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Interatomic potential models based on machine learning (ML) are rapidly developing as tools

for materials simulations. However, because of their flexibility, they require large fitting databases

that are normally created with substantial manual selection and tuning of reference configurations.

Here, we show that ML potentials can be built in a largely automated fashion, exploring and fitting

potential-energy surfaces from the beginning (de novo) within one and the same protocol. The key

enabling step is the use of a configuration-averaged kernel metric that allows one to select the few

most relevant and diverse structures at each step. The resulting potentials are accurate and robust

for the wide range of configurations that occur during structure searching, despite only requiring a

relatively small number of single-point DFT calculations on small unit cells. We apply the method

to materials with diverse chemical nature and coordination environments, marking an important

step toward the more routine application of ML potentials in physics, chemistry, and materials

science.
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INTRODUCTION11

Atomic-scale modeling has become a cornerstone of scientific research. Quantum-12

mechanical methods, most prominently based on density-functional theory (DFT), describe13

the atomistic structures and physical properties of materials with high confidence1; increas-14

ingly, they also make it possible to discover previously unknown crystal structures and15

synthesis targets2. Still, quantum-mechanical materials simulations are severely limited by16

their high computational cost.17

Machine learning (ML) has emerged as a promising approach to tackle this long-standing18

problem3–12. ML-based interatomic potentials approximate the high-dimensional potential-19

energy surface (PES) by fitting to a reference database, which is usually computed at the20

DFT level. Once generated, ML potentials enable accurate simulations that are orders of21

magnitude faster than the reference method. They can solve challenging structural prob-22

lems, as has been demonstrated for the atomic-scale deposition and growth of amorphous23

carbon films13, for proton-transfer mechanisms14 or dislocations in materials15,16, involving24

thousands of atoms in the simulation. More recently, it was shown that ML potentials can25

be suitable tools for global structure searches targeting crystalline phases17–20, clusters21–24,26

and nanostructures25.27

Assembling the reference databases to which ML potentials are fitted is currently mostly28

a manual and laborious process, guided by the physical problem under study. The first29

artificial neural network (NN) type potential for materials3 was made by enumerating known30

crystal structures for silicon and used to describe high-pressure phase transitions26,27. To31

incorporate vacancies, surfaces and so on, hierarchical databases for transition metals have32

been built that start with simple unit cells and gradually add relevant defect structures28,29;33

liquid and amorphous materials can be described by iteratively grown databases that contain34

relatively small-sized MD snapshots30–33. A “general-purpose” Gaussian Approximation35

Potential (GAP) ML model for elemental silicon was recently developed34 which can describe36

crystalline phases with meV-per-atom accuracy, treat defects, cracks, and surfaces35, and37

generate amorphous silicon structures in excellent agreement with experiment36. Despite38

their success in achieving their stated goals, none of these potentials are expected to be even39

reasonable for crystal structures not included in their databases, say, hitherto undiscovered40

phases that only become stable at very high pressures.41
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In contrast, structure searching (that is, a global exploration of the PES) can be a suit-42

able approach for finding structures to be included in the training databases in the first43

place18–20,37. The principal idea to explore configuration space with preliminary ML poten-44

tials is well established: since the first high-dimensional ML potentials have been made, it45

was shown how they can be refined by exploring unknown structures3,26,31, and “on the fly”46

schemes were proposed to add required data while an MD simulation is being run5,38–40. We47

have previously shown that the PES of boron can be iteratively sampled without prior knowl-48

edge of any crystal structures involved; we called the method “GAP-driven random structure49

searching” (GAP-RSS)18, reminiscent of the successful Ab Initio Random Structure Search-50

ing (AIRSS) approach41,42. Subsequently we demonstrated, by way of an example, that the51

crystal structure of black phosphorus can be discovered by GAP-RSS within a few iterations,52

and we identified several previously unknown hypothetical allotropes of phosphorus19.53

