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Abstract

Graph clustering is a basic technique in ma-
chine learning, and has widespread appli-
cations in different domains. While spec-
tral techniques have been successfully applied
for clustering undirected graphs, the perfor-
mance of spectral clustering algorithms for
directed graphs (digraphs) is not in general
satisfactory: these algorithms usually require
symmetrising the matrix representing a di-
graph, and typical objective functions for
undirected graph clustering do not capture
cluster-structures in which the information
given by the direction of the edges is cru-
cial. To overcome these downsides, we pro-
pose a spectral clustering algorithm based
on a complex-valued matrix representation of
digraphs. We analyse its theoretical perfor-
mance on a Stochastic Block Model for di-
graphs in which the cluster-structure is given
not only by variations in edge densities, but
also by the direction of the edges. The signif-
icance of our work is highlighted on a data
set pertaining to internal migration in the
United States: while previous spectral clus-
tering algorithms for digraphs can only reveal
that people are more likely to move between
counties that are geographically close, our
approach is able to cluster together counties
with a similar socio-economical profile even
when they are geographically distant, and il-
lustrates how people tend to move from rural
to more urbanised areas.
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1 Introduction

Clustering is one of the most important techniques in
analysing massive data sets, and has numerous appli-
cations ranging from machine learning to computer
vision, from network analysis to social sciences. When
the underlying graph to cluster is undirected, the ob-
jective is to partition the vertices of the graph into
clusters such that vertices within the same cluster are
on average better connected to one another than ver-
tices belonging to different clusters. This notion can
be formalised by introducing an objective function to
minimise, such as the conductance or the normalised
cut [16, 26]. For example, the widely used spectral
clustering algorithm [21, 28], which uses eigenvectors
of the adjacency matrix of a graph as input features for
k-means, exploits a convex relaxation of the normalised
cut to obtain a good partitioning of the graph.

However, when the underlying graph is directed, the
normalised cut value and other clustering metrics based
on edge-density often fail to uncover many of the signif-
icant patterns in a graph. For instance, let us consider
a graph representing the number of people moving be-
tween different counties in the (mainland) United States
during 1995-2000 [5, 22]. If one tries to symmetrise its
(asymmetric) adjacency matrix M in a naive way by
considering the symmetric matrix M +M|, migration
flows between counties in different states will be lost
in the process. Indeed, when considering the outcome
of spectral clustering on M + M| of this migration
data set as input, the visualisation in Figure 1a shows
that clusters align particularly well with the political
and administrative boundaries of the US states, as ob-
served in [8]. This is, somehow counterintuitively, an
unsatisfactory outcome since it doesn’t provide us with
much information about migration patterns between
far-away states.

Motivated by this example, we study spectral cluster-
ing algorithms for digraphs based on a complex-valued
Hermitian adjacency matrix representations considered
in [13, 27] and defined as follows: for any N -vertex di-
graph G, the Hermitian adjacency matrix A 2 CN⇥N
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(a) Naive (b) Our method (c) Our method: top pair
Figure 1: Visualisation of the clustering obtained on a US migration data set: (a) spectral clustering on the symmetrised

matrix M +M|
, and (b) our procedure. The red and green clusters highlighted in (c) are such that 68% of the total

weight of the edges between the two clusters is oriented from the green to the red one.

of G is the matrix where Au,v = Av,u = i if there
is a directed edge u  v, and Au,v = 0 otherwise,
where i is the imaginary unity. Because of the use of
i and its conjugate i in expressing a directed edge, all
the eigenvalues of A are real-valued. We show that,
when the edge directions impart a cluster-structure
on G, this structure is approximately encoded in the
eigenvectors associated with the top eigenvalues of A.
To demonstrate the significance of our Hermitian ad-
jacency matrix, Figure 1b visualises the outcome of
spectral clustering when A is used to encode the mi-
gration data set. It is clear such clustering is much
less correlated with state boundaries than the one from
Figure 1a. Furthermore, in Figure 1b we can observe
several interesting migration patterns emerging, espe-
cially when considering pairs of clusters exhibiting a
large “imbalance” in the direction of the edges between
them. The pair with the largest such imbalance (which
we formalise in a later section) is shown in Figure 1c,
showcasing that people tend to move from counties in
green towards counties in red. In particular, Figure 1c
highlights a migration pattern around the East Coast,
where people tend to move from, for example, Virginia
and North and South Carolina to geographically dis-
tant areas such as the New York metropolitan area,
Chicago, and the East side of Florida. From this per-
spective, while previous algorithms identify different
clusters based on the relations between vertices in a
cluster and vertices outside a cluster, our algorithm
uncovers “higher-order” structures between clusters. In
contrast to all the previous spectral algorithms for di-
graphs we experimented with, only our approach is
able to uncover such patterns in this data set.

