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the StinG pathway does not 
contribute to behavioural or 
mitochondrial phenotypes in 
Drosophila Pink1/parkin or mtDnA 
mutator models
Juliette J. Lee  , Simonetta Andreazza   & Alexander J. Whitworth  *

Mutations in PINK1 and Parkin/PRKN cause the degeneration of dopaminergic neurons in familial 
forms of Parkinson’s disease but the precise pathogenic mechanisms are unknown. The PINK1/Parkin 
pathway has been described to play a central role in mitochondrial homeostasis by signalling the 
targeted destruction of damaged mitochondria, however, how disrupting this process leads to neuronal 
death was unclear until recently. An elegant study in mice revealed that the loss of Pink1 or Prkn coupled 
with an additional mitochondrial stress resulted in the aberrant activation of the innate immune 
signalling, mediated via the cGAS/STING pathway, causing degeneration of dopaminergic neurons and 
motor impairment. Genetic knockout of Sting was sufficient to completely prevent neurodegeneration 
and accompanying motor deficits. To determine whether Sting plays a conserved role in Pink1/parkin 
related pathology, we tested for genetic interactions between Sting and Pink1/parkin in Drosophila. 
Surprisingly, we found that loss of Sting, or its downstream effector Relish, was insufficient to suppress 
the behavioural deficits or mitochondria disruption in the Pink1/parkin mutants. thus, we conclude that 
phenotypes associated with loss of Pink1/parkin are not universally due to aberrant activation of the 
StinG pathway.

Loss of function mutations in PINK1 and PRKN cause familial parkinsonism, an incurable neurodegenerative dis-
order predominantly associated with the progressive loss of dopaminergic neurons in substantia nigra leading to 
loss of motor control. PRKN encodes a cytosolic ubiquitin E3 ligase, Parkin, and PINK1 encodes a mitochondri-
ally targeted kinase. Extensive evidence shows that they cooperate in signalling the targeted autophagic destruc-
tion of damaged mitochondria (mitophagy) as part of a homeostatic mitochondrial quality control process1,2.

Mitochondria are essential organelles that perform many critical metabolic functions but are also a major 
source of damaging reactive oxygen species and harbour pro-apoptotic factors. Hence, multiple homeostatic 
processes, such as mitophagy, operate to maintain mitochondrial integrity and prevent potentially catastrophic 
consequences. Such homeostatic mechanisms are particularly important for post-mitotic, energetically demand-
ing tissues such as nerves and muscles.

The molecular details of PINK1/Parkin-induced mitophagy are well characterized in cultured cells, however, 
relatively little is known about mitophagy under physiological conditions in vivo3–5. Nevertheless, several studies 
provide evidence consistent with PINK1 and Parkin acting to remove mitochondrial damage in vivo. One study 
used a mass spectrometry-based analysis of mitochondrial protein turnover in Drosophila6, which revealed that 
fly PINK1 and Parkin selectively affect the degradation of certain mitochondrial proteins under physiological 
conditions. Another found that loss of Prkn in mice, which alone has very little phenotype7,8, exacerbated the 
phenotypic effects of a mitochondrial DNA mutator strain, provoking loss of dopaminergic neurons and motor 
deficits9.

Importantly, a subsequent study shed light on the mechanism by which loss of Pink1/Prkn leads to neurode-
generation in the presence of mtDNA mutations, or upon exposure to exhaustive exercise, as chronic or acute 
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mitochondrial stresses, respectively10. This demonstrated that in the absence of Pink1/Prkn these mitochondrial 
stresses cause an aberrant inflammatory response mediated by the STING pathway, presumably via the release 
of mtDNA into the cytosol. Consequently, loss of STING completely prevented the inflammatory response and 
the resulting neurodegeneration and locomotor phenotypes10. These results strongly implicate the induction of 
STING-mediated inflammation in the pathogenic cause of Parkinson’s disease.

