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Abstract

Using the computer algebra program GAP, we show that all crystallographic
groups in dimensions at most 4 are distinguished from each other by their sets
of finite quotients.
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1. Introduction

The classification of the isomorphism types of crystallographic groups in a
given dimension is an old problem. Fedorov and Schonflies gave in 1895 a list
of the 219 crystallographic group types in three dimensions. This list was later
extended to dimension 4 [4], and with the assistance of computers Plesken and
Schultz [13] have calculated the number of space groups in dimensions 5 and 6
and presented an algorithm for constructing them on demand.

There has been much recent study of whether residually finite groups, or
classes of residually finite groups, may be distinguished from each other by
their sets of finite quotient groups—particularly those groups connected with
low-dimensional geometry or topology. Examples of pairs of distinct groups
with the same sets of finite quotients have been found by Baumslag [1], Hempel
[10], Stebe [15] and others. ‘Rigidity’ results showing that certain groups are
distinguished by finite quotients (either among all residually finite groups or
among some subclass) include [2, 3, 17].

The examples of Baumslag [1] just cited are virtually abelian (that is, pos-
sess an abelian normal subgroup of finite index). The crystallographic groups
are a natural interesting family of virtually abelian groups, so we ask whether
such groups can share the same families of finite quotients. (The examples of
Baumslag, of the form Z/25Z o Z, are not crystallographic groups.)

Question 1.1. For non-isomorphic crystallographic groups Γ1 and Γ2, must Γ1

and Γ2 have different sets of finite quotient groups?

This question is known to have a negative answer in the generality stated
above: see [8] for an example of non-isomorphic crystallographic groups of di-
mension 22 with the same finite quotients.
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This paper studies Question 1.1 for crystallographic groups in dimensions
n = 2, 3 and 4 and gives a positive answer. We perform computations with the
assistance of GAP, using methods closely related to the classical Fundamental
Theorem of Crystallography.

It should be mentioned that the question of whether crystallographic groups
can share the same set of finite questions (or, in other terminology, ‘belong to
the same genus’) has been considered elsewhere. In particular see Holt and
Plesken [12] for an extensive discussion of the genus of perfect space groups in
dimensions at most 10.

2. Background on crystallographic groups

In this section we introduce the basic results on crystallographic groups,
using [11] and [16] as sources. Let d ≥ 1 be an integer.

Definition 2.1. Let Isom(d) denote the group of isometries of Rd (with the
Euclidean metric). A subgroup Γ ≤ Isom(d) which is discrete and cocompact
is called a crystallographic group of dimension d. A crystallographic group is
sometimes also called a space group.

A choice of basepoint 0 for Rd gives an identification of Isom(d) as a semidi-
rect product Rd o O(d), with the following notation for group elements. The
isometry x 7→ a + Ax for a ∈ Rd and A ∈ O(d) will be denoted by (a,A). The
semidirect product structure is given by:

(a,A)(b, B) = (a+Ab,AB).

The identification Isom(d) ∼= RdoO(d) is not unique, but the normal subgroup
Rd / Isom(d) of translations is the same for all such choices of identification. In
consequence, the following is a meaningful definition.

Definition 2.2. Let Γ be a crystallographic group of dimension d. The group
of translations in Γ is the subgroup M = {(a, I) ∈ Γ}.

Theorem 2.3 (First Bieberbach Theorem. See Section 2.1 of [16].). Let Γ be a
crystallographic group of dimension d with group of translations M ≤ Γ. Then:

(i) M is isomorphic to Zd;

(ii) M is maximal abelian; and

(iii) M is normal in Γ with finite index.

It is important to note that these properties characterize the translation
subgroup.

Proposition 2.4. Let G be a group and let A and B be torsion-free abelian
subgroups of G which are finite index, normal, and maximal abelian. Then
A = B.

Proof. Suppose there is an element b ∈ BrA. We show that 〈b, A〉 is abelian, a
contradiction. Let a ∈ A. There exists n ∈ N such that an lies in the finite index
subgroup B of G. Then an = b−1anb = (b−1ab)n. By normality, b−1ab ∈ A, so
since A is torsion-free abelian it follows that a = b−1ab as required.
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Corollary 2.5. The translation subgroup of a crystallographic group Γ is the
unique finite index normal torsion-free maximal abelian subgroup of Γ.

