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Abstract: We construct a scattering theory for the spin ± 2 Teukolsky equations on
the exterior of the Schwarzschild spacetime, as a first step towards developing a scat-
tering theory for the linearised Einstein equations in double null gauge. This is done by
exploiting a physical-space version of the Chandrasekhar transformation used by Dafer-
mos et al. in (Acta Math 222(1):1–214, 2019. https://doi.org/10.4310/acta.2019.v222.
n1.a1) to prove the linear stability of the Schwarzschild solution. We also address the
Teukolsky–Starobinsky correspondence and construct an isomorphism between scatter-
ing data for the + 2 and− 2 Teukolsky equations. This will allow us to state an additional
mixed scattering statement for a pair of curvature components satisfying the spin + 2
and − 2 Teukolsky equations and connected via the Teukolsky–Starobinsky identities,
completely determining the radiating degrees of freedom of solutions to the linearised
Einstein equations.
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1. Introduction and Overview

Scattering theory has been an important tool in the mathematical and theoretical study
of black hole solutions to the Einstein equations, which in vacuum take the form

Rab[g] = 0 (1.1)

(setting the cosmological constant to zero). Whereas there has been extensive work on
scattering for scalar, electromagnetic, fermionic fields on black hole backgrounds (see
already [7,21,23,24,39]), in the case of the scattering of gravitational perturbations
much of the historic literature has been concerned with solutions to equations governing
fixed frequency modes (see [10,26] for an extensive survey, and the very recent [42]),
and comparatively little has been said about scattering theory on black holes in physical
space. The aim of this work is to address this vacancy for the case of linearised gravi-
tational perturbations around the Schwarzschild exterior, which in familiar coordinates
has the metric [41]:

g = −
(
1 − 2M

r

)
dt2 +

(
1 − 2M

r

)−1

dr2 + r2(dθ2 + sin2 θdφ2). (1.2)

The subject of scattering theory is the study of perturbations evolved on scales that
are large in comparison to a characteristic scale of the perturbed system.More concretely,
scattering theory is relevant when the perturbations are meant to be asymptotically free
from the effects of the target. In this picture, incoming and outgoing perturbations are
approximated by solutions describing "free" propagation. A mathematical description
of scattering hinges on an appropriate and rigorous formulation of these ideas, and much
of the value of scattering theory lies in the identification of the correct candidates for
spaces of "scattering states" that describe incoming and outgoing perturbations. In these
terms, a satisfactory scattering theory must provide answers to the following questions:

I Existence of scattering states: Is there an interesting class of initial data that evolve
to solutions which can be associated with past/future scattering states?
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II Uniqueness of scattering states: Is the above association injective? Do solutions that
give rise to the same scattering state coincide?

III Asymptotic completeness: Does this association exhaust the class of initial data of
interest?

Because of the nonlinear nature of the Einstein equations (1.1), the study of scat-
tering in general relativity is dependent on a thorough understanding of the perturbative
behaviour of the equations. As a first step, it is useful to understand the evolution of
solutions to the linearised Einstein equations, which are obtained by formally expand-
ing a family of solutions in some smallness parameter ε around some fixed background,
e.g. (1.2), and keeping only leading order terms in ε in the equations (1.1). Studying the
evolution of linear equations on black hole backgrounds has its own appeal, as black
holes by their very nature are immune to "direct" observation and even their existence
can only be inferred by examining their effects on the propagation of wave phenomena
in spacetime. The linearised Einstein equations still inherit many of the features as well
as the difficulties that plague the study of the nonlinear equations.

A foundational breakthrough in the analysis of the linearised equations was dis-
covered by Bardeen and Press [9] in the case of the Schwarzschild black hole (1.2) and
Teukolsky [45] in the case of the Kerr black hole [32], who showed that by casting the
equations of linearised gravity in the Newman–Penrose formalism, it is possible to iden-
tify gauge-invariant components of the curvature that obey 2nd order decoupled wave
equations, which on the Schwarzschild spacetime take the forms

�g�
2α +

4

r�2

(
1 − 3M

r

)
∂u�2α = V (r)�2α, (1.3)

�g�
2α − 4

r�2

(
1 − 3M

r

)
∂v�

2α = V (r)�2α. (1.4)

Here,�g is the d’Alembertian operator of theSchwarzschildmetric g,α, α are symmetric

traceless S2-tangent 2-tensor fields, �2 = 1 − 2M
r and V = 2(3�2+1)

r2
(see already

Sect. 3.1). Equations (1.3), (1.4) are known as the Teukolsky equations of spin + 2 and
− 2 respectively.

In addition to the Teukolsky equations (1.3), (1.4), the quantitiesα, α satisfy a closed
system of equations known as the Teukolsky–Starobinsky identities, relating the action
of a 4th parabolic operator on S2 × Rt on either of α or α to 4 weighted null derivatives
of the other field:

�2

r2
�/∇3

(
r2

�2�/∇3

)3

α = 2r4 /D∗
2 /D∗

1 /D1 /D2r�2α + 12M∂t r�2α, (1.5)

�2

r2
�/∇4

(
r2

�2�/∇4

)3

α = 2r4 /D∗
2 /D∗

1 /D1 /D2r�2α − 12M∂t r�2α. (1.6)

The purpose of this paper is to study the scattering theory of the Teukolsky equations
(1.3), (1.4) as a prelude to studying scattering for the full system of linearised Einstein
equations. This is done by first developing a scattering theory for (1.3), (1.4) in particular
addressing points I, II, III above, and then bridging this scattering theory to the full
system of linearised Einstein equations by incorporating the constraints (1.5) and (1.6).
A complete treatment of the full system will appear in the forthcoming [37].

To elaborate on the ideas involved we go through a quick survey of the history of
the subject. In Sect. 1.1 we review known scattering theory for the scalar wave equation
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highlighting the role of redshift as a feature of scattering on black hole backgrounds.
Section 1.2 is a survey of the difficulties encountered in the study of scattering for
the (linearised) Einstein equations, and will motivate and introduce the main results.
Section 1.3 contains a preliminary statement of the results of this paper. Section 1.4
contains an outline of the structure of the paper.

1.1. Scattering for the scalar wave equation and the redshift effect. It is clear that
understanding scattering for the scalar wave equation

�gφ = 0 (1.7)

on a fixed Schwarzschild background (1.2) is a necessary prerequisite for our scattering
problem, and already at this level we see many of the difficulties that characterise the
evolution of perturbations to black holes. Much of the historical literature on scattering
for (1.7) concerns the Schrödinger-like equation that results from a formal separation of
(1.7) and governs the radial part. While this leads to important insights, it does not lead
on its own to a satisfactory answer to points I, II, III above.

The first result on physical-space scattering for (1.7) on (1.2) goes back to Di-
mock and Kay [24], who applied Cook’s method to the scalar wave equation on the
Schwarzschild spacetime. In [25], Friedlander’s use of the radiation field at null infinity
to describe future scattering states initiated a transition to a more geometric treatment of
the notion of scattering states, and subsequent works have largely adhered to this point
of view, see the discussion by Nicolas [39]. The state of the art in this area is the work of
Dafermos, Rodnianski and Shlapentokh-Rothman [21], where a complete understanding
of scattering for the wave equation (1.7) on the Kerr exterior is laid out. The scatter-
ing problem for the scalar wave equation (1.7) on the extremal Reissner–Nordström
background was definitively resolved in [3]. In the case of asymptotically de-Sitter
black holes, we note the result [27] on asymptotic completeness for the Klein–Gordon
equation restricting to solution of fixed azimuthal modes against a very slowly rotating
Kerr–de-Sitter black hole. Scattering for (1.7) has also been considered on the interior of
the Reissner–Nordström black hole by Kehle and Shlapentokh-Rothman [31]. Finally,
the scattering theory for the analogue of (1.7) on Oppenheimer–Snyder spacetimes has
been studied in [1,8].

What leads to the rich theory available to (1.7) is the fact that it comes with a natural
Lagrangian structure with which we can associate conservation laws encoded in the
energy-momentum tensor:

Tμν[φ] = ∂μφ ∂νφ − 1

2
gμν ∂αφ ∂αφ, (1.8)

which satisfies ∇μT μν[φ] = 0. Since the vector field T := ∂t generates an isometry,
classical scattering theory immediately suggests the class of solutions of finite T -energy,
defined as the flux on a spacelike or null hypersurface of the quantity

J T
μ [φ]nμ, (1.9)

where J X [φ]μ = Tμν[φ]Xν and nμ is the vector field normal to the hypersurface, as
this flux is non-negative definite and conserved. Solutions to (1.7) arising from suitable
Cauchy data have sufficiently tame asymptotics to induce smooth radiation fields onI +

and H +. The conservation of T -energy allows us to resolve the scattering problem by
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constructing an isomorphism between the space of Cauchy data of finite energy and the
corresponding space of radiation fields. With this, the answer to the questions I, II, III
of scattering theory for equation (1.7) is in the affirmative.

At the same time, the fact that the vector field T becomes null on the future event
horizon H + points to a deficiency, since the T -energy density then loses control over
some derivatives and the norm on H + defined by the T -energy,

∫
H +

J T
μ [φ]nμ

H + , (1.10)

is degenerate. The energy density observed along a horizon-penetrating timelike curve is
better described by J N

μ [φ] for a timelike vector field N , but such a vector field cannot be
Killing everywhere. The flux of this quantity is therefore not conserved and new issues
appear, paramount among which is the redshift effect.

An intuitive hint of the role played by the redshift effect is the exponential decay
in frequency that affects signals originating near the event horizon by the time they
reach late-time observers, which relates to the divergence of outgoing null geodesics
near the event horizon towards the future. It turns out that this effect can be exploited
to produce nondegenerate energies useful for evolution in the future direction, precisely
by choosing a timelike N to be a time-translation invariant vector field measuring the
separation of null geodesics near the event horizon, see [20]. In addition to using N as
a multiplier X = N , key to this method is the fact that commuting the wave equation
(1.7) with such N produces terms of lower order derivatives that come with a good sign
when estimating the solution forwards. This can be traced to the positivity of the surface
gravity; the fact that onH +, ∇T T = κT with κ > 0. See [19] for a detailed exposition.

Unfortunately, when it comes to backwards evolution the technique described above
does not work, as the redshift effect in the forwards evolution problem turns to a deleteri-
ous blueshift effect when evolving towards the past, and it is thus not possible to use the
energy associated with N to bound the solution in the backwards direction. Furthermore,
it can be shown that there exists a large class of scattering data having a finite N -energy
on the future event horizon H + whose N -energy blows up evolving backwards, see
[22].

Note that in the case of the Kerr exterior (a �= 0) there is no obvious analogue of the
T -energy scattering theory, as the stationaryKilling vector field becomes spacelike in the
ergoregion and therefore its flux no longer has a definite sign. Therefore, superradiance
features as an additional aspect of scattering theory. One cannot hope for a unitary map,
but one can still hope for a bounded invertible map. In view of the above discussion, the
N -energy space is not appropriate however. One of the difficulties is indeed identifying
the correct notion of energy. See [21] for the detailed treatment.

1.2. Linearised gravity and the Teukolsky equations. The above discussion involves
linear scalar perturbations only, i.e. solutions to (1.7), and little is known about the
scattering theory of the Einstein equations even when linearised, see [10] and [26] for a
survey. Indeed, a comprehensive study of scattering under the Einstein equations (1.1)
on black hole exteriors involves and subsumes major aspects of the study of black hole
stability. Full nonlinear stability has been satisfactorily proven forMinkowski space first
in [13], and subsequently also in [34] for the Einstein vacuum equations in a harmonic
gauge. For asymptotically flat black holes, stability results against generic perturbations
exist only for the the Schwarzschild black hole, see [16,17]. To date, full nonlinear
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stability for rotating members of the Kerr family remains an open problem. See [2,15,
28,33,36] for the case of against very slowly rotating Kerr black holes, and [42] for the
general subextremal case. For the case of asymptotically de-Sitter black holes, results
concerning the nonlinear stability of black hole solutions with positive cosmological
constant have indeed been proven, see [29].

1.2.1. The Bianchi equations and the lack of a Lagrangian structure In a spacetime
satisfying the Einstein equations (1.1) with a vanishing cosmological constant, the com-
ponents of the Weyl curvature tensor satisfy the Bianchi equations

∇a Wabcd = 0. (1.11)

These equations, alongwith the equations defining the connection components, comprise
the evolutionary content of the Einstein equations (1.1). Importantly, the Bel–Robinson
tensor

Qabcd = Waecf Wb
e

d
f + ∗Waecf

∗Wb
e

d
f (1.12)

acts as an energy-momentum tensor for the Bianchi equations. Upon linearising these
equations against the background of Minkowski space, this structure survives in the
linearised equations and allows to estimate the curvature components using the vector
field method in the same way that it was applied to study the scalar wave equation, as
was done in [11]. In fact, the vector field method applied using the Bel–Robinson tensor
was key to the proof of nonlinear stability of theMinkowski spacetime by Christodoulou
and Klainerman in [13], and it is possible to use this strategy to study scattering for small
perturbations to the Minkowski spacetime evolving according to the nonlinear Einstein
equations (1.1).

Unfortunately, this structure is lost in the process of linearising around black holes,
where the connection components couple to the curvature in a way that destroys the
Lagrangian structure of the equations (1.11): in terms of a formal expansion of perturbed
quantities of the form

g = g +
(1)

εg, � = �+
(1)

ε �, R = R+
(1)

εR, (1.13)

the linearised version of equations (1.11) have the schematic form

(1)∇ W +
(1)

� W= 0. (1.14)

Therefore, it is not possible to directly use the Bianchi equations alone to prove bound-
edness and decay results for curvature components independently of the connection
components. See the discussion in [15,16].

1.2.2. Double null gauge It is important to note that the formulation of the problem
depends crucially on the choice of gauge. It turns out that working with a double null
gauge is particularly useful to manifest a special structure in the linearised Einstein
equations that reveals an alternative method to control curvature. This gauge leads to a
well-posed reduction of the linearised Einstein equations around Schwarzschild, arising
from a well-posed reduction of the full Einstein equations (see [13,16]).

A double null gauge is a coordinate system (u, v, θ A) that foliates spacetime with
two families of ingoing and outgoing null hypersurfaces. In this gauge we decompose
the curvature and connection components in terms of Su,v-tangent tensor fields, where
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Su,v is the compact 2-dimensional manifold where the null hypersurfaces of constant
u, v intersect (see already Sect. 2 and Appendix B). On the exterior of the Schwarzschild
spacetime, the Eddington–Finkelstein null coordinates (u, v, θ A) provide an example of
this gauge (where Su,v are just standard spheres).

For an example of the resulting equations, the linearised curvature components
(1)

αAB= (1)

W A4B4 and
(1)

β A= (1)

W A434 obey the transport equations

1

�
/∇3r�2 (1)

α = −2r /D∗
2�

(1)

β +
6M

r2
�

(1)

χ̂ , �/∇4r4�
(1)

β −2Mr2�
(1)

β = r /div r3�2 (1)

α,

(1.15)

where �2 = (
1 − 2M

r

)
, /∇4, /∇3 denote the projections of the null covariant derivatives

to S2
u,v and

(1)

χ̂ denotes the linearised outgoing shear. The coupling to the connection
components means we must simultaneously consider the connection components like
(1)

χ̂ , which satisfy transport equations of a similar form, for example:

�/∇4 r�
(1)

χ̂ +
(
1 − 4M

r

)
�

(1)

χ̂= −r�2 (1)

α . (1.16)

We note that in this formulation, we can see the presence of a blueshift effect in
the linearised Einstein equations by observing that the second equation of (1.15) above
carries a lower order term with a sign that forces the solution to grow exponentially
when evolved forward in a neighborhood of the horizon. This appears to be an essential
feature of working with tensorial quantities decomposed using null frames.

1.2.3. The Teukolsky equations A quick glance at (1.15), (1.16) reveals that we can
derive a decoupled equation for

(1)

α alone by acting on the first equation of (1.15) with
�/∇4 and following through the remaining equations to discover that

(1)

α obeys the + 2
Teukolsky equation (1.3). The linearisation of the component αAB = WA4B4 can be
shown to obey (1.4) by a similar logic, see Sect. 2.2 for the full list of the linearised
Einstein equations around the Schwarzschild background.

The derivation of (1.3), (1.4) by Bardeen and Press [9] for perturbations around
Schwarzschild and their extension to the Kerr black holes by Teukolsky [46] (using the
Newman–Penrose formalism) was a game changer in the study of linearised gravity.
If one can estimate solutions to the Teukolsky equations (i.e. equations (1.3), (1.4) on
Schwarzschild), one can hope to make use of the hierarchical nature of the linearised
Einstein equations in double null gauge (as manifest in (1.15), (1.16) for example) to
estimate the remaining components.

Unfortunately, however, having arrived at the decoupled wave equations (1.3), (1.4)
for the components

(1)

α,
(1)

α, the essential difficulty in dealing with the linearised Einstein
equations is still inherited by the Teukolsky equations (1.3), (1.4), in the sense that equa-
tions (1.3), (1.4), taken in isolation, also suffer from the lack of a variational principle,
and neither (1.3) nor (1.4) has its own energy-momentum tensor. This is related to the
1st order null derivative term on the left hand side of (1.3), (1.4). These first order terms
are reminiscent of the wave equation (1.7) when commuted with the redshift vector field
N (note in particular that the 1st order term in the − 2 Teukolsky equation (1.4) has a
redshift sign nearH +, while the + 2 has a 1st order term with a blueshift sign nearH +).
This issue meant that the Teukolsky equations (1.3), (1.4), despite their decoupling, have
remained immune to known methods for a long time.
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1.2.4. Chandrasekhar-type transformations in physical space In [16],Dafermos,Holzegel
and Rodnianski succeed in deriving boundedness and decay estimates for (1.3) and (1.4)
and they subsequently prove the linear stability of the Schwarzschild solution in double
null gauge. Key to their work is the exploitation of a physical space version of a trick due
to Chandrasekhar [10], which works by commuting derivatives in the null directions past
the equations. This commutation removes the first order derivative terms and reduces
the equations (1.3), (1.4) to a familiar form:

�/∇3�/∇4
(1)

� −�2 /�
(1)

� +V (r)
(1)

�= 0, (1.17)

where V (r) = �2(3�2+1)
r2

and

(1)

�=
(

r2

�2�/∇3

)2

r�2 (1)

α . (1.18)

The same applies to
(1)

α by differentiating in the 4- direction instead and we obtain a

quantity
(1)

� satisfying (1.17) via

(1)

�=
(

r2

�2�/∇4

)2

r�2 (1)

α . (1.19)

Equation (1.17) is the well-known Regge–Wheeler equation, which first appeared
in the context of the theory of metric perturbations studied by Regge and Wheeler [40],
Vishveshwara [47], and Zerilli [49] to describe gauge invariant combinations of the
metric perturbations. The Regge–Wheeler equation (1.17) has a very similar structure
to the equation that governs the radiation field of the scalar wave equation (1.7), and in
particular the vector fieldmethod can be adapted to study (1.17). This is what was done in
[16] to obtain boundedness and decay estimates for solutions of (1.17). These estimates
for (1.17) can in turn be used to estimate

(1)

α,
(1)

α by regarding (1.18) and its
(1)

α counterpart

as transport equations for
(1)

α,
(1)

α. For this to work, it was fundamental that a sufficiently
strong decay statement is available for solutions of (1.17) for a nondegenerate energy
(i.e. the analogue of the N -energy above).

Note that in the case of the Kerr spacetime a �= 0, the strategy outlined above
suffers from the fact that the analogues of (1.17) are coupled to

(1)

α,
(1)

α via a. Nevertheless,
it is possible to apply the same strategy to obtain boundedness and decay results for
solutions to the Teukolsky equations, see [15,36] for the case of the very slowly rotating
Kerr exterior |a| � M and the very recent [42] for the full subextremal range |a| < M .
For the case of the extremal Kerr exterior a = M , mode stability for the Teukolsky
equations has been shown in the recent [44], as well as some fixed frequency scattering
statements. Extremal black holes are however subject to the Aretakis instability [6] along
the future event horizonH +, and this has been extended to the Teukolsky equations in
[35].

The first preliminary goal of our work will be to analyse the Regge–Wheeler equa-
tion (1.17) from the point of view of scattering. The fact that the conservation of the
T -energy leads to a scattering theory for the scalar wave equation (1.7) means one can
expect to prove an analogous statement for theRegge–Wheeler equation using analogous
methods. This will be the content of Theorem 1 (see Sect. 1.3.1).
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1.2.5. Reconstructing curvature from the Regge–Wheeler equation Starting from such
a scattering theory for the Regge–Wheeler equation (1.17), one can hope to apply the
strategy used in [16] to construct a scattering theory for the Teukolsky equations (1.3)
and (1.4) via the transport relations (1.18) and (1.19). It is however far from clear that the
transport equations (1.18), (1.19) can lead to a suitable scattering theory, in particular
one that could in turn lead to a scattering theory for the linearised Einstein equations.
The central question we aim to address is whether the T -energy obtained via the Regge–
Wheeler equation could define a Hilbert space of scattering states for solutions to (1.3),
(1.4), for which the central questions of scattering theory (points I, II, III above) could
be answered.

Adapting the strategy above to a scattering setting based on T -energies, we succeed
in constructing such a scattering theory for the Teukolsky equations answering I, II, III
in the affirmative. This will lead to Theorem 2 of this paper (see Sect. 1.3.2).

1.2.6. The Teukolsky–Starobinsky correspondence Finally,we treatwhat is knownas the
Teukolsky–Starobinsky correspondence. The Teukolsky–Starobinsky correspondence is
the study of the relationship between

(1)

α,
(1)

α using (1.5), (1.6) and the Teukolsky equations
(1.3), (1.4), independently of the remaining components of a solution to the linearised
Einstein system. The idea that knowing either

(1)

α or
(1)

α uniquely determines the other via
(1.5), (1.6) permeates the literature on the Einstein equations since the appearance of
the constraints in [43,45], but little has been done in the way of a systematic study of the
combined system consisting of the Teukolsky equations (1.3), (1.4) and the constraints
(1.5), (1.6), governing a pair

(1)

α,
(1)

α.
The constraints (1.5), (1.6) provide a bridge between the scattering theory we con-

struct for equations (1.3), (1.4) and the full linearised Einstein equations. This is because
scattering for the linearised Einstein equations would involve scattering data for the met-
ric components, from which data for only one of

(1)

α or
(1)

α could be constructed from the
scattering data for the metric on each component of the asymptotic boundary. One can
hope to use the identities (1.5), (1.6) to obtain scattering data for either

(1)

α or
(1)

α out of
the other, but it is entirely unclear whether we would obtain scattering data that are
compatible with the scattering theory constructed here for (1.3), (1.4), or even whether
the system consisting of (1.3), (1.4), (1.5), (1.6) is well-posed. In the context of scat-
tering, we are specifically interested in whether the operators involved on each side of
the identities (1.5), (1.6) are invertible on the spaces of scattering states, and we would
like to know whether, given scattering data for

(1)

α,
(1)

α related via (1.5), (1.6), the ensuing
solutions to (1.3), (1.4) would in turn satisfy (1.5), (1.6).

Interestingly, it turns out that the study of constraints (1.5), (1.6) is much more
transparent when done via scattering rather than directly via the Cauchy problem, and
combining thiswith asymptotic completenesswill answer the question ofwell-posedness
for the system (1.3), (1.4), (1.5), (1.6).We also find that it is only in the context where so-
lutions to (1.3), (1.4) are studied on the entirety of the exterior region that the constraints
(1.5), (1.6) are sufficient to determine

(1)

α completely from
(1)

α and vice versa. Scattering
necessarily involves considering solutions globally on the exterior. These considerations
are the subject of Theorem 3.

A corollary to our main results is that one may formulate a scattering statement for a
combined pair (

(1)

α,
(1)

α) satisfying the Teukolsky equations (1.3), (1.4) and the constraints
(1.5), (1.6) (this is Corollary 1, see Sect. 4.4). One can then hope that such a scattering
statement would provide a bridge towards scattering for the full linearised Einstein
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equations, taking into account Eq. (1.16) relating
(1)

α to
(1)

χ̂ and counterpart equation relating
(1)

α to
(1)

χ̂ . We will immediately remark at the end of this introduction on how to formally

derive a conservation law at the level of the shears
(1)

χ̂ ,
(1)

χ̂ which excludes the possibility
of superradiant reflection (see (1.37) of Sect. 1.3.4). This will be treated in detail again
in the upcoming [37] as part of a complete scattering theory for the linearised Einstein
equation in double null gauge.

1.3. Scattering maps. The following are preliminary statements of the results of this
work, with detailed statements to follow in the body of the paper (see Sect. 4).

1.3.1. Scattering for the Regge–Wheeler equation We begin by stating the result for the
Regge–Wheeler equation (1.17) (we omit the superscript (1) in what follows). We show
that a solution arising from Cauchy data with initially finite T -energy gives rise to a
set of radiation fields in the limit towards I +,H +, from which the solution can be
recovered. The choice of the Cauchy surface does not affect the fact that the flux of the
T -energy defines a Hilbert space norm on Cauchy data. For the surface � = {t = 0},
this flux is given by

∥∥(�|�, /∇n�
�|�)

∥∥2ET
�

=
∫

�

dr sin θdθdφ | /∇n�
�|2 + �2| /∇r�|2 + | /∇�|2 + 3�2 + 1

r2
|�|2.
(1.20)

Conservation of the T -energy suggests Hilbert space norms on I +,H +:

‖ψI +‖2ET
I +

=
∫
I +

du sin θdθdφ |∂uψI + |2,

‖�H +‖2ET
H +

=
∫
H +

dv sin θdθdφ |∂vψH + |2. (1.21)

TheHilbert spaces ET
�

, ET
H + , ET

I + are defined to be the completion of smooth, compactly

supported data under the norms defined in (1.20), (1.21) and the spaces ET
H − , ET

I − are
defined analogously.

Theorem 1. Forward evolution under the Regge–Wheeler equation (1.17) extends to a
unitary Hilbert space isomorphism

F + : ET
�

−→ ET
H + ⊕ ET

I + . (1.22)

A similar statement holds for scattering towards H −,I −. As a corollary, we obtain
the unitary Hilbert space isomorphism

S : ET
H − ⊕ ET

I − −→ ET
H + ⊕ ET

I + . (1.23)

The precise statement of this result is contained in Theorems 4.1.1, 4.1.2 and 4.1.3 of
Sect. 4.1.

Note that Theorem 1 can be applied to the study of scattering for the linearised
Einstein equations in the Regge–Wheeler gauge, see also the recent [48].
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1.3.2. Scattering for the Teukolsky equations Given α or α solving the Teukolsky equa-
tions (1.3), (1.4), the weighted null derivatives �,� defined by (1.18), (1.19) satisfy the
Regge–Wheeler equation (1.17), so we can try to use Theorem 1 to construct a scattering
theory for α, α using the spaces of scattering states associated to (1.17):

Let (α,α′), (α,α′) be Cauchy data for (1.3), (1.4) respectively on � and define

‖(α,α′)‖2ET,+2
�

:= ‖(�, /∇n�
�)‖2ET

�

, ‖(α,α′)‖2ET,−2
�

:= ‖(�, /∇n�
�)‖2ET

�

.

(1.24)

The expressions ‖ ‖2ET,+2
�

, ‖ ‖2ET,−2
�

turn out indeed to be norms on smooth, compactly

supported data sets on � and thus they define Hilbert space norms on the completions
of such data. Note that the values on � of �,� and their derivatives can be computed
locally using the Teukolsky equations (1.3), (1.4), out of higher order derivatives of the
initial data (α,α′), (α,α′) on �.

As mentioned earlier, the energies defining the Hilbert spaces of scattering states
for the Teukolsky equations stem from the T -energy associated to the Regge–Wheeler
equations. Remarkably, onI ±,H ±, the radiation fields of�,� are related to those of
α, α by tangential derivatives, and it is possible to find meaningful expressions for the
corresponding norms on I ±,H ± directly in terms of the radiation fields of α, α.

Theorem 2. For the Teukolsky equations (1.3), (1.4) of spins ± 2, evolution from
smooth, compactly supported data on a Cauchy surface extends to unitary Hilbert space
isomorphisms:

(+2)F + : ET,+2
�

−→ ET,+2
I + ⊕ ET,+2

H + , (−2)F + : ET,−2
�

−→ ET,−2
I + ⊕ ET,−2

H + ,

(1.25)
(+2)F− : ET,+2

�
−→ ET,+2

I − ⊕ ET,+2
H − , (−2)F− : ET,−2

�
−→ ET,−2

I − ⊕ ET,−2
H − .

(1.26)

The spaces of past/future scattering states ET,±2
I ± , ET,±2

H ± , are the Hilbert spaces ob-
tained by completing suitable smooth, compactly supported data on I ±,H ± under
the corresponding norms in the following:

i+

i−

i0

∥∥∥( /̊� − 2)( /̊� − 4)

(
2M

∫∞
v d v̄e

1
2M (v−v̄)

αH +

)∥∥∥2
L2(H +)

+
∥∥∥6M∂v

(
2M

∫∞
v d v̄e

1
2M (v−v̄)

αH +

)∥∥∥2
L2(H +)

H
+

∥∥∥2M
(
−2(2M∂u ) + 3(2M∂u )2 − (2M∂u )3

)
2MαH −

∥∥∥2
L2(H −)

H − ∥∥∥6MαI −
∥∥∥2

L2(I −)

+
∥∥∥( /̊� − 2)( /̊� − 4)

(∫ v−∞ αI − d v̄
)∥∥∥2

L2(I −)

I
−

∥∥∥(∂u )3αI +

∥∥∥2
L2(I +)

I
+
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i+

i−

i0

∥∥∥2M
(
2(2M∂v) + 3(2M∂v)2 + (2M∂v)3

)
2MαH +

∥∥∥2
L2(H +)

H
+

∥∥∥6M∂u

(
2M

∫ u−∞ dūe
1
2M (u−ū)

αH −
)∥∥∥2

L2(H −)

+

∥∥∥∥( /̊� − 2)( /̊� − 4)

(
2M

∫ u−∞ dūe
1
2M (u−ū)

αH −
)∥∥∥∥

2

L2(H −)

H − ∥∥∥(∂v)3αI −
∥∥∥2

L2(I −)

I
−

∥∥∥( /̊� − 2)( /̊� − 4)
(∫ u−∞ αI +dū

)∥∥∥2
L2(I +)

+
∥∥∥6MαI +

∥∥∥2
L2(I +)

I
+

The maps (±2)F± lead to the unitary Hilbert space isomorphisms

S +2 : ET,+2
I + ⊕ ET,+2

H + −→ ET,+2
I − ⊕ ET,+2

H − ,

S −2 : ET,−2
I + ⊕ ET,−2

H + −→ ET,−2
I − ⊕ ET,−2

H − .
(1.27)

Remark 1. The scattering maps of Theorem 2 answer the questions I, II, III posed at
the beginning of the introduction. In particular, the issue of asymptotic completeness is
answered in the sense that the spaces ET,±2

�
include all smooth, compactly supported

Cauchy data for (1.3), (1.4) as dense subspaces.

Remark 2. As the Eddington–Finkelstein coordinate system degenerates at the bifurca-
tion sphere B, it is necessary to use a regular coordinate system, such as the Kruskal

coordinates U = e− u
2M , V = e

v
2M . In this coordinate system we see that

(1)

W AV BV ∼
V −2�2α ∼ U 2�−2α and

(1)

W AU BU ∼ V 2�−2α ∼ U−2�2α extend regularly to the bi-
furcation sphere. The integrands defining ET,±2

H ± also extend regularly to the bifurcation
sphere B. For example,

[
−2(2M∂u) + 3(2M∂u)2 − (2M∂u)3

]
�−2α = U∂3U U 2�−2α, (1.28)∫ ∞

v

e
1
2M (v−v̄)�2α d v̄ = V

∫ ∞

V
V

−2
�2α dV . (1.29)

We take L2(H +) to be defined with respect to the measure dv sin θdθdφ, and we define
L2(I +) via the measure du sin θdθdφ. Analogous statements apply to I −,H −.

The detailed statement of Theorem 2 is contained in Theorems 4.2.2, 4.2.3, 4.2.4
and 4.2.5 of Sect. 4.2.1, and Theorems 4.2.7, 4.2.8, 4.2.9 and 4.2.10 of Sect. 4.2.2.

1.3.3. Teukolsky–Starobinsky correspondence Finally, concerning the Teukolsky–
Starobinsky correspondence relating α, α, we may summarise our result as follows:

Theorem 3. The constraints (1.5), (1.6) can be used to define unitary Hilbert space
isomorphisms:

T SI + : ET,+2
I + −→ ET,−2

I + , T SH + : ET,+2
H + −→ ET,−2

H + , (1.30)

T S = T SH + ⊕ T SI + : ET,+2
H + ⊕ ET,+2

I + −→ ET,−2
H + ⊕ ET,−2

I + . (1.31)
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Applying T S to scattering data, one can associate to a solution to the + 2 Teukolsky
equation (1.3) arising from smooth scattering data in ET,+2

I + ⊕ ET,+2
H + a unique solution

α of the − 2 Teukolsky equation (1.4) with smooth scattering data in ET,−2
I + ⊕ ET,−2

H +

such that (1.5), (1.6) are satisfied everywhere on the exterior region of Schwarzschild.
An analogous statement applies to H −,I − and we have the unitary Hilbert space
isomorphisms

T SI − : ET,+2
I − −→ ET,−2

I − , T SH − : ET,+2
H − −→ ET,−2

H − , (1.32)

T S− = T SH − ⊕ T SI − : ET,+2
H − ⊕ ET,+2

I − −→ ET,−2
H − ⊕ ET,−2

I − . (1.33)

The map T SI + is realised by taking the limit of constraint (1.5) nearI + and inverting
either side of the constraint on smooth, compactly supported scattering data,which are by
definition dense subsets of ET,±2

I + . The map T SH + is obtained analogously by studying

constraint (1.6) near H +. Note that in order to obtain a unique smooth radiation field
αH + for the + 2 Teukolsky equation (1.3) on H + starting from a radiation field αH +

for the − 2 equation (1.4), it is necessary to specify αH + on the entirety of H +, and
vice versa forI +. Thus the isomorphisms T SI + , T SH + can only be defined on spaces
of scattering data that determine solutions to (1.3), (1.4) globally on the Schwarzschild
exterior.

In particular, note that spacetimes ofRobinson–Trautman type are excluded fromour
scattering theory, see Sect. 9 and Appendix A. The Robinson–Trautman spacetimes have
the property that one of

(1)

α or
(1)

α is non-trivial while the other is vanishing, and as such they
would pose a counterexample to the Teukolsky–Starobinsky correspondence if the latter
is not properly formulated.We show that this possibility is eliminatedwhen finite-energy
scattering is considered globally on the entirety of the exterior of the Schwarzschild
solution.

The detailed statement of Theorem 3 is contained in Theorem 4.3.1 of Sect. 4.3.
See Sect. 9 for the detailed treatment.

