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Abstract: We construct a scattering theory for the spin &2 Teukolsky equations on
the exterior of the Schwarzschild spacetime, as a first step towards developing a scat-
tering theory for the linearised Einstein equations in double null gauge. This is done by
exploiting a physical-space version of the Chandrasekhar transformation used by Dafer-
mos et al. in (Acta Math 222(1):1-214, 2019. https://doi.org/10.4310/acta.2019.v222.
nl.al) to prove the linear stability of the Schwarzschild solution. We also address the
Teukolsky—Starobinsky correspondence and construct an isomorphism between scatter-
ing data for the + 2 and — 2 Teukolsky equations. This will allow us to state an additional
mixed scattering statement for a pair of curvature components satisfying the spin +2
and — 2 Teukolsky equations and connected via the Teukolsky—Starobinsky identities,
completely determining the radiating degrees of freedom of solutions to the linearised
Einstein equations.
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1. Introduction and Overview

Scattering theory has been an important tool in the mathematical and theoretical study
of black hole solutions to the Einstein equations, which in vacuum take the form

Raplg] =0 (1.1)

(setting the cosmological constant to zero). Whereas there has been extensive work on
scattering for scalar, electromagnetic, fermionic fields on black hole backgrounds (see
already [7,21,23,24,39]), in the case of the scattering of gravitational perturbations
much of the historic literature has been concerned with solutions to equations governing
fixed frequency modes (see [10,26] for an extensive survey, and the very recent [42]),
and comparatively little has been said about scattering theory on black holes in physical
space. The aim of this work is to address this vacancy for the case of linearised gravi-
tational perturbations around the Schwarzschild exterior, which in familiar coordinates
has the metric [41]:

-1
g=— (1 — 2—M> dr* + (1 - 2—M) dr? + r?(d6? + sin” 0d¢?). (1.2)
r r

The subject of scattering theory is the study of perturbations evolved on scales that
are large in comparison to a characteristic scale of the perturbed system. More concretely,
scattering theory is relevant when the perturbations are meant to be asymptotically free
from the effects of the target. In this picture, incoming and outgoing perturbations are
approximated by solutions describing "free" propagation. A mathematical description
of scattering hinges on an appropriate and rigorous formulation of these ideas, and much
of the value of scattering theory lies in the identification of the correct candidates for
spaces of "scattering states" that describe incoming and outgoing perturbations. In these
terms, a satisfactory scattering theory must provide answers to the following questions:

I Existence of scattering states: Is there an interesting class of initial data that evolve
to solutions which can be associated with past/future scattering states?
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II Uniqueness of scattering states: Is the above association injective? Do solutions that
give rise to the same scattering state coincide?
IIT Asymptotic completeness: Does this association exhaust the class of initial data of
interest?

Because of the nonlinear nature of the Einstein equations (1.1), the study of scat-
tering in general relativity is dependent on a thorough understanding of the perturbative
behaviour of the equations. As a first step, it is useful to understand the evolution of
solutions to the linearised Einstein equations, which are obtained by formally expand-
ing a family of solutions in some smallness parameter € around some fixed background,
e.g. (1.2), and keeping only leading order terms in € in the equations (1.1). Studying the
evolution of linear equations on black hole backgrounds has its own appeal, as black
holes by their very nature are immune to "direct" observation and even their existence
can only be inferred by examining their effects on the propagation of wave phenomena
in spacetime. The linearised Einstein equations still inherit many of the features as well
as the difficulties that plague the study of the nonlinear equations.

A foundational breakthrough in the analysis of the linearised equations was dis-
covered by Bardeen and Press [9] in the case of the Schwarzschild black hole (1.2) and
Teukolsky [45] in the case of the Kerr black hole [32], who showed that by casting the
equations of linearised gravity in the Newman—Penrose formalism, it is possible to iden-
tify gauge-invariant components of the curvature that obey 2" order decoupled wave
equations, which on the Schwarzschild spacetime take the forms

4 3M
O, Q%a + = (1 - = ) 0, = V(r)Qa, (1.3)
4 3M ) 5
Qa—— 1 —— ) 0,Qa0=V({#r)Qa. (1.4)
rQ2 r

Here, O, is the d’ Alembertian operator of the Schwarzschild metric g, o, ¢ are symmetric

traceless S2-tangent 2-tensor fields, 22 = 1 — 22 and V = M (see already
Sect. 3.1). Equations (1.3), (1.4) are known as the Teukolsky equatlons of spin + 2 and
— 2 respectively.

In addition to the Teukolsky equations (1.3), (1.4), the quantities ¢, ¢ satisfy a closed
system of equations known as the Teukolsky—Starobinsky identities, relating the action
of a 4™ parabolic operator on S x R; on either of & or « to 4 weighted null derivatives
of the other field:

02 2 3 .
— QY3 (ész%) o = 2K DI DD Dar Qe + 12M 0, r e, (1.5)
.

02 2 3 _
= v, (észm) o = 2D D Dor P — 12M 3, r Q. (1.6)
.

The purpose of this paper is to study the scattering theory of the Teukolsky equations
(1.3), (1.4) as a prelude to studying scattering for the full system of linearised Einstein
equations. This is done by first developing a scattering theory for (1.3), (1.4) in particular
addressing points I, II, III above, and then bridging this scattering theory to the full
system of linearised Einstein equations by incorporating the constraints (1.5) and (1.6).
A complete treatment of the full system will appear in the forthcoming [37].

To elaborate on the ideas involved we go through a quick survey of the history of
the subject. In Sect. 1.1 we review known scattering theory for the scalar wave equation
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highlighting the role of redshift as a feature of scattering on black hole backgrounds.
Section 1.2 is a survey of the difficulties encountered in the study of scattering for
the (linearised) Einstein equations, and will motivate and introduce the main results.
Section 1.3 contains a preliminary statement of the results of this paper. Section 1.4
contains an outline of the structure of the paper.

1.1. Scattering for the scalar wave equation and the redshift effect. It is clear that
understanding scattering for the scalar wave equation

Ogp =0 (1.7)

on a fixed Schwarzschild background (1.2) is a necessary prerequisite for our scattering
problem, and already at this level we see many of the difficulties that characterise the
evolution of perturbations to black holes. Much of the historical literature on scattering
for (1.7) concerns the Schrodinger-like equation that results from a formal separation of
(1.7) and governs the radial part. While this leads to important insights, it does not lead
on its own to a satisfactory answer to points I, II, IIT above.

The first result on physical-space scattering for (1.7) on (1.2) goes back to Di-
mock and Kay [24], who applied Cook’s method to the scalar wave equation on the
Schwarzschild spacetime. In [25], Friedlander’s use of the radiation field at null infinity
to describe future scattering states initiated a transition to a more geometric treatment of
the notion of scattering states, and subsequent works have largely adhered to this point
of view, see the discussion by Nicolas [39]. The state of the art in this area is the work of
Dafermos, Rodnianski and Shlapentokh-Rothman [21], where a complete understanding
of scattering for the wave equation (1.7) on the Kerr exterior is laid out. The scatter-
ing problem for the scalar wave equation (1.7) on the extremal Reissner—Nordstrom
background was definitively resolved in [3]. In the case of asymptotically de-Sitter
black holes, we note the result [27] on asymptotic completeness for the Klein—Gordon
equation restricting to solution of fixed azimuthal modes against a very slowly rotating
Kerr—de-Sitter black hole. Scattering for (1.7) has also been considered on the interior of
the Reissner—Nordstrom black hole by Kehle and Shlapentokh-Rothman [31]. Finally,
the scattering theory for the analogue of (1.7) on Oppenheimer—Snyder spacetimes has
been studied in [1,8].

What leads to the rich theory available to (1.7) is the fact that it comes with a natural
Lagrangian structure with which we can associate conservation laws encoded in the
energy-momentum tensor:

1
Tuv[d’] = au¢ oo — Eguv 0o ® aad), (1.8)

which satisfies V,, T#"[¢] = 0. Since the vector field T := 9; generates an isometry,
classical scattering theory immediately suggests the class of solutions of finite 7 -energy,
defined as the flux on a spacelike or null hypersurface of the quantity

I pln*, (1.9)

where JX[¢] u = Tuw[@]XY and n* is the vector field normal to the hypersurface, as
this flux is non-negative definite and conserved. Solutions to (1.7) arising from suitable
Cauchy data have sufficiently tame asymptotics to induce smooth radiation fields on .#*
and J#*. The conservation of T-energy allows us to resolve the scattering problem by
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constructing an isomorphism between the space of Cauchy data of finite energy and the
corresponding space of radiation fields. With this, the answer to the questions I, II, III
of scattering theory for equation (1.7) is in the affirmative.

At the same time, the fact that the vector field T becomes null on the future event
horizon ##* points to a deficiency, since the T-energy density then loses control over
some derivatives and the norm on #°* defined by the T-energy,

I 1", 1.10
f% Tipln, (1.10)

is degenerate. The energy density observed along a horizon-penetrating timelike curve is
better described by J, ;ILV [¢] for a timelike vector field N, but such a vector field cannot be
Killing everywhere. The flux of this quantity is therefore not conserved and new issues
appear, paramount among which is the redshift effect.

An intuitive hint of the role played by the redshift effect is the exponential decay
in frequency that affects signals originating near the event horizon by the time they
reach late-time observers, which relates to the divergence of outgoing null geodesics
near the event horizon towards the future. It turns out that this effect can be exploited
to produce nondegenerate energies useful for evolution in the future direction, precisely
by choosing a timelike N to be a time-translation invariant vector field measuring the
separation of null geodesics near the event horizon, see [20]. In addition to using N as
a multiplier X = N, key to this method is the fact that commuting the wave equation
(1.7) with such N produces terms of lower order derivatives that come with a good sign
when estimating the solution forwards. This can be traced to the positivity of the surface
gravity; the fact that on 7%, V; T = kT with « > 0. See [19] for a detailed exposition.

Unfortunately, when it comes to backwards evolution the technique described above
does not work, as the redshift effect in the forwards evolution problem turns to a deleteri-
ous blueshift effect when evolving towards the past, and it is thus not possible to use the
energy associated with N to bound the solution in the backwards direction. Furthermore,
it can be shown that there exists a large class of scattering data having a finite N-energy
on the future event horizon #* whose N-energy blows up evolving backwards, see
[22].

Note that in the case of the Kerr exterior (a # 0) there is no obvious analogue of the
T -energy scattering theory, as the stationary Killing vector field becomes spacelike in the
ergoregion and therefore its flux no longer has a definite sign. Therefore, superradiance
features as an additional aspect of scattering theory. One cannot hope for a unitary map,
but one can still hope for a bounded invertible map. In view of the above discussion, the
N-energy space is not appropriate however. One of the difficulties is indeed identifying
the correct notion of energy. See [21] for the detailed treatment.

1.2. Linearised gravity and the Teukolsky equations. The above discussion involves
linear scalar perturbations only, i.e. solutions to (1.7), and little is known about the
scattering theory of the Einstein equations even when linearised, see [10] and [26] for a
survey. Indeed, a comprehensive study of scattering under the Einstein equations (1.1)
on black hole exteriors involves and subsumes major aspects of the study of black hole
stability. Full nonlinear stability has been satisfactorily proven for Minkowski space first
in [13], and subsequently also in [34] for the Einstein vacuum equations in a harmonic
gauge. For asymptotically flat black holes, stability results against generic perturbations
exist only for the the Schwarzschild black hole, see [16,17]. To date, full nonlinear
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stability for rotating members of the Kerr family remains an open problem. See [2, 15,
28,33,36] for the case of against very slowly rotating Kerr black holes, and [42] for the
general subextremal case. For the case of asymptotically de-Sitter black holes, results
concerning the nonlinear stability of black hole solutions with positive cosmological
constant have indeed been proven, see [29].

1.2.1. The Bianchi equations and the lack of a Lagrangian structure In a spacetime
satisfying the Einstein equations (1.1) with a vanishing cosmological constant, the com-
ponents of the Weyl curvature tensor satisfy the Bianchi equations

VWabea = 0. (1.11)

These equations, along with the equations defining the connection components, comprise
the evolutionary content of the Einstein equations (1.1). Importantly, the Bel-Robinson
tensor

Qabcd = Waecf Wbedf + >kvvaecf*vaedf (1.12)

acts as an energy-momentum tensor for the Bianchi equations. Upon linearising these
equations against the background of Minkowski space, this structure survives in the
linearised equations and allows to estimate the curvature components using the vector
field method in the same way that it was applied to study the scalar wave equation, as
was done in [11]. In fact, the vector field method applied using the Bel-Robinson tensor
was key to the proof of nonlinear stability of the Minkowski spacetime by Christodoulou
and Klainerman in [13], and it is possible to use this strategy to study scattering for small
perturbations to the Minkowski spacetime evolving according to the nonlinear Einstein
equations (1.1).

Unfortunately, this structure is lost in the process of linearising around black holes,
where the connection components couple to the curvature in a way that destroys the
Lagrangian structure of the equations (1.11): in terms of a formal expansion of perturbed
quantities of the form

(55} ()

g=g+eg, T =T+el, R=R+e€R, (1.13)

the linearised version of equations (1.11) have the schematic form

[ [}

VW+T W=0. (1.14)

Therefore, it is not possible to directly use the Bianchi equations alone to prove bound-
edness and decay results for curvature components independently of the connection
components. See the discussion in [15,16].

1.2.2. Double null gauge It is important to note that the formulation of the problem
depends crucially on the choice of gauge. It turns out that working with a double null
gauge is particularly useful to manifest a special structure in the linearised Einstein
equations that reveals an alternative method to control curvature. This gauge leads to a
well-posed reduction of the linearised Einstein equations around Schwarzschild, arising
from a well-posed reduction of the full Einstein equations (see [13,16]).

A double null gauge is a coordinate system (u, v, 04) that foliates spacetime with
two families of ingoing and outgoing null hypersurfaces. In this gauge we decompose
the curvature and connection components in terms of Sy ,-tangent tensor fields, where
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Su.v is the compact 2-dimensional manifold where the null hypersurfaces of constant
u, v intersect (see already Sect. 2 and Appendix B). On the exterior of the Schwarzschild
spacetime, the Eddington—Finkelstein null coordinates (i, v, 64) provide an example of
this gauge (where S, , are just standard spheres).

For an example of the resulting equations, the linearised curvature components

) 0 m

(1)
o A=W a4p4 and B 4, =W 4434 obey the transport equations

(O}

1 o o 6M 1) o) ) o
§Y73r§22 = -2P5Q B +r—2£2 X, QYWrtQ B —2Mr?Q B = rdjv r*Q* a,
(1.15)

where Q2 = (1 — 27M), Y4, Y3 denote the projections of the null covariant derivatives
n

to Sg’v and x denotes the linearised outgoing shear. The coupling to the connection

components means we must simultaneously consider the connection components like
[S}]

X, which satisfy transport equations of a similar form, for example:

O aM o 2 m
QY.L rQ 5 +(1 —7>Q = —r? & . (1.16)
We note that in this formulation, we can see the presence of a blueshift effect in
the linearised Einstein equations by observing that the second equation of (1.15) above
carries a lower order term with a sign that forces the solution to grow exponentially
when evolved forward in a neighborhood of the horizon. This appears to be an essential
feature of working with tensorial quantities decomposed using null frames.

1.2.3. The Teukolsky equations A quick glance at (1.15), (1.16) reveals that we can
derive a decoupled equation for « alone by acting on the first equation of (1.15) with

QY4 and following through the remaining equations to discover that o obeys the +2
Teukolsky equation (1.3). The linearisation of the component &, ; = Wa4p4 can be
shown to obey (1.4) by a similar logic, see Sect. 2.2 for the full list of the linearised
Einstein equations around the Schwarzschild background.

The derivation of (1.3), (1.4) by Bardeen and Press [9] for perturbations around
Schwarzschild and their extension to the Kerr black holes by Teukolsky [46] (using the
Newman—Penrose formalism) was a game changer in the study of linearised gravity.
If one can estimate solutions to the Teukolsky equations (i.e. equations (1.3), (1.4) on
Schwarzschild), one can hope to make use of the hierarchical nature of the linearised
Einstein equations in double null gauge (as manifest in (1.15), (1.16) for example) to
estimate the remaining components.

Unfortunately, however, having arrived at the decoupled wave equations (1.3), (1.4)

(1

for the components a, o, the essential difficulty in dealing with the linearised Einstein
equations is still inherited by the Teukolsky equations (1.3), (1.4), in the sense that equa-
tions (1.3), (1.4), taken in isolation, also suffer from the lack of a variational principle,
and neither (1.3) nor (1.4) has its own energy-momentum tensor. This is related to the
1% order null derivative term on the left hand side of (1.3), (1.4). These first order terms
are reminiscent of the wave equation (1.7) when commuted with the redshift vector field
N (note in particular that the 1% order term in the — 2 Teukolsky equation (1.4) has a
redshift sign near 5+, while the + 2 has a 1% order term with a blueshift sign near #").
This issue meant that the Teukolsky equations (1.3), (1.4), despite their decoupling, have
remained immune to known methods for a long time.
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1.2.4. Chandrasekhar-type transformations in physical space In[16], Dafermos, Holzegel
and Rodnianski succeed in deriving boundedness and decay estimates for (1.3) and (1.4)
and they subsequently prove the linear stability of the Schwarzschild solution in double
null gauge. Key to their work is the exploitation of a physical space version of a trick due
to Chandrasekhar [10], which works by commuting derivatives in the null directions past
the equations. This commutation removes the first order derivative terms and reduces
the equations (1.3), (1.4) to a familiar form:

QY3QY4 U —Q2A W +V(r) U= 0, (1.17)

where V (r) = % and
2 2
v=(qv:) r@*& (1.18)
= RE 3] r . .

The same applies to @ by differentiating in the 4- direction instead and we obtain a
(03]

quantity W satisfying (1.17) via

2

2
L) r )
W= (@Qm) r’ o (1.19)

Equation (1.17) is the well-known Regge—Wheeler equation, which first appeared
in the context of the theory of metric perturbations studied by Regge and Wheeler [40],
Vishveshwara [47], and Zerilli [49] to describe gauge invariant combinations of the
metric perturbations. The Regge—Wheeler equation (1.17) has a very similar structure
to the equation that governs the radiation field of the scalar wave equation (1.7), and in
particular the vector field method can be adapted to study (1.17). This is what was done in
[16] to obtain boundedness and decay estimates for solutions of (1.17). These estimates

for (1.17) can in turn be used to estimate a, o by regarding (1.18) and its & counterpart

as transport equations for a, & . For this to work, it was fundamental that a sufficiently
strong decay statement is available for solutions of (1.17) for a nondegenerate energy
(i.e. the analogue of the N-energy above).

Note that in the case of the Kerr spacetime a # 0, the strategy outlined above

suffers from the fact that the analogues of (1.17) are coupled to b?, & via a. Nevertheless,
it is possible to apply the same strategy to obtain boundedness and decay results for
solutions to the Teukolsky equations, see [15,36] for the case of the very slowly rotating
Kerr exterior |a| < M and the very recent [42] for the full subextremal range |a| < M.
For the case of the extremal Kerr exterior a = M, mode stability for the Teukolsky
equations has been shown in the recent [44], as well as some fixed frequency scattering
statements. Extremal black holes are however subject to the Aretakis instability [6] along
the future event horizon J#*, and this has been extended to the Teukolsky equations in
[35].

The first preliminary goal of our work will be to analyse the Regge—Wheeler equa-
tion (1.17) from the point of view of scattering. The fact that the conservation of the
T -energy leads to a scattering theory for the scalar wave equation (1.7) means one can
expect to prove an analogous statement for the Regge—Wheeler equation using analogous
methods. This will be the content of Theorem 1 (see Sect. 1.3.1).
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1.2.5. Reconstructing curvature from the Regge—Wheeler equation Starting from such
a scattering theory for the Regge—Wheeler equation (1.17), one can hope to apply the
strategy used in [16] to construct a scattering theory for the Teukolsky equations (1.3)
and (1.4) via the transport relations (1.18) and (1.19). It is however far from clear that the
transport equations (1.18), (1.19) can lead to a suitable scattering theory, in particular
one that could in turn lead to a scattering theory for the linearised Einstein equations.
The central question we aim to address is whether the 7'-energy obtained via the Regge—
Wheeler equation could define a Hilbert space of scattering states for solutions to (1.3),
(1.4), for which the central questions of scattering theory (points I, II, III above) could
be answered.

Adapting the strategy above to a scattering setting based on 7 -energies, we succeed
in constructing such a scattering theory for the Teukolsky equations answering I, II, III
in the affirmative. This will lead to Theorem 2 of this paper (see Sect. 1.3.2).

1.2.6. The Teukolsky—Starobinsky correspondence Finally, we treat whatis known as the
Teukolsky—Starobinsky correspondence. The Teukolsky—Starobinsky correspondence is

the study of the relationship between a, & using (1.5), (1.6) and the Teukolsky equations
(1.3), (1.4), independently of the remaining components of a solution to the linearised

Einstein system. The idea that knowing either o or & uniquely determines the other via
(1.5), (1.6) permeates the literature on the Einstein equations since the appearance of
the constraints in [43,45], but little has been done in the way of a systematic study of the
combined system consisting of the Teukolsky equations (1.3), (1.4) and the constraints

@

(1.5), (1.6), governing a pair o, .

The constraints (1.5), (1.6) provide a bridge between the scattering theory we con-
struct for equations (1.3), (1.4) and the full linearised Einstein equations. This is because
scattering for the linearised Einstein equations would involve scattering data for the met-

ric components, from which data for only one of o or o could be constructed from the
scattering data for the metric on each component of the asymptotic boundary. One can

hope to use the identities (1.5), (1.6) to obtain scattering data for either @ or o out of
the other, but it is entirely unclear whether we would obtain scattering data that are
compatible with the scattering theory constructed here for (1.3), (1.4), or even whether
the system consisting of (1.3), (1.4), (1.5), (1.6) is well-posed. In the context of scat-
tering, we are specifically interested in whether the operators involved on each side of
the identities (1.5), (1.6) are invertible on the spaces of scattering states, and we would

like to know whether, given scattering data for 32, & related via (1.5), (1.6), the ensuing
solutions to (1.3), (1.4) would in turn satisfy (1.5), (1.6).

Interestingly, it turns out that the study of constraints (1.5), (1.6) is much more
transparent when done via scattering rather than directly via the Cauchy problem, and
combining this with asymptotic completeness will answer the question of well-posedness
for the system (1.3), (1.4), (1.5), (1.6). We also find that it is only in the context where so-
lutions to (1.3), (1.4) are studied on the entirety of the exterior region that the constraints

(1.5), (1.6) are sufficient to determine o completely from & and vice versa. Scattering
necessarily involves considering solutions globally on the exterior. These considerations
are the subject of Theorem 3.

A corollary to our main results is that one may formulate a scattering statement for a
combined pair (82, &) satisfying the Teukolsky equations (1.3), (1.4) and the constraints

(1.5), (1.6) (this is Corollary 1, see Sect. 4.4). One can then hope that such a scattering
statement would provide a bridge towards scattering for the full linearised Einstein
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no 9 . .
equations, taking into account Eq. (1.16) relating ato X and counterpart equation relating

()

[e9)
o to x. We will immediately remark at the end of this introduction on how to formally
@ M

derive a conservation law at the level of the shears x, x which excludes the possibility
of superradiant reflection (see (1.37) of Sect. 1.3.4). This will be treated in detail again
in the upcoming [37] as part of a complete scattering theory for the linearised Einstein
equation in double null gauge.

1.3. Scattering maps. The following are preliminary statements of the results of this
work, with detailed statements to follow in the body of the paper (see Sect. 4).

1.3.1. Scattering for the Regge—Wheeler equation We begin by stating the result for the
Regge—Wheeler equation (1.17) (we omit the superscript ® in what follows). We show
that a solution arising from Cauchy data with initially finite 7-energy gives rise to a
set of radiation fields in the limit towards .#*, 2%, from which the solution can be
recovered. The choice of the Cauchy surface does not affect the fact that the flux of the
T-energy defines a Hilbert space norm on Cauchy data. For the surface = = {t = 0},
this flux is given by

, 3% +1
(W, Yas W) |20 = /Jlr Sin0d0dg |Vus VP + QY WP + [PV + = WP,
T b
(1.20)
Conservation of the T-energy suggests Hilbert space norms on & *, 5#*:
Il = f dusin0d6dg 1, 7.
st Tt
||\1:,yf+||2;T = /fdv sin 0dOde |9, -+ . (1.21)
HF H

. T oT
The Hilbert spaces Sf, EF’

supported data under the norms defined in (1.20), (1.21) and the spaces
defined analogously.

5§+ are defined to be the completion of smooth, compactly

T
,5f_ are

T
5,%” -

Theorem 1. Forward evolution under the Regge—Wheeler equation (1.17) extends to a
unitary Hilbert space isomorphism

F*r L — 5} ®EL.. (1.22)
A similar statement holds for scattering towards ¢~ , ¥ ~. As a corollary, we obtain
the unitary Hilbert space isomorphism

S, — e (1.23)

The precise statement of this result is contained in Theorems 4.1.1, 4.1.2 and 4.1.3 of
Sect. 4.1.

Note that Theorem 1 can be applied to the study of scattering for the linearised
Einstein equations in the Regge—Wheeler gauge, see also the recent [48].
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1.3.2. Scattering for the Teukolsky equations Given « or ¢ solving the Teukolsky equa-
tions (1.3), (1.4), the weighted null derivatives W, W defined by (1.18), (1.19) satisfy the
Regge—Wheeler equation (1.17), so we can try to use Theorem 1 to construct a scattering
theory for o, o using the spaces of scattering states associated to (1.17):

Let (ot, o), (&, o) be Cauchy data for (1.3), (1.4) respectively on X and define

1€t &) 5.2 1= 1Y, Y W) 7 (et &) 57, 1= 1L, Vo W17
> = = z
(1.24)

2

The expressions || || 7.2,
T

|l 112, _, turn out indeed to be norms on smooth, compactly
E
P

supported data sets on X and thus they define Hilbert space norms on the completions
of such data. Note that the values on X of W, W and their derivatives can be computed
locally using the Teukolsky equations (1.3), (1.4), out of higher order derivatives of the
initial data (o, '), (¢, ') on X.

As mentioned earlier, the energies defining the Hilbert spaces of scattering states
for the Teukolsky equations stem from the T'-energy associated to the Regge—Wheeler
equations. Remarkably, on .¢ + 2%, the radiation fields of W, W are related to those of
o, o by tangential derivatives, and it is possible to find meaningful expressions for the

corresponding norms on .#*, 7% directly in terms of the radiation fields of «, a.

Theorem 2. For the Teukolsky equations (1.3), (1.4) of spins +2, evolution from
smooth, compactly supported data on a Cauchy surface extends to unitary Hilbert space
isomorphisms:

(+2) g+ . T 42 T,+2 T,+2 -2) g+ . oT.—2 T,-2 T,-2

g 8f —>ng+ @8%+, ( y gf —>g,ﬂ+ 698%7
(1.25)

+2) gp— . T 42 T,+2 T,+2 (=2) gg— . oT,-2 T,-2 T,-2

F % — &, @5%, F gf — &, @E%T'
(1.26)

The spaces of past/future scattering states 5;: 2 5;;3, are the Hilbert spaces ob-

tained by completing suitable smooth, compactly supported data on I+, A#* under
the corresponding norms in the following:

o o 1 5
| -2k -0 (szv“ doeT Vo, +)
2
L2(# )

Hi%%)

2
L2(7 )

@)% oy

~
~

+|omay (2M 2 dgemi Do, +> H

2

4 .
) »/g". ’ ”6M°‘f* HL%% -)

2
L2 )

HZM (—2(2M8u) +302Ma)? — (2M8u)3) M, - H
L2(7 ™)

+ ||<4& — (& -d (ffoo Xz *dﬁ) H
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izwﬁ) l |& -2k -4 (/foczwd”)uz
. 2
L2(7 )

HZM (Z(ZMBU) +302My)2 + (2M6U)3) Moy + H
) L2(7 +)

Joura, |

o (2o o 2Pty e

2

@), - ||2LZ<.; =)

+

o o 1 =
B-2k -9 (2M [ e 0o, _)

L2 =) -

The maps & F% lead to the unitary Hilbert space isomorphisms

el el gl
y—Z . ST,—Q @ gT,—2 — ET’_Z @57"_2 (127)
. ]+ =%+ j7 F .

Remark 1. The scattering maps of Theorem 2 answer the questions I, II, III posed at
the beginning of the introduction. In particular, the issue of asymptotic completeness is
answered in the sense that the spaces EL%2 include all smooth, compactly supported
Cauchy data for (1.3), (1.4) as dense subspaces.

