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Summary 

Proteomic characterisation of Estrogen Receptor (ERα) interactome in breast cancer 

Evangelia Papachristou 

 

Breast cancer is the most common cancer in women in the western world. It has been shown 

that estrogen receptor alpha (ERα) contributes to tumour formation in 75% of breast cancer 

cases and various drugs, such as 4-hydroxytamoxifen (OHT), have been used to inhibit 

estrogen-induced signals. Studies have highlighted the importance of interactions between ERα 

and various factors in regulating chromatin binding and gene transcription, underlying estrogen 

signalling in breast cancer. During the last decade, quantitative mass spectrometry (MS)-based 

proteomics has become a powerful tool for the study of protein interactions. However, technical 

challenges have restricted most applications to qualitative observations and the dynamics of 

protein interactomes have until recently been largely unexplored. Here, we describe the 

development and application of a quantitative multiplexed method, termed qPLEX-RIME, 

which integrates RIME with isobaric labelling for the study of protein interactome dynamics 

in a quantitative fashion with increased sensitivity. Using the qPLEX-RIME method we 

successfully identified endogenous ERα-associated proteins in human Patient Derived 

Xenograft (PDX) and primary tumours and we delineated the mechanistic temporal changes of 

the ERα interactome in MCF7 cells upon OHT treatment. Our pipeline was also successfully 

applied for the study of other factors, such as CBP, NCOA3 and RNA Polymerase II. The 

integration of the different interactome datasets, lead to the discovery of a transcription factor, 

termed ZNF207, that belongs to the zinc finger protein family. In MCF7 cells, ZNF207 

interacts with ERα, known ERα interactors and components of the transcription machinery. 

Knockdown of ZNF207, affected cellular proliferation of various cancer and non-cancer cell 

models, suggesting a functional role in the majority of cellular contexts. Interactome and 

chromatin binding assays revealed that ZNF207 is important for the assembly and chromatin 

binding of the Mediator complex and general transcription factors, whilst RNA-sequencing 

and proteomic analysis showed a decrease in expression of genes linked to cell cycle followed 

ZNF207 knockdown. The effect was likely mediated by changes in the chromatin binding of 

the subunit MED1 and the transcription factor TAF3 to promoters of cell cycle genes. Thus, 

ZNF207 plays an important role in our model system and was studied in depth in this thesis by 

integrating various functional assays. Our results demonstrate that qPLEX-RIME offers a 

powerful tool for the in-depth characterisation of protein interactome dynamics, which is also 



 

 

applicable to clinical samples. Our findings constitute the basis for a deeper mechanistic insight 

into the dynamics of ERα interaction network and its role in breast cancer along with the 

discovery of a transcription factor that may play a vital role in the initiation of transcription. 
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Chapter 1 

 

1. Introduction 

 

1.1 Breast Cancer 

Breast cancer is the most common malignancy among women and the second most commonly 

diagnosed cancer worldwide with more that 2.1 million cases globally in 2018 (Bray et al., 

2018). Nearly 55,000 women are diagnosed with breast cancer in the UK every year 

(https://www.breastcancercare.org.uk). Tumours can arise from either the ductal or lobular 

epithelial tissue of the breast, with ductal malignancies being the most common (Ciriello et al., 

2015; Yoder et al., 2007). Metastatic breast cancer has a poor survival within 5-10 years and 

breast cancer recurrence divides into two groups; distant metastasis including bone, brain, liver, 

lung and locoregional relapse including breast, chest wall or regional lymph nodes (Yates et 

al., 2017). Breast cancer can also occur in men, although it is very rare as it accounts for less 

than 1% of all breast cancer cases worldwide (Korde et al., 2010). 

Risk factors that are associated with breast cancer can be genetic or non-genetic (Mavaddat et 

al., 2010). Hereditary breast cancer is mainly caused by mutations in the tumour suppressor 

and DNA repair genes, BRCA1 and BRCA2 (Mavaddat et al., 2010). Most of the mutations on 

these two genes are small deletions or insertions that lead to the translation of a truncated 

protein. Germline mutations have also been detected in TP53, PTEN and ATM genes (Key et 

al., 2001). Additionally, genetic variants identified by genome-wide association (GWA) 

studies, have been linked with an increased risk of breast cancer (Turnbull et al., 2010; Zheng 

et al., 2009). Other, not genetic factors linked to breast cancer risk include age, diet, 

childbearing, obesity, alcohol consumption and hormone therapy (Key et al., 2001). 

Large-scale genomic analyses in breast cancers patients have revealed the complex and 

heterogeneous mutational landscape of the disease. Driver mutations have been identified in 

PIK3CA, TP53, PTEN, CDH1, GATA3, ESR1 and genes involved in SWI/SNF signalling in 

primary and metastatic tumours (Yates et al., 2017). Interestingly most distant metastases have 

been shown to acquire additional driver mutations not observed in the primary tumour, 

suggesting that a more personalised therapy of breast cancer including biopsy and sequencing 

of metastases can have a significant effect on understanding the evolution of the disease and 

developing efficient treatments for breast cancer patients (Yates et al., 2017).  
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1.1.1 Classification of Breast Cancer 

Histological type, grade, tumour size, lymph node involvement, expression of Estrogen 

Receptor alpha (ERα) and Progesterone Receptor (PR) or overexpression of Human Epidermal 

growth factor receptor 2 (HER2) can define the classification of breast cancer and can provide 

important information for prognosis, response to treatment and development of metastasis. 

Breast tumours are classified into five main intrinsic subtypes with distinct clinical outcomes: 

luminal A, luminal B, HER2-enriched, basal-like and normal-like tumours (Cancer Genome 

Atlas, 2012; Sorlie et al., 2001; Sorlie et al., 2003).  

Luminal subtype A is characterised by a gene expression signature inlcuding estrogen receptor 

1 (ESR1), GATA-binding protein 3 (GATA3), forkhead box protein A1 (FOXA1), B-cell 

chronic lymphocytic leukemia (CLL)/lymphoma 2 (BCL-2), X-box binding protein 1 (XBP1) 

and the myeloblastosis gene (MYB). Luminal B cancers express lower levels of the luminal 

gene signature, they have higher levels of proliferative genes and worse prognosis compared 

to subtype A (Sorlie et al., 2001). HER2-enriched subtype characterised by the overexpression 

of a number of receptor tyrosine kinases, including HER2 as well as genes within the HER2-

amplicon. Interestingly, recent studies have observed an additional HER2-enriched subtype 

that has more luminal features, including high expression of GATA3 and ESR1 genes (Cancer 

Genome Atlas, 2012). The basal-like tumours are often referred as triple-negative breast 

cancers (TNBC), as they do not express any of the three receptors, ERα, PR and HER2. These 

tumours are characterised by the expression of the basal like signature that contains keratins 5, 

6 and 17 and by the high expression of genes linked to cell cycle (Cancer Genome Atlas, 2012). 

Analysis has identified six TNBC subtypes that display unique gene expression and ontologies; 

Two basal-like (BL1 and BL2), an immunomodulatory (IM), a mesenchymal (M), a 

mesenchymal stem–like (MSL) and a luminal androgen receptor (LAR) subtype (Lehmann et 

al., 2011). The normal-like tumours are distinguished by the high expression of genes 

characteristic of basal epithelial cells and adipose cells and the low expression of genes 

characteristic of luminal epithelial cells (Sorlie et al., 2001).  

Each subtype has a unique somatic mutation spectrum (Cancer Genome Atlas, 2012); luminal 

A subtype has more frequent mutations in PIK3CA followed by GATA3, TP53 and CDH1, 

whereas luminal B reveals a high diversity of mutations, with TP53 and PIK3CA being the 

most frequent (Cancer Genome Atlas, 2012). Basal-like cancers display frequent mutations in 

TP53 gene; it has also been discovered that BRCA1 mutations are strongly associated with a 

basal tumour phenotype (Sorlie et al., 2003). The HER2-enriched subtypes have HER2 
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amplification and high frequency of TP53 and PIK3CA mutations, along with GATA3 

mutations that were only detected in the HER2-enriched luminal subtype. Notably somatic 

mutations were found to be more diverse in Luminal A and Luminal B compared to basal-like 

and HER2-enriched subtypes, however the overall mutation rate was lowest in Luminal A and 

highest in basal-like and HER2-enriched subtypes (Cancer Genome Atlas, 2012).  

More recently, studies have facilitated the further subclassification of breast cancer into eleven 

integrative Cluster (IntClust) subtypes, which are based on patterns of genomic copy-number 

alterations and gene expression (Curtis et al., 2012; Pereira et al., 2016; Rueda et al., 2019). 

The IntClust classification has illuminated differences in recurrence rates (Curtis et al., 2012; 

Rueda et al., 2019) that were obscured from immunohistochemistry approaches or the PAM50 

model, which is based on a set of 50 genes to predict breast cancer outcomes (Parker et al., 

2009).  Overall, classification of breast cancer and identification of subtype-specific mutations 

have facilitated the discovery of molecular signatures that are associated with survival, disease 

relapse, development of rational therapies and treatment outcome (Cancer Genome Atlas, 

2012; Curtis et al., 2012; Lam et al., 2014; Rueda et al., 2019; Sorlie et al., 2001).  