1.3.4. A preview of scattering for the full linearised Einstein equations In reference
to Theorems 2, 3 allows us to bridge the scattering theory we build for the Teukolsky
equations to develop scattering for the full system of linearised Einstein equations in
double null gauge via the following corollary:

Corollary 1. Given a smooth, compactly supported αI − onI − such that
∫∞
−∞ d v̄ αI −

= 0, and an αH − such that U−2αH − is smooth, compactly supported on H −, there
exists a unique smooth pair (α, α) on the exterior region of Schwarzschild, satisfying
equations (1.3), (1.4) respectively, where α realises αH + as its radiation field on H +,
α realises αI + as its radiation field on I +, such that constraints (1.5) and (1.6) are
satisfied. Moreover, α, α induce smooth radiation fields αI + ,αH + in ET,−2

I + , ET,+2
H +

respectively. This extends to a unitary Hilbert space isomorphism:

S −2,+2 : ET,+2
I − ⊕ ET,−2

H − −→ ET,−2
I + ⊕ ET,+2

H + . (1.34)
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i+

B i0

i−

αH + αI +

(α, α)

αI −αH −

Corollary 1 is stated again as Corollary 4.4.1 of Sect. 4.4. The proof is contained in
Sect. 9.4.

To apply this result to scattering for the linearised Einstein equations, the strategy
will be to start from data for the metric on H −,I − (or H +,I +), obtain data for the

shears
(1)

χ̂ and hence
(1)

α on H +,
(1)

χ̂ and hence
(1)

α on I +, then use Corollary 1 to obtain
scattering data and solutions to Eqs. (1.3) and (1.4), and conclude by constructing the
remaining quantities using the linearised Bianchi and null structure equations. This will
be the subject of a forthcoming sequel to this paper [37].

We can give a preview of the scattering results of the full system: assume we have a
solution to the linearised Einstein equations defined on the whole of the exterior region
(see Sect. 2.2 for a full list of equations), such that

(1)

α,
(1)

α induce radiation fields
(1)

αI +∈
ET,−2
I + ,

(1)

αI −∈ ET,+2
I − ,

(1)

αH +∈ ET,+2
H + ,

(1)

αH −∈ ET,−2
H − . Using (1.16) and its counterpart in

the 4-direction, we can assert that the radiation fields belonging to the linearised shears
(1)

χ̂ ,
(1)

χ̂ must satisfy

∥∥∥∥
(

/̊� − 2
) (

/̊� − 4
) (1)

χ̂
I +

∥∥∥∥
2

L2(I +)

+

∥∥∥∥6M∂u

(1)

χ̂
I +

∥∥∥∥
2

L2(I +)

+

∥∥∥∥
(

/̊� − 2
) (

/̊� − 4
) (1)

χ̂H +

∥∥∥∥
2

L2(H +)

+

∥∥∥∥6M∂v

(1)

χ̂H +

∥∥∥∥
2

L2(H +)

=
∥∥∥∥
(

/̊� − 2
) (

/̊� − 4
) (1)

χ̂I −

∥∥∥∥
2

L2(I −)

+

∥∥∥∥6M∂v

(1)

χ̂I −

∥∥∥∥
2

L2(I −)

+

∥∥∥∥
(

/̊� − 2
) (

/̊� − 4
) (1)

χ̂
H −

∥∥∥∥
2

L2(H −)

+

∥∥∥∥6M∂u

(1)

χ̂
H −

∥∥∥∥
2

L2(H −)

.

(1.35)

The fact that time translation and angular momentum operators commute with �g
means that we can project scattering data on individual azimuthal modes and consider

solutions in frequency space. Since
(1)

χ̂ ,
(1)

χ̂ are supported on � ≥ 2, and in view of the
unitarity of (1.35), we can translate (1.35) in terms of fixed frequency, fixed azimuthal
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mode solutions to the following statement:

∥∥∥ (1)

χ̂H +, ω,m,�

∥∥∥2
L2

ω

+
∥∥∥ (1)

χ̂
I +, ω,m,�

∥∥∥2
L2

ω

=
∥∥∥ (1)

χ̂
H −, ω,m,�

∥∥∥2
L2

ω

+
∥∥∥ (1)

χ̂I −, ω,m,�

∥∥∥2
L2

ω

.

(1.36)

Resumming in �2m,� and using Plancherel, we obtain the identity

∥∥∥ (1)

χ̂H +

∥∥∥2
L2(H +)

+
∥∥∥ (1)

χ̂
I +

∥∥∥2
L2(I +)

=
∥∥∥ (1)

χ̂
H −

∥∥∥2
L2(H −)

+
∥∥∥ (1)

χ̂I −
∥∥∥2

L2(I −)
. (1.37)

The statement (1.37) above ties up with the work by Holzegel [30], where a set of
conservation laws are derived for the full system of linearised Einstein equations on the
Schwarzschild exterior (1.2) (using purely physical-space methods).

Note that in particular, for past scattering data that is vanishing onH −, the identity
(1.37) has the interpretation that the energy of the gravitational energy radiated to I +

is bounded with constant 1 by the incoming gravitational energy radiated from I −,
i.e. there is no superradiant amplification of reflected gravitational radiation on the
Schwarzschild exterior.

1.4. Outline of the paper. This paper is organised as follows: We review the linearised
Einstein equations in double null gauge around the Schwarzschild spacetime in Sect. 2.
In Sect. 3 we introduce the Teukolsky equations, the Regge–Wheeler equations and
derive important identities connecting the equations. Detailed statements of the results
of this work are presented in Sect. 4, and then the scattering theory of the Regge–Wheeler
equations is studied in Sect. 5.We develop scattering for the Teukolsky equations by first
working out the necessary estimates to understand the asymptotic behaviour in forward
evolution for both equations in Sects. 6 and 7. Backwards scattering for both equations
is treated in Sect. 8, followed by the study of the constraints (1.5) and (1.6) in Sect. 9.
Appendix A is concerned with Robinson–Trautman spacetimes, and Appendix B is a
brief review of the double null gauge.

2. Preliminaries

2.1. The Schwarzschild exterior in a double null gauge. Denote by M the exterior of
the maximally extended Schwarzschild spacetime. Using Kruskal coordinates, this is
the manifold with corners

M = {(U, V, θ A) ∈ (−∞, 0] × [0,∞) × S2} (2.1)

equipped with the metric

ds2 = − 32M3

r(U, V )
e− r(U,V )

2M dUdV + r(U, V )2γABdθ Adθ B . (2.2)

The function r(U, V ) is determined by −U V = ( r
2M − 1

)
e

r
2M , (θ A) is a coordinate

system on S2 and γAB is the standard metric on the unit sphere S2. The time-orientation
ofM is defined by the vector field ∂U + ∂V .
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The boundary ofM consists of the two null hypersurfaces

H + = {0} × (0,∞) × S2, (2.3)

H − = (−∞, 0) × {0} × S2, (2.4)

and the 2-sphere B where H + and H − bifurcate:

B = {U, V = 0} ∼= S2. (2.5)

We define H + = H + ∪ B,H − = H − ∪ B.
The interior of M can be covered with the familiar Schwarzschild coordinates

(t, r, θ A) and the metric takes the form (1.2), i.e.

ds2 = −
(
1 − 2M

r

)
dt2 +

(
1 − 2M

r

)−1

dr2 + r2γABdθ Adθ B . (2.6)

Let �2 = (
1 − 2M

r

)
. It will be convenient to work instead in Eddington–Finkelstein

coordinates

u = 1

2
(t − r∗), v = 1

2
(t + r∗), (2.7)

where r∗ is defined up to a constant by dr∗
dr = 1

�2 . The coordinates (u, v, θ A) also define
a double null foliation (see Appendix B) of the interior ofM since the metric takes the
form

ds2 = −4

(
1 − 2M

r

)
dudv + r(u, v)2(dθ2 + sin2 θdφ2). (2.8)

In particular the null frame defined by the coordinates (2.7) is given by (see Appendix
B):

e3 = 1

�
∂u, e4 = 1

�
∂v. (2.9)

We may relate U, V to u, v after fixing the residual freedom in defining t, r∗ by

U = −e− u
2M , V = e

v
2M , (2.10)

Note that the intersections of null hypersurfaces of constant u, v are spheres with metric
/g AB := r2γAB . We denote these spheres by S2

u,v .

The (u, v)-coordinate systemdegenerates onH + andH − where u = ∞, v = −∞
respectively. To compensate for this we can use the Kruskal coordinates to introduce
weighted quantities in the coordinates (u, v, θ A) that are regular onH ±.Wenote already
at this stage that the regularity of ∂U , ∂V on the event horizons implies that 1

�
e3,�e4

are regular on H + and 1
�

e4,�e3 are regular on H − (but not H ±, which include B).
We denote by Cu∗ the ingoing null hypersurface of constant u = u∗, and similarly

C v∗ denotes the outgoing null hypersurface v = v∗; define Cu∗ ∩ [v1, v2] to be the
subset of Cu∗ for which v ∈ [v1, v2], C v ∩ [u−, u+] denotes the subset of C v for which
u ∈ [u−, u+]. Let � be the spacelike surface {t = 0} and let � = � ∪ B be the
topological closure of � in M . � is a smooth Cauchy surface for M which connects
B with "spacelike infinity"; in Kruskal coordinates it is given by {U + V = 0}. We also
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work with a spacelike hypersurface �∗ intersecting H + to the future of B, defined as
follows: let

t∗ = t + 2M log
( r

2M
− 1

)
. (2.11)

The function t∗ can be extended to H ± to define a smooth function on all of M , and
we define �∗ by

�∗ = {t∗ = 0} (2.12)

We choose the integration constant in the definition of �∗ so that �∗ intersects H + at
v = 0; note that �∗ asymptotes to spacelike infinity. Define H +≥0 := H + ∩ J+(�∗).
We will occasionally use the notation x := 1 − 1

�2 . We denote the spacetime region
bounded by Cu0 ∩ [v0, v1],Cu1 ∩ [v0, v1],C v0

∩ [u0, u1],C v1
∩ [u0, u1] byDu1,v1

u0,v0 . We
also denote the spacetime region bounded by Cu,C v,�

∗ by Du,v
�∗ .

Du1,v1
u0,v0

i+

i−

i0

u
= ∞H
+

v = −∞H − u
= −∞

I
−

v = ∞
I

+

C u 1
∩ [v 0,

v 1
] C

v
1 ∩ [u

0 , u
1 ]

C u 0
∩ [v 0,

v 1
]C

v
0 ∩ [v

0 , v
1 ]

i+

i−

i0

H
+≥0 I

+

�∗

i+

i−

i0
H
+ I

+

�

i+

i−

B i0
H
+ I

+

�
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Null infinity I ± We define the notion of null infinity by directly attaching it as a
boundary toM . Define I +,I − to be the manifolds

I +,I − := R × S2 (2.13)

and define M to be the extension

M = M ∪ I + ∪ I −. (2.14)

For sufficiently large R and any open setO ⊂ R×S2, declare the setsO+
R = (R,∞]×O

to be open inM , identifyingI + with the points (u,∞, θ, φ). To the setO+
R we assign

the coordinate chart (u, s, θ, φ) ∈ R × [0, 1) × S2 via the map

(u, v, θ, φ) −→ (u,
R

v
, θ, φ), (2.15)

where (u, v, θ, φ) are the Eddington–Finkelstein coordinates we defined earlier. The
limit limv−→∞(u, v, θ, φ) exists and is unique, and we use it via the above charts to
fix a coordinate system (u, θ, φ) on I +. The same can be repeated to define an atlas
attaching I − as a boundary toM .

2.1.1. S2
u,v-projected connection and angular derivatives Wewill be working primarily

with tensor fields that are everywhere tangential to the S2
u,v spheres foliatingM . By this

we mean any tensor fields of type (k, l), � ∈ T (k,l)M on M such that for any point
q = (u, v, θ A) ∈ M we have �|q ∈ T (k,l)

(θ A)
S2

u,v . (Note that a vector X A ∈ T(θ A)S2
u,v

is canonically identified with a vector Xa ∈ TqM via the inclusion map, whereas we
make the identification of a 1-form ηA ∈ T ∗

(θ A)
M as an element in the cotangent bundle

ofM by declaring that η(X) = 0 if X is in the orthogonal complement of T S2
u,v under

the spacetime metric (2.2).) We will refer to such tensor fields as "S2
u,v-tangent" tensor

fields in the following. It will also be convenient to work with an "S2
u,v projected" version

of the covariant derivative belonging to the Levi–Civita connection of the metric (1.2).
We define these notions as follows:

We denote by /∇ A (or sometimes simply /∇) the covariant derivative on S2
u,v with

the metric /g AB . Note that r /∇ = /∇S2 which we also denote by /̊∇.
For an S2

u,v-tangent 1-form ξ , define /D1ξ to be the pair of functions

/D1ξ = ( /divξ, /curlξ), (2.16)

where /divξ = /∇ A
ξA and /curlξ = /εAB /∇ AξB . Similarly, define

/D1ξ := ( /divξ,− /curlξ). (2.17)

For an S2
u,v-tangent symmetric traceless 2-tensor �AB we define /D2� to be the 1-form

given by

( /D2�)A = ( /div�)A = /∇B
�B A. (2.18)
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We define the operator /D∗
1 to be the L2(S2

u,v)-dual to /D1. For scalars ( f, g) the
1-form /D∗

1( f, g) is given by

/D∗
1( f, g) = − /∇ A f + εAB /∇B g. (2.19)

Similarly we denote by /D∗
2 the L2

S2u,v
-dual to /D2. For an S2

u,v-tangent 1-form ξ this

is given by

( /D∗
2ξ)AB = −1

2

(
/∇ AξB + /∇BξA − /g AB

/divξ
)
. (2.20)

We also use the notation

/̊D1 := r /D1, /̊D∗
1 := r /D∗

1,

/̊D2 := r /D2, /̊D∗
2 := r /D∗

2.
(2.21)

For example, if ξ is a 1-form on S2
u,v then

/̊D∗
2ξ = −1

2

(
/̊∇ AξB + /̊∇BξA − /g AB

/̊∇CξC
)

. (2.22)

and so on. Let ξ be an S2
u,v-tangent tensor field. We denote by Dξ and Dξ the projected

Lie derivative of ξ in the 3- and 4-directions respectively. In EF coordinates we have

(Dξ)A1 A2...An = ∂u(ξA1 A2...An ) (Dξ)A1 A2...An = ∂v(ξA1 A2...An ) (2.23)

Similarly, we define /∇3ξ and /∇4ξ to be the projections of the covariant derivatives ∇3ξ

and ∇4ξ to S2
u,v .

2.1.2. Elliptic estimates on S2
u,v For a k-covariant S2

u,v-tangent tensor field θ on M ,
define

|�|S2 =
√

γ A1B1γ A2B2 · · · γ Ak Bk �A1...Ak �B1...Bk , |�| = r−k |�|S2 (2.24)

The following is a summary of Section 4.4 of [16]. Given scalars ( f, g) we can define
an S2

u,v 1-form by ξ = r /D∗
1( f, g). In turn, given a 1-form ξ we can define a symmetric

traceless 2-form θ via θ = r /D∗
2ξ . It turns out that these representations span the space

of such ξ and θ :

Proposition 2.1.1. Let ξ be an S2
u,v-tangent 1-form. Then there exist scalars f, g such

that

ξ = r /D∗
1( f, g). (2.25)

Let � be S2
u,v-tangent symmetric traceless 2-form. Then there exist scalars f, g such

that

� = r2 /D∗
2 /D∗

1( f, g) (2.26)
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Note that when considering the decomposition of f, g into their spherical harmonic
modes, the operation of acting by /D∗

1 annihilates their � = 0 modes and the action of
/D∗
2 annihilates their � = 1 modes. Thus in the case of a 1-form f, g can be taken to

have vanishing � = 0 modes, in which case f, g are unique. Similarly, for a symmetric
traceless S2

u,v 2-tensor there exist a unique pair f, g with vanishing � = 0, 1 such that θ
is given by the expression above.

Remark 2.1.1. The operators /D1, /D2, /D∗
1, /D∗

2 defined in Sect. 2.1.1 can be combined to
give

− 2r2 /D∗
2 /D2 = /̊� − 2 − r2 /D∗

1 /D1 = /̊� − 1

− 2r2 /D2 /D∗
2 = /̊� + 1 − r2 /D1 /D∗

1 = /̊�.
(2.27)

The operator /̊� is the Laplacian on the unit 2-sphere S2.

Proposition 2.1.2. Let � be a smooth symmetric traceless S2
u,v 2-tensor. We have the

following identities:

∫
S2u,v

sin θdθdφ
[
| /∇�|2 + 2K |�|2

]
= 2

∫
S2u,v

sin θdθdφ| /D2�|2, (2.28)

∫
S2u,v

sin θdθdφ

[
1

4
| /��|2 + K 2|�|2 + K | /∇�|2

]
=
∫

S2u,v

sin θdθdφ| /D∗
2 /D2�|2,

(2.29)

where K = 1
r2

is the Gaussian curvature of S2
u,v .

We also note the following Poincaré inequality:

Proposition 2.1.3. Let � be a smooth symmetric traceless S2
u,v 2-tensor, then we have

2K
∫

S2u,v

sin θdθdφ|�|2 ≤
∫

S2u,v

sin θdθdφ| /∇�|2 (2.30)

Remark 2.1.2. We will be using the notation

A2 := −2r2 /D∗
2 /D2 = /̊� − 2. (2.31)

Note thatA2 is indeed an elliptic operator on symmetric traceless (0, 2)-tensor fields on
S2, as it can be shown that

/̊�
[
/̊D∗
2 /̊D∗

1( f, g)
]

= /̊D∗
2 /̊D∗

1

(
( /̊� + 4) f, ( /̊� + 4)g

)
, (2.32)

thus /̊� + λ is elliptic for λ ≤ −2 by the Poincaré inequality of Proposition 2.1.3.
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2.1.3. Asymptotics of S2
u,v-tensor fields Let � be a k-covariant S2

u,v-tangent tensor field
on M . We say that � converges to F = FA1 A2...Ak (u) as v −→ ∞ if r−k

� −→ F in
the norm | |S2 . We may write∣∣∣∣ 1rk

�(u, v, θ A) − F(u, θ A)

∣∣∣∣
S2

=
∣∣∣∣
∫ ∞

v

d v̄
d

dv

1

rk
�

∣∣∣∣
S2

≤
∫ ∞

v

d v̄

∣∣∣∣ d

dv

1

rk
�

∣∣∣∣
S2

=
∫ ∞

v

d v̄

∣∣∣∣rk d

dv

1

rk
�

∣∣∣∣ =
∫ ∞

v

d v̄|�/∇4�|.
(2.33)

Therefore, if �/∇4� is integrable in L1(Cu) then � has a limit towards I +. It is easy
to see that if {�n}∞n is a Cauchy sequence in | | then �n converges in the sense of
this definition. The above extends to tensors of rank (k, �), where r−k is replaced by
r−k+�. Similar considerations apply when taking the limit towards I −. In particular,
for a symmetric tensor � of rank (2, 0), it will be simpler to work with � A

B . Note that
�/∇4�

A
B = ∂v�

A
B , �/∇3�

A
B = ∂u� A

B . Unless otherwise indicated, we work with
S2

u,v-tangent (1, 1)-tensors throughout.

2.2. Linearised Einstein equations in a double null gauge. When linearising the Ein-
stein equations (1.1) against the Schwarzschild background in a double null gauge, the
quantities governed by the resulting equations can be organised into a collection of
S2

u,v-tangent tensor fields:

• The linearised metric components
(1)

/̂g ,
(1)

b ,
(1)√
/g ,

(1)

� , (2.34)

• the linearised connection coefficients
(1)

χ̂ ,
(1)

χ̂ ,
(1)

η ,
(1)

η ,
(1)

(� tr χ) ,
(1)

(� tr χ) ,
(1)

ω ,
(1)

ω , (2.35)

• the linearised curvature components

(1)

α ,
(1)

α ,
(1)

β ,
(1)

β ,
(1)

ρ ,
(1)

σ ,
(1)

K . (2.36)

SeeAppendix B and [16] for the details of linearising the vacuumEinstein equations
(1.1) in a double null gauge. We now state the linearised vacuum Einstein equations
around the Schwarzschild black hole in a double null gauge:

• The equations governing the linearised metric components (2.34):

∂v

⎛
⎝

(1)√
/g√
/g

⎞
⎠ = 2(

(1)

� tr χ) − 2 /div
(1)

b, �/∇4

(1)

/̂g = 2�
(1)

χ̂ +2 /D∗
2

(1)

b, (2.37)

∂u

⎛
⎝

(1)√
/g√
/g

⎞
⎠ = 2(

(1)

� tr χ), �/∇3

(1)

/̂g = 2�
(1)

χ̂ . (2.38)

∂u
(1)

bA = 2�2(
(1)

η − (1)

η)A, (2.39)

∂v

( (1)

�

�

)
= (1)

ω, ∂u

( (1)

�

�

)
= (1)

ω,
(1)

ηA +
(1)

η
A

= 2 /∇ A

( (1)

�

�

)
. (2.40)
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• The equations governing the linearised connection coefficients (2.35):

�/∇4 r
(1)

�trχ= 2�2

(
/div r

(1)

η +r
(1)

ρ −4M

r2

(1)

�

�

)
+ �2

(1)

�trχ, (2.41)

�/∇3 r
(1)

�trχ= 2�2

(
/div r

(1)

η +r
(1)

ρ −4M

r2

(1)

�

�

)
− �2

(1)

�trχ, (2.42)

�/∇4
r2

�2

(1)

�trχ= 4r
(1)

ω, �/∇3
r2

�2

(1)

�trχ= −4r
(1)

ω, (2.43)

�/∇4
r2

(1)

χ̂

�
= −r2

(1)

α, �/∇3
r2

(1)

χ̂

�
= −r2

(1)

α, (2.44)

�/∇3 r�
(1)

χ̂= −2r /D∗
2�

2 (1)

η −�2
(

�
(1)

χ̂

)
, (2.45)

�/∇4 r�
(1)

χ̂= −2r /D∗
2�

2 (1)

η +�2
(

�
(1)

χ̂

)
, (2.46)

�/∇3r
(1)

η= r�
(1)

β −�2 (1)

η, �/∇4r
(1)

η= −r�
(1)

β +�2 (1)

η, (2.47)

�/∇4r2
(1)

η= 2r2 /∇ A
(1)

ω + r2�
(1)

β, �/∇3r2
(1)

η= 2r2 /∇ A
(1)

ω − r2�
(1)

β .

(2.48)

∂v
(1)

ω= −�2

(
(1)

ρ −4M

r3

(1)

�

�

)
= ∂u

(1)

ω (2.49)

• The equations governing the curvature components (2.36):

�/∇3 r�2 (1)

α= −2r /D∗
2�

2�
(1)

β +
6M�2

r2
�

(1)

χ̂ ,

�/∇4 r�2 (1)

α= 2r /D∗
2�

2�
(1)

β +
6M�2

r2
�

(1)

χ̂ , (2.50)

�/∇4
r4

(1)

β

�
= r /div r3

(1)

α, �/∇3
r4

(1)

β

�
= −r /div r3

(1)

α, (2.51)

�/∇4r2�
(1)

β= r /D∗
1(r�2 (1)

ρ, r�2 (1)

σ) +
6M�2

r
(1)

η,

�/∇3r2�
(1)

β= r /D∗
1(−r�2 (1)

ρ, r�2 (1)

σ) − 6M�2

r

(1)

η, (2.52)

�/∇4 r3
(1)

ρ= r /div r2�
(1)

β +3M
(1)

�trχ,

�/∇3 r3
(1)

ρ= −r /div r2�
(1)

β +3M
(1)

�trχ, (2.53)

�/∇4 r3
(1)

σ= −r /curl r2�
(1)

β, �/∇3 r3σ = −r /curl r2�
(1)

β . (2.54)

• Elliptic constraint equations: The linearised Codazzi equations

/div
(1)

χ̂ = �

r

(1)

η +
(1)

β +
1

2�
/∇ (1)

� tr χ, (2.55)
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/div
(1)

χ̂ = −�

r
(1)

η − (1)

β +
1

2�
/∇ (1)

� tr χ, (2.56)

/curl
(1)

η = (1)

σ , /curl
(1)

η = − (1)

σ , (2.57)

and the linearised Gauss equation

(1)

K = − (1)

ρ − 1

2r

(
(1)

� tr χ − (1)

� tr χ
)

− 2�

r2
(1)

� . (2.58)

Remark 2.2.1. The linearised Gaussian curvature
(1)

K is defined by

(1)

K [ (1)

/g ] := −
(
1

4
/� +

1

2r2

)
tr/g

(1)

g +
1

2
/div /div

(1)

/̂g . (2.59)

Remark 2.2.2. The degeneration of the Eddington–Finkelstein (EF) frame nearH + car-
ries over to a degeneration of the quantities governed by equations (2.41)–(2.54), as these
quantities were derived via the EF frame (see Appendix B). By switching to a regular
frame, e.g. the Kruskal frame, it can be shown that these quantities extend regularly to
H + when supplied with the appropriate weights in U, V . In particular, note that

α̃ = V −2�2α, α̃ = U 2�−2α, (2.60)

extend regularly toH +, including B.

3. The Teukolsky Equations, the Teukolsky–Starobinsky Identities and the
Regge–Wheeler Equations

3.1. The Teukolsky equations and their well-posedness. Let
(1)

α,
(1)

α belong to a solution to

the linearised Einstein equations (2.41)–(2.54). It turns out that the linearised fields
(1)

α,
(1)

α

obey decoupled 2nd order hyperbolic equations, the well-known Teukolsky equations.
Take the first equation of (2.50) and multiply by r4

�4 :

r4

�4�/∇3 r�2 (1)

α= −2r /D∗
2

r4
(1)

β

�
+ 6M

r2
(1)

χ̂

�
. (3.1)

Now differentiate in the�e4 direction andmultiply by �2

r2
to obtain the Spin + 2 Teukol-

sky equation:

�2

r2
�/∇4

r4

�4�/∇3 r�2 (1)

α= −2r2 /D∗
2 /D2r�2 (1)

α −6M

r
r�2 (1)

α . (3.2)

We note that:

/D∗
2 /D2 = −1

2
/� +

1

r2
, �/∇4

r2

�2 = −�/∇3
r2

�2 = r(x + 2). (3.3)
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We may rewrite the equation as:

− r2

�2�/∇3�/∇4 r�2 (1)

α +r2 /� r�2 (1)

α −2r(x + 2)�/∇3r�2 (1)

α +(3�2 − 5)r�2 (1)

α= 0.

(3.4)

An analogous procedure produces the Spin −2 Teukolsky equation

�2

r2
�/∇3

r4

�4�/∇4 r�2 (1)

α= −2r2 /D∗
2 /D2r�2 (1)

α −6M

r
r�2 (1)

α, (3.5)

which we may rewrite as

− r2

�2�/∇3�/∇4 r�2 (1)

α +r2 /� r�2 (1)

α +2r(x + 2)�/∇4r�2 (1)

α +(3�2 − 5)r�2 (1)

α= 0.

(3.6)

We now state well-posedness theorems which are standard for linear second-order hy-
perbolic equations of the type that Eqs. (3.2), (3.5) fall under. Taking into account
Remark 2.2.2, we start with the future evolution of �2α and �−2α.

Having derived the Teukolsky equations (3.2), (3.5), we can study these equations in
isolation. Since the following theoremsdonot pertain to the linearisedEinstein equations,
we drop the superscript (1).

Proposition 3.1.1. Prescribe on �∗ a pair of smooth symmetric traceless S2
u,v 2-tensor

fields (α,α′). Then there exists a unique smooth symmetric traceless S2
u,v 2-tensor field

�2α that satisfies (3.2) on J+(�∗), with �2α|�∗ = α, /∇n�∗ �2α|�∗ = α′.

Proposition 3.1.2. Prescribe on �∗ a pair of smooth symmetric traceless S2
u,v 2-tensor

fields (α,α′). Then there exists a unique smooth symmetric traceless S2
u,v 2-tensor field

�−2α that satisfies (3.5) on J+(�∗), with �−2α|�∗ = α, /∇n�∗ �−2α|�∗ = α′.

The same applies replacing �∗ with any other H +-penetrating spacelike surface
ending at i0.

The degeneration of the EF frame discussed in Remark 2.2.2 is inherited by (3.2),
(3.5), and we must work with α̃ = V −2�2α, α̃ = U 2�−2α in order to study the
Teukolsky equations with data on �. The weighted quantities α̃, α̃ satisfy the following
equations:

1

�2�/∇3�/∇4r α̃ +
1

M
(4 − 3�2)�/∇3r α̃ − 1

r
(3�2 − 5)̃α − /�r α̃ = 0, (3.7)

1

�2�/∇3�/∇4r α̃ − 1

M
(4 − 3�2)�/∇4r α̃ − 1

r
(3�2 − 5)̃α − /�r α̃ = 0. (3.8)

Equations (3.7) and (3.8) do not degenerate near B and we can make the following
well-posedness statement:

Proposition 3.1.3. Prescribe a pair of smooth symmetric traceless S2
U,V 2-tensor fields

(α̃, α̃′) on �. Then there exists a unique smooth symmetric traceless S2
u,v 2-tensor field

�2α that satisfies (3.2) on J+(�) with V −2�2α|� = α̃ and /∇n�
V −2�2α|� = α̃′.
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Proposition 3.1.4. Prescribe a pair of smooth symmetric traceless S2
U,V 2-tensor fields

(α̃, α̃′) on �. Then there exists a unique smooth symmetric traceless S2
u,v 2-tensor field

�−2α that satisfies (3.5) on J+(�) with V 2�−2α|� = α̃ and /∇n�
V 2�−2α|� = α̃′.

Analogous statements to the above apply to past development from� withU,�2 switch-
ing places with V,�−2 respectively.

In developing backwards scattering we will use the following well-posedness state-
ment for the past development of a mixed initial-characteristic value problem:

Proposition 3.1.5. Let u+ < ∞, v+ < v∗ < ∞. Let �̃ be a spacelike hypersurface
connecting H + at v+ to I + at u+ and let C = C v∗ ∩ J−(�̃)∩ J+(�). Prescribe a pair
of symmetric traceless S2

u,v 2-tensor fields:

• αH + on H + ∩{v ≤ v+} vanishing in a neighborhood of H + ∩{v = v+}, such that
V −2αH + extends smoothly to B,
• α0,in on C vanishing in a neighborhood of C ∩ �̃.

Then there exists a unique smooth symmetric traceless S2
u,v 2-tensor α on D−(

H + ∪ �̃ ∪ C
)

∩ J+(�) satisfying the + 2 Teukolsky equation (3.2) such that

V −2�2α|H + = V −2αH + , α|C = α0,in and
(
�2α|�̃, /∇n�̃

�2α|�̃
) = (0, 0).

Proposition 3.1.6. Let u+ < ∞, v+ < v∗ < ∞. Let �̃ be a spacelike hypersurface
connecting H + at v+ to I + at u+ and let C = C v∗ ∩ J−(�̃) ∩ {t ≥ 0}. Prescribe a
pair of symmetric traceless S2

u,v 2-tensor fields:

• αH + on H + ∩ {v < v+} vanishing in a neighborhood of v+, such that V 2αH +

extends smoothly to B,
• α0,in on C vanishing in a neighborhood of C ∩ �̃.

Then there exists a unique smooth symmetric traceless S2
u,v 2-tensor α on D−(

H + ∪ �̃ ∪ C
)

∩ J+(�) satisfying the − 2 Teukolsky equation (3.5) such that

V 2�−2α|H + = V 2αH + , α|C = α0,in and
(
�−2α|�̃, /∇n�̃

�−2α|�̃
) = (0, 0).

i+

B i0

v+ u+

C

�̃

�

We will also need

Proposition 3.1.7. Let α̃H + be a smooth symmetric traceless S2∞,v 2-tensor on H + ∩
J−(�∗), (α̃�∗ , α̃′

�∗) be a pair of smooth symmetric traceless S2∞,v 2-tensors on �∗.
Then there exists a unique solution α̃ to (3.7) in J+(�)∩{t∗ ≤ 0} such that α̃|H + = α̃H + ,
(̃α|�∗ , /∇n�∗ α̃|�∗) = (α̃�∗ , α̃′

�∗).
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Proposition 3.1.8. An analogous statement to Proposition 3.1.7 holds for Eq. (3.8).

Analogous statements apply for the "finite" backwards scattering problem from the past
of �, with U replacing V and �2 switching places with �−2.

Remark 3.1.1. (Time inversion) Under the transformation t −→ −t , u −→ −v and
v −→ −u and thusα(u, v, θ A) −→ α(−v,−u, θ A) =: α(u, v, θ A) andα(u, v, θ A) −→
α(−v,−u, θ A) =: α(u, v, θ A).

It is clear α(u, v, θ A) satisfies the− 2 Teukolsky equation, i.e. the equation satisfied
byα. Similarly,α(u, v, θ A) satisfies the+ 2Teukolsky equation, i.e. the equation satisfied
by α. This observation means that the asymptotics of α towards the future are identical
to those of α towards the past, i.e. determining the asymptotics of both α and α towards
the future is enough to determine the asymptotics of either α or α in both the past and
future directions. We will use this fact to obtain bijective scattering maps from studying
the forward evolution of the fields α, α. In particular, this prescription is sufficient to
obtain well-posedness statements for the equations (3.5) and (3.2) for past development.

Remark 3.1.2. Wewill sometimes denote a field α satisfying the + 2 Teukolsky equation
by writing T +2α = 0. Similarly we may denote a solution α to the − 2 equation by
T −2α = 0.

3.2. Derivation of the Teukolsky–Starobinsky identities. Wenow return to the full system
(2.41)–(2.54) to derive the Teukolsky–Starobinsky identities (1.5), (1.6).

Let
(1)

α belong to a solution of the linearised Einstein equations. Equation (2.50)
implies:

r2

�2�/∇3r�2 (1)

α= −2r /D∗
2r2�

(1)

β +6M�
(1)

χ̂ . (3.9)

Using (2.51) and (2.45) we obtain

(
r2

�2�/∇3

)2

r�2 (1)

α= −2r2 /D∗
2 /D∗

1

(
−r3

(1)

ρ, r3
(1)

σ
)
+ 6M(r�

(1)

χ̂ −r�
(1)

χ̂ ). (3.10)

We now apply r2

�2 �/∇3 to both sides and use equations (2.53), (2.54), (2.45) and the
second equation of (2.44) to deduce

(
r2

�2�/∇3

)3

r�2 (1)

α= −2r2 /D∗
2 /D∗

1 /D1

⎛
⎝r4

(1)

β

�

⎞
⎠

+ 6M

⎡
⎣r2 /D∗

2 /D∗
1

(
r2

�2

(1)(
�trχ

)
, 0

)
+ r3

(1)

α −(3�2 − 1)
r2

(1)

χ̂

�
− 2r /D∗

2r2
(1)

η

⎤
⎦ .

(3.11)

Now we apply �/∇3 once again and use (2.42), the second equation of (2.44) and the
second equations of (2.48):
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�/∇3

(
r2

�2�/∇3

)3

r�2 (1)

α

= −2r3 /D∗
2 /D∗

1 /D1(−r /D2r3
(1)

α) + 6M

[
r2 /D∗

2 /D∗
1

(
−4r

(1)

ω, 0
)

− (3�2 − 1)r2
(1)

α

+
r2

�2�/∇3r�2 (1)

α +6M
r2

�2

r2
(1)

χ̂

�
− (3�2 − 1)(−r2

(1)

α) − 2r /D∗
2(2r /∇r

(1)

ω −r2�
(1)

β)

]

= 2r4 /D∗
2 /D∗

1 /D1 /D2r3
(1)

α +6M
r2

�2

[
�/∇4 + �/∇3

]
r�2 (1)

α .