Remark 2. As the Eddington—Finkelstein coordinate system degenerates at the bifurca-
tion sphere B, it is necessary to use a regular coordinate system, such as the Kruskal

(1)

. _u_ v . .
coordinates U = e~ 2m,V = e2#. In this coordinate system we see that W oy py~

V2Q20 ~ U?*Q 2« and f/IUIAUBUN V2Q2a ~ U72Q%« extend regularly to the bi-
furcation sphere. The integrands defining Sgﬁz also extend regularly to the bifurcation

sphere B. For example,

[—2(2M8u) +32Ma,)? — (2M8u)3] Q20 = U3 UQ %, (1.28)
0 ~ 0 ___, o
f e VTIQ2y dp = Vf V QadV. (1.29)
v v

We take L?(.77F) to be defined with respect to the measure dv sin 0d6d ¢, and we define

L?(.#*) via the measure du sin 8d0d¢. Analogous statements apply to .% ~, 7~
The detailed statement of Theorem 2 is contained in Theorems 4.2.2, 4.2.3, 4.2.4
and 4.2.5 of Sect. 4.2.1, and Theorems 4.2.7, 4.2.8, 4.2.9 and 4.2.10 of Sect. 4.2.2.

1.3.3. Teukolsky—Starobinsky correspondence Finally, concerning the Teukolsky—
Starobinsky correspondence relating o, o, we may summarise our result as follows:

Theorem 3. The constraints (1.5), (1.6) can be used to define unitary Hilbert space
isomorphisms:

TSy : N — el TSy €72 — €22, (130)

TS =TSy ®TSy  EL2@ENT — L 2@ e (1.31)
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Applying TS to scattering data, one can associate to a solution to the +2 Teukolsky
equation (1.3) arising from smooth scattering data in 85,: 2@ 5;%2 a unique solution
o of the — 2 Teukolsky equation (1.4) with smooth scattering data in E;: ol 5%2
such that (1.5), (1.6) are satisfied everywhere on the exterior region of Schwarzschild.

An analogous statement applies to 7€~ , %~ and we have the unitary Hilbert space
isomorphisms

TSy €L — el TS - 5;;;} — 5;;2, (1.32)
TS =TS - ®TS 4 5%_2 o&lr — 5%2 ol (1.33)

The map 7S s+ is realised by taking the limit of constraint (1.5) near .#* and inverting
either side of the constraint on smooth, compactly supported scattering data, which are by

definition dense subsets of 5;35 % The map 7 S -+ is obtained analogously by studying

constraint (1.6) near .##*. Note that in order to obtain a unique smooth radiation field
o+ for the +2 Teukolsky equation (1.3) on J#* starting from a radiation field & 4+
for the — 2 equation (1.4), it is necessary to specify x ,-+ on the entirety of A+, and
vice versa for .#*. Thus the isomorphisms 7S g+, TS -+ can only be defined on spaces
of scattering data that determine solutions to (1.3), (1.4) globally on the Schwarzschild
exterior.

In particular, note that spacetimes of Robinson—Trautman type are excluded from our
scattering theory, see Sect. 9 and Appendix A. The Robinson—Trautman spacetimes have

the property that one of @ or o is non-trivial while the other is vanishing, and as such they
would pose a counterexample to the Teukolsky—Starobinsky correspondence if the latter
is not properly formulated. We show that this possibility is eliminated when finite-energy
scattering is considered globally on the entirety of the exterior of the Schwarzschild
solution.

The detailed statement of Theorem 3 is contained in Theorem 4.3.1 of Sect. 4.3.
See Sect. 9 for the detailed treatment.

1.3.4. A preview of scattering for the full linearised Einstein equations In reference
to Theorems 2, 3 allows us to bridge the scattering theory we build for the Teukolsky
equations to develop scattering for the full system of linearised Einstein equations in
double null gauge via the following corollary:

. — o0 =
Corollary 1. Given a smooth, compactly supported & y— on %~ such that | oo dU & g
=0, and an & yp- such that U 2 - 1S smooth, compactly supported on ', there
exists a unique smooth pair (o, &) on the exterior region of Schwarzschild, satisfying

equations (1.3), (1.4) respectively, where a realises & yp+ as its radiation field on F€+,
o realises & z+ as its radiation field on #*, such that constraints (1.5) and (1.6) are

satisfied. Moreover, a, a induce smooth radiation fields & g+, &+ in ST’: 2, ST?J:Z
respectively. This extends to a unitary Hilbert space isomorphism:

2,42 . oT,+2 T,-2 T,-2 T,+2
SIS > e (1.34)
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Corollary 1 is stated again as Corollary 4.4.1 of Sect. 4.4. The proof is contained in
Sect. 9.4.

To apply this result to scattering for the linearised Einstein equations, the strategy
will be to start from data for the metric on 57—, ¢~ (or £, ¥ ™), obtain data for the

(0] 1 1,1\7 ! .
shears § and hence @ on #*, ¥ and hence & on .#*, then use Corollary 1 to obtain
scattering data and solutions to Eqs. (1.3) and (1.4), and conclude by constructing the
remaining quantities using the linearised Bianchi and null structure equations. This will
be the subject of a forthcoming sequel to this paper [37].

We can give a preview of the scattering results of the full system: assume we have a
solution to the linearised Einstein equations defined on the whole of the exterior region
(see Sect. 2.2 for a full list of equations), such that a, & induce radiation fields & g+E
6’;’:2, &{yfe ST,’fz, &jwe 6;;2, é‘ct%afe 8%2. Using (1.16) and its counterpart in
the 4-direction, we can assert that the radiation fields belonging to the linearised shears

@ M

X, X must satisfy

2 2

(0]
+ ||6M 9, Xﬁ

L2(F+)

—~
o
|
&}
~—
—~
o
|
A~
~—
<>
S
+

L2(I%)

2 2

[

4&—4) e

+ 6M8U )A(_%(H-

L2(A)

—~
o
|
)
~—
—~

L2() (1.35)

2 2

o
+ ||6M 0, )A(']—
L2(I7)
2

L2(F)
2

m

+ 6M29, X%ﬂf

_ t
L2(J™)

(&-2)(&-4)x,,-

The fact that time translation and angular momentum operators commute with O
means that we can project scattering data on individual azimuthal modes and consider

@ m

solutions in frequency space. Since X, X are supported on £ > 2, and in view of the
unitarity of (1.35), we can translate (1.35) in terms of fixed frequency, fixed azimuthal

L2(J7)
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mode solutions to the following statement:

o 2 o 2 o 2 o 2
X+, wm e 12 + )_(jﬁ w,m.L ’LZ) = ‘ )_(t%’*,w,m,/é 12 + | X7, wm,e ‘ng
(1.36)
Resumming in Z%l ¢ and using Plancherel, we obtain the identity
m 2 o 2 [ 2 o 2
X o+ X = |x. o+ || X . (1.37
) X+ ’Lz(jf’f) ‘ X g L2(I+) ” X~ ‘LZ(jf—) ‘ Xs ‘Lz(f—) (1.37)

The statement (1.37) above ties up with the work by Holzegel [30], where a set of
conservation laws are derived for the full system of linearised Einstein equations on the
Schwarzschild exterior (1.2) (using purely physical-space methods).

Note that in particular, for past scattering data that is vanishing on S~ the identity
(1.37) has the interpretation that the energy of the gravitational energy radiated to ™
is bounded with constant 1 by the incoming gravitational energy radiated from .#~,
i.e. there is no superradiant amplification of reflected gravitational radiation on the
Schwarzschild exterior.

1.4. Outline of the paper. This paper is organised as follows: We review the linearised
Einstein equations in double null gauge around the Schwarzschild spacetime in Sect. 2.
In Sect. 3 we introduce the Teukolsky equations, the Regge—Wheeler equations and
derive important identities connecting the equations. Detailed statements of the results
of this work are presented in Sect. 4, and then the scattering theory of the Regge—Wheeler
equations is studied in Sect. 5. We develop scattering for the Teukolsky equations by first
working out the necessary estimates to understand the asymptotic behaviour in forward
evolution for both equations in Sects. 6 and 7. Backwards scattering for both equations
is treated in Sect. 8, followed by the study of the constraints (1.5) and (1.6) in Sect. 9.
Appendix A is concerned with Robinson-Trautman spacetimes, and Appendix B is a
brief review of the double null gauge.

2. Preliminaries

2.1. The Schwarzschild exterior in a double null gauge. Denote by .# the exterior of
the maximally extended Schwarzschild spacetime. Using Kruskal coordinates, this is
the manifold with corners

M =1{(U,V,0%) e (—o0,0] x [0, 00) x 7} (2.1)
equipped with the metric

2 2M  _rww 2 A B
ds™ = — T V)e 2 dUdV +r (U, V) yapd0©do”. (2.2)
r b

The function r(U, V) is determined by —UV = (ﬁ - 1) e, (64) is a coordinate

system on S2 and y, p is the standard metric on the unit sphere S2. The time-orientation
of ./ is defined by the vector field 9y + dy .
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The boundary of .# consists of the two null hypersurfaces

S = {0} x (0, 00) x S2, (2.3)
AT = (—00,0) x {0} x S, (2.4)

and the 2-sphere 13 where 5#’* and ¢~ bifurcate:
B={U,V =05 (2.5)

We define ¢+t = 7T UB, 77— =7~ UB.
The interior of .# can be covered with the familiar Schwarzschild coordinates
(t, r, 64) and the metric takes the form (1.2), i.e.

oM oM\ !
ds®> = — (1 — —) dr* + (1 — —) dr® +r*yspd02do®. (2.6)

r r

Let % = (1 — 24). It will be convenient to work instead in Eddington-Finkelstein
coordinates

1 1
u= E(t—r*), V= §(t+r*), 2.7
dre

where r is defined up to a constant by 7* = é The coordinates (u, v, #4) also define

a double null foliation (see Appendix B) of the interior of ./ since the metric takes the
form

2M
ds®> = -4 <1 - —) dudv +r(u, v)>(d6? + sin”> 0d¢?). (2.8)
r
In particular the null frame defined by the coordinates (2.7) is given by (see Appendix
B):
1 1

€3 = §au, €4 = 581)' (2.9)

We may relate U, V to u, v after fixing the residual freedom in defining ¢, r, by
U=—e 2, V = e, (2.10)

Note that the intersections of null hypersurfaces of constant u, v are spheres with metric
fap = r2y4p. We denote these spheres by S,fyv.

The (u, v)-coordinate system degenerates on .+ and .2~ where u = 00, v = —00
respectively. To compensate for this we can use the Kruskal coordinates to introduce
weighted quantities in the coordinates (1, v, 84) that are regular on /. We note already
at this stage that the regularity of dy, dy on the event horizons implies that 563, Qey

are regular on #* and ée4, Qe are regular on #~ (but not =, which include B).

We denote by %+ the ingoing null hypersurface of constant u = u*, and similarly
%, denotes the outgoing null hypersurface v = v*; define €+ N [vy, v2] to be the
subset of €+ for which v € [v1, v2], €, N [u—, u] denotes the subset of &, for which
u € [u_,u]. Let ¥ be the spacelike surface {r = 0} and let T = T U B be the
topological closure of ¥ in .#. X is a smooth Cauchy surface for .# which connects
B with "spacelike infinity"; in Kruskal coordinates it is given by {U + V = 0}. We also
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work with a spacelike hypersurface X* intersecting 57°* to the future of B3, defined as
follows: let

t*:t+2M10g(ﬁ—l>. 2.11)

The function #* can be extended to .%#°* to define a smooth function on all of .#, and
we define Z* by

T* = {1* = 0} (2.12)

We choose the integration constant in the definition of £* so that ¥ * intersects S+ at
v = 0; note that ¥* asymptotes to spacelike infinity. Define %”go = N THES).
We will occasionally use the notation x := 1 — # We denote the spacetime region
bounded by G, N [vo, v1], €y N[vo, V1], €, Nluo, u1l, €, Nluo, u1]by Dt . We

also denote the spacetime region bounded by ¢, €. T* by 75’ .
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Null infinity % We define the notion of null infinity by directly attaching it as a
boundary to .# . Define .#*, .~ to be the manifolds

It I =R x §? (2.13)
and define .7 to be the extension
M= MU I I, (2.14)

For sufficiently large R and any open set O C R x 52, declare the sets Of = (R, 00]x0O
to be open in ./, identifying .#* with the points (i, 00, 6, ¢). To the set OF we assign
the coordinate chart (u, s, 0, ¢) € R x [0, 1) x 52 via the map

(u,v,0,¢9) — (u, %, 0, ¢), (2.15)

where (u, v, 0, ¢) are the Eddington—Finkelstein coordinates we defined earlier. The
limit lim,_, o (u, v, 8, ¢) exists and is unique, and we use it via the above charts to
fix a coordinate system (u, 0, ¢) on #*. The same can be repeated to define an atlas
attaching .# ~ as a boundary to ./

2.1.1. S,%’ ,-Projected connection and angular derivatives We will be working primarily
with tensor fields that are everywhere tangential to the S,f,v spheres foliating .# . By this
we mean any tensor fields of type (k, 1), I € T%D_ # on .# such that for any point
q = (u,v,0%) € .4 wehave F|, € T((gk/;i)Siv. (Note that a vector X4 ¢ T(QA)S,%U
is canonically identified with a vector X¢ € 7./ via the inclusion map, whereas we
make the identification of a I-form n4 € ’T(z A)/// as an element in the cotangent bundle
of . by declaring that n(X) = 0 if X is in the orthogonal complement of 7° Siv under
the spacetime metric (2.2).) We will refer to such tensor fields as "S,f’v—tangent" tensor

fields in the following. It will also be convenient to work with an " S,iv projected" version
of the covariant derivative belonging to the Levi—Civita connection of the metric (1.2).
We define these notions as follows:

We denote by Y 4 (or sometimes simply ¥) the covariant derivative on S,iv with

the metric ¢ , .. Note that rY = Y which we also denote by y.
For an szw-tangent 1-form &, define P& to be the pair of functions

D€ = (divé, curl§), (2.16)
where divé = Y&, and curlé = ¢ABY 4&5. Similarly, define
Di& = (divE, —curls). 2.17)

For an Siv—tangent symmetric traceless 2-tensor E 45 we define P, E to be the 1-form
given by

(D2E)a = (diVE)4 = VP Ep4. (2.18)
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We define the operator @T to be the Lz(Sg)v)—dual to P;. For scalars (f, g) the
1-form P (f, g) is given by

1) =—Vaf+eanVs. (2.19)
Similarly we denote by 15 the ng -dual to P;. For an S,f’v-tangent 1-form £ this
is given by '
1 .
(D36)aB = —= (Yakp + Vpéa — ¢, 5dIVE) . (2.20)
2
We also use the notation
D) :=rDi, Dt =D,
" 1 5 @.21)
Dy :=rDy, D5 = rDs.
For example, if £ is a 1-form on S:%,v then
o 1 /- ° °
Py =—5 (WA’&B +Ypéa — gABVcsc) : (2.22)

and so on. Let £ be an Siv—tangent tensor field. We denote by D& and D¢ the projected
Lie derivative of £ in the 3- and 4-directions respectively. In EF coordinates we have

(D&)A 4.4, = 0uaias..4,) (DE) A 4y..4, = 0w(a,45..4,) (2.23)

Similarly, we define Y3& and Y 4£ to be the projections of the covariant derivatives V3&
and V4§ to Sg’v.

2.1.2. Elliptic estimates on SL%’U For a k-covariant Sg’v—tangent tensor field 6 on .Z,
define

— — — o —ki=
Bl = |y MBiyAB Ly MB B, 4 B g, 18l =rNEle (224)

The following is a summary of Section 4.4 of [16]. Given scalars (f, g) we can define
an S,f,u 1-form by & = rD}(f, g). In turn, given a 1-form & we can define a symmetric

traceless 2-form 0 via & = rP5&. It turns out that these representations span the space
of such & and 6:

Proposition 2.1.1. Let & be an S,f’v-tangent 1-form. Then there exist scalars f, g such
that

£ =rDi(f. 9. (2.25)

Let E be Sg’v—tangent symmetric traceless 2-form. Then there exist scalars f, g such
that

E = r*D3Di(f. g) (2.26)
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Note that when considering the decomposition of f, g into their spherical harmonic
modes, the operation of acting by P} annihilates their £ = 0 modes and the action of
P annihilates their £ = 1 modes. Thus in the case of a 1-form f, g can be taken to
have vanishing £ = 0 modes, in which case f, g are unique. Similarly, for a symmetric
traceless SL%,U 2-tensor there exist a unique pair f, g with vanishing £ = 0, 1 such that 6
is given by the expression above.

Remark 2.1.1. The operators Py, D2, P}, P; defined in Sect. 2.1.1 can be combined to
give
— 272Dy = K —2 — PP = A -1

. . (2.27)
— 2Dy D5 = A +1 - DD} = A

The operator A is the Laplacian on the unit 2-sphere S2.

Proposition 2.1.2. Let E be a smooth symmetric traceless S> v 2-tensor. We have the
following identities:

/ sin 0dOd¢ [|Y7E|2+2K|a|2] :2/ sin 0d0de| D2 B, (2.28)
52 52

u,v

1
f sin 0dOd¢ [Z|AE|2+ K212 +K|y73|2] = / sin 0d0d¢| Dy DL E|?,
SZ St

(2.29)

where K = % is the Gaussian curvature of S2 .
r 5
We also note the following Poincaré inequality:

Proposition 2.1.3. Let E be a smooth symmetric traceless S,fyv 2-tensor, then we have

2K / sin0dodg|E|* < / sin0dod¢|V 8 (2.30)
52 z

u,v

Remark 2.1.2. We will be using the notation

Ay = =225y = K —2. 2.31)

Note that .4, is indeed an elliptic operator on symmetric traceless (0, 2)-tensor fields on
$2. as it can be shown that

R[B5Di(f 9] = B5D7 (A +4)1, A +4)g). (2.32)

thus 4& + A is elliptic for A < —2 by the Poincaré inequality of Proposition 2.1.3.
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2.1.3. Asymptotics of Siv-tensor fields Let [ be a k-covariant Siv—tangent tensor field

on .7#. We say that [ converges to F' = Fp,4,..4, () as v —> oo if r*F — Fin
the norm | |s2. We may write

1
—F (u,v,0%) — F(u,0%)
p

S2

Therefore, if QY 4F is integrable in L! (Cy,) then F has a limit towards .. It is easy
to see that if {f ,}3° is a Cauchy sequence in | | then F, converges in the sense of
this definition. The above extends to tensors of rank (k, £), where r % is replaced by
r~*+¢_ Similar considerations apply when taking the limit towards .# . In particular,
for a symmetric tensor W of rank (2, 0), it will be simpler to work with WA 5. Note that
QYA = 9,W4 5, QY3045 = 9, WA 5. Unless otherwise indicated, we work with
S,f’v—tangent (1, 1)-tensors throughout.

2.2. Linearised Einstein equations in a double null gauge. When linearising the Ein-
stein equations (1.1) against the Schwarzschild background in a double null gauge, the
quantities governed by the resulting equations can be organised into a collection of
S,f’v-tangent tensor fields:

e The linearised metric components

(1 m
A ) o

g.b0..J8, Q. (2.34)

e the linearised connection coefficients

a 1
N ) W v o)

Ul m (]
Xoxm.n., Quy), Quy. 0, 0, (2.35)
e the linearised curvature components

O T S N VA O} [0}

a,a,B,B,P,0,K. (2.36)

See Appendix B and [16] for the details of linearising the vacuum Einstein equations
(1.1) in a double null gauge. We now state the linearised vacuum Einstein equations
around the Schwarzschild black hole in a double null gauge:

e The equations governing the linearised metric components (2.34):

[8)]

v | — = (tll)‘)( — v };, 4 g = ;é + 2;, .
a | £ 2Qr x) — 2 df QY4 § = 29 3 4215 (2.37)
VE
NG o o
W | X2 | = 2Qury), QV;g= 2Q%. (2.38)
Vi = =
bt =290 — 4, (2.39)

é% M fﬁ ) [0} m Eﬁ
av <§> =w, au <§> =w, Na +EA = ZWA (5) . (240)
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e The equations governing the linearised connection coefficients (2.35):

)

[0}
v 0 o 4M
QY4 r Qtrx=2Q? <dlv rn4rp ——g) +Q? Qtry,
= r2

(1

W W aM o
QY3 r Qtrx= 202 (dlv F 4P ——g) —Q? Qtry,

r2 Q
2 a 2 ay o
QV4— Qirx=4ro, 9773— Qtry= —4ro,
(1) ()
QWI" XA 20 QV l"2)2 2 M
—L =—ra, —==—r"a,
4 Q 3 Q a

QY3 rQ f= — 2P 1 —Q2 <sz x)

QY4 rQ g= 2P 1} +Q (sz x)

(O]

QY5 i=rQ g -2 1, QVar = —rQ p+Q2 4,

QY4r? ﬁ: 2PV 40 + 12 Q ,g, QY3r? = 2r2Y7AQ —rQ B.

) (1) 4M O 1
3y = —? (p ——9> =3y
r

e The equations governing the curvature components (2.36):

) 6M 2 o
QY3 rQ? a= —2rD5Q*Q B + Q 3,

W 6M92
QY4 rQ? a=2r @2929,% Q3.

[S}]

4 8 m r4 (1
QW4—'B =rdiviria QW;KE =—rdivr a,

6MQ2 .,
Q?

53] ) 0 6M§22 4
QY3r2Q B= rDi(—rQ2 b, rQ &) — —— 1,
r

QY4r’Q p= rPir Q> b, rQ &) +

QY4 r? p=rdfv r’Q b) +3M Q;;)’X,
QY3 3 p= —rdjv r*Q B +3M Qiry,

1)

QY4 13 0= —reyrl r*Q ,g QY3 rio = —reyrl r’Q B.

e Elliptic constraint equations: The linearised Codazzi equations

1 Q [} (4 (O]

dlv)(— —77+,3+—Y79tr)(,

499

(2.41)

(2.42)

(2.43)

(2.44)

(2.45)

(2.46)

(2.47)

(2.48)

(2.49)

(2.50)

(2.51)

(2.52)

(2.53)

(2.54)

(2.55)
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) Q o )
div x = ——n—ﬁ+—Y7 Qtry, (2.56)
cfrln =3, cfrly= -3, (2.57)
and the linearised Gauss equation
[ 1 1 ) (6} 29 )
K:—,O——(Qtrx—Qtrx)——ZQ. (2.58)
2r = r

Remark 2.2.1. The linearised Gaussian curvature K is defined by
Klgl:= ( A+os )trg g +- dlvdlv 7. (2.59)

Remark 2.2.2. The degeneration of the Eddington—Finkelstein (EF) frame near .7+ car-
ries over to a degeneration of the quantities governed by equations (2.41)—(2.54), as these
quantities were derived via the EF frame (see Appendix B). By switching to a regular
frame, e.g. the Kruskal frame, it can be shown that these quantities extend regularly to
2% when supplied with the appropriate weights in U, V. In particular, note that

a=V712Q%, a=U’Q %, (2.60)

extend regularly to 57, including 5.

3. The Teukolsky Equations, the Teukolsky—Starobinsky Identities and the
Regge—Wheeler Equations

3.1. The Teukolsky equations and their well-posedness. Let a, o belong to a solution to

the linearised Einstein equations (2.41)—(2.54). It turns out that the linearised fields o, a
obey decoupled 2" order hyperbolic equations, the well-known Teukolsky equations.

Take the first equation of (2.50) and multiply by é—i

4 - 4;'3) 23
@QW% rQ = —2r'D2 o) .

3.1)

Now differentiate in the 2e4 direction and multiply by  to obtain the Spin + 2 Teukol-
sky equation:

92 7‘4 6M 2 (n

—ZQV — QY3 rQ* a= 2Dy P @ ——rQ (3.2)
p

‘We note that:

2 2

" 1 1 r r
D3Py = —EA * 3 QW4§ = —QW3§ =r(x+2). (3.3)
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We may rewrite the equation as:

922 QY3QY4 rQ2 o +12A rQ% & —2r(x +2)QV3rQ% @ +(3Q2% — 5)rQ? a= 0.
(3.4)
An analogous procedure produces the Spin —2 Teukolsky equation
Q? r4 50 ) yo 6M 28
—QW3 —QW4 rQ” a= —2r"PiPrQ° o —TrQ (3.5)

which we may rewrite as

- Q—Q%szm r2 o+ A rQ? o +2r (x +2)QV4r 2% @ +3Q% — 5)rQ? a=0.
(3.6)

We now state well-posedness theorems which are standard for linear second-order hy-
perbolic equations of the type that Eqgs. (3.2), (3.5) fall under. Taking into account
Remark 2.2.2, we start with the future evolution of 2« and Q_zg .

Having derived the Teukolsky equations (3.2), (3.5), we can study these equations in
isolation. Since the following theorems do not pertain to the linearised Einstein equations,
we drop the superscript .

Proposition 3.1.1. Prescribe on * a pair of smooth symmetric traceless S,f’v 2-tensor
fields (o, o). Then there exists a unique smooth symmetric traceless Siv 2-tensor field
Q%a that satisfies (3.2) on J* (%), with Qa5+ = &, Yy, Q2a|zx = o

Proposition 3.1.2. Prescribe on ©* a pair of smooth symmetric traceless S} 2 L 2-tensor
fields (x, o). Then there exists a unique smooth symmetric traceless Su’v 2- tens0r field
Q2q that satisfies (3.5) on J* (%), with Qa5+ = «, Vg Qa5 = «.

The same applies replacing X* with any other J#*-penetrating spacelike surface

ending at ;°.

The degeneration of the EF frame discussed in Remark 2.2.2 is inherited by (3.2),

(3.5), and we must work with @ = V’zQza,g = UZQ’ZQ in order to study the
Teukolsky equations with data on X. The weighted quantities &, & satisfy the following
equations:

1 1 1
—QV3QVard + — 4 — 3QH)QY3ra — —~3Q* —5)a — Ara =0, (3.7)
Q2 M r

1 1 - 1 ~ ~
—QY3QYV4rd — — (4 — 3QY)QV4rd — —(3Q% — 5)d — Ard = 0. (3.8)
Q2 M 7

Equations (3.7) and (3.8) do not degenerate near B and we can make the following
well-posedness statement:
Proposition 3.1.3. Prescribe a pair of smooth symmetric traceless Slzj v 2-tensor fields

(&, &) on . Then there exists a unique smooth symmetric traceless Sg’v 2-tensor field
Q?a that satisfies (3.2) on J*(T) with V2Q%als = K and ¥, .V ~*Q%alx = .
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Proposition 3.1.4. Prescribe a pair of smooth symmetric traceless Slz]’ v 2-tensor fields

(&, &) on X. Then there exists a unique smooth symmetric traceless S:%,u 2-tensor field
Q2a that satisfies (3.5) on J*(Z) with V?Q *als = Zand ¥, V?*Q el = &

Analogous statements to the above apply to past development from ¥ with U, Q2 switch-
ing places with V, Q72 respectively.

In developing backwards scattering we will use the following well-posedness state-
ment for the past development of a mixed initial-characteristic value problem:

Proposition 3.1.5. Let uy < 00, v; < vy < 00. Let s be a spacelike hypersurface
connecting 7% at vy to f+ atuyandlet® =%, NJ~ ()N J*(X). Prescribe a pair

of symmetric traceless S u o 2-tensor fields:

o o+ on I N {v < vy} vanishing in a neighborhood of 7€+ N {v = v}, such that
sza(%,ﬁ extends smoothly to B,
® 00, in on € vanishing in a neighborhood of € N X.

Then there exists a unique smooth symmetric traceless S,f’v 2-tensor oo on D~
(%*U s Uf) N J*(X) satisfying the +2 Teukolsky equation (3.2) such that
V72Q2al o = V2agm, alg = aoin and (Q2als, Vas Q%als) = (0, 0).

Proposition 3.1.6. Let u,. < 00,v4 < vy, < 00. Let T be _a spacelike hypersurface
connecting * at vy to It at uy and let € = €, NI~ ()N {t > 0). Prescribe a

pair of symmetric traceless S,%)v 2-tensor fields:

o o on ST N {v < vy} vanishing in a neighborhood of v, such that Vzgﬁm
extends smoothly to B,
® & ;, on € vanishing in a neighborhood of ¢ N s

Then there exists a unique smooth symmetric traceless S,%’U 2-tensor o« on D~
(%qu s Uf) N JY(X) satisfying the —2 Teukolsky equation (3.5) such that
VEQ 2l = Vi, aly =, and (27%als, Yag @ 2als) = (0,0),

B&

bl
We will also need
Proposition 3.1.7. Let & y+ be a smooth symmetric traceless Sgo,v 2-tensor on A+ N
J7(Z%), (&s+, &) be a pair of smooth symmetric traceless Sgo’v 2-tensors on X*.
Then there exists a unique solutiond to (3.7) in J* (X)N{t* < 0} such thatd| 7+ = oz,
@5+, Vg 0] 5+) = (Xzs, Ks).
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Proposition 3.1.8. An analogous statement to Proposition 3.1.7 holds for Eq. (3.8).

Analogous statements apply for the "finite" backwards scattering problem from the past
of &, with U replacing V and Q2 switching places with Q2.

Remark 3.1.1. (Time inversion) Under the transformation 1t — —f, u —> —v and
v —> —uandthusa(u, v, QA) —> a(—v, —u, QA) =:&(u, v, QA)andg(u, v, QA) —
a(—v, —u, 04) = a(u, v, 64).

