routes of transmission. Specifically, we consider the SIS
model, the SIR model and a host—vector model parametrized
for Zika virus transmission. For the SIS and SIR models,
the probability of a major epidemic corresponds to equation
(1.1), and in the case of Zika virus the probability of a
major epidemic is given by an adapted version of equation
(1.1) that accounts for transmission between hosts by vectors
(we present an approach for deriving these well-known for-
mulae; see Methods and electronic supplementary material,
texts S1 and S2).

To motivate our analyses, we note that estimation of the
risk of the outbreak going on to have a large concurrent
size, a large total number of infections or a long duration
might be the appropriate risk assessment in different scen-
arios. For example, it might be natural to assume that, if
the number of individuals infected at any time always
remains below the capacity for treatment, then the outbreak
is not severe since medical care is available for all individuals
who require treatment. Indeed, in the ongoing COVID-19
pandemic, one of the main aims of interventions in the UK
has been to ensure that the number of individuals requiring
intensive care unit beds remains below the total number of
beds available [43-45]. More generally, the threshold capacity
might derive from the number of available beds in hospitals
or treatment units [46,47], or the availability of care workers
[48]. This motivates consideration of the ‘concurrent size’
metric above.

However, assessing the outbreak risk based on numbers
of hosts infected simultaneously will not always be appro-
priate. Policymakers often have to make decisions
concerning how much treatment to stockpile; if all cases
must be treated, this corresponds to the total number of
infections during the outbreak. For example, in response to
growing awareness of the threat of an influenza pandemic,
between 2006 and 2013 policymakers in the UK stockpiled
around 40 million units of antivirals at a cost of £424 million.
This led to severe criticism when only 2.4 million units were
needed, the majority of which were used during the 2009
HINTI influenza pandemic [49]. Another possible risk assess-
ment is therefore whether or not the total number of
infections will exceed a critical value (the ‘total infections’
metric above). This critical value might be set by the stock
of available treatments for use during the outbreak.

Finally, we consider a third possible risk assessment (using
the ‘duration’ metric). In this scenario, we evaluate whether or
not an outbreak is likely to persist for an unacceptably long
period. An outbreak that fades out quickly may escape
public attention. Even if an outbreak leads to a significant
number of hosts infected, if it ends relatively quickly then it
might not be considered a severe epidemic. For example, the
first Ebola outbreak in the Democratic Republic of the Congo
in 2018 resulted in 53 cases, but was not considered a severe
epidemic due to its fast containment, leading to commenda-
tion of the success of public health measures [50].
Consequently, an outbreak might only be classified as a
severe epidemic if it persists for a threshold length of time.

An outbreak might be classified as a severe epidemic [ 3 |

according to one of the metrics above, yet not be a severe
epidemic if another metric is used. In 1665-1666, plague
affected the village of Eyam in the UK, which famously
isolated itself via a self-imposed quarantine [51,52]. The out-
break in the village was long-running, and a large number of
individuals were killed (most reports suggest 250-260 out of
a total of 350 in the village died, although there is some
uncertainty particularly regarding the size of the at-risk
population [53]). However, model fits suggest that a maxi-
mum of only around 30 people were ever infected
simultaneously [54-56]. As a result, this epidemic might
have been classified as severe according to the ‘total infec-
tions” and ‘duration’ metrics, yet not the ‘concurrent size’
metric, depending on the precise values of the thresholds
set in each case. This highlights the need to consider the
appropriate metric for defining severe epidemics in the
particular ongoing outbreak under consideration in order to
perform the most practically relevant risk assessment.

A large body of theoretical work exists relating to the
metrics for defining severe epidemics that we consider. For
example, for the stochastic SIS and SIR models, probability
distributions for the maximum number of individuals
infected concurrently prior to epidemic extinction have
been derived previously [57-59]. For R, significantly greater
than one, a related quantity (the quasi-stationary distri-
bution—the distribution of the number of infected
individuals in the long phase of the epidemic prior to extinc-
tion) has been studied in detail for models in which the
pathogen persists long-term, including the stochastic SIS
model [60-65] and the stochastic SIR model with births and
deaths [66]. Analytic expressions and approximations have
been found for the total number of infections over the
course of an outbreak for a range of epidemic models
[25,41,59,67-69] and methods exist for calculating probability
distributions describing the possible final sizes of a stochastic
epidemic (for a review of approaches for the stochastic
SIR model, see [59]). The duration of an epidemic has also
been well-studied [60,70-75], as has the duration of the initial
stochastic phase of outbreaks that go on to become major
epidemics [76].

