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ABSTRACT 

 
The biological functions of protein molecules are intimately dependent on their 

conformational dynamics. This aspect is particularly evident for disordered proteins, which 

constitute about one-third of the human proteome. Therefore, structural ensembles often offer 

more useful representations of proteins than individual conformations. Here, we describe how 

the well-established principles of protein structure determination should be extended to the 

case of protein structural ensembles determination. These principles concern primarily how to 

deal with conformationally heterogeneous states, and with experimental measurements that 

are averaged over such states and affected by a variety of errors. We first review the vast 

literature of recent methods that combine experimental and computational information to 

model structural ensembles, highlighting their similarities and differences. We then address 

some conceptual problems in the determination of structural ensembles and define future 

goals towards the establishment of objective criteria for the comparison, validation, 

visualization, and dissemination of such ensembles. 
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Introduction: Using a structural ensemble to represent the state of a protein  

 

As protein molecules in their natural environments experience significant conformational 

fluctuations, in many cases structural ensembles can effectively represent their states and 

provide insights into the structural basis of their biological functions [1-6]. A structural 

ensemble can be defined as a set of conformations together with their corresponding statistical 

weights. Both the conformations and their statistical weights should be determined in a 

manner consistent with the available experimental and theoretical information. The statistical 

weight defines the extent to which a particular conformation is populated by a protein under 

well-defined experimental conditions. An ensemble of this type is thus a ‘statistical 

ensemble’, rather than an ensemble made up by multiple models of a given native state, which 

could be called ‘uncertainty ensemble’, as the multiple models reflect the limited information 

available on the system, rather than an intrinsic conformational heterogeneity. 

 

The importance of using structural ensembles is particularly evident in the case of disordered 

proteins, which are a class of proteins that lack well-defined structures and populate instead a 

large number of states [7-11]. It has been suggested that these proteins make up about one-

third of the human proteome [10,12] and that their dynamic nature facilitates multiple 

interactions, making them particularly important in regulation and signaling processes 

[10,13]. In this review we discuss how the development of rigorous principles of protein 

structural ensemble determination will lead to a structure-based understanding of the 

functions of proteins that are disordered or contain disordered regions. 

 

 

Challenges in the determination of structural ensembles of proteins 

 

Experiments alone may not lead to the accurate determination of protein structural 

ensembles. The challenges associated with the determination of protein structural ensembles 

by experimental methods alone are at least threefold [14], as observations: 1) are often time 

and ensemble averages over conformationally heterogeneous states; 2) provide sparse and 

sometimes ambiguous information; 3) are always subject to random and systematic errors. 

 

1) Averages over conformationally heterogeneous states. In principle, heterogeneous states of 

proteins in solution could be distinguished by an experimental technique whose observation 
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time is faster than the dynamics of the interconversion between states. However, in most cases 

this observation time is shorter than the typical timescale that one is interested to resolve, and 

as a result the observation is an average over multiple conformational states. This is true for 

highly versatile techniques such as nuclear magnetic resonance (NMR) spectroscopy, which is 

commonly used to characterize protein conformational fluctuations, and it has recently been 

recognized also for X-ray crystallography [15,16]. However, certain experiments, such as 

single-molecule Förster resonance energy transfer (FRET) or double electron-electron 

resonance (DEER), can generate distributions of the experimental observable over the entire 

structural ensemble, rather than averaged quantities [17,18]. In addition, it is also possible, for 

example using relaxation-dispersion NMR spectroscopy, to obtain specific information about 

individual sub-states [2]. Finally, other techniques provide information that does not have a 

thermodynamic nature, i.e. measurements that are neither averaged over structural ensembles, 

nor directly reflecting the populations of individual members. A notable example of this type 

is provided by chemical cross-linking/mass spectrometry (XL-MS) data [19]. 