(3.12)

Finally, we have

�2

r2
�/∇3

(
r2

�2�/∇3

)3

r�2 (1)

α= 2r4 /D∗
2 /D∗

1 /D1 /D2r�2 (1)

α +6M
[
�/∇4 + �/∇3

]
r�2 (1)

α .

(3.13)

An entirely analogous procedure starting from the equation for
(1)

α in (2.50) leads to

�2

r2
�/∇4

(
r2

�2�/∇4

)3

r�2 (1)

α= 2r4 /D∗
2 /D∗

1 /D1 /D2r�2 (1)

α −6M
[
�/∇4 + �/∇3

]
r�2 (1)

α .

(3.14)

Equation (3.14) is the constraint (1.6).

3.3. Physical-space Chandrasekhar transformations and the Regge–Wheeler equation.
The Regge–Wheeler equation for a symmetric traceless S2

u,v 2-tensor � is given by

�/∇4�/∇3� − �2 /�� +
�2

r2
(3�2 + 1)� = 0. (3.15)

Suppose the field α satisfies the + 2 Teukolsky equation. Define the following hier-
archy of fields

r3�ψ := r2

�2�/∇3r�2α,

� := r2

�2�/∇3r3�ψ =
(

r2

�2�/∇3

)2

r�2α.

(3.16)

We have the following commutation relation:[
− r2

�2�/∇3�/∇4 − (k + xk′)r�/∇3 + a�2 + bx + c

]
r2

�2�/∇3

= r2

�2�/∇3

[
− r2

�2�/∇3�/∇4 − (
k + 2 + x(k′ + 1)

)
r�/∇3

+ (a + 2k + 2k′)�2 + bx + c − k − 2k′
]

+ 2M(a + 2k + 2k′),

(3.17)



A Scattering Theory for Linearised Gravity 505

where a, b, c, k, k′ are integers. We commute the operator
(

r2

�2 �/∇3

)2
past the Regge–

Wheeler operator:

[
− r2

�2 �/∇3�/∇4 + r2 /� − 3�2 − 1

](
r2

�2 �/∇3

)2

=
{

r2

�2 �/∇3

[
− r2

�2 �/∇3�/∇4 + r2 /� − (2 + x)r�/∇3 − 3�2 − 1

]
− 6M

}
r2

�2 �/∇3

= r2

�2 �/∇3

{[
− r2

�2 �/∇3�/∇4 + r2 /� − (2 + x)r�/∇3 − 3�2 − 1

]
r2

�2 �/∇3 − 6M

}

=
(

r2

�2 �/∇3

)2 {[
− r2

�2 �/∇3�/∇4 + r2 /� − 2(2 + x)r�/∇3 + 3�2 − 5

]
− 6M + 6M

}

(3.18)

This shows that if α satisfies the + 2 Teukolsky equation then � satisfies the Regge–
Wheeler equation (3.15).

Analogously, with the following hierarchy of fields

r3�ψ := r2

�2�/∇4r�2α,

� := r2

�2�/∇4r3�ψ =
(

r2

�2�/∇4

)2

r�2α,

(3.19)

we have [
− r2

�2�/∇3�/∇4 + (l + xl ′)r�/∇4 + a�2 + bx + c

]
r2

�2�/∇4

= r2

�2�/∇4

[
− r2

�2�/∇3�/∇4 +
(
l + 2 + x(l ′ + 1)

)
r�/∇4

+ (a + 2l + 2l ′)�2 + bx + c − l − 2l ′
]

+ 6M(a + 2l + 2l ′),

(3.20)

where a, b, c, l, l ′ are integers. Thus, if α satisfies the − 2 Teukolsky equation then �

also satisfies the Regge–Wheeler equation.
We state a standard well-posedness result for (3.15):

Proposition 3.3.1. For any pair (ψ,ψ′) of smooth symmetric traceless S2
r 2-tensor fields

on �∗, there exists a unique smooth symmetric traceless S2
u,v 2-tensor field � which

solves Eq. (3.15) in J+(�∗) such that �|�∗ = ψ and /∇n�∗ �|�∗ = ψ′. The same applies
when data are posed on � or �.

In contrast to the Teukolsky equations (3.2), (3.5), the Regge–Wheeler equation (3.15)
does not suffer from additional regularity issues near B, as can be seen by rewriting
Eq. (3.15) in Kruskal coordinates:

/∇U /∇V � − /̊� +
3�2 + 1

r2
� = 0. (3.21)



506 H. Masaood

If � is related to a field α that satisfies (3.2), then it is related to α̃ by

� =
(

r2

�2�/∇3

)2

r�2α =
(
2Mr2 f (r) /∇U

)2
r α̃. (3.22)

Proposition 3.3.2. Proposition 3.3.1 is valid replacing �∗ with � everywhere.

For backwards scattering we will need the following well-posedness statement:

Proposition 3.3.3. Let u+ < ∞, v+ < v∗ < ∞. Let �̃ be a spacelike hypersurface
connecting H + at v = v+ to I + at u = u+ and let C = C v∗ ∩ J−(�̃) ∩ {t ≥ 0}.
Prescribe a pair of smooth symmetric traceless S2

u,v 2-tensor fields:

• �H + on H + ∩ {v < v+} vanishing in a neighborhood of �̃,
• �0,in on C vanishing in a neighborhood of �̃.

Then there exists a unique smooth symmetric traceless S2
u,v 2-tensor � on D−(

H + ∪ �̃ ∪ C
)

∩ J+(�) satisfying the Regge–Wheeler equation (3.15), such that

�|H + = �H + , �|C = �0,in and
(
�|�̃, /∇n�̃

�|�̃
) = (0, 0).

We will also need

Proposition 3.3.4. Let (ψ,ψ′) be smooth symmetric traceless S2
u,v 2-tensor fields on

�∗, ψH + be a smooth symmetric traceless S2∞,v 2-tensor field on H + ∩{t∗ ≤ 0}. Then
there exists a unique smooth symmetric traceless S2

u,v 2-tensor field � on J−(�∗) such
that �|H +∩{t∗≤0} = ψH + ,

(
�|�∗ , /∇n�∗ �|�∗

) = (ψ,ψ′).

Remark 3.3.1. Unlike the Teukolsky equations (3.2), (3.5), the Regge–Wheeler equation
(3.15) is invariant under time inversion. If �(u, v) satisfies (3.15), then

�
(u, v) :=

�(−v,−u) also satisfies (3.15).

3.4. Further constraints among α,� and α,�. We can apply the same ideas as in
Sect. 3.3 to transform solutions of the Regge–Wheeler equation into solutions of the + 2
Teukolsky equation. Let � satisfy Eq. (3.15), then using (3.20) we can show that

�2

r2
�/∇4

r2

�2�/∇4� (3.23)

satisfies Eq. (3.2).
Now suppose α satisfies Eq. (3.2) and � is the solution to Eq. (3.15) related to α

by Eq. (3.16). We can evaluate the expression (3.23) using Eq. (3.2): we apply �/∇4 and
substitute using the + 2 equation only (we drop the superscript (1)):

�/∇4� = �/∇4

(
r2

�2�/∇3

)2

r�2α

= r(x + 2)�/∇3
r2

�2�/∇3r�2α +
r2

�2�/∇4�/∇3
r2

�2�/∇3r�2α

= 3�2 − 1

r
� +

r2

�2�/∇3�/∇4
r2

�2�/∇3r�2α
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= 3�2 − 1

r
� +

r2

�2�/∇3�/∇4
r4

�4

�2

r2
�/∇3r�2α

= 3�2 − 1

r
� +

r2

�2�/∇3

[(
−�4

r4
r(x + 2)

)
r4

�4�/∇3r�2α

]

+
r2

�2�/∇3
�2

r2
�/∇4

r4

�4�/∇3r�2α

= 3�2 − 1

r
� − r2

�2�/∇3

[
�2

r2
r(x + 2)

r2

�2�/∇3r�2α

]
+

r2

�2�/∇3T +2
N r�2α

= −2(3�2 − 2)
r2

�2�/∇3r�2α +
r2

�2�/∇3T +2
N r�2α

= −2r2 /D∗
2 /D2

r2

�2�/∇3r�2α − 6Mr�2α − (3�2 − 1)
r2

�2�/∇3r�2α, (3.24)

i.e.,

r2

�2�/∇4� = −2r2 /D∗
2 /D2

r4

�4�/∇3r�2α − (3�2 − 1)
r4

�4�/∇3r�2α − 6M
r2

�2 r�2α.

(3.25)

We act on both sides with �/∇4 again:

�/∇4
r2

�2�/∇4� = −2r2 /D∗
2 /D2

[
r2

�2

(
−2r2 /D∗

2 /D2r�2α − 6M

r
r�2α

)]

− 6M

[
r2

�2

(
�/∇3 + �/∇4

)
r�2α + r(x + 2)r�2α

]

−
[
−2r2 /D∗

2 /D2 − 6M

r

] [
r2

�2 (3�2 − 1)r�2α

]

= −2r2 /D∗
2 /D2

[
r2

�2

(
−2r2 /D∗

2 /D2r�2α − 2r�2α
)]

− 6M

[
r2

�2

(
�/∇3 + �/∇4

)
r�2α

]
.

(3.26)

We finally arrive at

�2

r2
�/∇4

r2

�2�/∇4� = −2r2 /D∗
2 /D2

[
−2r2 /D∗

2 /D2r�2α − 2r�2α
]

− 6M
[(

�/∇3 + �/∇4
)

r�2α
]
.

(3.27)

We record the same for �: using only the Teukolsky equation (3.5) we obtain the
analogue of (3.24)

�/∇3� = −(3�2 − 1)
r2

�2�/∇4r�2α + 6Mr�2α − 2r2 /D∗
2 /D2

r2

�2�/∇4r�2α, (3.28)
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and the analogue of (3.27)

�2

r2
�/∇3

r2

�2 �/∇3� = +6M
[
�/∇4 + �/∇3

]
r�2α +

[−2r2 /D∗
2 /D2 − 2

] (−2r2 /D∗
2 /D2r�2α

)
.

(3.29)

In the remainder of this paper we focus exclusively on the Teukolsky equations (3.2),
(3.5), the Teukolsky–Starobinsky identities (3.13), (3.14) and the Regge–Wheeler equa-
tion (3.15). In particular,we donot refer to the linearisedEinstein equations (2.41)–(2.54)
and as such, we drop the superscript (1).

Throughout this paper we will we distinguish between solutions arising from data
on�∗, � or�, and we subsequently construct separate scattering statements for each of
these cases, in particular distinguishing between spaces of scattering states onH +≥0,H

±

andH ±. Itwill be easiest toworkwith data�∗ first, and then the results for the remaining
cases would follow easily.

4. Main Theorems

We define in this section the spaces of scattering states and provide a precise statement of
the results. In what follows, L2 spaces onI ±,H +≥0,H

±,H ± are defined with respect
to the measures du sin θdθdφ, dv sin θdθdφ induced by the Eddington–Finkelstein
coordinates.

Notation. For a spherically symmetric submanifold S ofM , denote by �(S) the space
of smooth symmetric traceless S2

u,v 2-tensor fields on S. The space of such fields that are
compactly supported is denoted by �c(S). We use the same notation for smooth fields
on I ±,H ±,H ±.

In particular, note that A ∈ �(�∗) says that A is smooth up to and including �∗ ∩H +.

4.1. Theorem 1: Scattering for the Regge–Wheeler equation.

Definition 4.1.1. Let (ψ,ψ′) ∈ �c(�
∗) ⊕ �c(�

∗) be Cauchy data on �∗ for (3.15) of
compact support. Define the space ET

�∗ to be the completion of �c(�
∗) data under the

norm

‖(ψ,ψ′)‖2ET
�∗

=
∫

�∗
dr sin θdθdφ (2 − �2)| /∇ t∗�|2 + �2| /∇r�|2 + | /∇�|2 + 3�2 + 1

r2
|�|2,
(4.1)

where � is smooth and satisfies �|�∗ = ψ, /∇n�∗ �|�∗ = ψ′. The space ET
� is similarly

defined with the norm

‖(ψ,ψ′)‖2ET
�

=
∫

�

dr sin θdθdφ | /∇n��|2 + �2| /∇ R�|2 + | /∇�|2 + 3�2 + 1

r2
|�|2.

(4.2)

Define the space ET
� to be the completion of �c(�) data under the norm (4.2). The space

ET
�
and the norm ‖ ‖ET

�

are similarly defined.
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Remark 4.1.1. The kernel of ‖ ‖ET
�∗ has trivial intersection with �(�∗). It suffices for

a smooth data set (ψ,ψ′) to satisfy ‖(ψ,ψ′)‖ET
�∗ < ∞ to have (ψ,ψ′) ∈ ET

�∗ , so
‖ ‖ET

�∗
, ‖ ‖ET

�
, ‖ ‖ET

�

and (4.2) define normed spaces that can be extended to Hilbert
spaces.

Definition 4.1.2. Define the space ET
H +≥0

to be the completion of �c(H
+≥0) under the

norm

‖�‖2ET
H +≥0

=
∫
H +≥0

|∂v�|2 sin θdθdφdv. (4.3)

The spaces ET
H + , ET

H + are analogously defined.

Remark 4.1.2. 1. The energy ‖ ‖ET
H +≥0

indeed defines a norm on �c(H
+≥0), which thus

extends to a Hilbert space ET
H +≥0

when completed under ‖ ‖ET
H +≥0

. The same applies

to ET
H + , ET

H + .

2. The space ET
H +≥0

can be realised as the subset �H + ∈ L2
loc(H

+≥0) such that

• �/∇4�H + ∈ L2(H +≥0),• limv−→∞ |�H + |S2∞,v
= 0.

Note that Hardy’s inequality holds on elements of this space and we have
∫
H +≥0

dv sin θdθdφ
|�H + |2
v2 + 1

� ‖�H +‖2ET
H +≥0

< ∞. (4.4)

Definition 4.1.3. Define the space ET
I + to be the completion of �c(I +) under the norm

‖�‖2ET
I +

=
∫
I +

|∂u�|2 sin θdθdφdu. (4.5)

Definition 4.1.4. Define the space ET
H − to be the completion of �c(H −) under the

norm

‖�‖2ET
H −

=
∫
H −

|∂u�|2 sin θdθdφdu. (4.6)

The space ET
H − is similarly defined.

Definition 4.1.5. Define the space ET
I − to be the completion of �c(I −) under the norm

‖�‖2ET
I −

=
∫
I −

|∂v�|2dv sin θdθdφ. (4.7)

Remark 4.1.3. Similar statements to Remark 4.1.2 apply to the norms ‖ ‖ET
H ± ,

‖ ‖ET
H ±

, ‖ ‖ET
I ± ; they are positive-definite on smooth, compactly supported data

on the respective regions ofM , thus they define normed spaces which extend to Hilbert
spaces ET

H≥0
, ET

H ± , ET
H ± , ET

I ± upon completion. Elements of these spaces can be iden-

tified with tensor fields in L2
loc(H

−) for which a similar statement to (4.4) applies.
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Theorem 4.1.1. Let (ψ,ψ′) ∈ �c(�
∗) × �c(�

∗). Then the corresponding unique solu-
tion � to (3.15) given by Proposition 3.3.1 on J+(�∗) induces smooth radiation fields
(ψH + ,ψI +) ∈ �(H +≥0) ⊕ �(I +) as in definitions 5.2.2 and 5.2.1, with ψI + ,�H +

satisfying ∣∣∣∣(ψ,ψ′)
∣∣∣∣2ET

�∗ = ∣∣∣∣ψI +

∣∣∣∣2ET
I +

+
∣∣∣∣ψH +

∣∣∣∣2ET
H +

. (4.8)

This extends to a map

F + : ET
�∗ −→ ET

H +≥0
⊕ ET

I + . (4.9)

Analogously, forward evolution from smooth compactly supported data on � or �

extends to the maps,

F + : ET
� −→ ET

H + ⊕ ET
I + , (4.10)

F + : ET
�

−→ ET
H + ⊕ ET

I + . (4.11)

Theorem 4.1.2. Let ψI + ∈ �c(I +),ψH + ∈ �c(H
+≥0). Then there exists a unique

solution � to Eq. (3.15) in J+(�∗) which is smooth, such that

lim
v−→∞ �(u, v, θ A) = ψI + , �

∣∣
H +≥0

= ψH + . (4.12)

with
∣∣∣∣(�|�∗ , /∇n�∗ �|�∗)

∣∣∣∣2ET
�∗ = ∣∣∣∣ψI +

∣∣∣∣2ET
I +

+
∣∣∣∣ψH +

∣∣∣∣2ET
H +

. This extends to a map

B− : ET
H +≥0

⊕ ET
I + −→ ET

�∗ , (4.13)

which inverts the map F + of Theorem 4.1.1. Thus F +,B+ are unitary Hilbert space
isomorphisms and

B− ◦ F + = F + ◦ B+ = I d. (4.14)

Similar statements apply to produce maps

B− : ET
H + ⊕ ET

I + −→ ET
�, (4.15)

B− : ET
H + ⊕ ET

I + −→ ET
�

. (4.16)

Theorem 4.1.3. Analogously to Theorems 4.1.1 and 4.1.2, there exist bounded maps

F− : ET
� −→ ET

H − ⊕ ET
I − , B+ : ET

H − ⊕ ET
I − −→ ET

�, (4.17)

F− : ET
�

−→ ET
H − ⊕ ET

I − , B+ : ET
H − ⊕ ET

I − −→ ET
�

, (4.18)

such that F− ◦ B+ = B+ ◦ F− = I d on the respective domains. The maps

S = F + ◦ B+ : ET
H − ⊕ ET

I − −→ ET
H + ⊕ ET

I + , (4.19)

S = F + ◦ B+ : ET
H − ⊕ ET

I − −→ ET
H + ⊕ ET

I + (4.20)

constitute unitary Hilbert space isomorphism with inverses

S = F− ◦ B− : ET
H + ⊕ ET

I + −→ ET
H − ⊕ ET

I − , (4.21)

S = F− ◦ B− : ET
H + ⊕ ET

I + −→ ET
H − ⊕ ET

I − (4.22)

on the respective domains.
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Remark 4.1.4. We emphasise that the spaces ET
� and ET

�
are different and ET

� � ET
�
.

Similarly, ET
H + � ET

H + . Our prescription in distinguishing between these spaces is

consistent in the sense that elements of ET
� are mapped into ET

H + and vice versa. Our
point of view is that the spaces ET

�
, ET

H
± are the natural spaces to consider, since in

these spaces scattering data are not restricted to vanish at the bifurcation sphere B. It
is however useful to have the statements involving ET

�, ET
H ± . In particular, solutions

arising from past scattering data identically vanishing on H − will lie in these spaces.

4.2. Theorem 2: Scattering for the Teukolsky equations of spins ± 2.

4.2.1. Scattering for the + 2 Teukolsky equation

Definition 4.2.1. Let (α,α′) ∈ �c(�
∗)⊕�c(�

∗) be Cauchy data for (3.2) on�∗ giving
rise to a solution α. Define the space ET,+2

�∗ to be the completion of �c(�
∗) ⊕ �c(�

∗)
under the norm

‖(α,α′)‖2ET,+2
�∗

= ‖(�, /∇n�∗ �)‖2ET
�∗

, (4.23)

where � is the weighted second derivative � =
(

r2

�2 �/∇3

)2
r�2α of α. The spaces

ET,+2
� , ET,+2

�
are similarly defined.

We immediately note the following:

Proposition 4.2.1. ‖ ‖ET,+2
�

indeed defines a norm on �c(�)×�c(�). Similar statements

hold for ‖ ‖ET,+2
�∗ , ‖ ‖ET,+2

�

.

Proof. It suffices to check that ‖(α,α′)‖ET,+2
�

= 0 for a smooth, compactly supported

pair (α,α′) implies that (α,α′) = (0, 0). Let α, � be as in Definition 4.2.1. It is clear
that � = 0, and (3.27) implies:

/∇T α = 1

12M
A2(A2 − 2)α. (4.24)

Equation (3.24) implies that on �

(
A2 − 2 +

6M

r

)(
1

12M
A2(A2 − 2) − /∇ R∗

)
r�2α − 6M

�2

r2
r�2α = 0. (4.25)

Take F = (
A2 − 2 + 6M

r

)
r�2α, then the above says /∇ R∗ F = 1

12M A2 (A2 − 2) F −
12M �2

r2
r�2α. We integrate over the region R0 < r < R on �:

‖F‖2S2,r=R = ‖F‖2S2,r=R0
+
∫

�∩{R0<r<R}
�2dr sin θdθdφ

1

6M

{
|A2F |2 + 2| /̊∇F |2 + 4|F |2

}

+ 24M
�4

r2

{
| /̊∇r�2α|2 +

(
4 − 6M

r

)
|r�2α|2

}
. (4.26)

This implies ‖F‖2
S2,r=R

≥ ‖F‖2
S2,r=R0

(notice that the integral on the right hand side
remains positive by Poincaré’s inequality). If the data are compactly supported then F
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must vanish everywhere on �, and the vanishing of F implies the vanishing of �2α for
smooth α since the operator A2 − 2 + 6M

r is uniformly elliptic on the set of symmetric,
traceless 2-tensor field on S2 (recall Remark 2.1.2). This in turn implies the vanishing
of /∇ t�

2α by (4.24). We can repeat this argument for data on �∗, �. ��
Definition 4.2.2. Define the space of future scattering states ET,+2

H +≥0
on H + to be the

completion of �c(H
+≥0) under the norm

‖A‖ET,+2
H +≥0

=
∥∥∥∥A2(A2 − 2)

(∫ ∞

v

d v̄ e
1
2M (v−v̄) A

)∥∥∥∥
2

L2(H +≥0)

+

∥∥∥∥6M∂v

(∫ ∞

v

d v̄ e
1
2M (v−v̄) A

)∥∥∥∥
2

L2(H +≥0)

+
∫

S2
sin θdθdφ

(∣∣∣∣ /̊�
∫ ∞

v̄=0
d v̄ e

1
2M (v−v̄) A

∣∣∣∣
2

+ 6

∣∣∣∣ /̊∇
∫ ∞

v̄=0
d v̄ e

1
2M (v−v̄) A

∣∣∣∣
2

+8
∣∣∣
∫ ∞

v̄=0
d v̄ e

1
2M (v−v̄) A

∣∣∣2
)

.

(4.27)

Define the space ET,+2
H + to be the completion of �c(H +) under the norm

‖A‖ET,+2
H +

=
∥∥∥∥A2(A2 − 2)

(∫ ∞

v

d v̄ e
1
2M (v−v̄) A

)∥∥∥∥
2

L2(H +)

+

∥∥∥∥6M∂v

(∫ ∞

v

d v̄ e
1
2M (v−v̄) A

)∥∥∥∥
2

L2(H +)

. (4.28)

Define the spaceET,+2
H + to be the completion of the space consisting of symmetric traceless

S2∞,v 2-tensor fields A onH + such that V −2A ∈ �c

(
H +

)
, under the same norm above

evaluated over H +.

Remark 4.2.1. Let A ∈ �c(H
+≥0). If ‖A‖ET,+2

H +≥0

= 0 then
∫∞
v

d v̄ e
1
2M (v−v̄) A = 0 for all

v, which implies that A must vanish if it is smooth. Thus ‖ ‖ET,+2
H +≥0

defines a norm on

�c(H
+≥0), which then extends to the Hilbert space ET,+2

H +≥0
. The same applies to ET,+2

H + ,

ET,+2
H + .

Definition 4.2.3. Define the space of future scattering states ET,+2
I + on I + to be the

completion of �c(I +) under the norm

‖A‖ET,+2
I +

=
∣∣∣∣∣∣∂3u A

∣∣∣∣∣∣
L2(I +)

. (4.29)

Remark 4.2.2. The energy ‖ ‖ET,+2
I +

indeed defines a normon�c(I +), which thus extends

to a Hilbert space ET,+2
I + when completed under ‖ ‖ET,+2

I +
. We can identify ET,+2

I + as the

subset A ∈ L2
loc(I

+) whose elements satisfy
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• ∂3u A ∈ L2(I +),
• limu−→∞ |A|S2 = 0.

Hardy’s inequality holds and we have on this subset

∫
I +

du sin θdθdφ
|A|2

u6 + 1
� ‖A‖2ET,+2

I +
< ∞. (4.30)

Definition 4.2.4. Define the space of past scattering states ET,+2
H − on H − to be the

completion of �c(H −) under the norm

‖A‖ET,+2
H −

=
∣∣∣∣∣∣2(2M∂u)A − 3(2M∂u)2A + (2M∂u)3A

∣∣∣∣∣∣
L2(H −)

. (4.31)

Define the space ET,+2
H − to be the closure of the space consisting of symmetric traceless

S2
u,−∞ 2-tensor fields A on H − such that U 2A ∈ �c

(
H −

)
, under the same norm

above evaluated over H −.

Remark 4.2.3. Asmentioned in Remark 2 of Section 1.3.2 of the introduction, the energy
defined in (4.31) can be written using the Kruskal frame as

‖A‖ET,+2
H −

= ‖U 1/2∂3U U 2A‖L2
U L2(S2). (4.32)

This defines a norm on �c(H −), which then extends to the Hilbert space ET,+2
H − . It is

possible to represent the elements of ET,+2
H − as the subset A ∈ L2

loc(H
−)whose elements

satisfy

• ∂u A, ∂2u A, ∂3u A ∈ L2(H −),
• limu−→−∞ ‖A‖L2(S2) = 0

Hardy’s inequality holds on this space we have

∫
H −

du sin θdθdφ
|A|2

u2 + 1
� ‖A‖2ET,+2

H −
< ∞. (4.33)

Definition 4.2.5. Define the space of past scattering states ET,+2
I − onI − to be the com-

pletion of the space

A ∈ �(I −) :
∫ ∞

−∞
dv A = 0 (4.34)

under the norm

‖A‖2ET,+2
I −

=
∫
I −

d v̄ sin θdθdφ

[
6M |A|2 +

∣∣∣∣A2(A2 − 2)
∫ ∞

v̄

A

∣∣∣∣
2
]

. (4.35)

Remark 4.2.4. Let A ∈ �c(I −). If ‖A‖2ET,+2
I −

= 0 then A = 0. Thus ‖ ‖2ET,+2
I −

defines a

norm on �c(I −) which then extends to the Hilbert space ET,+2
I − .
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Theorem 4.2.2. Forward evolution under the + 2 Teukolsky equation (3.2) from smooth,
compactly supported data (α,α′)on�∗ gives rise to smooth radiation fields (αH + ,αI +)

∈ ET,+2
H +≥0

⊕ ET,+2
I + where

1. αH + = 2M�2α
∣∣
H + ∈ �(H +),

2. αI + = limv−→∞ r5α(v, u, θ A), with αI + ∈ �(I +),

with αI + , αH + satisfying∣∣∣∣(α,α′)
∣∣∣∣2ET,+2

�∗ = ||αI + ||2ET,+2
I +

+ ||αH + ||2ET,+2
H +≥0

. (4.36)

This extends to a unitary map

(+2)F + : ET,+2
�∗ −→ ET,+2

H +≥0
⊕ ET,+2

I + . (4.37)

The same conclusions apply when replacing �∗ with � and H +≥0 with H +, or when

replacing with � and H +. In the latter case, (α,α′) must be consistent with the well-
posedness statement Proposition 3.1.1 and consequently we obtain that V −2αH + ∈
�(H +).

Theorem 4.2.3. Let αI + ∈ �c(I +),αH + ∈ �c(H
+≥0). There exists a unique solution

α to Eq. (3.2) in J+(�∗) which is smooth, such that

lim
v−→∞ r5α(u, v, θ A) = αI + , �2α

∣∣
H +≥0

= αH + , (4.38)

with (�2α|�∗ , /∇n�∗ �2α|�∗) ∈ ET,+2
�∗ and

∥∥(�2α|�∗ , /∇n�∗ �2α|�∗)
∥∥2ET,+2

�∗
= ‖αI +‖2ET,+2

I +
+ ||αH + ||2ET,+2

H +
. This extends to a unitary map

(+2)B− : ET,+2
H +≥0

⊕ ET,+2
I + −→ ET,+2

�∗ , (4.39)

which inverts the map (+2)F + of Theorem 4.2.2

(+2)B− ◦ (+2)F + = (+2)F + ◦ (+2)B− = I d. (4.40)

The same conclusions apply when replacing �∗ with � and H +≥0 with H +, or when

replacing with � and H +. In the latter case, we require that V −2αH + ∈ �(H +) and
thus the induced data (α|�, /∇n�

α|�) satisfy the conditions of Proposition 3.1.3.

Theorem 4.2.4. Evolution from (α,α′) ∈ �c(�) × �c(�) to J−(�) gives rise to radi-
ation fields on H −,I − analogously to Theorem 4.2.2, where the radiation fields are
defined by

lim
u−→−∞ rα(u, v, θ A) = αI − , 2M�−2α

∣∣
H − = αH − . (4.41)

This extends to a unitary map

(+2)F− : ET,+2
� −→ ET,+2

H − ⊕ ET,+2
I − , (4.42)

with inverse (+2)B+ : ET,+2
H − ⊕ ET,+2

I − −→ ET,+2
� . The same conclusions apply when re-

placing � with � andH − withH −. In this case, we require that (U 2�−2α, U 2�−2α′)
are smooth up to and including B, and consequently we obtain that U2αH − ∈ �(H −).
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Theorem 4.2.5. The maps

(+2)S = (+2)F + ◦ (+2)B+ : ET,+2
H − ⊕ ET,+2

I − −→ ET,+2
H + ⊕ ET,+2

I + , (4.43)
(+2)S = (+2)F + ◦ (+2)B+ : ET,+2

H − ⊕ ET,+2
I − −→ ET,+2

H + ⊕ ET,+2
I + (4.44)

constitute unitary Hilbert space isomorphism with inverses

(+2)S − = (+2)F− ◦ (+2)B− : ET,+2
H + ⊕ ET,+2

I + −→ ET,+2
H − ⊕ ET,+2

I − (4.45)
(+2)S − = (+2)F− ◦ (+2)B− : ET,+2

H + ⊕ ET,+2
I + −→ ET,+2

H − ⊕ ET,+2
I − (4.46)

on the respective domains.

4.2.2. Scattering for the − 2 Teukolsky equation

Definition 4.2.6. Let (α,α′) ∈ �c(�
∗)⊕�c(�

∗) be Cauchy data for (3.2) on�∗ giving
rise to a solution α. Define the space ET,−2

�∗ to be the completion of �c(�
∗) ⊕ �c(�

∗)
under the norm

‖(α,α′)‖2ET,−2
�∗

= ‖(�, /∇n�∗ �)‖2ET
�∗

, (4.47)

where � is the weighted second derivative � =
(

r2

�2 �/∇4

)2
r�2α of α. The spaces

ET,−2
� , ET,−2

�
are similarly defined.

Proposition 4.2.6. ‖ ‖ET,−2
�

indeed defines a norm on �c(�) × �c(�).

Proof. It suffices to check that ‖(α,α′)‖ET,−2
�

= 0 implies (α,α′) = (0, 0). Let α

and � be as in Definition 4.2.6. It is clear that ‖(α,α′)‖ET,−2
�

= 0 implies � = 0.

Equation (3.29) implies that

/∇T r�2α = − 1

12M
A2(A2 − 2)r�2α. (4.48)

Equation (3.28) then gives us[
A + 2 − 6M

r

](
1

12M
A2(A2 − 2) − /∇ R∗

)
r�2α + 6M

�2

r2
r�2α = 0. (4.49)

Let F =
(

/̊� − 6M
r

)
r�2α, then (4.49) above implies that /∇ R∗ F = 1

12M A2(A2 − 2)F .

The result follows similarly to Proposition 4.2.1. ��
Definition 4.2.7. Define the space of future scattering states ET,−2

H +≥0
on H +≥0 to be the

completion of �c(H
+≥0) under the norm

‖A‖ET,−2
H +≥0

= (2M)2
∣∣∣∣∣∣2(2M∂v)A + 3(2M∂v)

2A + (2M∂v)
3A
∣∣∣∣∣∣

L2(H +≥0)
. (4.50)

The space ET,−2
H + is defined by the same norm taken over H +. Define and ET,−2

H + to be

the closure of the space consisting of symmetric traceless S2∞,v 2-tensor fields A onH +

such that V 2A ∈ �c

(
H +

)
, under the same norm above evaluated over H +.
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Remark 4.2.5. As with Remark 4.2.3 on ‖ ‖ET,+2
H −

, the energy ‖ ‖ET,−2
H +

indeed defines

a norm on �c(H +), which then extends to the Hilbert space ET,−2
H + . It is possible to

represent the elements of ET,−2
H +≥0

as the subset A ∈ L2
loc(H

+≥0) whose elements satisfy

• ∂v A, ∂2v A, ∂3v A ∈ L2(H +≥0),• limv−→∞ ‖A‖L2(S2) = 0

Hardy’s inequality holds on this space we have
∫
H +≥0

dv sin θdθdφ
|A|2

v2 + 1
� ‖A‖2ET,−2

H +≥0

< ∞. (4.51)

Similar statements apply to ET,−2
H + , ET,−2

H + .

Definition 4.2.8. Define the space of future scattering states ET,−2
I + on I + to be the

completion of the space

A ∈ �c(I
+) :

∫ ∞

−∞
du A = 0 (4.52)

under the norm

‖A‖2ET,−2
I +

=
∫
I +

du sin θdθdφ

[
(6M)2|A|2 +

∣∣∣∣A2(A2 − 2)
∫ ∞

ū
dū A

∣∣∣∣
2
]

. (4.53)

Remark 4.2.6. As with ‖ ‖ET,+2
I −

and Remark 4.2.2, the energy ‖ ‖ET,−2
I +

indeed defines a

norm on �c(I +), which then extends to the Hilbert space ET,−2
I + .

Definition 4.2.9. Define the space ET,−2
H − to be the completion of �c(H −) under the

norm

‖A‖ET,−2
H −

=
∥∥∥∥A2(A2 − 2)

(∫ u

−∞
dū e

1
2M (u−ū) A

)∥∥∥∥
2

L2(H −)

+

∥∥∥∥6M∂u

(∫ u

−∞
dū e

1
2M (u−ū) A

)∥∥∥∥
2

L2(H −)

. (4.54)

Define the space ET,−2
H − to be the completion of the space consisting of symmetric trace-

less S2
u,−∞ 2-tensor fields A on H − such that U−2A ∈ �c

(
H −

)
, under the same

norm above evaluated over H −.
Remark 4.2.7. As with ‖ ‖ET,−2

H −
and Remark 4.2.7, the energy ‖ ‖ET,−2

H −
indeed defines a

norm on �c(H −), which then extends to the Hilbert space ET,−2
H − .

Definition 4.2.10. Define the space of future scattering states ET,−2
I − on I − to be the

completion of �c(I −) under the norm

‖A‖ET,−2
I −

=
∣∣∣∣∣∣∂3v A

∣∣∣∣∣∣
L2(I −)

. (4.55)
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Remark 4.2.8. The energy ‖ ‖ET,−2
I −

indeed defines a norm on �c(I −), which thus ex-

tends to a Hilbert space ET,−2
I − when completed under ‖ ‖ET,−2

I −
. We can identify ET,−2

I −

as the subset A ∈ L2
loc(I

−) whose elements satisfy

• ∂v A, ∂2v A, ∂3v A ∈ L2(I −),
• limv−→−∞ ‖A‖L2(S2) = 0.