In the context of ML potential fitting, so-called “active learning” schemes which detect54

extrapolation (indicating when the potential moves away from known configurations) are55

currently receiving much attention. A query-by-committee active-learning approach was56

suggested in 2012 by Artrith and Behler: two NN potential fits are made to the same57

database, and if their prediction differs for a given (new) structure, this structure needs58

to be added to the database.43 More recently, Jinnouchi et al. demonstrated how ab initio59

molecular dynamics (AIMD) simulations of specific systems can be sped up by active learning60

of the computed forces (in a modified GAP framework), using the predicted error of the61

Gaussian process to select new datapoints and to improve the speed of AIMD38,40. In62

the context of structure exploration, Shapeev and co-workers employed Moment Tensor63

Potentials44 with active learning45 to generate ML potentials20,46, and E and co-workers64

described a generalized active-learning scheme for deep neural network potentials47. So far,65

these studies mainly focused on specific intermetallic systems, namely, Al–Mg47 and Cu–Pd,66

Co–Nb–V, and Al–Ni–Ti46, respectively. Furthermore, Podryabinkin et al. showed that their67

approach can identify existing and hypothetical boron allotropes20.68

In this work, we present an efficient and unified approach for generating reference69

databases for fitting ML potentials, exploring structural space from the beginning (de70

novo) by ML-driven searching and similarity measures, all without any prior knowledge of71

what structures are or are not relevant. In contrast with continuous active learning, our72

aim is to converge to a potential that can describe a wide range of configurations without73
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the need for additional fitting. We demonstrate the ability to cover a broad range of struc-74

tures and chemistries, from graphite sheets to a densely packed transition metal. Our work75

provides conceptual insight into how computers can discover structural chemistry based on76

data and similarity measures alone, and it paves the way for a more routine application of77

ML potentials in materials discovery.78

RESULTS79

A unified framework for exploring and fitting structural space80

The overarching aim is to construct a ML potential with minimal effort, both in terms81

of computational resources and in terms of input required from the user. In regard to the82

former, we use only single-point DFT computations to generate the fitting database18. In83

regard to the latter, we define general heuristics wherever possible, such that neither the84

protocol nor its parameters need to be manually tuned for a specific system. The ML85

architecture to which we couple our method is based on a hierarchical combination of two-,86

three-, and many-body descriptors32, and it uses GAP as the regressor4. The remaining two87

parameters that need to be set by the user are a “characteristic” distance and whether the88

material is primarily covalent or metallic. For the distance, we choose tabulated covalent89

(for C, B, and Si)48 or metallic (for Ti) radii, depending on the nature of the system. These90

define the volume of the initial structures and the cutoffs for the ML descriptors (Methods91

section).92

Our approach is based on an iterative cycle, as shown in the diagram in Fig. 1a. We93

generate ensembles of randomized structures as in the AIRSS framework41,42, a structure-94

searching approach that is widely used in physics, chemistry, and materials science49–51. In95

the first iteration, we generate 10,000 initial structures, from which we select the N most96

diverse ones using the leverage-score CUR algorithm52. In the context of PES models, the97

CUR algorithm was proposed53 and then used29,32,34 for selection of sparse (representative)98

points for Gaussian process regression, and also proposed for selection of training configura-99

tions54. The distance between candidate structures is quantified by the Smooth Overlap of100

Atomic Positions (SOAP) descriptor55, which has been widely used in GAP fitting32,34 and101

in structural analysis56–58. While SOAP is normally used to discriminate between pairs of102
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environments of individual atoms, we here use a configuration-averaged SOAP descriptor57103

that compares entire unit cells to one another (Methods section). We find that selecting104

the most representative structures is critical, because we can only evaluate a small number105