The recently identified Drosophila Sting ortholog has been shown to bind to cyclic-dinucleotides, in particular 
2′3′-cGAMP, and trigger an immune response to bacterial and viral infection11–14, mediated by the IMD pathway 
and the transcription factor Relish (homologous to NF-κB). Consequently, Drosophila mutant for Sting showed 
a reduced survival upon infection. Interestingly, while aberrant activation of the IMD-Relish pathway has been 
shown to cause neurodegeneration and shortened lifespan in Drosophila15, transcriptional profiling has shown 
that innate immune signalling pathways are ectopically active in Drosophila parkin and Pink1 mutants16,17.

The Drosophila models have been highly informative for interrogating the physiological role of PINK1/Parkin, 
primarily via genetic or pharmacological manipulations17–21 that can modify the robust neuromuscular pheno-
types associated with loss of the Pink1/parkin orthologs22–25 (for review see26). Therefore, we sought to determine 
whether aberrant activation of the Sting-Relish immune signalling cascade may contribute to the neuromuscular 
degeneration phenotypes observed in Drosophila Pink1/parkin mutants. Surprisingly, we found that loss of Sting 
or Relish had no suppressing effect on the locomotor deficits or mitochondrial disruption in Pink1 or parkin 
mutants. Moreover, Sting knockout did not affect the behavioural phenotypes associated with a fly mtDNA muta-
tor model, nor the combined effect of mtDNA mutations in a parkin background. Hence, the central role of Sting 
in the induction of Pink1/parkin mutant phenotypes proposed for mammals is not conserved in Drosophila.

Results
Drosophila Sting mutants have recently been generated and, consistent with Sting’s role in triggering an innate 
immune response, shown to be more susceptible to infection11–13. As other organismal phenotypes were not 
reported, we first assessed whether loss of Sting may induce additional phenotypes associated with the neuromus-
cular system that might confound further genetic interaction analysis. To this end, we examined the motor behav-
iour and muscle integrity in Sting loss of function conditions. We assessed the impact of RNAi-induced loss of 
function using previously validated RNAi lines expressed via the ubiquitous driver da-GAL4. A small impact on 
climbing ability in young flies was observed with one RNAi transgene, which was also seen in homozygous Sting 
null (StingΔRG5) mutants (Fig. 1A). Aged Sting-RNAi flies showed a consistent, modest impact on climbing ability, 
but this was not evident in Sting mutants (Fig. 1B). Microscopy analysis of muscle and mitochondrial integrity 
did not reveal any obvious disruption in Sting mutants (Fig. 1C). Since loss of Sting did not appear to grossly 
affect neuromuscular integrity, we next assessed whether the activity of Sting contributed to the neuromuscular 
phenotypes in Pink1/parkin mutants.

Combining all the manipulations of Sting (two RNAi transgenes, heterozygous and homozygous null muta-
tions) with parkin null mutants (park25), we did not observe any modification (suppression or enhancement) of 
the parkin mutants climbing defect (Fig. 2A). Similarly, the thoracic indentations typically observed in park25 
flies due to the degeneration of the underlying musculature, were still present in the absence of Sting (Fig. 2B). 
Consistent with this, we did not observe any improvement of the tissue or mitochondrial integrity in the flight 
muscles of parkin mutants by removal of Sting (Fig. 2C).

We next assessed the contribution of Sting function towards Pink1 mutant (Pink1B9) phenotypes. Similar 
to parkin mutants, loss of Sting failed to modify the climbing defect (Fig. 3A), thoracic indentations (Fig. 3B) 
or disruption of flight muscle and mitochondrial integrity (Fig. 3C) observed in Pink1B9 flies. Taken together, 
these results indicate that Sting does not contribute to the neuromuscular phenotypes observed in Pink1/parkin 
mutants.