Our contributions and the organisation of this paper
are as follows. In Section 2 we generalise the classical
stochastic block model (SBM) to the setting of digraphs,
and propose a directed stochastic block model (DSBM)
with a latent structure defined with respect to imbal-
anced cuts between the clusters. In contrast to the
classical SBM, the additional parameters of our model
are used to assign different probabilities to the direc-
tions of the edges across different clusters. As graphs
from the DSBM possess a ground truth clustering, this
model will be used to analyse the theoretical and ex-

perimental performances of our algorithm. In Section 3
we present a spectral clustering algorithm for digraphs,
and compare our algorithm with previous approaches.
To convince the reader of the effectiveness of our algo-
rithm, in Section 4 we provide theoretical guarantees
for our algorithm when applied to a broad class of DS-
BMs. Complementing the theoretical analysis of our
proposed algorithm, in Section 5 we empirically demon-
strate its practicality, and compare its performance
against several competing approaches on synthetic and
real-world data sets. We propose directions for future
work in Section 6. Proofs of the theoretical results of
Section 4 and additional experimental results can be
found in the supplementary material.

Related work. Because of its comprehensive appli-
cations and intriguing theoretical properties, graph
clustering has received immense attention over the
years. Now we review some related works most related
to ours, and we refer the reader to (Fortunato, 2010)
for a more comprehensive introduction.

First of all, we remark that while clustering undirected
graphs has received most of the attention, the prob-
lem of clustering directed graphs is much less studied.
(Chung, 2005) proposed a Cheeger inequality for di-
graphs, which relates the spectrum of a Laplacian op-
erator to a notion of connectivity that essentially mea-
sures how well a “flow” can spread through a digraph,
where this flow is defined according to the stationary
distribution of a random walk on the digraph. Finding
clusters that minimise this connectivity measure would
amount to find regions of the digraph with a limited
amount of flow circulating between them. This is al-
most opposite to our objective: we want to uncover
regions characterised by a strong and imbalanced flow
circulating among them.

While graph clustering has been classically used to
uncover structural information between nodes of a net-
work, our work lies in a recent line of research that tries
to uncover a higher-order structure between different
groups of nodes in a network. For example, [3] and
[4] propose tensor and spectral-based algorithms to
find clusters in a (directed) graph so that small groups
of nodes in the same cluster are more likely to form
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motifs selected by the user (such as triangles or small
oriented cycles) than groups of nodes belonging to dif-
ferent clusters. This is different from our aim: instead
of preserving substructures inside clusters, our main
focus is the relationships among clusters.

Finally, the works on co-clustering [24] and biblio-
graphic symmetrisation [25] are probably the most
closely related to ours. We defer a more detailed com-
parison of these works to Section 3.

Notation. For any unweighted and directed graph
G with N vertices, the Hermitian adjacency matrix of
G is the matrix A 2 CN⇥N , where Au,v = Av,u = i
if there is a directed edge from u to v, expressed by
u v, and Au,v = 0 otherwise. When G is a weighted
digraph with weight wu,v on any edge u v, we define
Au,v = (wu,v � wv,u)i. Notice that A is a Hermitian
matrix, and therefore has N real-valued eigenvalues
{�j}Nj=1. We order these eigenvalues |�1| � . . . � |�N |,
and the eigenvector associated with �j is denoted by
gj 2 CN with kgjk = 1, for 1  j  N . For any
y 2 CN , the complex conjugate of y is expressed by y⇤.
For any Hermitian matrix A, the image of A is denoted
by Im(A) and the spectral norm of A is denoted by
kAk. We use 1k⇥k to express the k ⇥ k matrix where
all the entries are 1. For ease of discussion, we always
label the clusters, as well as the rows and columns of
the matrix F 2 Rk⇥k introduced later, from 0 to k� 1.

2 Directed stochastic block model

We study graphs generated from the directed stochastic
block model (DSBM) defined by k, n, p, q, and matrix
F 2 [0, 1]k⇥k, where k � 2 represents the number
of clusters, n the number of vertices in each cluster,
p 2 [0, 1] the probability there is an edge between
two vertices within the same cluster, q 2 [0, 1] the
probability there is an edge between two vertices be-
longing to two different clusters, while F 2 [0, 1]k⇥k