Definition 2.6. Let Γ be a crystallographic group. We define its point group
to be:

G = {A ∈ O(d) | (a,A) ∈ Γ for some a ∈ Rd}.

Corollary 2.7. Let Γ be a crystallographic group with point group G and group
of translations M . Then G is isomorphic to the finite group Γ/M .

In order to check properties of crystallographic groups algorithmically, it is
of course important that there are only finitely many of any given dimension.

Theorem 2.8 (Second Bieberbach Theorem, Section 2.2 of [16]). For any num-
ber d, there are only finitely many isomorphism classes of crystallographic groups
of dimension d.

Let Γ be a crystallographic group. Due to Theorem 2.3, there is a short
exact sequence

0→M → Γ→ G→ 1 (1)

where M and G are the translation and point groups of Γ respectively. By
convention we write M additively and G multiplicatively. Since M is a normal
subgroup, Γ acts on it by conjugation:

(a,A)(b, I)(a,A)−1 = (a+Ab,A)(−A−1a,A−1) = (Ab, I).

It is clear that the translation part a acts trivially, so in fact, we can consider
this to be an action of G on M . The action is faithful since, again according to
Theorem 2.3, M is a maximal abelian subgroup. This allows us to treat M as a
ZG-module and, after choosing a basis for M ∼= Zd, identify G with a subgroup
of GLd(Z).

Definition 2.9. For a given G ≤ O(d) that acts on a d-dimensional lattice
M ≤ Rd we define the (G,M) crystal class to be the set of all space groups Γ
with M being the group of translations and G being the point group.

We say that two crystal classes (G,M) and (G′,M ′) are Z-equivalent if there
exist isomorphisms ψ : G→ G′ and φ : M →M ′ such that

φ(g ·m) = ψ(g) · φ(m)

for all g ∈ G,m ∈M . When we regard G and G′ as subgroups of GLd(Z), this
is equivalent to saying that G and G′ are conjugate within GLd(Z).

We define the relation of Q-equivalence, as conjugacy of G and G′ in GLd(Q).
We abbreviate ‘Z-(Q-)equivalence class’ to ‘Z-(Q-)class’. Alternative terms

for Z-class and Q-class are arithmetic crystal class and geometric crystal class
respectively.

Theorem (Jordan–Zassenhaus: see [6], Theorem 79.1). For any integer d ≥ 1,
there are finitely many conjugacy classes of finite subgroups of GLd(Z). In
particular, there are only finitely many possible Z-equivalence classes of a given
dimension.
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We must also be able to quantify how many crystallographic groups up to
isomorphism there are in each arithmetic crystal class.

Each space group is an extension of G by M , and such extensions are clas-
sified (up to equivalence of extensions) by elements of H2(G,M) [5, Section
IV.3], which is a finite group [5, Proposition III.10.1]. It remains to decide
which extension classes give rise to isomorphic groups.

Theorem 2.10 (Third Bieberbach Theorem, Section 2.3 of [16]). Any two
crystallographic groups Γ,Γ′ ≤ Isom(d) that are isomorphic as abstract groups
are also conjugate in the group Aff(d) of affine homeomorphisms of Rd.

Theorem 2.10 tells us that we may classify all crystallographic groups Γ in
the (G,M) crystal class by considering the action on H2(G,M) of affine maps
that preserve M and G. This boils down to the following statement. See for
example [11, Theorem 5.2] for an elementary account.

Theorem 2.11 (Fundamental Theorem of Mathematical Crystallography). Let
(G,M) be a crystal class. There is a one-to-one correspondence between the
isomorphism classes of groups in the crystal class (G,M) and the orbits of the
action of N = NAut(M)(G) on H2(G,M).

Remark. Here and elsewhere in the paper the notation NG(H) denotes the
normalizer of a subgroup H of a group G.

3. Basic results on profinite completions

This section introduces elementary results on profinite groups. The main
reference is the book [14].

Definition 3.1. An inverse set is a partially ordered set I such that for every
i, j ∈ I there exists k ∈ I such that k ≤ i and k ≤ j. An inverse system
is a family of sets {Xi}i∈I , where I is a directed set, and a family of maps
φij : Xi → Xj whenever i ≤ j, such that:

• φii = idXi

• φjkφij = φik whenever i ≤ j ≤ k.