However, previously developed mathematical theory is
not the focus of our analyses. Instead, the novelty of the
research that we present is to compare assessments of the
risk from invading pathogens evaluated in different ways.
We demonstrate the general principle that the precise defi-
nition of a severe epidemic (i.e. the metric chosen to define
a severe epidemic, or the choice to use the standard branch-
ing process estimate for the major epidemic probability) can
affect risk assessments whenever a pathogen arrives in a
new host population. The probabilities that an outbreak has
a large concurrent size, a large total number of infections or
a long duration may not coincide and depend on precisely
which values of the relevant thresholds are set. These
probabilities may or may not match the major epidemic prob-
ability assessed in the standard way. Careful consideration of
precisely how a severe epidemic is classified is therefore
necessary whenever the risk from an invading pathogen is
estimated at the beginning of an emerging outbreak. Only
once the notion of a severe epidemic has been formally
defined—based on criteria of practical relevance for the
specific outbreak and setting under consideration—can this
risk be properly assessed.
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2. Methods

We present the results of five analyses in the main text. In the first
three, we consider the stochastic SIS, SIR and Zika host—vector
models, and assess the risk that a single initial case will lead to
an outbreak with a large ‘concurrent size’. Our final two main
analyses focus on the stochastic SIS model. We calculate the
probability of an outbreak going on to exceed a pre-specified
total number of infections (the ‘total infections’ metric) or time
(the ‘duration” metric).

Here, we describe the epidemiological models that we use,
the branching process estimate of the major epidemic probability
for each model, and calculation of the probability of a severe
epidemic under the ‘concurrent size’ metric for each of the
models considered. We then explain how the probability of a
severe epidemic under the other practically relevant metrics
can be obtained for the SIS model, although our methodology
generalizes immediately to any model for which a method of
stochastic simulation is available.

2.1. Epidemiological models

2.1.1. Susceptible—infected—susceptible model
According to the SIS model, at any time each individual in the
population is classified to be either (S)usceptible to or (I)nfected
by the pathogen. The deterministic SIS model is given by
% = —BIS + ul, % = BIS — ul, (2.1)

where j represents the infection rate between each susceptible-
infected pair and y is the rate at which each infected host recovers
and becomes susceptible again. We use the analogous stochastic
model in most of our analyses, where the net rate at which any
epidemiological event occurs is SIS +ul. At any time prior to
the end of the outbreak, the probability that this next event is
an infection is BIS/(BIS + uI) and the probability that the next
event is a recovery is ul/(BIS + ul).

In this model, if the total population size is S + I = N, the basic
reproduction number is given by Ry = BN/pu.

2.1.2. Susceptible—infected—removed model
Under the SIR model, at any time each individual in the popu-
lation is classified according to whether they are (S)usceptible
to infection, (I)nfected, or (R)emoved and no longer spreading
the pathogen or available for infection. The deterministic SIR
model is given by

% = IS, % = BIS — ul, % = ul, (2.2)
in which j again governs the infection rate and u is the removal
rate. In the analogous stochastic model, the net rate at which
any epidemiological event occurs is still SIS + I, and the probabi-
lity that the next event is an infection event is similarly unchanged
at BIS/(BIS + ulI). However, the other possible next event is a
removal, which occurs with probability wI/(BIS + ul). The basic
reproduction number is again Ry = BN/u, where in this case
S+I+R=N.

2.1.3. Zika transmission model

We consider the transmission of Zika virus according to a host-
vector model [77], which we chose to demonstrate how the
probability of a severe epidemic can be calculated in a relatively
complex epidemiological setting. In the model, the numbers of
the N hosts that are (S)usceptible, (E)xposed, (I)nfectious and
(R)emoved are tracked, as well as the numbers of the NV vectors
that are (Sv)usceptible, (Ev)xposed and (IV)nfectious. We adapt
the version of the model as presented by Kucharski et al. [77]

slightly to a more standard formulation in which all transmission n

terms are proportional to the relevant number of vectors and
density of hosts. The deterministic version of this model is then

s S dE_ S dr dR
i T il Vi L i
dsv 1 dEY 1

Do 5NV — VsV V> _ (s v

a N BvS N S, dar ByS N (6 + ay)E

dIV
—— =ayE" - 81"
and T ay

(2.3)