 

2) Sparse and sometimes ambiguous information. Experimental techniques are typically 

sensitive only to specific properties, and thus provide sparse structural information about the 

conformational fluctuations of proteins. For example, FRET measurements provide an 

indirect measure of the distance between two protein sites, small-angle X-ray scattering 

(SAXS) reports on the probability distribution of the distances between all pairs of atoms, 

XL-MS data typically probe the proximity between lysine residues, and residual dipolar 

couplings (RDCs) provide information about the orientations of interatomic bonds relative to 

an external magnetic field. Furthermore, in some cases, experimental data provides 

ambiguous information [14]. For example, in the analysis of XL-MS data which was collected 

in the presence of multiple copies of the same protein, data cannot be univocally assigned to a 

specific copy, or in the analysis of nuclear Overhauser effect (NOE) NMR data, previous 

knowledge of the structure of the molecule is required [20]. 

 

3) Random and systematic errors. All experimental observations are affected by random or 

systematic errors. Random errors result from statistical fluctuations across multiple 

observations. Systematic errors might arise in several circumstances, for example from faults 

in the instrumentation or in its use by the experimenter, incorrect assignment of data points, or 

poor sample preparation. Each experimental technique is characterized by a different level of 

noise in the data, which should be taken into account when constructing structural models of 
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the system. Crucially, noise and structural heterogeneity are difficult to disentangle. For 

example, a Gaussian distribution of measurements might arise from a collection of 

observations of a static system subject to random errors or rather from repeated measurements 

of a dynamic system in absence of noise. 

 

 

Computational techniques alone are often insufficient to determine accurate structural 

ensembles. Computational methods such as Monte Carlo, molecular dynamics, or combined 

approaches have the potential to yield a complete description of the structures and dynamics 

of proteins. These methods generate structural ensembles whose statistical weights are 

determined by a theoretical model of the physical and chemical interactions of the system. 

The two main problems that this approach faces are that of: 1) force fields, and 2) 

conformational sampling.  

 

1) Force fields. Commonly used models range from highly-detailed ab initio methods, to all-

atom empirical force-fields, to coarse-grained approaches. Yet, even the most detailed and 

accurate models are still approximations of the actual interatomic interactions and therefore 

they will not be able to fully predict all the properties of the systems under study. This aspect 

is particularly relevant for highly dynamical systems that populate multiple states, because 

even minor inaccuracies in the force fields may result in relatively large errors in the 

predicted properties [21-23].  

 

2) Conformational sampling. Limited computational resources only allow the simulation of 

finite timescales (for example microseconds), which are often shorter than the time of the 

actual biological processes of interest. This is especially true when a very detailed 

representation of the system is used, because high accuracy comes at a high computational 

cost. As a result, it is common procedure to compromise between accuracy and efficiency, 

depending on the size of the system and the desired timescale. Time scale issues are further 

alleviated via the use of enhanced sampling methods which accelerate the exploration of the 

conformational space [24]. However, even with these advanced techniques, the accuracy of 

the generated structural ensemble is still bound by the limits of the theoretical model. 
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The combination of experimental and computational methods may lead to the 

determination of accurate structural ensembles. Since neither experimental nor 

computational approaches alone can generate accurate structural ensembles capable of 

predicting multiple biologically relevant properties, a promising strategy to achieve this goal 

is to combine all sources of information available (Figure 1). Over the last decade, significant 

effort has been put forth towards the development of methods that combine experimental and 

theoretical information for structure determination [25]. While these approaches have also 

been directed towards structural ensemble determination, the challenges of how to take into 

account the averaging over conformationally heterogeneous states and the errors in the data 

have only recently been addressed. 

 

 

Dealing with entropy: Current methods for structural ensemble determination 

 

In this section we review some of the current methods for structural ensemble determination. 

Although this field is still in its infancy, a wide variety of techniques have already been 

proposed. We do not aim to provide a comprehensive summary of all the existing methods, 

but rather to give a concise overview of the most popular approaches (Table 1). For a more 

extensive treatment of this subject, we refer the reader to other existing reviews [26-30]. 