Itis clear & (u, v, 04) satisfies the — 2 Teukolsky equation, i.e. the equation satisfied
by . Similarly, & (u, v, §4) satisfies the + 2 Teukolsky equation, i.e. the equation satisfied
by «. This observation means that the asymptotics of « towards the future are identical
to those of o towards the past, i.e. determining the asymptotics of both ¢ and « towards
the future is enough to determine the asymptotics of either o or ¢ in both the past and
future directions. We will use this fact to obtain bijective scattering maps from studying
the forward evolution of the fields «, «. In particular, this prescription is sufficient to
obtain well-posedness statements for the equations (3.5) and (3.2) for past development.

Remark 3.1.2. We will sometimes denote a field « satisfying the + 2 Teukolsky equation
by writing 7+?a = 0. Similarly we may denote a solution & to the — 2 equation by
T 20 =0.

3.2. Derivation of the Teukolsky—Starobinsky identities. We now return to the full system
(2.41)—(2.54) to derive the Teukolsky—Starobinsky identities (1.5), (1.6).

Let o belong to a solution of the linearised Einstein equations. Equation (2.50)
implies:
stzy?yszz b= —2rDir’Q B +6MQ 7 . (3.9)
Using (2.51) and (2.45) we obtain
2 2 (I) (43}
<sz73) rQ? o= —2r2zbzm( PP, a) +6MrQ X —rQ ). (3.10)

We now apply é—iQVg to both sides and use equations (2.53), (2.54), (2.45) and the
second equation of (2.44) to deduce

2 3 |) oy 4(‘%)
(QZQW3> rQ? a= —2r*Pi0i D, o
2 2 ;Jé m
+6M | PP} ( (Qtrx) o) & (302 — 1)— — it

(3.11)

Now we apply Y3 once again and use (2.42), the second equation of (2.44) and the
second equations of (2.48):
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I"2 3 2 u)
QY3 <§QY73> rQ2

= 23 PED D (—rDar® &) + 6M [ﬂw);yb’{ ( 4r &, 0) — G2 -ty

18]

2 2 Y (1)
+ Q—Q%rszz o +6M——X — 32— )(—rta) - 2D52rVr o —r*Q g)}

ey ) 2 )
= 2r4@;@]k¢1¢2r3 ( +6MQ [QW4 + QW_",] rQ? o .
(3.12)

Finally, we have
3

Qz 2 (0] ey 48] (1
r—zsz% (ém@) rQ? a=2r'PI DD Dar Q2 @ +6M [QV4 + QV3]rQ @
(3.13)

An entirely analogous procedure starting from the equation for @ in (2.50) leads to
QZ r2 3 a » ey Q] )
= av, <§QY74> rQ? a=2r'Dy DD\ Dor Q@ —6M [QV 4+ Q3] rQ « .
r

(3.14)
Equation (3.14) is the constraint (1.6).

3.3. Physical-space Chandrasekhar transformations and the Regge—Wheeler equation.
The Regge—Wheeler equation for a symmetric traceless S,f 2-tensor W is given by

QYIQV3¥ — QZAY + — (392 + DWW =0. (3.15)

Suppose the field « satisfies the +2 Teukolsky equation. Define the following hier-
archy of fields

2
Py = éQY@era,
2 2 2 (3.16)
U= @Q%r*mf = (EQY%) rQla
We have the following commutation relation:
2

[ 7] —_QV3QV4 — (k + xk)rQVs + a2 + bx + C}Q_QWS

2

2
r r ’
= @QV{ — ﬁsz%mu —(k+2+x(K' +1)) rQvs; a.17)

+ (a+2k+2k’)$22+bx+c—k—2k’]

+2M (a + 2k + 2k,
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2
where a, b, ¢, k, k' are integers. We commute the operator (;2—22 QV3) past the Regge—
Wheeler operator:

2 2 2
[—@QYAQYM +r2A —302% — 1] <@m73>

7'2 r2 r2
= {@QW{ - §QW3QW4 +r2 K — Q+x)rQY; —3Q% — 1] - 6M}§QY73
r2

2 2
= @Q%{ [—&QVgQYM +124 — 2+ x)rQYs — 3Q% — 1] ész% - 6M}

2 2 2
- <&m73> { [—ém@g% +124 — 22+ 0)rQY; + 397 — 5] —6M + 6M}
(3.18)

This shows that if « satisfies the +2 Teukolsky equation then W satisfies the Regge—
Wheeler equation (3.15).
Analogously, with the following hierarchy of fields

2
r39£ = &Qvuﬂzo_z,
, ) ) (3.19)
Vi= QY = (V) r?
= 92 4r R Qz 4 r ga

we have

2 2
[ _ ém@gm + (L +xI)rQY +a2 +bx + c] &QYM

r2

2
r ’
= —QW4|:— @9W39W4+(1+2+XU + 1)) rQ2¥s (3.20)

+ (a+21+2l/)Q2+bx+c—l—21’}
+6M(a+20+20),

where a, b, ¢, 1, I’ are integers. Thus, if ¢ satisfies the — 2 Teukolsky equation then W
also satisfies the Regge—Wheeler equation.
We state a standard well-posedness result for (3.15):

Proposition 3.3.1. For any pair (\, ') of smooth symmetric traceless S,2 2-tensor fields
on X*, there exists a unique smooth symmetric traceless S,iv 2-tensor field W which
solves Eq. (3.15) in J*(2*) such that W|s+ =\ and ¥, W]z = . The same applies

when data are posed on ¥ or %.

In contrast to the Teukolsky equations (3.2), (3.5), the Regge—Wheeler equation (3.15)
does not suffer from additional regularity issues near 3, as can be seen by rewriting
Eq. (3.15) in Kruskal coordinates:

302+ 1
r2

YuVvW — A+ W =0. (3.21)
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If W is related to a field « that satisfies (3.2), then it is related to & by

= ( sz%) a—(ZMr f(r)y?U) ré. (3.22)

Proposition 3.3.2. Proposition 3.3.1 is valid replacing ©* with = everywhere.
For backwards scattering we will need the following well-posedness statement:

Proposition 3.3.3. Let u, < 00,04 < vy < 00. Let T be a spacelike_hypersurface
connecting " atv = vy to ST atu = uy andlet € = ¢, NJ ()N {t > 0}.
Prescribe a pair of smooth symmetric traceless Siv 2-tensor fields:

o Vv on 0+ N {v < vy} vanishing in a neighborhood of Pl
e Wy i, on € vanishing in a neighborhood of X.

Then there exists a unique smooth symmetric traceless S,f,v 2-tensor ¥ on D~
(%U s Uf) N J*(X) satisfying the Regge—Wheeler equation (3.15), such that
W = Wops, Wlg = Wo,in and (Y5, Vs VIg) = (0,0).

We will also need

Proposition 3.3.4. Let (\p, V') be smooth symmetric traceless S,iv 2-tensor fields on

3%, g+ be a smooth symmetric traceless Sgo,v 2-tensor field on 7€+ N {t* < 0}. Then
there exists a unique smooth symmetric traceless S,%,U 2-tensor field W on J~(X%) such

that w'%ﬁ{t*gO} =+, (\If|z*, an*\l—’b:*) = (), -Lb/)

Remark 3.3.1. Unlike the Teukolsky equations (3.2), (3.5), the Regge—Wheeler equation
(3.15) is invariant under time inversion. If W(u, v) satisfies (3.15), then h(u, v) =
W (—v, —u) also satisfies (3.15).

3.4. Further constraints among «, V and o, V. We can apply the same ideas as in
Sect. 3.3 to transform solutions of the Regge—Wheeler equation into solutions of the + 2
Teukolsky equation. Let W satisfy Eq. (3.15), then using (3.20) we can show that

92 2
QV4 5 QYW (3.23)

satisfies Eq. (3.2).

Now suppose « satisfies Eq. (3.2) and W is the solution to Eq. (3.15) related to o
by Eq. (3.16). We can evaluate the expression (3.23) using Eq. (3.2): we apply QY4 and
substitute using the + 2 equation only (we drop the superscript ®):

2 2
QY4 = QY4 (&Q%) rQ2a
}’2 r2 }’2
=r(x+ 2)Qv3—gv3r§22a + —QV4QY73§QY73VQ201
3921

r

U+ —QW3QY74 QW3rQ2
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32—-1_ r? rt Q2 )
= \I’+@QW3QW4§’F—QQW3}"Q 6%

r

392 -1 2 94 4
— v+ &QY@ |:(——4r(x + 2)) %QVgrQZa]

r

2 QZ
g zsm Vet

_392—1
N r

Q 2
sz% [ r(x +2) QW3FQ a] &9W3Tﬁ2r5220{
r r
=230 — 2)§m73r522a + EQ%T;%Q%
2 2
= —2r270;702&m73r92a — 6MrQ2a — (37 — 1)&9%&20[, (3.24)
i.e.,

2
mey = —2r27027D2 Q%rfz?a - (30— 1)—QY73rS'22a - 6MQ—r§22

QZ
(3.25)
We act on both sides with QY4 again:
r’ 274% 2 oM >
QV4 QV4\IJ = 2r°D5D, |: (—2r DyDorQa — —rQ a>i|
r
2
—6M [Q (QV3 + QV4) rQ%a +r(x +2)rQ% }
6M
[ 2P P3P, — ] [ (307 — 1)r§22a]
= 212D, |: ( 22 D5 Par QP — 2rQ%a )]
2
- 6M [Q (QV3 + QY4) r*a }
(3.26)
We finally arrive at
Q? r? 2 2% 2 2
Va5 QYW = —2r %%z[ 22D Dor e — 2r Q2 a]
(3.27)

—6M (@Y +2Ys) reka).

We record the same for W: using only the Teukolsky equation (3.5) we obtain the
analogue of (3.24)

2 2
QY3 = —(3Q% — 1)&9?74&22@ 6Mr$’a — 2r27D37z>2%m74r92g, (3.28)
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and the analogue of (3.27)

92 2
75973é5973g;:+&w[QV4+QW5p{fg+[—2ﬂ1§¢2—2](-ml$§wy{fgy

(3.29)

In the remainder of this paper we focus exclusively on the Teukolsky equations (3.2),
(3.5), the Teukolsky—Starobinsky identities (3.13), (3.14) and the Regge—Wheeler equa-
tion (3.15). In particular, we do not refer to the linearised Einstein equations (2.41)—(2.54)
and as such, we drop the superscript .

Throughout this paper we will we distinguish between solutions arising from data
on ©*, ¥ or ¥, and we subsequently construct separate scattering statements for each of
these cases, in particular distinguishing between spaces of scattering states on >0, HF

and 7%+ . It will be easiest to work with data ©* first, and then the results for the remaining
cases would follow easily.

4. Main Theorems

We define in this section the spaces of scattering states and provide a precise statement of
the results. In what follows, L2 spaces on . £, %;0, H°F, °F are defined with respect
to the measures du sin0d0d¢, dvsinfdod¢ induced by the Eddington—Finkelstein
coordinates.

Notation. For a spherically symmetric submanifold S of ./, denote by I'(S) the space
of smooth symmetric traceless S , 2-tensor fields on S. The space of such fields that are
compactly supported is denoted by ['.(S). We use the same notation for smooth fields

on I, 0+ #E,

In particular, note that A € I'(X*) says that A is smooth up to and including £* N J#*.

4.1. Theorem 1: Scattering for the Regge—Wheeler equation.

Definition 4.1.1. Let (Y, {’) € T'.(Z*) @ I'.(T*) be Cauchy data on ¥* for (3.15) of
compact support. Define the space Eg* to be the completion of I'.(X*) data under the
norm

3Q2+1
||(1p,¢’)||%g§* :/ drsin0dfde 2 — Q*)|V s W|? + Q2|V, ¥ + YW +7|\U|,

4.1)

where W is smooth and satisfies ¥V|g+ = 1, 77,12* W |5« = 1’. The space Eg is similarly
defined with the norm

. 3Q2+1
I, W)ligs = /Zdrsmededqb Vs WIP + QY W2+ | VO 4 = ]2,
4.2)

Define the space é’g to be the completion of ' (X) data under the norm (4.2). The space
5% and the norm || || ¢z are similarly defined.
x
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Remark 4.1.1. The kernel of || ||cr has trivial intersection with I"(X*). It suffices for
z*

a smooth data set (\, V') to satisfy || (P, 1.])/)||£T < oo to have (P, ) € 5):*, )
Il er s [l el I || and (4.2) define normed spaces that can be extended to Hilbert
spaces

Definition 4.1.2. Define the space £ 4 to be the completion of ', (.72 0) under the
norm

||\lf||§r . =f . |8, W% sin 0dOdpdv. (4.3)

‘Mzo j@o

The spaces £, 5;4 are analogously defined.

Remark 4.1.2. 1. The energy || ||gr . indeed defines a norm on I'¢ (2 0) which thus

extends to a Hilbert space £, E when completed under || || er . - The same applies
20

to 6’}“

gT
2. The space £ pa can be realised as the subset W -+ € L?

o QYW eLz( 0
o limy_— |\Il/g+|sz 2, = =0.

(%ﬂgo) such that

loc

Note that Hardy’s inequality holds on elements of this space and we have

| jf’|
NN 27
1 g/{

/ dv sin 9d9d¢ < 00. 4.4

Definition 4.1.3. Define the space 8{7% to be the completion of I’ (.#*) under the norm
11z, = [ 18, sinodedgau. 45)
g+ T+

Definition 4.1.4. Define the space £ - 1o be the completion of I'c(7#°") under the
norm

II\DIIST = / 10, W|? sin 0dOddu. (4.6)
-

A

The space 5% is similarly defined.

Definition 4.1.5. Define the space £7__ to be the completion of I'.(.# ~) under the norm

||\IJ||%5T =f 18, W [2dv sin 0dOd¢. 4.7)
7= I
Remark 4.1.3. Similar statements to Remark 4.1.2 apply to the norms || || £ L
I ller |l IIgT ; they are positive-definite on smooth, compactly supported data
A E sE

on the respective regions of ./, thus they define normed spaces which extend to Hilbert

spaces ng%o, é’iji, ijj, 5§i upon completion. Elements of these spaces can be iden-

tified with tensor fields in legc(% ~) for which a similar statement to (4.4) applies.
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Theorem 4.1.1. Let (P, ') € T (X*) x T'e(T*). Then the corresponding unique solu-
tion W to (3.15) given by Proposition 3.3.1 on J*(X%*) induces smooth radiation fields
P+, P g+) € T(HZ) @ T(I7) as in definitions 5.2.2 and 5.2.1, with P g+, W s+
satisfying

2 2 2
b )12, = 1[0l + el B @9
This extends to a map
Tr i Ef — Eppr D E. (4.9)

Analogously, forward evolution from smooth compactly supported data on ¥ or %
extends to the maps,

Frel — e ecl., (4.10)
. eT T T
FrieL — el (@.11)

Theorem 4.1.2. Let P g+ € To(I ), P p+ € FC(%”;O). Then there exists a unique
solution ¥ to Eq. (3.15) in J*(X*) which is smooth, such that

. A _ _
im0, 6% =, \11|Jf;0_1p%+. 4.12)

with || (W] g+, Vg Wls+)

"255* = Hlbf+’|,25;+ + Htl)deer;Jr This extends to a map
B 55@0 ol — &L, (4.13)

which inverts the map F* of Theorem 4.1.1. Thus %", %" are unitary Hilbert space
isomorphisms and

B o F " =F 0B =1d. (4.14)
Similar statements apply to produce maps
B ®EL. — EL, (4.15)
B EDEL — EL. (4.16)
Theorem 4.1.3. Analogously to Theorems 4.1.1 and 4.1.2, there exist bounded maps
F &L — &l el B el — &l 4.17)
—. o7 T T . oT T T
F .5§—>€F®51,, 93#5?@5],—)5? (4.18)
such that F~ o Bt = $B* o .~ = Id on the respective domains. The maps
S =T oB @, — &L BE., (4.19)
_ g+ + . oT T T T
S =F oA .SJTEBSj,—)F%ﬁ@EyJ, (4.20)
constitute unitary Hilbert space isomorphism with inverses
S =F o B 1 ®E —E@E, 4.21)
- —. el T T T
S =F oA .S%Jr@é'jJ,—)SJ?@Ef, (4.22)

on the respective domains.
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Remark 4.1.4. We emphasise that the spaces €£ and 5% are different and 5% - 5%.
. . T T
Similarly, £°,, < 5%
consistent in the sense that elements of 5% are mapped into 5;/“ and vice versa. Our
point of view is that the spaces 5% f,';fi are the natural spaces to consider, since in

. Our prescription in distinguishing between these spaces is

these spaces scattering data are not restricted to vanish at the bifurcation sphere B. It
is however useful to have the statements involving Eg ,E gfi. In particular, solutions

arising from past scattering data identically vanishing on .77~ will lie in these spaces.

4.2. Theorem 2: Scattering for the Teukolsky equations of spins £ 2.

4.2.1. Scattering for the + 2 Teukolsky equation

Definition 4.2.1. Let (, &) € T (X*) @ T (X*) be Cauchy data for (3.2) on * giving
rise to a solution «. Define the space ngz to be the completion of I'c(X*) @ ['.(Z*)
under the norm

et &) = 0¥, Yoy DIy (423)
T* *

2
where W is the weighted second derivative W = (;2—229%) rQ2a of a. The spaces
Sg’ﬂ, g%,+2 are similarly defined.
We immediately note the following:

Proposition 4.2.1. || || eI+ indeed defines anormon T (X) x ' (X). Similar statements
z
hold for || ||5£,*+2, [| ||51.+2.
x

Proof. Tt suffices to check that (o, o) || er+2 =0 for a smooth, compactly supported
z

pair (e, o) implies that (o, o) = (0, 0). Let o, ¥ be as in Definition 4.2.1. It is clear
that & = 0, and (3.27) implies:

1
WTO{ = WAZ(AZ — 2)0[ (424)
Equation (3.24) implies that on ¥
6M 1 Q?
Ay =2+ — | [ —As(Ar —2) — Vg+ | rQ%a —6M —rQ%a = 0. (4.25)
r 12M r2

Take F = (A — 2+ ) rQ%q, then the above says Y+ F = 15742 (Ao —2) F —

2 . .
12M5r2—2r§22ot. We integrate over the region Rg < r < Ron X:

. 1 ;
IF WS, g = IF I, _p, +/ Q2dr sin 0dod [|A2F|2 +2|YF)? + 4|F|2]

YN{Ro<r<R}
Q[ o 6M
+24M = {|Y7rs2205|2+ (4— —) |r522a|2}. (4.26)
r r
This implies || F ||§2 _p = | F ||§2 =Ry (notice that the integral on the right hand side

remains positive by Poincaré’s inéquality). If the data are compactly supported then F



512 H. Masaood

must vanish everywhere on X, and the vanishing of F implies the vanishing of 2« for
smooth « since the operator A, — 6M is uniformly elliptic on the set of symmetric,
traceless 2-tensor field on S? (recall Remark 2.1.2). This in turn implies the vanishing

of ¥, 2% by (4.24). We can repeat this argument for data on £*, £. O

Definition 4.2.2. Define the space of future scattering states & T42 on A+ to be the

Ay
completion of I, (2 ()) under the norm
) . ~ 2
IAllgrae = HAZ(AZ ~2) (/ dv eZM(”“)A>
# 2o v LX)
00 | ~ 2
+||6Md, (/ dv eW(U_U)A)
v L2y

o [ 1 1?2 . oo . 2
+/ sin0dOd¢ A/ dvo e VDAl 46 ’V/ div e @V A
§? =0 =0
o 1 -2
+3| [ dp e D 4 ) .
=0
(4.27)
Define the space £ %f to be the completion of I'¢(##’*) under the norm
00 | ~ 2
[Allgre = HAz(Az -2) (/ dv em<v—v>A>
H* v L2(jiﬂ+)
[} | ~ 2
+ |6ma, ( / d em<v—v>A) . (4.28)
v Lz(ji’)*')
Define the space £ L+2

Sgo’v 2-tensor fields A on 7+ such that V—2A e T, (%“), under the same norm above
evaluated over JZ*.

Remark 4.2.1. Let A € T, (jfjo) If ||A||gr+z = Othenf dv e =D A = 0 for all

v, which implies that A must vanish if it is smooth Thus || || gr +2 defines a norm on
>()

I, (%”;O), which then extends to the Hilbert space 52’&3. The same applies to 5;;12,
>0 7
T,+2
Ej% '

Definition 4.2.3. Define the space of future scattering states £, T2 on .#* to be the
completion of I'c(_#) under the norm
i

Remark 4.2.2. The energy N £rs 2 indeed defines anorm on T (.#*), which thus extends

(4.29)

L2(I%)

to a Hilbert space e ﬁ 2 when completed under || || gr +2. We can identify E?f 2 as the

subset A € LZOC(/ *) whose elements satisfy
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e 3A € L2(IY),
elim, . |Alg2 =0.

Hardy’s inequality holds and we have on this subset

A2

/+du sin0d0d¢ < AR < 0. (4.30)

ub+1" el

Definition 4.2.4. Define the space of past scattering states 5;;_2 on S~ to be the
completion of I'. (%) under the norm

1Al g = Hz(zMau)A —30QM8,)*A + (2M8M)3A‘
H

. 4.31
s (4.31)

Define the space S;T‘L_z to be the closure of the space consisting of symmetric traceless
Si,—oo 2-tensor fields A on #~ such that U?A € T, (%*), under the same norm

above evaluated over J7 .

Remark 4.2.3. As mentioned in Remark 2 of Section 1.3.2 of the introduction, the energy
defined in (4.31) can be written using the Kruskal frame as

|Algroe = 1U205U ANl 122 (4.32)

This defines a norm on I'. (), which then extends to the Hilbert space E;;}. It is

possible to represent the elements of £ ;’:,2 as the subset A € leo .
satisfy ,

° 0,A, 2A,33A € L2(o),
(] limu_)_oo ||A||L2(S2) =0

(A7) whose elements

Hardy’s inequality holds on this space we have

|A?

. 2
/ ) du sin 9d9d¢u2 1 < ”A”Q;ﬁ < 0. (4.33)

Definition 4.2.5. Define the space of past scattering states 5{;’? on .#~ to be the com-
pletion of the space

o
AeT(I7): / dvA=0 (4.34)

—0o0

under the norm
00 2
||A||‘2€T,+2 =/ di sin 0d0d ¢ |:6M|A|2+ Az (Ay —2)/ A ] (4.35)
I = I v
Remark 4.2.4. Let A € To(F 7). If ||A||(2€TV+2 = 0 then A = 0. Thus || llim defines a
- P

norm on I'¢(.# 7) which then extends to the Hilbert space €;f2.
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Theorem 4.2.2. Forward evolution under the + 2 Teukolsky equation (3.2) from smooth,

compactly supported data (x, &) on * gives rise to smooth radiation fields (& yp+, & _g+)

T,+2 T,+2
€ 5%;0 @ Sj+ where

L oype =2MQ%a| ,,, € T(A),
2. &g+ = limy_ o0 Pa(v, u, 04), with « g+ € T(I),
with & g+, o_yp+ satisfying

2 2 2
|| (o, )| 702 = lleer+lloran +llorllgrae (4.36)
T* 7+ wt

This extends to a unitary map

D gt el — el 2l (4.37)
=0 :

The same conclusions apply when replacing ¥* with ¥ and jfgo with 6%, or when

replacing with X and 7€+. In the latter case, («, o) must be consistent with the well-
posedness statement Proposition 3.1.1 and consequently we obtain that V" >& yp+ €
C(o7).

Theorem 4.2.3. Let & g+ € T'e(I7F), &+ € Te(HZ,). There exists a unique solution

a to Eq. (3.2) in J*(Z*) which is smooth, such that

lim rsa(u, v, OA) = X g+, §2201|9er = X _yp+, (4.38)
V—> 00 <=0

. T,+2 2
with  (Qals+, Vo, Qalzs) € &g and ||(92a|2*,W,12*§22a|;*)||8£;2

= | g+ ||§T’+2 + ||+ | |§T4+2. This extends to a unitary map
e o+

Dol e, — e, (4.39)

which inverts the map ®? F* of Theorem 4.2.2
DB~ o D gt = D g+ o D= = 4. (4.40)

The same conclusions apply when replacing ¥* with ¥ and Jz@o with 7%, or when
replacing with S and 7+. In the latter case, we require that V 2o g+ € T'(J€F) and
thus the induced data (|5, anodf) satisfy the conditions of Proposition 3.1.3.

Theorem 4.2.4. Evolution from (x, &) € To(X) x T'e(X) to J~(X) gives rise to radi-
ation fields on 7€~ , 9~ analogously to Theorem 4.2.2, where the radiation fields are
defined by

lim  ra(u,v,0%) = o, 2MQ |, = oy (4.41)
% 7

u—

This extends to a unitary map
+2) gg— . oT .2 T,+2 T,+2
FT il — ELT®EST, (4.42)
with inverse 2 2+ 5;’;,2 &) EQfZ — 5£’+2. The same conclusions apply when re-

placing X with X and 3¢~ with 7~ In this case, we require that (UZSZ_2 o, U2Q—2 )
are smooth up to and including B, and consequently we obtain that U*o_y— € T'(H7).
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Theorem 4.2.5. The maps

T,+2 T,+2 T,+2 T,+2

Wy =DgrtoWgt. e o™ — e el (4.43)
2 2 2 2

g =D Fgto®gr 2o — L2 @E,! (4.44)

constitute unitary Hilbert space isomorphism with inverses

g =W g-oWg el - el (4.45)
+2) p— _ (2 gg— (2 gp— . T 42 T,+2 T,+2 T,+2
ST =T Mg R, — e, (4.46)

on the respective domains.

4.2.2. Scattering for the — 2 Teukolsky equation

Definition 4.2.6. Let (x, &) € T.(X*) @ T (X*) be Cauchy data for (3.2) on X* giving
rise to a solution «. Define the space 5;—2 to be the completion of I'.(X*) @ ' (X*)
under the norm

(e &)l > = 1L, Vg Wl (4.47)
¥ *

where W is the weighted second derivative ¥ = (;2—229?4)2 rQ%a of a. The spaces
Eg’_2, 5%’_2 are similarly defined.

Proposition 4.2.6. || || 12 indeed defines a norm on I' () x I'c(2).

Proof. Tt suffices to check that ||(x, &) g1 = 0 implies (o, &) = (0,0). Let a

and W be as in Definition 4.2.6. It is clear that ||(«, gc/)llgr,fz = 0 implies W = 0.
x
Equation (3.29) implies that

1
VrrQla = —WAQ(AZ —2)rQ%a. (4.48)
Equation (3.28) then gives us
6M 1 Q2
A+2 — — [ =—A(Ar —2) — V= | rQ®a + 6M —rQ%a = 0.  (4.49)
r 12M r2

Let F = (A — %) r$2a, then (4.49) above implies that ¥ g« F = ﬁAz(Az —2)F.

The result follows similarly to Proposition 4.2.1. O

Definition 4.2.7. Define the space of future scattering states £ ;’;2 on 7, to be the
A >

completion of I, (%go) under the norm

IAll g2 = 2M)? H2(2M8U)A +3Q2M3,)%A + (2Ma,,)34( (4.50)
,Vfgo

L2
The space Eggz is defined by the same norm taken over #*. Define and 5%2 to be
the closure of the space consisting of symmetric traceless Sgo!v 2-tensor fields A on S+

such that VZA el (%ﬁ +>, under the same norm above evaluated over 7.
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Remark 4.2.5. As with Remark 4.2.3 on || |[¢7.+2, the energy || [|o7.—> indeed defines
o= A+

a norm on [".(7#%), which then extends to the Hilbert space 8%2. It is possible to

2

ZOC(%?O) whose elements satisfy

represent the elements of 5}:2 as the subset A € L
2

© 0,A, 0;A, 8 A € L2(HL),

o limy o |Allz2(52) =0

Hardy’s inequality holds on this space we have

. A2 2
dvsin0dode¢ i SNAN g, < oo. 4.51)
jfgo ve+1 8'/f>+0

Similar statements apply to £ ?’:2, 5%2

Definition 4.2.8. Define the space of future scattering states 6’;’: 2 on .#* to be the
completion of the space

o0
AeT (I :/ dud =0 (4.52)
—0Q

under the norm

Az (A — 2)/: du A

2
IIAIIEH :/ du sin 0d0d¢ |:(6M)2|A|2+ ] (4.53)
7+ B

Remark 4.2.6. As with || || c7.+> and Remark 4.2.2, the energy || || c7.—2 indeed defines a
7 - g+
norm on ['¢(.#7"), which then extends to the Hilbert space S;: 2,

Definition 4.2.9. Define the space 5;;:2 to be the completion of I'.(#°~) under the

norm
u ) ~ 2
IAllgr.—2 = HAz(Az -2) ( / dit eZM(”‘”)A>
H —00 L2(7)
u : ~ 2
+||6Ma, ( f dii eZM(“_“)A> (4.54)
—00 L2()

Define the space 5;%2 to be the completion of the space consisting of symmetric trace-
less S7 _, 2-tensor fields A on .#~ such that U™2A € T (%”*), under the same
norm above evaluated over J# .