 

1.1.2 Experimental models in breast cancer research 

Various breast cancer cell lines have been widely used for breast cancer modelling, offering an 

unlimited and easy obtained source for tumour studies. Examples of the most used cell lines in 

breast cancer studies are MCF7, T47D, ZR-751 and MDA-MB-231 (Dai et al., 2017). The 

MCF7 cell line is ERα/PR-positive, belongs to the luminal A molecular subtype and has low 

metastatic potential (Comsa et al., 2015). The T47D cell line represents the luminal A subtype 

of breast cancer and is more susceptible to progesterone treatment compared to the MCF7 cell 

line (Yu et al., 2017). The ZR-751 has luminal A characteristics and MDA-MB-231 is a highly 

aggressive triple negative cell line (Subik et al., 2010). Although it is easier to work with cell 

lines, they do not recapitulate inter- and intra-tumor heterogeneity and may have been evolved 

differently from the primary tumours during the serial passaging (Burdall et al., 2003; Dai et 

al., 2017). Thus, it is important that any efforts to translate in vitro data into a clinical context 

are made carefully to avoid faulty data interpretations. 

The development of various in vivo models can give new insights into the mechanisms of breast 

cancer progression and delineate the delivery of new improved therapies (Holen et al., 2017). 

Different models that capture various types and stages of the disease have been established and 

can be utilised to address specific scientific questions. One of the most common model systems 
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is based on engraftment of human cell lines into immunocompromised animals [cell-derived 

xenografts (CDX)]. Although CDX models have been used to study breast cancer genetics, 

they cannot capture the heterogeneity of human breast tumours and usually the cell lines that 

are used are derived from highly aggressive malignant tumours or pleural effusions, making 

them less attractive models for the study of the early events of breast cancer (Holen et al., 

2017).  

Alternative pre-clinical models that capture better features of the primary human tumours are 

the Patient-derived xenografts (PDXs). The development of these models includes 

transplantation of primary human cancer cells or tumour pieces into host mice (Holen et al., 

2017). Although the implantation of tumour samples occur in immunodeficient mice, it has 

been reported that the morphological and molecular characteristics of the originating breast 

cancers are mostly preserved through the serial passaging in the mouse and more importantly 

PDXs can be used for drug screening to predict treatment responses (Bruna et al., 2016; Gao 

et al., 2015). Genetically engineered mouse models (GEMMs) have been essential tools for 

defining the role of genetic alterations in human breast cancer initiation, progression and 

metastasis. These transgenic models can be created by introducing or inactivating a gene of 

interest and they develop tumours in a natural immune-proficient microenvironment (Holen et 

al., 2017). GEMMs capture histopathological and molecular features of their human 

counterparts and they can progress toward a metastatic disease (Kersten et al., 2017). To 

conclude, the various in vitro and in vivo models have contributed to a better understanding of 

the breast cancer disease and further technological advances on breast cancer modeling may 

enhance our knowledge regarding the disease progression, treatment responses and 

development of resistance mechanisms.  

 

1.1.3 The Proteomic Landscape of Breast Cancer 

Studies based on genomic and transcriptomic characterisation are the main source for 

understanding the progression of breast cancer and defining the main intrinsic subtypes (Curtis 

et al., 2012; Rueda et al., 2019; Sorlie et al., 2001). However, it is less clear how the genomic 

changes drive the proteome and phosphoproteome variation and the phenotypic characteristics 

for each subtype. Additionally, studies have shown low correlation between the copy numbers 

of the gene in the genome and relative changes at the protein level, indicating that many 

genomic variations are not or only partially translated to changes linked to protein expression 
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(Liu et al., 2016; Zhang et al., 2014). This observation highlights the importance for proteomic 

analysis of tumour samples, that may better reflect changes in cellular functions and pathways. 

The first large scale proteomic characterisation of breast cancer tissues was conducted by 

Cancer Genome Atlas (TCGA) using reverse phase protein arrays (RPPA) for 171 cancer-

related proteins and phospho-proteins on 403 breast tumours, leading to the identification of 

two potentially novel protein-defined subgroups (Cancer Genome Atlas, 2012). Although, the 

RPPA platform allows for the simultaneous quantitative analysis of a large number of samples 

and requires low sample amount, it is limited to antibody availability and specificity and lacks 

deep proteome coverage as only approximately 200 analytes can be profiled (Tibes et al., 

2006). Quantitative proteomic studies based on mass spectrometry have also explored the 

proteomic landscape of breast cancer, revealing important features of the disease. Lawrence et 

al., characterised triple-negative breast cancer cell lines and tissues and correlated proteomics 

data with exome sequence resources and drug response data (Lawrence et al., 2015). Tyanova 

et al., analysed a panel of 40 breast cancer tumours leading to the quantification of more than 

10,000 proteins and to the discovery of functional differences between breast cancer subtypes 

that were associated with energy metabolism, cell growth, mRNA translation and cell-cell 

communication (Tyanova et al., 2016a).  

The most comprehensive proteogenomic study was performed by Mertins et al., where 105 

breast cancer tissues from TCGA were analysed using quantitative mass spectrometry-based 

proteomic and phosphoproteomic analyses, resulting in the detection of three proteome 

subtypes of breast cancer; basal-enriched, luminal-enriched, and stromal-enriched clusters 

(Mertins et al., 2016). Notably, the well-defined HER2-enriched tumours by mRNA studies, 

were spread across these three proteomic subgroups. Pathway analysis of the first two subtypes 

demonstrated the enrichment of ESR1-driven gene sets (gene encodes for ERα) in the luminal-

enriched subgroup and the enrichment for MYC target genes, cell cycle and DNA repair 

pathways in the basal-like subgroup. Interestingly, the analysis of the phosphoproteome data 

indicated four subgroups; subgroup 2 was similar to the stromal-enriched subgroup, the 

subgroup 3 recapitulated the luminal-enriched proteomic subgroups, the subgroup 4 included 

most of the basal-enriched subgroups as well as luminal-enriched samples, whereas subgroup 

1 was a novel subgroup, mainly characterised by G protein, G-protein-coupled receptor and 

inositol phosphate metabolism signatures. This study also assessed changes in kinases driven 

by mutations in PIK3CA, TP53 or by the ERBB2 amplification, highlighting the discovery of 

kinases that can be therapeutic targets.  
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Although, the application of proteomics in clinical studies is limited by the relatively high 

amount of tumour tissues required for mass spectrometry analysis and the medium throughput, 

improvements in sample preparation protocols, mass spectrometry platforms and 

computational tools can offer the opportunity to connect the genome to the proteome for better 

understanding of the molecular landscape of  breast cancer, with the ultimate goal to discover 

biomarkers and actionable targets for early detection and treatment. 

 

1.2 Estrogen receptors 

The Estrogen Receptors (ERs) are members of the nuclear receptor superfamily comprising 48 

proteins (Hall and McDonnell, 2005). Nuclear receptors are activated in response to specific 

small ligands and are involved in many physiological processes, including metabolism, 

development and cell proliferation. Nuclear receptors are also characterised by highly 

conserved DNA- and ligand-binding domains (Hall and McDonnell, 2005). ERs are ligand-

inducible transcription factors that in the absence of hormone, are segregated in a multiprotein 

inhibitory complex in either the cytoplasm or nuclear (Hall and McDonnell, 2005). There are 

two genetically distinct ER isoforms, Estrogen Receptor alpha (ERα) and Estrogen Receptor-

beta (ERβ); both isoforms bind estradiol (E2) with high affinity that leads to conformational 

changes in the receptors, enabling dissociation from inhibitory heat shock proteins and direct 

association with coactivator complexes (Deroo and Korach, 2006). The two isoforms display 

a high degree of sequence similarity in the central DNA- and C-terminal ligand-binding 

domains (DBD, 97% and LBD, 55%, respectively). Interestingly, the two isoforms are encoded 

by unique genes, ESR1 and ESR2, exhibit distinct expression patterns and biological functions 

(Deroo and Korach, 2006). ERα is widely expressed and is the predominant subtype in the 

breast, uterus and bone, whereas ERβ is mainly expressed in ovary, prostate, testis, lung and 

localised areas of the brain (Couse et al., 1997). ERβ has been proposed to oppose ERα activity 

in both normal development and cancer (Lazennec et al., 2001; Williams et al., 2008) and it 

has been found to be down-regulated during carcinogenesis of breast cancers (Iwao et al., 

2000). Despite the potential role of ERβ in breast cancer, of the two isoforms, ERα is the 

predominant subclass of ERs, that is expressed in the majority of breast cancer cells and has 

been the focus of many breast cancer studies.  
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1.2.1 The ERα receptor and its role in breast cancer 

ERα is a key transcriptional regulator for development, bone integrity, neuronal tissues in both 

sexes and female reproductive organs and it is mainly activated by E2, which has an obligate 

role in the growth and development of female mammary and reproductive physiology, as well 

as in the skeletal and cardiovascular systems (Ali and Coombes, 2002). During E2 binding, 

structural changes on the receptor are induced that result in the transcriptional activation of 

estrogen-regulated genes (Ali and Coombes, 2002). ERα consists of six functional domains 

classified as A–F (Sommer and Fuqua, 2001): the amino-terminal A/B domain that contains 

the transcriptional activation fuction-1 (AF-1) and enables interaction with members of the 

transcription apparatus, the middle C domain which contains the DNA binding domain (DBD) 

that consists of two zinc finger motifs and mediate ERα binding to the estrogen response 

elements (EREs); the D domain, also referred to as hinge region and the domains E and F that 

contain the ligand-binding domain (LBD) and the second activation function domain, AF-2 

that are involved in the receptor dimerisation and association with coregulatory factors. 

Importantly, both AF-1 and AF-2 domains, are key mediators of the interactions between ERα 

and co-regulator proteins, that are recruited by the receptor to regulate transcription of specific 

target genes. AF-1 and AF-2 domains can function either independently or synergistically in 

certain cells and promoter contexts to recruit coactivator proteins (Ali and Coombes, 2002). 