  

Generally speaking, methods for structural ensemble determination can be grouped into two 

categories [30], those following the maximum entropy principle and those inspired by the 

‘Occam’s razor’ rule, which can also be called the maximum parsimony principle. Methods in 

the former class typically determine a large number of conformations by perturbing an initial 

(a priori) structural ensemble in order to match the experimental data. The perturbation is 

meant to generate a structural ensemble that is closest to the a priori ensemble but that also 

matches the experimental data. By contrast, methods based on the maximum parsimony 

principle are aimed at determining the minimum number of structures that can explain the 

experimental data. These methods require the definition of practical criteria to balance 

between the number of conformers of the ensemble and the quality of the fit with 

experimental data. The balance between number of conformers and quality of the fit is usually 

referred to as the problem of over-fitting in regularization algorithms.   
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Maximum entropy methods. Maximum entropy methods are typically based on the 

introduction of additional energy terms to classical molecular dynamics force fields. These 

additional terms are functions of the back-calculated experimental observables and their 

intensities are determined by Lagrange multipliers whose values should be computed to 

enforce agreement between experiments and simulations [31,32]. An alternative strategy to 

avoid these complicated calculations is the replica-averaged modelling [1,33-35]. In this 

approach, a set of replicas of the system is simulated in parallel and harmonic potentials are 

added to the molecular dynamics force field to restrain the averages of the experimental 

observables across the replicas close to the experimental measurements. This method has 

been effectively used to provide structural ensembles for a variety of systems, including 

disordered proteins making use of enhanced sampling techniques [34-37]. The equivalence 

between replica-averaged simulations and the maximum entropy Lagrange-multipliers 

solution was demonstrated recently [32,38]. Other more recent maximum entropy methods 

are aimed at matching distributions of experimental data by introducing additional restraints 

[39], sometimes in the form of metadynamics bias potentials, as for the case of ‘ensemble-

biased metadynamics’ [40] and ‘experiment directed metadynamics’ [41]. 

 

All the maximum entropy methods described above incorporate experimental data directly 

into simulation by means of restraints between experimental and predicted data. Other 

maximum entropy approaches act a posteriori by reweighting a structural ensemble generated 

by molecular dynamics or other sampling techniques in order to determine the weights of the 

members of the ensemble that maximize the agreement with experimental data. In this class, 

we also include approaches that select a subset of components of the original ensemble and 

assign them identical weights. Among maximum entropy reweighting approaches we mention 

in particular the ‘ensemble-refinement of SAXS’ (EROS) method [42], the ‘convex 

optimization for ensemble reweighting’ method (COPER) [43], and the ‘ENSEMBLE’ 

method [44]. 

 

Maximum parsimony methods. Most current methods inspired by the maximum parsimony 

principle are based on reweighing techniques. These approaches include the ‘ensemble 

optimization method’ (EOM) [45], the ‘selection tool for ensemble representations of 

intrinsically disordered states’ (ASTEROIDS) [46], the ‘sparse ensemble selection’ (SES) 

method[47], the ‘sample and select’ (SAS) method [48], the ‘maximum occurrence’ 

(MaxOcc) method [49], the ‘minimal ensemble search’ (MES) method [50], and the ‘basis-set 
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supported SAXS reconstruction’ (BSS-SAXS) method [51]. All these approaches differ in the 

way the initial ensemble is generated, the algorithm to select or reweight a subset of the initial 

ensemble to optimize the fit with experimental data, and the criterion to balance number of 

members of the ensemble with quality of the fit. 

 

Some of the methods described above integrate an estimate of the error in the data in the 

generation of the structural ensemble, which is typically treated as a constant parameter 

determined by the experiments. However, in most situations this estimate only provides a 

lower bound on the real data uncertainty because it fails to account for systematic errors and 

the presence of outlier data points. Furthermore, the theoretical model to calculate an 

experimental observable from a structural ensemble, commonly referred to as predictor or 

forward model, is often inaccurate. We suggest that in an effective method each source of 

information used in the modelling should be weighted according to its reliability. Therefore, 

an accurate estimate of the level of noise and uncertainty in the measured and predicted data 

is a necessary condition to properly mix different experimental data with theoretical models 

and obtain accurate structural ensembles. 

 

 

Taking errors into account: Bayesian inference methods 

 

In a seminal paper [52], Rieping and co-workers presented a Bayesian inference method 

(‘inferential structure determination’, ISD) for single structure determination that combines 

prior information on a system with experimental data and accounts for errors in these data. 