Hardy’s inequality holds and we have on this subset
∫
I −

dv sin θdθdφ
|A|2

v6 + 1
� ‖A‖2ET,−2

I −
< ∞. (4.56)

Theorem 4.2.7. Forward evolution under the − 2 Teukolsky equation (3.5) from smooth,
compactly supported data (α,α′)on�∗ gives rise to smooth radiation fields (αH + ,αI +)

∈ ET,−2
H +≥0

⊕ ET,−2
I + where

1. αH + = 2M�−2α
∣∣
H + ∈ �(H +),

2. αI + = limv−→∞ rα(v, u, θ A), with αI + ∈ �(I +),

with αI + ,αH + satisfying
∣∣∣∣(α,α′)

∣∣∣∣2ET,−2
�∗ = ∣∣∣∣αI +

∣∣∣∣2ET,−2
I +

+
∣∣∣∣αH +

∣∣∣∣2ET,−2
H +≥0

. (4.57)

This extends to a unitary map

(−2)F + : ET,−2
�∗ −→ ET,−2

H +≥0
⊕ ET,−2

I + . (4.58)

The same conclusions apply when replacing �∗ with � and H +≥0 with H +, or when

replacing with � and H +. In the latter case, (α,α′) must be consistent with the well-
posedness statement Proposition 3.1.2 and consequently we obtain that V 2αH + ∈
�(H +).

Theorem 4.2.8. Let αI + ∈ �c(I +),αH + ∈ �c(H
+≥0) with

∫∞
−∞ dū αI + = 0. Then

there exists a unique solution α to Eq. (3.5) in J+(�∗) which is smooth, such that

lim
v−→∞ rα(u, v, θ A) = αI + , 2M�−2α

∣∣
H +≥0

= αH + , (4.59)

with (α|�∗ , /∇n�∗ α|�∗) ∈ ET,−2
�∗ and

∣∣∣∣(α|�∗ , /∇n�∗ α|�∗)
∣∣∣∣2ET,−2

�∗ = ∣∣∣∣αI +

∣∣∣∣2ET,−2
I +

+∣∣∣∣αH +

∣∣∣∣2ET,−2
H +

. This extends to a unitary map

(−2)B− : ET,−2
H +≥0

⊕ ET,−2
I + −→ ET,−2

�∗ , (4.60)

which inverts the map (−2)F + of Theorem 4.2.7

(−2)B− ◦ (−2)F + = (−2)F + ◦ (−2)B− = I d. (4.61)

The same conclusions apply when replacing �∗ with � and H +≥0 with H +, or when

replacing with � and H +. In the latter case, we require that V 2αH + ∈ �(H +) and
with that (α|�∗ , /∇n�∗ α|�∗) is consistent with Proposition 3.1.2
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Theorem 4.2.9. Evolution from (α,α′) ∈ �c(�) × �c(�) to J−(�) gives rise to radi-
ation fields on H −,I − analogously to Theorem 4.2.2, where the radiation fields are
defined by

lim
v−→∞ r5α(u, v, θ A) = αI − 2M�2α

∣∣
H − = αH − (4.62)

This extends to a unitary map

(−2)F− : ET,−2
� −→ ET,−2

H − ⊕ ET,−2
I − (4.63)

with inverse (−2)B+ : ET,−2
H − ⊕ET,−2

I − −→ ET,−2
� . The same conclusions apply when re-

placing � with � andH − withH −. In this case, we require that (U−2�2α, U−2�2α′)
are smooth up to and including B, and consequently we obtain that U−2αH + ∈ �(H +)

Theorem 4.2.10. The maps

(−2)S + = (−2)F + ◦ (−2)B+ : ET,−2
H − ⊕ ET,−2

I − −→ ET,−2
H + ⊕ ET,−2

I + , (4.64)
(−2)S + = (−2)F + ◦ (−2)B+ : ET,−2

H − ⊕ ET,−2
I − −→ ET,−2

H + ⊕ ET,−2
I + (4.65)

constitute unitary Hilbert space isomorphism with inverses

(−2)S − = (−2)F− ◦ (−2)B− : ET,−2
H + ⊕ ET,−2

I + −→ ET,−2
H − ⊕ ET,−2

I − (4.66)
(−2)S − = (−2)F− ◦ (−2)B− : ET,−2

H + ⊕ ET,−2
I + −→ ET,−2

H − ⊕ ET,−2
I − (4.67)

on the respective domains.

Remark 4.2.9. We emphasise that the spaces ET,±2
� and ET,±2

�
are different and ET,±2

� �

ET,±2
�

. Similarly, ET,±2
H + � ET,±2

H + . Our prescription in distinguishing between these

spaces is consistent in the sense that elements of ET,±2
� are mapped into ET,±2

H + and
vice versa. As mentioned for the Regge–Wheeler equation (3.15) in Remark 4.1.4, our
point of view is that the spaces ET,±2

�
, ET,±2

H
± are the more natural spaces to consider,

but as we make the distinction between these spaces, we additionally face the issue that
the inclusion of the bifurcation sphere B in the domains of the scattering data requires
studying both the equations (3.2), (3.5) and their unknowns in a different frame near B.

4.3. Theorem 3: The Teukolsky–Starobinsky correspondence.

Theorem 4.3.1. Let αI + ∈ �c(I +). There exists a unique αI + ∈ �(I +) such that
‖αI +‖ET,+2

I +
= ‖αI +‖ET,−2

I +
and

∂4u αI + =
[
2 /̊D∗

2 /̊D∗
1 /̊D1 /̊D1 + 6M∂u

]
αI + . (4.68)

An analogous statement applies starting from αI + ∈ �c(I +) to obtain αI + ∈ �(I +)

with ‖αI +‖ET,−2
I +

= ‖αI +‖ET,+2
I +

satisfying (4.68).
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Let αH + be such that V 2αH + ∈ �c(H +). There exists a unique αH + ∈ �(H +)

such that ‖αH +‖ET,+2

H +
= ‖αH +‖ET,−2

H +
and

∂4V V 2αH + =
[
2 /̊D∗

2 /̊D∗
1 /̊D1 /̊D1 − 3V ∂V − 6

]
V −2αH + . (4.69)

An analogous statement applies starting from αH + such that V −2αH + ∈ �c(H +) to
obtain αH + ∈ �(H +) with ‖αH +‖ET,+2

H +
= ‖αH +‖ET,−2

H +
satisfying (4.69). The

statements above give rise to unitary Hilbert space isomorphisms

T SI + : ET,+2
I + −→ ET,−2

I + , T SH + : ET,+2
H + −→ ET,−2

H + . (4.70)

T S+ = T SH + ⊕ T SI + : ET,+2
H + ⊕ ET,+2

I + −→ ET,−2
H + ⊕ ET,−2

I + . (4.71)

Let α be a solution to the + 2 Teukolsky equation (3.2) arising from scattering data
αI + ∈ �c(I +), αH + be such that V −2αH + ∈ �c(H +). Using T S+

I + , T S+
H + we

can find a unique set of smooth scattering data αI + ,αH + on I +,H + with V 2αH +

regular on H +, giving rise to a solution α to the − 2 Teukolsky equation (3.5) such that
the constraints

�2

r2
�/∇3

(
r2

�2�/∇3

)3

α − 2r4 /D∗
2 /D∗

1 /D1 /D2r�2α − 6M
[
�/∇4 + �/∇3

]
r�2α = 0,

(4.72)

�2

r2
�/∇4

(
r2

�2�/∇4

)3

α − 2r4 /D∗
2 /D∗

1 /D1 /D2r�2α + 6M
[
�/∇4 + �/∇3

]
r�2α = 0.

(4.73)

are satisfied by α, α on M . The data satisfy

‖αI +‖2ET,+2
I +

= ‖αI +‖2ET,−2
I +

, ‖αH +‖2ET,+2
H +

= ‖αH +‖2ET,−2
H +

. (4.74)

Analogously, let α be a solution to the − 2 Teukolsky equation (3.5) arising from
scattering data αI + ∈ �c(I +), αH + be such that V 2αH + ∈ �c(H +). Then there
exist unique smooth scattering data αI + ,αH + on I +,H + with V −2αH + regular on
H +, giving rise to a solution α to the + 2 Teukolsky equation (3.2) such that α, α satisfy
the constraints (4.72), (4.73).

An analogous statement applies to scattering from I −,H − and we have the iso-
morphism

T S− = T SH − ⊕ T SI − : ET,+2
H − ⊕ ET,+2

I − −→ ET,−2
H − ⊕ ET,−2

I − . (4.75)

4.4. Corollary 1: A mixed scattering statement for combined (α, α). Importantly, we
have the following corollary:
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Corollary 4.4.1. Let αI − ∈ �c(I −), αH − be such that V 2αH − ∈ �c(H −). Then
there exists a unique smooth pair (α, α) on M , such that α solves (3.2), α solves (3.5),
α, α satisfy (4.72), (4.73) and α realises αH − as its radiation field on H −, α realises
αI − as its radiation field on I −. Moreover, the radiation fields of α and α on H +,I +

are such that

‖αH +‖2ET,+2

H +

+ ‖αI +‖2ET,−2
I +

= ‖αI −‖2ET,+2
I −

+ ‖αH −‖2ET,−2

H −
. (4.76)

This extends to a unitary Hilbert space isomorphism

S −2,+2 : ET,−2
H − ⊕ ET,+2

I − −→ ET,+2
H + ⊕ ET,−2

I + . (4.77)

5. Scattering Theory of the Regge–Wheeler Equation

This section is devoted to proving Theorem 1 in the introduction, whose detailed state-
ment is contained in Theorems 4.1.1, 4.1.2 and 4.1.3.

We will first study in Sect. 5.2 the behaviour of future radiation fields belonging
to solutions of the Regge–Wheeler equation (3.15) that arise from smooth, compactly
supported data on �∗ using the estimates gathered in Sect. 5.1, and this will justify the
definitions of radiation fields and spaces of scattering states made in Sect. 4.1. We will
first prove Theorem 4.1.1 (in Sect. 5.3) and Theorems 4.1.2 and 4.1.3 (in Sect. 5.4) for
the case of data on �∗, and most of what follows applies to � and � unless otherwise
stated. Section 5.5 contain additional results on backwards scattering that will become
important later on in the study of the Teukolsky–Starobinsky identities in Sect. 9.

5.1. Basic integrated boundedness and decay estimates. Here we collect basic bound-
edness and decay results for (3.15) proven in [16]. In what follows (ψ,ψ′) is a smooth
data set for Eq. (3.15) as in Proposition 3.3.1.
• Energy boundedness Let X = T := �e3 +�e4, multiply (3.15) by /∇X and integrate
by parts over S2 to obtain

�/∇3

[
|�/∇4�|2 + �2| /∇�|2 + V |�|2

]
+ �/∇4

[
|�/∇3�|2 + �2| /∇�|2 + V |�|2

]
S2≡ 0.

(5.1)

For an outgoing null hypersurface N define

FT
N [�] :=

∫
N

sin θdθdφdv
[
|�/∇4�|2 + �2| /∇�|2 + V |�|2

]
. (5.2)

Similarly for an ingoing null hypersurface N we define

FT
N [�] :=

∫
N

sin θdθdφdu
[
|�/∇3�|2 + �2| /∇�|2 + V |�|2

]
. (5.3)

Denote FT
u [�](v0, v) = FT

Cu∩{v̄∈[v0,v]}[�], FT
v [�](u0, u) = FT

C v∩{ū∈[u0,u]}[�]. Inte-
grating (5.1) over the region Du,v

u0,v0 = J+(Cu0) ∩ J+(C v0
) ∩ J−(Cu) ∩ J−(C v) yields

FT
u [�](v0, v) + FT

v [�](u0, u) = FT
u0 [�](v0, v) + FT

v0
[�](u0, u). (5.4)
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Similarly, integrating (5.1) over J+(�∗) ∩ J−(Cu) ∩ J−(C v) yields

FT
u [�](v−, v) + FT

v [�](u−, u) = F
T
�∗∩J−(Cu)∩J−(C v)

[�], (5.5)

where Cu ∩ �∗ = S2
u,v− , C v ∩ �∗ = S2

u−,v , and F
T
�∗ [�] is given by

F
T
�∗ [�] =

∫
�∗

dr sin θdθdφ (2 − �2)| /∇T ∗�|2 + �2| /∇ R�|2 + | /∇�|2 + (3�2 + 1)
|�|2
r2

,

(5.6)

and FU for a subset U ∈ �∗ being defined analogously.
Integrating (5.1) over J+(�) ∩ J−(Cu) ∩ J−(C v) instead yields a similar identity:

FT
u [�](v0, v) + FT

v [�](u0, u) = F
T
�∩J−(Cu)∩J−(C v)

[�], (5.7)

with

F
T
�[�] =

∫
�

sin θdrdθdφ
1

�2 | /∇r�|2 + �2| /∇r�|2 + | /∇�|2 + (3�2 + 1)
|�|2
r2

. (5.8)

and similarly for �.
All of the energies definedhere so far becomedegenerate atH +.Wecan compensate

for that for energies defined over hypersurfaces do not intersect the bifurcation sphere
B, and we do this by modifying X with a multiple of 1

�2 T and repeating the procedure
above as in [19], making crucial use of the positivity of the surface gravity of H +. We
then obtain the so called ’redshift’ estimates:

Definition 5.1.1. Define the following nondegenerate energies

FN [�] =
∫
N

sin θdθdφdv

[
|�/∇4�|2 + | /∇�|2 + 1

r2
|�|2

]
, (5.9)

FN [�] =
∫
N

sin θdθdφdu�2
[
|�−1 /∇3�|2 + | /∇�|2 + 1

r2
|�|2

]
, (5.10)

F�∗ [�] =
∫

�∗
sin θdrdθdφ

[
| /∇T ∗�|2 + | /∇ R�|2 + 1

r2
|�|2 + | /∇�|2

]
, (5.11)

and their higher order versions

Fn,T, /∇
N [�] =

∑
i+|α|≤n

FN [ /∇ i
t (r /∇)α�](v0, v), (5.12)

Fn,T, /∇
N [�] =

∑
i+|α|≤n

FN [ /∇ i
t (r /∇)α�](u0, u), (5.13)

FN [�] =
∑

i+ j+|α|≤n

FN [(�−1 /∇3)
i (r�/∇4)

j (r /∇)α�](v0, v), (5.14)

FN [�] =
∑

i+ j+|α|≤n

FN [(�−1 /∇3)
i (r�/∇4)

j (r /∇)α�](v0, v), (5.15)

F
n,T, /∇
�∗ [�] =

∑
i+|α|≤n

F�∗ [ /∇ i
t (r /∇)α�], (5.16)
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F
n
�∗ [�] =

∑
i1+i2+|α|≤n

F�∗
[

/∇ i1
t

(
�−1 /∇3

)i2
(r /∇)α�

]
. (5.17)

Proposition 5.1.1. Let � be a solution to (3.15) arising from data as in Proposition3.3.1,
then we have

Fu[�](v0,∞) + Fv[�](u0,∞) � F�∗ [�]. (5.18)

Similar statements hold for Fn,T, /∇
u [�](v0, v), Fn,T, /∇

v [�](u0, u), Fn
u [�](v0, v) and

Fn
v[�](u0, u).

• Integrated local energy decayWe have the followingMorawetz-type integrated decay
estimate:

Proposition 5.1.2. Let � be a solution to (3.15) arising from data as in Proposition3.3.1,
Du,v

�∗ = J+(�∗) ∩ J−(Cu ∪ C v) and define

I
u,v
deg[�] =

∫
Du,v

�∗
dūd v̄ sin θdθdφ�2

[
1

r2
| /∇r∗�|2 + 1

r3
|�|2

+
1

r

(
1 − 3M

r

)2 (
| /∇�|2 + 1

r2
|�/∇4�|2 + �2

r2
|�−1 /∇3�|2

)]
.

(5.19)

then we have

I
u,v
deg[�] � F�∗ [�].

A similar statement holds for

I
u,v,n,T, /∇
deg [�] =

∑
i+|α|≤n

I
u,v
deg[T i (r /∇)α�] (5.20)

and

I
u,v,n
deg [�] =

∑
i+ j+|α|≤n

I
u,v,n
deg [(�−1 /∇3)

i (r�/∇4)
j (r /∇)α�]. (5.21)

• r p-hierarchy of estimates near I + If we multiply (3.15) by r p�−2k�/∇4� and
integrate by parts on S2 we obtain the following

�/∇3

[
r p�−2k |�/∇4�|2

]
+ �/∇4

[
r p�−2k(�2| /∇�|2 + V |�|2)

]

+ r p−1�−2k
{
(p + kx)|�/∇4�|2 −

[
4�2

r2
+ V (p − 3 + x(k − 1))

]
�2|�|2

− (p − 2 + x(k − 1))�4| /∇�|2
}

S2≡ 0.

(5.22)

We can ensure that the bulk term is non-negative by taking p = 0, k = 0 or p =
2, 1 ≤ k ≤ 2 or p ∈ (0, 2) and restricting to large enough r . Integrating in a region
Du,v

�∗ ∩ {r > R} yields (after averaging in R and using Proposition 5.1.2 to deal with the
timelike boundary term)
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Proposition 5.1.3. Let � be a solution to (3.15) arising from data as in Proposition3.3.1,
and define

Ip
u,v
u0,v0

[�] =
∫
D u,v

�∗ ∩{r>R}
dudv sin θdθdφr p−1 [p|�/∇4�|2 + (2 − p)| /∇�|2 + r−2|�|2] ,

(5.23)

then we have for p ∈ [0, 2]∫
Cu∩{r>R}

dv sin θdθdφr p|�/∇4�|2 + Ip
u,v
u0,v0

[�]

� F�∗ [�] +
∫

�∗∩{r>R}
r p|�/∇4�|2dr sin θdθdφ.

(5.24)

A similar statement holds for

Ip
u,v
u0,v0

n,T, /∇[�] =
∑

i+|α|≤n

Ip
u,v
u0,v0

[T i (r /∇)α�] (5.25)

and for

Ip
u,v
u0,v0

n,h[�] =
∑

i+ j+|α|≤n

Ip
u,v
u0,v0

[(�−1 /∇3)
i (rh�/∇4)

j (r /∇)α�] (5.26)

if 0 ≤ h ≤ 2.

We sketch how to establish higher order versions of the estimates of Proposition 5.1.3.
Commuting with rh�/∇4 for 0 ≤ h ≤ 2 or r /∇ produces terms with favorable signs and
we can close the argument by appealing to Hardy and Poincaré estimates. Consider for
example r2

�2 �/∇4� := �(1), which satisfies

�/∇3�
(1) +

3�2 − 1

r
�(1) = /̊�� − (3�2 + 1)�. (5.27)

Applying �/∇4 and using (3.15) we obtain

�/∇3�/∇4�
(1) +

3�2 − 1

r
�/∇4�

(1) − �2

r2
(3�2 − 5)�(1) − �2 /��(1) = −6M

�2

r2
�.

(5.28)

We see that the new �/∇4�
(1) term has a good sign, so that we when we multiply by

r p�−2k�/∇4�
(1), integrate by parts over S2 and use Cauchy–Schwarz we get:

�/∇3

[
r p�−2k |�/∇4�

(1)|2
]
+ �/∇4

[
r p�−2k

(
�2| /∇�(1)|2 + (5 − 3�2)

�2

r2
|�(1)|2

)]

+ r p−1�−2(k−1)×{
(p + 4 + x(k + 2) − ε)|�/∇4�

(1)|2 + (p − 2 + x(k − 1))�2| /∇�(1)|2

+

[
6M

r
+ (5 − 3�2)(p − 1 + x(k − 1))

]
�2

r2
|�(1)|2

}

S2

� r p−3�2(k−1)|�|2,
(5.29)
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where ε > 0 is sufficiently small. Integrating over Du,v
�∗ ∩ {r > R} for large enough R,

taking k = 2 and using Proposition 5.1.3 for p ∈ [0, 2]we get (using dω = sin θdθdφ):∫
Cu∩{r>R}

d v̄dω r p|�/∇4�
(1)|2 +

∫
Du,v

�∗ ∩{r>R}
dūd v̄dω r p−1

[
(p + 4)|�/∇4�

(1)|2

+(2 − p)| /∇�(1)|2 + r−2|�(1)|2
]

�
∫

�∗∩{r>R}
drdω r p|�/∇4�

(1)|2 +
∫

r=R
dtdω r p

[
| /∇�(1)|2 + r−2|�(1)|2

]

+
∫
Du,v

�∗ ∩{r>R}
dūd v̄dω r p−3|�|2.

(5.30)

We control the second term by averaging in R and appealing to Proposition 5.1.2 com-
muted with �/∇4, and we deal with the last term using the lower order estimate for �

from Proposition 5.1.3. Thus∫
Cu∩{r>R}

d v̄dω r p|�/∇4�
(1)|2 +

∫
Du,v

�∗ ∩{r>R}
dūd v̄dω r p−1

[
(p + 4)|�/∇4�

(1)|2

+(2 − p)| /∇�(1)|2 + r−2|�(1)|2
]

�
∫

�∗∩{r>R}
d v̄dω r p

[
|�/∇4�

(1)|2 + |�/∇4�|2
]
+ F

1
�∗ [�].

(5.31)

We could do this again for
(

r2

�2 �/∇4

)2
� := �(2) and get a similar estimate following

the same steps:∫
Cu∩{r>R}

d v̄dω r p|�/∇4�
(2)|2 +

∫
Du,v

�∗ ∩{r>R}
dūd v̄dω r p−1

[
(p + 8)|�/∇4�

(2)|2

+(2 − p)| /∇�(2)|2 + r−2|�(2)|2
]

�
∫

�∗∩{r>R}
d v̄dω r p

[
|�/∇4�

(2)|2 + |�/∇4�
(1)|2 + |�/∇4�|2

]
+ F

2
�∗ [�].

(5.32)

Note that the integral on I + on the left hand side is positive by Poincaré’s inequality.
See [4,5,38] for more about this method, applied to the scalar wave equation.

To close this section, we state a technical lemma that we will use throughout this
work:

Lemma 5.1.4. Let F be a smooth tensor field on J+(�∗) Assume∫
J+(�∗)∩{r≤R}

�2dudv sin θdθdφ
[
|F|2 + | /∇TF|2

]
< ∞, (5.33)

then we have

lim
v−→∞

∫
C v∩{r≤R}

du sin θdθdφ |F|2 = 0 (5.34)
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Proof. Let f (v) =
√∫

C v∩{r≤R} du sin θdθdφ |F|2. Assume v is such that f (v) = 0,

then it is easy to show that ∂t f |v =
√∫

C v∩{r≤R} du sin θdθdφ |∂tF|2. When f (v) �= 0,

note that

|∂t f (v)|2 =
[

1

f (v)

∫
C v∩{r≤R}

du sin θdθdφ F · /∇TF

]2

≤
∫
C v∩{r≤R}

du sin θdθdφ | /∇TF|2,
(5.35)

by the Cauchy–Schwarz inequality. Thus
∫∞
v0

dv
[| f (ṽ)|2 + |∂t f (ṽ)|2] < ∞, which

leads to (5.34) by Morrey’s inequality. ��

5.2. Radiation fields. In this section we establish the properties of future radiation fields
belonging to solutions that arise from smooth, compactly supported data on �∗

5.2.1. Radiation on H +

Definition 5.2.1. Let� be a solution to (3.15) arising fromsmoothdata (ψ,ψ′)on�∗, �
or � as in Proposition 3.3.1. The radiation field ψH + is defined to be the restriction of
� toH +≥0,H

+ or H
+
respectively.

Remark 5.2.1. We will be using the same notation for the radiation field on H +≥0,H
+

or H +.

As a corollary to Proposition 3.3.1 we have

Corollary 5.2.1. The radiation field ψH + as in Definition 5.2.1 is smooth on H +≥0. The

same applies to (�−1 /∇3)
k� for arbitrary k.

The integrated local energy decay statement of Proposition 5.1.2 gives a quick way to
show slow decay for ψH + and its derivatives:

Proposition 5.2.1. For a solution � to Eq. (3.15) arising from smooth data of compact
support on �∗,

∣∣�|{r=R}
∣∣ decays as t −→ ∞.

Proof. Commuting (5.19) with LT twice and using the redshift estimate of Proposi-
tion 5.1.1 give us for any R < ∞∫ ∞

v0

d v̄
[

FC v∩{r<R}[�] + FC v∩{r<R}[ /∇T �]
]

< ∞. (5.36)

Taking f (v) := √
Fv[�](u R,∞), we may apply Lemma 5.1.4 to obtain

lim
v−→∞ Fv[�](u R,∞) = 0,

where v−u R = R∗. Commuting with�−1e3 andL�i and using Proposition 5.1.1 again
gives

lim
v−→∞ sup

u∈[u R ,∞]
|�|v = 0.

��
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Remark 5.2.2. The preceding argument works to show that (�−1 /∇3)
k� decays on any

hypersurface r = R. See also Section 8.2 of [21].

Proposition 5.2.2. For a solution � to Eq. (3.15) arising from smooth data of compact
support on �∗, The energy flux on H + is equal to

FT
H + =

∫
H +

|∂v�|2dv sin θdθdφ.

Proof. This follows from the regularity of� and its angular derivatives onH + together
with energy conservation. ��

5.2.2. Radiation on I + An r p-estimate like Proposition 5.1.3 implies the existence of
radiation field on I + as a "soft" corollary.

Proposition 5.2.3. For a solution � to Eq. (3.15) arising from smooth data of compact
support on �∗,

ψI +(u, θ A) = lim
v−→∞ �(u, v, θ A) (5.37)

exists and belongs to �(I +). Moreover,

lim
v−→∞

∫
C v∩{u∈[u0,u1]}

dudω |�/∇3�|2 + �2| /∇�|2 + V |�|2 =
∫
I +∩{u∈[u0,u1]}

dudω |∂uψI + |2.
(5.38)

Proof. Let r2 > r1 > 8M , fix u and set v(r2, u) ≡ v2, v(r1, u) ≡ v1. The Sobolev
embeddingon the sphereW 3,1(S2) ↪→ L∞(S2) and the fundamental theoremof calculus
give us:

|�(u, v2, θ, φ) − �(u, v1, θ, φ)|2

≤ B

⎡
⎣∑

|γ |≤3

∫
S2

dω |/Lγ

S2
(�(u, v2, θ, φ) − �(u, v1, θ, φ))|

⎤
⎦
2

= B

⎡
⎣∑

|γ |≤3

∫
S2

dω

∫ v2

v1

dv|/Lγ

S2
�/∇4�|

⎤
⎦
2

(5.39)

Cauchy–Schwarz gives:

|�(u, v2, θ, φ) − �(u, v1, θ, φ)|2 ≤ B

r1

[ ∑
|γ |≤3

∫
C u∩{v>v1}

r2|/Lγ

S2
�/∇4�|2dv sin θdθdφ

]
.

(5.40)

where /Lγ

S2
= Lγ1

�1
Lγ2

�2
Lγ3

�3
denotes Lie differentiation on S2 with respect to its so(3)

algebra of Killing fields. This says that �(u, v, θ, φ) converges in L∞(I + ∩ {u > u0})
for some u0 > −∞ as v −→ ∞. Using higher order r p-estimates we can repeat this
argument to show

∣∣∣∣ r2

�2�/∇4�(u, v2, θ, φ) − r2

�2�/∇4�(u, v1, θ, φ)

∣∣∣∣
2
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� 1

r1

[ ∑
|γ |≤3

∫
Cu∩{v>v1}

∣∣∣r2 /Lγ

S2
�/∇4

(
r2�/∇4

)
�

∣∣∣2 dv sin θdθdφ

]
. (5.41)

Commuting (5.39) with T and �i and using (5.41) gives that �|I + = limv−→∞
�(u, v, θ, φ) is differentiable on I +. We can repeat this argument with higher order
r p-estimates to find that ψI + is smooth and limv−→∞(�/∇3)

i (r /∇)γ � = ∂ i
u /̊∇γ ψI +

for any index i and multiindex γ . Equation (5.38) follows immediately. ��

In the following, define �(k) :=
(

r2

�2 �/∇4

)k
�.

Corollary 5.2.2. Under the assumptions of Proposition 5.2.3, the limit

φ
(k)

I +(u, θ A) = lim
v−→∞ �(k)(u, v, θ A) (5.42)

exists and defines an element of �(I +).

Proof. Let R, u1 be such that � vanishes on Cu ∩{r > R} for u ≤ u0. We can integrate
Eq. (3.15) from a point (u0, v, θ A) to (u, v, θ A) where r(u0, v) > R to find

�(1)(u, θ A) = r2

�2 (u, v)

∫ u

u0

�2

r2

[
/̊�� − (3�2 + 1)�

]
. (5.43)

The right hand side converges as v −→ ∞ by Proposition 5.2.3 and Lebesgue’s bounded
convergence theorem. An inductive argument works to show the same for higher order
derivatives by integrating the equation

�/∇3�
(n) + n

(
2

r
− 6M

r2

)
�(n) +

[(
4 − 6M

r

)
− n(n − 1)

(
1 − 6M

r

)]
�(n−1)

− 2M(n2 − 1)(n − 3)�(n−2) − /̊��(n−1) = 0,
(5.44)

using Grönwall’s inequality to bound�(n)(u, v, θ A) nearI + and then concluding using
Lebesgue’s bounded convergence theorem as above. ��
Definition 5.2.2. Let � be a solution to Eq. (3.15) arising from smooth data of compact
support on �∗, � or �. The future radiation field on I + is defined to be the limit of �

towards I +

ψI +(u, θ, φ) = lim
v−→∞ �(u, v, θ, φ).

Remark 5.2.3. Note that a solution � arising from compactly supported data on � nec-
essarily corresponds to compactly supported data on �∗.

The r p-estimates of Proposition 5.1.3 further imply that ψI + decays as u −→ ∞:

Proposition 5.2.4. Let �,ψI + be as in Proposition 5.2.3. Then ψI + decays alongI +.
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Proof. The fundamental theorem of calculus, Cauchy–Schwarz and a Hardy estimate
give us:

(∫
S2u,∞

dω |ψI + |2
)2

≤
(∫

S2u,∞
dω |�r=R |2

)2

+

(∫
S2

dω

∫ ∞

v(R,u)

dv 2� × �/∇4�

)2

≤
(∫

S2u,∞
dω |�r=R |2

)2

+ 4π
∫

S2
dω

(∫ ∞

v(R,u)

dv 2� × �/∇4�

)2

≤
(∫

S2u,∞
dω |�r=R |2

)2

+ 4π
∫

S2
dω

∫ ∞

v(R,u)

dv
1

r2
|�|2

×
∫

S2
dω

∫ ∞

v(R,u)

dv r2|�/∇4�|2.
(5.45)

Applying Lemma 5.1.4 to Proposition 5.1.3 for both � and /∇T � with p = 1 implies
the decay of

∫
Cu∩{r>R} |�/∇4�|2, and the result follows considering Proposition 5.2.1.

��
Corollary 5.2.3. Let �,ψI + be as in Proposition 5.2.3. Then φ

(n)

I + decays along I +

for n = 1, 2.

Proof. Having data for � of compact support on �∗, we may utilize the r -weighted
estimates (5.31), (5.32) on �(n), n = 1, 2 to obtain the result by repeating the argument
of Proposition 5.2.4. ��

We can in fact compute φ
(k)

I + out of ψI + for k = 1, 2:

Corollary 5.2.4. For a solution � to Eq. (3.15) arising from smooth data of compact
support on �∗, we have

φ
(1)
I +(u, θ A) = −

∫ ∞

u
dū [A2 − 2]ψI +(ū, θ A). (5.46)

Proof. Let −∞ < u1 < u2 < ∞, v such that (u, v, θ A) ∈ J+(�∗). We integrate
Eq. (5.27) on C v between u1, u2 and use the fact that �(1) has a finite limit φ

(1)
I +

towards I + to get

φ
(1)
I +(u1, θ

A) − φ
(1)
I +(u2, θ

A) = −
∫ u2

u1
dū [A2 − 2]ψI +(ū, θ A). (5.47)

Since φ
(1)
I + is uniformly bounded, we have that [A2 − 2]ψI + is integrable over I +.

The result follows since φ
(1)
I +(u, θ A) decays as u −→ ∞ by Corollary 5.2.3. ��

Lemma 5.2.5. If � satisfies (3.15) then

(
r2

�2�/∇3

)2
�2

r2
�/∇4

r2

�2�/∇4� = [
A2(A2 − 2) − 12M /∇T

]
�. (5.48)

Proof. Straightforward computation using Eq. (3.15). ��
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Following the same steps as in the proof of Corollary 5.2.4 we find

Corollary 5.2.5. For a solution � to Eq. (3.15) arising from smooth data of compact
support on �∗, then φ

(2)
I +(u, θ A) satisfies

φ
(2)
I +(u, θ A) =

∫ ∞

u

∫ ∞

u1
du1du2 [A2(A2 − 2) − 6M∂u]ψI +(u2, θ

A). (5.49)

Corollary 5.2.6. For a solution � to Eq. (3.15) arising from smooth data of compact
support on �∗, then the radiation field ψI + satisfies

∫ ∞

−∞
du1ψI + =

∫ ∞

−∞

∫ ∞

u1
du1du2ψI + = 0. (5.50)

5.3. The forwards scattering map. This section combines the results of Sect. 5.2 above
to prove Theorem 4.1.1.

Proposition 5.3.1. Solutions to (3.15) arising from smooth data on �∗ of compact sup-
port give rise to smooth radiation fields ψI + ∈ ET

I + on I + and ψH + ∈ ET
H +≥0

on H +≥0,

such that

‖ψI +‖2ET
I +

+ ‖ψH +‖2ET
H +≥0

= ‖(�|�∗ , /∇n�∗ �|�∗)‖2ET
�∗

. (5.51)

Proof. For data of compact support, Propositions 3.3.1 and 5.2.3 give us the existence
of smooth radiation fieldsψI + andψH + , and by Propositions 5.2.1, 5.2.4,ψI + decays
towards I +

+ and ψH + decays towards H +. Let R be sufficiently large and let v+, u+
be such that v+ − u+ = R∗, v+ + u+ > 0. A T -energy estimate on the region bounded
by �∗, H +≥0 ∩ {v ≤ v+}, I + ∩ {u ≤ u+} and Cu+ ∩ {r ≥ R},C v+

∩ {r ≤ R} gives

FT
v+

[�](u+,∞) + FT
u+ [�](v+,∞) +

∫
H +≥0∩{v≤v+}

dvdω |∂v�|2 +
∫
I +∩{u≤u+}

dudω |∂u�|2

= ‖�‖2ET
�∗

. (5.52)

The integrated local energy decay statement of Proposition 5.1.2 commuted with /∇T ,
along with the estimate (5.24) of Proposition 5.1.3 for p = 1 commuted with /∇T ,
imply that FT

v+
[�](u+,∞) + FT

u+[�](v+,∞) decay as u+ −→ ∞. This gives us that
ψI + ∈ ET

I + and ψH + ∈ ET
H +≥0

and that ψI + ,ψH + satisfy (5.51). ��
Corollary 5.3.1. Solutions to (3.15) arising from data on � of compact support give
rise to smooth radiation fields in ET

I + and ET
H + . Solutions to (3.15) arising from data

on � of compact support give rise to smooth radiation fields in ET
I + and ET

H +

Proof. The evolution of � on J+(�∗) ∩ J−(�) can be handled locally. A T -energy
estimate on J+(�) ∩ J−(�∗) gives the result. An identical statement applies to �. ��
Proposition 5.3.1 and Corollary 5.3.1 allow us to define the forwards maps F + from
dense subspaces of ET

�∗ , ET
� , ET

�
.