The parameters § and By govern the rates at which infectious
vectors infect susceptible hosts and susceptible vectors acquire
the pathogen from infectious hosts, respectively. The mean
latent period of infections in hosts is 1/ay, and exposed vectors
become infectious at rate ay. The parameter u is the rate of
removal of infectious hosts, and & describes the death rate of
every vector. In the analogous stochastic model, the expected
number of infected human hosts arising from a single infected
human (accounting for human-vector-human transmission) in
an otherwise entirely susceptible population of humans and vec-
tors is given by

__BvaypN"

RHV EV'—1V o RVH _ ,
0P R TG T ay)eN

where REV = (1/u) (ByNY/N) is the expected number of
vectors infected (and going on to enter the exposed class) by
a single infectious human, pf'~!" = ay/(8+ ay) is the pro-
portion of exposed vectors that become infectious and
RYH = B/8 is the expected number of humans infected by a
single infectious vector.

The basic reproduction number is given by
Ro = +/(ByavBN")/(u(6 + a)8N), where the square root
accounts for the fact that it takes two generations for infected
humans to generate new infections, since new infections require
host-vector-host transmission [78,79]. We note that in some
studies, e.g. [77], the square root is omitted from the definition
of Ry. In contrast to the expression calculated by Kucharski
et al. [77], to facilitate simulation of the stochastic model we
consider the total number of vectors, N”, rather than the density.

2.2. Probability of a major epidemic (branching process

estimate)
2.2.1. Standard estimate (stochastic SIS/SIR models)

The commonly used estimate for the major epidemic probabi-
lity when a pathogen first arrives in a host population
[8,9,21,27,29-36] can be derived by assuming that infections
occur according to a branching process, making the assumptions
that the susceptible population is large and that infection
lineages arising from different infected hosts are independent.
When a single infected host arrives in an otherwise susceptible
population, the branching process estimate for the major
epidemic probability is given by

0 for Rg <1,
Prob(major epidemic) ~ 1 1 for Ry > 1
_ 0 .

Ro

This expression is derived in electronic supplementary material,
text S1.

If instead there are I(0) infected individuals initially rather
than one, then for no major epidemic to occur, it is necessary
for each initial infection lineage to die out, leading to the
approximation given in equation (1.1) whenever R, > 1.
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2.2.2. Standard estimate (Zika transmission model)

The branching process estimate for the major epidemic prob-
ability starting from a single infected host for the stochastic
Zika transmission model is derived in electronic supplementary
material, text S2, and is given by

0 for Rg < 1,
(Ro)* — 1
(Ro)* + RYH

Prob(major epidemic) ~ (2.4)

for Ry > 1.

In this expression, R¥Y is the expected number of humans
infected by a single infectious vector in an otherwise entirely sus-
ceptible population of humans and vectors.

2.3. Probability of a severe epidemic (‘concurrent size’
metric)

Under the ‘concurrent size’ metric, we define a major epidemic to
be an outbreak in which the maximum number of individuals
infected simultaneously is above a threshold value, which we
denote by M. The value of M of relevance in practical appli-
cations might be set by the capacity for treatment.

2.3.1. Stochastic susceptible—infected—susceptible model

Under the stochastic SIS model, the probability that the number
of individuals infected simultaneously is at least M at some time
prior to epidemic extinction can be calculated analytically [57].
This is advantageous since approximating this quantity using
model simulations can be time consuming given that outbreaks
under the SIS model can persist for long periods. Specifically,
as derived in electronic supplementary material, text S3,

0 for 1(0) = 0/
1
————— for I(0)=1,
o T+ 30 A
Prob(severe epidemic) = 14 ZI(O)—l A
—rell Sl for 1<10)< M,
T+305 A
1 for I(O) 2 M/
(2.5)
in which
(N/Ro)'

Ar=

2.3.2. Stochastic susceptible—infected—removed model

For the stochastic SIR model, the probability that the maximum
number infected simultaneously is at least M starting from any
state (I,R) is calculated using an iterative approach [58,59]. Denot-
ing the probability of a severe epidemic starting from state (I,R)
by pir, then conditioning on the next event gives

U o R S
Pir = BIIN —I —R) + MIPPA,R BIN—1—R) & ;LIPH’R“'

This system can be solved with boundary conditions por =0, p;,
N-m=+1 =0 and pp g = 1. Doing so does not require this system of
equations to be solved simultaneously. Instead, the value of p;r
is deduced for the following states (in order): (LR)=M -1,
N-M),M-2,N-M),...,(q,N-M), M-1,N-M-1),..., (1,
N-M-1),....M-1, 0),...,(1, 0). For a schematic showing the
order in which these probabilities are deduced, see electronic
supplementary material, figure S1.