Denoting this system by (Xi, φij , I), the inverse limit of the inverse system
(Xi, φij , I) is the set

lim←−Xi = {(xi) ∈
∏
i∈I

Xi | φij(xi) = xj whenever i ≤ j}.

When the Xi are groups and the φij are group homomorphisms, the resulting
inverse limit is a group. A profinite completion of a group is the following case
of this general construction.

Definition 3.2. Let G be a finitely generated group and let N denote the
collection of all finite index normal subgroups of G. We can make N into an
inverse set by declaring that for Ni, Nj ∈ N we have Ni ≤ Nj whenever Ni ⊆
Nj . In this case, there are natural epimorphisms φNiNj

: G/Ni → G/Nj . The
inverse limit of the inverse system (G/Ni, φNiNj ,N ) is the profinite completion

of G and is denoted by Ĝ.
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Note that the maps G → G/Ni give a natural map G → Ĝ. This map is
injective if and only if G is residually finite.

Definition 3.3. A group G is residually finite if, for every g ∈ Gr {1}, there
exists some finite index normal subgroup N / G such that g /∈ N .

We equip the quotients G/Ni with discrete topology and consider the topol-

ogy on Ĝ that is induced by the product topology on
∏
Ni∈N G/Ni. The follow-

ing are standard facts about the topology of profinite completions.

Proposition 3.4 ([14], Theorem 2.1.3). The profinite completion Ĝ is a com-
pact, Hausdorff, totally disconnected topological group.

Proposition 3.5. Let Ĝ be a profinite completion of a group G.

(i) [14, Lemma 2.1.2] A subgroup U ≤ Ĝ is open if and only if it is closed of
finite index.

(ii) [14, Proposition 2.1.4(d)] A subgroup H ≤ Ĝ is closed if and only if it is

the intersection of all open subgroups of Ĝ containing H.

Profinite completions contain all information about finite quotients of a
group in the following sense.

Proposition 3.6 ([14], Corollary 3.2.8). Let G1 and G2 be finitely generated

abstract groups. Then Ĝ1 and Ĝ2 are isomorphic as topological groups if and
only if the sets of (isomorphism types of) finite quotients of G1 and G2 coincide.

Proposition 3.7 (Proposition 3.2.2 of [14]). If G is a finitely generated resid-
ually finite group, then there is a one-to-one correspondence between the set X
of subgroups of G with finite index, and the set Y of all open subgroups of Ĝ.
Identifying G with its image in the completion, this correspondence is given by:

• For H ∈ X , H 7→ H.

• For Y ∈ Y, Y 7→ Y ∩G.

Moreover,

• If H,K ∈ X and K ≤ H then [H : K] = [H : K].

• For H ∈ X , H is normal if and only if H is normal.

• For H ∈ X , H is isomorphic to Ĥ.

It is elementary that a finitely generated virtually abelian group is residually
finite. In particular, crystallographic groups are residually finite. The profinite
completion of a residually finite group is abelian if and only if the group itself is
abelian. Hence Proposition 3.7 and Corollary 2.5 together imply the following
proposition.

Proposition 3.8. Let Γ be a crystallographic group with translation group M .
The only open normal torsion-free maximal abelian subgroup of Γ̂ is M̂ .
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4. Profinite properties of crystallographic groups

Let Γ1 and Γ2 be crystallographic groups of dimension d, with translation
groups M1 and M2 and point groups G1 and G2 respectively. Suppose Γ̂1

∼= Γ̂2.
By Proposition 3.8 there must be a short exact sequence of isomorphisms

0 M̂1 Γ̂1 G1 0

0 M̂2 Γ̂2 G2 0

φ∼= Φ∼= ψ∼= (2)

The G1- and G2-modules M̂1 and M̂2 are thus isomorphic modules in the sense
that

φ(g ·m) = ψ(g) · φ(m)

for all g ∈ G1,m ∈ M̂1.
Given a Z-basis for each Mi (and hence a Ẑ-basis for M̂i), so that the Gi

are realised as subgroups of GLd(Z), this isomorphism states that G1 and G2

are conjugate as subgroups of the group GLd(Ẑ) of continuous automorphisms

of Ẑd.
Hence a first key question to be answered when deciding whether crystallo-

graphic groups are distinguished by their profinite completions is the following.