530 H. Masaood

Definition 5.3.1. Let (ψ,ψ′) be a smooth data set to the Regge–Wheeler equation (3.15)
on �∗ as in Proposition 3.3.1. Define the map F + by

F + : �c(�
∗) × �c(�

∗) −→ �(H +≥0) × �(I +), (ψ,ψ′) −→ (ψH + ,ψI +), (5.53)

where (ψH + ,ψI +) are as in the proof of Proposition 5.3.1.
The map F + is defined analogously for data on �,�:

F + : �c(�) × �c(�) −→ �(H +) × �(I +), (ψ,ψ′) −→ (ψH + ,ψI +), (5.54)

F + : �c(�) × �c(�) −→ �(H +) × �(I +), (ψ,ψ′) −→ (ψH + ,ψI +). (5.55)

The map F + uniquely extends to the forward scattering map of Corollary 5.3.2:

Corollary 5.3.2. The map defined by the forward evolution of data in �c(�
∗)×�c(�

∗)
as in Proposition 5.3.1 uniquely extends to a map

F + : ET
�∗ −→ ET

H +≥0
⊕ ET

I + , (5.56)

which is bounded:

‖(ψ,ψ′)‖2ET
�∗

= ‖ψH +‖2ET
H +≥0

+ ‖ψI +‖2ET
I +

. (5.57)

We similarly obtain bounded maps

F + : ET
� −→ ET

H + ⊕ ET
I + , (5.58)

F + : ET
�

−→ ET
H + ⊕ ET

I + . (5.59)

The map F + is injective on �c(�
∗)×�c(�

∗) and therefore extends to a unitary Hilbert
space isomorphism on its image.

5.4. The backwards scattering map. This section contains the proof of Theorems 4.1.2
and 4.1.3.We define backwards evolution from data on the event horizon and null infinity
in Proposition 5.4.1, and this defines the map B− which inverts F +. Theorem 4.1.3
follows immediately by Remark 3.3.1.

We begin by constructing a solution to the equation on J−(I + ∪ H +≥0) out of
compactly supported future scattering data.

Proposition 5.4.1. Let ψH + ∈ �c(H
+≥0) be supported on v < v+ < ∞ such that

‖ψH +‖ET
H +≥0

< ∞, ψI + ∈ �c(I +) be supported on u < u+ < ∞ such that

‖ψI +‖ET
I +

< ∞. Then there exists a unique smooth � defined on J+(�∗) that satisfies

Eq. (3.15)and realises ψI + ,ψH + as its radiation fields. Moreover, (�|�∗ , /∇n��|�∗) ∈
ET

�∗ .

Proof. Assume ψH + is supported on {(v, θ A), v ∈ [v−, v+]} ⊂ H +≥0 and ψI + is
supported on [u−, u+], with −∞ < u−, u+, v−, v+ < ∞. Let �̃ be a spacelike surface
connecting H + at a finite v∗ > v+ to I + at a finite u∗ > u+. Fix RI + > 3M and
let v∞ be sufficiently large so that C v∞ ∩ [u−, u+] ⊂ J+(�∗) and r(u, v∞) > RI +

for u ∈ [u−, u+]. Denote by D the region bounded by H +≥0 ∩ {v ∈ [v−, v∗]}, �̃,C v∞ ,
�∗ and Cu− . With Proposition 3.3.3 we can find � that solves the "finite" backwards
problem for (3.15) in D with the following data:
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• ψH + on H + ∩ {v ∈ [v−, v+]},
• (0, 0) on �̃,
• ψI + on C v∞ .

From (3.15) we derive

�/∇3

[
r2

�2 |�/∇4�|2
]
+
3�2 − 1

r

r2

�2 |�/∇4�|2 = − �/∇4

[
| /̊∇�|2 + (3�2 + 1)|�|2

]

+
6M�2

r2
|�|2. (5.60)

Let ṽ < v∞ be large enough that r(u, ṽ) > RI + for u ∈ [u−, u+]. For ṽ ≤ v < v∞
integrate (5.60) in the region Dv = D ∩ J+(C v) with measure dudvdω to derive

∫
Cū∩[v,v∞]

d v̄dω
r2

�2 |�/∇4�|2 ≤
∫ u+

u
dū

∫
Cū∩[v,v∞]

d v̄dω
2�2

r

r2

�2 |�/∇4�|2

+ ‖�‖2ET
I +

+ ‖�‖2ET
H +

+
∫ u+

u−
dū

∫
S2

dω| /̊∇ψI + |2S2
+ 4|ψI + |2S2 .

(5.61)

Applying Grönwall’s inequality to the above gives

∫
Cu∩[v,v∞]

d v̄dω
r2

�2 |�/∇4�|2

≤ r(u, v)2

r(u+, v)2

[
‖�‖2ET

I +
+ ‖�‖2ET

H +
+
∫

[u−,u+]×S2
dūdω | /̊∇ψI + |2S2 + 4|ψI + |2S2

]
.

(5.62)

Using (5.62) we canmodify the argument of Proposition 5.2.3 to conclude that for v > ṽ

∣∣�|(u,v) − ψI +

∣∣2 �RI+

1

v

[ ∑
|γ |≤2

∫
[u−,u+]×S2

dūdω
[
|/Lγ

�i
ψI + |2S2 + | /̊∇ /Lγ

�i
ψI + |2S2

+|/Lγ
�i

∂uψI + |2S2
]
+ ‖/Lγ

�i
�‖2ET

H +

]
. (5.63)

We can show similar estimates for higher order derivatives
(

r2

�2 �/∇4

)n
� =: �(n)

∀n ∈ N using the equation

�/∇3�/∇4�
(n) − �2

r2
/̊��(n) + n

(
2

r
− 6M

r2

)
�/∇4�

(n)

+

[
4 − 6M

r
− n(n + 1)

(
1 − 6M

r

)]
�2

r2
�(n)

− 2Mn(n − 2)(n + 2)
�2

r2
�(n−1) = 0,

(5.64)
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to derive the following using the same steps leading to (5.62):

∫
Cu∩{v̄∈[v∞,∞)}

d v̄ sin θdθdφ
r2

�2 |�/∇4�
(n)|2

+
∫

ū∈[u,u+],v̄≥v∞
dūd v̄ sin θdθdφ

[
�2

r2
|�(n)|2 + r

�2 |�/∇4�
(n)|2

]

+
∫
C v∞

dū sin θdθdφ |�(n)|2

≤ C(n, M, u+)

∫
I +∩{ū∈[u,u+]}

dū sin θdθdφ
[
| /̊∇�

(n)

I + |2 + |�(n)

I + |2 + |�(n−1)
I + |2

]
.

(5.65)

This shows that (�/∇4)
n� is in L∞(D ∩ {v ≥ ṽ}) ∀n ∈ N. By commuting the above

arguments with ∂n
t , L

γ

�i for any n ∈ N and any multiindex γ we can show that all
derivatives of � are uniformly bounded on Dṽ .

Analogously, let ũ be such that RH + < r(ũ, v) < 3M for v ∈ [v−, v+], where
RH + < 3M is fixed. We can multiply the equation by 1

�2 �/∇3� and integrate by parts
over a region Du = D ∩ J+(Cu) to get
∫
C v∩[u,∞]

dudω
1

�2 |�/∇3�|2 +
∫
C u∩[v,v+]

dvdω

[
1

r2
| /∇�|2 + 1

r2
|�|2

]

+
∫
Du

�2dudv
[
| /̊∇�|2 + |�|2

]

�
∫
H +∩[v,v+]

dvdω
[
| /̊∇ψH + |2 + |ψH + |2

]
+
∫ v+

v

dū
∫
C v̄∩[u,∞]

dω
2M

r2
1

�2 |�/∇3�|2.
(5.66)

Grönwall’s inequality implies
∫
C v[u,∞]

dūdω
1

�2 |�/∇3�|2

� e
1
2M (v+−v)

{∫
H +∩[v,v+]

[
| /̊∇ψH + |2 + |ψH + |2

]
dvdω + ‖�‖2ET

I +
+ ‖�‖2ET

I +

}
.

(5.67)

In turn, this implies pointwise control of � near H +:

|�(u, v, θ A) − ψH +(v, θ A)|2

�
∫ ∞

u
e

v−ū
2M dū ×

∫
C v∩[u,∞]

dudω
∑
|γ |≤2

1

�2

∣∣∣/Lγ
�i

�/∇3�

∣∣∣2 (5.68)

�M r�2(u, v+)

⎡
⎣∑

|γ |≤2

∫ u+

u−
dū

∫
S2

dω
[
|/Lγ

�i
ψI + |2 + | /̊∇ /Lγ

�i
ψI + |2 + |/Lγ

�i
∂uψI + |2

]

+ ‖/Lγ
�i

�‖2ET
H +

]
. (5.69)
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We can use the argument above to inductively bound (�−1 /∇3)
i� nearH + for all i ∈ N

using the equation

�/∇4

(
1

�2�/∇3

)n+1

� + (n + 1)
2M

r2

(
1

�2�/∇3

)n+1

�

+
(n + 1)!

rn+2

(
4� − 3M

r
(n + 2)� − /̊��

)

+
n∑

k=1

n!
k!

1

rn−k+2

(
4(n − k + 1) − M

r
k(n − k + 2)(3(n − k) + 1)

)(
1

�2�/∇3

)k

�

−
n∑

k=1

n!(n − k + 1)

k!
1

rn−k+2

(
1

�2�/∇3

)k

/̊�� = 0.

(5.70)

to find ∫
S2
sin θdθdφ

∣∣∣∣
(

1

�2�/∇3

)n

�(u, v, θ A)

∣∣∣∣
2

� e
n2+4
2M (v+−v) (5.71)

×
⎧⎨
⎩
∫
H +∩{v̄∈[v,v+]}

d v̄ sin θdθdφ

⎡
⎣ ∑

|γ |≤2n+1

| /̊∇γ
ψH + |2

⎤
⎦
⎫⎬
⎭ (5.72)

By commuting the above arguments with ∂n
t , L

γ

�i for any n ∈ N and any multiindex γ

we can show that all derivatives of � are uniformly bounded on Dũ}.
In the region D\(Dũ ∩ Dṽ), r is bounded and energy conservation is sufficient to

control � in L∞. In conclusion, we find that � is uniforly bounded in L∞(D).
Let {v∞

n }∞n=0 be a monotonically increasing sequence tending to ∞ with v∞
0 = v∞

and define Dn in terms of v∞
n analogously to D . Denote C n = C v∞

n
∩ {u ∈ [u−, u+]}.

We can repeat the above on the region Dn with data ψI + on C n to obtain a sequence
{�n}∞n=0.OnanyD�,we can applyArzela–Ascoli to the sequence�n forn > � to obtain a
converging subsequence in L∞(D�)with limit�. For each k ∈ Nwe can similarly obtain
a converging subsequence inCk(D�), which shows that� is smooth and in particular that
it solves the Regge–Wheeler equation (3.15). Repeating the above for all � ∈ N extends
� to the whole of J+(�∗) ∩ J+(Cu−) ∩ J−(�̃) by uniqueness of limits. Furthermore,
the estimate (5.63) applies to �n ∀n ∈ N and thus it also applies to � taking the limit
n −→ ∞ on the left hand side of (5.63). We can repeat the procedure above replacing
u− with any u∗ < u− to obtain a solution to (3.15) on J+(�∗) ∩ J+(Cu∗) ∩ J−(�̃)

which will be identical to � on J+(�∗) ∩ J+(Cu−) ∩ J−(�̃) by uniqueness of limits,
and this allows us to extend the solution to the whole of J+(�∗). Finally, a ∂t -energy
estimate on J+(�∗) ∩ J+(Cu∗) ∩ J−(�̃) for any U∗ < u− implies that

‖(�|�∗ , /∇n�∗ �|�∗)‖2ET
�∗

≤ ‖ψH +‖2ET
H +

+ ‖ψI +‖2ET
I +

, (5.73)

so (�|�∗ , /∇n�∗ �|�∗) ∈ ET
�∗ . ��

Definition 5.4.1. Let ψH + ,ψI + be as in Proposition 5.4.1. Define the map B− by

B− : �c(H
+≥0) × �c(I

+) −→ �(�∗) × �(�∗), (ψH + ,ψI +) −→ (�|�∗ , /∇n�∗ �|�∗),
(5.74)
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where � is the solution to (3.15) arising from scattering data (ψH + ,ψI +) as in Propo-
sition 5.4.1.

Corollary 5.4.1. The maps F +, B− extend uniquely to unitary Hilbert space isomor-
phisms on their respective domains, such that F + ◦ B− = I d, B− ◦ F + = I d.

Proof. We will prove the statement for the map define on data on �∗. We already
know that F + is a unitary isomorphism on its image F +

[
ET

�∗
] ⊂ ET

H +≥0
⊕ ET

I + . Let

ψH + ∈ �c(H
+≥0), ψI + ∈ �c(I +). Proposition 5.4.1 yields a solution � on J+(�∗)

to Eq. (3.15). Since � realises ψI + , ψH + as its radiation fields as in Definitions 5.2.1
and 5.2.2 and since B−(ψH + ,ψI +) ∈ [

�(�∗) × �(�∗)
] ∩ ET

�∗ (see Remark 4.1.1),
we have that F + ◦ B− = I d on �c(H

+≥0) × �c(I +), which is dense in ET
H +≥0

⊕ ET
I + .

Therefore, since F +
[
ET

�∗
]
is complete, we have that F +

[
ET

�∗
] = ET

H +≥0
⊕ ET

I + . The

fact that B− is bounded means that its unique extension to ET
H +≥0

⊕ ET
I + must be the

inverse of F + and we have that B− ◦ F + = I dET
�∗ . ��

Remark 5.4.1. Note that the proof of Proposition 5.4.1 only establishes the boundedness
ofB−, but showing thatB− invertsF + as was done Corollary 5.4.1 turns (5.73) to an
equality:

‖B−(ψH + ,ψI +)‖2ET
�∗

= ‖ψH +‖2ET
H +≥0

+ ‖ψI +‖2ET
I +

. (5.75)

Since the region J+(�) ∩ J−(�∗) can be handled locally via Proposition 3.3.4, Propo-
sition 3.3.2 and T -energy conservation, we can immediately deduce the following:

Corollary 5.4.2. The map B− can be defined on the following domains:

B− : ET
H + ⊕ ET

I + −→ ET
�, (5.76)

B− : ET
H + ⊕ ET

I + −→ ET
�

, (5.77)

and we have

F + ◦ B− = I dET
H +⊕ ET

I +
, B− ◦ F + = I dET

�
, (5.78)

F + ◦ B− = I dET
H +⊕ ET

I +
, B− ◦ F + = I dET

�

. (5.79)

We have just completed the proof of Theorem 4.1.2.
Since the Regge–Wheeler equation (3.15) is invariant under time inversion, the

existence of the maps F−,B+ is immediate:

Proposition 5.4.2. Solutions to (3.15) arising from smooth data of compact support on
� (or �) give rise to smooth radiation fields ψI − ∈ ET

I − on I − and ψH − ∈ ET
H −

(or ET
H −) on H − (or H −), such that

‖ψI −‖2ET
I −

+ ‖ψH −‖2ET
H −

= ‖(�|�, /∇n��|�)‖2ET
�

. (5.80)

‖ψI −‖2ET
I −

+ ‖ψH −‖2ET
H −

= ‖(�|�, /∇n��|�)‖2ET
�

. (5.81)
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As in the case of F +, there exist unitary Hilbert space isomorphisms

F− : ET
H + ⊕ ET

I + −→ ET
�, (5.82)

F− : ET
H + ⊕ ET

I + −→ ET
�

, (5.83)

Let ψH − ∈ �c(H −) be supported on u > u+ > −∞ such that ‖ψH −‖ET
H − < ∞,

ψI − ∈ �c(I −) be supported on v > v+ > −∞ such that ‖ψI −‖ET
I − < ∞.

Then there exists a unique smooth � defined on J−(�) that satisfies Eq. (3.15) and
realises ψI − , ψH − as its radiation fields. Moreover, (�|�, /∇n��|�) ∈ ET

� and (5.80)
is satisfied. A similar statement applies in the case of compactly supported smooth
scattering data on H −,I − mapping into ET

�
.

Therefore, as in the case of B−, there exist unitary Hilbert space isomorphisms

B+ : ET
H + ⊕ ET

I + −→ ET
�, (5.84)

B+ : ET
H + ⊕ ET

I + −→ ET
�

, (5.85)

which satisfy

F− ◦ B+ = I dET
H −⊕ ET

I − , B+ ◦ F− = I dET
�
, (5.86)

F− ◦ B+ = I dET
H −⊕ ET

I − , B+ ◦ F− = I dET
�

. (5.87)

With Proposition 5.4.2, Theorem 4.1.3 is immediate.

Remark 5.4.2. It is possible to realise the map S by directly studying the future radi-
ation fields I +, H + on of a solution to the Regge–Wheeler equation (3.15) arising
all the way from past scattering data on I −, H −, instead of obtaining it by formally
composing F +,B+. The proof uses a subset of the ideas needed to prove Corollary 1
of the introduction, so we will state the result here.

Proposition 5.4.3. Given smooth, compactly supported past scattering data (ψH − ,

ψI −) for the Regge–Wheeler equation (3.15), there exists a unique solution � realising
ψH − ,ψI − as its radiation fields on H −,I − respectively. The solution � induces
future radiation fields (ψH + ,ψI +) ∈ ET

H + ⊕ ET
I + such that

‖ψH −‖2ET
H −

+ ‖ψI −‖2ET
I −

= ‖ψH +‖2ET
H +

+ ‖ψI +‖2ET
I +

(5.88)

The same result applies with scattering data restricted to ET
H ± .

5.5. Auxiliary results on backwards scattering.

5.5.1. Radiation fields of transverse null derivatives near I + We can recover the for-
mulae of Corollaries 5.2.4 and 5.2.5 in backwards scattering from scattering data that is
supported away from the future ends of I +,H +:
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Corollary 5.5.1. Let (ψH + ,ψI +) be smooth, compactly supported scattering data for
Eq. (3.15) with corresponding solution �. Then

lim
v−→∞

r2

�2�/∇4� =
∫ u+

u
dū(A2 − 2)ψI + . (5.89)

Proof. In a similar fashion to Corollary 5.2.4, we integrate (5.60) on a hypersurface C v

from u+ to u to find

�(1) = r2

�2

∫ u+

u
dū

�2

r2

[
/̊�� − (3�2 + 1)�

]
. (5.90)

Repeating the argument leading to Corollary 5.2.2 gives the result:

φ
(1)
I + = lim

v−→∞ �(1) =
∫ u+

u
dū (A2 − 2)ψI + . (5.91)

��
Corollary 5.2.5 can also be recovered in backwards scattering for compactly sup-

ported data:

Corollary 5.5.2. Let � be a solution to Eq. (3.15) arising from smooth, compactly
supported scattering data (ψH + ,ψI +), then

lim
v−→∞

(
r2

�2�/∇4

)2

� =
∫ ∞

u

∫ ∞

u1
du1du2 [A(A2 − 2) − 6M∂u]ψI +(u2, θ

A)

=
∫ u+

u
dū(ū − u−) [A2(A2 − 2) − 6M∂u]ψI +(ū, θ A).

(5.92)

Note that we do not need compact support in the direction of u −→ −∞ onI + for the
above results to hold:

Corollary 5.5.3. Corollaries 5.5.1 and 5.5.2 hold if ψI + is supported on (−∞, u],
provided ‖ψI +‖ET

I +
< ∞.

5.5.2. Backwards r p-estimates It is possible to use energy conservation to develop r -
weighted estimates in the backwards direction that are uniform in u, provided ψI + is
compactly supported in u. These estimates will help us show that B− satisfies (5.75)
without reference to F + or forwards scattering. We will also use them to show that
�|�∗ −→ 0 towards i0, and later to obtain similar statements for α, α. These estimates
first appeared in [3].

Let u−, u+, v−, v+ be as in the proof of Proposition 5.4.1, so that Cu+ ∩ {r > R} is
beyond the support of �. Let u < u+, then repeating the proof of Proposition 5.1.3 in
the region Du+,∞

u,v+ for p = 1, 2 gives us (using dω = sin θdθdφ)
∫
Cu∩{v>v+}

dvdω r |�/∇4�|2 �
∫
Du+,∞

u,v+

dudvdω
[
|�/∇4�|2 + | /∇�|2 + V |�|2

]
,

(5.93)
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∫
Cu∩{v>v+}

dvdω r2|�/∇4�|2 �
∫
I +∩{u∈[u−,u+]}

dudω (| /̊∇�|2 + 4|�|2)

+
∫
Du+,∞

u,v+

dudvdω r |�/∇4�|2. (5.94)

We estimate the bulk terms on the right hand side as follows: An energy estimate applied
in Du+,∞

u,v+ gives for all u < u+:∫
Cu∩{v>v+}

dvdω
[
|�/∇4�|2 + | /∇�|2 + V |�|2

]
≤
∫
I +∩{u∈[u−,u+]}

dudω |∂u�|2.
(5.95)

Integrating in u gives
∫
D u+,∞

u,v+

dudvdω
[|�/∇4�|2 + | /∇�|2 + V |�|2] ≤

∫ u+

u−
du1

∫
I +∩{u2∈[u1,u+]}

du2dω |∂u�|2

(5.96)

=
∫
I +∩{u∈[u−,u+]}

dudω (u+ − u)|∂u�|2,
(5.97)

knowing that /∇3� = 0 at u = u+, v > v+. Returning to the above we have∫
Cu∩{v>v+}

dvdω r |�/∇4�|2 �
∫
I +∩{u∈[u−,u+]}

dudω (u+ − u)|∂u�|2. (5.98)

Integrating once more in u and substituting in (5.94) gives us∫
C u∩{v>v+}

dvdω r2|�/∇4�|2 �
∫
I +∩{u∈[u−,u+]}

dudω (| /̊∇�|2 + 4|�|2) + 1

2
(u+ − u)2|∂u�|2.

(5.99)

We can integrate in u once more:∫
Du+,∞

u,v+

dudvdω r2|�/∇4�|2 �
∫
I +∩{u∈[u−,u+]}

dudω (u+ − u)(| /̊∇�|2 + 4|�|2)

+
1

6
(u+ − u)3|∂u�|2. (5.100)

Note that all of the bulk integrals above could be done over D = Du+,∞
u,v+ ∪ {J−(Cu−) ∩

J+(�∗)} provided that ∂uψI + decays sufficiently fast, such that
∫ u
−∞ dudω[

u2|∂uψI + |2 + |�|2] is integrable on (−∞, u+]. The first application will be to show
that the B+ is unitary:

Proposition 5.5.1. Let � arise from smooth scattering data ψI + ∈ ET
I + ,ψH + ∈ ET

H +

as in Proposition 5.4.1. Assume that ψI + is supported on u ≤ u+ < ∞, ψH + is
supported on v ≤ v+ < ∞, and that

∫ u
−∞ dudω|∂uψI + |2 is integrable on (−∞, u+].

Then

lim
u−→−∞ FT

Cu∩J+(�∗)[�] = 0. (5.101)
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Proof. The energy estimate

F
T
�∗ [� · θu] + FT

Cu∩J+(�∗) = ‖ψH +‖2ET
H +≥0

+ ‖ψI +‖2ET
I +

(5.102)

implies that FT
Cu∩J+(�∗)[�] decays monotonically as u −→ ∞ (here θu is the charac-

teristic function of the subset �∗\J−(Cu) of �∗). Combining this with (5.96) gives the
result. ��
Corollary 5.5.4. Let � be as in Proposition 5.5.1, then

‖(�|�∗ , /∇n�∗ �|�∗)‖2ET
�∗

= ‖ψH +‖2ET
H +≥0

+ ‖ψI +‖2ET
I +

. (5.103)

In the following, we show that if ψI + is compactly supported onI + then we have
pointwise decay for � towards i0:

Proposition 5.5.2. Let� arise from scattering data (ψI + ,ψH +) ∈ �c(I +)×�c(H +)

as in Proposition 5.4.1, then �|� −→ 0 as r −→ ∞.

Proof. For R large enough, we can estimate

∫
S2

∣∣�|�∗∩{r=R} − ψI +

∣∣ �
∫ ∞

v= 1
2 R∗

∫
S2
sin θd v̄dθdφ|�/∇4�|

� 1√
R

∫
C− 1

2 R∗∩{v> 1
2 R∗}

r2|�/∇4�|2. (5.104)

The result follows noting that ψI + is compactly supported and that the integral on the
right hand side is bounded according to (5.99). ��
Proposition 5.5.3. Let � arise from the backwards evolution of scattering data
(ψI + ,ψH +) in �c(I +) × �c(H

+≥0) as in Proposition 5.4.1, then

lim
R−→∞

∫
C

v= 1
2 R∗∩J+(�∗)

� =
∫
I +

ψI + . (5.105)

Proof. Assume the support of ψI + is in I + ∩ {u ∈ [u−, u+]},−∞ < u− < u+ < ∞.
Let R be such that u|t=0,r=R = − 1

2 R∗ < u− and let ṽ = v(t = 0, r = R) = 1
2 R∗,

ũ > u+. We have

∣∣∣∣∣∣
∫
C

u=− 1
2 R∗∩J+(�)

� −
∫
I +

ψI +

∣∣∣∣∣∣
2

≤
[∫

D
|�/∇4�|

]2
� 1

R

∫
D

r2|�/∇4�|2, (5.106)

where D = J+(�∗ ∩ {r ≥ R}) ∩ J−(Cũ). The result follows as (5.100) gives us that∫
D r2|�/∇4�|2 < ∞. ��



A Scattering Theory for Linearised Gravity 539

5.5.3. Backwards scattering for data of noncompact support Estimates (5.63) and (5.68)
are uniform in the future cutoffs of ψI + ,ψH + if the relevant fluxes onI +quad,H +≥0
are finite, in which case we can remove these cutoffs altogether and work with non-
compactly supported scattering data. This follows by a simple modification of the argu-
ment leading to the limit � in the proof of Proposition 5.4.1.

Proposition 5.5.4. The results of Proposition 5.4.1 hold when ψI + ,ψH + are not com-
pactly supported, provided

∫
[u−,∞)×S2

du sin θdθdφ
∑
|γ |≤2

|/Lγ

S2
∂uψI + |2 + |/Lγ

S2
ψI + |2 + |/Lγ

S2
/̊∇ψI + |2 < ∞,

(5.107)∫
[v−,∞)×S2

dv sin θdθdφ
∑
|γ |≤2

|/Lγ

S2
∂vψH + |2 + |/Lγ

S2
ψH + |2 + |/Lγ

S2
/̊∇ψH + |2 < ∞.

(5.108)

Corollaries 5.5.1 and 5.5.2 also hold provided the fluxes of (5.107), (5.108) are finite
with the sums running up to |γ | ≤ 4.

Proof. Let R > 3M be fixed, {u+,n}∞n=1 a monotonically increasing sequence and
{v+,n}∞n=1 such that v+,n − u+,n = R∗. Let ξu

n , ξv
n be smooth cutoff functions cut-

ting off at u+,n and v+,n respectively. Using ξu
n ψI + , ξv

n ψH + as scattering data, we
can apply Proposition 5.4.1 to obtain solutions �n to Eq. (3.15), each defined on
Dn := J+(�∗) ∩ {{u < u+,n} ∪ {v < v+,n}}. On Dk , the sequence {�n} for n > k
is bounded and equicontinuous, so repeating the argument of Proposition 5.4.1 we can
find a subsequence converging locally uniformly to �. The estimate (5.107) and the
estimates (5.68), (5.63) imply that � −→ ψI + towardsI + and � −→ ψH + towards
H +. The solution � can be extended to the future by repeating the above argument for
each Dk as k −→ ∞. The remaining statements follow by analogous arguments. ��

6. Future Asymptotics of the + 2 Teukolsky Equation

Section 6 is devoted to the study of future radiation fields induced by solutions to the
+ 2 Teukolsky equation arising from smooth, compactly supported data on �∗, as was
done for the Regge–Wheeler equation in Sect. 5.2.

We first gather the estimates we need in Sect. 6.1. We collect in Sect. 6.1.1 results
from [16] estimating α from � defined via (3.16) and the estimates of Sect. 5.1 for �.
Building upon these estimates we then use the methods of [5,18] to obtain r -weighted
estimates for α,ψ in Sect. 6.1.2. We apply these results to study the future radiation
fields and their fluxes in Sect. 6.2.

6.1. Integrated boundedness and decay estimates for α via �. We begin with the fol-
lowing basic proposition, already proven in Sect. 3.3:

Proposition 6.1.1. Let (α,α′) be data on �∗, � or � giving rise to a solution α to
Eq. (3.2) as in Proposition 3.1.1 or Proposition 3.1.3 respectively. Then � defined via
(3.16) out of the solution α on J+(�∗), J+(�) or J+(�) satisfies Eq. (3.15).
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6.1.1. Transport estimates for α In what follows assume a small fixed 0 < ε < 1/8.

Proposition 6.1.2. Let α,ψ,� be as in (3.16) and Proposition 6.1.1, Then for any u and
any v > 0 such that (u, v, θ A) ∈ J+(�∗), the following estimate holds for sufficiently
small ε > 01∫

Cu∩J+(�∗)∩J−(C v)

d v̄dω r8−ε�2|ψ |2 +
∫
Du,v

�∗
dūd v̄dω r7−ε�4|ψ |2

� F�∗ [�] +
∫

�∗∩J−(Cu)∩J−(C v)

drdω r8−ε�2|ψ |2. (6.1)

Proof. Here we repeat the argument of Proposition 12.1.1 of [16]. Using the definition
of ψ in (3.16) we can derive

∂u
[
r6+n�4|ψ |2] + nrn+5�4|ψ |2 = 2rn−1 �2

r2
� · r3�ψ ≤ 1

2
nrn+5�4|ψ |2 + 2

n
rn−3�2|�|2.

(6.2)

The result follows by integrating over Du,v
�∗ for 0 < n < 2 and using Propositions 5.1.2

and 5.1.3. ��
Proposition 6.1.3. Let α,ψ,� be as in (3.16) and Proposition 6.1.1, Then for any u and
any v > 0 such that (u, v, θ A) ∈ J+(�∗), the following estimate holds for sufficiently
small ε > 0∫

Cu∩J+(�∗)∩J−(C v)

d v̄dω r6−ε�4|α|2

+
∫
Du,v

�∗
dūd v̄dω r5−ε�6|α|2

� F�∗ [�] +
∫

�∗∩J−(Cu)∩J−(C v)

drdω r8−ε�2|ψ |2 + r6−ε�4|α|2.

(6.3)

provided the right hand side is finite.

Proof. Similar to Proposition 6.1.2. See Propositions 12.1.2, 12.2.6 and 12.2.7
of [16]. ��
Proposition 6.1.4. Let α,ψ,� be as in (3.16) and Proposition 6.1.1, Then for any u and
any v > 0 such that (u, v, θ A) ∈ J+(�∗), the following estimate holds for sufficiently
small ε > 0∫

Cu∩J+(�∗)∩J−(C v)

d v̄dω r8−ε | − 2r2 /D∗
2 /D2(r

3�ψ)|2

+
∫
Du,v

�∗
dūd v̄dω

�2

r3

(
1 − 3M

r

)2

| − 2r2 /D∗
2 /D2(r

3�ψ)|2

� F�∗ [�] +
∫

�∗∩J−(Cu)∩J−(C v)

drdω r8−ε�2|ψ |2 + r6−ε�4|α|2,

(6.4)

provided the right hand side is finite.

1 All integrals on C v here are done with respect to the measure �2 sin θdvdθdφ.
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Proof. Control ofψ, α as in Propositions 6.1.2 and 6.1.3 allows us to directly control the
flux of −2r2 /D∗

2 /D2(r3�ψ) on Cu using (3.24) and the flux bound of Proposition 5.1.3,
while the spacetime integral can be controlled via Proposition 5.1.2. ��
Commuting (3.16) with r /D2 and using the flux bound of the previous proposition allows
us to obtain an integrated decay statement for r /D2ψ :

Proposition 6.1.5. Let α,ψ,� be as in (3.16) and Proposition 6.1.1, Then for any u and
any v > 0 such that (u, v, θ A) ∈ J+(�∗), the following estimate holds for sufficiently
small ε > 0∫
Du,v

�∗
dūd v̄dω r7−ε�4|r /D2ψ |2 � F�∗ [�] +

∫
�∗∩J−(Cu)∩J−(C v)

drdω r8−ε�2|r /D2ψ |2

+ r6−ε�4|α|2. (6.5)

provided the right hand side is finite.

Finally, commuting the equation for ψ in (3.16) with /∇ R∗ gives us control over the
remaining �/∇4ψ using the estimates for � and the nondegenerate control of /∇ R∗ψ in
Proposition 5.1.2. We can optimise the weights near the event horizon and null infinity
by commuting further with �−1 /∇3 and r�/∇4 respectively:

Proposition 6.1.6. Let α,ψ,� be as in (3.16) and Proposition 6.1.1, Then for any u and
any v > 0 such that (u, v, θ A) ∈ J+(�∗), the following estimate holds for sufficiently
small ε > 0∫

Cu∩J+(�∗)∩J−(C v)

d v̄dω r4−ε |�/∇4(r
3�ψ)|2

+
∫
Du,v

�∗
dūd v̄dω r7−ε

[
|(�−1 /∇3(�ψ)|2 + |r�/∇4�ψ |2

]

� F�∗ [�] +
∫

�∗∩J−(Cu)∩J−(C v)

drdω r8−ε
[
|�ψ |2 + |�−1 /∇3ψ |2 + |r�/∇4ψ |2

]

(6.6)

provided the right hand side is finite.

Similar estimates can be obtained for α by applying these ideas one more time to (3.16),
see section 12.3 of [16].

Proposition 6.1.7. Let α,ψ,� be as in (3.16) and Proposition 6.1.1, Then for any u and
any v > 0 such that (u, v, θ A) ∈ J+(�∗), the following estimate holds for sufficiently
small ε > 0∫

C u∩J+(�∗)∩J−(C v)

d v̄dω r6−ε
[|r /D2�

2α|2 + |�−1 /∇3�
2α|2 + |r�/∇4�

2α|2]

+
∫
D u,v

�∗
dūd v̄dω r5−ε

[|r /D2�
2α|2 + |�−1 /∇3�

2α|2 + |r�/∇4�
2α|2]

� F�∗ [�] +
∫

�∗∩J−(C u )∩J−(C v)

drdω

{
r8−ε

[|r /D2�ψ |2 + |�−1 /∇3�ψ |2 + |r�/∇4�ψ |2]

+ r6−ε
[|r /D2�

2α|2 + |�−1 /∇3�
2α|2 + |r�/∇4�

2α|2]
}
,

(6.7)

provided the right hand side is finite.
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6.1.2. An r p-estimate for α,ψ The structure of the + 2 Teukolsky equation allows us to
apply the method of [5,18] to Eq. (3.2) in the same way it was applied in Sect. 5.1.