(� 10, 000) with DFT. In addition, the starting configurations include dimers in vacuum106

at a wide range of bond lengths; this serves to capture the exchange repulsion at very short107

interatomic distances, and thereby to make the potentials more robust32.108

With the starting configurations in hand, we perform single-point DFT computations109

and fit an initial potential to the resulting data; in subsequent iterations, we extend the110

database and thereby refine the potential18. In each iteration, we start from the same111

number of new random initial structures, and minimize their enthalpy using the GAP from112

the previous iteration. We then select the N most relevant and diverse configurations from113

the full set of configurations seen throughout the minimization trajectories, for which we114

employ a combination of Boltzmann-probability biased flat histogram sampling (to focus115

on low-energy structures) and leverage-score CUR (to select the most diverse structures116

among those), as illustrated in Fig. 1b. These selected configurations are evaluated using117

single-point DFT calculations and added to the fitting database.118

The iterative procedure runs until the results are satisfactory. Here we terminate our119

searches after 2,500 DFT data points have been collected, and our results show this to be120

sufficient to discover and describe all structures discussed in the present work. Other quality121

criteria, such as based on the distribution of energies in the database18, might be defined as122

well; the generality of our approach is not affected by this choice.123

Diversity based selection124

We demonstrate the method for boron, one of the most structurally complex elements59.125

With the exception of a high-pressure α-Ga type phase, all relevant boron allotropes contain126

B12 icosahedra as the defining structural unit59. Boron has been the topic of structure127

searches with DFT60–63 and, more recently, with ML potentials for bulk allotropes18,20 and128

gas-phase clusters22. Our previous work showed how the PES for boron can be fitted in a ML129

framework18, leading to an interatomic potential able to describe the different allotropes.130

However, at that time, we generated and fed back 250 cells per iteration (without further131

selection), and added the structure of α-B12 manually at a later stage.18132
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Our new protocol “discovers” the structure of α-B12 in a self-guided way, as shown in133

Fig. 2. The figure compares the performance of our selection procedure with alternatives:134

(i) random selection, and (ii) using CUR but on the matrix of SOAP vectors rather than135

similarity kernels (see Methods section for details). The first of these, random selection,136

improves the database much less after the first few iterations, and ends up with the highest137

error (gray in Fig. 2). The second, which uses CUR but neglects the non-linear aspects138

of the similarity kernel, initially performs well, but soon stops reducing the error (green).139

Note that this algorithm is exactly the same as the one used in potential fitting to select140

representative environments (in that case, even computing the complete similarity kernel141

matrix quickly becomes impractical). The use of CUR on the similarity kernel for selecting142

structures to be included in the next iteration is shown to be the most efficient (purple in143

Fig. 2).144

The increasingly accurate description of the B12 icosahedron is reflected in a gradually145

lowered energy error, falling below the 10 meV/atom threshold with fewer than 2,000 DFT146

evaluations, and below 4 meV/atom once the cycle is completed. This improvement is best147

understood by inspecting the respective lowest-energy structures that enter the database in148

a given iteration (Fig. 2). The lowest-energy structure at point A already contains several149

three-membered rings, but no B12 icosahedra yet. With one more iteration, there is a sharp150

drop in the GAP error (from 175 to 51 meV/at.), concomitant with the first appearance of151

a rather distorted α-B12 structure (B). The final database has seen several instances of the152

correctly ordered structure (C).153

Learning diverse crystal structures154

Our method is not restricted to a particular chemical system. To demonstrate this, we155

now apply it to three prototypical materials side by side: carbon, silicon, and titanium,156

which all exhibit multiple crystal structures.157

In carbon (Fig. 3a), both the layered structure of graphite and the tetrahedral network158

of diamond are correctly “learned” during our iterations. For graphite, the energy error159

reaches a plateau after only a few hundred DFT evaluations; for diamond, the initial error160

is very large, and after a dozen or so iterations we observe a rapid drop—concomitant with161

a drop in the error for the structurally very similar lonsdaleite (“hexagonal diamond”). The162
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final prediction error is well below 1 meV/atom for the sp3 bonded allotropes, and on the163

order of 4 meV/atom for graphite. We have previously shown that the forces in diamond164

show higher locality than those in graphite, making their description by a finite-ranged165

ML potential easier32, given that sufficient training data are available. We also note that166

our method captures the difference between diamond and lonsdaleite very well: its value is167