Question 4.1. Let G1 and G2 be finite subgroups of GLd(Z) which arise as

crystallographic point groups. If G1 is conjugate to G2 in GLd(Ẑ), must G1 be
conjugate to G2 in GLd(Z)?

As with Question 1.1, the general answer to this question is ‘no’: the same
citation [8] provides an example in dimension 22. We will continue to focus on
our computational approach to low dimensions.

For the following discussion suppose that the answer to this question is
affirmative in dimensions at most 4—so that crystallographic groups with the
same profinite completion are necessarily in the same Z-class. This assumption
is addressed in Section 5.2 below. We classify the profinite isomorphism types
of space groups in a given arithmetic class in terms of an action on cohomology;
this analysis is almost identical to the discrete case, but we nevertheless include
it for completeness.

Let Γ1 and Γ2 be space groups in the same arithmetic class, so that both
may be considered to be extensions of a given finite group G by a given G-
module M ∼= Zd. Suppose there is a continuous isomorphism Φ: Γ̂1 → Γ̂2. By

Proposition 3.8, the subgroup M = M̂ of Γ̂i is the unique maximal abelian
open normal subgroup of Γ̂i, so that Φ induces an isomorphism of short exact
sequences as in (2), with M̂ = M̂1 = M̂2.

To describe these groups as cohomology classes in H2(G, M̂) represented by

particular cocycles G2 → M̂ , choose a section σ1 : G→ Γ̂1. Define also a section
σ2 : G→ Γ̂2 by

σ2 = Φ ◦ σ1 ◦ ψ−1

The action of G on M̂ is induced by conjugation in the group Γ̂i via the formula

g ·m = σi(g)mσi(g)−1
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By Theorem 2.3, this action is faithful, so the natural map G → Aut(M) ⊆
Aut(M̂) is injective, and we may consider G to be a subgroup of Aut M̂ . We
note that φ is an element of N

Aut M̂
(G), conjugation by which induces the map

ψ, for:

ψ(g) ·m = (σ2ψ(g))m(σ2ψ(g))−1

=
(
Φσ1ψ

−1ψ(g)
)
m
(
Φσ1ψ

−1ψ(g)
)−1

= Φ
(
σ1(g)Φ−1mσ1(g)−1

)
= φ(g · φ−1(m))

whence ψ(g) = φgφ−1 in Aut M̂ .

At the level of cocycles, Γ̂i is represented by a 2-cocycle ζi given by

ζi(g1, g2) = σi(g1g2)(σi(g1)σi(g2))−1

Using the definition of σ2, we now find that

ζ2(g1, g2) = φ(ζ1(φ−1g1φ, φ
−1g2φ)) (3)

This formula defines the standard action of N
Aut M̂

(G) on H2(G, M̂), so ζ1
and ζ2 are in the same orbit of this action.

Conversely, given two extensions Γ̂1 and Γ̂2 of G by M̂ , with sections σ1 and
σ2 yielding representative cocycles ζ1 and ζ2, if we have some φ ∈ N

Aut M̂
(G)

such that the relation (3) holds, it may be readily verified that the map Φ: Γ̂1 →
Γ̂2 defined by

Φ(mσ1(g)) = φ(m) · σ2(φgφ−1)

is a continuous isomorphism.
This concludes the proof of the following statement.

Proposition 4.2. Let (G,M) be an arithmetic class of space groups. The
isomorphism types of profinite completions of space groups in this class are in
bijection with the orbits of H2(G, M̂) under the action of N

Aut M̂
(G).

5. Computational considerations

The previous section gave us a two-part formulation of our task to decide
whether space groups in dimension d have distinct profinite completions:

• to decide whether distinct conjugacy classes of finite subgroups of GLd(Z)

may become conjugate in GLd(Ẑ); and

• to compute the action of a normalizer of a finite group G in GLd(Ẑ) on

the cohomology group H2(G, Ẑd).