Proposition 6.1.8. Let α be a solution to the + 2 equation (3.2), then for p ∈ [0, 2], u >

u0 and D = {(u, v, θ, φ) : ū ∈ [u0, u], r > R} we have the following:

∫
Cu∩{r>R}

d v̄dω r p|�/∇4r5�−2α|2 +
∫
D

dūd v̄dω (p + 8)r p−1|�/∇4r5�−2α|2

+ (2 − p)r p−1| /∇r5�−2α|2

� F�∗ [�] +
∫

�∗
r8−ε�2|ψ |2 + r6−ε�2|α|2 +

∫
�∗∩{r>R}

drdω r p|�/∇4r5�−2α|2.
(6.8)

Proof. Rewrite the + 2 equation in terms of r5�2α:

�/∇4�/∇3r5�−2α + 2
3�2 − 1

r
�/∇4r5�−2α − �2 /�r5�−2α − �2

r2
(15�2 − 13)r5�−2α = 0.

(6.9)

Multiply by r p�/∇4r5�−2α and integrate by parts:

�/∇3

[
r p|�/∇4r5�−2α|2

]
+ �/∇4

[
r p�2

(
| /∇r5�−2α|2 − (15�2 − 13)

1

r2
|r5�−2α|2

)]

+
{
4(3�2 − 1) + p�2} r p−1|�/∇4r5�−2α|2 +

[
2 − p − 2M

r

]
r p−1

∣∣∣ /∇r5�−2α

∣∣∣2

−
[
2M

r
(30�2 − 13) + (2 − p)(15�4 − 13�2)

]
r p−3�2|r5�−2α|2 = 0.

(6.10)

Integrating in D , the Poincaré inequality (2.30) ensures that the leading order terms in
the I + flux term are positive, and we similarly use (2.30) to absorb the last term in the
previous equation into the term containing the angular derivative. Finally we can deal
with the r = R flux term by averaging over R and using the integrated decay statement
of Proposition 6.1.3. ��

Similarly, we have

Proposition 6.1.9. Let ψ arise from α according to (3.16), then we have

∫
C u∩{r>R}

d v̄dω r p|�/∇4r5�−1ψ |2 +
∫
D

d v̄dω (p + 4)r p−1|�/∇4r5�−1ψ |2

+ (2 − p)r p−1| /∇r5�−1ψ |2

� F�∗ [�] +
∫

�∗
drdω r8−ε�2|ψ |2 + r6−ε�2|α|2

+
∫

�∗∩{r>R}
drdω r p|�/∇4r5�−1ψ |2.

(6.11)
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Proof. Rewrite the definition of ψ in terms of r5�−1ψ and differentiate via �/∇3 to get

�/∇3�/∇4r5�−1ψ +
3�2 − 1

r
�/∇4r5�−1ψ − �2 /�r5�−1ψ

+
�2

r2
(3�2 − 5)r5�−1ψ = −12M2�4

r4
r5�−2α. (6.12)

We repeat the argument employed in Proposition 6.1.8 using Cauchy–Schwarz to esti-
mate the α term on the right hand side. ��
Remark 6.1.1. We have similar statements to Propositions 6.1.8 and 6.1.9 for r2

�2 �/∇4

derivatives of r5�−1ψ and r5�−2α .

quad

6.2. Future radiation fields and fluxes. In this section the notion of future radiation fields
of solutions to the + 2 Teukolsky equation (3.2) is defined, and some of the properties of
these radiation fields are studied, in particular obtaining their ET,+2

H + , ET,+2
I + fluxes when

they belong to solutions of (3.2) arising from smooth data of compact support.

6.2.1. Radiation on H +

Definition 6.2.1. Let α be a solution to (3.2) arising from smooth data as in Proposi-
tion 3.1.1 or Proposition 3.1.3. The radiation field of α along H +, denoted αH + is
defined to be the restriction of 2M�2α toH +.

Remark 6.2.1. We will use the same notation for the radiation field on H +≥0,H + or

H +.

As an easy consequence of the estimates of the previous section we have the following
non-quantitative decay statements: (All statements here apply toH +)

Corollary 6.2.1. For smooth data of compact support for the + 2 Teukolsky equation
(3.2) on �∗, � or �, ψ decays along any hypersurface r = R

lim
v−→∞ ||�ψ ||L2(S2R) = 0. (6.13)

Proof. Proposition 6.1.2 applied to ψ and /∇T ψ implies via Lemma 5.1.4 that

lim
v−→∞

∫
C v∩{r∈[2M,R]}

�2|ψ |2du sin θdθdφ = 0. (6.14)

Repeating this for �−1 /∇3�ψ using Proposition 6.1.6 gives the result. ��
The same works for α using Propositions 6.1.3 and 6.1.7:

Corollary 6.2.2. For smooth data of compact support on �∗, � or �, α decays along
any hypersurface r = R:

lim
v−→∞

∣∣∣
∣∣∣�2α

∣∣∣
∣∣∣
L2(S2R)

= 0. (6.15)

Commuting with the lie derivative along angular Killing fields /Lγ
�i

for |γ | ≤ 2 gives

Corollary 6.2.3. For smooth data of compact support for the + 2 Teukolsky equation on
�∗, � or �, �ψ |H + and �2α|H + decay towards H +

+ .
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6.2.2. Radiation flux on H + Assume α satisfies (3.2) and arises from smooth, com-
pactly supported data on �∗. The regularity of � implies that onH +, the radiation flux
in terms of � is given by (4.3)

‖�‖2ET
H +

= ∥∥�/∇4�
∥∥2

L2(H +)
. (6.16)

Recall that if α satisfies the + 2 Teukolsky equation Eq. (3.2) then α,� also satisfy (3.24)
and (3.27):

�/∇4� = A2
r2

�2�/∇3r�2α − 6Mr�2α − (3�2 − 1)
r2

�2�/∇3r�2α, (6.17)

�2

r2
�/∇4

r2

�2�/∇4� = A2(A2 − 2)r�2α − 6M
(
�/∇3 + �/∇4

)
r�2α. (6.18)

We find the limits towards H +: the left hand side of (6.18) reads:

(�/∇4)
2� +

3�2 − 1

r
�/∇4� −→

[
∂v − 1

2M

]
∂vψH + towardsH +. (6.19)

Now the right hand side reads:

A2 [A2 − 2]αH + − 6M∂vαH + , (6.20)

so we must determine ∂v� from the equation

∂2vψH + − 1

2M
∂vψH + = A2 [A2 − 2]αH + − 6M∂vαH + . (6.21)

In Kruskal coordinates, this reads

1

(2M)2
∂2V � = A2(A2 − 2)V −2αH + − 3V −1∂V αH +

= [A2(A2 − 2) − 6] V −2αH + − 3V ∂V V −2αH + .

(6.22)

Since �,�/∇4� decay as v −→ ∞, we have

− 1

(2M)2
∂V � =

∫ ∞

V

{
[A2(A2 − 2) − 6] V −2αH + − 3V ∂V V −2αH +

}
d �V . (6.23)

Integrating in again in V and using the fact that αH + is compactly supported we get:

1

(2M)2
� =

∫ ∞

V
(V − V̄ )

{
[A2(A2 − 2) − 6] V −2αH + − 3V ∂V V −2αH +

}
dV̄ .

(6.24)

In Eddington-Finkelstein coordinates, this reads as follows:

Lemma 6.2.1. Let α be a solution to the+ 2 Teukolsky equation (3.2) arising from data of
compact support onH +≥0, and let � be the corresponding solution to the Regge–Wheeler
equation arising from α via (3.16). Then the radiation field ψH + on H + belonging to
� is given by:

ψH + = 2M
∫ ∞

v

[
e

1
2M (v−v̄) − 1

]
{A2 [A2 − 2]αH + − 6M∂vαH +} , (6.25)

∂vψH + =
∫ ∞

v

e
1
2M (v−v̄){−A2 [A2 − 2]αH + + 6M∂vαH +}dv. (6.26)
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Equations (6.23)–(6.26) are the expressions for the radiation field and flux atH + that we
are able to compute directly out of data there. Note that this applies equally to radiation
on H +≥0,H

+ or H +.

Now let FH + = ∫∞
v

e
1
2M (v−v̄)αH +d v̄, then ∂v F = 1

2M F − αH + , which implies

−∂vψH + = A2(A2 − 2)FH + − 6M∂v FH + . (6.27)

Note that FH + decays towards the future end of H +≥0, since

|FH + |S2∞,v
≤
∫ ∞

v

e
1
2M (v−v̄) |αH + |S2∞,v

d v̄ ≤ 2M sup
v≥v

|αH + |S2∞,v
−→ 0 as v −→ ∞

(6.28)

Therefore, L2(H +≥0) norm of ∂vψH + is given by

∥∥∂vψH +

∥∥2
L2(H +≥0)

= ‖A2(A2 − 2)FH +‖2L2(H +≥0)
+ ‖6M∂v FH +‖2L2(H +≥0)

+
∫

�∗∩H +
sin θdθdφ

(∣∣∣ /̊�F |�∗∩H +

∣∣∣2

+6
∣∣∣ /̊∇F |�∗∩H +

∣∣∣2 + 8
∣∣∣F |�∗∩H +

∣∣∣2
)

.

(6.29)

Starting from initial data on � or � and repeating the computation leading to (6.29), the
boundary term drops out since we then have

lim
v−→−∞ FH + = lim

v−→−∞

∫ ∞

v

e
1
2M (v−v̄)αH +d v̄ = lim

v−→−∞ −2MαH + = 0. (6.30)

Therefore we have∥∥∂vψH +

∥∥2
L2(H +)

= ‖A2(A2 − 2)FH +‖2L2(H +)
+ ‖6M∂v FH +‖2L2(H +)

. (6.31)

∥∥∂vψH +

∥∥2
L2(H +)

= ‖A2(A2 − 2)FH +‖2
L2(H +)

+ ‖6M∂v FH +‖2
L2(H +)

. (6.32)

6.2.3. Radiation on I + The estimates of Sect. 6.1.2 lead us to define a radiation field
for α the same way it is defined for �

Corollary 6.2.4. For smooth data of compact support for α on �, r5ψ has a finite
pointwise limit on I + which defines a smooth field there.

Proof. We follow step by step the argument of Proposition 5.2.3 and use the estimates
of Proposition 6.1.9. ��
Similarly, using Proposition 6.1.8 we have

Corollary 6.2.5. For smooth data of compact support for α on �, r5α has a finite
pointwise limit on I + which defines a smooth field there.

For computational convenience we define
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Definition 6.2.2. For a solution α of (3.2) arising from smooth data of compact support
on �∗ as in Proposition 3.1.1 or on �,� as in (3.1.3), the radiation field of α alongI +

is defined to be the limit αI +(u, θ A) = limv−→∞ r5�−2α(u, v, θ A).
Let ψ be as in (3.16). We define ψI + to be the limit of r5�−1ψ as v −→ ∞.

Repeating the argument of Proposition 5.2.4 we have

Proposition 6.2.2. For a solution α of (3.2) arising from smooth data of compact support
on �∗ as in Proposition 3.1.1 or on �,� as in (3.1.3), the radiation fields αI + , ψI +

and ψI + decay along I + as u −→ ∞.

Remark 6.2.2. We can appeal to an alternative argument that gives the existence of the
limits of r5ψ and r5α atI + without resorting to the hierarchy of r p-estimates as follows:

Let u ≥ u0. From Proposition 5.2.3 we know that � induces a smooth radiation
field ψI + on I +. For large enough v the definition of ψ gives

r5�−1ψ = r2

�2

∣∣∣
u

∫ u

u0

�2

r2
�dū. (6.33)

Therefore

∣∣∣r5�−1ψ

∣∣∣
(u,v)

≤ sup
ū∈[u0,u]

∣∣�|(ū,v)

∣∣ r2

�2

∫ u

u0

�2

r2
dū. (6.34)

Note that r2

�2

∫ u
u0

�2

r2
is uniformly bounded in v for finite u0, u. Since� is also uniformly

bounded in v on [u0, u] we can conclude (say by Lebesgue’s bounded convergence
theorem) that the pointwise limit limv−→∞ r5ψ exists for any fixed u. Note now that
(3.16) also implies

�/∇3r5�−1ψ +
3�2 − 1

r
r5�−1ψ = �. (6.35)

Then we have

∣∣∣r5�−1ψ

∣∣∣
u,v

≤
∫ u

u0
dū |�| +

∫ u

u0
dū

(
3�2 − 1

r

) ∣∣∣r5�−1ψ

∣∣∣ . (6.36)

We can apply Grönwall’s inequality to find:

∣∣∣r5�−1ψ

∣∣∣
u,v

≤
∫ u

u0
dū |�| exp

[∫ u

u0

3�2 − 1

r
ds

]
�
∣∣∣∣
∫ u

u0
dū�

∣∣∣∣
(

r(u, v)

r(u0, v)

)2

.

(6.37)

Thus r5�−1ψ is uniformly bounded in v on [u0, u]. Existence of the�/∇3 derivatives of
the limit of r5ψ is immediate. Repeating the argument for r /∇r5ψ gives differentiability
in the angular directions.

The benefit of the preceding argument is that it allows for a characterisation of the
radiation fields at null infinity that is local in u.
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6.2.4. Radiation flux on I + The radiation flux on I + is easy enough to write down
being already in a form that can be computed from the radiation field αI + given the
uniform convergence of r5α, r5ψ and � towards I +:

ψI + = (∂u)2αI + ,

∂uψI + = (∂u)3αI + .
(6.38)

7. Future Asymptotics of the − 2 Teukolsky Equation

Section 7 is devoted to the study of future radiation fields induced by solutions to the
+ 2 Teukolsky equation arising from smooth, compactly supported data on �∗, as was
done for the + 2 Teukolsky equation in Sect. 6 and to the Regge–Wheeler equation in
Sect. 5.2.

We first gather the estimates we need in Sect. 7.1, where we collect results from
[16] estimating α from � defined via (3.19) and the estimates of Sect. 5.1 for �. We
apply these results to study the future radiation fields and their fluxes in Sect. 7.2. The
estimates of [16] collected in Sect. 7.1 will be sufficient to construct and estimate the
radiation fields on H + and I +.

7.1. Integrated boundedness and decay estimates for α via �. We begin with the fol-
lowing basic proposition, already proven in Sect. 3.3:

Proposition 7.1.1. Let (α,α′) be data for Eq. (3.5) on �∗, � or � as in Proposi-
tions 3.1.2 and 3.1.4 respectively. Then � defined out of the solution α on J+(�∗),
J+(�) or J+(�) satisfies Eq. (3.15).

Throughout this section we focus on the case of data on �∗:
Proposition 7.1.2. Let α be a solution to (3.5) and �,ψ be as in (3.19) and Proposi-

tion 7.1.1. Then for any u and any v > 0 such that (u, v, θ A) ∈ J+(�∗), the following
estimate holds:∫

Du,v

�∗
�2dūd v̄dω r4�−2|ψ |2 +

∫
C v∩J+(�∗)∩J−(Cu)

�2dūdω r6�−2|ψ |2

� F�∗ [�] +
∫

�∗∩J−(Cu)∩J−(C v)

drdω r6�−2|ψ |2.
(7.1)

Proof. The definition of ψ (3.19) and Cauchy–Schwarz imply

∂v[r6�−2|ψ |2] + Mr4�−2|ψ |2 ≤ 1

Mr2
|�|2. (7.2)

The result follows by integrating over Du,v
�∗ . ��

Proposition 7.1.3. Let α be a solution to (3.5) and �,ψ be as in (3.19) and Proposi-

tion 7.1.1. Then for any u and any v > 0 such that (u, v, θ A) ∈ J+(�∗), the following
estimate holds:∫

Du,v

�∗
�2dūd v̄dω �−4|α|2 +

∫
C v∩J+(�∗)∩J−(Cu)

�2dūdω r2�−4|α|2

� F�∗ [�] +
∫

�∗∩J−(Cu∩J−(C v)

drdω r6�−2|ψ |2 + r2�−4|α|2.
(7.3)
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Proof. Similar to Proposition 7.1.2. See Propositions 12.1.2, 12.2.6 and 12.2.7
of [16]. ��
Proposition 7.1.4. Let α be a solution to (3.5) and �,ψ be as in (3.19) and Proposi-

tion 7.1.1. Then for any u and any v > 0 such that (u, v, θ A) ∈ J+(�∗), the following
estimate holds:

∫
C v∩J+(�∗)∩J−(Cu)

�2dūdω

∣∣∣−2r2 /D∗
2 /D2(r

3�−1ψ)

∣∣∣2

+
∫
Du,v

�∗
dūd v̄dω

�2

r3

(
1 − 3M

r

)2 ∣∣∣−2r2 /D∗
2 /D2(r

3�ψ)

∣∣∣2

� F�∗ [�] +
∫

�∗
drdω r6�−2

∣∣∣ψ
∣∣∣2 + r2�−4

∣∣α∣∣2 .

(7.4)

Proposition 7.1.5. Let α be a solution to (3.5) and �,ψ be as in (3.19) and Proposi-

tion 7.1.1. Then for any u and any v > 0 such that (u, v, θ A) ∈ J+(�∗). The following
estimate holds:

∫
D u,v

�∗
�2dūd v̄dω r5−ε�−2|r /D2ψ |2 � F�∗ [�] +

∫
�∗

drdω r6−ε�−2
[
|r /D2ψ |2 + |ψ |2

]

+ r6−ε�−4|α|2. (7.5)

Proposition 7.1.6. Let α be a solution to (3.5) and �,ψ be as in (3.19) and Proposi-

tion 7.1.1. Then for any u and any v > 0 such that (u, v, θ A) ∈ J+(�∗), the following
estimate holds:

∫
C v∩J+(�∗)∩J−(C u )

�2dūdω r6|�−1 /∇3(�
−1ψ)|2

+
∫
D u,v

�∗
�2dūd v̄dω r4

[
|�−1 /∇3(�

−1ψ)|2 + |r�/∇4(�
−1ψ)|2

]

� F�∗ [�] +
∫

�∗
drdω r4�−2

[
|ψ |2 + |r /D2ψ |2 + |�−1 /∇3(�

−1ψ)|2 + |r�/∇4(�
−1ψ)|2

]
.

(7.6)

Proposition 7.1.7. Let α be a solution to (3.5) and �,ψ be as in (3.19) and Proposi-

tion 7.1.1. Then for any u and any v > 0 such that (u, v, θ A) ∈ J+(�∗), the following
estimate holds:
∫
C v∩J+(�∗)∩J−(Cu)

�2dūdω |r2 /D∗
2 /Dr�−2α|2 +

∫
Du,v

�∗
�2dūd v̄dω |r2 /D∗

2 /D2�
−2α|2

� F�∗ [�] +
∫

�∗
drdω r4�−2

[
|ψ |2 + |r /D2ψ |2

+ |�−1 /∇3(�
−1ψ)|2 + |r�/∇4(�

−1ψ)|2
]
+
∫

�∗
drdω |r�−2α|2.

(7.7)
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Proposition 7.1.8. Let α be a solution to (3.5) and �,ψ be as in (3.19) and Proposi-

tion 7.1.1. Then for any u and any v > 0 such that (u, v, θ A) ∈ J+(�∗), the following
estimate holds:∫

C v∩J+(�∗)∩J−(Cu)

�2dūdω
[
|r�−2α|2 + |r /D2r�−2α|2 + |�−1 /∇3r�−2α|2

]

+
∫
Du,v

�∗
�2dūd v̄dω

[
|�−2α|2 + |r /D2�

−2α|2 + |�−1 /∇3�
−2α|2

]

� F�∗ [�] +
∫

�∗
drdω r6

[
|�−1ψ |2 + |r /D2�

−1ψ |2 + |�−1 /∇3(�
−1ψ)|2

]

+
∫

�∗
drdω r2

[
|�−2α|2 + |r /D2�

−2α|2 + |�−1 /∇3�
−2α|2

]
.

(7.8)

7.2. Future radiation fields and fluxes. In this section the notion of future radiation fields
of solutions to the− 2 Teukolsky equation (3.5) is defined, and some of the properties of
these radiation fields are studied, in particular obtaining their ET,−2

H + , ET,−2
I + fluxes when

they belong to solutions of (3.5) arising from smooth data of compact support.

7.2.1. Radiation on H +

Definition 7.2.1. Let α be a solution to Eq. (3.5) arising from smooth data as in Propo-
sition 3.1.2. The radiation field of α along H +≥0, denoted αH + , is defined to be the
restriction of 2M�−2α toH −.

Definition 7.2.2. Let α be a solution to Eq. (3.5) arising from smooth data which is
compactly supported on� according to Proposition 3.1.4. The radiation field of α along
H +≥0, denoted αH + , is defined to be the restriction of 2M�−2α toH −.

Definition 7.2.3. Let α be a solution to Eq. (3.5) arising from smooth data as in Propo-
sition 3.1.4. The radiation field of α alongH +, denoted αH + , is defined by V 2αH + =
2MV 2�−2α|H + .

Remark 7.2.1. We will use the same notation for the radiation field on H +≥0,H
+ or

H +.

The following applies equally to radiation fields on H +≥0, H
+ and H +.

Proposition 7.2.1. Assume α arises from data which is supported away from i0, then
limv−→∞ ψ

H + = 0.

Proof. Let r1 > 2M . The estimate of Proposition 7.1.2when commutedwithLT implies

lim
v−→∞

∫
C v∩J+(�∗)∩{r≤r1}

dũ sin θdθdφ r4|�−1ψ |2 = 0. (7.9)

Similarly, repeating the above to the estimate (7.6) gives

lim
v−→∞

∫
C v∩J+(�∗)∩{r≤r1}

dũ sin θdθdφ r4|�−1 /∇3�
−1ψ |2 = 0. (7.10)
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With (7.9) and (7.10), we can adapt the argument of Lemma 5.1.4 to have

sup
u(r1,v)≤u≤∞

∥∥∥�−1ψ

∥∥∥
L2(S2u,v)

�
∫
C v∩J+(�∗)∩{r≤r1}

dũ sin θdθdφ
[
|�−1ψ |2 + |�−1 /∇3�

−1ψ |2
]
, (7.11)

thus the right hand side of (7.11) vanishes in the limit as v −→ ∞. A further Sobolev
embedding on the sphere gives the result. ��
Similarly, we can use Proposition 7.1.3 and Proposition 7.1.8 and follow the argument
of the previous proposition to conclude

Proposition 7.2.2. Assume α arises from data which is supported away from i0, then
limv−→∞ αH + = 0.

7.2.2. Radiation flux on H + Now we can calculate the radiation energies in terms of
α. We want to rewrite

�/∇4� = �/∇4

(
r2

�2�/∇4

)2

r�2α (7.12)

in terms of �−2α and �−1ψ . We have for ψ

r3�−1ψ = r2

�4�/∇4r�2α = r2

�4�/∇4r�4�−2α

= r2(2 − �2)�−2α + r3�/∇4�
−2α.

(7.13)

We can write for �

� = r2

�2�/∇4r3�ψ = 2Mr3�−1ψ + r2�/∇4r3�−1ψ

= 2r3�−2α + r4(3 + �2)�/∇4�
−2α + r5(�/∇4)

2�−2α.

(7.14)

We can write for �/∇4�

�/∇4� = 6r2�2�−2α + r3(2 + 13�2 + 3�4)�/∇4�
−2α

+ 3r4(1 + 2�2)(�/∇4)
2�−2α + r5(�/∇4)

3�−2α.
(7.15)

AtH + (7.14), (7.15) become

ψ
H + = (2M)2

[
2αH + + 6M∂vαH + + (2M)2∂2vαH +

]
, (7.16)

�/∇4ψH + = (2M)
[
4M∂vαH + + 3(2M)2∂2vαH + + (2M)3∂3vαH +

]
. (7.17)
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Remark 7.2.2. On ET,+2
H − , the norm ‖ ‖ET,+2

H +
is equal to

‖A‖2ET,+2
H +

= ‖2(2M∂v)A‖2L2(H +)
+ ‖3(2M∂v)

2A‖2L2(H +)
+ ‖(2M∂v)

3A‖2L2(H +)
.

(7.18)

while for ‖ ‖ET,+2
H +≥0

we have

‖A‖2ET,+2
H +≥0

= ‖2(2M∂v)A‖2L2(H +≥0)
+ ‖3(2M∂v)

2A‖2L2(H +≥0)
+ ‖(2M∂v)

3A‖2L2(H +≥0)

− 6‖(2M∂v)A‖2
L2(S2∞,0)

− 3‖(2M∂v)
2A‖2

L2(S2∞,0)
.

(7.19)

If the same computation for ‖ ‖ET,+2

H +
is done with terms expressed in the Eddington–

Finkelstein coordinates, it produces boundary terms that are not regular near B. The
expression (7.17) for � remains well-defined over H + for data on � and has a finite
limit at B, as we can see by writing it in terms of the regular Kruskal coordinates:

‖αH +‖2ET,+2

H +

= ‖V 1/2∂3V V −2αH +‖2L2
V L2(S2∞,v)

. (7.20)

For smooth initial data on �, Proposition 3.1.4 guarantees the continuity of V 2�−2α

in a neighborhood of B, and in the backwards direction we can show the same with
Proposition 3.1.8 and Proposition 3.1.2.

7.2.3. Radiation on I +

Proposition 7.2.3. Let α be a solution to (3.5) arising from smooth compactly supported
data on �∗ and let ψ,� be as in (3.19). Then r3ψ has a uniform smooth limit towards
I +

Proof. We can integrate the definition of � from (3.19) from r = R towards I +:

r3�ψ |u,v = r3�ψ |u,v(u,R) +
∫ v

v(u,R)

�2

r2
�. (7.21)

Note that Cauchy–Schwarz and Hardy’s inequality applied to the integral term give

[∫
S2

dω

∫ v

v(u,R)

d v̄

∣∣∣∣�
2

r2
�

∣∣∣∣
]2

≤ 1

R

∫
C u∩{r>R}

d v̄dω
�2

r2
∣∣�∣∣2 � 1

R

∫
C u∩{r>R}

d v̄dω |�/∇4�|2,
(7.22)

which is finite for data of compact support.We can repeat this estimate for r /∇� conclude
with a Sobolev embedding on the sphere that the integral on the right hand side of (7.21)
is bounded. The dominated convergence theorem gives the result. Proposition 5.1.3 tells
us that the convergence is uniform in u. Finally, we can repeat the argument having
commuted with LT ,L�i to show that the limit is smooth. ��
Similarly, Eq. (3.29) gives us
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Proposition 7.2.4. Let α be a solution to (3.5) arising from smooth compactly supported
data on �∗ and let ψ be as in (3.19). Then rα has a uniform smooth limit αI + towards
I +.

Proof. We can again integrate the definition of ψ from (3.19) from r = R towardsI +:

r�2α|u,v = r�2α|u,v(u,R) +
∫ v

v(u,R)

d v̄
�2

r2
r3�ψ. (7.23)

Hardy’s inequality gives us∫
C u∩{r>R}

d v̄dω
�2

r2

∣∣∣r3�ψ

∣∣∣2 �
∫
C u∩{r>R}

d v̄dω |�/∇4r3�ψ |2 =
∫
C u∩{r>R}

d v̄dω
�2

r2
|�|2.
(7.24)

We can conclude using the above and repeating the proof of Proposition 7.2.3. ��
Remark 7.2.3. In particular, /∇T rα attains a limit towards I + which is smooth and
limv−→∞ /∇T rα = ∂uαI + .

Remark 7.2.4. Instead of resorting to commutation with LT ,L�i directly, one could
employ the hierarchy of (3.28) and (3.29) to estimate the derivatives of ψ and α one by
one with a smaller loss of derivatives, see [16].

Definition 7.2.4. For a solution α of (3.5) arising from smooth data of compact support
on �∗ according to Proposition 3.1.2 or on �,� as in Proposition 3.1.4, the radiation
field of α along I + is defined by αI +(u, θ A) = limv−→∞ rα(u, v, θ A).

Proposition 7.2.5. Let α be a solution to (3.5) arising from smooth compactly supported
data on �∗ and let ψ be as in (3.19). Then ψ |r=R decays as t −→ ∞.

Proof. The estimate of Proposition 7.1.2 applied to r < R for some fixed R < ∞,
commuted with T gives

lim
v−→∞

∫
C v∩{2M<r<R}

dudω

∣∣∣�−1ψ

∣∣∣2 = 0. (7.25)

Commuting with �−1 /∇3 and with /̊∇ twice gives the result. ��
Corollary 7.2.1. Let α be a solution to (3.5) arising from smooth compactly supported
data on �∗ and let � be as in (3.19). Then α|r=R decays as t −→ ∞.

Proposition 7.2.6. Let α be a solution to (3.5) arising from smooth compactly supported
data on �∗ and let ψ be as in (3.19). Then ψ

I + := limv−→∞ r3ψ decays towards the
future end of I +.

Proof. This follows from integrating (3.19) between r = R and I +:
∫

S2R

∣∣∣∣ 1r2 r3�ψ |(u,v) − ψ
I +

∣∣
u

∣∣∣∣
2

S2
� 1

R

∫
Cu∩{r>R}

|�/∇4�|2. (7.26)

This decays as u −→ ∞ by energy conservation. Proposition 7.2.5 gives the result. ��
Corollary 7.2.2. Let α be a solution to (3.5) arising from smooth compactly supported
data on �∗ and let ψ be as in (3.19). Then the radiation field αI + of Definition 7.2.4
decays towards I +

+
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7.2.4. Radiation flux on I + We want to find the limit towards I + of

�/∇3� = −(3�2 − 1)
r2

�2�/∇4r�2α + 6Mr�2α − 2r2 /D∗
2 /D2

r2

�2�/∇4r�2α. (7.27)

Asψ is related to the transverse derivative ofα nearI +,wewant to express r2

�2 �/∇4r�2α

in terms of quantities that can be constructed intrinsically on I + from data. We do this
by integrating the Teukolsky equation: recall Eq. (3.29)

�2

r2
�/∇3

r2

�2�/∇3� = 6M
[
�/∇4 + �/∇3

]
r�2α +A2(A2 − 2)r�2α. (7.28)

The results of the previous section give us the asymptotics:

�2

r2
�/∇3

r2

�2�/∇3� = (�/∇3)
2� −

(
3�2 − 1

r

)
�/∇3� −→ (∂u)2ψ

I + towardsI +.

(7.29)

The right hand side gives:

6M∂uαI + +A2 (A2 − 2)αI + . (7.30)

whereas the left hand side becomes ∂2u ψ
I + . (7.28) then becomes at I +

∂2u ψ
I + = 6M∂uαI + +A2 (A2 − 2) αI + . (7.31)

We can integrate along I +:

∂uψ
I + |u = ∂uψ

I + |u0 − 6MαI + |u0 + 6MαI + |u +A2 (A2 − 2)
∫ u

u0
αI +dū. (7.32)

The fact that limu−→∞ ∂uψ
I + = 0 = limu−→∞ αI + tells us that

A2 (A2 − 2)
∫ ∞

u0
rα = −∂uψ

I + |u0 + 6MαI + |u0 . (7.33)

For data of compact support on�, we can take u0 such that the right hand side vanishes.
Knowing that A2,A2 − 2 are uniformly elliptic, we must have

∫ ∞

u0
αI + = 0. (7.34)

We can integrate (7.32) once more to find a useful expression for ψ
I + that can be

computed from data on I +:

ψ
I +(u, θ A) = 6M

∫ u

u0
dūαI + +A2 (A2 − 2)

∫ u

u0
dū(u − ū)αI + . (7.35)

Again, seeing that �|I + decays towards I +
+ we have:

∫ ∞

u0

∫ ∞

u1
du1du2αI + =

∫ ∞

u0
dū(u − ū)α = 0. (7.36)
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We can rewrite ψ
I + and ∂uψ

I + :

ψ
I + = −6M

∫ ∞

u
dūαI + − A2 (A2 − 2)

∫ ∞

u
dū(u − ū)αI + . (7.37)

∂uψ
I + = −A2 (A2 − 2)

∫ ∞

u
dūαI + + 6MαI + |u . (7.38)

Using (7.34), we can recover (4.53)

‖∂uψ
I +‖2L2(I −)

=
∫
I +

du sin θdθdφ

[
6M |αI + |2 +

∣∣∣∣A2(A2 − 2)
∫ ∞

ū
dū αI +

∣∣∣∣
2
]

.

(7.39)

Remark 7.2.5. The fact that
∫∞
−∞ du1 ψ

I + = ∫∞
−∞

∫∞
u1

du1du2 ψ
I + = 0 implies

∫ ∞

−∞

∫ ∞

u1

∫ ∞

u2
du1du2du3 αI + =

∫ ∞

u0

∫ ∞

u1

∫ ∞

u2

∫ ∞

u3
du1du2du3du4 αI + = 0.

(7.40)

8. Constructing the Scattering Maps for α, α

We gather the results of Sections 6 and 7 to finally construct the scattering theory for
the Teukolsky equations (3.2), (3.5). Sect. 8.1 is devoted to the + 2 Teukolsky equation
(3.2), where Sect. 8.1.1 handles forwards scattering and Sect. 8.1.2 handles backwards
scattering. Sect. 8.2 is devoted to the − 2 Teukolsky equation (3.5), where Sect. 8.2.1
handles forwards scattering and Sect. 8.2.2 handles backwards scattering. Taking into
account Remark 3.1.1, results concerning scattering towards the past are immediate and
they are collected in Sect. 8.3.

8.1. Future scattering for α. Forwards scattering for the + 2 Teukolsky equation (3.2)
is worked out entirely analogously to the case of the Regge–Wheeler equation (3.15),
using the results of Sect. 6.2.

For backwards scattering, we make use of the transport equations (3.16) and the
backwards scattering theory of Sect. 5.2 for the Regge–Wheeler equation (3.15), instead
of directly appealing to a limiting argument that repeats the proof of Proposition 5.4.1.
Throughout this process, the uniform T -energy estimates of � are vital in controlling
the backwards evolution of α, but we note here that it is possible to derive uniform,
nondegenerate energy estimates for α near H +, in contrast with the case of �. In this
sense, α is "red-shifted" when the + 2 Teukolsky equation (3.2) is run backwards in time.

8.1.1. Forwards scattering for α We put together the ingredients worked out in Sect. 6.2
to construct the forwards scattering map.

Proof of Theorem 4.2.2. Let α be the solution to Eq. (3.2) on J+(�∗) arising out of a
compactly supported data set (α,α′) on�∗ as in Proposition 3.1.1. The radiation field on
H +≥0, αH + , exists in the sense of Definition 6.2.1. Corollary 6.2.2 applied for R = 2M
says that αH + −→ 0 towards the future end ofH +. Let � be the solution to Eq. (3.15)
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associated to α via (3.16). The fact that �|�∗ , /∇T �|�∗ are compactly supported means
that the results of Sect. 6.2.2 apply. In particular, we find that

∣∣∣∣
∫ ∞

v

d v̄ e
1
2M (v−v̄)αH +(v̄, θ A)

∣∣∣∣ ≤ 1

2M
sup
v̄≥v

|αH +(v̄, θ A)|, (8.1)

and since ‖ψH +‖ET
H +≥0

< ∞, this shows that ‖αH +‖ET,+2
H +≥0

< ∞ and αH + ∈ ET,+2
H +≥0

.