Considering that loss of STING in mouse completely abrogated the Pink1/Prkn-associated neurodegeneration 
and motor phenotypes provoked by additional mitochondrial stresses, we were surprised by the lack of sup-
pression of Pink1/parkin phenotypes in flies. Therefore, to further interrogate the potential contribution of this 
pathway to Pink1/parkin pathology, we also analysed a downstream effector of the Sting-IMD pathway, the tran-
scription factor Relish (Rel). While RNAi knockdown using two previously characterized transgenes11,13 elicited 
modest effect on climbing, Rel mutants (RelE20) displayed a strong locomotor defect (Fig. 4A, B). However, anal-
ysis of flight muscles in these mutants did not reveal any major disruption of mitochondrial integrity (Fig. 4C).

Similar to the Sting manipulations, RNAi knockdown of Rel did not modify the climbing deficit of parkin 
or Pink1 mutants (Fig. 5A), nor did it noticeably affect the mitochondrial integrity in flight muscles (Fig. 5B). 
Indeed, in contrast to expectation, genetic loss of Rel enhanced the Pink1 locomotor defect (Fig. 5A), although 
the mitochondrial integrity was not noticeably worsened in Pink1B9; RelE20 flies (Fig. 5B).

In a final effort to assess whether the Drosophila Pink1/parkin-Sting axis acts in an analogous fashion to mice, 
we sought to recapitulate the conditions assessed by Sliter et al.10 and test the role of Sting when an additional 
mitochondrial stress is combined with parkin loss-of-function. To do this, we used our previously established 
mtDNA mutator model (mito-APOBEC1), which generates high levels of deleterious mtDNA mutations in 
somatic tissues, disrupting mitochondrial function and causing motor defects and shortened lifespan27. Notably, 
the loss of parkin or Sting did not exacerbate the impact of mito-APOBEC1 alone on locomotor function (Fig. 6A). 
Furthermore, the combination of the mtDNA mutator in a parkin; Sting double mutant background, in stark 
contrast to the results in mice10, enhanced the climbing deficit (Fig. 6A). Similarly, while loss of Sting alone did 
not affect normal lifespan, it significantly enhanced the shortened lifespan of the mito-APOBEC1 model or the 
combination of mito-APOBEC1 with parkin loss-of-function (Fig. 6B), consistent with the locomotor analysis.

Thus, together the above data suggest that the Sting pathway, although proposed to be mediating motor and 
neurodegenerative defects in Prkn−/− mice, do not similarly contribute to the neuromuscular defects observed in 
Pink1/parkin mutant flies.
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Discussion
Understanding the pathogenic mechanisms by which loss of function mutations in PINK1 and Parkin lead to 
neurodegeneration in Parkinson’s disease is central to defining better disease-modifying therapies. While tremen-
dous advances have been made in uncovering the molecular mechanisms of PINK1/Parkin function in vitro and 
in cell culture models, understanding the consequences of this dysfunction on neuronal demise must be studied 
in vivo, in the complex milieu of organismal biology. This has been severely hampered by the lack of robust phe-
notypes in Pink1/Prkn knockout mice. In contrast, Drosophila models have provided substantial insights in this 
realm as fly Pink1/parkin mutants exhibit extensive disruption of the neuromuscular system presenting, amongst 

Figure 1. Loss of Sting has limited impact on neuromuscular phenotypes. Locomotor assays analysing climbing 
ability (negative geotaxis) in (A) young and (B) older adult flies of control and Sting knockdown (RNAi) or 
null (StingΔRG5) mutants. Charts show mean ± 95% confidence interval (CI); number of animals analysed 
is shown in each bar. Significance was measured by Kruskal-Wallis test with Dunn’s post hoc correction for 
multiple comparisons; **p < 0.01, ****p < 0.0001; ns, non-significant. Control genotype is da-GAL4/+. (C) 
Representative confocal microscopy analysis of mitochondria in flight muscles, immunostained with anti-
ATP5A, in control (w1118) and Sting heterozygous and homozygous mutants. Scale bar = 10 µm.
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other phenotypes, profound deficits in locomotor behaviours, apoptotic degeneration of flight muscles, progres-
sive degeneration of dopaminergic neurons, all accompanied by morphological and functional breakdown of 
mitochondria. Consequently, genetic studies using the fly models, primarily using suppression or enhancement 