In this section we describe the methods for doing this in practice, and which
allowed us to answer Question 1.1 in the affirmative in dimensions 2, 3 and 4.
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5.1. The GAP package CrystCat

We make use of the program GAP [9], equipped with the package CrystCat

[7] to enable our computations. Among the data provided by this package, of
which we make use, are:

• A list of Q-classes of crystallographic point groups in dimensions d = 2, 3
or 4;

• for each Q-class, a list of the Z-classes contained within it, and a repre-
sentative finite subgroup of GLd(Z) for each Z-class;

• finite presentations for the point group of a Z-class, consistent across all
Z-classes in a given Q-class;

• the number of space group types in a given Z-class.

Those interested may access the code used in this program, and the output
files which describe the case-by-case analysis. These are available as ancillary
files on the arXiv at https://arxiv.org/src/1910.09845v2/anc.

5.2. Conjugacy problems in Ẑ
Of key importance in the present paper is the ability to decide conjugacy

problems over the profinite integers Ẑ or the p-adic integers Zp. Let A =
{A1, . . . , Ak} and B = {B1, . . . , Bk} be tuples of d× d integral matrices. Let π
be some finite set of primes and let Zπ denote the ring

Zπ =
∏
p∈π

Zp.

We wish to decide computationally whether there exists some X ∈ GLd(Zπ)
such that X−1AiX = Bi for all i. By [12, Remark 4.1.7] it in fact suffices to
consider π to be a subset of those primes dividing |G|; for other primes p - |G|
one automatically has conjugacy over Zp. This may profitably be rephrased as
a linear problem: let TA,B be the kd2 × d2 integer matrix corresponding to the
map

TA,B : Zd
2

π → (Zd
2

π )k, X 7→ (AiX −XBi)i∈I
where we implicitly identify the set of m× n matrices over a ring R with Rmn.
We now have to consider the linear condition TA,B(X) = 0, together with the
non-linear condition that det(X) ∈ Z×π. We break this into two stages: a solution
modulo q =

∏
{p ∈ π} and the question of whether this solution may be ‘lifted’

to a solution over Zπ.
The business of seeking a solution modulo q is a finite question: we simply

solve the linear equation AiX −XBi = 0 over each field Fp, and discard those
solutions which have determinant zero. If no solutions remain for some p, then
we are done: the tuples A and B are not conjugate in GLd(Zπ). Otherwise one
may use the Chinese Remainder Theorem to produce a list of the elements of
GLd(Z/qZ) which conjugate A to B. We wish to discover whether any of these
elements is the modulo q reduction of an element of GLd(Zπ) which conjugates
A to B.
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Now suppose X0 is some matrix in GLd(Z/qZ) which conjugates A to B
modulo q. We may take some integer matrix X0 which maps to X0 on reduction
modulo q. Then there exist integer matrices Ei such that

AiX0 −X0Bi = qEi

The elements of GLd(Zπ) which are equivalent to X0 modulo q are those of
the form X0 + qY where Y is any d × d matrix over Zπ. All these matrices
have determinant coprime to q, so are indeed invertible over Zπ. Such a matrix
conjugates A to B if and only if

0 = Ai(X0 + qY )− (X0 + qY )Bi = q(Ei +AiY − Y Bi)

for each i. We must therefore decide whether (Ei)i∈I is contained in the image
of TA,B over Zπ.

Let M be an n × m integer matrix and π a set of primes. We ask which
integer points x ∈ Zm are in the image of the map TM : Znπ → Zmπ specified by
M and solve the question in the following manner. Let S be the Smith normal
form of M over Z, and let P and Q be the invertible integer matrices such that
M = PSQ. Since P and Q are invertible over Z, it follows that x ∈ Zm is in
the image of TM if and only if P−1(x) is in the image of the map TS : Znπ → Zmπ
specified by S. The Smith normal form S has no off-diagonal elements; let the
non-zero on-diagonal entries be d1, . . . , dr. Then the image of the map TS is
plainly a sum

d1Zπ ⊕ · · · ⊕ drZπ
whose integral points are(

d1Zπ ∩ Z
)
⊕ · · · ⊕

(
drZπ ∩ Z

)
Write each di as a product d̄i ·ei, where d̄i is divisible only by primes from π and
ei is not divisible by any element of π. Then diZπ ∩ Z = d̄iZ. Form therefore
a new matrix S̄ by replacing each non-zero entry di of S with d̄i. The integral
points of the image of TM are now exactly the image over Z of the integral
matrix PS̄, which may be computed without difficulty.