Similarly by Corollary 6.2.5, r5α has a pointwise limit as v −→ ∞ which induces a
smooth αI + on I +. Proposition 6.2.2 implies that αI + decays towards the future end
of I +. As �I + ∈ ET

I + , we have that αI + ∈ ET,+2
I + . ��

Corollary 8.1.1. Solutions to (3.2) arising from data on � of compact support give rise
to smooth radiation fields in ET,+2

I + and ET,+2
H + . Solutions to (3.2) arising from data on �

of compact support give rise to smooth radiation fields in ET,+2
I + and ET,+2

H +

Proof. Identical to the proof of Corollary 5.3.1 using Propositions 3.1.3 and 3.1.7. ��
The proof of Theorem 4.2.2 above and Corollary 8.1.1 allow us to define the forwards
maps (+2)F + from dense subspaces of ET+2

�∗ , ET,+2
� , ET,+2

�
.

Definition 8.1.1. Let (α,α′)be a smoothdata set of compact support to the+ 2Teukolsky
equation (3.2) on �∗ as in Proposition 3.1.1. Define the map (+2)F + by

(+2)F + : �c(�
∗) × �c(�

∗) −→ �(H +≥0) × �(I +), (α,α′) −→ (αH + ,αI +),

(8.2)

where (αH + ,αI +) are as in the proof of Theorem 4.2.2.
Using Corollary 8.1.1, the map (+2)F + is defined analogously for data on �,�:

(+2)F + : �c(�) × �c(�) −→ �(H +) × �(I +), (α,α′) −→ (αH + ,αI +), (8.3)
(+2)F + : �c(�) × �c(�) −→ �(H +) × �(I +), (α,α′) −→ (αH + ,αI +). (8.4)

8.1.2. Backwards scattering for α Now we construct the inverse (+2)B− of Theo-
rem 4.2.3 on a dense subspace of ET,+2

H +≥0
⊕ ET,+2

I + . The existence of a solution to the

+ 2 Teukolsky equation (3.2) out of compactly supported scattering data on H +≥0,I
+

is shown in Proposition 8.1.1. Showing that this solution defines an element of ET,+2
�∗ is

done in Corollary 8.1.2.

Proposition 8.1.1. For αH + ∈ �c(H
+≥0) ∩ ET,+2

H +≥0
supported on H +≥0 ∩ {v < v+} for

v+ < ∞, αI + ∈ �c(I +) ∩ ET,+2
I + supported on on I + ∩ {u < u+} for u+ < ∞, there

exists a unique solution α to (3.2) in J+(�∗) that realises αH + and αI + as its radiation
fields on H +≥0,I

+.

Proof. Define

ψH + = 1

(2M)3

∫ ∞

v

d v̄ e
1
2M (v−v̄)(A2 − 3)αH + , (8.5)
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ψH + = 2M
∫ ∞

v

d v̄
[
e

1
2M (v−v̄) − 1

]
{A2 [A2 − 2]αH + − 6M∂vαH +} , (8.6)

ψI + = ∂uαI + , (8.7)

ψI + = ∂2u αI + . (8.8)

With scattering data ψI + ,ψH + , there is a unique solution � to Eq. (3.15) on J+(�∗).
Define ψ, α by

r3�ψ(u, v, θ A) := (2M)3ψH +(u, θ A) −
∫ ∞

u

�2

r2
�(ū, v, θ A)dū, (8.9)

r�2α(u, v, θ A) := αH +(u, θ A) −
∫ ∞

u
r�3ψ(ū, v, θ A)dū, (8.10)

then ψ, α satisfy the transport relations (3.16):

� = r2

�2�/∇3r3�ψ =
(

r2

�2�/∇3

)2

r�2α. (8.11)

(note that we are working with (1, 1)-tensor fields throughout). The boundedness of
FT

v [�](u,∞) implies that �2α −→ αH + , �ψ −→ ψH + as u −→ ∞. Since �

satisfies Eq. (3.15), the commutation relation (3.17) implies

(
r2

�2�/∇3

)2

T +2r�2α = 0. (8.12)

where T +2 is the + 2 Teukolsky operator. We have:

T +2r�2α = 3�2 − 1

r
r3�ψ + �/∇4r3�ψ −

(
A2 − 6M

r

)
r�2α

r2

�2�/∇3T +2r�2α = −(A2 − 3�2 + 1)r3�ψ − �/∇4� + 6Mr�2α

(8.13)

OnH + this evaluates to

T +2r�2α|H + = (2M)3
(

∂v − 1

2M

)
ψH + − (A2 − 3)αH + , (8.14)

r2

�2�/∇3T +2r�2α|H + = −(2M)3(A2 + 1)ψH + + 6MαH + − ∂vψH + . (8.15)

It is clear that with our construction of initial data, T +2r�2α|H +

= r2

�2 �/∇3T +2r�2α|H + = 0, therefore α satisfies T +2r�2α = 0. Note that as �(u, v)

vanishes for u > u+, v > v+, the same applies to α,ψ . Let R > 3M , we can estimate
ψ(u, v) for r(u+, v) > R by:

|r5�ψ | ≤
∫ u+

u
�2|�| +

∫ u+

u

2

r
|r5�ψ | (8.16)

Grönwall’s inequality implies

|r5�ψ | �
(

r(u, v)

r(u+, v)

)2 ∫ u+

u
|�|. (8.17)
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As � converges uniformly to ψI + , this implies that ∂ur5�ψ converges uniformly to
∂uψH + , which in turn says that r5�ψ converges toψH + . An identical argument shows
that r5α converges to αI + . ��

In the following we explicitly show that α of Proposition 8.1.1 defines a member
of ET,+2

I + :

Corollary 8.1.2. Let αH + ,αI + be as in Proposition 8.1.1. Let α be the solution to
Eq. (3.2) arising from αH + ,αI + . Then (�2α|�∗ , /∇n�∗ �2α|�∗) ∈ ET,+2

�∗

Proof. Let ξ be a smooth cutoff function over R with ξ = 1 for r ≤ 0, ξ = 0 for
r ≥ 1 such that all derivatives of ξ are uniformly bounded. Let {Rn}∞n=1 with R1 large

and Rn+1 = 2Rn and define ξn(r) = ξ
(

r−Rn
Rn+1−Rn

)
. We want to show that the sequence

αn = ξnα is such that (�2αn, /∇n�∗ �2αn) converges to (�2α, /∇n�∗ �2α) in ET,+2
�∗ .

Denoting by �n =
(

r2

�2 �/∇3

)2
r�2αn the solution to the Regge–Wheeler equation

arising from αn , we compute

�n =
(

r2

�2�/∇3

)2

r�2αn =
(

r2

�2�/∇3

)2

ξnr�2α

= r2(r2ξ ′
n)′r�2α − 2r2ξ ′

nr3�ψ + ξn�.

(8.18)

We know that ξn� −→ � in ET
�∗ (see Remark 4.1.1). Seeing that r2ξ ′

n ∼ r, r2(r2ξ ′
n)

′ ∼
r2 on [Rn, Rn+1], we can estimate the remainder via

‖�n − ξn�‖2ET
�∗

�
∫ Rn+1

Rn

dr sin θdθdφ
[
|r3�ψ |2 + | /̊∇r3�ψ |2 + |r�/∇4r3�ψ |2

]

+
[
|r3�α|2 + | /̊∇r3�α|2 + |r�/∇4r3�α|2

]

+

[
1

r2
(|�|2 + | /̊∇�|2) + |�/∇4�|2

]
.

(8.19)

The result follows if we can show that r
7
2 �ψ |�∗ , r

7
2 �2α|�∗ , r

3
2 �/∇4r3�ψ, r

3
2 �/∇4r3

�2α decay as r −→ ∞. Let u < u′ < u− and take r = r(u′, v), R = r(u, v) and

(u, v, θ A) := (R, θ A) ∈ �∗. We estimate R
7
2 �ψ |�∗ by integrating the definition of �

(3.16):

∫
S2

R
7
2 �|ψ(R, θ A)|dω ≤ √

R
∫ u′

u
dū

∫
S2

dω
�2

r2
|�| + √

Rr3�|ψ(u′, v, θ A)|

�u′
√

r
∫ u′

u
dū

∫
S2

dω
�2

r2
|�| + r

7
2 �|ψ(u′, v, θ A)|

�u′
√

FT
v [�](u, u′) + r

7
2 �|ψ(u′, v, θ A)|.

(8.20)
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We used Cauchy–Schwarz to get to the last step. The right hand side decays as v −→ ∞
since FT

v [�](u, u′) decays, FT
u′ [�](v,∞) < ∞ and ψI + vanishes for u < u−, so that

|r3�ψ(u′, v, θ A)|L2(S2
u′,v)

≤
∫ ∞

v

d v̄

∫
S2

u′,v̄

�2

r2
|�| ≤ 1√

r(u′, v)

√
FT

u′ [�](v,∞).

(8.21)

and commuting with /Lγ

S2
for |γ | ≤ 3 gives that R

7
2 �ψ |�∗ decays as R −→ ∞. This

can be repeated to show the same for R
7
2 �2α|�∗ . Furthermore, we have

�/∇3r�/∇4r3�ψ = −�2

r
r�/∇4r3�ψ + (3�2 − 1)

�2

r2
� +

�2

r
�/∇4�. (8.22)

We estimate∣∣∣r�/∇4r3�ψ |�∗
∣∣∣ ≤

∣∣∣r�/∇4r3�ψ(u′, v, θ A)

∣∣∣
+
∫ u′

u
dū

[
�2

r
|r�/∇4r3�ψ | + (3�2 − 1)

�2

r2
|�| + �2

r
|�/∇4�|

]
. (8.23)

Grönwall’s inequality implies

∣∣∣r�/∇4r3�ψ |�∗
∣∣∣ � r(u′, v)

r(u, v)

[∣∣∣r�/∇4r3�ψ(u, v, θ A)

∣∣∣ + 1√
R

√
FT

v [�](u, u′)
]

,

(8.24)

which in turn implies that r
3
2 �/∇4r3�ψ |�∗ −→ 0 as R −→ ∞. The same can be

repeated to show r
3
2 �/∇4r3�2α|�∗ −→ 0 as R −→ ∞. ��

Definition 8.1.2. Let αH + ,αI + be as in Proposition 8.1.1. Define the map (+2)B− by

(+2)B− : �c(H
+≥0) × �c(I

+) −→ �(�∗) × �(�∗), (αH + , αI + ) −→ (�2α|�∗ , /∇n�∗ �2α|�∗ ),
(8.25)

where α is the solution to (3.2) arising from scattering data (αH + ,αI +) as in Proposi-
tion 8.1.1.

Corollary 8.1.3. The maps (+2)F +, (+2)B− extend uniquely to unitary Hilbert space
isomorphisms on their respective domains, such that (+2)F + ◦ (+2)B− = I d, (+2)B− ◦
(+2)F + = I d.

Proof. Identical to the proof of Corollary 5.4.1. ��
Remark 8.1.1. As in the case of Remark 5.4.1, Corollary 8.1.3 implies

‖(+2)B−(αH + ,αI +)‖2ET,+2
�∗

= ‖αH +‖2ET,+2
H +≥0

+ ‖αI +‖2ET,+2
I +

. (8.26)

As in the case of Proposition 5.5.1, we can use the backwards r p-estimates of Sect. 5.5.2
to directly show (8.26) without reference to the forwards map (+2)F +.

Since the region J+(�) ∩ J−(�∗) can be handled locally via Proposition 3.1.3, Propo-
sition 3.1.7 and T -energy conservation, we can immediately deduce the following:
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Corollary 8.1.4. The map (+2)B− can be defined on the following domains:

(+2)B− : ET,+2
H + ⊕ ET,+2

I + −→ ET,+2
� , (8.27)

(+2)B− : ET,+2
H + ⊕ ET,+2

I + −→ ET,+2
�

, (8.28)

and we have
(+2)F + ◦ (+2)B− = I dET,+2

H +⊕ ET,+2
I +

, (+2)B− ◦ (+2)F + = I dET,+2
�

, (8.29)

(+2)F + ◦ (+2)B− = I dET,+2

H +⊕ ET,+2
I +

, (+2)B− ◦ (+2)F + = I dET,+2
�

. (8.30)

This concludes the proof of Theorem 4.2.3.

Remark 8.1.2. (A nondegenerate estimate near H +) Note that the transport hierarchy
(3.16) implies (integrating in the measure du sin θdθdφ)∫

C v∩[u,∞)

1

�2 |�/∇3r3�ψ |2 =
∫
C v∩[u,∞)

�2

r2
|�|2 ≤ FT

v [�](u,∞),

∫
C v∩[u,∞)

1

�2 |�/∇3r�2α|2 � 1

(2M)2

∫
C v∩[u,∞)

1

r2
|�/∇3r3�ψ |2 � �2(u, v)FT

v [�](u,∞).

(8.31)

These estimates hold uniformly in v, in contrast to (5.67). This can be traced to the sign
of the first order term in

�/∇3�/∇4r�2α +
2(3�2 − 1)

r
�/∇3r�2α − �2 /�r�2α +

6M�2

r2
r�2α = 0. (8.32)

for r < 3M .

NearI + we can use (6.9) and follow the same steps leading to (5.62) to derive for
R > RI + :∫
C u∩{r>R}

r2|�/∇4r5�−2α|2 �u−,M

[
‖αI +‖2ET,+2

I +
+ ‖αH +‖2ET,+2

H +
+
∫
I +∩[u,u+]

|αI + |2 + | /̊∇αI + |2
]

.

(8.33)

With these estimates we can conclude as for the Regge–Wheeler equation:

Corollary 8.1.5. The results of Proposition 8.1.1 hold when αH + , αI + are not com-
pactly supported, provided

∑
|γ |≤2

‖/Lγ

S2
αH +‖2ET,+2

H +
+ ‖/Lγ

S2
αI +‖2ET,+2

I +
+
∫
I +

|/Lγ

S2
αI + |2 + |/Lγ

S2
/̊∇αI + |2 < ∞.

(8.34)

The results above can be extended to scattering from�,�, since the region J+(�)∩
J−(�∗) can be handled locally with Proposition 3.1.3 and Corollary 5.3.1.

Corollary 8.1.6. Let αH + ∈ �(H +) ∩ ET,+2
H + , αI + ∈ �(I +) ∩ ET,+2

I + , such that
(8.34) is satisfied. Then there exists a unique solution α to Eq. (3.2) in J+(�) such that
limv−→∞ r5α = αI + , 2M�2α

∣∣
H + = αH + . Moreover, (α

∣∣
�

, /∇n�α|�) ∈ ET,+2
� and

∥∥(α|�, /∇n�α|�
)∥∥2ET,+2

�
= ||αI + ||2ET,+2

I +
+ ||αH + ||2ET,+2

H +
. (8.35)
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Corollary 8.1.7. Let αH + ∈ ET,+2
H + be such that V −2α ∈ �(H +) and let αI + ∈

�(I +) ∩ ET,+2
I + . Then there exists a unique solution α to Eq. (3.2) in J+(�) such that

limv−→∞ r5α = αI + , 2MV −2�2α
∣∣
H + = V −2αH + . Moreover, (α

∣∣
�

, /∇n�
α|�) ∈

ET,+2
�

and

∥∥(α|�, /∇n�
α|�

)∥∥2ET,+2
�

= ||αI + ||2ET,+2
I +

+ ||αH + ||2ET,+2

H +

. (8.36)

8.1.3. A pointwise estimate near i0 in backwards scattering As an aside, if αI + is
compactly supported we can use the backwards r p-estimates of Sect. 5.5.2 to obtain
better decay for α,ψ towards i0. We illustrate this point in what follows:

Proposition 8.1.2. Let α be the solution to (3.2) arising from scattering data αH + ∈
�c(H

+≥0),αI + ∈ �c(I
+≥0) as in Proposition 8.1.1. Then r5ψ |�∗ , r5α|�∗ −→ 0. The

same applies when �∗ is replaced by � or �.

Proof. Given that ψI + = ∂2u αI + is compactly supported, we already know that
�|�∗,r=R −→ 0 as R −→ 0. We first work with r5ψ , for which we can derive a
similar estimate to (6.37): Let u < u′ < u− and take (u, v, θ A) ∈ �∗, v − u := R∗.
Integrating Eq. (6.35) in u on C v between u, u′, we obtain:

∣∣∣r5�−1ψ(u, v) − r5�−1ψ(u′, v)

∣∣∣ ≤
∫ u′

u
|�| exp

[∫ u′

u

3�2 − 1

r
dū

]

�
[∫ u′

u
|�|

](
r(u′, v)

r(u, v)

)2

. (8.37)

We further compare
∫ u′

u |�| dū to
∫ u′
−∞ |�|I + : via the backwards r p-estimates of

Sect. 5.5.2:

∣∣∣∣∣
∫ u′

u
du |�| −

∫ u′

−∞
du

∣∣ψI +

∣∣
∣∣∣∣∣
2

≤
[∫

D
dudv|�/∇4�|

]2
≤ 1√

R

∫
D

dudv r2|�/∇4�|2,
(8.38)

whereD = J+(�∗)∩ J+(C v)∩ J−(Cu′). As in Sect. 5.5.2, we can bound the last integral

by the right hand side of (5.100). As R −→ ∞,
∫ u′

u du |�| −→ ∫ u′
−∞ du

∣∣ψI +

∣∣ = 0.
Consequently

∣∣r5�−1ψ(u, v) − r5�−1ψ(u′, v)
∣∣ decays as R −→ ∞ and

lim
R−→∞ r5ψ |�∗,r=R = 0. (8.39)

We can prove the same for r5α|�,r=R by repeating the above argument for
∫ u+

u− du(u −
u−)� and noticing that

∫ u+
u− du(u −u−)ψI + also vanishes since ψI + is the 2nd deriva-

tive of compactly supported fields on I +. ��
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8.2. Future scattering for α. Forwards and backwards scattering for the − 2 Teukolsky
equation are worked out entirely analogously to the case of the + 2 Teukolsky equation,
using the scattering theory of the Regge–Wheeler equation and the results of Sect. 7.2.
In contrast to the + 2 equation, the transport equation (3.19) relating α and� is sufficient
to obtain an estimate for the radiation field near I + that is uniform in the future end
of the support of αI + , while near H + α experiences an enhanced blueshift, and it is
necessary for scattering data to decay exponentially at a sufficiently fast rate towards the
future in order to obtain a solution in backwards scattering that is smooth near H +.

8.2.1. Forwards scattering for α We put together the ingredients worked out in Sect. 7.2
to construct the forwards scattering map.

Proof of Theorem 4.2.7. Let α be the solution to Eq. (3.5) on J+(�∗) arising out of a
compactly supported data set (α,α′) on �∗ as in Proposition 3.1.1. Proposition 3.1.2
guarantees the existence of the radiation field αH + as in Definition 7.2.1. Proposi-
tion 7.2.1 says that αH + −→ 0 towards the future end of H +. Let � be the solution
to Eq. (3.15) associated to α via (3.19) The fact that (�|�∗ , /∇T �|�∗) are compactly
supported means that the results of Sect. 7.2.2 apply and αH + ∈ ET,−2

H +≥0
. Similarly, by

Proposition 7.2.4, rα has a pointwise limit as v −→ ∞ which induces a smooth αI +

on I +. Corollary 7.2.2 implies that αI + decays towards the future end of I +. As
ψ
I + ∈ ET

I + , we have that

A2(A2 − 2)
∫ ∞

v

dūαI + − 6MαI + ∈ L2(I +). (8.40)

The fact thatα arises fromdata of compact supportmeans that (7.34) applies. This implies
upon evaluating the L2(I +) norm of the left hand side of (8.40) that αI + ∈ ET,−2

I + . ��
Corollary 8.2.1. Solutions to (3.5) arising from data on � of compact support give rise
to smooth radiation fields in ET,−2

I + and ET,−2
H + . Solutions to (3.5) arising from data on

� of compact support give rise to smooth radiation fields in ET,−2
I + and ET,−2

H + .

Proof. Identical to the proof of Corollary 5.3.1 using Propositions 3.1.4 and 3.1.8. ��
The proof of Theorem 4.2.7 above and Corollary 8.2.1 allow us to define the forwards
maps (−2)F + from dense subspaces of ET,−2

�∗ , ET,−2
� , ET,−2

�
.

Definition 8.2.1. Let (α,α′) be a smooth data set of compact support to the− 2 Teukol-
sky equation (3.5) on �∗ as in Proposition 3.1.2. Define the map (−2)F + by

(−2)F + : �c(�
∗) × �c(�

∗) −→ �(H +≥0) × �(I +), (α,α′) −→ (αH + ,αI +),

(8.41)

where (αH + ,αI +) are as in the proof of Theorem 4.2.7.
Using Corollary 8.2.1, the map (−2)F + is defined analogously for data on �,�:

(−2)F + : �c(�) × �c(�) −→ �(H +) × �(I +), (α,α′) −→ (αH + ,αI +), (8.42)
(−2)F + : �c(�) × �c(�) −→ �(H +) × �(I +), (α,α′) −→ (αH + ,αI +). (8.43)
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8.2.2. Backwards scattering for α Now we construct the inverse (−2)B− of Theo-
rem 4.2.8 on a dense subspace of ET,−2

H +≥0
⊕ ET,−2

I + . The existence of a solution to (3.5)

out of compactly supported scattering data on H +≥0,I
+ is shown in Proposition 8.2.1.

Showing that this solution defines an element of ET,−2
�∗ is done in Proposition 8.2.2.

Proposition 8.2.1. For αH + ∈ �(H +≥0) ∩ ET,−2
H +≥0

supported on H +≥0 ∩ {v < v+} for

v+ < ∞, αI + ∈ �(I +) ∩ ET,−2
I + supported on on I + ∩ {u < u+} for u+ < ∞, there

exists a unique solution α to (3.5) in J+(�∗) that realises αH + and αI + as its radiation
fields on H +≥0, I + respectively.

Remark 8.2.1. The fact that αI + ∈ ET,−2
I + automatically implies that

∫∞
−∞ dū αI + = 0.

Proof. Let �̃ be a spacelike surface connectingH + at a finite v∗ > v+ toI + at a finite
u∗ > u+. Denote by D the region bounded byH +≥0 ∩ {v < v+}, �̃, I + ∩ [u−, u+], �∗
and Cu− for u− > −∞. We define

ψ
H + = 2

(2M)2
∂vαH + +

1

2M
∂vαH + , (8.44)

ψ
H + = 2(2M)2αH + + 2(2M)3∂vαH + + (2M)4∂2vαH + , (8.45)

ψ
I + = −

∫ ∞

u
dū A2 αI + , (8.46)

ψ
I + =

∫ ∞

u
dū (u+ − u)

[
A2(A2 − 2)αI + + 6M∂uαI +

]
. (8.47)

We can find a unique solution � to (3.15) with radiation fields ψ
I + , ψH + . Let

r3�ψ(u, v, θ A) := (2M)3ψ
I +(u, θ A) −

∫ ∞

v

d v̄
�2

r2
�(u, v̄, θ A), (8.48)

r�2α(u, v, θ A) := αI +(u, θ A) −
∫ ∞

v

d v̄ r�3ψ(u, v̄, θ A). (8.49)

Then ψ, α satisfy:

� = r2

�2�/∇4r3�ψ =
(

r2

�2�/∇4

)2

r�2α. (8.50)

Moreover, we can see that limv−→∞ r3�ψ(u, v, θ A) = ψ
I +(u, θ A) uniformly in u, as

∫
S2

|r3�ψ − (2M)3ψ
I + |2 =

∫
S2

[∫ ∞

v

�2

r2
�d v̄

]2
� 1

r
FT

u [�](v,∞), (8.51)

and similarly limv−→∞ r�2α(u, v, θ A) = αI +(u, θ A) uniformly in u. We can re-

peat the same for /∇T , /̊∇-derivatives of r�2α, r3�ψ , which immediately implies that
∂ur3�ψ −→ ∂uψ

I + , ∂ur�2α −→ ∂uαI + as v −→ ∞.
The commutation relation (3.20) implies

(
r2

�2�/∇4

)2

T −2r�2α = 0. (8.52)
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We find T −2r�2α and r2

�2 �/∇4T −2r�2α:

T −2r�2α = �/∇3r3�ψ − 3�2 − 1

r
r3�ψ −

(
A2 − 6M

r

)
r�2α, (8.53)

r2

�2�/∇4T −2r�2α = �/∇3� −
[
A2 − (3�2 − 1)

]
r3�ψ − 6Mr�2α. (8.54)

It is not hard to see from (8.44), (8.46), (8.45), (8.47), that in the limit v −→ ∞,
T −2r�2α and r2

�2 �/∇4T −2r�2α vanish. This implies that α satisfies T −2r�2α = 0 on

D . It is also clear that �−2α|H + = αH + . Finally, we can repeat the above to extend α

to J+(�∗) ∩ {u ≥ ũ} for arbitrarily small ũ. ��
Note that energy conservation translates to the following r -weighted estimates that are
uniform in u as u −→ −∞:

∫
Cu

r2

�2 |�/∇4r3�ψ |2 ≤ FT
u [�](v,∞), (8.55)

∫
Cu

r2

�2 |�/∇4r�2α|2 �
∫
Cu

|�/∇4r3�ψ |2 � 1

r2
FT

u [�](v,∞). (8.56)

This can be traced to the good sign of the first order term in Eq. (3.5) near I + when
evolving backwards, and similar estimates can in fact be derived directly from Eq. (3.5).
We can deduce

Proposition 8.2.2. Let αH + ,αI + be as in Proposition 8.2.1. Let α be the corresponding
solution to Eq. (3.5). Then we have that (�−2α|�∗ , /∇n�∗ �−2α|�∗) ∈ ET,−2

�∗ .

Proof. Using (8.55), (8.56) it is easy to use the argument of Corollary 8.1.2 to show

that limr−→∞
∣∣∣r 7

2 ψ |�∗
∣∣∣ = limr−→∞

∣∣∣r 7
2 α|�∗

∣∣∣ = 0, so we can repeat what was done to

prove Corollary 8.1.2 to obtain the result. ��
Definition 8.2.2. Let αH + ,αI + be as in Proposition 8.2.1. Define the map (−2)B− by

(−2)B− : �c(H
+≥0) × �c(I

+) −→ �(�∗) × �(�∗),(αH + ,αI +) −→ (�−2α|�∗ ,

/∇n�∗ �
−2α|�∗), (8.57)

where α is the solution to (3.5) arising from scattering data (αH + ,αI +) as in Proposi-
tion 8.2.1.

Corollary 8.2.2. The maps (−2)F +, (−2)B− extend uniquely to unitary Hilbert space
isomorphisms on their respective domains, such that (−2)F + ◦ (−2)B− = I d, (−2)B− ◦
(−2)F + = I d.

Remark 8.2.2. As in the case of Remarks 5.4.1 and 8.1.1, Corollary 8.2.2 implies

‖(−2)B−(αH + ,αI +)‖2ET,−2
�∗

= ‖αH +‖2ET,−2
H +≥0

+ ‖αI +‖2ET,−2
I +

. (8.58)

As in the case of Proposition 5.5.1, we can use the backwards r p-estimates of Sect. 5.5.2
to directly show (8.58) without reference to the forwards map (−2)F +.
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Since the region J+(�) ∩ J−(�∗) can be handled locally via Proposition 3.1.4, Propo-
sition 3.1.8 and T -energy conservation, we can immediately deduce the following:

Corollary 8.2.3. The map (−2)B− can be defined on the following domains:

(−2)B− : ET,−2
H + ⊕ ET,−2

I + −→ ET,−2
� , (8.59)

(−2)B− : ET,−2
H + ⊕ ET,−2

I + −→ ET,−2
�

, (8.60)

and we have

(−2)F + ◦ (−2)B− = I dET,−2
H + ⊕ ET,−2

I +
, (−2)B− ◦ (−2)F + = I dET,−2

�
, (8.61)

(−2)F + ◦ (−2)B− = I dET,−2

H + ⊕ ET,−2
I +

, (−2)B− ◦ (−2)F + = I dET,−2
�

. (8.62)

This concludes the proof of Theorem 4.2.8.

8.2.3. Non-compact future scattering data and the blueshift effect In contrast to (8.55),
(8.56) (and to the estimates of Remark 8.1.2), estimates for �−2α near H + in the
backwards direction suffer from an enhanced blueshift, which can be readily seen in the
transport equations (3.19):

�/∇4r3�−1ψ +
2M

r2
r3�−1ψ = �

r2
. (8.63)

For r < RH + < 3M , we can derive∫
S2u,v

|r3�−1ψ − (2M)3ψ
H + |2 �

∫
S2u,v+

|r3�−1ψ − (2M)3ψ
H + |2

︸ ︷︷ ︸
=0

+
1

M

∫ v+

v

d v̄

∫
S2u,v̄

|r3�−1ψ − (2M)3ψ
H + |2 +

1

(2M)2

∫ v+

v

d v̄

∫
S2u,v̄

|� − ψ
H + |2.
(8.64)

Grönwall’s inequality and (5.68) imply∫
S2u,v

|r3�−1ψ − (2M)3ψ
H + |2 �v+ e

1
M (v+−v)

[
‖ψ

I +‖2ET
I +

+ ‖ψ
I +‖2ET

H +

+
∫
H +∩[v,v+]

|ψ
H + |2 + | /̊∇ψ

H + |2
]

.

(8.65)

The equation

�/∇4r�−2α +
4M

r2
r�−2α = r�−1ψ (8.66)

implies a similar estimate with a worse exponential factor∫
S2u,v

|r�−2α − 2MαH + |2 �v+ e
2
M (v+−v)

[
‖ψ

I +‖2ET
I +

+ ‖ψ
I +‖2ET

H +

+
∫
H +∩[v,v+]

|ψ
H + |2 + | /̊∇ψ

H + |2
]

.

(8.67)
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We can conclude that the statement of the backwards existence theorem holds when
scattering data is not compactly supported, but the solution will not be smooth unless
data decays exponentially, which we can then show with the following applied to (8.64):

Lemma 8.2.3. Let f (v) > 0 and assume

f (v) ≤ �

∫ v+

v

f (v) + e−Pv (8.68)

for all v < v+. Then if P > � we have

f (v) <
P

P − �
e−Pv. (8.69)

With this, we see that if αH + , αI + decay exponentially at a rate faster than 1
M then the

we are guaranteed that
∫

S2u,v

|r�−2α − 2MαH + |2

�
[
‖ψ

I +‖2ET
I +

+ ‖ψ
I +‖2ET

H +
+
∫
H +∩[v,v+]

|ψ
H + |2 + | /̊∇ψ

H + |2
]

. (8.70)

Corollary 8.2.4. Let αH + be a smooth symmetric traceless S2∞,v 2-tensor field with
domain H +, αI + a smooth symmetric traceless S2∞,v 2-tensor field with domain I +.
Then there exists a unique α that is smooth on the interior of J+(�∗) and satisfies (3.5).
If αH + ,αI + decay exponentially towards the future at rate faster than 1

M then �−2α

is smooth up to and including H +.

Since the region J+(�) ∩ J−(�∗) can be handled locally with Proposition 3.1.3 and
Corollary 5.3.1, the results above can be extended to scattering from �,�.

Corollary 8.2.5. Let αH + ∈ �(H +)∩ ET,−2
H + , αI + ∈ �(I +)∩ ET,−2

I + . Assume αH + ,

αI + decay exponentially at a rate faster than 1
M . Then there exists a unique solution α

to Eq. (3.5) in J+(�) such that limv−→∞ rα = αI + , 2M�−2α
∣∣
H + = αH + . Moreover,

(α
∣∣
�

, /∇T α|�) ∈ ET,−2
� and

∥∥(α|�, /∇n�α|�
)∥∥2ET,−2

�
= ∣∣∣∣αI +

∣∣∣∣2ET,−2
I +

+
∣∣∣∣αH +

∣∣∣∣2ET,−2
H +

. (8.71)

Corollary 8.2.6. Let αH + ∈ ET,−2
H + be such that V 2α ∈ �(H +) and let αI + ∈

�(I +) ∩ ET,−2
I + . Assume αH + , αI + decay exponentially at a rate faster than 1

M , then
there exists a unique solution α to Eq. (3.5) in J+(�) such that limv−→∞ rα = αI + ,
V 2�−2α

∣∣
H + = V 2αH + . Moreover, (α

∣∣
�

, /∇T α|�) ∈ ET,−2
�

and

∥∥(α|�, /∇n�
α|�

)∥∥2ET,−2
�

= ∣∣∣∣αI +

∣∣∣∣2ET,−2
I +

+
∣∣∣∣αH +

∣∣∣∣2ET,−2

H +
. (8.72)
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8.3. Past scattering for α, α. Taking into account Remark 3.1.1, Theorems 4.2.4 and
4.2.9 are immediate. We state the results regarding scattering on J−(�).

Corollary 8.3.1. Given smooth data of compact support (α,α′) ∈ ET,+2
�

, there exists

a unique solution α to the + 2 Teukolsky equation (3.2) on J−(�) that induces smooth
radiation fields

• αI − ∈ ET,+2
I − given by αI −(v, θ A) = limu−→−∞ rα(u, v, θ A),

• αH − ∈ ET,+2
H − given by U 2αI − = 2MU 2�−2α|H − .

such that ∥∥(α|�, /∇T α|�
)∥∥2ET,+2

�

= ||αI −||2ET,+2
I −

+ ||αH −||2ET,+2

H −
. (8.73)

Let αH − ∈ ET,+2
H − be such that U 2α ∈ �(H −) and let αI − ∈ �(I −)∩ ET,+2

I − . Assume

αH − , αI − decay exponentially at a rate faster than 1
M , then there exists a unique

solution α to Eq. (3.2) in J−(�) such that limu−→−∞ rα = αI − , 2MU 2�−2α
∣∣
H − =

U 2αH − . Moreover, (α
∣∣
�

, /∇T α|�) ∈ ET,+2
�

and (8.73).

Therefore, as in the case of (+2)F +, (+2)B− we can define the unitary isomorphisms

(+2)F− : ET,+2
�

−→ ET,+2
H − ⊕ ET,+2

I − , (+2)B+ : ET,+2
H − ⊕ ET,+2

I − −→ ET,+2
�

,

(8.74)

with

(+2)F− ◦ (+2)B+ = I dET,+2
�

, (+2)B+ ◦ (+2)F−◦ = I dET,+2

H −⊕ET,+2
I −

. (8.75)

An identical statement holds with ET,+2
� , ET,+2

H − instead.

Corollary 8.3.2. Given smooth data of compact support (α,α′) ∈ ET,−2
�

, there exists a

unique solution α to the − 2 Teukolsky equation (3.5) on J−(�) that induces radiation
fields

• αI − ∈ ET,−2
I − given by αI −(v, θ A) = limu−→−∞ r5α(u, v, θ A),

• αH − ∈ ET,−2
H − given by U−2αH − = 2MU−2�2α|H − .

such that ∥∥(α|�, /∇T α|�
)∥∥2ET,−2

�

= ∣∣∣∣αI −
∣∣∣∣2ET,−2

I −
+
∣∣∣∣αH −

∣∣∣∣2ET,+2

H −
. (8.76)

Let αH − ∈ ET,−2
H − be such that U−2α ∈ �(H −) and let αI − ∈ �(I −) ∩ ET,−2

I − .