Remark 4.2.7. As with || || cr.—2 and Remark 4.2.7, the energy || ||o7.—2 indeed defines a
= =

norm on I".(2°~), which then extends to the Hilbert space 5%2.

Definition 4.2.10. Define the space of future scattering states 5;,_ % on .#~ to be the
completion of I'.(.# ) under the norm

(4.55)

04|

Allor,—2 = ‘ .
Al s
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Remark 4.2.8. The energy || ||g7.—> indeed defines a norm on I'.(.#7), which thus ex-
P
tends to a Hilbert space £ T,’f 2 when completed under || || gr.—2. We can identify E;’f 2
T~

as the subset A € L?

loc

o 0,A, 02A.03A € LA(5),
elim, ,_ o ||A||L2(52) =0.

(#7) whose elements satisfy

Hardy’s inequality holds and we have on this subset

|A|?
0o+ 1

/ dvsin0d0d¢ S Al < 0. (4.56)
. T

Theorem 4.2.7. Forward evolution under the — 2 Teukolsky equation (3.5) from smooth,
compactly supported data («, o) on T* gives rise to smooth radiation fields (X yp+, X g+)

€ S;é)z ® ET’fz where
L o ype =2MQ 20| . € T(H7),
2. & g = limy—s o0 ra(v, u, 04), with & g+ € T(IY),
With & g+, & yp+ satisfying
2 2 2
|Gt D[z -2 = |[otre|[gr 2 + ||%f+||g;;0 : (4.57)

This extends to a unitary map

el — el el (4.58)
i, L

The same conclusions apply when replacing ¥* with ¥ and 2, with 7, or when

replacing with X and 7€*+. In the latter case, (x, o) must be consistent with the well-
posedness statement Proposition 3.1.2 and consequently we obtain that V2 o+ €

(7).
Theorem 4.2.8. Let ot s+ € Te(I), &ypr € Te(HZ) with [ dit o y+ = 0. Then
there exists a unique solution o to Eq. (3.5) in J*(X*) which is smooth, such that

. Ay _ -2 _
Jim o v,0%) = o g, 2MQ g|y€0 = & yps, (4.59)
. T,-2 2 2
with (a|s+, Wn):*gb)*) € (92* and ||(g|z*, Vnz*g|2*)| |5)€,*—2 = ||Q‘ﬂ+||g;;2 +

| | K s | |?5JT[+2 This extends to a unitary map
-z . oT.—2 T,-2 T,-2
gz~ . gﬁ”;o ®E, T — &gt 7, (4.60)

which inverts the map < .F* of Theorem 4.2.77
DB o DFr =gt oDy =14 (4.61)

The same conclusions apply when replacing ¥* with ¥ and 2, with 7€, or when

replacing with ¥ and S€*. In the latter case, we require that Vzgce%mr e () and
with that (| s+, Vng.@|5+) is consistent with Proposition 3.1.2



518 H. Masaood

Theorem 4.2.9. Evolution from (x, &) € To(X) x T'e(X) to J~(X) gives rise to radi-
ation fields on 3¢~ , 9~ analogously to Theorem 4.2.2, where the radiation fields are
defined by

: 5 Ay _ 2 o
Jim e, v, 0%) = oy AMQa| o =Xy (4.62)
This extends to a unitary map
_ — -2 -2 -2
Dg-iep? — e Peels (4.63)

with inverse —2 B+ . 5_2;2 b 5;,_2 — Eg’_z. The same conclusions apply when re-
placing ¥ with S and 7~ with 7~ In this case, we require that (U >Q%a, U2Q%a’)
are smooth up to and including B, and consequently we obtain that U >« e € T(ICY)

Theorem 4.2.10. The maps

gt =Dgro gl el el el @46
(=2 g+ _ (D) g+ (D) gt . 5%2 ® ST,‘fz N 8%2 @ 5T),:2 (4.65)

constitute unitary Hilbert space isomorphism with inverses

Dy =g oDy el e -0 (466)
2= _ (-2 g— (-2 gp— . oT,2 T,-2 T,-2 T,-2
=P Pg el e — e el (4.67)

on the respective domains.

Remark 4.2.9. We emphasise that the spaces Eg’ﬁ and c‘%’ﬂ are different and Eg 2 C

T, 42 Qi - T,£2 T,£2
E<ST7 Similarly, €77 C 5}7
spaces is consistent in the sense that elements of Eg’iz are mapped into Ej,T;fz and

vice versa. As mentioned for the Regge-Wheeler equation (3.15) in Remark 4.1.4, our

point of view is that the spaces 5%,12’ 5;;2 are the more natural spaces to consider,

. Our prescription in distinguishing between these

but as we make the distinction between these spaces, we additionally face the issue that
the inclusion of the bifurcation sphere 5 in the domains of the scattering data requires
studying both the equations (3.2), (3.5) and their unknowns in a different frame near B.

4.3. Theorem 3: The Teukolsky—Starobinsky correspondence.

Theorem 4.3.1. Let & g+ € T'c(I7F). There exists a unique & y+ € T'(F*) such that
||(Xj+ ||5T1+2 = ||Qij+ ||8T.—2 and
7+ g+

Oy o ge = [275315’%7/51 +6M 8u]g P (4.68)

An analogous statement applies starting from & z+ € Uc(I™) to obtain o g+ € T'(F)
with || g+ lgr.—2 = ot g+l gr+2 satisfying (4.68).
e e
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Let o+ be such that V? oc%mr € [ (FCF). There exists a unique o yp+ € I'(F)

such that ||« yp+ ”ST +2 = [lop+ll o1 el 2 and
)f +

0y V20 s = [2B3BTD1B1 - 3oy — 6]V 200, (4.69)

An analogous statement applies starting from o+ such that V"> yp+ € T (HF) to
obtain & yp+ € T'(JC) with ||af+||gT 2 = ||af+||gT -2 satisfying (4.69). The

statements above give rise to unitary Hllbert space lsomorphlsms

el +2 T,-2 T,+2 T,-2
TSy ENF — el TSy €72 — €122, (4.70)
TS =TSy ®@TS s+ : E2@ELT — EL2@ELT 4.71)

Let a be a solution to the +2 Teukolsky equation (3.2) arising from scattering data
g+ € To(IY), ayer be such that V™2 yr € T (H+). Using T8, TS%,. we
can find a unique set of smooth scattering data & g+, & g+ on I+, HF with Vzgc%m,

regular on €, giving rise to a solution a to the — 2 Teukolsky equation (3.5) such that
the constraints

02 2 3 .
—5 V5 ( d sz%) a = 2r' D3PI D1 Par Qe — 6M [QV4 + QY3] rQ%a =0,

4.72)

2 3
2k —5 QY4 ( 4 QW4) a = 2D DD Par QP + 6M [QY 4 + QY3] rQPa = 0.
(4.73)

are satisfied by «, a on .. The data satisfy
2 2 2 2
||0CJ+||ST,+2 = ||QCJ+||£T.727 ||ijf+||gr,+2 = ||Q€;f+||gr,72- (4.74)
7+ 7+ H+ A+

Analogously, let o be a solution to the — 2 Teukolsky equation (3.5) arising from
scattering data o z+ € To(I), & yps be such that V. € To(J+). Then there
exist unique smooth scattering data & g+, X yp+ on I+, A+ with V=2 & y+ regular on
JC+, giving rise to a solution « to the +2 Teukolsky equation (3.2) such that o, o satisfy
the constraints (4.72), (4.73).

An analogous statement applies to scattering from %~ , 7~ and we have the iso-
morphism

TS =TSy ®TSy 206" — 20, (4.75)

4.4. Corollary 1: A mixed scattering statement for combined (a, ). Importantly, we
have the following corollary:
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Corollary 4.4.1. Let & s € T'c(F7), & - be such that Vzgc%p_ € I'e(J7). Then
there exists a unique smooth pair («, o) on M, such that a solves (3.2), o solves (3.5),
o, o satisfy (4.72), (4.73) and o realises & 5 as its radiation field on J€~, « realises

o g as its radiation field on .9 ~. Moreover, the radiation fields of « and o on 7+, 7+
are such that

ool + Nopilr s = ol + eyl 476
Jf"'

This extends to a unitary Hilbert space isomorphism

P 5%2 oel? — gL” el 4.77)

5. Scattering Theory of the Regge~Wheeler Equation

This section is devoted to proving Theorem 1 in the introduction, whose detailed state-
ment is contained in Theorems 4.1.1, 4.1.2 and 4.1.3.

We will first study in Sect. 5.2 the behaviour of future radiation fields belonging
to solutions of the Regge—Wheeler equation (3.15) that arise from smooth, compactly
supported data on X* using the estimates gathered in Sect. 5.1, and this will justify the
definitions of radiation fields and spaces of scattering states made in Sect. 4.1. We will
first prove Theorem 4.1.1 (in Sect. 5.3) and Theorems 4.1.2 and 4.1.3 (in Sect. 5.4) for
the case of data on ¥*, and most of what follows applies to ¥ and ¥ unless otherwise
stated. Section 5.5 contain additional results on backwards scattering that will become
important later on in the study of the Teukolsky—Starobinsky identities in Sect. 9.

5.1. Basic integrated boundedness and decay estimates. Here we collect basic bound-
edness and decay results for (3.15) proven in [16]. In what follows (\, {) is a smooth
data set for Eq. (3.15) as in Proposition 3.3.1.

o Energy boundedness Let X = T := Qe3 + Qeq, multiply (3.15) by Y x and integrate
by parts over S? to obtain

S2
QY [1QVa 0P+ VWP + VWP ]|+ Vs [12Y301P + 229w+ VIwP ] =
(5.1)
For an outgoing null hypersurface .4” define
FT[w] ;:f sin 6d0d¢dv [|szy74np|2+s22|y7\1:|2+ V|\IJ|2]. (5.2)
N
Similarly for an ingoing null hypersurface .4~ we define
FT W] = in0dodedu | |QY3W|* + Q2| YW | + V|W? 53
W= [ sin ¢du | [QV3V]" + QYY"+ VW] |. (5:3)
Denote F,/ [W1(v0. v) = Ff iepe oy (W1 Ey (W0, 1) = Fg (e [V Inte-

grating (5.1) over the region Zy;"y, = J +(‘€u0) NJTE, )NJ~ (Sa” )N J~(%,) yields

Z o

F[W](vo, v) + F] [W](uo, u) = F,[ [¥](vo, v) + F] [W](uo, u). (5.4)
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Similarly, integrating (5.1) over J*(£*) N J~(%,) N J~(¥,) yields
FUWI-, 0) + FJ W=, w) = B o gon - 91, (5.5)

where 6, NS* = S2 €, NE* =82 ., and FL.[W]is given by

u,v_> =—v u
2
Fg*[\p]:/ drsin0dode (2 — Q)| V=W |? + Q2 VRV + |V +(3522+1)u
z*

(5.6)

and [Fy; for a subset U € X* being defined analogously.
Integrating (5.1) over J*(X) N J~(%,) N J (€ ,) instead yields a similar identity:

Fl W1, v) + F1 W0, ) = FE 1 o1 ap ) 9], (5.7)

with

FQ[W]:/ sin Odrd0de 2|W U2+ QYU+ | VW) +(3sz2+1)| ' . (5.8
)

and similarly for X.

All of the energies defined here so far become degenerate at 77 +. We can compensate
for that for energies defined over hypersurfaces do not intersect the bifurcation sphere
B, and we do this by modifying X with a multiple of > T and repeating the procedure

above as in [19], making crucial use of the positivity of the surface gravity of .77*. We
then obtain the so called ’redshift’ estimates:

Definition 5.1.1. Define the following nondegenerate energies
F 4 [¥] =/ sin0d0d¢dv [|QY74KIJ| +|yw|? + |\I/| :| (5.9)
N
1
F ,[¥] =/ sin 0dOdpdu? [|Q_1V3\Il|2+ YW+ —2|\If|2], (5.10)
AN v r

1
IE‘E*[\IJ]:/ sin@drd9d¢[lVT*\II|2+|Y7R\IJ|2+—2|\Il|2+|Y7\II|2], (5.11)
T r

and their higher order versions

FU IV = 3 FyIYiey)* ¥, v, (5.12)
i+|a|<n

FNY 0 = Y V09 (o, ), (5.13)
i+|a|<n

FylWl= > FylQ V) rQVa)! V)" ¥, v), (5.14)
i+j+e|<n

FylWl= Y F[Q'V3) QY -¥)*¥](vo. ). (5.15)
i+j+|al<n

Fel V1w ] = ) Fs Vi)W (5.16)

i+la|<n
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FLwl= Y F [W;‘l (27'ys)" (rW)“\IJ] . (5.17)

i1+ix+|o|<n

Proposition 5.1.1. Let WV be a solution to (3.15) arising from data as in Proposition 3.3.1,
then we have

Fy[W](vo, 00) + F,[W](up, 00) S Fe+[W]. (5.18)
Similar statements hold for F,:”T’W[‘ll](vo, V), Eﬁ’r’v[\l’](uo, u), B [W](vo, v) and
Fi[W](uo, u).

o Integrated local energy decay We have the following Morawetz-type integrated decay
estimate:

Proposition 5.1.2. Let W be a solution to (3.15) arising from data as in Proposition3.3.1,
%Y = JHEF) N T (6, UE,) and define

. 1 1
L[ 9] =/@ ditdv s1n9d9d¢92|:r—2|y7r*\11|2+r—3|\IJ|2

u,v
2*

| 3\ 2 1 o2 (5.19)
+ - <1 — —> <|y7\11|2 + 5 1QVW]* + —2|s2—1y73\11|2> ]
r r r r
then we have
L [¥] S Py [W].
A similar statement holds for
R 1) IS Vv (3 AR (5.20)
i+lo|<n
and
L' Wl= Y TV (rQVy) V) . (5.21)
i+j+la|<n

o rP-hierarchy of estimates near .#* If we multiply (3.15) by r?Q~*QVY,¥ and
integrate by parts on S we obtain the following

QY [P QY4 + Vs [P @V YL+ VIWP)]

42
+ rp_IQ_Zk{(p +kx) QY40 — [r_2 +V(p—3+xk— 1))] Q2w )? (5.22)

—(p—=2+x(k — 1))Q4|Y7\IJ|2} £o.

We can ensure that the bulk term is non-negative by taking p = 0,k = O or p =
2,1 <k <2or p € (0,2) and restricting to large enough r. Integrating in a region
95 N{r > R} yields (after averaging in R and using Proposition 5.1.2 to deal with the
timelike boundary term)
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Proposition 5.1.3. Let WV be a solution to (3.15) arising from data as in Proposition3.3.1,
and define

Loyt (W1 = / dudvsin0dder’ ™ [p|QV4¥* + 2 — p) V¥ * +r 2|0 ?],
_@Z’*ﬂ{r>R}

(5.23)
then we have for p € [0, 2]

/ dvsin0d0dérP|QY V) + 1,7 [W]
©uNir>R)

Pug,vo
(5.24)
S Fex[W] +/ rP|QY 4 dr sin 0d0dé.
T*N{r>R}
A similar statement holds for
ALY E SN PN VAL(a A5L0 (525)
i+la|<n
and for
e el = Y et Q7YY QY (V) W] (5.26)
i+j+a|<n
if0<h<2.

We sketch how to establish higher order versions of the estimates of Proposition 5.1.3.
Commuting with r*QY4 for 0 < h < 2 or rY produces terms with favorable signs and
we can close the argument by appealing to Hardy and Poincaré estimates. Consider for

example ;2—2252?74\11 := & which satisfies

W, 321y 2
QY30 + = oM = AW — 3Q% + )W. (5.27)
r
Applying Q¥4 and using (3.15) we obtain
302 — 1 Q2 Q2
Qvs;Qv,ol) + —— v, - =307 - 50 — @A) = —6M = 0.
r r r

(5.28)

We see that the new QY 4@ term has a good sign, so that we when we multiply by
rPQ=2kQy, &M integrate by parts over S and use Cauchy—Schwarz we get:

QZ
QY3 [rPQ*2’<|szy74<b<1>|2] +QY, [rl’92k <s22|y7<1><”|2 +(5— 392)—2|d>(1)|2>:|
r
4 p-lQ-20-1)

{(p +4+x(k+2) —)|QV40V 2+ (p — 2+ x(k — 1)) YOD)?
2
+ [6—M +(5-32%)(p—1+x(k — 1))} Q—2|c1><1>|2}
r r

SZ
< r[?—392(k—1) |‘Ij|2,
(5.29)
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where € > 0 is sufficiently small. Integrating over 9%’*“ N {r > R} for large enough R,
taking k = 2 and using Proposition 5.1.3 for p € [0, 2] we get (using dw = sin 0d0d¢):

/ dvdw rP|1QY 4012 +/ didvdw rP~! [(p +4)|QY40 2
GuNir>R) P5sNir>R)
+2 - Iy eV + r‘2|q>(1>|2]

5/ drdw rp|m74<1><1>|2+/ drdo 7 [ [V DR+ 2002
2*N{r>R} r=R

+/ diudvdw rP=3 w2
.@;’:ﬂ{r>R}
(5.30)

We control the second term by averaging in R and appealing to Proposition 5.1.2 com-
muted with QY 4, and we deal with the last term using the lower order estimate for W
from Proposition 5.1.3. Thus

/ dvdw r?|QY 4002 +/
©,N{r>R} 9

u
z

diidvdew rP~! [(p +4)|QY 002
wN{r>R)

+2 = p)IYO P +r 200 ]

g[ dido rP [|szy74q><‘>|2 + |szy74\p|2] +FL[w].
*N{r>R}
(5.31)

2
We could do this again for ({2—229774> U := ®®@ and get a similar estimate following
the same steps:

/ divdw r?|QV,0@? +/
€.N{r>R} 9

+2 = pIYODR + 0@

diidvdew P! [(p +8)|QY 40?2
wN{r>R}

x

< / didew rP [|Qy74c1><2>|2 Qv + |szy74\y|2] +FL. (W],
Y*N{r>R}

(5.32)

Note that the integral on .#* on the left hand side is positive by Poincaré’s inequality.
See [4,5,38] for more about this method, applied to the scalar wave equation.

To close this section, we state a technical lemma that we will use throughout this
work:

Lemma 5.1.4. Let F be a smooth tensor field on J*(Z*) Assume
/ Q2dudv sin 6d6dé [|F|2 + |WTF|2] <00, (5.33)
JH(Z*)N{r<R}

then we have

lim du sin0dode |F|> =0 (5.34)

v Je,nir<R)
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Proof. Let f(v) = \/fﬁuﬂ{rSR} dusin0dfd¢ |F|2. Assume v is such that f(v) = 0,

then it is easy to show that o; f|, = \/fcg Air<R) du sin0dfd¢ |19,F|2. When f(v) # 0,
note that

2
dusin0dode F - VrF
F) Jg nir<r

19, f (> = {
(5.35)

< / dusin0d0de |YrF|,
€ ,N{r<R}

by the Cauchy-Schwarz inequality. Thus [ dv [| f(®)|* + 13, f ()] < oo, which
leads to (5.34) by Morrey’s inequality. 0O

5.2. Radiation fields. In this section we establish the properties of future radiation fields
belonging to solutions that arise from smooth, compactly supported data on X*

5.2.1. Radiation on ¢+

Definition 5.2.1. Let W be a solution to (3.15) arising from smooth data (1, P)onT* ¥
or X as in Proposition 3.3.1. The radiation field 1\ _»+ is defined to be the restriction of
W to AL, A or i respectively.

+ +

Remark 5.2.1. We will be using the same notation for the radiation field on Zos

or .
As a corollary to Proposition 3.3.1 we have

Corollary 5.2.1. The radiation field \p yp+ as in Definition 5.2.1 is smooth on %”Z*'O. The
same applies to (Y)W for arbitrary k.

The integrated local energy decay statement of Proposition 5.1.2 gives a quick way to
show slow decay for 1 -+ and its derivatives:

Proposition 5.2.1. For a solution V to Eq. (3.15) arising from smooth data of compact
support on L*, \IJ|{,:R}| decays as t —> 00.

Proof. Commuting (5.19) with L7 twice and using the redshift estimate of Proposi-
tion 5.1.1 give us for any R < oo

o0
/ dv [Eﬁ,m{rd}[qq +E£vm{,<R}[y7T\y]] < . (5.36)
Uy

0

Taking f(v) := /F,[WV](ug, 00), we may apply Lemma 5.1.4 to obtain
lim_F,[W](ug, 00) =0,
vV—> 00
where v —ug = R*. Commuting with 2~ 'e3 and L and using Proposition 5.1.1 again
gives

lim sup |V, =0.

V7 uelug,00]
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Remark 5.2.2. The preceding argument works to show that (27! ¥3)*W decays on any
hypersurface r = R. See also Section 8.2 of [21].

Proposition 5.2.2. For a solution W to Eq. (3.15) arising from smooth data of compact
support on ¥, The energy flux on €% is equal to
Fl. = / |8, W|>dv sin 0dOdé.
jf%—

Proof. This follows from the regularity of W and its angular derivatives on .7#’* together
with energy conservation. O

5.2.2. Radiation on #* An rP-estimate like Proposition 5.1.3 implies the existence of
radiation field on .#* as a "soft" corollary.

Proposition 5.2.3. For a solution V to Eq. (3.15) arising from smooth data of compact
support on T*,

P (u, 0% = Lim W(u, v, 6%) (5.37)
V—> 00
exists and belongs to T' (). Moreover,
lim dudw |QY3V > + QXYW )2+ VW2 = / dudw 8, s+ %
V>0 J g N{uelug,ui 1} I *+0{uelug,uil}

(5.38)

Proof. Letry > ri > 8M, fix u and set v(ry, u) = vy, v(ry, u) = vi. The Sobolev
embedding on the sphere W31(82) — L°°(5?) and the fundamental theorem of calculus
give us:

|\v<u,vz,e @) — W(u,v1,0,¢)
2

<B Zf doo |, (W, v2.0. ) — W(u, v1, 0. §))|
S (5.39)

=B |<3/ da)/ dv|£ 82774\IJ|

Cauchy—Schwarz gives:

W (u, 02,0, 9) — W(u, v1.0, ) < [ > /f

ly|<3

£}, QY4 W] dvsin 9d9d¢].

N{v>v1}

(5.40)
where £}, = L£{ LG LG, denotes Lie differentiation on $* with respect to its so(3)
algebra of K1111ng ﬁelds Th1s says that W (u, v, 0, ¢) converges in L (#* N {u > up})
for some ug > —o0o0 as v —> o0. Using higher order r”-estimates we can repeat this
argument to show

2

r2
szuqf(u 2,6, ¢) — 29V4\11(u,v1,9,¢)
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12
< _—
~r |: Z GuN{v>v1}

ly|<3
Commuting (5.39) with T and Q' and using (5.41) gives that V| s+ = limy_— o
W(u, v, 0, ¢) is differentiable on .#*. We can repeat this argument with higher order
rP-estimates to find that \ s+ is smooth and lim,— 0o (RY3)' (rV)* ¥ = 3. V7P 4+
for any index i and multiindex y. Equation (5.38) follows immediately. O

r*L},QY, (r2£2W4> ‘~I”2 dvsin 9d'9d¢j|- (541

k
In the following, define ®* := (;2—229?74) v,

Corollary 5.2.2. Under the assumptions of Proposition 5.2.3, the limit
dW w0 = lim oPu, v, 6%) (5.42)
vV—> X0

exists and defines an element of T (F™).

Proof. Let R, up be such that ¥ vanishes on 6, N {r > R} for u < ug. We can integrate
Eq. (3.15) from a point (uq, v, 64) to (u, v, #4) where r (1o, v) > R to find

2 u QZ R
oD, p4) = %(u, v) /MO = [Axp — G2+ 1)\1/]. (5.43)

The right hand side converges as v —> 0o by Proposition 5.2.3 and Lebesgue’s bounded
convergence theorem. An inductive argument works to show the same for higher order
derivatives by integrating the equation

2 6M 6M 6M
QY3d™ +p (— - — > o™ 4 [(4 - —) —nn—-1) <1 — _)} dr=D
r r r r

—2M@n* — D(n — 3" — koD =,
(5.44)

using Gronwall’s inequality to bound & (u, v, §4) near .#* and then concluding using
Lebesgue’s bounded convergence theorem as above. O

Definition 5.2.2. Let W be a solution to Eq. (3.15) arising from smooth data of compact
support on ©*, ¥ or X. The future radiation field on .#™ is defined to be the limit of ¥
towards &

Y g+(u,0,¢0) = lim W(u,v,0,d).
v—> 00
Remark 5.2.3. Note that a solution W arising from compactly supported data on X nec-
essarily corresponds to compactly supported data on X*.
The r?-estimates of Proposition 5.1.3 further imply that 1 s+ decays as u —> oc:

Proposition 5.2.4. Let U, \p s+ be as in Proposition 5.2.3. Then\p s+ decays along S *.
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Proof. The fundamental theorem of calculus, Cauchy—Schwarz and a Hardy estimate

give us:
2 2 00 2
/ dops+*] < / do|V,—g)* | + (/ dow / dv2W¥ x QV4\II>
Si 820 s V(R .u)

2
00 2
< / do |V,—g|? +471f dw (f dv2W¥ x szyuw)
82 52 v(R,u)
2 o0
< / do |V,—g|? +471/ dw/ dv—2|\IJ|2
§2 S2 v(R,u) r

u,00

o0
x/ dw/ dv r? QY.
S2 v(R,u)

Applying Lemma 5.1.4 to Proposition 5.1.3 for both W and Y7 W with p = 1 implies
the decay of f% A{r>R) |QY4W|?, and the result follows considering Proposition 5.2.1.
0O

(5.45)

Corollary 5.2.3. Let VW, _g+ be as in Proposition 5.2.3. Then d) j+ decays along .9+
forn=1,2.

Proof. Having data for W of compact support on X*, we may utilize the r-weighted
estimates (5.31), (5.32) on ®™_ n = 1, 2 to obtain the result by repeating the argument
of Proposition 5.2.4. O

We can in fact compute (b routof P g+ fork =1,2:

Corollary 5.2.4. For a solution V to Eq. (3.15) arising from smooth data of compact
support on ¥*, we have

), 04) = —/ dii [Ay — 21 g+ (i1, 6%). (5.46)

Proof. Let —0o0 < u; < up < oo, v such that (u, v,04) € J*(X*). We integrate
Eq. (5.27) on €, between uy, uy and use the fact that &M has a finite limit d)(l)
towards 7 to get

uz

oD, w1, 0%) — W, (ua. 0 )——/ di [Ay — 2 e, 6%).  (5.47)

Ul

Since (b . is uniformly bounded, we have that [Ay — 2] + is integrable over .#*.
The result follows since (b(l) (u, 64) decays as u —> oo by Corollary 5.2.3. O

Lemma 5.2.5. If ¥ satisfies (3.15) then

2 2
(ém@) ¢ Qyu szm\y [A2(As —2) — 12M Y] W. (5.48)

Proof. Straightforward computation using Eq. (3.15). O
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Following the same steps as in the proof of Corollary 5.2.4 we find

Corollary 5.2.5. For a solution V to Eq. (3.15) arising from smooth data of compact
support on ¥*, then ¢§)+ (u, 64) satisfies

., 0% :/ / duydus [Ao(Az — 2) — 6M3 NP s+ (u2, 6%).  (5.49)
u uy

Corollary 5.2.6. For a solution V to Eq. (3.15) arising from smooth data of compact
support on £*, then the radiation field \p_g+ satisfies

o o0 o
/ duPp g+ = / / durdusp g+ = 0. (5.50)
oo —oo0 Juy

5.3. The forwards scattering map. This section combines the results of Sect. 5.2 above
to prove Theorem 4.1.1.

Proposition 5.3.1. Solutions to (3.15) arising from smooth data on ¥* of compact sup-
port give rise to smooth radiation fields\p g+ € 5;+ on I* and\p yp+ € 5§f+ on S5,
>0 =

such that

= |(W]gx, an*‘l’lz*)lling*- (5.51)

+

2 2
||1-l)]+||gT + ”w%*llgT
g+ '/fZO

Proof. For data of compact support, Propositions 3.3.1 and 5.2.3 give us the existence
of smooth radiation fields {p_z+ and P y»+, and by Propositions 5.2.1, 5.2.4,19 »+ decays
towards ;" and P -+ decays towards .##*. Let R be sufficiently large and let vy, u.
be such that v, — uy = R*, vy +uy > 0. A T-energy estimate on the region bounded
by X%, A N {v < vy}, SN0 {u < uy}and 6, N {r = R}, €, N {r < R} gives

Fl W]y, 00) + F[ [W](vy, 00) + /

dvdw |av\y|2+/ dudw 3,V
AN {v<vy}

TN {u<us}

=Wl . (5.52)
»*

The integrated local energy decay statement of Proposition 5.1.2 commuted with Y,
along with the estimate (5.24) of Proposition 5.1.3 for p = 1 commuted with Y7,
imply that Eg+[\ll](u+, o0) + FMT+[\II](v+, o0) decay as u. —> oo. This gives us that
Vv € ELL and Py € E1,, and that P g+, P e+ satisfy (5.51). O

. A
Corollary 5.3.1. Solutions to (3.15) arising from data on ¥ of compact support give
rise to smooth radiation fields in € T and Sﬁﬂ. Solutions to (3.15) arising from data

on X of compact support give rise to smooth radiation fields in 5§+ and E. ;ﬂ

Proof. The evolution of ¥ on J*(X*) N J~(X) can be handled locally. A T-energy
estimate on J*(X) N J~(X*) gives the result. An identical statement applies to . O

Proposition 5.3.1 and Corollary 5.3.1 allow us to define the forwards maps .#* from

T oT T
dense subspaces of £5.., &y, %
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Definition 5.3.1. Let (1, 1) be a smooth data set to the Regge—~Wheeler equation (3.15)
on ¥* as in Proposition 3.3.1. Define the map .Z#* by

FT i Te(T%) x Te(BY) — L) x T(I), @, V) — v, Y g+), (5.53)

where (\_y+, P _g#+) are as in the proof of Proposition 5.3.1.