Being thus in possession of a method for deciding conjugacy problems in
GLd(Zπ), we make a few remarks on its implementation in the present case to

show that particular finite subgroups of GLd(Z) are not conjugate in GLd(Ẑ).
First observe that conjugacy in GLd(Q) is a necessary condition for conju-

gacy over Ẑ—or indeed over any Zp. Suppose that the tuples of integer matrices
A and B are conjugate in GLd(Qp). Consider the kernel of the map

TA,B : Qd
2

p → (Qd
2

p )k, X 7→ (AiX −XBi)i∈I

This map is specified by an integer matrix (with respect to the standard bases of

the given vector spaces). It follows that the intersection Qd2 ∩ kerTA,B is dense
in the whole kernel. This kernel has, by assumption, non-trivial intesection with
the set of matrices with non-zero determinant—which is an open subset of Qd2p .

Therefore there is some element of Qd2 ∩ kerTA,B with non-zero determinant.
This element exhibits that A and B are conjugate in GLd(Q).

Let G1 and G2 be two finite subgroups of GLd(Z), which are conjugate in
GLd(Q). Let us suppose further that G1 and G2 are equipped with generating
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sets X1 and X2, such that some isomorphism of G1 with G2 carries X1 to X2.
We remark that this is precisely the situation arising in our analysis of point
groups given by the catalogue CrystCat: two point groups corresponding to two
Z-classes contained in the same Q-class come equipped with generating sets of
the type described above.

Any isomorphism G1 → G2 must then take X1 to σ(X2) for some σ ∈
Aut(G2). Hence to decide whether G1 and G2 are conjugate in GLd(Ẑ) one
should check for each σ whether the tuples X1 and σ(X2) are conjugate in each
GLd(Zp). We do this for some suitable finite set of primes p ∈ π by applying
the above machinations to the tuples A = X1 and B = σ(X2) for each σ.

In our code, to minimize the computational burden, we adopted the follow-
ing sequential approach to attempt to show that the point groups G1 and G2

(corresponding to Z-classes in the same Q-class) are not conjugate over Ẑ:

1. First compute the cohomology groups

H1(Gi,Zd/|Gi|Zd) and H2(Gi,Zd/|Gi|Zd)

(where the coefficient groups are given the action concomitant with the
representation of G1 and G2 as subgroups of GLd(Z)). This is a fast pro-
cedure, and a difference in the respective cohomology groups of G1 and
G2 shows that these groups are not conjugate in GLd(Z/|G1|Z) and hence

not in GLd(Ẑ)1. In order to dodge potentially lengthy and unenlighten-
ing checks for isomorphisms, we actually only compare the sizes of the
homology groups in the code.

2. Decide conjugacy of G1 and G2 in GLd(Z2).

3. Decide conjugacy of G1 and G2 in GLd(Z3).

4. Decide conjugacy of G1 and G2 in GLd(Z5).

The number of pairs of Z-classes whose point groups are shown not to be
conjugate at each stage of the process are shown in Table 1.

This proves sufficient to show that no two Z-classes have point groups which
are conjugate in GLd(Ẑ), with one exception: the two Z-classes in the 4-
dimensional Q-class listed in the catalogue as (4, 20, 11). In this case the point
groups were given an ad hoc further test and were found to not be conjugate
over Z2 × Z3 = Z{2,3}.
Remark. There is no contradiction here with the fact that these groups are
found to be conjugate over Z2 and Z3 separately; it simply shows that the set of
those σ ∈ Aut(G2) such that X1 is conjugate to σ(X2) over Z2 is disjoint from
the set of those σ allowing conjugacy over Z3.

Remark. One could ask, what if the finite groups were in fact conjugate in
GLd(Ẑ)? How could this be readily shown, without checking infinitely many

primes? For a given pair of tuples A and B which are conjugate in GLd(Ẑ), one
can establish this conjugacy in the following manner.