27 meV/atom with the final GAP-RSS version, and 28 meV/atom with DFT.168

In silicon (Fig. 3b), the ground-state (diamond-type) structure is very quickly learned,169

more quickly so than diamond carbon, which we ascribe to the absence of a competing170

threefold-coordinated phase in the case of Si. We further test our evolving potentials on171

the high-pressure form, the β-tin type allotrope (space group I41/amd), which is easily172

discovered; the larger residual error for β-Sn-type than for diamond-type Si is consistent173

with previous studies using a manually tuned potential34. We also test our method on a174

recently synthesized open-framework structure with 24 atoms in the unit cell (oS24)65, which175

consists of distorted tetrahedral building units that are linked in different ways, which the176

potential has not “seen”. Still, a good description is achieved after a few iterations.177

In titanium (Fig. 3c), a hexagonal close packed (hcp) structure is observed at ambient178

conditions; however, the zero-Kelvin ground state has been under debate: depending on the179

DFT method, either hcp or the so-called ω phase is obtained as the minimum. Our method180

clearly reproduces the qualitative and quantitative difference between the two allotropes181

(22 meV/atom with the final GAP-RSS iteration versus 24 meV/atom with DFT) at the182

computational level we use, viz. PBEsol66.183

Looking beyond the minimum structures, the DFT energy–volume curves are, by and184

large, well reproduced by GAP-RSS; see Fig. 3d–f. There is some deviation at large volumes185

for hcp and ω-type Ti, but this is an acceptable issue as these regions of the PES are not186

as relevant, corresponding to negative external pressure. If one were interested in very187

accurate elastic properties, one would choose to include less dense structures by modifying188

the pressure parameters (Methods section, Eq. 5). Indeed, it was recently shown that a ML189

potential for Ti, fitted to a database of 2,700 structures built from the phases on which we190

test here (ω, hcp, bcc) and other relevant structures can make an accurate prediction of191

energetic and elastic properties67.192
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Entire potential-energy landscapes193

While the most relevant crystal structures for materials are usually well known and avail-194

able from databases, we show that our chemically “agnostic” approach is more general. In195

Fig. 4, we present an energy–energy scatter plot for the last set of GAP-RSS minimizations,196

evaluated with DFT and with the preceding GAP version, and again across three different197

chemical systems. We survey both the low- and higher-energy regions of the PES—up to198

1 eV per atom, which is very roughly the upper stability limit at which crystalline carbon199

phases may be expected to exist68. The higher-energy regions clearly exhibit a larger error;200

when generating a potential for specific crystalline phases, one might choose to exclude them201

at a later stage. We specifically do not exclude high-energy structures, because we aim to202

generate potentials that will be useful for future structure searches.203

To analyze and understand the outcome of these searches in structural and chemical204

terms, we use a dimensionality reduction technique to draw a two-dimensional structural205

map. Various types of SOAP-based maps have been used with success to analyze structural206

and chemical relationships in different materials datasets56,58,69. Here, we use them to illus-207

trate how different materials (including their allotropes as known from chemistry textbooks)208

are related in structural space.209

To compare different materials with inherently different absolute bond lengths, we re-210

scale their unit cells such that the minimum bond length in each is r0 = 1.0 Å, inspired by211

approaches for topological analyses of different structures70. We then use kernel principal212

component analysis with a SOAP kernel to represent the structures in a 2D plane. Figure 5213

shows the resulting plot, in which we have encoded the species by symbols and the average214

coordination number by color. (Coordination numbers are determined by counting nearest215

neighbors up to 1.2 r0.)216

The results fall within four groups, moving from the left to the right through Fig. 5.217

The first group is given by graphite-like structures; they are three-fold coordinated and only218

carbon structures (circles) are found there. Roman numerals in Fig. 5 indicate examples, and219

in this first group we observe flat (i) and buckled (ii) graphite sheets. In the second group, we220

have four-fold coordinated (“diamond-like”) networks, made up by both carbon and silicon221

(recall that we are using a normalized bond length, so diamond carbon and diamond-type222

silicon will fall on the same position in the plot). The structures that are shown as insets223
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are characteristic examples; from left to right, there is a distorted lonsdaleite-type structure224