The map .#* is defined analogously for data on X, X:
FTiTe(B) X Te(D) — T x T(IT), (W, ) —> W, Wge),  (5.54)
T Te(E) x Te(T) — DAY x T(IY), @, ) — Wpv, Ygs). (555
The map #* uniquely extends to the forward scattering map of Corollary 5.3.2:

Corollary 5.3.2. The map defined by the forward evolution of data in T'c(X*) x T (X*)
as in Proposition 5.3.1 uniquely extends to a map

T Eg — Eppr ®E (5.56)
which is bounded.:
I, WG = boeellzr  + bz (5.57)
=* ,yfgo 7+

We similarly obtain bounded maps

Frel — el el (5.58)
el T T
§+.5§—>5F695j+. (5.59)
The map F* is injective on T .(X*) x T'(X*) and therefore extends to a unitary Hilbert
space isomorphism on its image.

5.4. The backwards scattering map. This section contains the proof of Theorems 4.1.2
and 4.1.3. We define backwards evolution from data on the event horizon and null infinity
in Proposition 5.4.1, and this defines the map %~ which inverts .#*. Theorem 4.1.3
follows immediately by Remark 3.3.1.

We begin by constructing a solution to the equation on J~(#* U #Z})) out of
compactly supported future scattering data.

Proposition 5.4.1. Let \p jp+ € T'c(J)) be supported on v < vy < 00 such that

b s+l g7 ., < % P g+ € To(IY) be supported on u < uy < 0o such that
A

b g+l g7 , <00 Then there exists a unique smooth V defined on J*(X*) that satisfies
7

Eq. (3.15) and realises \p_g+, P yp+ as its radiation fields. Moreover, (\W| g+, Yy W|5+) €
T

Esu.

Proof. Assume 1+ is supported on {(v, 04, v e [v_,ve]} C %go and P g+ is
supported on [u_, uy], with —oo < u_, uy, v_, vy < oo. Let ¥ be a spacelike surface
connecting 7% at a finite v, > vy to £ 7 at a finite uy > wu4. Fix R g+ > 3M and
let v™° be sufficiently large so that € o N [u—, us] C J*(E*) and r(u, v™°) > R g+
for u € [u_, uy]. Denote by Z the region bounded by «%ﬂ;o N{v e [v-, v}, 2, o0,
¥* and %,_. With Proposition 3.3.3 we can find W that solves the "finite" backwards
problem for (3.15) in & with the following data:
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o Y pson N {v e [v_, 4]},
e (0,0)on X,
o P g+ on%

From (3.15) we derive

32 -1 r

2 2 .
Qy; [ém%\mz] s QY4 = — @V [[FWP + (27 + ] ]

6M522
+

w2, (5.60)

Let ¥ < v™> be large enough that r(u, V) > R g+ foru € [u—_,us]. Forv < v < v™>
integrate (5.60) in the region 2, = 2 N J*(¥¢,) with measure dudvdw to derive

292 2
/ dvdw—|QY74\IJ|2 / du/ dvdw——|QY74\IJ|2
CN[v,v™>] GiN[v,v™®] r

+ o
+IWIZr + I, +f dﬁ/ Aol Y g+ 5
7+ o+ U_ 52

+4P g5
(5.61)

Applying Gronwall’s inequality to the above gives
2
/ dvdw —2|QY74\II|2
CuNlv,v>]

<r(”—v)2[||wngr 1 [ ditdaw '7}"’4“'?9”4""”'?“2]
r(M+, ) (4] 82
(5.62)

Using (5.62) we can modify the argument of Proposition 5.2.3 to conclude that for v > v

Wl — W] SRy — [Z/

vI=2 [u_,us]xS?

dide (15,0 5P + 1V LG, 5+ s

+|£giau1bf+|§2] + ||£giw||§§f+}. (5.63)
n
We can show similar estimates for higher order derivatives (;2—229?74) v o= oM

Vn € N using the equation

Q2. 2 6M
QY:QY, 0™ — —quﬂ") +n (- - —> QY d™
r r r
6M 6M\1 Q2
+[4___n<n+1> (1__>]_2¢w 5.6
r r r

—2Mn(n—2)(n+2) q>(" D —o,
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to derive the following using the same steps leading to (5.62):
2
f dvsin0dod¢ —|QY4d™|?
GuP (D€ Vo0, 00)) Q
P Q? mpe2, " ()2
+ dudvsin0dode | —|P™|" + —5|QV40™|
i€, u4],5>voo r Q

+ / dii sin0dode | d™|?
4

Lo

S C(n, Ma M+) du Sln9d9d¢ [|Y7d>(") | + |q>(i’l) | + |q>(”l l)l ]
Fr0fielu,usl}
(5.65)

This shows that (Q2Y4)"W is in L®°(Z2 N {v > 7}) Vn € N. By commuting the above
arguments with 9/, [,y for any n € N and any multiindex y we can show that all
derivatives of W are umformly bounded on Zj;.

Analogously, let & be such that R y»+ < r(u,v) < 3M for v € [v_, vy], where
R+ < 3M is fixed. We can multiply the equation by &QYH\IJ and integrate by parts
over a region 9, = 2 N J*(%,) to get

1 1
/ dudw—m%\m +/ dvdw [7|wf|2+ 7|W|2]
%, Nlu,00] Culv.v,] r r
+/ Q*dudv [|Y°7\I/|2+|\I/|2]
-@u

P b 2M 1
S dudo [Fe P P]s [ [ o2 oaval
SN[V, 4] v € N[u,00] re Q
(5.66)

Gronwall’s inequality implies

/ diidw —|szy73\11|2
% [u,00]

1 o
S ez { / (1900 + s 2] dvdeo + W12, + W12 } :
SCHN[v,v4] g+ 7+

(5.67)
In turn, this implies pointwise control of W near J#*:
WG, v, 6%) =P e (v, 6
</°° 5 di / dudo Y |4 v ] (5.68)
S e u X udw — ) 3 .
u ¢ ., Nu,00] Q2 S

lyl<2

< r QP vy) Z/ duf 0o [ 1850512+ 1V L 05+ 185, b o ]

lyl=2

1L, } : (>69)
o+
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We can use the argument above to inductively bound (Q71V3) W near .2+ foralli € N
using the equation

1 n+l 'M 1 n+l

LoD <4xy— 3M(n+2)w—4°&w>

pnt2 r
n

| k
+ Z %—rn_lk+2 <4(n —k+1)— gk(n —k+2)3(n —k)+ 1)) <$QW3) v

k=1
n k
nln—k+1) 1 1 ;
- Z ! Fn—k+2 (@Q%) AV =0.
k=1
(5.70)
to find
n 2
. 1 A ”Z—M(v —v)
sinfdod¢ || —5QV3 ) W, v, 0% Sew ™ (5.71)
SZ Q
x f dvsin0dodg | Y [V e (5.72)
JrN{vev,v.]}

ly1<2n+1

By commuting the above arguments with 9, Egi for any n € N and any multiindex y
we can show that all derivatives of W are uniformly bounded on Z;}.

In the region Z\(Z; N Z5), r is bounded and energy conservation is sufficient to
control W in L°°. In conclusion, we find that W is uniforly bounded in L*°(2).

Let {v;°}72, be a monotonically increasing sequence tending to oo with v§® = v™>
and define &, in terms of v_° analogously to 2. Denote &, = fvso N{u € [u_,ul}
We can repeat the above on the region %, with data {p »+ on &, to obtain a sequence
{¥,,}52 - Onany 9y, we can apply Arzela—Ascoli to the sequence W, forn > £ to obtaina
converging subsequence in L (%) with limit W. Foreach & € N we can similarly obtain
a converging subsequence in C¥(Z;), which shows that ¥ is smooth and in particular that
it solves the Regge—Wheeler equation (3.15). Repeating the above for all £ € N extends
W to the whole of J*(X*) N J*(%,_) N J~(X) by uniqueness of limits. Furthermore,
the estimate (5.63) applies to W,, Vi € N and thus it also applies to W taking the limit
n —> oo on the left hand side of (5.63). We can repeat the procedure above replacing
u_ with any u* < u_ to obtain a solution to (3.15) on J*(X*) N J*(%,x) N J~ (%)
which will be identical to W on J*(Z*) N J*(%,_) N J~(X) by uniqueness of limits,
and this allows us to extend the solution to the whole of J*(X*). Finally, a 9;-energy
estimate on J*(X*) N J*(%,x) N J~(X) for any U* < u_ implies that

W5, Vg Wls)lzr < Iopelzr  +I0 02 (5.73)
¥ At g+
s0 (V|x+, Vg Wlxs) € EF.. O
Definition 5.4.1. Let \_j»+, _#+ be as in Proposition 5.4.1. Define the map %~ by

B~ Te(Hy) x Te(IT) — T(Z*) x T(ZY), W+, Yo+) — (Y]gs, Vig, Wls+),
(5.74)
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where W is the solution to (3.15) arising from scattering data (\p y+, _#+) as in Propo-
sition 5.4.1.

Corollary 5.4.1. The maps .F*, 2~ extend uniquely to unitary Hilbert space isomor-
phisms on their respective domains, such that F+* o B~ = Id, B~ o F+ = Id.

Proof. We will prove the statement for the map define on data on £*. We already
know that &7 is a unitary isomorphism on its image .#* [Sg*] C 5204, ®ET,. Let
A,

Y+ € To(H), b g+ € Te(F7F). Proposition 5.4.1 yields a solution W on J*(Z*)
to Eq. (3.15). Since W realises \_g+, 1 s+ as its radiation fields as in Definitions 5.2.1
and 5.2.2 and since B~ (P o+, b g+) € [F(E*) X F(E*)] N 55* (see Remark 4.1.1),

we have that F+ o0 ™ = Id on To(A#Z)) x To(F*), which is dense in £, & £7,..
> -
Therefore, since Z* [£L.] is complete, we have that #* [EL,] = SjTim ®ET.,. The
>0 :
fact that Z~ is bounded means that its unique extension to £ §f+ ) E?, must be the
Ay .

inverse of .7 * and we have that ™ o F* = Idgr . O
Z*

Remark 5.4.1. Note that the proof of Proposition 5.4.1 only establishes the boundedness
of %~, but showing that Z~ inverts .% " as was done Corollary 5.4.1 turns (5.73) to an
equality:

18” ore s sligr = Iorligr  + bl (5.75)

P

Since the region J *() N J~(T*) can be handled locally via Proposition 3.3.4, Propo-
sition 3.3.2 and T -energy conservation, we can immediately deduce the following:

Corollary 5.4.2. The map %~ can be defined on the following domains:

B E L BE, — EL, (5.76)
B~ 5%@ &y — &L (5.77)

and we have
y+0%_=1d5;/+®6;+7 %_0192.4—:1(15)7:’, (578)

FroB = ldgr
o

@55“ B o Ft = Idgg. (5.79)

We have just completed the proof of Theorem 4.1.2.
Since the Regge—Wheeler equation (3.15) is invariant under time inversion, the
existence of the maps . —, & is immediate:

Proposition 5.4.2. Solutions to (3.15) arising from smooth data of compact support on
% (or X) give rise to smooth radiation fields \p y- € 5;_ on I~ and P yp- € S_T _

T - e
(or EF) on ™ (or £~ ), such that

W lzr +loe 1z =1z, Yoy WIn)lZr- (5.80)
v - A~ x

- ||§; + -1z =1¥s, Vas WIn) % (5.81)
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As in the case of F*, there exist unitary Hilbert space isomorphisms

F & ®EL — EL, (5.82)
T E L E — EL (5.83)

Let  yp— € I'c(F€7) be supported on u > uy > —oo such that |\ - ||g1 < 00,
P y- € T'e(I7) be supported on v > vy > —00 such that P g- ||gr < ©o0.

Then there exists a unique smooth V defined on J~(X) that satisfies Eq (3 15) and
realises \p_g—, P 5 as its radiation fields. Moreover, (W|x, YV, V|x) € 5 and (5.80)
is satisfied. A similar statement applies in the case of compactly supported smooth

scattering data on €~ , .~ mapping into 8%.
Therefore, as in the case of B, there exist unitary Hilbert space isomorphisms

#e el — &L, (5.84)
T T T
B E/ﬂ By — & (5.85)
which satisfy
g\_o%+=1dg‘;7®€‘;7, :%_Fof_:Idgg, (586)

E_O%_F:IdgT GBST ) :%+0</_=Id51 (587)
H I P

With Proposition 5.4.2, Theorem 4.1.3 is immediate.

Remark 5.4.2. 1t is possible to realise the map .# by directly studying the future radi-
ation fields .#*, 7+ on of a solution to the Regge~Wheeler equation (3.15) arising
all the way from past scattering data on .# ~, #—, instead of obtaining it by formally
composing #*, *. The proof uses a subset of the ideas needed to prove Corollary 1
of the introduction, so we will state the result here.

Proposition 5.4.3. Given smooth, compactly supported past scattering data (\D -,
V_s-) for the Regge—Wheeler equation (3.15), there exists a unique solution V realising
V-, g— as its radiation fields on 76—, 7~ respectively. The solution V induces
future radiation fields (b g+, g+) € EEF ® 5;” such that

nw-u@iﬂw-ng; nw%ngr bl (5.88)

H

The same result applies with scattering data restricted to €J/T.fi.

5.5. Auxiliary results on backwards scattering.

5.5.1. Radiation fields of transverse null derivatives near #* We can recover the for-
mulae of Corollaries 5.2.4 and 5.2.5 in backwards scattering from scattering data that is
supported away from the future ends of /™, J#*:
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Corollary 5.5.1. Let (\p g+, P_z+) be smooth, compactly supported scattering data for
Eq. (3.15) with corresponding solution V. Then

2 Uy
lim %va - / dii(As — 2D g+ (5.89)

V—>00
Proof. In a similar fashion to Corollary 5.2.4, we integrate (5.60) on a hypersurface &,
from u, to u to find
r2 Us 92 R
o) = —/ dii =5 [Aw - G2+ ¥ ]. (5.90)
02 u r2

Repeating the argument leading to Corollary 5.2.2 gives the result:

Uy
O _ @ — " —
b = lim o = fu dii (Ay — 2) P g+ (5.91)

O

Corollary 5.2.5 can also be recovered in backwards scattering for compactly sup-
ported data:

Corollary 5.5.2. Let ¥ be a solution to Eq. (3.15) arising from smooth, compactly
supported scattering data (\p yp+, P _g+), then

V—> 0

2 2 [e'e) 00
lim (&QYh) Vo= /u /m durdus [A(Ay —2) — 6M 3,1 s+ (ua, 6%)

- / dit(ii —u_) [Ax(Ay —2) — 6Md, P g+ (i1, 64).
! (5.92)

Note that we do not need compact support in the direction of u —> —o0 on ™ for the
above results to hold:

Corollary 5.5.3. Corollaries 5.5.1 and 5.5.2 hold if \p g+ is supported on (—00, u],
provided ||1|)ﬂ+||5§+ < 0.

5.5.2. Backwards r?-estimates It is possible to use energy conservation to develop 7-
weighted estimates in the backwards direction that are uniform in u, provided P _g+ is
compactly supported in u. These estimates will help us show that %~ satisfies (5.75)
without reference to #* or forwards scattering. We will also use them to show that
Y|y« —> 0 towards i 0. and later to obtain similar statements for «, «. These estimates
first appeared in [3].

Letu_, u4, v—, vy be as in the proof of Proposition 5.4.1, so that ¢, N {r > R} is
beyond the support of W. Let u < u,, then repeating the proof of Proposition 5.1.3 in
the region @,’:f,;fo for p =1, 2 gives us (using dw = sin 0d0d o)

/ dvdo r1QY V2 < / dudvdw [|szy74x11|2 YW+ V|\IJ|2] ,
Cunfv>v,} e

(5.93)
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/ dvdw r?|QV4¥* < / dudo (Y% +4|0]?)
CuNfv>v4} FIrN{uelu—,ul}

+ / dudvdow r|QY ¥ |2 (5.94)
Dt

We estimate the bulk terms on the right hand side as follows: An energy estimate applied
in 2,/%°° gives for all u < uy:

f dvdw [|m74\11|2+|y7w|2+vw|2] 5/ dudw 10,2
GuNfv>vy} FHN{uelu_,usl}
(5.95)

Integrating in u gives

Uy
/ dudvdw [|QY4Y* +|Y¥|* + V|¥[?] 5/ du1/ durdw |9, ¥
Duh> u_ I {ugelur,ugl)

vt

(5.96)
= / dudo (uy —1)|9, 9|,
I {uelu_,usl}
(5.97)
knowing that ¥3¥ = 0 atu = u,, v > v,. Returning to the above we have
/ dvdw r|QY 4V < / dudw (us — uw)|3, V>, (5.98)
CuN{v>v4} FIN{uelu—,uyl}

Integrating once more in u and substituting in (5.94) gives us

; 1
/ dvdw r*|QY,¥|? 5f dudw (YY) +4|U %) + = (uy — u)?|9, V).
CuN{v>vs) FHO{uelu— u.l) 2

(5.99)
We can integrate in ¥ once more:
/ dudvdw r’|QY 4V |? 5/ dudo (uy — ) (VW2 + 4102
D IHN{uelu—,usl}
3 2
+ 6(u+ u)’|0,V|*. (5.100)

Note that all of the bulk integrals above could be done over ¥ = @,Z’};fo U{J=(%,_)N
J*(Z*)} provided that 9,1 s+ decays sufficiently fast, such that f " oo dudw

[u2|8u1p]+ |2 + |\IJ|2] is integrable on (—o0, u4]. The first application will be to show
that the £* is unitary:

Proposition 5.5.1. Let V arise from smooth scattering data\p g+ € S;H P € EL,
as in Proposition 5.4.1. Assume that \p g+ is supported on u < u, < 00, P yp+ is
supported on v < vy < 00, and that ffoo duda)|8u1pj+|2 is integrable on (—o0, u4].
Then

lim F%T)umﬁ(z*)[\ll] =0. (5.101)

u—>—00
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Proof. The energy estimate

Foel¥ 0,14 Fgp e = Wl +bsiller - (5102)

}720

implies that Féu AJ* (E*)[\I/] decays monotonically as 1 —> oo (here 6, is the charac-

teristic function of the subset X*\J 7 (%)) of £*). Combining this with (5.96) gives the
result. 0O

Corollary 5.5.4. Let V¥ be as in Proposition 5.5.1, then

IWlse, Vg Wisligr = Iorellgr  +Ibseligr - (5.103)
* %(24-0 7+

In the following, we show that if {_s+ is compactly supported on .#* then we have
pointwise decay for W towards i°:

Proposition 5.5.2. Let U arise from scattering data (P _g+, P gp+) € De(IH) X T (FY)
as in Proposition 5.4.1, then V|y —> O asr — oo.

Proof. For R large enough, we can estimate

o0
/ W5 npr=r) — W.s+| 5/ f sin 0dvd0d¢|QY 4 W |
S2 U=%R* s2

1

< 2 s
N\/ﬁ %_%R*m{v>%R*}r |QW4\I/| . (5104)

The result follows noting that 1 s+ is compactly supported and that the integral on the
right hand side is bounded according to (5.99). O

Proposition 5.5.3. Let V arise from the backwards evolution of scattering data
W g+, Y p+) in T (IF) x F,:(ji”go) as in Proposition 5.4.1, then

lim U= P (5.105)
R— o0 A 71R*m‘]+(2*) N
v=7

Proof. Assume the support of P g+ isin £+ N{u € [u_, uyl}, —00 < u_ < uy < o0.
Let R be such that u|;—g ,=r = —%R* <u_andletv = v(t =0,r = R) = %R*,
i > u,. We have

2

2
1
f \If—f D s[/ WM] s—f P21QY40 2, (5.106)
4 %R*mﬁ(z) + 9 R Jg

u=—

where 2 = J*(Z* N {r > R}) N J~(%};). The result follows as (5.100) gives us that
f972|§2774\11|2 <oo. O
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5.5.3. Backwards scattering for data of noncompact support Estimates (5.63) and (5.68)
are uniform in the future cutoffs of \» s+, 1 s+ if the relevant fluxes on .#*quad, H#Z,
are finite, in which case we can remove these cutoffs altogether and work with non-
compactly supported scattering data. This follows by a simple modification of the argu-
ment leading to the limit W in the proof of Proposition 5.4.1.

Proposition 5.5.4. The results of Proposition 5.4.1 hold when \p_ g+, s+ are not com-
pactly supported, provided

~/[ _,00)x 82 dusin§d6d Z |£§23ull)j+|2 + |['§2II)J+|2 + |£§2W1])j+|2 < 00,

lyl=<2
(5.107)
f . dvsin0dodé Z LY, 000 4 [P + L s P + LY, Vi e | < 0.
[v-—,00)x lyl<2
(5.108)

Corollaries 5.5.1 and 5.5.2 also hold provided the fluxes of (5.107), (5.108) are finite
with the sums running up to |y| < 4.

Proof. Let R > 3M be fixed, {u;,};°, a monotonically increasing sequence and
{v4,,}52; such that vy, — uy, = R*. Let £/, & be smooth cutoff functions cut-
ting off at u, , and v, , respectively. Using £/ s+, £/ 4+ as scattering data, we
can apply Proposition 5.4.1 to obtain solutions ¥, to Eq. (3.15), each defined on
Dy = JFEHN{u < ur ) U{v < vipu}). On %, the sequence {¥,} forn > k
is bounded and equicontinuous, so repeating the argument of Proposition 5.4.1 we can
find a subsequence converging locally uniformly to W. The estimate (5.107) and the
estimates (5.68), (5.63) imply that ¥ — 1 s+ towards #* and ¥ —> 1+ towards
H*. The solution ¥ can be extended to the future by repeating the above argument for
each P as k —> oo. The remaining statements follow by analogous arguments. O

6. Future Asymptotics of the + 2 Teukolsky Equation

Section 6 is devoted to the study of future radiation fields induced by solutions to the
+ 2 Teukolsky equation arising from smooth, compactly supported data on X*, as was
done for the Regge—Wheeler equation in Sect. 5.2.

We first gather the estimates we need in Sect. 6.1. We collect in Sect. 6.1.1 results
from [16] estimating o from W defined via (3.16) and the estimates of Sect. 5.1 for W.
Building upon these estimates we then use the methods of [5, 18] to obtain r-weighted
estimates for «, ¥ in Sect. 6.1.2. We apply these results to study the future radiation
fields and their fluxes in Sect. 6.2.

6.1. Integrated boundedness and decay estimates for « via W. We begin with the fol-
lowing basic proposition, already proven in Sect. 3.3:

Proposition 6.1.1. Let (o, o) be data on *, X or > giving rise to a solution o to
Eq. (3.2) as in Proposition 3.1.1 or Proposition 3.1.3 respectively. Then V defined via
(3.16) out of the solution o on J*(X*), J*(X) or J*(X) satisfies Eq. (3.15).
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6.1.1. Transport estimates for « In what follows assume a small fixed 0 < € < 1/8.

Proposition 6.1.2. Let o, ¥, ¥ be as in (3.16) and Proposition 6.1.1, Then for any u and
any v > 0 such that (u, v, 04) € J*(E*), the following estimate holds for sufficiently
small € > 0!

dvdew r¥ < Q*|y|)? +/ didvdo r’ QY Y

u
7

Aﬁ,mﬁ(z*)m—@g)

< Fy«[W] +/ drdw r¥=¢Q2 |y . 6.1)
NS (GINT(E,)

Proof. Here we repeat the argument of Proposition 12.1.1 of [16]. Using the definition
of ¢ in (3.16) we can derive

Q? 1 2

au [r6+ng24|w|2] +nrn+594|w|2 — 2rn—] T\Ij . r39w S Enr’1+594|w|2 + 7rn_392|qjl2.
r n

(6.2)

The result follows by integrating over %5 for 0 < n < 2 and using Propositions 5.1.2

and 5.1.3. O

Proposition 6.1.3. Let o, ¥, ¥ be as in (3.16) and Proposition 6.1.1, Then for any u and
any v > 0 such that (u, v, 04) € J*(E*), the following estimate holds for sufficiently
small € > 0

f dvdw r® ¢ a)?
CuNJHEHNI (L)

+ / didvdew r~Q0)a)? (6.3)
P2
< Fy:[W]+ / drdw r3= ¢ Q2 |y )? + ro=<Q* )%
N (6N~ (Z,)
provided the right hand side is finite.

Proof. Similar to Proposition 6.1.2. See Propositions 12.1.2, 12.2.6 and 12.2.7
of [16]. O

Proposition 6.1.4. Let o, ¥, W be as in (3.16) and Proposition 6.1.1, Then for any u and
any v > 0 such that (u, v, 04) € J*(X*), the following estimate holds for sufficiently
small € > 0

/ dido r¥=¢| = 2r* D502 (3 Qy) |2
CuNIH(EHNT(E,)

Q2 3M
+/ dididew — (1 — 7) | = 2P DEDa (P Q)| (6.4)
7! ‘
S Fee[W]+ / drdew r* QY |* + o QYo
B0 (6N (E,)

provided the right hand side is finite.

L All integrals on €', here are done with respect to the measure Q2 sin 0dvdOde.



A Scattering Theory for Linearised Gravity 541

Proof. Control of ¥, « as in Propositions 6.1.2 and 6.1.3 allows us to directly control the
flux of —2r2D5 D1 (r*Q) on €, using (3.24) and the flux bound of Proposition 5.1.3,
while the spacetime integral can be controlled via Proposition 5.1.2. O

Commuting (3.16) with r P, and using the flux bound of the previous proposition allows
us to obtain an integrated decay statement for P r:

Proposition 6.1.5. Let o, 1, W be as in (3.16) and Proposition 6.1.1, Then for any u and
any v > 0 such that (u, v, 84) € J*(X*), the following estimate holds for sufficiently
small € > 0

/ didvdo r’ = QYN rDyy)? < Fee[W) +f drdw r* = Q*rPay|?
D NI (G)NT (L)

+r07¢ Q% )2, (6.5)
provided the right hand side is finite.

Finally, commuting the equation for v in (3.16) with Y g+ gives us control over the
remaining QY4 using the estimates for ¥ and the nondegenerate control of Y g« in
Proposition 5.1.2. We can optimise the weights near the event horizon and null infinity
by commuting further with Q~!V3 and r QY4 respectively:

Proposition 6.1.6. Let o, ¥, ¥ be as in (3.16) and Proposition 6.1.1, Then for any u and
any v > 0 such that (u, v, %) € J*(Z*), the following estimate holds for sufficiently
small € > 0

/ dido r* = |QY4(3Qy))?
CuNIJH(EHNT ()

+/ diudvdw r’—¢ [|(Q—1y73(91/f)|2 + |rm74§21/r|2]
Dy

< ]Fz*[‘lf]+/

drdw r8=¢ [|sz¢|2 +1Q7'Yay 2+ |rm74w|2]
NI~ (€INI~(€,)

(6.6)
provided the right hand side is finite.

Similar estimates can be obtained for o by applying these ideas one more time to (3.16),
see section 12.3 of [16].

Proposition 6.1.7. Let o, ¥, ¥ be as in (3.16) and Proposition 6.1.1, Then for any u and
any v > 0 such that (u, v, 04) € J*(Z*), the following estimate holds for sufficiently
small e > 0

/ dido r® ¢ [|rPrQPal? + Q7' V3Q%* + [rQVsQ%a ]
CuNIH(EHNI=(E,)

+/ diidvdo r>~¢ [|[rDQ%al? + Q7' V3Q%al? + rQV4Q%el?]
gu.l}

T

fj Fz*[\p] +/

drdw {rs* [IrD2y > + 197 V3Qu 2 + rQYsQy ]
ST (G)NT (€ ,)
+ 07 D%l + Q7' V3Q%a ) + [rQYaQ%al?] }

(6.7)
provided the right hand side is finite.
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6.1.2. AnrP-estimate for o, ¥ The structure of the + 2 Teukolsky equation allows us to
apply the method of [5,18] to Eq. (3.2) in the same way it was applied in Sect. 5.1.

Proposition 6.1.8. Let « be a solution to the + 2 equation (3.2), then for p € [0, 2], u >

ugand 9 = {(u, v, 0, @) : u € [ug, ul, r > R} we have the following:

/ dvdw r? QY4 Q 2al? +/ didvdw (p +8)r’ QY4 Q 2a)?
G.N{r>R} 9
+ Q2= prP Ve 2a)?