Notably, point mutations in ESR1 gene have been discovered within different domains, 

especially the LBD domain and have been mainly associated with endocrine resistance 

(Arnesen et al., 2020; Dhiman et al., 2018). The diagram of ERα domains and known mutations 

in specific residues are illustrated in Figure 1. 

ERα-positive breast cancer is the most common breast cancer subtype; epidemiological studies 

and molecular characterisation of breast tumours have assessed the critical role of estrogens 

and ERα in the initiation, progression and treatment of breast cancers (Lin et al., 2004). ERα is 

central to the development of more than 75% of breast tumours and has been a valuable 

predictive and prognostic factor (Lin et al., 2004; Stender et al., 2017). Studies for the ERα 

chromatin binding and interactome in breast cancer have revealed the importance of spatial 

organisation in estrogen mediated transcription, development of breast cancer, drug resistance 

and clinical outcome (Bi et al., 2020; Mohammed et al., 2013; Mohammed et al., 2015; Ross-

Innes et al., 2012). Overall, activation of ERα in breast tumour cells leads to alteration in 

transcriptional activity and expression profile of target genes. An upregulation of genes that 

are related to proliferation and cell cycle progression and a downregulation of pro-apoptotic 
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and anti-proliferative genes, has been reported (Frasor et al., 2003; Lin et al., 2004). Treatments 

that target ERα have been the major strategies for therapeutic intervention in breast cancer with 

dramatic effects on survival rates. A better insight into the role of ERα in breast cancer is of 

paramount importance and can lead to improvement of the survival rates of women with 

hormone-dependent breast cancer.  

 

 

 

Figure 1. ERα domains and mutations. 

Structural and functional domains of ERα: Different domains are highlighted in different colours: NTD (Amino 

Terminal Domain) in orange; DBD (DNA Binding Domain) in yellow; Hinge region in green; LBD (Ligand-

Binding Domain in blue; F region located towards the C-terminal end in purple. Amino acid sequence position is 

indicated for each domain. Known mutations in the ESR1 gene are highlighted (Figure adapted from Vineet K. 

Dhiman et. al.,2018). 

 

 

1.2.2 Mechanisms of ERα activation 

ERα can be activated and regulate gene expression by a number of distinct mechanisms 

(Bjornstrom and Sjoberg, 2005) (Figure 2). The classical model of ERα activation involves 

estrogen binding to the receptor that induces conformational changes. Upon binding to 

estrogen, inhibitory proteins are released (heat shock proteins) and the receptor dimerises and 

translocates to the nucleus where it binds to conserved estrogen response elements (EREs), 

small palindromic DNA motifs that are commonly identified at the centre of the ERα binding 

sites (Bjornstrom and Sjoberg, 2005). These sites are mostly located distal to promoters of 

target genes, as studies have shown that ERα binds mainly to enhancers and only 4% of ERα 

binding sites mapped to 1kb promoter-proximal regions (Carroll et al., 2006). This binding 

leads to recruitment of co-factors and chromatin modifying enzymes, that influence positively 
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or negatively the transcription of target genes (Bjornstrom and Sjoberg, 2005; Hall and 

McDonnell, 2005). 

ERα can also regulate the expression of particular genes without direct binding on the DNA, 

but through protein-protein interactions with other DNA-binding transcription factors (ERE-

independent genomic actions), forming complexes in alternative sites on chromatin 

(Bjornstrom and Sjoberg, 2005; Welboren et al., 2009). ERα mainly associates with activating 

protein 1 (AP-1) and specificity protein 1 (Sp1) transcription factor complexes and their 

respective binding sites (Welboren et al., 2009). The Sp1 transcription factor plays an important 

role in proliferation, differentiation, survival and angiogenesis and binds with high affinity to 

GC-rich motifs, which are present in many estradiol responsive promoters (Welboren et al., 

2009). The two major families of AP-1 factors are the Fos and Jun transcription factors; the 

AP1 complex binds to promoters of genes associated with development, growth and 

differentiation (Welboren et al., 2009). A third mechanism involves a ligand independent 

activation of ERα through phosphorylation of various serine and tyrosine residues in the 

functional domains AF-1 and AF-2 (Stender et al., 2017). Activation of protein-kinase cascades 

by growth factors leads to phosphorylation and activation of nuclear ERα at EREs. Lastly, ERα 

exerts rapid non-genomic actions that are possibly mediated by membrane associated ERα, 

which activates protein-kinase cascades that lead to eNOS activation (Bjornstrom and Sjoberg, 

2005).  
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Figure 2. Schematic illustration of ERα signalling mechanisms.  

(1) Classical model of ERα activation that involves direct binding to EREs. (2) ERE-independent genomic actions 

that involve protein-protein interactions. (3) Ligand-independent genomic actions through phosphorylation. (4) 

Non-genomic actions where membrane associated ERα activates protein-kinase cascades (source: Bjornstrom, 

L. & Sjoberg, M, 2005). 

 

 

1.3 ERα complex 

ERα coregulators and the various combinations of coregulator recruitment (coactivators or 

corepressors) to ERα, play a critical role in chromatin remodelling and in the resulting gene 

expression patterns (Shang et al., 2000). It has become clearer that the recruitment of 

coregulatory proteins is required for ERα-mediated transcriptional and biological activities. 

These diverse ERα complexes enable ERα to respond in a proper manner (a) to hormones or 

pharmacological ligands, (b) translate extra- and intra-cellular signals, (c) regulate chromatin 

accessibility and (d) transmit signals to the general transcription apparatus at target gene 

promoters (Hall and McDonnell, 2005).  

A wide range of coactivators, corepressors and chromatin remodelling enzymes are recruited 

by ERα to target promoter and enhancer regions (Kong et al., 2011). Specifically, about 700 

proteins have been catalogued in the BioGRID database (https://thebiogrid.org/) as ERα 

interactors. Chromatin immunoprecipitation experiments have indicated that ERα along with 

coactivators associate with estrogen responsive promoters, following estrogen treatment, in a 

cyclic fashion, highlighting the complex and dynamic nature of the ERα complex on chromatin 

(Metivier et al., 2003; Shang et al., 2000). These experiments showed the different role of 

https://thebiogrid.org/


 

11 
 

particular coregulators in the assembly of ERα transcription complexes (Metivier et al., 2003; 

Shang et al., 2000). Additionally, changes at the relative expression levels of some of these 

coregulatory proteins affect ERα-mediated physiological processes and have been implicated 

in enhanced estrogen-induced growth stimulation and development of endocrine resistance 

(Sommer and Fuqua, 2001).  

Additionally, it has also been shown that ERα cooperates with other transcription factors for 

binding on specific sites on genome (also known as cistromes) to build active enhancer 

elements, a finding that revealed the dynamic nature of the ERα cistromes and how it is altered 

during breast cancer progression and in response to therapy (Bi et al., 2020). The ChIP-seq 

method in which chromatin immunoprecipitation (ChIP) assays are combined with sequencing, 

has been a powerful technique for identifying genome-wide DNA binding sites for 

transcription factors and other proteins. Many studies using this method have raised the 

importance of interactions between ERα and co-factors on regulating enhancer reprogramming 

that can be linked to endocrine therapy and clinical outcome (Bi et al., 2020; Ross-Innes et al., 

2012). 

These observations highlight the essentiality of the cofactors in ERα activity and the critical 

role of these interactions. Moreover, the diversity of combinations of coregulators highlights 

the complexity of the regulatory mechanisms and activation of ERα and the need for further 

investigation of the interactions between ERα and the different co-factors. Such associations 

are especially important in the context of dynamically regulated cellular environment (Kong et 

al., 2011) and can be targeted to develop new therapeutics. Additionally, most of the studies 

have been focused on specific genes and limited number of promoters, highlighting the need 

for a more detailed study of the different complex assemblies in an unbiased manner. 

 

1.3.1 ERα Coactivators and Corepressors 

Coactivators are proteins that interact with ERα and enhance gene transcription; the most 

characterised family of ERα co-activators is the p160/steroid receptor coactivator family 

(SRC), that consists of three members; SRC1 (NCOA1), SRC2 (NCOA2 or Tif2 or GRIP1) 

and SRC3 (NCOA3 or A1B1) (Zwart et al., 2011). The SRC co-activators are among the first 

factors to be recruited to ERα and this occurs via a short motif in co-activators, LXXLL (where 

L is leucine and X is any amino acid), which forms an a-helix and it is essential for the 

coactivator function toward nuclear receptors (Heery et al., 1997). The p160 coactivators can 

recruit and interact with secondary molecules that have an important role as chromatin 

modifiers, such as the histone acetyltransferases p300 and CREB-binding protein (CBP) and 
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the protein arginine methyltransferases (PRMTs), including coactivator-associated arginine 

methyltransferase 1 (CARM1) and PRMT1 (Acevedo and Kraus, 2003), in  a ligand dependent 

manner. Members of the p160 family have been linked to breast cancer and response to 

endocrine therapy. SRC3 is frequently amplified in breast cancer and its increased expression 

in combination with ERBB2 expression has been correlated with poor tamoxifen response 

(Osborne et al., 2003), whereas SRC1 has been associated with promotion and execution of 

breast cancer metastasis and mediation of resistance to endocrine therapies (Browne et al., 

2018; Walsh et al., 2012).  