Figure 2. Loss of Sting does not modify parkin mutant phenotypes. (A) Analysis of locomotor (climbing) 
ability, (B) thoracic indentations, and (C) mitochondrial morphology in young park25 mutants combined with 
Sting knockdown or null mutations. Charts show mean ± 95% confidence interval (CI); number of animals 
analysed is shown in each bar. Statistical significance was measured by Kruskal-Wallis test with Dunn’s post hoc 
correction for multiple comparisons; ****p < 0.0001; ns, non-significant. Confocal microscopy images show 
flight muscle mitochondria immunostained with anti-ATP5A. Scale bar = 10 µm. Control genotypes are da-
GAL4/+ for climbing, and w1118 for thoracic indentation and microscopy. Ctrl RNAi is lacZ-RNAi in the mutant 
background.
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Figure 3. Loss of Sting does not modify Pink1 mutant phenotypes. (A) Analysis of locomotor (climbing) 
ability, (B) thoracic indentations, and (C) mitochondrial morphology in young Pink1B9 mutants combined with 
Sting knockdown or null mutations. Charts show mean ± 95% confidence interval (CI); number of animals 
analysed is shown in each bar. Statistical significance was measured by Kruskal-Wallis test with Dunn’s post 
hoc correction for multiple comparisons; ****p < 0.0001; ns, non-significant. Confocal microscopy images 
show flight muscle mitochondria immunostained with anti-ATP5A. Scale bar = 10 µm. Control genotypes are 
da-GAL4/+ for climbing, and w1118 for thoracic indentations and microscopy. Ctrl RNAi is lacZ-RNAi in the 
mutant background.
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of the mutant phenotypes as a sensitive readout, have elucidated several important and conserved features of 
PINK1/Parkin biology17–21,26.

Recent studies have shed new light on the in vivo role of PINK1/Parkin in vertebrates, and the context in 
which loss of Pink1/Prkn can reveal pathogenic phenotypes. First, combining Prkn knockout mutants with a 
mtDNA mutator strain selectively led to degeneration of nigral dopaminergic neurons, decline in motor ability 
and increased mitochondrial dysfunction9. Extending these observations, Sliter et al.10 revealed that this Prkn−/−; 
mutator combination (or Pink1−/−; mutator) provoked an aberrant innate immune response mediated by the 
STING pathway, suggesting that the systemic inflammatory response ultimately caused the dopaminergic neuro-
degeneration and motor deficits. Indeed, genetic loss of STING was sufficient to completely prevent the inflam-
mation, motor defect and neurodegeneration in the Prkn−/−; mutator mice. These findings established the STING 
pathway and, more broadly, aberrant innate immune signalling, as a pathogenic cause and a highly attractive 
therapeutic target. Moreover, additional work has also implicated Pink1/Prkn mutations in inducing aberrant 
inflammation, albeit via adaptive immunity28. However, while the PINK1/Parkin pathway is clearly an ancient 
mechanism regulating mitochondrial quality control, our data indicate that Sting does not appear to be a funda-
mental, conserved feature of PINK1/Parkin biology.

The question arises why loss of Sting does not suppress Pink1/parkin phenotypes in flies when it is capable of 
completely preventing pathology in mice? At this stage, the answer is unknown and rather puzzling given that 
innate immune signalling is dysregulated in Pink1/parkin mutants16,17, and Sting performs an analogous func-
tion in flies as it does in vertebrates11. One possibility is that the aberrant innate immune activation observed in 
parkin and Pink1 mutant flies is not mediated by the presence of cytosolic DNA or activation of the Sting path-
way. Moreover, investigating whether induction of mtDNA mutations is required to trigger the innate immune 