2.3.3. Zika transmission model

For the Zika transmission model, the probability of a severe
epidemic with the ‘concurrent size’ metric is approximated
using model simulations. The model is simulated 10000 times
using the Gillespie direct method [80]. The probability of a
severe epidemic is then approximated by calculating the pro-
portion of simulations in which the number of infected human
hosts is at least M at any time during the simulation.

2.4. Probability of a severe epidemic (‘total infections’
and ‘duration’ metrics)

We also consider the probability of a severe epidemic according
to the stochastic SIS model for the ‘total infections” and ‘duration’
metrics. Specifically, we estimate the probability that at least F
infections occur over the course of the outbreak (prior to out-
break extinction), and the probability that the outbreak persists
for at least T days.

We approximate these quantities by simulating the model
10 000 times using the Gillespie direct method [80] and recording
separately the proportion of simulations in which there are at
least F infections or in which the duration is at least T days.
Each simulation is stopped when either of the following two
criteria are satisfied: (i) the simulated outbreak has gone extinct
(I=0), or; (ii) both the number of infections has reached the
maximum value of F considered (F=2000) and the duration
has reached the maximum value of T considered (T = 6000).

3. Results

To begin to explore outbreak dynamics under the SIS, SIR
and Zika transmission models, we first numerically solved
the deterministic models given by the systems of equations
(2.1), (2.2) and (2.3) with Ry =1.5 in each case (electronic sup-
plementary material, figure S2). For the parameter values
considered, the deterministic SIS model predicts the largest
number of individuals infected simultaneously as well as
the most infections in total. Epidemics persisted forever (i.e.
I remained larger than zero) under all three models, although
the number of infected hosts tended to zero under the SIR
and Zika transmission models.

However, our main focus is assessing the risk from an
invading pathogen according to the more realistic stochastic
models. In the following sections, first we calculate the
probability of a severe epidemic for the stochastic SIS
model using the ‘concurrent size’ metric. We then consider
the other epidemiological models, as well as the other metrics
defining a severe epidemic. In each case, the probability of a
severe epidemic for the particular epidemiological model-
severe epidemic metric pair under consideration is compared
with the branching process approximation to the probability
of a major epidemic for that model. The rationale for this
comparison is that both quantities represent a possible way
to assess the risk from an invading pathogen. Results are
shown in figures 2-4 and summarized in electronic sup-
plementary material, tables S1 and S2. A chart outlining the
model-severe epidemic metric pairs considered in each
figure is shown in electronic supplementary material,
figure S3.

3.1. The probability of a severe epidemic
We calculated the probability of a severe epidemic according
to the stochastic SIS model under the ‘concurrent size’ metric
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Figure 2. Probability of a severe epidemic under the SIS model, where a severe epidemic is defined as an outbreak in which at least M individuals are infected
simultaneously at some time during the outbreak (‘concurrent size’” metric). (a) Dependence on Ry. Solid lines represent the probability of a severe epidemic (system
of equations (2.5)), dotted lines represent the branching process estimate for the major epidemic probability (equation (1.1)) and dots show the maximum number
simultaneously infected in the analogous deterministic models (calculated analytically as shown in electronic supplementary material, text S4). Ry is varied by
changing the value of 3. (b) Equivalent to (a), but showing dependence on the population size, N. (c) Equivalent to (a), but showing dependence on the initial
number of infected individuals, /(0). (d) Single simulation of the stochastic SIS model (blue) and numerical solution of the deterministic SIS model (red dotted). The
value of / in the stochastic simulation will continue to fluctuate about the deterministic value until / reaches 0. Parameter values (except where stated): N = 1000,
Ry=1.5, 1(0) =1 and the remainder of the population susceptible initially. In panel (d), 8= 0.00015 per day and 1/uz =10 d.