ERα can also interact directly with subunits of the SWI/SNF multiprotein complex including, 

BRG1, BRM and BAF57 (Belandia et al., 2002); these interactions lead to chromatin 

accessibility in an ATP-dependent manner that results in the subsequent binding of 

transcription factors and transcriptional activation. The BAF57 subunit interacts directly with 

ERα and the p160 family and studies support that BAF57 is required to target SWI/SNF 

complexes to estrogen‐responsive promoters and enable p160 coactivators to enhance the ERα 

transcriptional activity (Belandia et al., 2002). Inhibition of BAF57 causes a reduction in the 

expression of endogenous ERα target genes and blocks the ERα-dependent cellular 

proliferation (Belandia et al., 2002). Experiments have also shown that defective BRG1 

prevents ERα-mediated transcriptional activation (Belandia et al., 2002). ARID1A, one of the 

most well-studied subunits of the SWI/SNF complex, has been found to be frequently mutated 

in primary and recurrent breast cancers (Pereira et al., 2016; Yates et al., 2017) and notably the 

expression levels of ARID1A have been linked to tumour growth and clinical outcome in 

MCF7 breast cancer cells (Nagarajan et al., 2020; Xu et al., 2020). The findings from the 

inhibition of different SWI/SNF subunits and the detection of mutations in breast cancer 

models, highlight the essential role of this complex in ERα transcription, breast cancer and 

drug treatment response. 

The interaction with factors that function as negative regulators and decrease transcription, 

provide an additional level of complexity in ERα action. The interaction of ERα with the 

nuclear receptor corepressor (NCoR) and the co-repressor silencing mediator for retinoid X 

receptor and thyroid hormone receptor (SMRT), mainly happens via LXXML motifs (Shiau et 

al., 1998), lead to the recruitment of large repressor complexes, including histone deacetylases 

(HDACs), that repress gene activity by causing chromatin condensation (Liu and Bagchi, 

2004). Additionally, NCoR proteins interact with the nucleosome remodelling and histone 

deacetylation (NuRD) complex (Liu and Bagchi, 2004). The NuRD complex is a highly 

conserved multi-subunit protein complex, that combines chromatin remodeling and histone 
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deacetylation activities and consists of many different protein subunits, including histone 

deacetylases HDAC1/2, ATP-dependent remodelling enzymes CHD3/4, histone chaperones 

RBAP46/48, CpG-binding proteins MBD2/3, the GATAD2a (p66α) and/or GATAD2b (p66β) 

and specific DNA-binding proteins MTA1/2/3 (Torchy et al., 2015). It has been shown that 

components of the NuRD complex are essential factors, required for sustained cell growth of 

MCF7 cells, displaying the important role of these components (Serandour et al., 2018). In the 

absence of hormone or upon treatment with antagonists such as tamoxifen, NCoRs, HDACs 

and the nucleosome remodelling complex NuRD are recruited in a sequential manner, leading 

to a repressive chromatin state and inhibition of ERα target genes (Liu and Bagchi, 2004). 

Corepressors have also been implicated in breast cancer treatment; reduced levels of NCoR 

have been linked to tamoxifen resistance (Ali and Coombes, 2002). Additionally, a coding 

mutation in NCoR1 has been detected in primary breast cancer tumours that contributes to 

tumour progression (Pereira et al., 2016). 

The complexity of ERα-associated factors has also been increased with the discovery of 

coregulators that display both coactivator and corepressor activity. CARM1 has been involved 

in repression of gene transcription via methylation of SRC3 or EP300 (Feng et al., 2006), 

whereas BRM and BRG1 are requited for both ligand-dependent transcriptional activation and 

repression of the same set of genes (Zhang et al., 2007). Despite the plethora of proteins that 

have been discovered to be associated with ERα and play important roles in ERα-mediated 

signalling, a deeper understanding of the underlying molecular mechanisms is crucial to 

illuminate these interactions and reveal novel therapeutic targets for treating ERα-dependent 

breast cancers. 

 

1.3.2 Pioneer factors 

Studies have showed the important role of pioneer transcription factors in the ERα recruitment 

to DNA, as well as in ERα mediated transcriptional regulation of target genes. Pioneer factors 

can actively initiate the binding of regulatory factors on the DNA by either opening-up the 

local chromatin directly or by recruiting other chromatin modifiers and co-regulators (Zaret 

and Carroll, 2011). A well-known protein that functions as a pioneer factor for ERα is FOXA1. 

FOXA1 binding is necessary for gene regulation by ERα, as well as for the chromatin binding 

of ERα in the presence of both an agonist (estrogen) and an antagonist (tamoxifen) (Hurtado et 

al., 2011; Zaret and Carroll, 2011). It has been shown that FOXA1 binds to approximately 50% 

of all ERα-binding regions and knockdown of FOXA1 expression results in decreased 
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association of ER with chromatin, decreased cofactor recruitment and reduced expression of 

ERα target genes, demonstrating the important role of FOXA1 in mediating an estrogen 

response in breast cancer cells (Carroll et al., 2005; Hurtado et al., 2011). Notably, FOXA1 

upregulation via gene amplification, has been reported in estrogen receptor-positive endocrine-

resistant metastatic breast cancer to lead to genome-wide enhancer reprogramming and 

activation of prometastatic transcriptional programs that are associated with poor clinical 

outcome (Fu et al., 2019). 

Additional analysis has uncovered other putative pioneer factors that contribute to ERα-

chromatin interactions, such as GATA factors, PBX1 and AP-2γ (Zaret and Carroll, 2011). 

GATA factors can interact with condensed chromatin and moderately influence chromatin 

accessibility (Cirillo et al., 2002). One of the members of GATA family, GATA3, has been 

implicated in tumour differentiation and ESR1 enhancer accessibility and has been previously 

shown to bind in MCF7 breast cancer cells in a ligand-independent manner (Kouros-Mehr et 

al., 2008; Theodorou et al., 2013). ERα, FOXA1 and GATA3 are frequently colocalised 

(Takaku et al., 2020) and it has been suggested that they form a network that is necessary for 

the full repertoire of cancer‐associated effects of the ERα (Theodorou et al., 2013). 

Interestingly the expression of these three proteins defines ERα positive, luminal breast cancers 

and notably GATA3 is the third most commonly mutated gene in luminal breast cancer, 

following PIK3CA and TP53 (Lacroix and Leclercq, 2004; Sorlie et al., 2003).  

PBX1 overlaps with approximately 50% of all ERα-binding events in the MCF7 breast cancer 

genome. It has been shown that PBX1 guides ERα recruitment to a specific subset of sites, 

within the genome, that promote breast cancer progression and can be used as a prognostic 

factor to discriminate ERα breast cancer outcomes (Magnani et al., 2011). The enrichment of 

AP-2 motifs in ERα binding sites led to the discovery of the transcription factor AP-2γ. AP-2γ 

has been implicated in breast cancer oncogenesis and it binds to ERα binding sites in a ligand-

independent manner (Tan et al., 2011). Perturbation of AP-2γ expression affects ERα DNA 

binding and expression of ERα target genes (Tan et al., 2011). It is clear that pioneer factors 

are required for ERα binding on DNA and their implication in drug resistance and prognosis 

of clinical outcome makes them attractive therapeutic drug targets. 

 

1.3.3 ERα and the general transcription apparatus 

Nuclear receptors activate gene expression by recruiting components of the basal transcription 

machinery to promoters of responsive genes. An important ERα interactor that communicate 
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the regulatory signals from DNA-binding transcription factors at enhancers directly to RNA 

polymerase II at core promoters, is the Mediator complex (Zhang et al., 2005). The Mediator 

complex is a multi-subunit complex that consists of 33 subunits in mammals and is organised 

into four distinct modules; head, middle, tail and CDK8 kinase (Soutourina, 2018; Yin and 

Wang, 2014) (Figure 3). Interactions are mainly mediated by the Mediator complex subunit 1 

(MED1), that has been previously shown to directly interact with ERα and other nuclear 

receptors in a ligand-dependent manner (Kang et al., 2002; Zhang et al., 2005). This direct 

interaction is involved in mammary gland development, luminal cell differentiation and cell 

growth (Hasegawa et al., 2012). Interestingly, Mediator subcomplexes that do not contain the 

MED1 subunit can be stable and functional, however in nuclear receptor-mediated 

transcriptional activation, MED1 is the subunit mainly enriched in the pre-initiation complex 

(PIC), which comprises the six TFIIA to F complexes and RNA polymerase II on the promoter 

(Hasegawa et al., 2012). ERα can also interact directly with basal transcription factors such as 

TFIIB and subunits of TFIID, providing evidence for the direct role of ERα in transcriptional 

activation (Wu et al., 1999). 

 

 

 

Figure 3. Schematic illustration of the Mediator complex. 

The subunit composition of the mammalian Mediator complex and the four distinct modules (tail, middle, head 

and CDK8). The figure was adapted from Yin and Wang, 2014. 

 

 

Overall, the Mediator complex has been detected at both enhancers and core promoters of 

actively transcribed genes, supporting the observations that this complex bridges interactions 
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between transcription factors at enhancers and the transcription initiation apparatus at core 

promoters. The Mediator complex functions as a bridge between ERα and basal transcriptional 

machinery, including Pol II and general transcription factors (GTFs; including transcription 

initiation factor IIA (TFIIA), TFIIB, TFIID, TFIIE, TFIIF and TFIIH), promoting the assembly 

of the PIC complex on ligand-activated promoters (Soutourina, 2018) and enhance the 

transcriptional activity of ligand-activated ERα (Kang et al., 2002; Zhang et al., 2005). The 

Mediator complex can transfer signals from coactivators or corepressors to affect changes in 

the expression of ERα target genes (Malik and Roeder, 2010). Importantly, the Mediator 

complex integrates into complexes with known ERα co-activators, introducing multiple layers 

of cross-talk between cofactors. Studies have shown that the Mediator complex and p300/CBP-

SRC are recruited in a specific order and work synergistically to promote a stable transcription 

pre-initiation complex, that is crucial for the initiation of transcription (Acevedo and Kraus, 

2003; Shang et al., 2000). Recently it was highlighted that JMJD6, a member of the large family 

of JmjC-domain-containing proteins is responsible for the recruitment of Mediator in ERα-

bound active enhancers via modulating the binding between MED12 subunit and CARM1 

protein (Gao et al., 2018). Additionally, Mediator stimulates the phosphorylation of the Pol II 

carboxyl-terminal domain (CTD) by the CDK7 kinase subunit of TFIIH complex that has an 

important role in the initiation of transcription and in the transition from initiation to elongation 

(Sogaard and Svejstrup, 2007). Following the proper assembly of PIC, Pol II breaks contact 

with Mediator and the PIC complex leaves the promoter and moves to elongation. Interactions 

between Mediator and transcription elongation factors have been emerged; it is has been found 

that the super elongation complex, which is created from the combination of different Pol II 

elongation factors [eleven-nineteen Lys-rich leukaemia (ELL) proteins, positive transcription 

elongation factor b (P-TEFb) and several frequent mixed lineage leukaemia (MLL) 

translocation partners], is recruited via subunits of the Mediator complex, highlighting the 

involvement of the Mediator complex in Pol II transcription elongation (Luo et al., 2012).  