controls the edge orientations among clusters and sat-
isfies F`,j + Fj,` = 1 for any 0  `, j  k � 1. This
implies that F`,` = 1/2 for any 0  `  k � 1. The set
G (k, n, p, q, F ) consists of graphs G generated as fol-
lows: every G 2 G is a directed graph defined on vertex
set V = {1, . . . , N}, where N = k · n. These vertices
belong to k clusters C0, . . . , Ck�1, where |Cj | = n for
0  j  k � 1. For any pair of vertices {u, v}, if they
belong to the same cluster, they are connected by an
edge with probability p; otherwise, they are connected
with probability q. Moreover, if u 2 C` and v 2 Cj are
connected, the direction of this edge is determined by
F : the direction is set to be u  v with probability
F`,j , and v  u with probability Fj,` = 1 � F`,j . By
definition, the direction of an edge inside a cluster is
chosen uniformly at random. The matrix F can be

viewed as the adjacency matrix of a weighted directed
graph which represents the meta-graph describing the
relations between the clusters. The example below
explains the roles of these parameters.

Example. Let k = 3, p = q, and

F =

0

@
1/2 2/3 1/3
1/3 1/2 2/3
2/3 1/3 1/2

1

A

Figure 2In this case, G consists of 3 clus-
ters C0, C1 and C2 of equal size, and any pair of vertices
is connected by an edge with the same probability p.
The directions of the edges inside a cluster are cho-
sen uniformly at random, but directions of the edges
crossing different clusters are chosen non-uniformly ac-
cording to F . In particular, in expectation two thirds
of the edges between u 2 Cj and v 2 Cj+1 mod 3 are set
to be u v, and the remaining one third is set to be
v  u, as shown in Figure 2. We notice that this “cyclic
flow structure” of the edges across different clusters
is particularly interesting, since in expectation all the
vertices in G have the same in- and out-degrees, and
the cluster-structure of G cannot be easily identified
by the vertices’ degree distribution.

Our model can be viewed as a generalisation of the
classical SBM [14] into the setting of directed graphs.
As a special case of our model, when F`,j = 1/2 for
0  `, j  k � 1, the edge directions play no role in
defining a cluster-structure, and the clusters are com-
pletely determined by p and q, which is exactly the case
for the SBM. On the other hand, the DSBM captures
the setting where p = q and the cluster structure is
determined exclusively by the directions of the edges.
We remark that our proposed DSBM is a special case
of the co-SBM [24], which also includes bipartite struc-
tures. We think, however, that what is lost by our
model in generality is gained in clarity and simplicity.

3 Algorithm

Now we describe a spectral clustering algorithm for
graphs generated from the DSBM. Given a graph
G = (V,E) generated from the DSBM G (k, n, p, q, F ),
our algorithm first computes the eigenvectors g1, . . . , g`
corresponding to the eigenvalues �j satisfying |�j | � ✏
for some parameter ✏. Secondly, the algorithm con-
structs a matrix P which is the projection matrix on the
subspace spanned by g1, . . . , g`, and applies k-means
with the rows of P as input features.Finally, the al-
gorithm partitions the vertex set of G based on the
output of k-means. See Algorithm 1.

We remark that the number ` of eigenvectors used by
the algorithm depends on the parameters of the model,
and in particular on the rank of F which defines the
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Algorithm 1 Spectral clustering for digraphs
Require: directed graph G = (V,E) with Hermitian

adjacency matrix A; k � 2; ✏ > 0
1: Compute the eigenpairs {(�i, gi)}`i=1 of A with

|�i| > ✏.
2: P  

P`
j=1 gjg

⇤
j

3: Apply a k-means algorithm with input the rows of
P .

4: Return a partition of V based on the output of
k-means.

direction of the edges among different clusters. In
general, `  k, but for practical purposes one can
simply set ` = k.1 However, to obtain the optimal
theoretical guarantees, at least for the case of p = q,
we set ✏ = 10

p
pn log(pn), whose value can be easily

estimated with high probability since the average degree
in the graph concentrates around pkn when p� 1/n.
As it will become clear from our following analysis, in
this way ` is set as the rank of F , without the need to
actually know F . We also notice that including all the
eigenvectors corresponding to the same eigenvalue in
absolute value ensures that P is a real matrix. This
follows from A being skew-symmetric. We also add
that using the nk-dimensional embedding given by
the rows of P is analogous to using the `-dimensional
embedding given by the rows of U , where U is the
eigendecomposition of P = UU|.