for a severe epidemic—i.e. an outbreak in which the number
of individuals infected simultaneously is at least a pre-
specified threshold number (M) at some time during the out-
break. In this case, as described in Methods, it is possible to
calculate the probability of a severe epidemic analytically.
We show the probability of a severe epidemic for a range
of values of the threshold M in figure 2a. For R, larger than
but not close to one, the probability of a severe epidemic
was approximated closely by the standard branching process
estimate for the probability of a major epidemic for many
values of the threshold, M. When, however, Ry, was close to
one, the standard estimate corresponded to a single choice
of M (see e.g. blue and red lines in figure 24, where the
solid line is close to the corresponding dotted line in only
one place, i.e. for a single value of M). The parameter
regime in which Ry is close to one is important in many epi-
demiological systems since the aim of pre-emptive control
strategies is often to reduce R, below one (or, when an

outbreak has started, to reduce the time-varying or effective
reproduction number below one [81-84]).

In large host populations, the probability of a severe epi-
demic as a function of M took the form of a step function
(figure 2b). If the pathogen successfully invaded the popu-
lation, then the proportion of the population infected
simultaneously (rather than number of individuals infected
simultaneously) would definitely reach a specific maximum
value which is determined by R. For example, for outbreaks
with Ry=1.5, the pathogen will invade the population with
probability 0.33 (i.e. the probability of a major epidemic),
and, if this occurs, then around two-thirds of the population
will be infected simultaneously at some time during the epi-
demic. In this case (Rg=1.5), conditional on invasion, the
maximum value of I prior to epidemic extinction in the sto-
chastic SIS model corresponds to approximately double the
maximum value of I in the deterministic model, reflecting
the roughly symmetric fluctuation of I in the SIS model
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Figure 3. Probability of a severe epidemic under the SIR and Zika virus transmission models, where a severe epidemic is defined as an outbreak in which at least M
individuals are infected simultaneously at some time during the outbreak (‘concurrent size” metric). (a) SIR model. Solid lines represent the true probability of a
severe epidemic calculated using the iterative method described in Methods, dotted lines represent the branching process estimate of the probability of a major
epidemic (equation (1.1)) and dots show the maximum number simultaneously infected in the analogous deterministic model (calculated analytically for the SIR
model as shown in electronic supplementary material, text S4). Ry is varied by changing the value of 3. (b) Equivalent to (a), but for the Zika virus transmission
model (where M refers to the number of simultaneously infected hosts). For the Zika transmission model, the probability of a severe epidemic is calculated by
simulation, and the branching process estimate of the major epidemic probability is given by equation (2.4). The maximum number simultaneously infected is found
for the deterministic Zika virus transmission model by numerically solving the model. For both models, N = 1000. Other parameters for the Zika virus transmission
model: NV = 10 000, 1ay=105d, V/ay=59d, 1ju=5d, 1/6 =78 d, By=0.22 per day [77]. Initial conditions for both models comprise a single infected
host, with all other individuals (for the Zika transmission model, hosts and vectors) susceptible.

about the deterministic endemic equilibrium (figure 2d). In
figure 2b, when N =10 000, this approximation gives a maxi-
mum proportion of the population simultaneously infected of
0.67, when the true value is 0.62.

3.2. Different epidemiological models

We considered the probability that the maximum number of
individuals infected simultaneously is at least a pre-specified
threshold (i.e. a severe epidemic occurs, using the ‘concurrent
size’ metric) under the SIR and Zika virus transmission
models. For the stochastic SIR model, we used an iterative
method to calculate this probability as described in Methods.
For the stochastic Zika virus transmission model, we simu-
lated the model in a population of N=1000 human hosts
and NV =10000 vectors using the Gillespie direct algorithm
[80] with parameter values from Kucharski et al. [77], and cal-
culated the proportion of simulations in which a severe
epidemic occurred—see caption of figure 3. The value of
Ry was then varied in figure 3b by altering the parameter
B that governs the rate at which infected vectors infect
susceptible human hosts.

Under the stochastic SIR and Zika virus transmission
models, for Ry larger than and not close to one, the maximum
number of simultaneously infected individuals whenever the
pathogen invaded the host population was typically smaller
than under the SIS model (cf. electronic supplementary
material, figure S2). Nonetheless, we found qualitatively simi-
lar behaviour in these cases—the probability of a severe
epidemic was similar to the major epidemic probability
approximated using a branching process for a wide range
of values of the severe epidemic threshold when R, was
high (figure 3). However, even if that is the case, the practi-
cally relevant value of the severe epidemic threshold (e.g.

the number of available hospital beds) may mean that the
severe epidemic probability does not match the major epi-
demic probability. For example, in figure 3a, if Ro=2 and
250 beds are available, the probability of a severe epidemic
under the ‘concurrent size’ definition is 0 (solid grey line in
figure 3a), yet the branching process estimate for the prob-
ability of a major epidemic is 0.5 (dotted grey line in
figure 3a).