S Fes[V]+ / r8_€§22|1/f|2 + 1*6_E§22|ot|2 + / drdw rp|QY74r5§2_205|2.

X*N{r>R}

*

(6.8)

Proof. Rewrite the + 2 equation in terms of 7> Q%a:

302 — 1

Q2
QY4QY3°Q 2 +2 QY4r’Q % — QAP QP — = (15Q% — 13)r°Q %a = 0.
r

(6.9)

Multiply by r” QY4 Q %« and integrate by parts:

1
QY [r712Y.r'2 2] + 2V, [rpszz (|Y7r5§2_2a|2 — (1592 - 13)—2|r5s2—2a|2)]
r

2M 2
+{43Q* — D) + pQ*} rP QY4 Qe + [2 -p- —] rP! ‘%59—20{‘
r

- [—2” (3022 — 13) + 2 — p)(15Q* — 1392)] P3P Q %a)? = 0.
p
(6.10)

Integrating in Z, the Poincaré inequality (2.30) ensures that the leading order terms in
the #* flux term are positive, and we similarly use (2.30) to absorb the last term in the
previous equation into the term containing the angular derivative. Finally we can deal
with the » = R flux term by averaging over R and using the integrated decay statement
of Proposition 6.1.3. O

Similarly, we have

Proposition 6.1.9. Let i arise from o according to (3.16), then we have

/ dvdw rf’|m74r59—1¢|2+/ dvdw (p +HrP QY Q 1y 2
CuN{r>R} 9
+ Q= pyrr vy

<IF):*[\II]+/ drdw r¥ = Q2| |? + ro < Q%o

~

+/ drdo rP|1QY P Q2.
Z*N{r>R}
(6.11)
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Proof. Rewrite the definition of v in terms of 7> Q™! and differentiate via QY3 to get

302 -1
QY3QY4rQ iy + QY. Q iy — QPAPQ Ny
r

Q2 ot
+ (3R —5rQ Yy = —12M* = Q%0 (6.12)
r r

We repeat the argument employed in Proposition 6.1.8 using Cauchy—Schwarz to esti-
mate the « term on the right hand side. 0O

Remark 6.1.1. We have similar statements to Propositions 6.1.8 and 6.1.9 for 5’2—229774
derivatives of Q™1 and Q2w .

quad

6.2. Future radiation fields and fluxes. In this section the notion of future radiation fields

of solutions to the + 2 Teukolsky equation (3.2) is defined, and some of the properties of

these radiation fields are studied, in particular obtaining their 5}?, E;f 2 fluxes when

they belong to solutions of (3.2) arising from smooth data of compact support.

6.2.1. Radiation on 7+

Definition 6.2.1. Let « be a solution to (3.2) arising from smooth data as in Proposi-
tion 3.1.1 or Proposition 3.1.3. The radiation field of « along %, denoted o o+ is
defined to be the restriction of 2M Q2% to .

Remark 6.2.1. We will use the same notation for the radiation field on 7%, S+ or
Tt

As an easy consequence of the estimates of the previous section we have the following
non-quantitative decay statements: (All statements here apply to 57°*)

Corollary 6.2.1. For smooth data of compact support for the +2 Teukolsky equation
(3.2) on X*, X or X, ¥ decays along any hypersurface r = R

|Q¢/||L2(S%{> =0. (6.13)

lim |
V—> 0

Proof. Proposition 6.1.2 applied to ¥ and ¥ 7 implies via Lemma 5.1.4 that

lim QY > du sin0dode = 0. (6.14)

V>0 Jg n{rel2M R}

Repeating this for Q! V3Q using Proposition 6.1.6 gives the result. O
The same works for o using Propositions 6.1.3 and 6.1.7:
Corollary 6.2.2. For smooth data of compact support on ©*, ¥ or %, a decays along
any hypersurface r = R:

1im ‘Qza‘

V—> 00

=0. 6.15
s (6.15)

Commuting with the lie derivative along angular Killing fields lﬁ’éi for |y| < 2 gives

Corollary 6.2.3. For smooth data of compact support for the +2 Teukolsky equation on
¥, X or X, QY|+ and Q2| g+ decay towards HE.



544 H. Masaood

6.2.2. Radiation flux on 7% Assume « satisfies (3.2) and arises from smooth, com-
pactly supported data on X*. The regularity of W implies that on 5#’*, the radiation flux
in terms of W is given by (4.3)

LT [ 20 R (6.16)

Recall that if « satisfies the + 2 Teukolsky equation Eq. (3.2) then o, W also satisfy (3.24)
and (3.27):

2 2
QYW = Azr—zQW3r§22a — 6MrQPa — (3Q% — 1)%9%&20@ (6.17)

2 2
° QW4 SQYaW = Ay (A — 2rQ%a — 6M (QY3+QV4) rQa.  (6.18)

We find the limits towards #*: the left hand side of (6.18) reads:

2

3 —1 1
QY)W + QY ¥ —> |:8v — ] 0y s+ towards 7. (6.19)
r

2M
Now the right hand side reads:

Ao [Ax — 2] o ypr — OM Oy & o+, (6.20)
so we must determine 9, W from the equation
1
A2 v — i Az [Ar — 2] e — 6M 3y oy (6.21)
In Kruskal coordinates, this reads
1

—— 32V = Ay(Ar —2)V e — 3V oy o
e 2(A2 A % 6.22)

= [A2(A2 —2) — 6] V20 e — 3V V 2o pps.
Since ¥, QY4 ¥ decay as v —> 00, we have
1 o0 —
v = | {14 —2) =61V 2 —3VayV Paye | dV. (623
G /‘/[2(2) V20 = 3Vay Ve | V. (623)
Integrating in again in V and using the fact that o s+ is compactly supported we get:

1

_ *© _— N _ ) e — _2 s —
W‘V—/V v V){[Az(Az 2) — 6]V “a e —3VayV ocf}dv,

(6.24)

In Eddington-Finkelstein coordinates, this reads as follows:

Lemma 6.2.1. Let o be a solution to the + 2 Teukolsky equation (3.2) arising from data of
compact support on %ﬂgo, and let \V be the corresponding solution to the Regge—Wheeler

equation arising from a via (3.16). Then the radiation field \ y+ on F* belonging to
W is given by:

e = ZM/ [eﬁ(”—l") - 1] (Ar [As — 2] cypr — 6MByopr),  (625)

OO -
Qo e = / e O (A [ Ay — 2] s + 6M By 0+ ). (6.26)
v
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Equations (6.23)—(6.26) are the expressions for the radiation field and flux at .77+ that we
are able to compute directly out of data there. Note that this applies equally to radiation
on ALy, A+ or H+.
Now let Fp+ = fvoo i (V=0 & p+dv, then 0, F = ﬁF — &+, which implies
=0+ = Ao(A2 — 2)Fyp+ — OM Oy F yp-+. (6.27)

Note that F -+ decays towards the future end of .77}, since

o0
Ly s _
|F=%”+|S§O,v 5/ ez V7V |(Xjf+|S§OFdU < 2Msup|oci%a+|sgOE —> Qasv — o0

v V>0
(6.28)
Therefore, Lz(%ﬂgo) norm of 9,1 s+ is given by
2
lovb e+ 120y = M2(A2 = 2 Fors Lo peny + 16M 30 Fope I g
° 2
+ / sin6d6dg ()Aﬂm P 6.29)
SENAF

° 2
+6‘WF|E*Q%+ +8‘F|2*Q%+

)
Starting from initial data on ¥ or ¥ and repeating the computation leading to (6.29), the

boundary term drops out since we then have

w -
lim Fye= lim e VDo pidi = lim —2Moys = 0. (6.30)

V—> — 00 V—>—00 v V—>—00
Therefore we have

2
[0 s+ | 2y = WA (A2 = 2 Fop 30 ey + 16M By Fope I sy - (6.31)

2 2 2
[0vW s+ [ 2w, = 1 A2(A2 = D P I i, + 16M B Fops I oy - (6.32)
6.2.3. Radiation on .#* The estimates of Sect. 6.1.2 lead us to define a radiation field
for o the same way it is defined for W

Corollary 6.2.4. For smooth data of compact support for « on X, r>y has a finite
pointwise limit on ¥+ which defines a smooth field there.

Proof. We follow step by step the argument of Proposition 5.2.3 and use the estimates
of Proposition 6.1.9. O

Similarly, using Proposition 6.1.8 we have

Corollary 6.2.5. For smooth data of compact support for a on X, roa has a finite
pointwise limit on I+ which defines a smooth field there.

For computational convenience we define
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Definition 6.2.2. For a solution « of (3.2) arising from smooth data of compact support
on X* as in Proposition 3.1.1 or on X, T as in (3.1.3), the radiation field of « along &+
is defined to be the limit _g+ (u, GA) =limy,— r5§2_2a(u, v, OA).

Let ¥ be as in (3.16). We define 1/ s+ to be the limit of 77Q ™1y as v — 0.

Repeating the argument of Proposition 5.2.4 we have

Proposition 6.2.2. For a solution a of (3.2) arising from smooth data of compact support
on X* as in Proposition 3.1.1 or on X, ¥ as in (3.1.3), the radiation fields o g+, ¥ g+
and P g+ decay along I+ as u —> oo.

Remark 6.2.2. We can appeal to an alternative argument that gives the existence of the
limits of 7> and >« at .#* without resorting to the hierarchy of r 7 -estimates as follows:

Let u > ug. From Proposition 5.2.3 we know that W induces a smooth radiation
field ¢+ on £ *. For large enough v the definition of v gives

Py = L / @ ai (6.33)
Tl ), 2 '
Therefore
‘rSsz*lw < sup WG )|ﬁ ‘2 (6.34)
= u,v . .
(u,v) i€lug,u) Q? uo r?
u Q2

Note that ;2—22 w T is uniformly bounded in v for finite u¢, u. Since W is also uniformly
bounded in v on [ug, u] we can conclude (say by Lebesgue’s bounded convergence
theorem) that the pointwise limit lim,_, o, 771 exists for any fixed u. Note now that
(3.16) also implies

@150
= Sy =, (6.35)
p

3
QY3 Q ly +
Then we have

‘FSQ—ll/f

u _ u _ 392_1 s
< | daywi+ | a2 ‘rQ 1//‘. (6.36)
u,v u u r

0 0

We can apply Gronwall’s inequality to find:

“ “3Q%—1
5/ dﬁI\DIexp[/ —ds:| <
u,v uo uo r

Thus Q™4 is uniformly bounded in v on [uo, u]. Existence of the QY3 derivatives of
the limit of 771 is immediate. Repeating the argument for V> gives differentiability
in the angular directions.

The benefit of the preceding argument is that it allows for a characterisation of the
radiation fields at null infinity that is local in u.

‘rSQ_IW /udw‘ ( rlu, v) )2.
ug r(ug, v)

(6.37)
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6.2.4. Radiation flux on .#* The radiation flux on .#% is easy enough to write down
being already in a form that can be computed from the radiation field « #+ given the
uniform convergence of Pa, r’ Y and W towards .

P = (3)>x g+,

3 (6.38)
0ub g+ = (3y) o g+

7. Future Asymptotics of the — 2 Teukolsky Equation

Section 7 is devoted to the study of future radiation fields induced by solutions to the
+ 2 Teukolsky equation arising from smooth, compactly supported data on X*, as was
done for the +2 Teukolsky equation in Sect. 6 and to the Regge—Wheeler equation in
Sect. 5.2.

We first gather the estimates we need in Sect. 7.1, where we collect results from
[16] estimating o from W defined via (3.19) and the estimates of Sect. 5.1 for . We
apply these results to study the future radiation fields and their fluxes in Sect. 7.2. The
estimates of [16] collected in Sect. 7.1 will be sufficient to construct and estimate the
radiation fields on J#* and .#*.

7.1. Integrated boundedness and decay estimates for o via . We begin with the fol-
lowing basic proposition, already proven in Sect. 3.3:

Proposition 7.1.1. Let (x, &) be data for Eq. (3.5) on ©*, X or X as in Proposi-
tions 3.1.2 ani3.1.4 respectively. Then V defined out of the solution o on J*(Z%),
JY(X) or JT(Z) satisfies Eq. (3.15).

Throughout this section we focus on the case of data on X*:

Proposition 7.1.2. Let o be a solution to (3.5) and ¥, ¥ be as in (3.19) and Proposi-

tion 7.1.1. Then for any u and any v > 0 such that (u, v, 04) € J*(Z*), the following
estimate holds:

/ Q?diudvdo r*Q 2|y |? +/ Q?didow r°Q 72|y |?
(7% - € ,NIH(EHNI (G, -
. ,NIHEDNT (G 1)
< Fys[V] +/ drdw r°Q7 2|y %
NI (E)NT~(E,) -
Proof. The definition of ¥ (3.19) and Cauchy—Schwarz imply
1
Wr°Q2 Y1+ MrHQ |y P < — W) (7.2)
— — Mr

The result follows by integrating over Zy.,. O
Proposition 7.1.3. Let a be a solution to (3.5) and ¥, ¥ be as in (3.19) and Proposi-

tion 7.1.1. Then for any u and any v > 0 such that (u, v, 04) € JH(ZH), the following
estimate holds:

/ Q%diadvdo Q*a|* + / Qdiidw r*Q 4 |af?
780 C,NTHEHNT (%)
(7.3)
< Fy«[ V] +/ drdw r°Q7 2|1y )? +r2Q 4.
NI~ (6uNT () -
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Proof. Similar to Proposition 7.1.2. See Propositions 12.1.2, 12.2.6 and 12.2.7
of [16]. O
Proposition 7.1.4. Let « be a solution to (3.5) and ¥, ¥ be as in (3.19) and Proposi-

tion 7.1.1. Then for any u and any v > 0 such that (u, v, 04) € J*(Z*), the following
estimate holds:

2 9= 2 1% 3 1 2
/ Qdiidw ‘—2}" DD w))
@I (EONT- (%) =

Q2 3M 2
+/ didvdw — <1 — —> ‘—2r2$§@2(r391ﬂ)’ (7.4)
7 r r -
2
< Fy«[¥] +/ drdw r®Q=? ‘z‘ +r2Q |g|2.

Proposition 7.1.5. Let o be a solution to (3.5) and ¥,  be as in (3.19) and Proposi-

tion 7.1.1. Then for any u and any v > 0 such that (u, v, 84) € J*(X*). The following
estimate holds:

drdw 1 Q2 [IrPay P + 1y ]

*

/ Q2 dididw Q2 rDyy|? < Fee[W] + /
Dy o
+r07 Q). (7.5)

Proposition 7.1.6. Let « be a solution to (3.5) and W, ¥ be as in (3.19) and Proposi-

tion 7.1.1. Then for any u and any v > 0 such that (u, v, 04) € J*(Z*), the following
estimate holds:

/ Qdidw r®1Q7'V3(Q 'y
 ,NIHEINT~(G0) -

+/ Qdidvdo r* [|sz“773(§z—‘1/;)|2+|rs2774(sz—‘1//)|2]
@L{f - -

SEE*[LIJ]'*‘/ drdo r'Q 2[|1/J|2+|r$2|//|2+|52 173(52 IW)|2+|75274(52 1¢)|2]
. sl Rl Rt Rt
(7.6)

Proposition 7.1.7. Let o be a solution to (3.5) and ¥,  be as in (3.19) and Proposi-

tion 7.1.1. Then for any u and any v > 0 such that (u, v, 84) € J*(=*), the following
estimate holds:

Q:didw |r* Dy Pr2al* + / Q*dididw [r* Dy P al

pokd

lﬁ’vﬂf"(ﬁ*)ﬂl(%)

< Fye[¥] +/ drdew r*Q 2 [|¢|2+ IrDay |
P - -

+1Q7'Y3Q ) 2 + |rm74(sz—1w)|2] +/ drdw [rQ %ol
—_— - E*
(7.7)
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Proposition 7.1.8. Let o be a solution to (3.5) and W, V¥ be as in (3.19) and Proposi-

tion 7.1.1. Then for any u and any v > 0 such that (u, v, 04) € J*(Z*), the following
estimate holds:

/ Qdiidw [|r§2*2g|2 + 1 Dar Q2 + |Q*1y73r9*2g|2]
©,NIH(EINI- (%)
+/ Qdidvdo [|9*2g|2 +rD %) + |$2*‘V3£T2g|2]

D5 (7.8)
gﬁg*[gpr/ drdwr6[|Q_1£|2+|r$2§2_1£|2+|Q_1Y73(Q_1£)|2]

*

+/ drdw r? [|§2_2g|2 + |r$252_2g|2 + |Q_1Y73§2_2g|2] .

7.2. Future radiation fields and fluxes. In this section the notion of future radiation fields
of solutions to the — 2 Teukolsky equation (3.5) is defined, and some of the properties of

these radiation fields are studied, in particular obtaining their 5;”:2, 5;: 2 fluxes when
they belong to solutions of (3.5) arising from smooth data of compact support.

7.2.1. Radiation on 3¢+

Definition 7.2.1. Let ¢ be a solution to Eq. (3.5) arising from smooth data as in Propo-
sition 3.1.2. The radiation field of « along %”go, denoted & .+, is defined to be the
restriction of 2M Q™ %a to ™.

Definition 7.2.2. Let o be a solution to Eq. (3.5) arising from smooth data which is

compactly supported on X according to Proposition 3.1.4. The radiation field of o along
Ly, denoted o e+, is defined to be the restriction of 2M Q 2ato .

Definition 7.2.3. Let o be a solution to Eq. (3.5) arising from smooth data as in Propo-
sition 3.1.4. The radiation field of & along J#+, denoted & .+, is defined by V2 v =
2MVZIQ2a| .

Remark 7.2.1. We will use the same notation for the radiation field on .77, 7" or
AF. )

The following applies equally to radiation fields on J#2%,, 7#* and J#+.

>0’

Proposition 7.2.1. Assume « arises from data which is supported away from i°, then
limv_mol_l)%ﬂ = 0.

Proof. Letr; > 2M. The estimate of Proposition 7.1.2 when commuted with £ implies
lim dii sin0dod¢ r*1Q 'y |)? = 0. (7.9)
VTR JE, NI EDNr=n} -
Similarly, repeating the above to the estimate (7.6) gives

lim dii sin0dode r* Q'3 g2 = 0. (7.10)
VTR Jg NI (EHN(r<r} -
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With (7.9) and (7.10), we can adapt the argument of Lemma 5.1.4 to have

sup HQ_lﬁ‘

u(ry,v)<u<oo LZ(S:%,U)

<

~

f dii sin 0d6d¢ [m-lw + |Q—1W3sz—11/f|2], (7.11)
C ,NIH(EHN{r<r1} - -

thus the right hand side of (7.11) vanishes in the limit as v — oo. A further Sobolev
embedding on the sphere gives the result. O

Similarly, we can use Proposition 7.1.3 and Proposition 7.1.8 and follow the argument
of the previous proposition to conclude

Proposition 7.2.2. Assume « arises from data which is supported away from i°, then
limy s 00 & o+ = 0.

7.2.2. Radiation flux on 5+ Now we can calculate the radiation energies in terms of
«. We want to rewrite

2 2
QY4¥ = QY4 <&QW4> rQ’a (7.12)

in terms of 2« and Q_lz. We have for ¢

2 2
3o-1, _ ' 2 I 4—2
QY = Q4QY74VQ o= Q4QY74rQ Q %a (7.13)
=22 - )Q 2 +r’QyYsQ 2.
We can write for W
¥ = Loy = MRy + Pavia!
L= GV =2Mr g + i@y (7.14)
=230 20 + 43+ QHQY4Q 20 + 15 (QY4)2Q 2.
We can write for QY 4 ¥
QY4 = 6r2Q%Q 20 + 32+ 13Q% +3QMHQV4Q 2 15
+3r' (1 +290)(QY4)2Q 20 + P (QY4) Q0. '
At S (7.14), (7.15) become
V. =2M)° [2&% +6Mdy o e + (2M)283g%;+] : (7.16)

QVab ., = (2M) [4M3vgc%:+ +3Q2M)?02% 1 + (2M)303 jf] . (7.17)
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Remark 7.2.2. On 8;}12, the norm || || 7.+ is equal to
g A+

AN 70 = 12QMI) AN ey + 132MI)> Al ey + 12M3,) Al
Ht

(") (") ()"
(7.18)
while for || || gT+2 we have
2 _ 2 2 4112 34012
141G = 12CMO) AN ) + I3QM0) Al g + 1 QM3 Al g
—6ICMIN AN ) = 3ICMI Al -
(7.19)

If the same computation for || || c7.+> is done with terms expressed in the Eddington-
T
Finkelstein coordinates, it produces boundary terms that are not regular near 3. The

expression (7.17) for W remains well-defined over ##* for data on ¥ and has a finite
limit at BB, as we can see by writing it in terms of the regular Kruskal coordinates:

2 1/2 -2 2
o llgra = IV 2oV el oy (7.20)

For smooth initial data on X, Proposition 3.1.4 guarantees the continuity of V2Q 2«
in a neighborhood of B, and in the backwards direction we can show the same with
Proposition 3.1.8 and Proposition 3.1.2.

7.2.3. Radiation on I+

Proposition 7.2.3. Let o be a solution to (3.5) arising from smooth compactly supported
data on * and let Y, W be as in (3.19). Then r3y has a uniform smooth limit towards
e N N
Proof. We can integrate the definition of ¥ from (3.19) from r = R towards .#*:

v 92

Py =’ QY luvw,p) +/ — v (7.21)
- - vw,R) T

Note that Cauchy—Schwarz and Hardy’s inequality applied to the integral term give

v
|:/ da)[ dv
s2 v(u,R)

which is finite for data of compact support. We can repeat this estimate for » ¥ ¥ conclude
with a Sobolev embedding on the sphere that the integral on the right hand side of (7.21)
is bounded. The dominated convergence theorem gives the result. Proposition 5.1.3 tells
us that the convergence is uniform in u. Finally, we can repeat the argument having
commuted with L7, Lo to show that the limit is smooth. O

2 2
1 Q 1
] <— / dido - |9 < — f dido |QV 491,
R CuN{r>R} r R CuN{r>R}
(7.22)

v

QZ
r2

Similarly, Eq. (3.29) gives us
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Proposition 7.2.4. Let o be a solution to (3.5) arising from smooth compactly supported
data on T* and let Y be as in (3.19). Then ra has a uniform smooth limit & ;+ towards

I
Proof. We can again integrate the definition of ¢ from (3.19) from r = R towards .¥' *+:

v 92
rQaluy = r%alu v +/ dv=—r'Qy. (7.23)
v(u,R) r -

Hardy’s inequality gives us

_ Qz 3 2 _ 3 ) _ QZ 5
/ dvdw —- ’r Ql//) S f dvdw |QV 4r° QY |” = f dido — V|,
Cun{r>R} r - CuN{r>R) - CuN{r>R) r
(7.24)

We can conclude using the above and repeating the proof of Proposition 7.2.3. O

Remark 7.2.3. In particular, Y7ra attains a limit towards .#* which is smooth and
lim,_ o WTrQ = auﬁj%

Remark 7.2.4. Instead of resorting to commutation with L1, Lq: directly, one could
employ the hierarchy of (3.28) and (3.29) to estimate the derivatives of i and ¢ one by
one with a smaller loss of derivatives, see [16]. -

Definition 7.2.4. For a solution ¢ of (3.5) arising from smooth data of compact support
on £* according to Proposition 3.1.2 or on X, X as in Proposition 3.1.4, the radiation
field of « along .#* is defined by & s+ (u, GA) =limy_— oo ra(u, v, QA).

Proposition 7.2.5. Let a be a solution to (3.5) arising from smooth compactly supported
data on * and letz be as in (3.19). Then |,—g decays ast —> o0.

Proof. The estimate of Proposition 7.1.2 applied to r < R for some fixed R < oo,
commuted with T gives

2
lim dudw ‘sz—lw( —0. (7.25)
V>0 Jg N2M <r <R}

Commuting with Q~!¥5 and with ¥ twice gives the result. O

Corollary 7.2.1. Let o be a solution to (3.5) arising from smooth compactly supported
data on ¥* and let W be as in (3.19). Then «|,—g decays as t —> 0.

Proposition 7.2.6. Let o be a solution to (3.5) arising from smooth compactly supported
data on X* and let Y be as in (3.19). Then £y+ =1limy_, r3£ decays towards the

future end of 7.
Proof. This follows from integrating (3.19) between r = R and .#*:

J;

R

2

1
<= QY4 . (7.26)
S2 R CuN{r>R}

1 3
27w ¥ ..

This decays as u —> 00 by energy conservation. Proposition 7.2.5 gives the result. O

Corollary 7.2.2. Let o be a solution to (3.5) arising from smooth compactly supported
data on X* and let ¥ be as in (3.19). Then the radiation field & g+ of Definition 7.2.4

decays towards 7}
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7.2.4. Radiation flux on .#* We want to find the limit towards .#* of

2 2
QY3 = —(3Q2 — 1)&9?7”92& +6MrQ2a — 2r27D§7D2%9y74r92g. (7.27)
As Y isrelated to the transverse derivative of o near #*, we want to express 52_22 QV4rQ’a

in terms of quantities that can be constructed intrinsically on .#* from data. We do this
by integrating the Teukolsky equation: recall Eq. (3.29)

92 2
—Zsz%émhg = 6M [QV4 +QV3]rQPa+ Ay(Ar — 2rQ%a. (7.28)
r
The results of the previous section give us the asymptotics:
Q? 2 302 — 1
—252Y73r—§2Y73g = (QY3)°V — (—) QY3¥ —> (3,)0 . towards .#*.
r Q2 r -7
(7.29)
The right hand side gives:
OMd,x g+ + A (A2 —2) X g+ (7.30)
whereas the left hand side becomes 339 g+~ (1.28) then becomes at &/ *
O, = 6MB, & gs + Ar (A2 —2) & . (7.31)

We can integrate along &/ *:
u
QW ylu = 0uW yilug = OM&X golug + OM & v |u + Ay (Ay — 2)/ & godu. (7.32)
uo

The fact that lim,,__, auiﬁ =0=1im,_, o & 4+ tells us that

o0
As (A — 2)/ re = =8P . luy + M e lu. (7.33)
uo

For data of compact support on X, we can take u( such that the right hand side vanishes.
Knowing that Ay, A, — 2 are uniformly elliptic, we must have

o
/ & =0, (7.34)
u

0

We can integrate (7.32) once more to find a useful expression for g that can be
computed from data on #*:

PR 04) = 6M/ ditet g + Az (Ay — 2)/ dit(u — it) o g+ (7.35)
ug uo

Again, seeing that W| 4+ decays towards . we have:

ST 00
/ / durduret 7 = / dit(u — i) = 0. (7.36)
uo uj uo
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We can rewrite g and 9, s
o] oo
Y, = —GM/ diue g+ — Az (A2 — 2)/ du(u —u)x g+. (7.37)
u u

o0
0 . =—Ap (g — 2)/ diig s+ +6M& g+l (7.38)
u

00 2
Ar(Ay — Z)ﬁ di & g+ :| .
(7.39)

Using (7.34), we can recover (4.53)

1 72 pmy = /W dusin 6d0d¢ [6M|gcﬂ+|2 +

Remark 7.2.5. The fact that [ duy ¥ ,, = [ [F durduz ¥ ,, = 0 implies

o o o o o o o0
/ / / duidurdus & g+ = / / / / duydurduzdug o g+ = 0.
—00 Jujp us ug ui us u3

(7.40)

8. Constructing the Scattering Maps for o, o

We gather the results of Sections 6 and 7 to finally construct the scattering theory for
the Teukolsky equations (3.2), (3.5). Sect. 8.1 is devoted to the + 2 Teukolsky equation
(3.2), where Sect. 8.1.1 handles forwards scattering and Sect. 8.1.2 handles backwards
scattering. Sect. 8.2 is devoted to the — 2 Teukolsky equation (3.5), where Sect. 8.2.1
handles forwards scattering and Sect. 8.2.2 handles backwards scattering. Taking into
account Remark 3.1.1, results concerning scattering towards the past are immediate and
they are collected in Sect. 8.3.

8.1. Future scattering for a. Forwards scattering for the +2 Teukolsky equation (3.2)
is worked out entirely analogously to the case of the Regge—Wheeler equation (3.15),
using the results of Sect. 6.2.

For backwards scattering, we make use of the transport equations (3.16) and the
backwards scattering theory of Sect. 5.2 for the Regge—Wheeler equation (3.15), instead
of directly appealing to a limiting argument that repeats the proof of Proposition 5.4.1.
Throughout this process, the uniform 7 -energy estimates of W are vital in controlling
the backwards evolution of «, but we note here that it is possible to derive uniform,
nondegenerate energy estimates for o near .77, in contrast with the case of W. In this
sense, « is "red-shifted" when the + 2 Teukolsky equation (3.2) is run backwards in time.

8.1.1. Forwards scattering for « We put together the ingredients worked out in Sect. 6.2
to construct the forwards scattering map.