The MED1 subunit is amplified and overexpressed in aggressive breast cancer and has been 

correlated with poor survival and resistance to endocrine therapies (Nagalingam et al., 2012; 

Nagpal et al., 2018; Zhang et al., 2013; Zhang et al., 2005). To this end, analysis of clinical 

samples indicated that high expression of MED1 was significantly associated with tamoxifen 

resistance in breast cancer (Nagalingam et al., 2012). Moreover, it has been shown that MED1 

is required for estrogen-dependent growth of breast cancer cells. The MED1 role in drug 

resistance and cell growth raises the possibility of alternative therapeutic strategies that target 

MED1 for the treatment of breast cancer (Zhang et al., 2005). Additionally, mutations in other 

https://www-nature-com.ezp.lib.cam.ac.uk/articles/nrm.2017.115#Glos3
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Mediator subunits have been associated with developmental diseases or cancer (Yin and Wang, 

2014), indicating the important role of the Mediator complex in gene transcription regulation. 

Further study of the Mediator complex and its association with ERα and other transcription 

factors may help to understand better the function of the different subunits and the distinct 

subcomplexes, how they are regulated and how the complex is implicated in various human 

diseases. 

 

1.4 Treatment strategies for ERα positive breast cancer 

ERα-positive breast cancers largely depend on estrogen and endocrine therapies have remained 

the mainstay of ERα-positive breast cancer treatment for several decades, leading to decreased 

cancer recurrence and mortality (Ali and Coombes, 2002; Hanker et al., 2020). There are two 

main classes of antiestrogens based on their chemical structure and tissue specific functions. 

The first class includes pure antiestrogens, known as selective ERα downregulators (SERDs), 

such as ICI 164, 384 and its derivative ICI 182,780 (fulvestrant), that act primarily as 

antagonists in all tissues and prevent activation of AF1 and AF2, decreasing the half-life of the 

ERα (Dauvois et al., 1992; Guan et al., 2019). In the second class, the non-steroidal anti-

estrogens (known as selective ERα modulators-SERMs), such as tamoxifen and raloxifene, 

have a dual function with selective estrogenic activities in certain tissues and anti-estrogenic 

activities in others. These drugs affect ERα activity by inhibiting AF2 activation and not the 

AF1; because the ERα activity in breast epithelium is based mainly on AF2 domain, tamoxifen 

function as an antagonist in breast cells, whereas in other tissues, such as the uterus, AF1 

activity is more crucial, resulting in agonistic activity (Ali and Coombes, 2002). 

The anti-estrogen tamoxifen was initially used for the treatment of metastatic breast cancer 

leading to disease regression in approximately 30% of the cancers, but it is restricted to patients 

with ERα-positive breast cancer (Ali and Coombes, 2002). The active metabolite of tamoxifen, 

4-hydroxytamoxifen, competes with E2 for ERα binding and induces conformational changes 

that have been suggested to prevent coactivator recruitment and facilitate the recruitment of 

corepressor complexes, such as NCoR and NuRD, that cause the abrogation of gene 

transcription (Figure 4). Structural studies have revealed that when tamoxifen binds to LBD, 

its carboxy-terminal-most helix is positioned over the coactivator-binding pocket, thereby 

preventing their recruitment and transcription activation by AF2 (Shiau et al., 1998). The 

differential coactivator-corepressor recruitment in certain cell and promoter contexts mediate 
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the activities of SERMs (Shang et al., 2000). However, despite the clinical utility of tamoxifen, 

the exact mechanism of action still remains unclear.  

In addition to anti-estrogen therapies, patients with ERα-positive breast cancer have also been 

treated with aromatase inhibitors (anastrozole, letrozole and exemestane), that function by 

blocking estrogen production (Chumsri et al., 2011; Lonning and Eikesdal, 2013). Estrogen is 

synthesised through conversion from androgen by aromatase enzyme, which is a member of 

the cytochrome P450 family and the product of the CYP19A1 gene (Chumsri et al., 2011). 

Aromatase inhibitors interact competitively with the active site of aromatase, preventing 

androgen binding and the conversion of androgens to estrogens (Chumsri et al., 2011). In post-

menopausal women, aromatase inhibitors lead to a 98% decrease in circulating levels of 

estrogen and are considered to be the standard of care for postmenopausal women with 

hormone receptor-positive breast cancer (Lonning and Eikesdal, 2013). Patients that have been 

treated with anti-estrogens or aromatase inhibitors can develop resistance via different 

mechanisms and interestingly patients with resistance to aromatase inhibitors often respond to 

anti-estrogen therapies (Ingle et al., 2006). The molecular mechanisms that lead to endocrine 

resistance and disease recurrence in ERα-positive breast cancer have been the main focus of 

several studies and continues to be an active area of research.  

 

 

 

Figure 4. Mechanism of tamoxifen action. 

The binding of tamoxifen to the ERα receptor causes conformational changes that are distinct from those that are 

induced by agonists. The changes lead to the recruitment of a corepressor complex that causes deacetylation of 

histones thereby abrogating the transcription of ERα target genes. 

 

 

1.4.1 Mechanisms of resistance to breast cancer therapies 

Endocrine therapy has led to a significant reduction in recurrence and mortality of breast 

cancer, however many patients either fail to respond or develop drug resistance. More than 
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25% of patients diagnosed with early stage breast cancer, develop resistance and relapse with 

metastatic and incurable disease. Drug resistance can emerge through various mechanisms (Ali 

and Coombes, 2002; Jeselsohn et al., 2015; Shiino et al., 2016): 

 A small fraction of metastatic tumours (15-20%) lose ERα expression. Studies have 

described the discordance of ERα levels between primary and recurrent tumours 

(Shiino et al., 2016). 

 Truncated ERα variant isoforms; increased expression of the variant ER-α36, that lacks 

AF-1 and a large portion of the LBD, has been associated with anti-estrogen resistance 

in breast cancer cells (Thomas and Gustafsson, 2015). 

 Point mutations in ESR1 gene have been discovered in 30% of metastatic ERα positive 

breast cancers. These mutations are clustered within the LBD domain and lead to 

constitutive ligand-independent activity and endocrine resistance (Dhiman et al., 2018; 

Sommer and Fuqua, 2001). It has been suggested that these mutations promote 

metastatic phenotype by changing gene expression though constant ERα activity or 

indirectly via additional transcription factors (Arnesen et al., 2020; Jeselsohn et al., 

2018). Two of the most common mutations, Y537S and D538G, account for 

approximately 70% of all ESR1 mutations identified in patients with metastatic breast 

cancer.  

 Growth factor-driven mitogenic and survival pathways (i.e. phosphatidylinositol 3-

kinase [PI3K]/mammalian target of rapamycin [TOR], RAS/RAF/MEK/ERK, 

CDK4/6-cyclin D1-dependent inactivation of Retinoblastoma Protein (RB) and de-

repression of E2F transcription factors) that induce ERα phosphorylation and promote 

transcription of ERα-regulated genes in a ligand-independent manner. These resistant 

tumours are typically dependent upon both the aberrantly activated survival pathway 

and ERα. 

 Changes in cofactors expression levels: Overexpression of co-activators that have a 

major role in mediating transcription activation by ERα or lower expression of 

corepressor activity that affects the inhibitory action of tamoxifen, are involved in anti-

estrogen resistance (Ali and Coombes, 2002).  

The different classes of endocrine drugs affect ERα via distinct mechanisms and patients that 

have developed resistance to one drug, can be treated sequentially with different endocrine 

agents. Alternative strategies that have been developed to overcome endocrine resistance, 

include the Proteolysis-targeting chimeras (PROTACs), which are small molecules that recruit 
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an E3-ubiquitin ligase to the target protein and can degrade both wild type and mutant forms 

of ERα (Hanker et al., 2020). Additionally, therapeutic strategies that target the crosstalk 

between ERα and other signalling pathways have shown promising results (Ignatiadis and 

Sotiriou, 2013). The combination of CDK4/6 inhibitors (palbociclib, ribociclib and 

abemaciclib) with antiestrogens or aromatase inhibitors, that target the ligand-independent 

activity of ERα and cell-cycle signalling, have increased the patient survival and is currently 

the standard first-line treatment for metastatic ERα-positive breast cancer (Ignatiadis and 

Sotiriou, 2013). Interestingly, combined inhibition of mTORC1/2, CDK4/6 and ERα have 

revealed significant regression in breast cancer cell lines and xenografts (Michaloglou et al., 

2018). However, patients develop resistance to CDK4/6 inhibitor therapy and the mechanisms 

that have been suggested to be related to acquired resistance is retinoblastoma loss, 

amplification of CDK6 or cyclin E (CCNE1), alterations in DNA repair and IL6/STAT3 

pathways (Kettner et al., 2019). Studies have shown that patients with resistance to CDK4/6 

inhibitors may still be sensitive to mTORC1/2 inhibitors together with antihormonal therapy 

(Michaloglou et al., 2018) or to a combination of STAT3 and PARP inhibitors that target both 

IL6/STAT3 and DNA repair pathways (Kettner et al., 2019). To conclude, more efforts to 

elucidate the mechanisms that underlie resistance might lead to different combination of drugs 

or to the development of alternative breast cancer therapeutic strategies that can decrease the 

number of patients that develop resistance, associated with metastatic and incurable disease. 