(iii), the well-known unj framework (also referred to as the “chiral framework structure”225

in group-14 elements (iv)71, and a more complex sp3-bonded allotrope (v). While the axis226

values in our plot are arbitrary, they naturally reflect the structural evolution toward higher227

coordination numbers, and therefore we next observe a set of high-pressure silicon structures228

(squares), such as the simple-hexagonal one (vi), with an additional contribution from lower-229

coordinated titanium structures (circles). Finally, there is a set of densely packed structures,230

all clustered closely together; these are titanium structures including hcp (vii) and the ω231

type (viii). In the center of the plot, there is a structure that bears resemblance to none232

of the previously mentioned ones (ix), an energetically high-lying and strongly disordered233

intermediate from a relaxation trajectory that was added to the reference database, rather234

than a local minimum (see also Tables S1–3). This dissimilarity is reflected in relatively235

large distances from other entries in the SOAP-based similarity map.236

DISCUSSION237

We have shown that automated protocols can be designed for generating structural238

databases and fitting potential-energy surfaces of materials in a self-guided way. This allows239

for the generation of ML-based interatomic potentials with minimal effort, both in terms of240

computational and user time, when combined with a suitable fitting framework, of which241

many are presently available. Formalizing the protocols for database construction is an242

important step toward further methodological developments and, ultimately, toward wide243

applicability of these techniques in computational materials science.244

Our RSS-based reference databases efficiently cover structural space up to a given system245

size (here, 24 atoms in the unit cell). Once a core database has been constructed in this246

way, it may be readily improved by adding defect, surface, and liquid/amorphous structural247

models in much larger simulation cells, while at the same time being sufficiently robust to248

avoid unphysical behavior—even when taken to the more extreme regions of configuration249

space that are explored early on during RSS.250

We targeted here the space of three-dimensional inorganic crystal structures, but concep-251

tually similar approaches may be useful for nanoparticles23,72 and other lower-dimensional252

systems. Finally, organic (molecular) materials are also beginning to be described very re-253
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liably with ML potentials7,11, and an interesting open question is how to use the structural254

diversity inherent in RSS in the context of organic solids73.255

METHODS256

Interatomic potential fitting257

To fit interatomic potentials, we use the established Gaussian Approximation Potential (GAP)258

ML framework4 and the associated computer code, which is freely available for non-commercial259

research at http://www.libatoms.org. Compared to previous work, we here use suitable heuristics260

to automate and generalize the choice of fitting parameters where possible. We stress again, how-261

ever, that the main development in the present work is in the automated generation of databases,262

not the descriptors or the regressor.263

We use a linear combination of 2-, 3-, and many-body terms following Refs. 74 and 32, with264

defining parameters given in Table 1. The 2-body (“2b”) and 3b descriptors are scalar distances265

and symmetrized three-component vectors, respectively. For the many-body term, we use the266

Smooth Overlap of Atomic Positions (SOAP) kernel55, which has been used to fit GAPs for diverse267

systems28,32–34. The overall energy scale of each descriptor’s contribution to the predicted energy268

(controlled by the parameter δ)74 is set automatically in our protocol. The 2b value is set from269

the variance of energies in the fitting database, the 3b value is set from the energy error between270

a 2b-only fit and the fitting database, and the SOAP value is set from the energy error for a271

2b+3b-only fit.272

The cutoffs for the three types of descriptors are expressed in terms of the characteristic radius273

r (Table 1): that for 2b is longest range, while that for 3b is shortest (intended to capture only274

nearest neighbors), and the SOAP is intermediate in range. The resulting cutoff settings are275

listed in Table 1, the characteristic radii r for the systems studied here being 0.84, 0.76, 1.11, and276

1.47 Å for B, C, Si, and Ti, respectively. An ad-hoc choice is made here between predominantly277

covalent (B, C, Si) or metallic (Ti) materials for selecting the appropriate tabulated radii; however,278

settings based on the covalent radius for silicon also produce a satisfactory fit for the metallic279