Comparison with other spectral methods. We
compare our algorithm with other spectral methods
for digraph clustering that are based on the classical
real-valued adjacency matrix M of an unweighted di-
graph G = (V,E), defined as follows: for any pair of
vertices u, v, Mu,v = 1 if u  v and Mu,v = 0 other-
wise. While Algorithm 1 exploits the top eigenvectors
of the Hermitian adjacency matrix A = (M �M|) · i,
previous spectral clustering algorithms for directed
graphs [19, 24, 25] typically use eigenvectors of M|M ,
MM|, or M|M +MM| (or a regularised version of
these matrices). To compare our algorithm with previ-
ous ones, notice that for any u, v 2 V these matrices’
corresponding entries can be written as

(M|M)uv = |{w : w  u and w  v}|, (1)
(MM|)uv = |{w : u w and v  w}|, (2)

(M|M +MM|)uv = |{w : w  u and w  v}|
+ |{w : u w and v  w}|. (3)

By definition, M|M keeps track of the common “par-
ents” between two vertices, MM| of the common “off-
spring”, while their sum of both. To draw a direct
comparison, we study the matrix A2, since A and A2

1
More precisely, we recommend setting ` = k � 1 when

k is odd, since in this case F is always rank-deficient.

share the same eigenvectors and A2 is easier to analyse.
By definition, we have that

A2
uv = |{w : (w  u and w  v) or (u w and v  w)}|
� |{w : (u w and w  v) or (w  u and v  w)}|,

which implies that A keeps track of both common par-
ents and offspring of two vertices u, v, while assigning
a penalty for every node w that is simultaneously a
parent of u and an offspring of v, or vice versa. Hence,
A implicitly assigns a positive weight between a pair of
vertices who have more common parents and offspring
than “mismatched” relations with a third vertex, and
a negative weight otherwise. This peculiar behaviour
is at the heart of the better performances of our algo-
rithm on some real-world data sets compared to the
state-of-the-art. Moreover, it is worth mentioning that
A can implicitly keep track of both common parents
and offspring without the need to perform expensive
matrix multiplications as in the case of M|M +MM|.

Normalisation of A. When dealing with real-world
data sets, a proper normalisation of the graph adjacency
matrix is usually required. For a diagonal matrix D,
with Djj =

PN
`=1 |Aj`|, we define

Arw = D�1A, (4)

which is similar to the Hermitian matrix Asym =
D�1/2AD�1/2 and has N real eigenvalues. The op-
erator (4) was studied in the context of angular syn-
chronisation and the graph realisation problem [9], and
in [27], which introduced Vector Diffusion Maps for
nonlinear dimensionality reduction. We also notice
that these Hermitian operators have been successfully
used in the ranking literature. In particular, [7] formu-
lated the ranking problem as an instance of the group
synchronisation problem, considered an angular embed-
ding of M �M| and relied on the top eigenvector of
Arw to recover anordering of the players.

4 Analysis

We now analyse the performance of Algorithm 1 on
the DSBM. Let G ⇠ G (k, n, p, q, F ) with Hermitian
adjacency matrix A. For simplicity, we assume that
p = q. We remark that this condition does not simplify
the problem, since in this case edge densities do not
give us any information on the cluster-structure of
the graph, which is entirely determined by the edge
orientations. We first study the expected adjacency
matrix EA. For any u 2 Cj and v 2 C`, we have that
(EA)u,v = p (Fj,` � F`,j) · i = p (2Fj,` � 1) · i. This
implies that EA is a Hermitian matrix and can be
decomposed into k ⇥ k blocks. Moreover, the rank of
EA is at most k. To analyse the spectral property of EA,
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we define the matrix eF = (2F � 1k⇥k) · i. Observe that,
if e� 2 R is an eigenvalue of eF with the corresponding
eigenvector ef 2 Ck, then e�pn is an eigenvalue of EA
with eigenvector f 2 Ckn where f(u) = ef(j) for any
u 2 Cj .

Now we explain why Algorithm 1 works for graphs
generated from the DSBM. Note that, if A is close
to EA, which is the case for most instances, then the
projection on the top eigenspaces of A will be close to
PIm( eF )⌦1n⇥n, where PIm( eF ) is the projection on Im( eF ).
Therefore, it suffices to ensure that PIm( eF ) is actually
able to distinguish different clusters. Because of this, we
introduce the notion of ✓-distinguishing image to ensure
that the rows of PIm( eF ) are not similar to each other.
Formally, for any ✓ 2 [0, 1], we say that eF has a ✓-
distinguishing image, if it holds for any 0  j 6= `  k�1
that

��PIm( eF )(j, ·)�PIm( eF )(`, ·)
�� � ✓. Moreover, we say

that eF has a nondistinguishing image if the previous
equation holds only for ✓ = 0. Proposition 1 below
shows that eF has a nondistinguishing image if and only
if F has two identical rows. When p = q, this condition
implies every graph generated from the DSBM has two
statistically indistinguishable clusters.
Proposition 1. Let G ⇠ G (k, n, p, q, F ). Then, the
matrix eF defined by eF = (2F � 1k⇥k) · i has a nondis-
tinguishing image if and only if there exist 0  j 6= ` 
k � 1 such that F (j, ·) = F (`, ·).