 

1.5 Three-dimensional genome 

The three-dimensional (3D) organisation of mammalian genomes holds a fundamental role in 

many cellular functions by allowing genomic elements that are located very remotely to contact 

and regulate each other. Vital cellular processes including transcription, replication, DNA 

damage and DNA repair have been linked to the way chromosomes are folded in the 3D space 

(McCord et al., 2020). It has been previously reported that ERα binding sites are located within 

enhancer regions and the contact with promoter regions happens through the formation of 

chromatin loops (Fullwood et al., 2009). ERα mainly binds at distal enhancers to regulate the 

expression of its target genes and dictate cell growth and endocrine therapy; differential binding 

of ERα has been associated with endocrine resistance and clinical outcome in breast cancer, 

highlighting the importance of the ERα cistrome (Bi et al., 2020). The long-range looping 

interactions between enhancers and promoters appear to be crucial for driving high-level and 

cell type-specific gene expression. Enhancer deletions or ectopic enhancer-promoter 
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interactions along with ‘forced looping’ experiments have highlighted the importance of 

promoter-enhancer interactions and how vital is to regulate these interactions to prevent 

inappropriate gene expression (Deng et al., 2012; Lupianez et al., 2015; Sur et al., 2012).  

The study of the three-dimensional genome has been facilitated by the development of 

techniques, such as chromosome conformation capture (3C) and its variants (Dekker et al., 

2002; McCord et al., 2020). These techniques have highlighted the high complexity of the 

three-dimensional promoter-enhancer architecture, with promoters skipping enhancers in close 

proximity and often interact with multiple enhancers (Schoenfelder et al., 2015). The most 

powerful of these methods, Hi-C (high throughput chromosome conformation capture), has 

been applied for the global detection of interactions between individual restriction fragments 

(such as those containing a promoter or enhancer). The Hi-C method can capture all 

interactions across the whole genome at the same time, without depending on 

immunoprecipitation steps, in which the properties of the antibody can affect the library 

complexity (Denker and de Laat, 2016). The main limitation of Hi-C method is the complexity 

of the libraries and the need for deep-sequencing that can significantly increase the cost of the 

process (Schoenfelder et al., 2018). Recently, Peter Fraser’s lab developed a technique termed 

Promoter Capture Hi-C (PCHi-C) to specifically enrich for promoter-containing ligation 

products from Hi-C libraries, reducing the complexity of the libraries and increasing the 

resolution of the assay (Schoenfelder et al., 2018). Focusing on promoter interactions can be 

very informative, as promoter-enhancer contacts have been shown to be essential for proper 

gene expression levels (Deng et al., 2012; Lupianez et al., 2015; Sur et al., 2012). Additionally, 

promoters are highly conserved along different cell types, thus the same capture bait system 

can be used to study the same interactions across multiple cell types and conditions 

(Schoenfelder et al., 2018). 

Although, approaches to study long-range interactions have been developed, for most of the 

enhancers their target genes are still unknown. Thus, assigning transcriptional enhancers to 

their target genes remains a challenge in decoding mammalian gene expression control. 

Additionally, how these loops are formed and stabilised remains uncertain; initial studies 

indicated a colocalisation and an important interplay between Mediator and cohesin complexes 

for gene activation through formation and stabilisation of enhancer-promoter DNA looping 

(Kagey et al., 2010).  The core cohesin complex consists of a heterodimer of the proteins SMC1 

(structural maintenance of chromosomes 1-produced from the SMC1A gene) and SMC3, in 

combination with SCC1 and SCC3 and it is crucial for genome stability, cell division, 

transcription and chromatin organisation (Pombo and Dillon, 2015). The interaction between 
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the DNA-binding protein CCCTC-binding factor (CTCF), which is a conserved zinc finger 

transcription factor and the cohesin complex, has also been suggested to contribute to the 

establishment of chromatin loops and the regulation of gene expression in mammalian cells, as 

studies have reported loss of DNA looping following depletion of either cohesin or CTCF (Li 

et al., 2020b; Nora et al., 2017; Rao et al., 2017). Notably, a role for CTCF in ERα biology has 

been shown, as CTCF binding events overlap with ERα and FOXA1 (Ross-Innes et al., 2011). 

Recently published data indicate that the Mediator complex along with transcription factors, 

coactivators and Pol II creates a functional bridge between promoters and enhancers, but the 

Mediator complex is not required for the formation of DNA loops, as chromatin architecture 

was largely unchanged after Mediator depletion (El Khattabi et al., 2019). In the same study 

the importance of the cohesin complex was highlighted, as its depletion decreased the 

promoter-enhancer contacts (El Khattabi et al., 2019). These data were supported from one 

more recent study, which showed that the loss of Mediator affected transcription of super 

enhancer-driven, cell-type-specifying genes and had a mild impact on overall transcriptional 

output and genome architecture (Jaeger et al., 2020). Linking distal regulatory elements to 

specific promoters, genome-wide, is important for understanding how the expression of 

multiple genes is modulated and modified across multiple diseases. Additionally, further study 

of the spatial regulatory circuitry can unravel the mechanistic role of the Mediator complex, 

cohesin, CTCF and other novel transcription factors in controlling and stabilising enhancer-

promoter looping. 

 

1.6 Mass spectrometry-based proteomics 

Like ERα, proteins often function as part of different complexes to carry out specific biological 

activities. Protein-protein interactions or interactions with non-protein molecules, such as DNA 

or RNA are critical for cellular functions (Bludau and Aebersold, 2020; Gingras et al., 2005). 

Especially, the composition of complexes in the regulatory region of different genes determines 

the activation or repression of genes (Wierer and Mann, 2016). A better understanding and 

characterisation of complex assembly can offer important insights into protein function and its 

role in the development of pathological states. Moreover, a more comprehensive map of the 

protein interaction data can enable further opportunities for molecular characterisation of 

human diseases and sensitivity to drugs. 

Proteomics, the large-scale analysis of proteins, utilising high-resolution mass spectrometry 

has been a powerful technology for the study of protein complexes and entire cellular 
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proteomes with increasingly improved depth and sensitivity (Wierer and Mann, 2016). Affinity 

purification in combination with high resolution mass spectrometry (MS)-based proteomics is 

now the method of choice for the characterisation of soluble protein complexes, especially 

chromatin associated interactomes (Gingras et al., 2007). In addition, the combination with 

quantitative MS techniques can be applied to discriminate between true interactors and noise, 

offering a more dynamic study of the regulation of the protein interactions in a cell, tissue or 

organism. In a typical mass spectrometry-based protein identification analysis, peptides 

generated by proteolytic digestion of proteins enter the spectrometer and their mass/charge 

ratios are measured in real time (MS1 event). Then, the most intense peptides are automatically 

isolated and fragmented in a collision cell, which contains an inert gas, followed by disruption 

of amine bonds. This event is known as MS/MS (MS2 event) and provides a mass spectrum of 

the fragments that can be used for peptide sequencing and subsequently protein identification. 

Specialised peptide identification algorithms are finally utilised to assign the collected MS/MS 

spectra to theoretical spectra predicted from known protein sequences (Gingras et al., 2005). 

Mass spectrometry-based proteomics can be a powerful tool for the rapid and unbiased 

identification of protein interactomes and a wide variety of MS based-methods has been 

developed, yielding invaluable insights into protein function. Yet improvements in sample 

preparation protocols, chromatographic separations, bioinformatics data analysis tools and 

particularly mass spectrometry instrumentation continue to advance the field, increasing its 

application for the deeper study of protein networks. 

 

1.6.1 Approaches for studying protein-protein interactions 

Several methods have been developed to understand how proteins are organised into modules 

and the role of these interactome networks into driving cellular functions. One of the first 

methods that was used to map protein-protein interactions, was the yeast two-hybrid approach 

(Y2H) that provides a quick and simple mechanism to identify proteins that interact physically 

in vivo, yielding large Y2H interaction maps (Rolland et al., 2014; Stelzl et al., 2005). In a Y2H 

assay, both the specific bait and the variable prey are exogenous fusion proteins expressed in 

specific compartments of the yeast cells. When there is a direct interaction between bait and 

prey, a selectable readout is generated, permitting identification of the prey based on cDNA 

sequence analysis (Stelzl et al., 2005). Although, it has been successfully used to study protein 

function of different model organisms, the Y2H approach only measures binary and often direct 



 

24 
 

interactions, losing more complex structural interactions. Additionally, is prone to high rates 

of false positive and negative results (Parrish et al., 2006).  