Then there exists a unique solution α to Eq. (3.5) in J+(�) such that limu−→−∞ r5α =
αI − , 2MU−2�2α

∣∣
H − = U−2αH − . Moreover, (α

∣∣
�

, /∇T α|�) ∈ ET,−2
�

and (8.76) is

satisfied. An identical statement holds with ET,−2
� , ET,−2

H − instead.

Finally, note that using Corollaries 8.3.1 and 8.3.2, the proof of Theorem 4.2.5 and
Theorem 4.2.10 is immediate.
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9. Teukolsky–Starobinsky Correspondence

We now turn to the proof of Theorem 3 of the introduction, whose detailed statement is
contained in Theorem 4.3.1. We start by stating in Sect. 9.1 some useful algebraic rela-
tions satisfied by the constraints (1.5), (1.6). We then study the constraints on scattering
data in Sect. 9.2 to construct the maps T SH ± , T SI ± , and then we use the results of
Sects. 9.1 and 9.2 to show that the constraints are propagated by solutions arising from
scattering data consistent with the constraints, culminating in the proof of Corollary 1
of the introduction in Sect. 9.4.

9.1. Some algebraic properties of the Teukolsky–Starobinsky identities. Let α be a solu-

tion to the + 2 Teukolsky equation and let� =
(

r2

�2 �/∇3

)2
r�2α, then the commutation

relation (3.17) implies that

T −2
[
�2

r2
�/∇3

r2

�2�/∇3�

]
= 0. (9.1)

(Recall [mathcal T remark] for the notation T +2 used above). Similarly, if α satisfies

the − 2 Teukolsky equation and � =
(

r2

�2 �/∇4

)2
r�2α, (3.20) implies

T +2
[
�2

r2
�/∇4

r2

�2�/∇4�

]
= 0. (9.2)

Note that were (
(1)

α,
(1)

α) to belong to a solution to the full system of equations (2.41)-(2.54)
then in fact we would have equations (3.13), (3.14):

�2

r2
�/∇3

r2

�2�/∇3
(1)

� −2r4 /D∗
2 /D∗

1 /D1 /D2r�2 (1)

α −6M
[
�/∇4 + �/∇3

]
r�2 (1)

α= 0, (9.3)

�2

r2
�/∇4

r2

�2�/∇4
(1)

� −2r4 /D∗
2 /D∗

1 /D1 /D2r�2 (1)

α +6M
[
�/∇4 + �/∇3

]
r�2 (1)

α= 0. (9.4)

Combining (9.1) and (9.2) with the fact that −2r4 /D∗
2 /D∗

1 /D1 /D2, /∇T commute with
both (3.2) and (3.5) leads to the following: denote by TS

−[α, α] the expression on the
left hand side of (9.3) acting on α, α, such that the constraint becomes

TS
−[α, α] := 1

r3
�/∇3

r2

�2�/∇3� − 2r4 /D∗
2 /D∗

1 /D1 /D2α + 6M
[
�/∇4 + �/∇3

]
α = 0.

(9.5)

Similarly denote by TS
−[α, α] the expression on the left hand side of (9.4) so that the

constraint becomes

TS
+[α, α] := 1

r3
�/∇4

r2

�2�/∇4� − 2r4 /D∗
2 /D∗

1 /D1 /D2α − 6M
[
�/∇4 + �/∇3

]
α = 0.

(9.6)



568 H. Masaood

Lemma 9.1. For α satisfying the + 2 Teukolsky equation (3.2) and α satisfying the − 2
equation (3.5), TS

+[α, α] also satisfies the + 2 Teukolsky equation (3.2) and TS
−[α, α]

satisfies the − 2 equation (3.5)

This implies that if we impose both constraints (9.3), (9.4) on initial or scattering data
for both the + 2 and − 2 Teukolsky equations then the constraints will be propagated
by the solutions in evolution. More specifically, if we have scattering data for α, α such
that the radiation fields belonging to the quantities TS

+[α, α], TS
−[α, α] (in the sense

of the definitions stated in Sects. 6.2 and 7.2) are vanishing, then we must have that
TS

+[α, α] = 0, TS
−[α, α] = 0 by Theorem 4.2.3 and Theorem 4.2.8.

We would like to know the extent to which data for α, α are constrained by Eq. (9.5)
and Eq. (9.6). Doing this for data on a Cauchy surface is complicated, but if we restrict
to data consistent with the scattering theory developed so far in this paper then we can
alternatively attempt to address this question for scattering data onI +,H +. This is the
subject of the remainder of this section.

To start with, we can show the following by a straightforward computation

Lemma 9.2. For α satisfying the + 2 Teukolsky equation (3.2) and α satisfying the − 2
Teukolsky equation (3.5)

�2

r2
�/∇4

(
r2

�2�/∇4

)3

r�2
TS

−[α, α] = −
[
2r4 /D∗

2 /D∗
1 /D1 /D2 + 12M /∇T

]
r�2

TS
+[α, α],
(9.7)

�2

r2
�/∇3

(
r2

�2�/∇3

)3

r�2
TS

+[α, α] =
[
2r4 /D∗

2 /D∗
1 /D1 /D2 − 12M /∇T

]
r�2

TS
−[α, α].

(9.8)

In other terms,

TS
+ [

TS
+[α, α],− TS

−[α, α]] = 0, TS
− [− TS

+[α, α], TS
−[α, α]] = 0,

(9.9)

regardless of whether or not the constraints TS
+[α, α] = 0, TS

−[α, α] = 0 are satisfied.

Lemma 9.2 implies that Eqs. (9.3), (9.4) are not independent. We will use Lemma 9.2
in Sect. 9.3 to show that imposing only of the constraints onI + and imposing only the
other constraint on H + is enough to propagate the constraints on the solutions α, α.

9.2. Inverting the identities on I +,H +.

Constraint (9.4) at I + We know that there are dense subspaces of ET,+2
�

, ET,−2
�

con-
sisting of smooth data for Eqs. (3.2), (3.5) such that

lim
v−→∞ r�2

TS
−[α, α] = ∂4u αI + − 2 /̊D∗

2 /̊D∗
1 /̊D1 /̊D1αI + + 6M∂uαI + , (9.10)

so we consider

∂4u αI + − 2 /̊D∗
2 /̊D∗

1 /̊D1 /̊D1αI + − 6M∂uαI + = 0 (9.11)

as a constraint on scattering data αI + ,αI + atI +. We now show the following: if αI +

is smooth and compactly supported, then there is a unique αI + that decays towardsI +±
and satisfies (9.11):
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Proposition 9.1. Let αI + ∈ �c(I +). Then there exists a unique smooth αI + such that

∂4u αI + − 2 /̊D∗
2 /̊D∗

1 /̊D1 /̊D1αI + − 6M∂uαI + = 0, (9.12)

with αI + −→ 0 as u −→ ±∞.

Proof. To make sense of (9.12) we scalarise it: we associate to αI + scalar fields ( f , g)

on M with vanishing � = 0, 1 modes such that αI + = r2 /D∗
2 /D∗

1( f , g). Similarly, we

associate to αI + the two fields ( f, g) such that αI + = r2 /D∗
2 /D2( f, g). Define further

F = �2

r2
�/∇3(

r2

�2 �/∇3)
3 f and G = �2

r2
�/∇3(

r2

�2 �/∇3)
3g. In the absence of � = 0, 1

modes, r2 /D∗
2 /D∗

1 is injective and thus (9.3) becomes:

(F, G) = 2r4 /̄D1 /D2 /D∗
2 /D∗

1( f , g) + 6M�/∇3( f , g)

= 2r4 /D1 /D2 /D∗
2 /D∗

1( f ,−g) + 6M�/∇3( f , g).
(9.13)

Note that r4 /D1 /D2 /D∗
2 /D∗

1 = 1
2r2 /D1[− /̊�−1] /D∗

1 and r2 /D∗
1 /D1 = − /̊�+1, so r4 /D1 /D2 /D∗

2 /D∗
1

= 1
2r4 /D1 /D∗

1 ×{ /D1 /D∗
1 − 2} = 1

2
/̊�( /̊� + 2). Equations (9.13) become

∂u f − 1

6M
/̊�( /̊� + 2) f = F, (9.14)

∂u g +
1

6M
/̊�( /̊� + 2)g = G. (9.15)

Equations (9.14) and (9.15) are two 4thorder parabolic equationswhich arewell-behaved
in opposite directions in time; a unique smooth solution exists for (9.14) when evolving
in the direction of increasing u whereas (9.15) admits a unique smooth solution in the
direction of decreasing u. Therefore, assuming the boundary condition f −→ 0 as
u −→ −∞ we will have a unique solution f to (9.14) and this solution will decay for
u −→ ∞. Similarly, there is a unique smooth g solving (9.15) with g −→ 0 when
u −→ ±∞. Thus there is a unique smooth αI + solving (9.12) and decays towardsI +± .��
Corollary 9.1. Let αI + ,αI + be as in Proposition 9.1, then∫ ∞

−∞
αI +du1 = 0 (9.16)

Proof. Equation (9.12) and the decay of αI + ,αI + implies

∂uαI + = 2r4 /D∗
2 /D∗

1 /D1 /D2

∫ u

−∞
du αI + + 6MαI + . (9.17)

Taking u −→ ∞ gives 2r4 /D∗
2 /D∗

1 /D1 /D2
∫∞
−∞ duαI + = 0 which implies

∫∞
−∞ duαI + =

0 as in Proposition 9.1. ��
Conversely we have the following lemma which follows immediately by inspecting
(9.11):

Proposition 9.2. Given αI + ∈ �c(I +), there exists a unique αH + that is smooth and
supported away from H +

+ , such that (9.11) is satisfied by αI + ,αI + . Furthermore, if∫∞
−∞ du αI + = 0 then αI + ∈ ET,+2

I + .
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This completes the construction of the map T SI + :

Corollary 9.2. Proposition 9.1 defines the map

T SI + : ET,+2
I + −→ ET,−2

I + . (9.18)

The map T SI + is surjective on a dense subspace of ET,−2
I + by Proposition 9.2. Therefore

it extends to a unitary Hilbert space isomorphism.

Remark 9.1. The argument leading to Corollary 9.1 can be used to show that
∫ ∞

−∞

∫ u1

−∞
αI +du1du2 =

∫ ∞

−∞

∫ u1

−∞

∫ u2

−∞
αI +du1du2

=
∫ ∞

−∞

∫ u1

−∞

∫ u2

−∞

∫ u3

−∞
αI +du1du2du3 = 0.

(9.19)

Constraint (9.3) at H + Similar considerations apply to constraint TS
+[α, α] = 0,

which in Kruskal coordinates looks like

∂4V V 2αH + =
[
2 /̊D∗

2 /̊D∗
1 /̊D1 /̊D1 − 3V ∂V − 6

]
V −2αH + . (9.20)

Proposition 9.3. Given αH + such that V −2αH + ∈ �c(H +), solving (9.20) as a trans-
port equation for V 2αH + with decay conditions towards H +

+ :

V 2αH + , ∂V V 2αH + , ∂
2
V V 2αH + , ∂

3
V V 2αH + −→ 0 as V −→ ∞, (9.21)

gives a unique solution such that V 2αH + ∈ �c(H +) and αH + ,αH + satisfy (9.20).

Conversely, we have the following:

Proposition 9.4. Let αH + be such that V 2αH + ∈ �c(H +), then there exists a unique
αH + with V −2αH + such that (9.20) is satisfied with V −2αH + −→ 0 as V −→ ∞
Proof. As in the proof of Proposition 9.1, we scalarise (9.20): Let V 2αH + = (2M)2

/D∗
2 /D∗

1( f , g), V −2αH + = (2M)2 /D∗
2 /D∗

1( f, g) and let F = −∂4V f , G = −∂4V g. Then
f, g, F, G satisfy

F =
[
3V ∂V + 6 − /̊�( /̊� + 2)

]
f, (9.22)

G =
[
3V ∂V + 6 + /̊�( /̊� + 2)

]
g. (9.23)

Equations (9.22), (9.23) are degenerate at V = 0. If f, g satisfy (9.22) and (9.23) then
at V = 0 we must have

F |V =0 =
[
6 − /̊�( /̊� + 2)

]
f |V =0, (9.24)

G|V =0 =
[
6 + /̊�( /̊� + 2)

]
g|V =0. (9.25)

The above are elliptic identities that determine ( f, g)|V =0 from F |V =0, G|V =0. Denote
( f0, g0) := ( f, g)|V =0.
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As was done in the proof of Proposition 9.1, we evolve (9.22) and (9.23) in opposite
directions in V . Working with (9.23) is straightforward: let V∞ lie beyond the support
of F , then there is a unique f satisfying (9.23) with f |V∞ = 0 and we set f to vanish
for V > V∞.

To find a solution to (9.22), note that for V0 > 0, there is a unique g that satisfies
(9.22) on V ≥ V0 and g|V0 = g0. Multiply (9.22) by g, integrate by parts to get:

3

2

[
g(V )2 − g(V0)

2
]
+
∫ V

V0

1

Ṽ
6g2 + | f /̊�( /̊� + 2)g|2 =

∫ V

V0

1

Ṽ
g · G (9.26)

Poincaré’s inequality and Cauchy–Schwarz imply:

g(V )2 +
∫ V

V0

5

Ṽ
g2 �

∫ V

V0

G2 + g2
0 (9.27)

We obtain similar estimates for ∂V g by commuting (9.22) with ∂V . We can use (9.27)
commuted with ∂V , /̊∇ to conclude that taking V0 −→ 0, we can find g that satisfies
(9.22) with g|V =0 = g0. ��
Remark 9.2. Werewe to apply the constraint (9.3) on a smaller portion of the future event
horizon, we would have needed more data to specify αH + completely. In considering
the problem on the entirety of H + no such additional data is necessary, since (9.24)
determines the f |B in terms of αH + .

Corollary 9.3. Proposition 9.3 defines the map

T SH + : ET,+2
H + −→ ET,−2

H + . (9.28)

The map T SH + is surjective on a dense subspace of ET,−2
H + by Proposition 9.4. Therefore

it extends to a unitary Hilbert space isomorphism.

We can analogously consider the constraints onH −,I −. In light of Remark 3.1.1 we
can immediately deduce the appropriate statements:

Corollary 9.4. Given αH − such that U 2αH − ∈ �c(H −), there exists a unique solu-
tion αH − to the equation

∂4U U 2αH − =
[
2 /̊D∗

2 /̊D∗
1 /̊D1 /̊D1 − 3U∂U − 6

]
U−2αH − . (9.29)

such that U−2αH − ∈ �(H −). The solution αH −(u, θ A) and its ∂U , /̊∇ derivatives
decay exponentially as u −→ −∞ at a rate 4

M .

Given αH − such that U−2αH − ∈ �c(H −), there exists a unique solution αH −
such that U 2αH − ∈ �c(H −).

As in Corollary 9.3, we can combine the statements above to define a unitary Hilbert
space isomorphism via (9.29):

T SH − : ET,+2
H − −→ ET,−2

H − . (9.30)



572 H. Masaood

Corollary 9.5. Let αI − ∈ �c(I −). Then there exists a unique smooth αI − such that

∂4vαI − − 2 /̊D∗
2 /̊D∗

1 /̊D1 /̊D1αI + − 6M∂vαI + = 0, (9.31)

with αI + −→ 0 as u −→ ±∞. The solution αI − and its derivatives decay exponen-
tially as v −→ ±∞.

Given αI − , there exists a unique solution αI − to (9.31) that is supported away
from the past end of I −. Moreover,

∫∞
−∞ d v̄ αI − = 0.

As in (9.2), the statements above can be combined to define via (9.31) a unitary
Hilbert space isomorphism:

T SI − : ET,+2
I − −→ ET,−2

I − . (9.32)

Corollary 9.6. There exist Hilbert space isomorphisms

T S+ := T SH + ⊕ T SI + : ET,+2
H + ⊕ ET,+2

I + −→ ET,−2
H + ⊕ ET,−2

I + , (9.33)

T S− := T SH − ⊕ T SI − : ET,+2
H − ⊕ ET,+2

I − −→ ET,−2
H − ⊕ ET,−2

I − . (9.34)

9.3. Propagating the identities. We can summarise the contents of the previous section
as follows: given scattering data for either α or α on I + and H +, there exist unique
scattering data for the other that is consistent with (9.11) and (9.20) and corollaries 8.1.5
and 8.2.4.

For α and α arising from scattering data related by (9.11) and (9.20), if we can
verify that

lim
v−→∞ r5 TS

+[α, α] = 0, (9.35)

V 2�−2
TS

−[α, α]
∣∣∣
H +

= 0, (9.36)

then Lemma 9.1 together with Theorem 4.2.3, Theorem 4.2.8 imply that TS
−[α, α] =

TS
+[α, α] = 0 everywhere.
Assume future scattering data with (V −2αH + ,αI +) ∈ �c(H +) × �c(I +) for

the + 2 Teukolsky equation Eq. (3.2). We can obtain αH + that is supported away from
H +

+ by solving (9.20) as a transport equation, and we can use Proposition 9.1 to find a
smooth αI + decays exponentially towards I +± at rate faster than 4

M . Therefore, there
exists a unique solutionα that realises scattering data (αH + , αI +)withV 2�−2α smooth

everywhere on J+(�) up to and includingH +. In particular, since TS
+[α, α]

∣∣∣
H +

= 0,

Eq. (9.7) implies

∂4V

{
∂4U V −2αH + +

(
2 /̊D∗

2 /̊D∗
1 /̊D1 /̊D1 − 3V ∂V − 6

)
V 2αH +

}
= 0. (9.37)

Since V −2αH + , V 2αH + and their derivatives decay as v −→ ∞, we conclude that

V 2�−2
TS

−[α, α]
∣∣∣
H +

= 0.
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Towards I +, (αH + ,αI +) decay at a sufficiently fast rate that we can use Corol-
lary 8.2.4, Proposition 5.5.4, and Corollary 5.5.2 to deduce.

lim
u−→∞ lim

v−→∞

(
r2

�2 �/∇4

)2

� = lim
u−→∞

∫ ∞

u
(u − ū) [A2(A2 − 2) − 6M∂u]ψI +

= lim
u−→∞

∫ ∞

u
(u − ū)

[A2
2(A2 − 2)2 − (6M∂u)2

]
αI + = 0.

(9.38)

We also have

lim
u−→∞ lim

v−→∞ ∂ i
u

(
r2

�2�/∇4

)2

� = 0. (9.39)

for 0 ≤ i ≤ 3. Taking the limit of (9.8) as v −→ ∞ implies

∂4u

[
lim

v−→∞

(
r2

�2�/∇4

)2

� −
(
2 /̊D∗

2 /̊D∗
1 /̊D1 /̊D1 + 6M∂u

)
αI +

]
= 0. (9.40)

Altogether, we see that limv−→∞ r5 TS
+[α, α] = 0. We have shown

Proposition 9.1. Assume α is a solution to Eq. (3.2) arising from smooth scattering
data (αH + ,αI +) such that αI + ∈ �c(I +), V −2αH + ∈ �c(H +). There exists unique
smooth scattering data αH + ∈ ET,−2

H + ,αI + ∈ ET,−2
I + giving rise to a solution α to

Eq. (3.5). Moreover, α and α satisfy TS
+[α, α] = TS

−[α, α] = 0 everywhere on J+(�).

Wecan repeat the above arguments starting from smooth, compactly supported scattering
data for the − 2 equation to arrive at

Proposition 9.2. Assume α is a solution to Eq. (3.5) arising from smooth scattering
data (αH + ,αI +) such that αI + ∈ �c(I +), V 2αH + ∈ �c(H +). There exists unique
smooth scattering data αH + ∈ ET,+2

H + ,αI + ∈ ET,+2
I + giving rise to a solution α to

Eq. (3.2). Moreover, α and α satisfy TS
+[α, α] = TS

−[α, α] = 0 everywhere on J+(�).

This concludes the proof of Theorem 4.3.1, i.e. Theorem 3 of the introduction.

9.4. A mixed scattering theory: proof of Corollary 1. We are in a position to prove
Corollary 1 of the introduction, i.e. Corollary 4.4.1 of Sect. 4.4:

Proof of Corollary 1. We will construct the map S +2,−2 only in the forward direction
on a dense subset of ET,−2

H − ⊕ ET,+2
I − . LetαI − ∈ �c(I −),αH − be such that V 2αH − ∈

�c(H −) and
∫∞
−∞ d v̄αI − = 0. The map T S− of Corollary 9.6 defines a scattering

data set consisting of a smooth field αI − onI − which is supported away from the past
end of I −, αH − on H − which is supported away from the past end of H −.
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The map (+2)B− of Theorem 4.2.4 gives rise to a smooth solution α on J−(�) such
that ∥∥(α|�, /∇n�

α|n�

)∥∥2ET,+2
�

= ‖αH −‖2ET,+2

H −
+ ‖αI −‖2ET,+2

I −
, (9.41)

and the map (+2)F + extends α to a smooth solution of (3.2) on J+(�). Combining
(9.41) with the fact that α|�∗ , /∇n�∗ α|�∗ are smooth implies that the estimates of Propo-
sitions 6.1.2, 6.1.3, 6.1.6 and 6.1.7 apply, and we can apply Corollaries 6.2.1, 6.2.2 and
6.2.3 together with Proposition 3.1.3 to conclude that α realises the image of (+2)F + on
H + as its radiation field there.

The scattering data set (αH − ,αI −) gives rise to a unique smooth solution α

according to Corollary 8.3.2, which in particular realises αH − ,αI − as its radiation

fields on H −, I − respectively. The quantity � =
(

r2

�2 �/∇4

)2
r�2α satisfies the

Regge–Wheeler equation (3.15) and induces a radiation field on I − that is given by
ψ
I − = ∂2vαI − . Note that in particular, ∂vψI − vanishes whenever αI − vanishes on

I −.
Assume the support of αI − on I − in v is contained in [v−, v+]. Since α arises

from scattering data of compact support, we can follow the steps leading to estimate
(8.33) taking into account Remark 3.1.1 to obtain the following: let R be sufficiently
large, then
∫
C v∩{r>R}

dūdω r2|�/∇3�|2 �v+ R2
[
‖αI −‖2ET,−2

I −
+ ‖αH −‖2ET,−2

H −

+
∫

[v−,v+]×S2
d v̄dω | /̊∇∂2vαI −|2S2 + 4|∂2vαI −|2S2

]
.

(9.42)

Let v1 > v+, then we can use (9.42) to show that
√

r∂v�|u,v −→ 0 as u −→ −∞:

|�/∇4�| ≤
∫ u

−∞
dū|�/∇4�/∇3�| �

∫ u

−∞
dū

1

r2
| /̊�� + �|

� 1√
r(u, v)

√∫ u

−∞
dū

1

r2
| /̊��|2 + | /̊∇�|2 + �|2

� 1√
r(u, v)

√∑
|γ |≤2

FT
v [/L�γ �](−∞, u).

(9.43)

where �γ = �
γ1
1 �

γ2
2 �

γ3
3 denotes Lie differentiation with respect to the so(3) algebra

of S2 Killing fields. Now take u1 < u2, v2 > v1 such that (u2, v1, θ
A) ∈ J−(�) and

r(u2, v1) > R. We can repeat the procedure leading to Proposition 5.1.3 in the region
Du2,v2

u1,v1 to get for p ∈ [0, 2]:



A Scattering Theory for Linearised Gravity 575

∫
C u2∩[v1,v2]

d v̄ sin θdθdφ r p|�/∇4�|2 +
∫
C v2

∩[u1,u2]
dū sin θdθdφ r p

[
| /∇�|2 + 1

r2
|�|2

]

+
∫
D

u2,v2
u1,v1

dūd v̄ sin θdθdφ r p−1
[

p|�/∇4�|2 + (2 − p)| /∇�|2 + 1

r3
|�|2

]

�
∫
C u1∩[v1,v2]

d v̄ sin θdθdφ r p|�/∇4�|2 +
∫
C v1

∩[u1,u2]
dū sin θdθdφ r p

[
| /∇�|2 + 1

r2
|�|2

]
.

(9.44)

Set p = 1 in (9.44). Keeping v1, v2 fixed and taking u1 −→ −∞, the first term on
the right hand side of (9.44) decays. The remaining term can be estimated by (9.42)
and applying Hardy’s inequality, knowing that � and its angular derivatives converge
pointwise towards I −. In conclusion we have

∫
D

u2,∞
−∞,v1

dūd v̄ sin θdθdφ

[
|�/∇4�|2 + | /∇�|2 + 1

r2
|�|2

]

�R

∑
|γ |≤2

[
‖/L�γ αI −‖2ET,−2

I −
+ ‖/L�γ αH −‖2ET,−2

H −

+
∫

[v−,v+]×S2
d v̄dω | /̊∇∂2v /L�γ αI −|2S2 + 4|∂2v /L�γ αI −|2S2

]
.

(9.45)

We can extend the regionDu2,∞−∞,v1
to obtain (9.45) over a regionD∞,∞

−∞,v1
∩{r > R} using

the degenerate ILED estimate (5.1.2). In view of the monotonicity of FT
u [�]∩ {r > R},

this implies in particular that

lim
u−→∞

∫
Cu∩{r>R}

d v̄ sin θdθdφ
�2

r2
|�|2 = 0. (9.46)

Now we show that α induces a radiation field αI + onI + which is in ET,+2
I + . First, note

that energy conservation is sufficient to show that α,ψ attains radiation fields on I +:
Fixing u and taking v2 > v1,

|r3�ψ(u, v2, θ
A) − r3�ψ(u, v1, θ

A)| ≤
∫ v2

v1

d v̄
�2

r2
|�| ≤ 1√

r(u, v1)

√∫ v2

v1

d v̄
�2

r2
|�|2.
(9.47)

by commuting with angular derivatives and using a Sobolev estimate as in the proof of
Proposition 5.2.3, this shows that for any sequence {vn} with vn −→ ∞ we have that
r3�ψ(u, vn, θ A) is a Cauchy sequence, and an identical argument yields the same for
α. Denote the limit of r3ψ near I + by ψ

I + .

Since r5ψ converges nearI −, estimate (9.47) can be easily modified to show that
ψ
I + decays towards the past end of I +. As for the future end of I +, we repeat the

estimate (9.47) estimating ψ
I + in terms of ψ along a hypersurface {r = R} for a fixed

R. Since α is smooth and ‖(α|�, /∇n�
α|�)‖ET,−2

�

< ∞, the results of Sect. 7.2.1 apply

and we can deduce that ψ |r=R decays as t −→ ∞, and this says that ψ
I + decays
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towards the future end of I +. Note that the preceding results apply equally to ∂tψ as
they do to ψ . We immediately see that �/∇3ψ −→ ∂uψ

I + towards I
+.

We now show that
∫∞
−∞ dū αI + = 0. Consider the − 2 Teukolsky equations (3.5),

which we write as follows:

�2

r2
�/∇3r5�−1ψ =

(
A2 − 6M

r

)
r�2α. (9.48)

In the limit towards I + we have

∂uψ
I + = A2 αI + . (9.49)

We can conclude by observing that ψ
I + decays towards both ends ofI

+. With this we

can also conclude that αI + ∈ ET,−2
I + and that

‖αI +‖2ET,−2
I +

+ ‖αH +‖2ET,+2

H +

= ‖αI −‖2ET,+2
I −

+ ‖αH −‖2ET,−2

H −
. (9.50)

��
Remark 9.1. The result above subsumes a restricted map to scattering data in ET,−2

H − ,

ET,+2
H + , which leads to an isomorphism

S +2,−2 : ET,+2
I − ⊕ ET,−2

H − −→ ET,−2
I + ⊕ ET,+2

H + . (9.51)
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A. Robinson–Trautman Spacetimes

In [16], it was shown that solutions to the linearised Einstein equations where
(1)

�= (1)

�= 0
can be identified with the Robinson–Trautman family of spacetimes near Schwarzschild.
This family of spacetimes is defined by the condition that they admit a null geodesic con-
gruence that is shear-free and twist-free, and as such these spacetimes are algebraically
special of Petrov type D in vacuum. These conditions lead to the reduction of the Ein-
stein equations to a nonlinear parabolic equation, and this leads to interesting properties,

http://creativecommons.org/licenses/by/4.0/
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such as the fact that for positive mass M , a generic member of this family can not be
smoothly extended through the event horizon [14].

It is easy to see that linearised Robinson–Trautman solutions cannot arise with data

for α in ET+2
I ± ⊕ ET+2

H ± and data for
(1)

α in ET −2
I ± ⊕ ET −2

H ± . If
(1)

�= (1)

�= 0 everywhere then

‖ (1)

αI ± ‖ET,+2
I ±

= ‖ (1)

αH ± ‖ET,+2
H ±

= 0 and ‖ (1)

αI ± ‖ET,−2
I ±

= ‖ (1)

αI ± ‖ET,−2
I ±

= 0, which

means
(1)

α= (1)

α= 0.

B. The Double Null Gauge and the Einstein Vacuum Equations

The following is a synopsis of sections 3, 4 of [16]. Let (M , g) be a Lorentzianmanifold.
A coordinate system (u, v, θ A) is said to define a double null gauge if the loci of u, v,

denoted by Cu,C v respectively, constitute foliations of spacetime by null hypersurfaces
with respect to g. The metric g in a double null gauge takes the form

ds2 = −4�2dudv + /gAB(dθ A − bAdv)(dθ B − bBdv). (B.1)

Here, (θ A) are coordinates on the 2-manifolds Su,v = Cu ∩ C v that are intersections
of constant u, v hypersurfaces, � is a scalar, bA is a vector field that is tangent to Su,v .
This gauge comes with a null frame (e3, e4, e1, e2):

e3 = 1

�
∂u e4 = 1

�
(∂v + bA∂ A), (B.2)

{eA, A = 1, 2} is a frame associated to the coordinates (θ A) on Su,v , such that eA · eB =
/gAB .

Let ∇ be the Levi–Civita connection associated with the metric g. In a double null
gauge the connection and curvature are organised into Su,v-tangent tensor fields. The
following are the connection coefficients:

χ AB = g(∇Ae4, eB) , χ
AB

= g(∇Ae3, eB)

ηA = −1

2
g(∇3eA, e4) , η

A
= −1

2
g(∇4eA, e3)

ω̂ = 1

2
g(∇4e3, e4) , ω̂ = 1

2
g(∇3e4, e3)

ζ A = 1

2
g(∇Ae4, e3)

(B.3)

We further decompose χ and χ into their trace 1
2 g(t rχ), 1

2 g(t rχ) and traceless sym-
metric parts χ̂ , χ̂ . In the Schwarzschild background only ω̂, ω̂ and the traces of χ ,χ
survive:

χ AB = �

r
/gAB χ

AB
= −�

r
/gAB

ω̂ = M

r2�
= −�x

2r
ω̂ = − M

r2�
= �x

2r

(B.4)
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The curvature components are organised as follows:

αAB = R(eA, e4, eB, e4) αAB = R(eA, e3, eB, e3)

β A = 1

2
R(eA, e4, e3, e4) β

A
= 1

2
R(eA, e3, e3, e4)

ρ = 1

4
R(e4, e3, e4, e3) σ = 1

4
∗ R(e4, e3, e4, e3)

(B.5)

with ∗Rabcd = εabe f R
e f

cd denoting the Hodge dual on (M , g) of R.
For the Schwarzschild metric, the only non-vanishing component is

ρ = −2M

r3
. (B.6)

For a tensor field ξ that is tangent to Su,v for all u, v, the expressions /∇3ξ , /∇4ξ denote
the projections of the covariant derivatives ∇3ξ ,∇4ξ onto the tangent space of Su,v .
Thus /∇3ξ , /∇4ξ are also tangent to Su,v for all u, v. Denote by Dξ , Dξ the projections
of the Lie derivatives of ξ in the 4,3 directions respectively, then if ξ is a 1-form we have

� /∇4ξ A = (Dξ)A + �χ A
Bξ B, (B.7)

� /∇3ξ A = (Dξ)A + �χ
A

Bξ B . (B.8)

and so on for higher order tensor fields. Let D1 be the operator acting on a Su,v-tangent
1-form ξ by D1ξ = ( /divξ, /curlξ) and denote its L2(Su,v)-dual by D∗

1. Let D2 be
the operator acting on a Su,v-tangent 2-form � by (D2�)A = /∇B

�B A and denote its
L2(Su,v) dual by D∗

2.
The vacuum Einstein equations read

Rab[g] = 0. (B.9)

When (B.9) is imposedon themetric g, the equations defining theLevi–Civita connection
and curvature via the metric components in a double null gauge become the so-called
null structure equations. Furthermore, the Bianchi identities, together with (B.9), imply
that the Weyl curvature tensor satisfies the Bianchi equations,

∇aWabcd = ∇a ∗ Wabcd = 0. (B.10)

In turn, the system of equations consisting of the null structure equations and the Bianchi
equations reproduces the Einstein equations (B.9). An example of the null structure
equations is the Gauss constraint equation,

K +
1

2
trχ trχ − 1

2
χ ABχ AB = −ρ. (B.11)

For an example of a Bianchi equation, take (B.10) with (b, c, d) = (A, 4, B):

/∇3α +
1

2
trχα + 2ω̂α = −2 /D∗

2β − 3χ̂ρ − 3∗χ̂σ + (5η − �−1 /∇A�)⊗̂β. (B.12)

See [12,13,16,17] for detailed expositions.
We now describe how to linearise the Einstein equations against a fixed background

in this gauge. We denote the background values of the quantities involved by unbolding
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their symbols, and their linearised versions are further distinguished by the superscript
(1). For example:

� = � + ε
(1)

� . (B.13)

Similarly,

/gAB = /g AB + ε
(1)

/g AB bA = 0 + ε
(1)

bA (B.14)

And so on for the connection and curvature components. Note that we further decompose
the linearised metric by separating out its trace with respect to /g:

(1)

/g AB =
(1)

/̂g AB +
1

2
/g AB tr

(1)

/g (B.15)

We decompose χ and χ to their traceless and pure trace parts:

χ AB = χ̂ AB + trχ /gAB χ
AB

= χ̂
AB

+ trχ /gAB (B.16)

and we linearise χ̂ , χ̂ and �trχ ,�trχ separately:

χ̂ =χ̂ + ε
(1)

χ̂ �trχ = � tr χ + ε
(1)

�trχ (B.17)

χ̂ =χ̂ + ε
(1)

χ̂ �trχ = � tr χ + ε
(1)

�trχ (B.18)

For an example of linearisation against a Schwarzschild background, consider (B.12):
since we want to keep only the leading order terms in ε, we can use the Eddington–
Finkelstein coordinates of the Schwarzschild background to write the perturbed metric
in the form (B.1). Using (B.8), the fact that α = 0 and keeping only leading order terms
in ε yields

/∇3α = ε · �/∇3
(1)

α +O(ε2). (B.19)

where /∇3 is the background Schwarzschild covariant derivative in the 3-direction. Fol-
lowing this recipe for the remaining terms of (B.12) taking into account the background
Schwarzschild values (B.4), (B.6) yields the equation governing

(1)

α in (2.50). For the full
details of the linearisation leading to equations (2.41)–(2.54) see [16].
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