ISD proceeds by constructing a model of noise as a function of one or more unknown 

uncertainty parameters, which quantify the agreement between predictions and observations 

and are inferred along with the structure of the system. Since it can be argued that an ideal 

method for structural ensemble determination should account for variable and sometimes 

unknown errors, we regard the Bayesian method as a particularly appropriate framework to 

integrate multiple experimental data. 

 

Several Bayesian a posteriori reweighting approaches for structural ensemble determination 

have been proposed in recent years. Among those inspired by the maximum entropy principle 

we mention the ‘Bayesian ensemble refinement’ method [53], the ‘Bayesian ensemble SAXS’ 

(BE-SAXS) method [54], the ‘experimental inferential structure determination’ (EISD) 
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method [55], the ‘Bayesian energy landscape tilting’ (BELT) method [56], the ‘integrated 

Bayesian approach’ [57], the method of Sethi et al. [58], the ‘reference ratio’ method [59], 

and the ‘Bayesian inference of conformational populations’ (BICePS) method [60]. Two 

Bayesian reweighting methods obeying the maximum parsimony principle have also been 

presented, the ‘Bayesian inference of EM’ method (BioEM) [61] and the ‘Bayesian 

weighting’ (BW) method [62]. 

 

Only a few existing Bayesian methods incorporate experimental data directly as restraints to 

model structural ensemble of proteins. One of the earliest proposals, the ‘multi-state Bayesian 

modelling’ approach, is based on the maximum parsimony principle and was used to 

characterize the multiple structural states of histidine kinase PhoQ using cysteine-crosslinking 

data [63] and the mechanism of substrate recognition of the molecular chaperone Hsp90 [64]. 

More recently, two methods inspired by the maximum entropy principle have been proposed, 

the ‘Bayesian ensemble refinement’ method [53] and the ‘metainference’ method [65]. In 

both approaches, a set of 𝑁 replicas of the system is simulated in parallel under the combined 

effect of prior information and an energy term that relates the experimental data to the 

average of the observable over the replicas. The intensity of this restraint on the structural 

ensemble is variable, depends on the unknown level of noise in the data, and scales linearly 

with 𝑁 in presence of noise in the data. However, the specific form of the data energy term is 

different in the two approaches. In particular, the metainference data energy term explicitly 

scales more than linearly with 𝑁 in absence of data noise, as requested by the maximum 

entropy principle. The metainference method is available in the popular open-source 

PLUMED library [66] and it has been combined with metadynamics in its parallel bias 

implementation [67] to accelerate sampling in complex biological systems [68] (Figure 2). 

 

 

Major questions about the determination of structural ensembles of proteins 

 

Are atomistic models of structural ensembles of proteins always needed? A common goal in 

structural biology is the generation of protein structures at atomic resolution. Although this is 

a desirable outcome, for complex proteins and their assemblies this might be a daunting task, 

especially in absence of a large amount of experimental and theoretical information. In these 

cases, an alternative but still relevant objective is to make testable predictions to shed light on 

the function of a given system. A valuable representation of the state of a protein is thus one 
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that enables such predictions. Several examples of structural models suggest that interesting 

predictions could be made even at low resolution or coarse-grained level [69-71]. 

Furthermore, a coarse-grained representation of the system, and in general a poor prior 

information, can be compensated by the use of a large amount of experimental data, while 

simultaneously facilitating the sampling of the conformational landscape [65]. However, an 

atomistic representation of a system might be required to define the predictor (i.e. a forward 

model) of a given experimental observable. To this regard, one could choose to simplify the 

physico-chemical interactions while maintaining an atomistic resolution of the system [72] or 

alternatively to use multiple-resolutions forward models [73,74]. 

 

Is the determination of a structural ensemble an ill-defined problem? To answer to this 

question, one has to distinguish two points of view. From a first point of view, the 

determination of the members of the ensemble from experimental data that are averaged on 

the entire ensemble (the so-called inverse problem) is an ill-defined problem, in the sense that 

it allows multiple solutions, as different structural ensembles can fit the same averaged data. 