Our analysis is based on matrix perturbation theory,
and requires that the nonzero eigenvalues of eF are far
from 0 in order to ensure that projection on the the top
eigenspaces of A is close to PIm( eF ) ⌦ 1n⇥n. Hence, we
define the spectral gap of eF by e⇢ , min1jk{|⇢j | : ⇢j 6=
0}, where ⇢1, . . . , ⇢k are the eigenvalues of eF . Note that
in the standard SBM a similar definition of spectral
gap governs the performance of spectral clustering al-
gorithms (see, e.g., [17, Corollary 3.2]). Theorem 2
bounds the number of misclassified vertices by Algo-
rithm 1 for graphs generated from the DSBM.
Theorem 2 (Main Theorem). Let G ⇠ G (k, n, p, q, F ),
where p = q. Assume that

e⇢ � C (k/✓)
p
(1/pn) log n (5)

holds for a large absolute constant C and eF has a
✓-distinguishing image with ✓ > 0. Then, with high
probability, the number of misclassified vertices by Al-
gorithm 1 is O

�
k2/(⇢̃2 ✓2 p) log n

�
.

For a family of graphs with k fixed and n growing, as
long as p is not too small, assumption (5) is always met.
It also implies that, for most cluster-structure matrices
F , p needs to be greater than k2 log n/n, which is com-
parable to the connectivity threshold p � log(kn)/(kn).

Next we evaluate the theoretical guarantee by Theo-
rem 2 when G ⇠ G (k, n, p, q, F ), p = q, and there exists
a noise parameter ⌘ 2 [0, 1/2) such that Fj,` = 1 � ⌘
if j ⌘ `� 1 mod k, Fj,` = ⌘ if j ⌘ `+ 1 mod k, and
Fj,` = 1/2 otherwise. By definition, the connections
among the k clusters can be represented by a directed
cycle where each edge has weight 1� 2⌘, and hence we
call this particular DSBM the cyclic block model. We
believe this cyclic block model is particularly suitable
to evaluate the performance of a clustering algorithm
for digraphs due to the following reasons: (1) since
every vertex of the graph has the same in-degree and
out-degree in expectation, the vertices’ degrees provide
no information for clustering; (2) even for the case
of ⌘ = 1, i.e., all the edges between two clusters Cj

and Cj+1 mod k are oriented in the same direction, the
clustering task could be still very challenging because
the directions of most edges are randomly oriented.
We summarise the performance of Algorithm 1 on the
cyclic block model as follows.

Corollary 3. Let G be a graph sampled from a
cyclic block model with parameters k, n, p = q =
!
�
k3/((1� 2⌘)2 n) log n

�
, and ⌘ 2 [0, 1/2). Then,

with high probability, the number of misclassified ver-
tices by Algorithm 1 is O

�
k4/((1� 2⌘)2p) log n

�
.

5 Experiments

We compare the performance of our algorithm with
other spectral clustering algorithms for digraphs on
synthetic and real-world data sets. Since ground truth
clustering is available for graphs generated from the
DSBM, we measure the recovery accuracy by the Ad-
justed Rand Index (ARI) [12], which is closely related
to and alleviates some of the issues of the popular
Rand Index [23]. Both measures indicate how well a
recovered clustering matches the ground truth, with a
value close to 1 (resp. 0) indicating an almost perfect
recovery (resp. an almost random assignment of the
vertices into clusters). For real-world data sets, due
to the lack of a ground truth clustering, we will in-
troduce appropriately defined new objective functions
to measure the quality of a clustering, while taking
the edge directions into account and aiming to uncover
imbalanced cuts in the partition.

Experimental setup. We compare against the three
variants of the DI-SIM algorithm [24], and spectral
clustering for digraphs when bibliometric and degree-
discounted symmetrisations are applied [25]. Note that
all these algorithms follow the standard framework of
spectral clustering, but employ different eigenvectors
to construct the feature vectors for k-means++. More
specifically, DI-SIM (left) (denoted by DISG-L) and
DI-SIM (right) (DISG-R) use, respectively, the top
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k eigenvectors of a regularised and normalised version
of the matrix defined in (1) and (2) as input features
for k-means; DI-SIM (left+right) (DISG-LR) uses
the top k eigenvectors of a regularised and normalised
version of both matrices (1) and (2); Bi-Sym and DD-
Sym use the top k eigenvectors of the matrix in (3),
with an additional normalisation for DD-Sym.