3.3. Alternative definitions of a severe epidemic

For the stochastic SIS model, we then calculated the prob-
ability of a severe epidemic using different metrics to define
a severe epidemic—specifically, outbreaks in which there
are at least F infection events (the ‘total infections” metric—
figure 4a) or outbreaks that persist for at least T days (the
‘duration” metric—figure 4b).

In the stochastic SIS model, if the pathogen invaded the
host population then it tended to persist for long periods.
Consequently, the probability of a severe epidemic using the
‘total infections” or ‘duration” metrics is approximately equal
to the major epidemic probability for a wide range of values
of the severe epidemic thresholds (i.e. values of F or T') com-
pared with under the ‘concurrent size’ definition. However,
even in these cases, for small or very large values of the
severe epidemic thresholds, the probability of a severe epi-
demic does not match the major epidemic probability,
particularly when Ry is larger than but close to one (see e.g.
red line in figure 4b). The probability of a severe epidemic
also may or may not match when different metrics are used
to classify a severe epidemic, depending on the precise
values of the thresholds set (figures 2a and 4). This indicates
that the most practically relevant metric and threshold to
use, or the choice to use the branching process estimate for
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Figure 4. Probability of a severe epidemic under the SIS model, for different definitions of a severe epidemic. (a) A severe epidemic is defined as an outbreak in
which at least F infections occur (‘total infections’ metric). (b) A severe epidemic is defined as an outbreak that persists for at least T days (‘duration’ metric). Solid
lines represent the probability of a severe epidemic assessed via repeated simulation of the stochastic model, and dotted lines represent the branching process
estimate for the probability of a major epidemic (equation (1.1)). The x-axis is shown on a log-scale, for F between 1 and 2000 (a) and T between 1 and
6000 (b). The step function in panel (a) reflects the fact that the total number of infections can only take integer values. Results of the deterministic model
are not included in the figure, since under the deterministic SIS model epidemics persist indefinitely and generate an infinite number of infections whenever
Ry > 1. Parameter values: N'=1000, /(0) =1 and the remainder of the population susceptible initially. In both panels, Ry is varied by changing the value of

B. In panel (b), 1/u=10d.

the major epidemic probability, should be considered carefully
when epidemic risks are assessed during emerging outbreaks.

4. Discussion

Evaluating the risk from an invading pathogen early in a
potential severe epidemic is vital for planning interventions
and determining whether or not current control or treatment
resources are sufficient. When a pathogen arrives in a new
location, the probability that initial cases will lead to a
major epidemic as opposed to fading out as a minor outbreak
can be approximated by assuming that infections occur
according to a branching process. This probability represents
the risk that the outbreak will persist beyond the initial sto-
chastic phase in which case numbers are low. For simple
models such as the stochastic SIS and SIR models, this corre-
sponds to the major epidemic probability in equation (1.1).
This can be extended to estimate the major epidemic
probability using models with additional complexity, as
we demonstrated by considering the case of host—vector
transmission (see equations (2.3) and (2.4)).

However, the threat from an invading pathogen can also
be assessed by estimating the probability that the outbreak
will become ‘severe’ and overwhelm available control
resources. For example, the probability that the peak preva-
lence will exceed the capacity of treatment facilities (e.g. the
number of hospital beds) can be estimated (figures 2 and
3), as well as the probability that the outbreak will exceed a
threshold in the total number of infections or will have
a long duration (figure 4). In each case, the probability of a
severe epidemic depends on the value of the threshold set
(e.g. the exact number of hospital beds) to differentiate
severe epidemics from other outbreaks, as well as the
metric used to define a severe epidemic. This highlights the

need to consider the precise definition of a ‘severe epidemic’
carefully when assessing the risk from an invading pathogen.