Proof of Theorem 4.2.2. Let «a be the solution to Eq. (3.2) on J*(Z*) arising out of a
compactly supported data set (x, o') on £* as in Proposition 3.1.1. The radiation field on
Xy, & g+, exists in the sense of Definition 6.2.1. Corollary 6.2.2 applied for R = 2M
says that &+ — 0 towards the future end of 77", Let W be the solution to Eq. (3.15)
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associated to & via (3.16). The fact that W|g+, Y7 W¥|x+ are compactly supported means
that the results of Sect. 6.2.2 apply. In particular, we find that

o
- 1
/ 40 e Do (5,6%)] < S sup o (0,01, @8.1)
v

v>v

and since [P+ llgr .~ < 00, this shows that o+l grae < 00 and o p+ € 5;;;2.
E) EAN) 20

Similarly by Corollary 6.2.5, 73 has a pointwise limit as v —> 0o which induces a
smooth o g+ on #*. Proposition 6.2.2 implies that & s+ decays towards the future end

of 7+ As W s+ € ET . we have that o s+ € 5;:2. O

Corollary 8.1.1. Solutions to (3.2) arising from data on ¥ of compact support give rise

to smooth radiation fields in E;f % and 8;;:2. Solutions to (3.2) arising from data on =

6T,+2

o+

of compact support give rise to smooth radiation fields in £ ?f 2 and

Proof. 1dentical to the proof of Corollary 5.3.1 using Propositions 3.1.3 and 3.1.7. O

The proof of Theorem 4.2.2 above and Corollary 8.1.1 allow us to define the forwards

maps 2.7+ from dense subspaces of £L+2, Sg’”, 6’%’+2.

Definition 8.1.1. Let (¢, o) be a smooth data set of compact support to the + 2 Teukolsky
equation (3.2) on $* as in Proposition 3.1.1. Define the map .7+ by

FDFH To(B%) x To(Z%) —> T x T(IN), (x, o) —> (e, ap),
(8.2)

where (& y+, & _#+) are as in the proof of Theorem 4.2.2. .
Using Corollary 8.1.1, the map *?.%* is defined analogously for data on , T:

D Z*T(D) x Te(T) —> D) x T(I), (o0, &) —> (otps, xg+), (8.3)
2 Z* . To(T) x Te(T) —> T(FF) x T(IY), (, &) —> (v, Ggs).  (8.4)

8.1.2. Backwards scattering for « Now we construct the inverse *? %~ of Theo-

rem 4.2.3 on a dense subspace of 5;’;;2 b E sz The existence of a solution to the
A

+2 Teukolsky equation (3.2) out of compactly supported scattering data on ;0, I+

is shown in Proposition 8.1.1. Showing that this solution defines an element of S;fz is
done in Corollary 8.1.2.

Proposition 8.1.1. For o+ € Te(HZy) N 5;}5 supported on HZy N {v < v.} for
vy <00, ag+ € (N S;fz supported on on I+ N {u < uy} for uy < oo, there
exists a unique solution a to (3.2) in J*(X*) that realises & y+ and & g+ as its radiation

fields on %”;0, I,
Proof. Define

1 o
1//,%0+2m / d e OV (Ay — 3oy, (8.5)
v
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W = 2M / a5 [0 1] (Ao [s — 2o — My}, (8.6)

Y+ = Q& g+, (8.7)
Py = 020 g (8.8)

With scattering data {p s+, { s+, there is a unique solution W to Eq. (3.15) on J*(X*).
Define ¥/, a by

00 02
QY (u, v, 0%) == QM) Y+ (u, 67) —/ Q—z\ll(ﬁ, v,0Mdi,  (8.9)
u r

o
r%au, v, 04) = a s (u, 64) —f r3y (i, v, 0Y)da, (8.10)
u
then v, o satisfy the transport relations (3.16):
v = @va QY = <@QW3) rQa. (8.11)

(note that we are working with (1, 1)-tensor fields throughout). The boundedness of
FUT[\IJ](u, oo) implies that Q20 —> &+, QY —> Y+ as u —> oo. Since W
satisfies Eq. (3.15), the commutation relation (3.17) implies

2 2
(ész%) T2rQ% =0, (8.12)

where 7*2 is the + 2 Teukolsky operator. We have:

32— 1 6M
T2rQa = ———13Qy + QYur’Qy — <A2 — —) rQ’a
, g 4 (8.13)
&Q%T”rsz%l = (A =322+ 1)PQY — QYU + 6Mr Q2
On J#* this evaluates to
1
T2r Q2| e = 2M)? (av — W) Ve — (Ao — 3) o ype, (8.14)

2
.
@Q%Tﬂmzmﬁm = —Q2M)}(Ay + DY ypr + Mo ypr — 0 . (8.15)

It is clear that with our construction of initial data, 7 +2r£2205| o+

= Q—ZQW3T+ZFQZ(1|;;&+ = 0, therefore « satisfies 7+?rQ%a = 0. Note that as W (1, v)
vanishes for u > u,, v > vy, the same applies to o, ¥. Let R > 3M, we can estimate
¥ (u,v) for r(uy, v) > R by:

50 o [ 3P 8.16
QY| < Y]+ r|r Al (8.16)
u u

Gronwall’s inequality implies

2 pug
|r5w|§<r(”’”)>/ wl. (8.17)

r(uyg, v)
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As W converges uniformly to 1\ s+, this implies that 8,77Q4 converges uniformly to
0, s+, which in turn says that FIQ converges to 1 y+. An identical argument shows
that o converges to & g+. 0O

In the following we explicitly show that o of Proposition 8.1.1 defines a member
T,+2.

of & AR

Corollary 8.1.2. Let & yp+, x g+ be as in Proposition 8.1.1. Let a be the solution to

Eq. (3.2) arising from o+, & g+. Then (Q2a|5+, Vyg. Q%a|5+) € ET 2

Proof. Let & be a smooth cutoff function over R with & = 1 forr < 0, & = 0 for
r > 1 such that all derivatives of & are unlformly bounded. Let {R,}7° | with R; large

and R,+1 = 2R, and define &,(r) = & (

Ro—R ) We want to show that the sequence

an = o is such that (%, Vg, Q%) converges to (Q2a, ¥y, Q2a) in ngz.

2
Denoting by ¥, = (5’2—229?73) r$2ay, the solution to the Regge—Wheeler equation
arising from «,,, we compute

2 2 2 2
W, = (Qz Q%) rQla, = (@Q%) £,r Q%

= r2(r2e)) rQ’a — 2P PQy + £,V

(8.18)

We know that £, ¥ — W in é'g* (see Remark 4.1.1). Seeing that r2&) ~ r, r2(r2£])' ~
r2 on [R,,, Ry+1], we can estimate the remainder via

Ryv1

W0 =& W3 < / drsingdodg |1y + |VrQy P +1rQVarey ]
Z* Rl’
+ [|r3sza|2 + V3 Qal? + |r§2Y74r3Qa|2]
1 o
+[r—2(|\D|2+|W|2)+|szW4w|2]

(8.19)

The result follows if we can show that 2 QY| s+, ri Q%a| 5, ri QY4r3Quy, FAQY 3
Q% decay as r —> o0o. Letu < u’ < u_ and take r = r(u’,v), R = r(u, v) and

(u,v,0%) := (R, %) € T*. We estimate R%sz* by integrating the definition of W
(3.16):

/ RIQIV (R, 6 )|da)<\/_/ du/ da)—|\ll|+\/_r QY @, v, 0%

<u ff du/ da)—|\ll|+r252|w(u v, 64|

S FTIW 1, ) + 12 Q4 (', v, 0.

(8.20)



558 H. Masaood

We used Cauchy—Schwarz to get to the last step. The right hand side decays as v —> 00
since FUT[\I'](u, u’) decays, FMT,[\I/](v, 00) < oo and P g+ vanishes for u < u_, so that

QU v, 0% 252 )s/wdﬁf L= L [FT i, 00
) =, 52, 12 NATE A
(8.21)

and commuting with £§2 for |y| < 3 gives that R %QW;* decays as R —> oo. This

can be repeated to show the same for R% Qzal):*. Furthermore, we have
Q2 Q2 Q?
QY3rQYar QY = ——rQVar QY + 3Q° — D ¥+ —Qy,w.  (8.22)
r r r
We estimate

‘VQV4V3QW|E*

< ‘rQWM’SQIp(u/, v, 64)
u' 92 QZ QZ
+/ dii |:—|rQY74r3QW| + (3 - D= ||+ —|Qy74\11|] ) (8.23)
u r r r
Gronwall’s inequality implies

r(u', v) |:

rQYar3 Q|-
r(u,v)

S

rQYar3Qy (u, v, eA)‘ + % FT[W](u, u’)i| ,
(8.24)

which in turn implies that 72 QY4r3Qy|s+ —> 0 as R —> oo. The same can be
3
repeated to show r?QW4r3Q2a|2* — 0asR—o00. O

Definition 8.1.2. Let & s+, & s+ be as in Proposition 8.1.1. Define the map #» %~ by

OB~ T(H) x Te(I*) — T(T*) x T(EY), (op+, ag+) — (Q%at|5e, Vg, Qat|50),
(8.25)

where « is the solution to (3.2) arising from scattering data (« _y+, & _»+) as in Proposi-
tion 8.1.1.

Corollary 8.1.3. The maps *? . Z*, 42 %~ extend uniquely to unitary Hilbert space
isomorphisms on their respective domains, such that 2.7+ o 2 B~ = Id, *» B~ o
D 7+ = Id.

Proof. 1dentical to the proof of Corollary 5.4.1. O
Remark 8.1.1. As in the case of Remark 5.4.1, Corollary 8.1.3 implies
19D B (0, s orie = ol + sl (8.26)
¥ }W;O g+

As in the case of Proposition 5.5.1, we can use the backwards r?-estimates of Sect. 5.5.2
to directly show (8.26) without reference to the forwards map 2.7+,

Since the region J*(X) N J~(X*) can be handled locally via Proposition 3.1.3, Propo-
sition 3.1.7 and T-energy conservation, we can immediately deduce the following:
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Corollary 8.1.4. The map ¢ %~ can be defined on the following domains:

g el el — el (8.27)
+2) gz— . oT,+2 T,+2 T,+2
B ELS@ELT — e (8.28)
and we have

R F oM B =ldgraag gre, DB 0PI = Idgra, (8.29)

T+ g+ z
T oD P = ldgrag grn, DB oI = Idgra. (8.30)

Tt T

This concludes the proof of Theorem 4.2.3.

Remark 8.1.2. (A nondegenerate estimate near .77°*) Note that the transport hierarchy
(3.16) implies (integrating in the measure du sin 6d0d¢)

1 Q?
/ vy = / —|W* < FI[W](u, 00),
% ,Nlu,00) Q € ,N[u,00) r

1 1 1
— QY3 Q%al* < —1QV3r°Qy? < QX (u, v) FT [W](u, 00).
/‘tﬁvﬂ[u.oo) Q? (2M)2 % ,Nlu,00) r? v
(8.31)

These estimates hold uniformly in v, in contrast to (5.67). This can be traced to the sign
of the first order term in

2392 1) 6M Q2
r

QY3QYarQla + QY3rQe — QP ArQPe + ——rQa =0. (8.32)
r

forr <3M.
Near .#* we can use (6.9) and follow the same steps leading to (5.62) to derive for
R > Reyﬁ
[ iaveeel S, [ucxﬁnir,ﬂ o oo+ [ e %wz] .
¢ wN{r>R} 7+ Fs I 0w, uy]
(8.33)
With these estimates we can conclude as for the Regge—Wheeler equation:

Corollary 8.1.5. The results of Proposition 8.1.1 hold when & yp+, & _g+ are not com-
pactly supported, provided

2 2 2 : 2
E WL s || 2gan + 1LYy v P + LYo v |2 + 1LY, V& g+ |* < 00.
lyl<2 5 g#*f 5 5ﬂ+ I+ 5 §
P 7 e
(8.34)

The results above can be extended to scattering from X, X, since the region J*(X)N
J~(X*) can be handled locally with Proposition 3.1.3 and Corollary 5.3.1.

Corollary 8.1.6. Let o+ € T'(J£F) N 5;2’;:2, xg+ € T(IHN 5;’f2, such that
(8.34) is satisfied. Then there exists a unique solution o to Eq. (3.2) in J*(X) such that
limy_ oo PP = X g+, 2M822a‘jf+ = & _yp+. Moreover, (a|):, Vaustl|s) € 5£’+2 and

|(@ls. Vusalz)|gre = o Iz + 1o ooz (8.35)
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Corollary 8.1.7. Let o+ € 72 be such that V2o € T(A¥) and let o+ €
resHn 5;:&. Then there exists a unique solution « to Eq. (3.2) in J*(X) such that
limy_ oo o = XK g+, 2MV’29205|%;+ = V’zo(j;/m. Moreover, (ot|§, anodf) €
5%’+2 and

[(ets: Vasals) [ere = lloslGr.o + o e (8.36)

8.1.3. A pointwise estimate near i° in backwards scattering As an aside, if o s+ is
compactly supported we can use the backwards r?”-estimates of Sect. 5.5.2 to obtain
better decay for o, ¥ towards i®. We illustrate this point in what follows:

Proposition 8.1.2. Let o be the solution to (3.2) arising from scattering data &+ €
Fc(e%”go), X g+ € Fc(ﬂgo) as in Proposition 8.1.1. Then r>v|s+, rPa|ss —> 0. The

same applies when $* is replaced by ¥ or %.

Proof. Given that P o+ = Bfocf o+ 1s compactly supported, we already know that
V|s+« =g —> 0as R — 0. We first work with 3, for which we can derive a
similar estimate to (6.37): Let u < u’ < u_ and take (u, v, 04y € ©*, v — u := R*.
Integrating Eq. (6.35) in u on €, between u, u’, we obtain:

u u 302 — 1
50-1 50—1 / _
P, v) — 99 w(u,v)‘ 5/ W exp / Y
u u r
u / 2
< [/ |qf|} <M) . (8.37)
u r(u,v)
We further compare fu"/ |W|du to f ";O |W| #+: via the backwards r”-estimates of

Sect. 5.5.2: -

’

u u 2
/ du|\Il|—/ du [P g+ |
u —00

where 2 = J*(Z*)NJH(E,)NJ ~(%,). Asin Sect. 5.5.2, we can bound the last integral
by the right hand side of (5.100). As R —> oo, [ du |¥| — [“_ du [ s+| = 0.
Consequently |r552_11//(u, v) — Q! v)

2
1
5[/ dudvmm\pq < — | dudv r*|1QY.¥|?,
g R J9

(8.38)

decays as R —> oo and

lim ry|g,—g = 0. (8.39)
R—> 00
We can prove the same for |5 ,—g by repeating the above argument for / u”:' du(u —

u_)W and noticing that f;f du(u —u_)\ g+ also vanishes since \_s+ is the 2™ deriva-
tive of compactly supported fields on .£*. O
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8.2. Future scattering for . Forwards and backwards scattering for the — 2 Teukolsky
equation are worked out entirely analogously to the case of the + 2 Teukolsky equation,
using the scattering theory of the Regge—Wheeler equation and the results of Sect. 7.2.
In contrast to the + 2 equation, the transport equation (3.19) relating o and W is sufficient
to obtain an estimate for the radiation field near .#7 that is uniform in the future end
of the support of & ,+, while near J#* « experiences an enhanced blueshift, and it is
necessary for scattering data to decay exponentially at a sufficiently fast rate towards the
future in order to obtain a solution in backwards scattering that is smooth near J#*.

8.2.1. Forwards scattering for o We put together the ingredients worked out in Sect. 7.2
to construct the forwards scattering map.

Proof of Theorem 4.2.7. Let « be the solution to Eq. (3.5) on J*(X*) arising out of a
compactly supported data set (o, ') on X* as in Proposition 3.1.1. Proposition 3.1.2
guarantees the existence of the radiation field & 5. as in Definition 7.2.1. Proposi-
tion 7.2.1 says that & -+ —> 0 towards the future end of JZ*. Let W be the solution
to Eq. (3.15) associated to « via (3.19) The fact that (¥|g+, Y7 W |g+) are compactly

supported means that the results of Sect. 7.2.2 apply and o j+ € £ ;’;2. Similarly, by
A

Proposition 7.2.4, ra has a pointwise limit as v —> oo which induces a smooth o -+
on #*. Corollary 7.2.2 implies that & ,+ decays towards the future end of #*. As

Q g+ € 5§+, we have that

Ax(Ay —2) f diigt v — 6M ot g € L2(I). (8.40)

The fact that & arises from data of compact support means that (7.34) applies. This implies
upon evaluating the L2(.#*) norm of the left hand side of (8.40) that &X g+ € E;: 2 o

Corollary 8.2.1. Solutions to (3.5) arising from data on X of compact support give rise

to smooth radiation fields in 5;: 2 and 5;;:2. Solutions to (3.5) arising from data on

X of compact support give rise to smooth radiation fields in 5T‘:2 and 5%2

Proof. 1dentical to the proof of Corollary 5.3.1 using Propositions 3.1.4 and 3.1.8. O

The proof of Theorem 4.2.7 above and Corollary 8.2.1 allow us to define the forwards
maps (2.Z* from dense subspaces of 5%;_2, 5%’_2, 6’%’_2.

Definition 8.2.1. Let («, &’) be a smooth data set of compact support to the — 2 Teukol-
sky equation (3.5) on T* as in Proposition 3.1.2. Define the map (~2.%* by

CDFHTo(2%) x To(T¥) —> T x T(IY), (&, o) —> (0w, g+,
(8.41)

where (& y+, & 7+) are as in the proof of Theorem 4.2.7.
Using Corollary 8.2.1, the map (72.%* is defined analogously for data on X, X:

(D ZF To(T) X Te(T) —> T () x T(IY), (o0, &) —> (s, X g+), (8.42)
DFH:Te(T) X Te(T) —> D) x T(IN), (& &) —> (@, & gv). (8.43)
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8.2.2. Backwards scattering for & Now we construct the inverse (2%~ of Theo-
rem 4.2.8 on a dense subspace of 5}:2 ®E T’: 2 The existence of a solution to 3.5)
A

out of compactly supported scattering data on ‘%?0’ #* is shown in Proposition 8.2.1.
Showing that this solution defines an element of 55;72 is done in Proposition 8.2.2.
Proposition 8.2.1. For « 4+ € F(jf Zoné yﬂ supported on Q%”;O N{v < vy} for

Vy <00, &g+ € I(FH)N er e supported onon It N{u < uy} foruy < 0o, there
exists a unique solution o to (3.5) in J*(X*) that realises & yp+ and & g+ as its radiation
fields on A2, I respectively.

Remark 8.2.1. The factthat o s+ € £ T2 automatically implies that ffooo dit & g+ = 0.

Proof. Let Sbea spacelike surface connecting " at a finite v, > v, to .#* at a finite
uy > uy. Denote by & the region bounded by S22 N {v < vy}, X, ST N [u_, uy], T*
and €, for u_ > —oo. We define -

2 1
Vo = Ny Qs + 5o D, (8.44)
Y, =202M) o +22M) 0y s + QM) 0 &y, (8.45)
[e )
Vo=~ / die Ay & 5+, (8.46)
o
Y, = / dit (uy —u) [A2(Az — 2) et gv + 6M Iyt 5] . (8.47)
u
We can find a unique solution W to (3.15) with radiation fields ¥ ., . Let
oo 2
rPQyu, v, 0) = (2M)31//j+(u,9A)—/ dv —W(u, v,0%), (8.48)
- - r
o v
rQ2au, v, 0%) == oy (u, 64) —/ dv rdy(u, v,0%). (8.49)
v
Then £ , o satisfy:
) 2 2
U= @QV4r3Q£ = <92 QW4> rQa. (8.50)

Moreover, we can see that lim,__, r3521p(u, v, 04) = xpﬁ (u, 64 uniformly in u, as

o0 O2 2
/|r39w—(2M)3wﬁ|2=/ [/ Q—zgdﬁ} leuT[g](v,oo), (8.51)
S2 - - S2 v r

r

and similarly lim,_, erg(u, v, 04) = & g4+ (U, 04) uniformly in u. We can re-
peat the same for Y, Y°7-derivatives of rQ%a, r39£, which immediately implies that
3]”391//—)31,0 , 9ur Qe —> 3,0 g+ AS V —> 00,
The commutation relatlon (3.20) implies

2

2
(Qz Qm) “2rQ%a = 0. (8.52)
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We find 7-2r Q% and 25 QY47 2rQ%a:

32 -1 6M
T2rQ% = QY373 QY — ———13Qy — (Az - —) r%a,  (8.53)
- r - r
2
&erzrgzg = QYW — [,42 (3% — 1)] Py — 6MrQa. (8.54)

It is not hard to see from (8.44), (8.46), (8.45), (8.47), that in the limit v — o0,
T-2rQ%x and Srz—zzQYh,T’erzg vanish. This implies that ¢ satisfies 7~2rQ%a = 0 on
2. 1tis also clear that Q2q| y+ = & 4+ Finally, we can repeat the above to extend o
to JY(Z*) N {u > i} for arbitrarily small z. O

Note that energy conservation translates to the following r-weighted estimates that are
uniform in u as u — —oo:

2
.
L o 1VarQy? < B, 00), (8.55)
r2 1
[p S|Vl < / QVar’Qyl? < < F/ 810, 00). (8.56)

This can be traced to the good sign of the first order term in Eq. (3.5) near .#* when
evolving backwards, and similar estimates can in fact be derived directly from Eq. (3.5).
We can deduce

Proposition 8.2.2. Let & yp+, & 7+ be asin Proposition 8.2.1. Let a be the corresponding
solution to Eq. (3.5). Then we have that (Q’2g|z*, an* Q*2g|2*) € 5%;:2.
Proof. Using (8.55), (8.56) it is easy to use the argument of Corollary 8.1.2 to show

7
r2a|s+| = 0, so we can repeat what was done to

. 7 .
that lim, _, ‘rz 1/f|>;*‘ =lim,

prove Corollary 8.1.2 to obtain the result. O
Definition 8.2.2. Let « 4+, & »+ be as in Proposition 8.2.1. Define the map 2%~ by
DB Te( ALY x Te(IH) —> T(Z¥) x T(E5), (v, A ) —> (2 25+,
Vise @ 2alze), (8.57)

where « is the solution to (3.5) arising from scattering data (& y-+, & #+) as in Proposi-
tion 8.2.1.

Corollary 8.2.2. The maps 2 .Z*, (=2 2~ extend uniquely to unitary Hilbert space
isomorphisms on their respective domains, such that ) .F* o 2%~ = I1d, “Y %~ o
2D 7+ = Id.

Remark 8.2.2. As in the case of Remarks 5.4.1 and 8.1.1, Corollary 8.2.2 implies

-2 — 2 2 2
IT2 B (e, P2 = s g2 + e 27 s (8.58)
Exgx 5,%,”0 Esv

As in the case of Proposition 5.5.1, we can use the backwards r?-estimates of Sect. 5.5.2
to directly show (8.58) without reference to the forwards map (72.Z+.
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Since the region J*(X) N J~(X*) can be handled locally via Proposition 3.1.4, Propo-
sition 3.1.8 and T -energy conservation, we can immediately deduce the following:

Corollary 8.2.3. The map (=2 %~ can be defined on the following domains:

g el el — L7 (8.59)
(-2 gg— . oI, 2 T,-2 T,-2
B eEL T — e (8.60)

and we have

=D g+, (2 gp— _ D= o (2 g+ _

FTo B = Idf;‘;f@ 8;’12’ PB~ o FT = Idgg,fz, (8.61)
D) g+ o (D) gp— D g o D g+ _

FTo B = Idg’:f.lzEB 5;,12, P~ o FT = [dg%ﬁz. (8.62)

This concludes the proof of Theorem 4.2.8.

8.2.3. Non-compact future scattering data and the blueshift effect In contrast to (8.55),
(8.56) (and to the estimates of Remark 8.1.2), estimates for Q 2« near .#* in the
backwards direction suffer from an enhanced blueshift, which can be readily seen in the
transport equations (3.19):

2M v
QVarQ Yy + QY = =, (8.63)
- r - r
For r < R_p+ < 3M, we can derive
301 3 2 301 3 2
/sg_v PRy — M| 5/5” PRy — My |
=0
+i/U+dﬁ/ IPQ Yy — eM)y |2+L/U+d5/ w—y .2
M J, Sgl-) - = (ZM)2 v 551; AR
(8.64)

Gronwall’s inequality and (5.68) imply

30—1, _ 3 2 L (ve—v) 2 2
fgz |r Q z (ZM) £%+| §v+ eM ["ij+”57}+ + ”ij+”g;+
iy (8.65)

+ b, +|2+|f’w,+|2]
/jf*ﬂ[v,m] =7 =
The equation
aM
QV4rQ e + —ZrQ_Zg =rQ ly (8.66)
, Ld

implies a similar estimate with a worse exponential factor

-2 2 < o) 2 2
/‘;21|VQ o 2MQC%+| ~U+ eM |:||ij+”g§++”$]+”g;+
u,v (867)

2 v 2
+ W . +IYY . } .
fjﬁ”*ﬂ[v,m] = A
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We can conclude that the statement of the backwards existence theorem holds when
scattering data is not compactly supported, but the solution will not be smooth unless
data decays exponentially, which we can then show with the following applied to (8.64):

Lemma 8.2.3. Let f(v) > 0 and assume

f) < A/ f) +e v (8.68)
v
forallv < vy. Then if P > A we have
P
f) < . Ae—P”. (8.69)

With this, we see that if & ,»+, @ 7+ decay exponentially at a rate faster than % then the
we are guaranteed that

/ rQ e — 2Ma
S

2
v

5[”&%”@53”9%”@;; /m[ @%Fﬂw%ﬂ] (8.70)

v,v4]

Corollary 8.2.4. Let o+ be a smooth symmetric traceless Sgo,v 2-tensor field with
domain J€*, & 7+ a smooth symmetric traceless Sc2>o,v 2-tensor field with domain 9.
Then there exists a unique a that is smooth on the interior of J*(X*) and satisfies (3.5).

{f K pr, & g+ decay .expon.entially towards the future at rate faster than % then Q 2«
is smooth up to and including 7.

Since the region J*(X) N J~(X*) can be handled locally with Proposition 3.1.3 and

Corollary 5.3.1, the results above can be extended to scattering from %, X.

Corollary 8.2.5. Let &+ € T(A)N 1,7 aye € T(IHN EL72 Assume oy,
& g+ decay exponentially at a rate faster than % Then there exists a unique solution o
to Eq. (3.5) in J*(X) such thatlim,_, o ret = & g+, 2MQ_2Q}%p+ = & p+. Moreover,
(@], Vralx) € £y 7% and

l(@ls. Vuvelz) 512 = [locse o2 + [l oz (871)

Corollary 8.2.6. Let o+ € 5%2 be such that Vi« € T(A*) and let & z+ €

rsHn S_T’: 2, Assume &Ko+, & g+ decay exponentially at a rate faster than % then
there exists a unique solution o« to Eq. (3.5) in J*(Z) such that limy__, oo re = X g+,
VZQ*2Q|%+ = Vzgc%u. Moreover, (g|§, WTQ|§) € Eg’_z and

2 2 2
l(ets. Vizals) gz = lla fer2 +llaseler- (872)
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8.3. Past scattering for o, a. Taking into account Remark 3.1.1, Theorems 4.2.4 and
4.2.9 are immediate. We state the results regarding scattering on J ~ (X).

Corollary 8.3.1. Given smooth data of compact support (x, &) € 5%&2, there exists
a unique solution « to the +?2 Teukolsky equation (3.2) on J ~(X) that induces smooth
radiation fields

o 0y € ELT given by o y-(v,04) = limy— _oo rar(u, v, 0%),

® Xy € 5;%_2 given by U g = 2MU?Q %a y-.

such that

[t Yralg) [z = llos 1. + o gz - (873)
Let & yp— € 5% be such that U*« € T () and let xgs-€(F7)N E;irz. Assume
X -, & g- decay exponentially at a rate faster than % then there exists a unique
solution o to Eq. (3.2) in J~(X) such thatlim,__, _oorot = oy, 2MU252_205|%;_ =
U? . Moreover, (oz|§, Vraly) € 5%’+2 and (8.73).

Therefore, as in the case of *? F+, %2 B~ we can define the unitary isomorphisms

+2) gg— . o142 T,+2 T,+2 *2) gzt . T, 42 T,+2 T,+2
F .Sf —>5F6955],, .@.5’%7@5{], —>5§ ,
(8.74)
with
() = o ) gt _ Idg;“v () gt o () = — Idg%eag;,tz. (8.75)

An identical statement holds with 5£’+2, & ;’f} instead.

Corollary 8.3.2. Given smooth data of compact support (x, &') € 5%’72, there exists a

unique solution a to the — 2 Teukolsky equation (3.5) on J~ () that induces radiation
fields

e, € 5;__2 given by & - (v, 04) = limy— _oo e (u, v, 64),
e,y € 5%2 givenby U 2o,y = 2MU2Q%a| -

such that

l(eis: Vrets) 2z = llas et lazllfnn . 870

Let & - € 8;%2 be such that U2« € T(A~) and let ay,- e '(IH)N 5;;2.
Then there exists a unique solution « to Eq. (3.5) in J* () such that limy,—, _s rsg =
X g, ZMU_292Q|%, = U_2gcjff. Moreover, (g|§, Vraly) € 5%’_2 and (8.76) is
satisfied. An identical statement holds with Eg’_2, 5;__2 instead.