The human protein interactome maps generated using yeast two-hybrid, have been recently 

complemented by studies utilising large-scale affinity purification of epitope-tagged proteins 

followed by mass spectrometry (AP-MS), that have identified proteins associated with baits 

from many protein families, facilitating the study of large protein assemblies (Hein et al., 2015; 

Huttlin et al., 2015). An example of a complex with conformational and compositional 

heterogeneity is the Mediator complex, which has been mainly studied with AP-MS, revealing 

the locations and orientations of Mediator subunits (Robinson et al., 2015). Huttlin et al, 

performed an MS profiling of C-terminally FLAG-HA-tagged baits, using lentiviral 

expression, from 13,000 proteins and generated a network that contained 23,744 interactions 

among 7,668 proteins, revealing known complexes and many novel interactions that had not 

been described before (Huttlin et al., 2015). In the same context, Hein et al, studied 28,000 

protein-protein interactions by expressing 1,125 GFP-tagged proteins in HeLa cell lines (Hein 

et al., 2015). In the same study authors combined AP-MS with label-free quantification to 

enable the study of stoichiometric changes in protein complexes. Another method that has been 

applied to study protein-protein interactions is tandem affinity purification (TAP) combined 

with mass spectrometry, which involves cloning tags onto the gene of interest and the 

introduction of the construct into the host cell, resulting in expression of a fused protein (Rigaut 

et al., 1999). This approach has been successfully used to characterise protein associations 

including components of the TNF-alpha/NF-kappa B pathway (Bouwmeester et al., 2004) and 

ERα complex (Ambrosino et al., 2010; Gigantino et al., 2020). Although the application of 

tagging approaches followed by mass spectrometry has allowed the characterisation of multiple 

interactomes with increased sensitivity, a few limitations should be considered before its 

application (Bauer and Kuster, 2003; Zheng et al., 2020). The tagging strategy may mask areas 

of the bait protein that have a crucial role in the complex assembly and can have negative 

effects on the protein structure of the target protein. One more aspect that should be considered 

in the tag-based AP-MS approach is that the overexpression of the bait protein can alter the 

stoichiometry of protein complexes, introducing some artificial results. Additionally, the 

transient expression of bait proteins can be toxic for some cell lines or can compete with the 

expression of the endogenous untagged version, affecting the different protein networks and 

their physiologic relevance. One approach to overcome this challenge is to silence the 

endogenous genes by RNA interference or apply the method on biological systems that do not 

express the target protein (Forler et al., 2003). Additionally, a growing number of studies have 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/copurification
https://www.sciencedirect.com/topics/neuroscience/mass-spectrometry
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adopted CRISPR/Cas9 technologies to keep the expression of the tagged bait protein at the 

endogenous level, overcoming the effect of the protein overexpression and increasing the 

specificity of the AP-MS results (Vandemoortele et al., 2019). 

The BioID (Proximity-dependent Biotin Identification) method followed by mass spectrometry 

has been commonly used for protein interaction screening (Roux et al., 2018). Proteins that are 

in close proximity to the target protein are biotinylated and isolated with standard biotin-

affinity capture, before they are analysed using mass spectrometry. The BioID approach has 

been beneficial for the study of insoluble and membrane-associated proteins, however an 

exogenous fusion protein needs to be expressed and potential interactions need to have 

accessible primary amines for biotinylation (Roux et al., 2018). Recently, an alternative 

computational approach has been described for the prediction of protein-protein interactions; 

studies have used coregulation analysis to map protein-protein associations and their role in 

breast and colorectal cancer. The study by Roumeliotis et al (Roumeliotis et al., 2017), 

produced a deep representation of the functional network and the molecular structure 

underlying the heterogeneity of colon cancer cells, whereas the study by Lapek et al. (Lapek et 

al., 2017), revealed protein co-regulations that had an impact on cellular fitness of breast cancer 

cell lines.  

More recently, the use of chemical crosslinking combined with mass spectrometry (XL-MS) 

has provided information about endogenous protein assemblies not only at the level of selected 

protein complexes, but also at a proteome-wide scale (Yu and Huang, 2018). In a general XL-

MS workflow, proteins are reacted with bifunctional crosslinking reagents, that are used to 

covalently bind two or more protein molecules, capturing their spatial interactions, followed 

by digestion and analysis of the resultant peptides via liquid chromatography−tandem mass 

spectrometry (LC-MS/MS) analysis. Quantitative XL-MS strategies have also been developed 

to dissect the interaction and structural dynamics of protein complexes. Improvements and 

innovations in crosslinkers, mass spectrometry and data processing have made the XL-MS 

technology a powerful structural tool that offers information about spatial orientation, protein 

connectivity and physical contacts between protein complexes, elucidating protein complex 

architecture (Yu and Huang, 2018). Nevertheless, challenges do exist with regard to data 

processing and sensitivity that need to be addressed to enable the application of this approach 

more routinely. 

The combination of modern MS with Chromatin Immunoprecipitation (ChIP) protocols has 

enabled the sensitive and accurate characterisation of chromatin associated complexes 

(Berggard et al., 2007; Rafiee et al., 2016). Among the different approaches described in 
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literature, the method termed RIME (Rapid immunoprecipitation mass spectrometry of 

endogenous proteins), developed in the Carroll lab, concentrates several advantages for the 

study of the composition of different target complexes (Mohammed and Carroll, 2013). The 

workflow starts with formaldehyde crosslinking, which helps to maintain transient protein-

protein interactions, followed by chromatin sonication and immunoprecipitation using an 

antibody against a target protein. Finally, the eluents are digested with trypsin and subjected to 

mass spectrometry for analysis (Figure 5). The RIME method has been extensively applied for 

the study of endogenous protein-protein interactions from our lab (Mohammed et al., 2013; 

Mohammed et al., 2015; Nagarajan et al., 2020), as well as from other laboratories (Das Gupta 

et al., 2020; Shu et al., 2016), as it is easy adaptable. Usually, appropriate negative controls, 

such as IgGs are included to discriminate between bona fide components of the complex and 

background contaminants. Additionally, the RIME method has been combined with 

quantitative approaches to define the dynamics of interactions upon different treatments 

(Mohammed et al., 2013; Mohammed et al., 2015). However, this application was limited to 

the number of different conditions that could be analysed within one experiment. Also, protein 

interactions could not be captured in tissues; RIME was combined with a targeted proteomic 

approach to quantify peptides from selected proteins (Mohammed et al., 2013). To conclude, a 

wide range of approaches has been developed to study the complex protein networks and their 

dynamics on a global scale and further improvements in the pipelines can be incredibly 

informative and reveal insight into pathways and regulatory mechanisms. 
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Figure 5. RIME workflow. 

RIME starts with crosslinking followed by cells lysis and chromatin sonication. Then an antibody is used to pull 

down the protein of interest along with its interactors, followed by on bead digestion and identification using mass 

spectrometry. 

 

 

1.6.2 Mass spectrometry-based detection of Post-Translational Modifications  

For the better understanding of signalling processes, high resolution mass spectrometry 

combined with quantitative approaches has been used for the analysis of post-translational 

modifications (PTMs) including acetylation, ubiquitination and phosphorylation (Paulo et al., 

2015; Rose et al., 2016; Svinkina et al., 2015). PTMs can modulate the function of a protein, 

its structure and subcellular localisation, as well as the interactions with other proteins, 

emphasising the need for their in-depth characterisation (Bludau and Aebersold, 2020; 

Csizmok and Forman-Kay, 2018). Notably, the analysis of post-translational modifications 

(PTMs) by mass spectrometry can be challenging as it depends on many aspects: (a) the mass 

shift in the peptide molecular weight, (b) the abundance of the modified peptide, (c) the stability 

of the modification during the mass spectrometry analysis and (d) the impact of the 

modification on the peptide’s ionisation efficiency (Parker et al., 2010). Overall, the 

identification of PTMs has been a challenge for the proteomics research, mainly because of the 

high diversity and heterogeneity of the modified gene products.  
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Acetylation is common on N-terminal and amino groups of lysine and arginine; it is a well-

known regulatory PTM in the context of nuclear signalling, specifically for regulating gene 

expression via modification of histones (Parker et al., 2010). Non-histone acetylation plays a 

role in protein stability, DNA binding, gene expression, localisation, mRNA stability, 

enzymatic activity and protein interactions (Spange et al., 2009). An example is the interaction 

between TFIIB and TFIIF that is increased via autoacetylation of TFIIB at K238 leading to 

strong activation of transcription (Choi et al., 2003). Histone acetylation has been studied using 

metabolic labelling prior to mass spectrometry analysis (Evertts et al., 2013), whereas for the 

detection of acetylated lysines, strategies based on the enrichment of acetylated peptides using 

antibodies have been developed (Svinkina et al., 2015). Ubiquitination regulates numerous 

cellular processes, including protein degradation, signal transduction, DNA repair and cell 

division, as well as stability, function and localisation of various proteins (Danielsen et al., 

2011). The study of protein ubiquitination is difficult because of the large size of the 

modification and the low abundance of ubiquitinated proteins that can be overcome with large 

amount of starting material (Parker et al., 2010). Recent strategies, including antibody-based 

methods combined with quantitative mass spectrometry have improved the coverage of the 

ubiquitinome, leading to the identification and quantification of 19,000 ubiquitylation sites 

(Kim et al., 2011). 

Phosphorylation is the most frequent protein modification in cells and has a vital role in 

important regulatory processes involved in cell signalling and cancer (Parker et al., 2010). 