1In fact conjugacy in GLd(Ẑ) also establishes isomorphism of the Z-cohomology groups—
see [12, Lemma 4.1.9].
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Dimension 3:
Test applied Z-class pairs separated

Size of coholomology 51
Conjugacy modulo 2 1
Conjugacy over Z2 7
Conjugacy modulo 3 5
Conjugacy over Z3 0
Conjugacy modulo 5 0
Conjugacy over Z5 0

Total pairs separated 64
Total pairs to be tested 64

Dimension 4:
Test applied Z-class pairs separated

Size of coholomology 1105
Conjugacy modulo 2 101
Conjugacy over Z2 137
Conjugacy modulo 3 78
Conjugacy over Z3 0
Conjugacy modulo 5 7
Conjugacy over Z5 0

Total pairs separated 1428
Total pairs to be tested 1429

Table 1: Results of tests establishing when pairs of point groups of Z-classes (each contained

in a particular Q-class) are not conjugate over the profinite integers Ẑ. Note that these tests
are sequential: of course all 78 cases which are not conjugate over Z/3Z are a fortiori not
conjugate over Z3, but have already been discarded before the test for conjugacy over Z3 is
commenced. In dimension 2, cohomology computations alone suffice, so we have not devoted
space to a table.
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Compute the Smith normal form of the matrix TA,B defined above and let
π be the set of those primes dividing some non-zero entry of the Smith normal
form. Let q =

∏
p∈π p. The effect of this choice is that the matrix S from

the above discussion is equal to S. Then the process of lifting a modulo q
conjugacy to a conjugacy over Zπ now results in an integer matrix exhibiting
this conjugacy. This integer matrix is an element of GLd(Zπ), and thus has non-
zero determinant D. It therefore establishes conjugacy over Zp for all primes
not dividing D, leaving only finitely many primes p for which conjugacy over
Zp remains to be checked.

5.3. The action of NAutM (G) on H2(G, M̂)

Let G be a finite group and let M be a free abelian group with a faithful
G-action, and identify G with its image in Aut(M). Let M̂ denote the profinite
completion of M with the induced G-action. Let q = |G|.

First we note that Hn(G, M̂) is canonically isomorphic to Hn(G,M) for all
n ≥ 1. The multiplication-by-q maps

Hn(G,M)
·q−→ Hn(G,M), Hn(G, M̂)

·q−→ Hn(G, M̂)

are trivial [5, Proposition III.10.1]. We then have the following commuting
diagram of long exact sequences for n ≥ 1

Hn−1(G,M/qM) Hn(G,M) Hn(G,M) Hn(G,M/qM)

Hn−1(G,M/qM) Hn(G, M̂) Hn(G, M̂) Hn(G,M/qM)

·q
0

·q
0

The second vertical map shows that Hn(G,M)→ Hn(G, M̂) is surjective, and
the third shows that it is injective.

Now let q be any number such that the exponent of H2(G,M) divides q.
Assume also that q ≥ 3 so that G necessarily embeds2 into Aut(M/qM). Note
that such a number is q = |G| (or q = 4 if |G| = 2). We then have a natural
exact sequence

H1(G, M̂) H1(G,M/qM) H2(G, M̂) 0

The group N
Aut(M̂)

(G) acts on each of these groups in a natural way. The

action on H2(G, M̂) was described earlier. More generally if N denotes either

the module M̂ or one of the modules M/qM , then an element φ ∈ N
Aut(M̂)

(G)

acts on a cocycle ζ ∈ Cn(G,N) via

(φ · ζ)(g1, . . . , gn) = φ(ζ(φ−1g1φ, . . . , φ
−1gnφ))

where of course φ ∈ Aut M̂ acts on N = M/qM via the quotient Aut(M̂) →
Aut(M/qM). These natural actions are compatible with the maps in the above
exact sequence.

2This is a classical fact, attributed to Minkowski.
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An immediate consequence of the exact sequence above is that

N
Aut(M̂)

(G) ∩ ker
(

Aut(M̂)→ Aut(M/qM)
)

acts trivially on H2(G, M̂). Thus, in computing the orbits of the action of

N
Aut(M̂)

(G) on H2(G, M̂) we may consider the group acting to be the image of

N
Aut(M̂)

(G) in Aut(M/qM).

In our code, we implemented this computation in the following manner.