(β-tin type) modification (residual error < 10 meV / at.; Fig. 3b). Future work might explore280

more automated ways of extracting optimal atomic radii from datasets, and suitable definitions281
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for multicomponent systems (we stress that the latter, in principle, can be routinely treated by282

present-day ML potentials14,37,46). None of this is expected to affect the conclusions of the present283

work.284

The weights on the energies, forces, and stresses that are fit are set by diagonal noise terms in285

Gaussian process regression4. We set these according to the reference energy of a given structure,286

to make the fit more accurate for relatively low-energy structures at each volume while providing287

flexibility for the higher-energy regions. The values are piecewise-linear functions in ∆E, which is288

the per-atom reference energy difference relative to the same volume on the convex hull bounding289

the set of (V,E) points from below (in energy). For the energy the error σE is 1 meV/atom for290

∆E ≤ 0.1 eV, 100 meV/atom for ∆E ≥ 1 eV, and linearly interpolated in between. For forces291

the corresponding σF values are 31.6 and 316 meV/Å, and for virials the σV values are 63.2 and292

632 meV/atom.293

Comparing structures294

The same mathematical tools that are used to compare atomic environments for the purpose of

constructing potentials can also be used to compare atomic configurations56. As for the regression,

for these similarity kernels we also use SOAP, although with different parameters (nmax = lmax =

12, σat = 0.0875 Å, rcut = 10.5 Å), to compare the similarity of environments in selecting from

which data to train (in the CUR step). For the kernel PCA used to generate the map in Fig. 5,

we use nmax = lmax = 16, σ = 0.1 r0 and rcut = 2.5 r0, where r0 is the shortest bond length,

as described in the Results section. We obtain what we call a “configuration-averaged” SOAP by

averaging over all atoms in the cell. In the SOAP framework55, the neighbor density of a given

atom i is expanded using a local basis set of radial basis functions gn and spherical harmonics Ylm,

ρi(r) =
∑
j

exp
(
−|r − rij |2/2σ2at

)
=
∑
nlm

c
(i)
nlm gn(r)Ylm(r̂), (1)

where j runs over the neighbours of atom i within the specified cutoff (including i itself). To295

obtain a similarity measure between unit cells, rather than individual atoms, we then average the296
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expansion coefficients over all atoms a in the unit cell,297

c̄nlm =
1

N

√
8π2

2l + 1

∑
i

c
(i)
nlm, (2)

and construct the rotationally invariant power spectrum for the entire unit cell57,298

p̄nn′l =
∑
m

(c̄nlm)∗ c̄n′lm. (3)

Note that this is not equal to the average of the usual atomic SOAP power spectra used to describe299

the atomic neighbor environments. The final kernel to compare two cells, A and B, is then300

kAB =

(∑
nn′l

p̄
(cell A)
nn′l p̄

(cell B)
nn′l

)ζ
, (4)

where ζ is a small integer number (here, ζ = 4).301

For our main results, our diverse structure selection uses leverage-score CUR52 applied to the302

matrix of similarity kernels between atomic configurations. We also test a version of our method303

where the CUR algorithm is applied to the rectangular matrix of configuration-averaged SOAP304

vectors, rather than the square matrix of similarity kernels. This qualitatively captures the same305

information, but neglects the non-linear nature of the exponentiation that transforms the (linear)306

dot-product of SOAP vectors into the similarity kernel. The results of these methods are compared307

in Figure 2 and Figures S1–2.308

Iterative generation of reference data309

Randomized atomic positions are generated using the buildcell code of the AIRSS package ver-310

sion 0.9, available at https://www.mtg.msm.cam.ac.uk/Codes/AIRSS. The positions are repeated311

by 1–8 symmetry operations, and the cells contain 6–24 atoms. A minimum separation is also312

set, with a value of 1.8 r. The volumes per atom of the random cells are centered on V0 = 14.5 r3313

for covalent, and V0 = 5.5 r3 for metallic systems. In the initial iteration, half of the structures314

are generated from the buildcell-default narrow range of volumes, and half from a wider range,315