We also consider an additional variant of our Algo-
rithm 1 based on a different normalisation of our Her-
mitian adjacency matrix. Specifically, we use Herm
and Herm-RW to represent Algorithm 1 when the
top eigenvectors of A and Arw defined in (4) are ap-
plied as the input matrix, respectively. We remark
that Algorithm 1 is described with respect to the non-
normalised Hermitian adjacency matrix, since all the
vertices of a graph generated from the DSBM have the
same expected degree and normalising A with respect
to degrees is not needed. On the other hand, in real-
world data sets, the degree distribution is typically very
skewed with large outlier degrees and, as our experi-
ments suggest, Herm-RW usually performs the best
among the tested algorithms.

Experimental results for the DSBM. We perform
experiments on graphs randomly generated from the
DSBM with different values of n, p = q, and matrix F .
Since spectral techniques perform better in the SBM
for large p, our focus is to compare the performance of
different algorithms when p is close to the connectivity
threshold log(N)/N of a random G(N, p) graph. Our
reported results are averaged over 10 independently
generated graphs for every fixed parameter set. For
ease of visualisation, we assume the entries of F have
only three different values: 1/2 (which corresponds to
uniformly random edge-directions), ⌘, and 1� ⌘, and
the results are reported with respect to ⌘.
Figure 3 reports the performance of all the tested
algorithms for input graphs from the DSBM with
N = 5, 000, k = 5, and the meta-graph is a directed
cycle, or a complete graph with random orientations of
the edges. The two variants of our algorithm give simi-
lar results due to the fact that all the vertices have the
same expected degree, and they perform significantly
better than all other algorithms. While all methods
are unable to find a meaningful cluster structure when
⌘ is close to 0.3, our algorithm performs significantly
better, especially for smaller values of ⌘.

Figure 4: Complete meta-

graph (DSBM, k = 50).

We further investigate
the performance of all
algorithms for a large
value of k. Figure 4
reports the ARI values
of a randomly gener-
ated graph with respect
to different values of ⌘,

with N = 5, 000, k = 50, p = 1%, and the underlying
meta-graph is a complete graph. This regime of param-
eters, i.e., large k and relatively small p, is of particular
interest due to its prevalence in most real-world data
sets, and clearly illustrates that our algorithm has over-
whelmingly superior performance compared to other
algorithms in the literature.

Experimental results for real-world data. We
also detail results on real-world data sets, showcasing
the efficiency and robustness of our algorithm for iden-
tifying structures in digraphs. Since no ground truth
clustering is available, we compare performance as mea-
sured by three related objective functions (also referred
to as scores), showing that our approach favours bal-
anced cluster sizes. We consider a US-Migration
network, and a BLOG network during the 2004 US
presidential election; additional experimental results
on a UK-Migration network and c-Elegans neural
network are shown in the supplementary material.

For any two disjoint vertex sets X and Y , we define
the Cut Imbalance ratio between X and Y by

CI(X,Y ) =
1

2
·
����
w(X,Y )� w(Y,X)

w(X,Y ) + w(Y,X)

����

=

����
w(X,Y )

w(X,Y ) + w(Y,X)
� 1

2

���� , (6)

where w(X,Y ) =
P

u2X,v2Y w(u, v), and define the
size and volume normalised versions by

CIsize(X,Y ) = CI(X,Y ) ·min{|X|, |Y |}, (7)

CIvol(X,Y ) = CI(X,Y ) ·min{vol(X), vol(Y )}, (8)

where vol(X) is the sum of in-degrees and out-degrees
of the vertices in X. To explain Equations (7) and
(8), notice that CI(X,Y ) 2 [0, 1/2] quantifies the im-
balance of the edge directions between X and Y , with
CI(X,Y ) = 0 (resp. CI(X,Y ) = 1/2) indicating that
the directions of the edges between X and Y are com-
pletely balanced (resp. imbalanced). Furthermore,
since our objective is to identify pairs of clusters with
a large CI-value, we scale CI(X,Y ) by the minimum
of their sizes or volumes to penalise small clusters, in
the same spirit as the normalised cut value [26].

US-Migration Network. We consider the 2000 US
Census data, which reports the number of people that
migrated between pairs of counties in the US dur-
ing 1995-2000 [5, 22]. This data can be expressed
as a matrix M 2 ZN⇥N

�0 , where N = 3107 denotes
the number of counties in mainland US, and Mj` de-
notes the total number of people that migrated from
county j to county `. We consider the transformation
fMj` = Mj`/(Mj`+M`j), which leads to a matrix often
encountered in various applications. For example, in
ranking, this could capture the fraction of games won
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(a) p = 0.45% (b) p = 0.5% (c) p = 0.6% (d) p = 0.8%

(e) p = 0.45% (f) p = 0.5% (g) p = 0.6% (h) p = 0.8%

Figure 3: Recovery rates for the circular pattern (top) and complete meta-graph (bottom) (N = 5, 000, k = 5).