1. Firstly discard any Z-class which contains only one or two space group
types—this information is provided by the package CrystCat. Note that

since the Ẑ-normalizer of G certainly contains the Z-normalizer of G, so
the number of orbits under the Ẑ-normalizer is less than or equal to the
number of space groups (i.e. orbits under the Z-normalizer). If there is
only one space group type, there is nothing to say. If there are two, we
note that one of these orbits consists of the zero element of H2 and cannot
under any action by homomorphisms be carried to a non-zero element of
H2.

2. Let q = |G|, or q = 4 if |G| = 2. The cohomology group H2(G, M̂) =
H2(G,M) is computed in the form of the quotient

H2(G,M) =
Z1(G,M/qM)

Z1(G,M) +B1(G,M/qM)

provided by the above exact sequence. The cocycle group Z1 comprises
the solutions, among maps X → M/qM for a generating set X of G, to
certain linear equations derived from the relators of G and are readily
computed.

3. Having found H2(G, M̂), let e be its exponent—or e = 4 if the exponent

happens to be 2. We next recompute H2(G, M̂) in the form

H2(G,M) =
Z1(G,M/eM)

Z1(G,M) +B1(G,M/eM)

in which form we may readily apply the action ofNGLd(Z/eZ)(G). This may
seem like a redundant step (and mathematically it is), but it is a necessary
concession to speed: the bottleneck in computations is the computation
of the normalizer NGLd(Z/eZ)(G), the computation time of which increases
exponentially3 with e.

4. Compute, using the inbuilt GAP routines, the modulo e normalizer N =
NGLd(Z/eZ)(G) and the number of orbits of the action of N on H2(G, M̂).
If the number of orbits under action of this group N is equal to the number
of space group types, we are done: making the acting group smaller cannot
decrease the number of orbits.

3In the most extreme case we move from a normalizer computation in a group GL4(Z/384Z)
of size around 3 × 1040 to a group GL4(Z/4Z) of size around 109 —certainly a worthwhile
saving!
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5. If after the previous stage we have fewer orbits than desired, we refine our
computations by studying the action of a certain subgroup of N : the image
of N ′ = NGLd(Ẑ)(G) in N . This is done by the methods in the previous

section: for a particular element n ∈ N , conjugacy by which takes G
to itself, we may decide whether it lifts to an element of GLd(Ẑ) having

the same effect. The action of the group N ′ on H2(G, M̂) may now be
computed, and the number of orbits is equal to the number of isomorphism
types of profinite completions of space groups in this Z-class. This may
now be compared with the number of space group types.

Dimension 3:
Stage of process Z-classes verified
1 47
4 25
5 1

Total Z-classes verified 73
Total number of Z-classes 73

Dimension 4:
Stage of process Z-classes verified
1 340
4 293
5 77

Total Z-classes verified 710
Total number of Z-classes 710

Table 2: Breakdown of when it is verified that the space group types in Z-classes are shown
to have distinct profinite completions. The ‘stage’ numbers refer to the enumerated list in
Section 5.3. Dimension 2 is once again ignored for this summary: only one Z-class survives
Stage 1, and is verified at Stage 4.

The number of Z-classes which are shown, at each stage, to have the property
that the associated crystallographic group types have distinct profinite comple-
tions are tabulated in Table 2. It is seen that in dimensions two, three and
four all Z-classes have this property. When combined with the results from the
previous subsection, this completes the establishment of the following theorem.

Theorem 5.1. Let Γ1 and Γ2 be crystallographic groups of dimension at most
4. If Γ̂1

∼= Γ̂2 then Γ1
∼= Γ2.
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[4] H. Brown, R. Bülow, J. Neubüser, H. Wondratschek, and H. Zassenhaus.
Crystallographic Groups of Four-Dimensional Space. John Wiley, New
York, 1978.

[5] Kenneth S. Brown. Cohomology of groups, volume 87. Springer Science &
Business Media, 2012.

[6] Charles W Curtis and Irving Reiner. Representation theory of finite groups
and associative algebras, volume 356. American Mathematical Soc., 1966.

[7] Felsch, Volkmar and Gähler, Franz. CrystCat – a GAP package, Version
1.1.9, 2019.
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