±25% from the heuristic value. In all later iterations, only the default narrow range is used. The316

wide volume range configurations are meant to simply span a wide range of structures18, and use317

only even numbers of atoms. The narrow volume range configurations are meant to be good initial318
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conditions for RSS, and so for 80% (20%) of the seed structures, we choose even (odd) numbers319

of atoms, respectively. This is because for most known structures, the number of atoms in the320

conventional unit cell is even (eight for diamond and rocksalt, for example), although for some it321

is odd, including the ω phase75. Biasing initial seeds toward distributions that occur in nature is a322

central idea within the AIRSS formalism42. The setup of these cells, in itself, has negligible com-323

putational cost compared to the relaxations: generating 10,000 candidate structures required less324

than 5 minutes on 16 cores (and constructing the SOAP vectors for structural selection required325

on the order of one minute). For the computational cost of potential fitting, see Figure S3.326

With the initial potential available, we then run structural optimizations by relaxing the can-327

didate configurations with a preconditioned LBFGS algorithm76 to minimize the enthalpy until328

residual forces fall below 0.01 eV/Å. As in Ref. 19, we employ a random external pressure p with329

probability density330

P (p/p0) =
1

β
exp

(
− 1

β
p/p0

)
, (5)

here with p0 = 1 GPa, and β = 0.2. This protocol ensures that there is a small but finite external331

pressure, and also some smaller-volume structures are included in the fit18,19. We choose the same332

pressure range for all materials, for simplicity, although this value could be adjusted depending on333

the pressure region of interest.334

The selection of configurations for DFT evaluation and fitting at each iteration involves a335

Boltzmann-biased flat histogram and leverage-score CUR, as illustrated in Fig. 1. To compute the336

selection probabilities for the flat histogram stage, the distribution of enthalpies (each computed337

using the pressure at which the corresponding RSS minimization was done) is approximated by338

the numpy77 histogram function, with default parameters. The probability of selecting each con-339

figuration is inversely proportional to the density of the corresponding histogram bin, multiplied340

by a Boltzmann biasing factor. The biasing factor is exponential in the enthalpy per atom relative341

to the lowest enthalpy configuration, divided by a temperature of 0.3 eV for the first iteration,342

0.2 eV for the second, and 0.1 eV for all remaining iterations. The leverage-score CUR selection is343

based on the singular-value decomposition of the square kernel matrix using the SOAP descriptors344

(with the dot-product kernel and exponentiation by ζ, Eq. 4). Applying the same algorithm to the345

rectangular matrix of SOAP descriptor vectors was significantly less effective (Figure 2).346
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Computational details347

Reference energies and forces were obtained using DFT, with projector augmented-waves348

(PAW)78,79 as implemented in the Vienna Ab Initio Simulation Package (VASP)80. Valence elec-349

trons were described by plane-wave basis sets with cutoff energies of 500 (B), 800 (C), 400 (Si),350

and 285 eV (Ti), respectively. Reciprocal space was sampled used a fixed “KSPACING” parameter351

in VASP, amounting to 0.25 for B, Si, and Ti, and 0.35 for C (in units of Å−1 along the reciprocal352

lattice vectors which include the 2π factor). Exchange and correlation were treated using the353

PBEsol functional66 for all materials except carbon, where the opt-B88-vdW functional81–83 was354

chosen to properly account for the van der Waals interactions in graphitic structures. Benchmark355

data for energy–volume curves were obtained by scaling selected unit cells within given volume356

increments and optimizing while constraining the volume and symmetry of the cell.357
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83 Klimeš, J. ; Bowler, D. R. & Michaelides, A. Van der Waals density functionals applied to solids.550

Phys. Rev. B 83, 195131 (2011).551

FIGURE LEGENDS552

A. Figure 1553

An automated protocol that iteratively explores structural space and fits machine learn-554

ing (ML) based interatomic potentials. (a) General overview of the approach. From an555

ensemble of randomized unit cells (blue), we select the most geometrically diverse ones us-556

ing the leverage-score CUR algorithm. Selected cells are evaluated with single-point DFT557

computations and used to fit an initial Gaussian Approximation Potential (GAP) (orange).558