From a second point of view, the determination of a structural ensemble can be seen as a well-

defined problem, at least in the case when the ensembles generated are experimentally 

indistinguishable. This happens when all the measurable quantities are predicted to be the 

same from the different structural ensembles. As long as different structural ensembles 

generate the same observable average quantities, and thus result in similar predictions for the 

system properties, they should be considered equivalent. Similarly, two different samples of 

the same distribution, like two independent molecular simulations, can be constituted of 

different components, but average quantities calculated using the two sets are identical. 

Therefore, structural ensemble determination can be seen as a well-defined problem from the 

perspective of performing measurements, but as an ill-defined problem from the point of view 

of determining the conformations of the individual members of the ensemble (Figure 3). 

 

Should one use ‘maximum entropy’ or ‘maximum parsimony’ methods? We have classified 

the methods for structural ensemble determination into two classes: those determining large 

ensemble of conformations following the maximum entropy principle, and those determining 

a minimal set of conformations that fit the data, in the spirit of the maximum parsimony 

principle. Our recommendation is for maximum parsimony methods to be used to study 

systems characterized by the presence of a small number of relevant states or, in other words, 

systems with low entropy. Maximum entropy methods are instead particularly suitable in the 
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case of high entropy systems, i.e. in presence of a relevant number of significantly populated 

states (Figure 4). Our view is that for disordered proteins maximum entropy methods should 

be preferable despite their often greater computational cost, since it is not always easy to 

estimate a priori the amount of entropy in a system. We also note that it is not yet clear 

whether maximum parsimony methods can identify the regions of the conformational space 

of maximal probability, whereas rigorous proofs are available for maximum entropy methods 

[31,32,38]. In this respect, the role of the prior information in maximum parsimony methods 

is crucial, especially in reweighting approaches in which the prior information is used to 

generate a pool of candidate structures from which a minimal ensemble is extracted. It is 

important to observe that states at low probability might also be relevant as far as predictions 

are concerned, because many experimental observables can be expressed as non-linear 

functions of the system coordinates. For example, FRET efficiency and NOE intensity depend 

on the distance 𝑑 between two atoms as 1/𝑑6. Therefore, even low populated conformers 

with small values of 𝑑  can significantly affect the values of these quantities. It is thus 

challenging to set an absolute threshold in the populations of the individual conformers and 

define a priori what is relevant and what should be ignored in a minimal ensemble 

determined by maximum parsimony methods. 

 

Should one use reweighting methods or direct use data as restraint? Structural ensemble 

determination methods can either directly integrate the experimental data into the generation 

of structural ensembles or act a posteriori on a pre-calculated set of conformations to 

optimize their weights to fit the input data. Reweighting schemes are inaccurate whenever the 

prior distribution used to generate the initial ensemble differs greatly from the final, 

reweighted distribution, as the efficiency depends on the overlap between the two 

distributions [75]. Reweighting methods have the advantage that they can be used at any 

moment in time when experimental data become available to refine structural ensembles 

previously calculated, at convenient computational cost. Despite this feature, to generate 

novel structural ensembles with experimental data at hand, we believe that the methods that 

directly use data as restraints should be preferred. 
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Community goals 

 

Methods for structural ensemble determination are becoming increasingly popular and they 

will certainly continue to be further developed. We believe that a collective effort of the 

community is now needed to establish objective criteria and standards for structural ensemble 

comparison, validation, visualization, and dissemination. Here, we briefly discuss what we 

see as the most pressing present goals. 

 

Goal 1: To establish robust methods of structural ensembles comparison.  The availability 

of a wide variety of methods to generate structural ensembles prompts the question of how to 

compare structural ensembles obtained using different techniques. While many algorithms to 

address this problem have been proposed, there is still no consensus on what constitutes a 

satisfactory answer. Generally speaking, there are three main comparison techniques, which 

analyse structural ensembles based on their underlying probability distributions: 1) fast 

harmonic algorithms for small-scale fluctuations (or harmonic ensemble similarity), 2) 

structural clustering based methods in which the similarity is defined by the co-occurrence of 

conformations in both ensembles, and 3) dimensionality reduction methods where similarity 

is defined by projecting the ensembles into lower dimensional spaces. For a summary of the 

basic algorithms underlying these techniques and their respective advantages and limitations, 

see [76,77]. While these methods may yield valuable insights into the conformational 

differences obtained when generating structural ensembles with various inputs (different force 

fields, water models, varying sources of experimental data, etc.) [77], we encourage the 

community to establish robust comparisons based on the prediction of measurable quantities 

from the structural ensembles. 