Finally, note that using Corollaries 8.3.1 and 8.3.2, the proof of Theorem 4.2.5 and
Theorem 4.2.10 is immediate.
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9. Teukolsky-Starobinsky Correspondence

‘We now turn to the proof of Theorem 3 of the introduction, whose detailed statement is
contained in Theorem 4.3.1. We start by stating in Sect. 9.1 some useful algebraic rela-
tions satisfied by the constraints (1.5), (1.6). We then study the constraints on scattering
data in Sect. 9.2 to construct the maps 7S s+, 7S z+, and then we use the results of
Sects. 9.1 and 9.2 to show that the constraints are propagated by solutions arising from
scattering data consistent with the constraints, culminating in the proof of Corollary 1
of the introduction in Sect. 9.4.

9.1. Some algebraic properties of the Teukolsky—Starobinsky identities. Let o be a solu-

2
tion to the + 2 Teukolsky equation and let & = (;Z—zz QVg) rQ2a, then the commutation
relation (3.17) implies that

_2 QZ 2
T |: QVg 973‘11] =0. 9.1)

(Recall [mathcal T remark] for the notation 7 *2 used above). Similarly, if « satisfies

2
the — 2 Teukolsky equation and ¥ = (;2—22 QW4) rQ2a, (3.20) implies
QZ ’,2
T+ [r—zszm@mug} =0. 9.2)
Note that were (&) , &) to belong to a solution to the full system of equations (2.41)-(2.54)
then in fact we would have equations (3.13), (3.14):
QZ
2
QZ

2 _
QV3r—QY73 U 2Dy DI D1 Dor QR @ —6M [QV4 + QY3]rQ? a=0, (9.3)
QY74 Qy74 U 2 P Dar Q2 & +6M [QV4 + QY5 rQ2 G=0.  (9.4)

Combining (9.1) and (9.2) with the fact that —2r4@§YDT%1$2, Y+ commute with
both (3.2) and (3.5) leads to the following: denote by TS~ [«, ] the expression on the
left hand side of (9.3) acting on «, «, such that the constraint becomes

TS [, &] := QV@ Qy73\11 2D DED Daa + 6M [QY4+QV3]a
9.5)

Similarly denote by TS~ [, ] the expression on the left hand side of (9.4) so that the
constraint becomes

TS (o, @] = — sz% qux 24Dy D D1 Pra — 6M [V + QV3] e = 0.
(9.6)



568 H. Masaood

Lemma 9.1. For « satisfying the + 2 Teukolsky equation (3.2) and o satisfying the — 2
equation (3.5), TS*[«, a] also satisfies the +2 Teukolsky equation (3.2) and TS™ [a, «]
satisfies the — 2 equation (3.5)

This implies that if we impose both constraints (9.3), (9.4) on initial or scattering data
for both the +2 and — 2 Teukolsky equations then the constraints will be propagated
by the solutions in evolution. More specifically, if we have scattering data for «, o such
that the radiation fields belonging to the quantities TS* [, a], TS~ [, o] (in the sense
of the definitions stated in Sects. 6.2 and 7.2) are vanishing, then we must have that
TS*[a, a] = 0, TS~ [a, a] = 0 by Theorem 4.2.3 and Theorem 4.2.8.

We would like to know the extent to which data for o, & are constrained by Eq. (9.5)
and Eq. (9.6). Doing this for data on a Cauchy surface is complicated, but if we restrict
to data consistent with the scattering theory developed so far in this paper then we can
alternatively attempt to address this question for scattering data on .#*, 7#*. This is the
subject of the remainder of this section.

To start with, we can show the following by a straightforward computation

Lemma 9.2. For o satisfying the + 2 Teukolsky equation (3.2) and « satisfying the —?2
Teukolsky equation (3.5)
02 2 3 _
= Qv, <@m74) rQ? TS [or, o] = — [2;»4@’2‘%’;‘@1%2 + 12MY77] rQ? TS, ],
,

.7
02 ") 3 .
=y, <§w3> rQ2 TS o, o) = |2 PyDTPI P2 — 12M V7 | r @2 TS [o, @,
,

(9.8)
In other terms,
TS* [TS*[o, &), — TS [er, 1] = 0, TS™ [~ TS*[e. a]. TS [, 2] = 0,
9.9)

regardless of whether or not the constraints TS*[a, a] = 0, TS [a, «] = 0 are satisfied.
Lemma 9.2 implies that Egs. (9.3), (9.4) are not independent. We will use Lemma 9.2
in Sect. 9.3 to show that imposing only of the constraints on .#* and imposing only the
other constraint on J#* is enough to propagate the constraints on the solutions «, «.

9.2. Inverting the identities on ¥+, .

Constraint (9.4) at ¥+ We know that there are dense subspaces of Sg’ﬂ, 5%_2 con-
sisting of smooth data for Egs. (3.2), (3.5) such that
lim rQ2 TS [ @] = s — 2D5D D1 Prot yo + 6Myet g, (9.10)
V—> 00

so we consider

oy — 2D DI D1k g — 6Mbyat o =0 9.11)

as a constraint on scattering data & ,+, & s+ at .#*. We now show the following: if ot s+
is smooth and compactly supported, then there is a unique & ,+ that decays towards .7
and satisfies (9.11):
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Proposition 9.1. Let & g+ € T'.(F™). Then there exists a unique smooth & s+ such that

33 e — DD D Brot v — 6Mu 0t v = 0, (9.12)
with & 7+ —> 0 as u — Foo.

Proof. To make sense of (9.12) we scalarise it: we associate to & ,+ scalar fields ( i , §)
on . with vanishing ¢ = 0, I modes such that & s+ = r?P; 1(f, g). Similarly, we
associate to o s+ the two fields (f, g) such that ot s+ = r?D5D1(f, g). Define further
F = 2QY;5(5,9Y3)°f and G = L QV3(5,QY3)%g. In the absence of £ = 0, 1
modes, 723} is injective and thus (9.3) becomes:

(F. G) = 2r* D\ Dy DS DY (£, ) + 6MQY3(f, )
= 20D DD DI (f . —8) + 6MQY3(f. g).

Note that r4 D D D3 D} = 12D [~ A~ 11D} and 2D} Dy = —K+1,50 D Dy D3 D}
= sr'D D} x (DD} -2} = 1 A(A +2). Equations (9.13) become

(9.13)

1 o
1 o o
0ug + WA(A +2)g =G. (9.15)

Equations (9.14) and (9.15) are two 4" order parabolic equations which are well-behaved
in opposite directions in time; a unique smooth solution exists for (9.14) when evolving
in the direction of increasing # whereas (9.15) admits a unique smooth solution in the
direction of decreasing u. Therefore, assuming the boundary condition f — 0 as
u —> —oo we will have a unique solution f to (9.14) and this solution will decay for
u —> oo. Similarly, there is a unique smooth g solving (9.15) with g — 0 when
u —> =%o00. Thus there is a unique smooth ¢ z+ solving (9.12) and decays towards .7 .
]

Corollary 9.1. Let o g+, & #+ be as in Proposition 9.1, then

o
/ o g+du; =0 (9.16)
—00
Proof. Equation (9.12) and the decay of « g+, & 4+ implies
— u
0o g+ = 2r4$§@7$1$2/ du &g + Mo g 9.17)
—00

Taking u —> oo gives 2r4@§@>f%1@2 [°0, dux s+ = 0 whichimplies [ dua s+ =
0 as in Proposition 9.1. O

Conversely we have the following lemma which follows immediately by inspecting
(9.11):

Proposition 9.2. Given « s+ € T'c(I7), there exists a unique & yp+ that is smooth and
supported away from €, such that (9.11) is satisfied by & g+, & g+. Furthermore, if

[0 du oty =0 then & g+ € 5{;12.
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This completes the construction of the map 7S g+:

Corollary 9.2. Proposition 9.1 defines the map
TSy L — €572 (9.18)

The map T S g+ is surjective on a dense subspace of £ T’: 2 by Proposition 9.2. Therefore
it extends to a unitary Hilbert space isomorphism.

Remark 9.1. The argument leading to Corollary 9.1 can be used to show that

00 Ui o0 Ui u
/ / a gdurdus :/ / / a g+durdus
—00 v —00 —00 J—00 J —0O0
00 ui us us
= / / / / gj+du1du2du3 =0.
—O0 V=00 J =00 J =00

Constraint (9.3) ar 7+ Similar considerations apply to constraint TS*[«, ] = 0,
which in Kruskal coordinates looks like

(9.19)

0y V20 = [2B3BTD By - 3Voy — 6]V 20, (9.20)

Proposition 9.3. Given o+ such that V2o yp+ € T (J), solving (9.20) as a trans-
port equation for V? & g+ With decay conditions towards F€:

V2, Bv V2 i, 35 V20 v, 39 Vil e —> 0as V — 00, (9.21)
gives a unique solution such that Vzg%m, € [ (I and o yp+ , & g+ satisfy (9.20).
Conversely, we have the following:

Proposition 9.4. Let  y+ be such that V2« o+ € Dc(JCY), then there exists a unique
o+ with V=2 g+ such that (9.20) is satisfied with V >« s+ —> 0 as V —> o0

Proof. As in the proof of Proposition 9.1, we scalarise (9.20): Let v?2 X = 2M )2
D3D(f, 8), V2o = QMDD (f, g) and let F = —3y, f,G = —d}g. Then
f» &, F, G satisfy o N

F= [3vav +6— KA+ 2)] 1, (9.22)
G = [3vav+6+4Z(4Z+2)]g. (9.23)

Equations (9.22), (9.23) are degenerate at V = 0. If f, g satisfy (9.22) and (9.23) then
at V = 0 we must have

Flv=o=[6- &k +2)] flv-o. 9.24)
Gly—o = [6 + A(A+ 2)] glvo. (9.25)

The above are elliptic identities that determine (f, g)|y=o from F|y—o, G|y=0. Denote

(fo, g0) == (f, &)lv=0.
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As was done in the proof of Proposition 9.1, we evolve (9.22) and (9.23) in opposite
directions in V. Working with (9.23) is straightforward: let V4, lie beyond the support
of F, then there is a unique f satisfying (9.23) with f|y, = 0 and we set f to vanish
for V > V.

To find a solution to (9.22), note that for Vy > 0, there is a unique g that satisfies
(9.22) on V > Vp and g|v, = go. Multiply (9.22) by g, integrate by parts to get:

e o]+ [

Vo

v 1 2 ° ° 2 4 1
=68+ |fA(A +2)g] =/ =8-G (9:26)
\% Vo Vv

Poincaré’s inequality and Cauchy—Schwarz imply:

|4 5 \%

g(V)’ + / =&’ 5 f G*+g3 9.27)
Vo Vv Vo

We obtain similar estimates for dy g by commuting (9.22) with dy. We can use (9.27)

commuted with dy, Y7 to conclude that taking Vy —> 0, we can find g that satisfies
(9.22) with gly=0 = go. O

Remark 9.2. Were we to apply the constraint (9.3) on a smaller portion of the future event
horizon, we would have needed more data to specify « ,-+ completely. In considering

the problem on the entirety of 7 no such additional data is necessary, since (9.24)
determines the f|g in terms of & y+.

Corollary 9.3. Proposition 9.3 defines the map
TS s 5%*2 — 5%2. (9.28)

The map T S ,p+ is surjective on a dense subspace of 5%2 by Proposition 9.4. Therefore
it extends to a unitary Hilbert space isomorphism. /

We can analogously consider the constraints on 27—, .# ~. In light of Remark 3.1.1 we
can immediately deduce the appropriate statements:

Corollary 9.4. Given & - such that U>& j— € T'o(J€ ™), there exists a unique solu-
tion & ,p- to the equation

05U s = [2B3BDIBy - 30y — 6]U e (9.29)

such that U_zgcjf_ € I'(J#~). The solution &, (u, 04 and its 3y, 77 derivatives
decay exponentially as u —> —o0 at a rate %.

Given & yo- such that U_cht%af € [ (JC7), there exists a unique solution X yp-
such that U>& - € To(H7).

As in Corollary 9.3, we can combine the statements above to define a unitary Hilbert
space isomorphism via (9.29):

TS - : 5)%*_2 — 5;;_2. (9.30)
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Corollary 9.5. Let & - € I'.(.# 7). Then there exists a unique smooth & s such that

oy — 2D3DID1Dit e — 6MByet v = 0, 9.31)

with & y+ —> 0 as u — Fo0. The solution & ;- and its derivatives decay exponen-
tially as v — +£o0.

Given  z-, there exists a unique solution x g- to (9.31) that is supported away
from the past end of % ~. Moreover, ffooo dv o g- =0.

As in (9.2), the statements above can be combined to define via (9.31) a unitary
Hilbert space isomorphism:

TS - &7 — el (9.32)

Corollary 9.6. There exist Hilbert space isomorphisms

TS =TSy @TSy 2067 — 2@, (9.33)
78 =TS TSy gel? el 2gel ™ 9.34
= - D I e e, — = SR (9.34)

9.3. Propagating the identities. We can summarise the contents of the previous section
as follows: given scattering data for either o or ¢ on #* and 7%, there exist unique
scattering data for the other that is consistent with (9.11) and (9.20) and corollaries 8.1.5
and 8.2.4.

For o and « arising from scattering data related by (9.11) and (9.20), if we can
verify that

im A TS*[a, a] = 0, (9.35)
VZQ 2 TS [a, ] =0 (9.36)

then Lemma 9.1 together with Theorem 4.2.3, Theorem 4.2.8 imply that TS [«, o] =
TS*[a, a] = 0 everywhere.

Assume future scattering data with (V2 o+, K g+) € [ (%) x T (I for
the +2 Teukolsky equation Eq. (3.2). We can obtain « 4+ that is supported away from
S by solving (9.20) as a transport equation, and we can use Proposition 9.1 to find a
smooth « . decays exponentially towards .# at rate faster than %. Therefore, there
exists aunique solution o that realises scattering data (& y+, o _s+) with V2Q 2 smooth

everywhere on J*(X) up to and including s#*. In particular, since TS*[a, ] )% =0,
Eq. (9.7) implies )

3% {ag‘,v—%w+ + (2B5P1D1 By - 3V - 6) VQQ%} —0. 9.37)

Since V2« o+ V2 & 5+ and their derivatives decay as v —> 0o, we conclude that
v2Q2 ’H‘S’[a,g]‘ —0.

G
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Towards .77, (& o+, & #+) decay at a sufficiently fast rate that we can use Corol-
lary 8.2.4, Proposition 5.5.4, and Corollary 5.5.2 to deduce.

2 2 [e9)
lim lim (—-QV.) W= lim /  — i0) [A2(As — 2) — 6M3, 1P .
Q2 u—oo0 [, -5

U—>00 v—>00

o0
= lim [ —i)[A3 (A = 2)? = (6MB)*] & ye = 0.
u——- u
(9.38)
‘We also have
2 2
lim lim 9 (—QV.) ¥ =0 (9.39)
u—soov—soo 4\ Q2 - ’ ’

for 0 < i < 3. Taking the limit of (9.8) as v —> oo implies

V—> 00

2 2 o o o
93 [ lim (%szm) v (210;@*;:/91:191 + 6M8u>g y+] —0. (9.40)

Altogether, we see that lim,_, oo 3 TS*[a, o] = 0. We have shown

Proposition 9.1. Assume o is a solution to Eq. (3.2) arising from smooth scattering
data (o yp+, & g+) such that & g+ € To(I*), V20 v € To(HF). There exists unique
smooth scattering data X yp+ € 5;’0:2,
Eq. (3.5). Moreover, a and a satisfy TS*[a, a] = TS [a, o] = 0 everywhere on J*(Z).

X g+ € E;: giving rise to a solution « to

We can repeat the above arguments starting from smooth, compactly supported scattering
data for the — 2 equation to arrive at

Proposition 9.2. Assume « is a solution to Eq. (3.5) arising from smooth scattering
data (& v, & g+) such that & g+ € Te(I), V2 v € To(FY). There exists unique

. T,+2
smooth scattering data X+ € 5{ 7

Eq. (3.2). Moreover, a and « satisfy TS*[a, o] = TS [a, o] = 0 everywhere on J* ().

X g+ € 5;:& giving rise to a solution a to

This concludes the proof of Theorem 4.3.1, i.e. Theorem 3 of the introduction.

9.4. A mixed scattering theory: proof of Corollary 1. We are in a position to prove
Corollary 1 of the introduction, i.e. Corollary 4.4.1 of Sect. 4.4:

Proof of Corollary 1. We will construct the map .#*>~2 only in the forward direction
on a dense subset of 5%2 < 59?. Letxy— € Te(#7), & - besuchthat Ve 5 €
[(7~) and ffooo dvax g- = 0. The map 7S~ of Corollary 9.6 defines a scattering
data set consisting of a smooth field & - on .~ which is supported away from the past
end of £, & - on 2~ which is supported away from the past end of 7.
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The map *+? %~ of Theorem 4.2.4 gives rise to a smooth solution & on J~(T) such
that

ets Pnsthis) [ roe = llasr- ler + oIz (9.41)

and the map *?.Z* extends « to a smooth solution of (3.2) on J*(¥). Combining
(9.41) with the fact that | g+, 77,12* o|x+ are smooth implies that the estimates of Propo-
sitions 6.1.2, 6.1.3, 6.1.6 and 6.1.7 apply, and we can apply Corollaries 6.2.1, 6.2.2 and
6.2.3 together with Proposition 3.1.3 to conclude that « realises the image of *».Z* on
7 as its radiation field there.

The scattering data set (x -, & »-) gives rise to a unique smooth solution o
according to Corollary 8.3.2, which in particular realises « ,,—, & - as its radiation

2
fields on J#~, .~ respectively. The quantity ¥ = (;2—2252%1) rQ2aq satisfies the

Regge—Wheeler equation (3.15) and induces a radiation field on .# ~ that is given by
v, = 32 ;. Note that in particular, 9y ,_ vanishes whenever & ;- vanishes on
ST

Assume the support of & ,— on .~ in v is contained in [v_, v,]. Since « arises
from scattering data of compact support, we can follow the steps leading to estimate
(8.33) taking into account Remark 3.1.1 to obtain the following: let R be sufficiently
large, then

~ 2 2 2 2 2
/ diudw r°|QY3¥| Sv, R |:||Zj ||£T.72 + | - ||£T.—2
€ ,N{r>R} - =

+ / didew |V92e ;|2 +4|83g,ﬁ|§2].
[v_,vs]x S2?
(9.42)

Let vy > vy, then we can use (9.42) to show that /r3,¥|, , —> 0asu —> —oo:

u u
1 o
Vel < [ anevievauis [ diiheew
—0 —0 r
< /u il IAW2 + VW2 + W2
S il
Y V| e T O+

1
< T —
N r(u,v)\/|y§|<2F” [Lar W](—00, u).

where Q7 = Q1" Q1*Q}’ denotes Lie differentiation with respect to the so(3) algebra
of §? Killing fields. Now take u1 < us, vo > vy such that (42, v, 04) € J~ () and
r(uz, v1) > R. We can repeat the procedure leading to Proposition 5.1.3 in the region
Dyt to get for p € [0, 2]:
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J.

1
dvsin0d0de rP|QY ¥ |2 +/ dii sin 0d0d¢ rP [Wﬂz + —2|g|2]
€, Nlui,uz] r

CuyNlvr,v2]

1
+ / ., didsin6dfdg r! [msmyz + Q= pIVEP+ 7|2|2]
914 SV r

Zuy,vy

5/ disin0dodg rP|szW4g|2+/
%ulm[vl v2] €

€y, Nlut,uz]

dii sin0dode rP [IVEI2 + %IEIQ} .
(9.44)

Set p = 1 in (9.44). Keeping vy, v fixed and taking u; —> —oo, the first term on
the right hand side of (9.44) decays. The remaining term can be estimated by (9.42)
and applying Hardy’s inequality, knowing that W and its angular derivatives converge
pointwise towards .# ~. In conclusion we have

1
f diid® sin 0d0d¢ [|m74£|2 + VP + —ZIEIZ}
@uz,m r

—00,V]

<R Z |:||Z:QV‘XJ ||€T 2+||£S2V(ny ||€T i) (9.45)
ly|1=2 A

+/ didw |V Loy & s 1% +4|a§£mgj_|§2}.
[v_,vs]xS?

1,00

We can extend the region 75" to obtain (9.45) over aregion .930000(;1 N{r > R} using

the degenerate ILED estimate (5.1.2). In view of the monotonicity of FMT [VIN{r > R},
this implies in particular that

lim disinfdody — |x11|2 (9.46)

U—>00 J&,N{r>R}

Now we show that « induces a radiation field ¢ 7+ on .#* which is in 5;: 2, First, note
that energy conservation is sufficient to show that ¢, ¢ attains radiation fields on .#*:
Fixing u and taking vy > vy,

2

r Sll// u, v, —r Szl// u,vi, = dv—- |V S YV dv—- .
- - V] r2 \/r(uv U]) V] r2

(9.47)

by commuting with angular derivatives and using a Sobolev estimate as in the proof of
Proposition 5.2.3, this shows that for any sequence {v,} with v, —> oo we have that
r3§2£ (u, v,, #4) is a Cauchy sequence, and an identical argument yields the same for

. Denote the limit of 73 Ynear STby ¥ ..

Since 3y converges near .# ~, estimate (9.47) can be easily modified to show that
v g decaysz)wards the past end of #™*. As for the future end of .#*, we repeat the
estimate (9.47) estimating 1// . in terms of ¢ along a hypersurface {r = R} for a fixed
R. Since « is smooth and ||(oz|2, Y7,,2 Z)HST -2 < 00, the results of Sect. 7.2.1 apply

and we can deduce that ¥ |,—g decays as ¢ BN 0o, and this says that . decays
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towards the future end of .#*. Note that the preceding results apply equally to 9, ¥ as
they do to y. We immediately see that QY3 v — Y g+ towards # 7.

We now show that ffooo du « z+ = 0. Consider the — 2 Teukolsky equations (3.5),
which we write as follows:

Q2 6M
=SQvsrQTly = (.Az — —) rQ’a. (9.48)
r - r
In the limit towards .#* we have
ot = Ao . (9.49)

We can conclude by observing that e decays towards both ends of .#*. With this we

can also conclude that & s+ € 5;: ? and that

2 2 2 2
||Q¢J+||£T.72 + ||(Xjf+||57,+2 = [ g- ||5T,+2 + o - ||£T.72- (9.50)
s aa 7 - =

O

Remark 9.1. The result above subsumes a restricted map to scattering data in 5;,;2,
g Tjtz, which leads to an isomorphism
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A. Robinson-Trautman Spacetimes

o [

In [16], it was shown that solutions to the linearised Einstein equations where W=W= 0
can be identified with the Robinson—Trautman family of spacetimes near Schwarzschild.
This family of spacetimes is defined by the condition that they admit a null geodesic con-
gruence that is shear-free and twist-free, and as such these spacetimes are algebraically
special of Petrov type D in vacuum. These conditions lead to the reduction of the Ein-
stein equations to a nonlinear parabolic equation, and this leads to interesting properties,
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such as the fact that for positive mass M, a generic member of this family can not be
smoothly extended through the event horizon [14].
Itis easy to see that linearised Robinson—Trautman solutions cannot arise with data

1) “)

for o in E772 @ €772 and data for & in 8;1 @ &1 2. If U=W= 0 everywhere then

(8] (U

| & o= ||€T+2 = || &t ||€T+2 = 0and || O(y:t ”5T 2 = || O(ji ||8T —2 = 0, which

1) (I)

means a=a= 0.

B. The Double Null Gauge and the Einstein Vacuum Equations

The following is a synopsis of sections 3, 4 of [16]. Let (.#, g) be a Lorentzian manifold.
A coordinate system (u, v, QA) is said to define a double null gauge if the loci of u, v,
denoted by ¢, €, respectively, constitute foliations of spacetime by null hypersurfaces
with respect to g. The metric g in a double null gauge takes the form

ds? = —4Q%dudv + ¢ , ,(d0" — b dv)(d6® — bPdv). (B.1)

Here, (94) are coordinates on the 2-manifolds Su,y = 6, N €, that are intersections
of constant u, v hypersurfaces, €2 is a scalar, b4 is a vector field that is tangent to Sy .
This gauge comes with a null frame (e3, e4, €1, €2):

= 1a = 1(a +5434) (B.2)
e3—9u e4_s2 v A)s .

{ea, A = 1,2} is a frame associated to the coordinates (64) on Suv,suchthatey -ep =

B

Let V be the Levi—Civita connection associated with the metric g. In a double null
gauge the connection and curvature are organised into S, ,-tangent tensor fields. The
following are the connection coefficients:

Xap =8(Vaes,ep) . x,.=8(Vaes ep)

1 1
Na=-58(Vseaeq) . n, =—78(Vien, e3)
(B.3)

. 1 . 1
®= Eg(V4e3, ey , W= Eg(V3e4, e3)

1
Ca= Eg(VAezt, e3)

We further decompose x and x into their trace 5 Le(try), 2 La(tr X) and traceless sym-

metric parts x, x In the Schwarzschild background only @, @ and the traces of X, X
survive:

_ Q _ Q
Xap=_8ap X4~ " #aB B4
o M Qx R M Qx )
= - = —— w=——-—=—
r2Q 2r -
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The curvature components are organised as follows:

asp = R(ea, e4,ep,e4) ayp = Rlea, e3,e5,€3)
1 1
Ba= R eses ) By=75Rea ese5e0) (g5
1
p= ZR(e4, €3, 4, €3) o= R(eq. €3, €4, €3)

with xR peq = eabefRefcd denoting the Hodge dual on (./#, g) of R.
For the Schwarzschild metric, the only non-vanishing component is

p=-—22 (B.6)

For a tensor field & that is tangent to S, ,, for all u, v, the expressions V3&, Y 4& denote
the projections of the covariant derivatives V3&, V4& onto the tangent space of S, y.
Thus V3£, V4§ are also tangent to S, , for all u, v. Denote by D&, D& the projections
of the Lie derivatives of & in the 4,3 directions respectively, then if £ is a 1-form we have

QY& = (DE)s+ Qx4 Ep. (B.7)
QY& = (D&)A +2x ,PEp. (B.8)

and so on for higher order tensor fields. Let D1 be the operator acting on a S, ,-tangent
1-form & by D& = (div&, curlé) and denote its L*(S,.,)-dual by Dj. Let D; be

the operator acting on a S, ,-tangent 2-form E by (D2E)4 = V2 Z p4 and denote its
L*(S,.,) dual by Ds.
The vacuum Einstein equations read

Rap[g] =0. (B.9)

When (B.9) is imposed on the metric g, the equations defining the Levi—Civita connection
and curvature via the metric components in a double null gauge become the so-called
null structure equations. Furthermore, the Bianchi identities, together with (B.9), imply
that the Weyl curvature tensor satisfies the Bianchi equations,

v Wabea = V4 % Wapea = 0. (B.10)

In turn, the system of equations consisting of the null structure equations and the Bianchi
equations reproduces the Einstein equations (B.9). An example of the null structure
equations is the Gauss constraint equation,

1 1
K+§trxtr£—§xABlAB = —p. B.11)

For an example of a Bianchi equation, take (B.10) with (b, ¢, d) = (A, 4, B):

1 _
Vi + Strxe+ 2000 = —2D58 —33p — 3 o+ (5 — Q'Y A)RB. (B.12)

See [12,13,16,17] for detailed expositions.
We now describe how to linearise the Einstein equations against a fixed background
in this gauge. We denote the background values of the quantities involved by unbolding
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their symbols, and their linearised versions are further distinguished by the superscript
o, For example:

1)

Q=Q+eQ. (B.13)

Similarly,

(O] (1

$ap=%a1€8an by =0+€ba (B.14)

And so on for the connection and curvature components. Note that we further decompose
the linearised metric by separating out its trace with respect to ¢:

1
(1 N 1 )

£a5=8ap YTV AN (B.15)
We decompose x and x to their traceless and pure trace parts:
Xap=Xap+X §4p Xip =K, +t0X #45 (B.16)

and we linearise X, X and Qtry, Qtry separately:

[}

X=X+€X Qtry = Qtry +e Qtry (B.17)
R=3+ex Qiry = Qry +e Qurx (B.18)

For an example of linearisation against a Schwarzschild background, consider (B.12):
since we want to keep only the leading order terms in €, we can use the Eddington—
Finkelstein coordinates of the Schwarzschild background to write the perturbed metric
in the form (B.1). Using (B.8), the fact that « = 0 and keeping only leading order terms
in € yields

Yia =c- QY3 o +0(e2). (B.19)

where Y3 is the background Schwarzschild covariant derivative in the 3-direction. Fol-
lowing this recipe for the remaining terms of (B.12) taking into account the background

Schwarzschild values (B.4), (B.6) yields the equation governing o in (2.50). For the full
details of the linearisation leading to equations (2.41)—(2.54) see [16].
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