Then, this potential is used to relax a new ensemble of randomized cells (green), selecting559

again the most relevant snapshots, and repeating the cycle. (b) Illustration of the multi-step560

selection procedure. We first consider all trajectories in a given generation, sketched by con-561

nected points, and select local minima (using an energy criterion, the flattened histogram,562

and then a structural criterion, the CUR). From the trajectories leading to these minima,563

we then select the most representative cells; these can be intermediates (green) or end points564

(purple) of relaxations. The structures finally selected (magenta) are DFT-evaluated and565

added to the database.566

Figure 2567

“Learning” the crystal structure of α-rhombohedral boron. Top: Error of iteratively568

generated GAP-RSS models, for the energy of the optimised ground-state structure of α-569

B12, referenced to DFT. Three independent runs are compared: random selection of points570

21



(gray), our two-step selection procedure with CUR on SOAP vectors (green), and the same571

two-step procedure but with CUR on SOAP similarity kernels (purple). Bottom: Evolution572

of the B12 icosahedron as the defining structural fragment. For three points of the N = 100573

cycles, having completed 400 (“A”), 500 (“B”), and 2,500 (“C”) DFT evaluations in total,574

the respective lowest-energy structure (at the DFT level) from this iteration is shown, as575

visualized using VESTA64. Bonds between atoms are drawn using a cut-off of 1.9 Å; note576

that there are further connections between the B12 icosahedra with slightly larger B· · ·B577

distances.578

Figure 3579

“Learning” diverse crystal structures without prior knowledge, including textbook ex-580

amples of an insulator (carbon), a semiconductor (silicon), and a metal (titanium). (a–c)581

Energy error, defined as the difference between DFT- and GAP-computed energies for struc-582

tures optimized with the respective method. GAP-RSS models that deviate from the DFT583

result by less than 1 meV / atom are considered to be fully converged and therefore their584

errors are drawn as a constant minimum value to ease visualization. (d–f) Energy–volume585

curves computed with the final GAP-RSS model (solid lines) and the DFT reference method586

(dashed lines). The open-framework oS24 structure, at high pressure, collapses into a more587

densely packed phase (“∗”; see SI for details). All energies are referenced to the DFT result588

for the respective most stable crystal structure.589

Figure 4590

Scatter plots of predicted versus DFT energies for ensembles of structures added to the591

reference databases in the final iteration. Note that the energy scale is continuous, but it592

changes from linear to logarithmic scaling at 0.1 eV/at., allowing us to visualize both low-593

and higher-energy regions.594
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Figure 5595

Visualizing the highly diverse structures, both at low and relatively high energies above596

the global minimum, that have been explored by GAP-RSS and added to the reference597

database in the last iteration. A similarity map compares three systems side-by-side (carbon,598

triangles; silicon, squares; titanium, circles), as described in the text. The resulting plot599

(with arbitrary axis values) emphasizes relationships between the different databases. The600

structures, “discovered” from scratch by our protocol, range all the way from threefold-601

coordinated graphite, fourfold-coordinated (sp3-like) allotropes of C and Si, onward to high-602

pressure Si structures and finally densely packed variants of Ti. A higher-energy structure603

(≈ 0.6 eV/at. above diamond-type silicon) from an earlier step in a minimization trajectory604

is included as an example, as enclosed by a dashed line.605
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Table 1: Hyperparameters for descriptors that we use in GAP fitting. For all
descriptors: Gaussian width σat (squared-exponential kernel for 2- and 3-body;
atomic density width for SOAP); number of sparse points Nsp. For SOAP only:
number of radial functions nmax and angular momenta lmax, and kernel exponent
ζ. Cutoffs rcut are expressed in terms of the characteristic radius r, listed for
each material in the Interatomic potential fitting subsection

rcut (Å)
σat (Å) Nsp nmax lmax ζ (covalent) (metallic)

2-body 0.5 30 9.0 r 8.2 r
3-body 1.0 100 2.925 r 2.665 r
SOAP 0.75 2000 8 8 4 4.5 r 4.1 r

1