 

Goal 2: To establish robust methods of structural ensemble validation. Although it is very 

challenging to know the accuracy and precision of a structural ensemble, it is possible to 

define objective criteria to assess its quality using a combination of experimental validation 

and data removal or remodeling techniques. Independent structural data not used in the 

generation of the structural ensembles, such as chemical shifts for backbone conformations, 

NOEs for interatomic distances, scalar couplings for backbone and side chain dihedral angles 

and RDCs for interatomic bond orientations, can be used to validate the structural ensembles. 

Furthermore, the robustness of a structural ensemble can be quantified by assessing its 

dependency on particular data points. Upon removing a fraction of the input data, a large 
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modulation in the resulting structural ensemble is a sign of poor accuracy. The development 

of standardized, rigorous methods of validation will help increase the accuracy and reliability 

of the structural ensemble determination methods. These methods will also help clarify the 

effects of variations in the experimental conditions on the structural ensembles, which in the 

case of disordered proteins can be highly significant, as well as provide confidence on the 

functional insights that can be obtained from the structural ensembles themselves.   

 

Goal 3: To establish effective visual representations of structural ensembles. It is rather 

common to represent structural ensembles by overlaying multiple conformations in a single 

image. While visually appealing, such representations are usually inadequate to show the 

weights associated with individual conformations, and thus are limited in their information 

content. Better methods are those that represent free energy landscapes corresponding to the 

structural ensembles, which can be generated using dimensionality reduction algorithms. 

While a detailed discussion about these methods is beyond the scope of this review, we 

highlight low-dimensionality reduction algorithms such as sketch-map [78], isomap [79,80], 

and other nonlinear manifold learning algorithms offer effective representations of complex 

free energy landscapes [81,82]. Establishing a standard practice for structural ensemble 

representation will undoubtedly facilitate unbiased comparisons between such ensembles.   

  

Goal 4: To distribute effectively structural ensembles to the community. Analogous to the 

Protein Data Bank (PDB), which is the reference repository for protein structures, the 

‘Ensemble Protein Database’ (http://www.epdb.pitt.edu/) and the ‘Protein Ensemble 

Database’ [6] (http://pedb.vib.be) have been proposed to host structural ensembles of folded 

and disordered proteins, respectively. Unfortunately, it has yet to become the norm to upload 

structural ensembles to these databases, but without these shared data, progress in the field 

will be hindered. Furthermore, in order to calculate statistical averages over such structural 

ensembles, and hence to enable predictions to be made, the statistical weights of members of 

the ensembles will have to be deposited as well.  

  

Goal 5: To improve force fields used in molecular simulations. One could envision iterative 

refinement procedures to improve the force fields, for example by modifying selected energy 

terms of a force field in order to reproduce increasingly well a ‘target’ structural ensemble 

determined from experimental data. While progress has already been made in this direction 

[83,84], a goal for the community is to establish automatic procedures to map back structural 

http://www.epdb.pitt.edu/
http://pedb.vib.be/
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ensembles into corrections to the underlying force field and ensure that such modifications are 

portable to several different systems beyond those used in the refinement process. 

 

Goal 6: To understand the role of dynamical effects in protein behaviour. In the definition 

of structural ensembles, we have not included the transition rates between different 

conformations. We should thus point out that such a definition is not suitable to describe 

phenomena that depend on dynamical effects. To study such phenomena, it will be necessary 

to develop additional methods for the determination of transition rates [2]. 
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Figure 1. Determination of protein structural ensembles by combining experimental and 

theoretical methods. The combined use of experimental and computational techniques can 

lead to the accurate determination of structural ensembles of proteins by overcoming the 

limitations of individual techniques. Experimental methods on conformationally 

heterogeneous states of proteins, such as NMR spectroscopy, SAXS/WAXS and cryo-EM, 

typically provide ensemble-averaged, sparse, and sometimes ambiguous data affected by 

random and systematic errors. Computational methods, such as molecular dynamics 

simulations, are affected by the inaccuracies of the underlying force fields and by the limited 

timescales accessible to the simulations.  