When Rj is much greater than one or when the popu-
lation size is extremely large, however, the probability of a
severe epidemic is constant for a range of values of the
threshold differentiating severe epidemics from other out-
breaks (see e.g. different values of M in figure 24). In these
cases, the probability of a severe epidemic will often match
between definitions. This is perhaps unsurprising since,
for example, an outbreak with a large total number of
infections may well also have a large peak prevalence. The
probability of a severe epidemic is then approximately
equal to the major epidemic probability calculated in the
standard way (electronic supplementary material, table S2).
However, even in this case, the specific threshold of practical
importance in the outbreak may correspond to a different
probability of a severe epidemic compared with the prob-
ability corresponding to a wide range of threshold values.
Consequently, if a policymaker wishes to understand
the risk that an invading pathogen will overwhelm available
control resources, then this question should be addressed
directly by choosing the relevant metric and threshold
value carefully.

We considered practical definitions of a severe epidemic
that were based on thresholds such as the availability of treat-
ment. A previous study defined severe epidemics according
to a threshold in the percentage of the population ever
infected, and concluded that epidemiological modellers
should report the precise cut-off used to define such epi-
demics in model simulations [85]. Their conclusion was
based on the observation that different thresholds in the per-
centage of hosts ever infected corresponded to wide
variations in the other outputs of model simulations includ-
ing the number of dead hosts or the time of the epidemic
peak. We support this conclusion, and indeed some authors
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have reported the definition of a severe epidemic they used
clearly—for example, Keeling et al. [86] differentiate between
outbreaks in which less than one-third of the population
becomes infected and those in which larger numbers of indi-
viduals are ever infected. Similarly, a recent study explored
the risk of resurgence of COVID-19 when interventions are
removed in different countries [87]. In that study, resurgence
was said to have occurred when the number of individuals
who are symptomatic infectious reached 100. Other studies
have also defined ‘large outbreaks’” as those in which a
threshold number of cases is exceeded [88,89]. However,
while threshold values were reported clearly in all these
studies, we emphasize that the precise type of threshold
and the value used should be chosen according to practical
relevance in the particular scenario under consideration.

Under the first definition of a severe epidemic that we
considered (using the ‘concurrent size’ metric), the prob-
ability of a severe epidemic was assessed in the context of
the capacity for treatment by estimating whether or not a
threshold number of simultaneously infected individuals
was likely to be exceeded. This definition may be practically
relevant in a range of scenarios. For example, real-time analy-
sis of a diphtheria epidemic in Cox’s Bazar district in
Bangladesh involved assessing the number of hospital beds
that were needed [46]. The number of beds required was
approximated in that study by using a model to forecast dis-
ease incidence, assuming that 15% of reported cases would
require treatment as inpatients with an average hospital
stay of 5 days for each case. The number of hospital beds
that were already available might have provided a practically
relevant severe epidemic threshold. Another example for
which this type of threshold might apply is citrus greening
disease in Brazil, where a law was introduced stating that a
citrus grove must be destroyed if 28% of trees in the grove
were infected and symptomatic [90,91]. At a local spatial
scale, severe epidemics could therefore be defined as out-
breaks in which more than 28% of trees in a grove are
infected and symptomatic concurrently. Other examples for
which interventions were introduced as soon as a threshold
in the number simultaneously infected was reached include
the development of the National Chlamydia Screening Pro-
gramme in the United Kingdom in 2002 in response to the
large size of the infected population [92].

However, no single metric for determining whether or not
an outbreak is a severe epidemic will be relevant in all situ-
ations. We therefore also considered two other definitions
of a severe epidemic. In one of these (when the ‘total infec-
tions” metric was used), whether or not an outbreak was
classified as a severe epidemic referred to the total number
of infection events over the course of the outbreak, rather
than the maximum number simultaneously infected. This
might correspond to the total number of treatments required,
which may be an important threshold if treatments have been
stockpiled prior to the outbreak [49]. This definition might
also be relevant if, for example, a policymaker has to
choose how to deploy resources between two different epi-
demics. If there are only sufficient resources to contain one
outbreak, and both epidemics are equally controllable,
then—in the absence of other considerations—it might be
preferable to choose to contain the epidemic that is likely to
generate more infections. In other real-world scenarios,
alternative definitions might be appropriate. We also con-
sidered classifying severe epidemics as outbreaks that

persist beyond a threshold length of time (using the ‘dur-
ation” metric). Different definitions of a severe epidemic
might appear contradictory—for example, treatment can act
to reduce the total number of infections yet increase the out-
break duration [93], making a severe epidemic less likely
when the ‘total infections’ metric is used but more likely
when instead the ‘duration’ metric is used.