A

C

B

Figure 4. Loss of Relish causes mild locomotor deficits. Locomotor assays analysing climbing ability in 
(A) young and (B) older adult flies of control and RNAi knockdown or Relish mutant (RelE20). Charts show 
mean ± 95% confidence interval (CI); number of animals analysed is shown in each bar. Statistical significance 
was measured by Kruskal-Wallis test with Dunn’s post hoc correction for multiple comparisons; *p < 0.05, 
***p < 0.001, ****p < 0.0001; ns, non-significant. Control genotype is da-GAL4/+. (C) Representative 
confocal microscopy analysis of mitochondria in flight muscles, immunostained with anti-ATP5A, in control 
(w1118) and Relish heterozygous and homozygous mutants. Scale bar = 10 µm.
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response, as indicated by Sliter et al., our data show that even in the presence of a mtDNA mutator, the Sting 
immune cascade did not contribute to the neuromuscular phenotypes caused by loss of Pink1/parkin in flies. An 
alternative interpretation is that the Pink1/parkin phenotypes are not due to aberrant immune signalling and this 

Figure 5. Loss of Relish does not rescue Pink1 or parkin mutant phenotypes. (A) Analysis of locomotor 
(climbing) ability and (B) mitochondrial morphology in young park25 or Pink1B9 mutants combined with 
Relish knockdown or null mutations. Charts show mean ± 95% confidence interval (CI); number of animals 
analysed is shown in each bar. Statistical significance was measured by Kruskal-Wallis test with Dunn’s post hoc 
correction for multiple comparisons; ****p < 0.0001; ns, non-significant. Confocal microscopy images show 
flight muscle mitochondria immunostained with anti-ATP5A. Scale bar = 10 µm. Control genotypes are da-
GAL4/+ for climbing, and w1118 for microscopy. Ctrl RNAi is lacZ-RNAi in the respective mutant background.
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8Scientific RepoRtS |         (2020) 10:2693  | https://doi.org/10.1038/s41598-020-59647-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

may be an epiphenomenon. Supporting this view, many studies have established that loss of Pink1/parkin in flies 
causes catastrophic mitochondrial disruptions, triggering cell-autonomous apoptosis22–24.

Considering this, it isn’t clear from current data why either exhaustive exercise or increased mtDNA muta-
tions should trigger an innate immune response that is mitigated by PINK1/Parkin in mice. In the mouse model, 
the involvement of STING implicates the presence of cytosolic DNA as a trigger. The evidence from Sliter et al. 
suggests that exhaustive exercise or mtDNA mutations is sufficient to induce mitophagy, which if not properly 
executed by Pink1/Parkin leads to the release of mtDNA and activation of STING signalling. However, it remains 
unclear how these mitochondrial stresses in the absence of Pink1/Prkn lead to release of mtDNA – presumably 
by loss of integrity and rupture of the mitochondrial boundary membranes. The observed increase in mitophagy 
in mouse cardiac muscle upon exhaustive exercise is again intriguing as this tissue shares striking structural and 
functional homology with Drosophila flight muscles, further increasing the puzzle as to why the role of Sting does 
not appear to be a conserved feature of Pink1/parkin biology in flies. Clearly, further work is necessary in order 
to fully understand the mechanisms linking mitochondrial disruption and immune activation across species.