by player j in the match against ` [20]. The input
matrix to our pipeline is given by the skew symmetric
matrix G = fM � fM|. Figure 5 shows the CIvol val-
ues for the top pairs for varying number of clusters.
With respect to both scores, Herm and Herm-RW
are consistently better across all top pairs, and outper-
form all other methods by a large margin especially for
k = 10, 20. Additional experiments for a variant of this
data set are deferred to the supplementary material.
Figure 6 shows the clusterings recovered by several
methods for k = 10, and heatmaps of the adjacency
matrices sorted by induced cluster membership, high-
lighting the fact that DISGLR and DD-Sym tend
to uncover traditional clusters of high internal edge-
density, as hinted by the prominent block-diagonal
structure. On the other hand, Herm and Herm-RW
do not exhibit such a structure, and contain block
submatrices of high intensity (denoting a large cut im-
balance) on the off-diagonal blocks. Figure 7 shows the
three pairs of clusters for which CIsize(Cj , C`) is the
largest. We highlighted the two clusters in each pair in
red (source) and blue (destination), and provided the
values for their respective CI, CIsize and CIvol. With re-
spect to the two normalised cut imbalances, Herm-RW
vastly outperforms all other methods.
BLOG Network. We consider the BLOG network
from the 2004 US presidential election, as in Adamic
and Glance [1], who recorded the hyperlinks between
N = 1, 212 political blogs and revealed that such con-
nections were highly dependent on the blog’s political
orientation. Figure 8 shows the CIvol scores of the top
pairs. We also consider the case k = 2, as the network
has an underlying structure with two clusters corre-
sponding to the Republican and Democratic parties.
The two variants of our algorithm vastly outperform
other methods, with Herm-RW as the best performer.

6 Conclusions and future work

In this work we have proposed a spectral clustering
algorithm for directed graphs that is able to uncover
clusters characterised by strong imbalances in the di-
rection of the crossing edges. The main theoretical gap
we would like to address in future work is to further
develop a connection between the Cut Imbalance Ratio
measure defined in Section 5, and our spectral algo-
rithm, in the same vein as the relation between spectral
clustering and the normalised cut [26]. Unfortunately,
it is unclear if such strong connection exists: while
the normalised cut is the sum of the conductance of
each cluster, each one a function of a single cluster,
we are interested in the pairwise interactions between
all pairs of clusters, a higher-order relation between
vertices. For any k-way partition, this gives rise to
O(k2) terms, of which, depending on the application
(e.g., if the meta-graph is sparse) only a few should
be considered, making it difficult to define a general
relaxation for the problem.

Another issue with our approach is that it discards
information given by undirected edges. This is not
necessarily a drawback, since in applications where we
only care about the net-flow between clusters, undi-
rected edges do not add any information. However, it
might still be interesting to develop approaches that
can interpolate between clusters defined with respect
to undirected edge densities and clusters defined with
respect to imbalances in the orientation of the edges.
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(a) k = 2 (b) k = 3 (c) k = 10 (d) k = 20

Figure 5: Top CI
vol

scores attained by pairs of clusters, for the US-migration data set with varying k.

(a) DISGLR (b) DD-Sym (c) Herm (d) Herm-RW

(e) DISGLR (f) DD-Sym (g) Herm (h) Herm-RW
Figure 6: Top: Recovered clusterings for the US-Migration data set with k = 10 clusters. Bottom: Heatmap of the

graph adjacency matrices, sorted by induced cluster membership.

I II III

DISGLR

DD-Sym

Herm-RW

Figure 7: The top three largest size-normalised cut imbalance pairs for US-Migration with k = 10 clusters. Red,

denotes the source cluster, and blue denotes the destination cluster. The bottom left of each plot shows the the normalised

CI
size

and CI
vol

pairwise cut imbalance values, and the bottom right text contains the CI cut imbalance value in [0, 1/2].

(a) k = 2 (b) k = 3 (c) k = 5 (d) k = 8

Figure 8: The top CI
vol

scores attained by pairs of clusters, for the BLOG data set with varying k.



Manuscript under review by AISTATS 2020

References

[1] Lada A Adamic and Natalie Glance. The political
blogosphere and the 2004 US election: divided
they blog. In Proceedings of the 3rd international
workshop on Link discovery, pages 36–43, 2005.

[2] David Arthur and Sergei Vassilvitskii. k-means++:
the advantages of careful seeding. In Proceedings
of the Eighteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2007, pages 1027–
1035, 2007.

[3] Austin R. Benson, David F. Gleich, and Jure
Leskovec. Tensor spectral clustering for partition-
ing higher-order network structures. In Proceed-
ings of the 2015 SIAM International Conference
on Data Mining, pages 118–126. SIAM, 2015.