 

 

 



 22 

 

 

Figure 2. Determination of protein structural ensembles using the ‘metadynamic 

metainference’ method. The metadynamic metainference approach [68] combines the 

‘metainference’ method [65], which models heterogeneous systems by integrating noisy, 

ensemble-averaged experimental data and prior knowledge, with the enhanced conformational 

sampling provided by the ‘parallel bias metadynamics’ method [67] to yield a posterior 

ensemble and the respective noise levels.  
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Figure 3. The determination of a structural ensemble can be a well-defined problem. The 

determination of a structural ensemble from a given set of experimental data may be 

considered as an ill-defined problem (i.e. a problem that admits multiple solutions) because 

there are many ensembles that fit equally well the data. However, when these ensembles are 

not directly distinguishable by experimental measurements, the determination of a structural 

ensemble can be in fact considered a well-defined problem. In this case, the many ensembles 

that fit the data used to determine them are effectively indistinguishable because they give rise 

to the same predictions for independent measurable quantities not used to determine them. 



 24 

 

 

Figure 4. Comparison of maximum entropy and maximum parsimony methods. 

Maximum entropy methods are particularly suitable to study protein states characterized by 

high degree of conformational heterogeneity (i.e. with high entropy), while maximum 

parsimony methods can be used for ordered protein states (i.e. with low entropy). 
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Table 1. Summary of available methods for structural ensemble determination. For each 

method, we report the name, the year of the original paper, if it is inspired by the maximum 

entropy (ME) or maximum parsimony (MP) principles, if it is based on Bayesian statistics, if 

it deals with errors in the data and with ensemble-averaged data, and if the data are used 

directly as restraints or in a posteriori reweighting procedure. 

 

ID Name Year ME MP Bayes 
Data 

errors 

Ensemble

averaged 

data 

Restraint Reweight Ref. 

1 
Maximum entropy 

restraints 
2012 x    x x  [31] 

2 
Maximum entropy 

restraints 
2013 x    x x  [32] 

3 
Replica-averaged 

metadynamics 
2013 x    x x  [36] 

4 
Maximum entropy 

restraints for 

distance histograms 
2013 x     x  [39] 

5 
Ensemble-Biased 

Metadynamics  
2015 x     x  [40] 

6 

Experiment 

directed 

metadynamics  

2015 x     x  [41] 

7 EROS 2011 x   x x  x [42] 

8 COPER 2015 x   x x  x [43] 

9 ENSEMBLE 2001 x    x  x [44] 

10 EOM 2007  x   x  x [45] 

11 ASTEROIDS 2009  x   x  x [46] 

12 SES 2013  x  x x  x [47] 

13 SAS 2007  x   x  x [48] 

14 MaxOcc 2010  x   x  x [49] 

15 MES 2009  x   x  x [50] 

16 BSS-SAXS 2010  x   x  x [51] 



 26 

17 

Bayesian 

ensemble 

refinement  

2015 x  x x x x x [53] 

18 BE-SAXS 2016 x  x x x  x [54] 

19 EISD 2016 x  x x x  x [55] 

20 BELT 2014 x  x x x  x [56] 

21 

Integrated 

Bayesian 

Approach 

2014 x  x x x  x [57] 

22 Sethi et al. 2013 x  x x x  x [58] 

23 
Reference ratio 

method 
2013 x  x x x  x [59] 

24 BICePS 2014 x  x x x  x [60] 

25 BioEM 2013  x x x x  x [61] 

26 BW 2010  x x x x  x [62] 

27 

Multi-state 

Bayesian 

modeling 

2014  x x x x x  [63] 

28 
Metainference 

metadynamics 
2016 x  x x x x  [68] 

 

 

 

 