Methods
Drosophila stocks and husbandry. Flies were raised under standard conditions in a humidified, tem-
perature-controlled incubator with a 12 h:12 h light:dark cycle at 25 °C, on food consisting of agar, cornmeal, 
molasses, propionic acid and yeast. Transgene expression was induced using the ubiquitous da-GAL4 driver. 
The following strains were obtained from the Bloomington Drosophila Stock Center (RRID:SCR_006457): 
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Figure 6. Loss of Sting does not ameliorate mtDNA mutator; parkin mutant combinations. Analysis of (A) 
locomotor (climbing) ability in young adults and (B) lifespan in flies combining mito-APOBEC1 mtDNA 
mutator expression with or without parkin and/or Sting. Transgene expression was driven by da-GAL4. Mito-
GFP expression was used as a control. Charts show mean ± 95% confidence interval (CI); number of animals 
analysed is shown in each bar for climbing, and beside the genotype key for lifespan. For climbing, statistical 
significance was determined by Kruskal-Wallis test with Dunn’s post hoc correction for multiple comparisons; 
and for lifespan, by Log-rank (Mantel-Cox) test; **p < 0.01, ****p < 0.0001; ns, non-significant.
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w1118 (RRID:BDSC_6326), da-GAL4 (RRID:BDSC_55850), StingTRiP (RRID:BDSC_31565), RelishTRiP 
(RRID:BDSC_33661), RelishE20 (RRID:BDSC_9457), UAS-mito-HA-GFP (RRID:BDSC_8443); and the Vienna 
Drosophila Resource Center (RRID:SCR_013805): StingGD (P{GD1905}v4031), RelishGD (P{GD1199}v49413), 
and lacZ-RNAi (P{GD936}v51446) used as a control RNAi. Other lines were kindly provided as follows: StingΔRG5 
from A. Goodman11, Pink1B9 mutants from J. Chung24, and the park25 mutants and UAS-mito-APOBEC1 have 
been described previously23,27. All experiments were conducted using male flies.

Locomotor and lifespan assays. The startle induced negative geotaxis (climbing) assay was performed 
using a counter-current apparatus. Briefly, 20–23 males were placed into the first chamber, tapped to the bottom, 
and given 10 s to climb a 10 cm distance. This procedure was repeated five times (five chambers), and the number 
of flies that has remained into each chamber counted. The weighted performance of several group of flies for each 
genotype was normalized to the maximum possible score and expressed as Climbing index23.

For lifespan experiments, flies were grown under identical conditions at low-density. Progeny were collected 
under very light anaesthesia and kept in tubes of approximately 20 males each, around 100 in total. Flies were 
transferred every 2–3 days to fresh medium and the number of dead flies recorded. Percent survival was calcu-
lated at the end of the experiment after correcting for any accidental loss.

immunohistochemistry and sample preparation. For immunostaining, adult flight muscles were dis-
sected in PBS and fixed in 4% formaldehyde for 30 min, permeabilized in 0.3% Triton X-100 for 30 min, and 
blocked with 0.3% Triton X-100 plus 1% bovine serum albumin in PBS for 1 h at RT. Tissues were incubated with 
ATP5A antibody (Abcam Cat# ab14748, RRID:AB_301447; 1:500), diluted in 0.3% Triton X-100 plus 1% bovine 
serum albumin in PBS overnight at 4 °C, then rinsed 3 times 10 min with 0.3% Triton X-100 in PBS, and incu-
bated with the appropriate fluorescent secondary antibodies overnight at 4 °C. The tissues were washed 2 times 
in PBS and mounted on slides using Prolong Diamond Antifade mounting medium (Thermo Fischer Scientific).

Microscopy. Fluorescence imaging was conducted using a Zeiss LSM 880 confocal microscope (Carl Zeiss 
MicroImaging) equipped with Nikon Plan-Apochromat 100×/1.4 NA oil immersion objectives. Images were 
prepared using Fiji software (Fiji, RRID:SCR_002285). For thoracic indentations, images were acquired using a 
Leica DFC490 camera mounted on a Leica MZ6 stereomicroscope.

Statistical analysis. For behavioural analyses, Kruskal-Wallis non-parametric test with Dunn’s post-hoc 
correction for multiple comparisons was used. For statistical analyses of lifespan experiment a Log-rank 
(Mantel-Cox) test was used. Analyses were performed using GraphPad Prism 8 software (RRID:SCR_002798).

Data availability
All data that support the findings of this study are available on reasonable request to the corresponding author. 
The contributing authors declare that all relevant data are included in the paper.
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