Our intention here was to use simple models to demon-
strate the principle that different approaches for evaluating
the threat from an invading pathogen can lead to very differ-
ent assessments of risk. As described in the introduction, our
research builds on a rich history of analyses that relate to the
results obtained here. For example, for the stochastic SIS
model, it is well known that the time to extinction varies
with Ry [62]. For Ry <1, outbreaks will certainly end quickly.
When Rj>1, however, if Ry is increased then the expected
duration of the epidemic also increases. For fixed R, the
expected duration grows exponentially with the population
size, N [60-62]. An exact analytic expression describing the
range of possible durations of a stochastic SIS epidemic has
not been found, and so we assessed the probability of a
severe epidemic under the ‘duration’” metric using model
simulations (figure 4). However, analytic approximations
to the expected duration of a major epidemic exist (e.g.
[60,75]), and exploring the relationship between these
approximations and the probability of a severe epidemic for
different values of the threshold under the ‘duration” metric
represents an interesting avenue for further investigation.

Another important extension of the research presented
here is to explore the risk of a severe epidemic for outbreaks
that do not assume that the population is well-mixed. The
field of contact network epidemiology provides a framework
in which the risk from an invading pathogen can be explored,
accounting for the topology of the underlying network when
making epidemiological predictions and planning public
health measures. In that context, the probability of a major
epidemic can be derived, depending on the transmissibility
(T4) of the pathogen rather than Ry [94]. The value of T, rep-
resents the average probability that an infected host will
transmit the pathogen to a susceptible individual that they
have contact with. Meyers et al. [95] investigated the depen-
dence of the major epidemic probability on the degree of
the index case, as well as the major epidemic probability
for different numbers of initial cases, in the context of
SARS. Those authors, as well as Pourbohloul et al. [96],
explored the effects of different interventions that reduce
the numbers of contacts on quantities including the prob-
ability of a major epidemic. The framework underlying
these models has also been extended to account for the
time evolution of outbreaks [76], which is imported if the
evaluation of the risk from an invading pathogen is to
be linked to the extinction time of the outbreak (as in the
‘duration’ metric that we considered).

Although our approach could be extended for different
types of models (such as network models), compartmental
models (such as the SIS and SIR models) are commonly
used for assessing outbreak risks. Accurate outbreak forecast-
ing using a compartmental model requires the model to be
carefully matched to the epidemiology of the host—pathogen
system, potentially including within-host dynamics [97,98],
asymptomatic transmission [9,99,100] or spread between
spatially distinct regions [29,101]. For certain definitions of
a severe epidemic, it may be necessary to include bed-
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ridden or convalescent hosts in the model explicitly. For
example, if the definition of a severe epidemic is linked to
the availability of beds in treatment centres (as may be the
case when the ‘concurrent size’” metric is used), then infected
individuals in treatment centres could be included in the
model explicitly (for an example in which we consider
three different models of an Ebola epidemic with different
levels of complexity, see electronic supplementary material,
text S5). Other definitions of severe epidemics could be
used, potentially considering factors such as access to health-
care; limited healthcare access is a particular challenge in low
resource settings [81]. It would also be possible to require
multiple criteria to be satisfied for an outbreak to be classified
as a severe epidemic. In these more complicated scenarios,
analytic calculations of the probability of a severe epidemic
might not be possible. Model simulations can then be used
to assess the risk from the invading pathogen, as we
showed for a host-vector model of Zika virus transmission
(figure 3D).

We note that practical use of the methods presented here
at the start of an emerging outbreak to assess the outbreak
risk might require the parameters governing pathogen trans-
mission to be estimated directly from case notification data. A
range of methods exist for estimating reproduction numbers
in real-time during outbreaks [82,83,102-104], including
those designed for estimation in the early stochastic phase
[105,106]. Practical use of the approaches that we have devel-
oped might also require the wide range of interventions that
are introduced in outbreak responses to be integrated into the
models explicitly. One way in which control can be included
is to consider the effective reproduction number when the
pathogen arrives in the system instead of the basic reproduc-
tion number, since the effective reproduction number
accounts for interventions [26,81-83,107-109]. In that situ-
ation, the results that we presented would be unchanged
(except that e.g. the lines in figure 2a would correspond to
different values of the effective reproduction number rather
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