[4] Austin R. Benson, David F. Gleich, and Jure
Leskovec. Higher-order organization of complex
networks. Science, 353(6295):163–166, 2016.

[5] U. S. Census Bureau, 2002. www.census.
gov/population/www.cen2000/ctytoctyflow/
index.html.

[6] Fan Chung and Mary Radcliffe. On the spectra
of general random graphs. Electronic Journal of
Combinatorics, 18(1), 2011.

[7] M. Cucuringu. Sync-Rank: Robust Ranking, Con-
strained Ranking and Rank Aggregation via Eigen-
vector and Semidefinite Programming Synchro-
nization. IEEE Transactions on Network Science
and Engineering, 3(1):58–79, 2016.

[8] M. Cucuringu, V. Blondel, and P. Van Dooren.
Extracting spatial information from networks with
low order eigenvectors. Physical Review E, 87,
2013.

[9] M. Cucuringu, Y. Lipman, and A. Singer. Sensor
network localization by eigenvector synchroniza-
tion over the Euclidean group. ACM Transactions
on Sensor Networks, 8(3):19:1–19:42, 2012.

[10] C. Davis and W. M. Kahan. The rotation of
eigenvectors by a perturbation. III. SIAM Journal
on Numerical Analysis, 7:1–46, 1970.

[11] Office for National Statistics. Internal migration:
detailed estimates by origin and destination local
authorities, age and sex, 2018.

[12] Alexander J. Gates and Yong-Yeol Ahn. The
impact of random models on clustering similarity.
Journal of Machine Learning Research, 18(87):1–
28, 2017.

[13] Krystal Guo and Bojan Mohar. Hermitian adja-
cency matrix of digraphs and mixed graphs. Jour-
nal of Graph Theory, 85(1):217–248, 2017.

[14] Paul W. Holland, Kathryn Blackmond Laskey, and
Samuel Leinhardt. Stochastic blockmodels: first
steps. Social Networks, 5(2):109–137, 1983.

[15] Amit Kumar, Yogish Sabharwal, and Sandeep Sen.
A simple linear time (1+")-approximation algo-
rithm for k-means clustering in any dimensions. In
Proceedings of the 45th Symposium on Foundations
of Computer Science, pages 454–462, 2004.

[16] James R. Lee, Shayan Oveis Gharan, and Luca Tre-
visan. Multiway spectral partitioning and higher-
order Cheeger inequalities. Journal of the ACM,
61(6), 2014.

[17] Jing Lei and Alessandro Rinaldo. Consistency of
spectral clustering in stochastic block models. The
Annals of Statistics, 43(1):215–237, 2015.

[18] Jure Leskovec and Andrej Krevl. SNAP Datasets:
Stanford large network dataset collection. http:
//snap.stanford.edu/data, June 2014.

[19] Fragkiskos D. Malliaros and Michalis Vazirgiannis.
Clustering and community detection in directed
networks: A survey. Physics Reports, 533(4):95–
142, 2013.

[20] Sahand Negahban, Sewoong Oh, and Devavrat
Shah. Iterative ranking from pair-wise compar-
isons. In Advances in Neural Information Process-
ing Systems 25, pages 2474–2482, 2012.

[21] A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral
clustering: Analysis and an algorithm. In Advances
in Neural Information Processing Systems, pages
849–856, 2001.

[22] M. J. Perry. State-to-State Migration Flows: 1995
to 2000. Census 2000 Special Reports, 2003.

[23] W.M. Rand. Objective criteria for the evaluation
of clustering methods. Journal of the American
Statistical Association, 66(336):846–850, 1971.

[24] Karl Rohe, Tai Qin, and Bin Yu. Co-clustering
directed graphs to discover asymmetries and direc-
tional communities. Proceedings of the National
Academy of Sciences, 113(45):12679–12684, 2016.

[25] Venu Satuluri and Srinivasan Parthasarathy. Sym-
metrizations for clustering directed graphs. In
Proceedings of the 14th International Conference
on Extending Database Technology, pages 343–354,
2011.



Manuscript under review by AISTATS 2020

[26] J. Shi and J. Malik. Normalized cuts and im-
age segmentation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 22(8):888–905,
2000.

[27] A. Singer and H. T. Wu. Vector diffusion maps
and the connection Laplacian. Communications
on Pure and Applied Mathematics, 2012.

[28] Ulrike von Luxburg. A tutorial on spectral clus-
tering. Statistics and Computing, 17(4):395–416,
2007.

[29] J.G. White, E. Southgate, J. N. Thomson, and
S. Brenner. The structure of the nervous system
of the nematode c. elegans. Philosophical transac-
tions Royal Society London, 314:1–340, 1986.