Notably, it has been reported that phosphorylation on specific residues can affect protein 

interactions (Bauer et al., 2003; McFarland et al., 2008). The analysis of phospho-sites by mass 

spectrometry can be challenging as the stoichiometry of phosphorylation is relatively low and 

an enrichment step is required for better coverage of phospho-sites and the discovery of 

important phosphorylation motifs (Mann et al., 2002; Paulo et al., 2015). Additionally, the 

phosphorylated sites on proteins may vary and one protein can exist in several phosphorylated 

forms increasing the complexity of the phosphoproteome analysis. Furthermore, the 

quantification of phosphorylation and other post-translational modifications requires correction 

by whole protein quantification to avoid misinterpretations arising from changes in protein 

expression over the course of an experiment (Mann et al., 2002). Methods that are widely used 

for the enrichment of phosphosites, on serine and threonine residues, are the miniaturised 

immobilised metal affinity chromatography columns (IMAC) and the titanium dioxide (TiO2) 

columns. IMAC enrichment is based on the high affinity of phosphate groups, that are 

negatively charged, towards a metal-chelated stationary phase, especially Fe3+ and Ga3+, that 
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are positively charged, followed by release of phosphopeptides from the IMAC resin using 

alkaline buffers (Thingholm et al., 2009). In the TiO2 enrichment method, samples are loaded 

into the columns in an acidic environment and the phosphopeptides are eluted using an 

ammonia solution at high pH (Thingholm et al., 2009).  

Due to the above technical challenges, the modification landscape of proteins and especially 

protein interactomes remain largely unexplored. However, with continued development of 

techniques with improved sensitivity and specificity, the study of PTMs and their role in 

protein-protein interactions can be facilitated. 

 

1.6.3 Relative quantification proteomics approaches 

The latest advances in mass spectrometry in terms of sensitivity, speed, mass accuracy and 

resolution have facilitated the development of robust quantitative proteomic approaches that 

allow the unbiased study of the functional role of proteins in a plethora of biological contexts. 

In addition to mass spectrometry, the development of software packages, such as Proteome 

Discoverer (Lemeer et al., 2012) and MaxQuant (Tyanova et al., 2016b), that are compatible 

with high-throughput proteomics, had a great impact on the development of quantitative 

proteomics, as they have enabled the analysis of large quantitative datasets within hours. 

Relative quantification measurements can now be collected for complex proteomes, in terms 

of both numbers of proteins and dynamic expression range, for the analysis of protein 

expression patterns and post-translational modification states, as well as for the study of 

biological systems, where sample availability is limited (Rauniyar and Yates, 2014).  

Among the many formats for quantitative proteomics, isotope-labelled (TMT or iTRAQ and 

SILAC) and label-free, have facilitated the quantification of whole proteomes and more 

recently interactomes (Hein et al., 2015; Huttlin et al., 2015; Mohammed et al., 2013; 

Roumeliotis et al., 2017). Stable isotope labelling of proteins or peptides prior to analysis is 

one of the most popular methods for relative quantification combined with mass spectrometry 

as it is characterised by high reproducibility and proteome coverage. The different quantitative 

methods (isotope-labelled or label-free) have distinct advantages and disadvantages and the 

choice of quantitative proteomics method depends primarily on the type of the experiment and 

the resources that are available to each researcher (Gingras et al., 2007). 

The combination of these techniques with affinity purification has enabled the study of the 

dynamics of complexes and the discovery of proteins that are significantly enriched over mock 

pull-downs or between target protein pull-downs in different conditions (Gingras et al., 2007). 



 

30 
 

The quantitative study of interactomes is a growing field and the development of more robust 

pipelines can enable the comprehensive study of interactome dynamics and stoichiometry, 

providing answers to open biological questions.   

 

1.6.3.1 Metaboling labelling 

Stable Isotope Labelling by Amino acids in Cell culture (SILAC) is the most popular metabolic 

labelling method, that utilises the translational machinery of the cell in order to incorporate 

heavy versions of specified isotopic labelled amino acids added in the growth medium (Ong et 

al., 2002). Protein extracts from differentially labelled cells are mixed and digested with a 

proteolytic enzyme prior to mass spectrometry analysis. Depending on the labelling scheme, 

the light and heavy forms of a given peptide simultaneously appear as duplets or triplets on the 

mass spectrum and quantification is retrieved from the relative peak intensities by comparing 

heavy/light peptide pairs (Gingras et al., 2007). The SILAC approach has been successfully 

used as a main quantitative strategy in many studies (Blagoev et al., 2003; Everley et al., 2006; 

Mohammed et al., 2013; Mohammed et al., 2015; Wiley et al., 2019) and the combination of 

the samples at the earliest step of the workflow has minimised variability and systematic errors 

generated during the sample preparation. Although, SILAC is a simple and robust method, it 

is still limited in the number of samples that can be combined in a single analysis run. 

Additionally, this approach can only be applied for cell lines that can grow with SILAC culture 

media, as there are cell lines that their growth rates can be affected when their culture media is 

changed (Gingras et al., 2007).  

A recent development has expanded the application of SILAC in vivo, using SILAC-labeled 

cells for the quantification of proteins from Patient-Derived xenografts (PDX) or human tissue 

(Tyanova et al., 2016a). This method is termed super-SILAC and it uses a mixture of different 

SILAC-labelled cell lines as an internal standard for quantifying proteins in tissue (Geiger et 

al., 2010). Although, this approach offers great opportunities for the quantitative study of 

clinical material it can only be comprehensive and accurate when the reference standard 

contains all proteins that are detected in the tissue samples (Geiger et al., 2010). Even if SILAC 

has a few limitations, the low cost of the technique, its easy implementation and the high 

efficiency of the labelling has made it one of the first choices especially for the study of culture 

cells or SILAC-compatible organisms. 
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1.6.3.2 Label-free quantification 

The label-free quantification (LFQ) approach provides quantification of peptides and proteins 

without the use of stable-isotope labels and can be divided into two main approaches, that are 

commonly used (Zhu et al., 2010): (1) an approach that utilise measurements of ion intensity 

changes, such as peptide peak areas or peak intensities in the mass spectrometer, as a 

quantitative measure and (2) spectrum count method that utilise the number of peptide-to-

spectrum matches (PSMs), obtained for each protein to measure protein quantity. Both 

approaches are based on measurements from individual LC-MS/MS runs and any changes at 

protein levels are calculated via a direct comparison between different analyses. They have 

been very popular for studies where large-scale sets of experimental data need to be compared 

due to its simplicity. The label-free approach can be the first choice for the quantitative study 

of cell lines that do not grow under the SILAC media. An important experimental requirement 

for label free-based experiments is a robust LC-MS setup that minimises the shift on retention 

times and changes in chromatographic peaks, thus leading to fewer false assignments and more 

accurate quantification.  

Several software with unique algorithms have been developed for the analysis of label-free 

mass spectrometry data such as MaxLFQ, which is implemented in the MaxQuant platform 

(Cox et al., 2014). Recently, a label-free quantification data analysis algorithm, called Minora, 

that utilises peak area or intensity has been implemented in the new versions of Proteome 

Discoverer software (Glont et al., 2019b), allowing an easy label-free quantification in large 

datasets. The Minora algorithm has already been used for precursor ion quantification, however 

it was recently adjusted to detect and quantify isotopic clusters, whether they are associated or 

not with a peptide spectral match, increasing the coverage of the quantified proteome. A 

comparison between Minora and the spectral counting approach, revealed that the precision of 

the ratios was better using Minora and a higher number of quantified proteins was detected in 

the Minora-based quantification (http://tools.thermofisher.com/content/sfs/posters/PN-64792-

Label-Free-Proteome-Discoverer-ASMS2016-PN64792-EN.pdf).  

Most quantification approaches follow a data-dependent acquisition (DDA) strategy, where 

precursors with the highest intensity are selected for fragmentation during the mass 

spectrometry analysis. An alternative approach for label-free quantification is the sequential 

window acquisition of all theoretical mass spectra (SWATH‐MS), where all ionised 

compounds of a given sample, that fall within a specified mass range, are fragmented in a 

systematic and unbiased fashion [data-independent acquisition (DIA)] (Ludwig et al., 2018). 
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SWATH-MS can be used for large number of samples, offering increased quantitative 

consistency and accuracy, avoiding a stochastic and not reproducible precursor ion selection. 

However, it requires prior knowledge about the chromatographic and mass spectrometric 

behaviour of peptides in a form of custom spectral libraries (Ludwig et al., 2018). This can 

increase the complexity of data analysis and limited the total protein identifications to the ones 

that are only included in the libraries. 

Overall, the main limitation of the label-free based quantification approaches is that the 

individual LC-MS/MS analysis for each sample can introduce variability in peptide detection, 

as an ion selected for fragmentation in one LC−MS/MS run may not be selected consistently 

in subsequent runs; this is more pronounced for low intensity ions corresponding to low 

abundant peptides. This can result in missing observations across the different samples that can 

increase the complexity of the data analysis and reduce the power of the downstream statistical 

analysis, affecting more significantly the quantification of lower abundance proteins. 

Additionally, the separate analysis of many samples can increase the mass spectrometry run 

time leading to an increased cost of the experiment (Li et al., 2012). Although, label-free based 

quantification approaches can be an excellent alternative to labelling techniques, some 

important limitations of the approach should be considered before the application on samples 

with limited amount of protein or high heterogeneity. 

 

1.6.3.3 Chemical isobaric labelling 

The two most widely used chemical labelling methods are tandem mass tags (TMTs) and 

isobaric tags for absolute and relative quantification (iTRAQ), both of which target primary 

amines and are so-called isobaric tags (Rauniyar and Yates, 2014). Stable isotope labelling 

with iTRAQ or TMT is the technology of choice, when simultaneous multiple comparison 

analysis of clinical samples or temporal multi-time point profiling is required. In this approach, 

peptides from up to 8 or 11 different conditions are chemically modified with isobaric 

molecules through an amine-reactive NHS-ester group before they are mixed in a single sample 

(Figure 6a). These isobaric tags contain different combinations of stable isotopes on a spacer 

arm and a complementary reporter group, which are designed to maintain a constant total mass 

for all the different reagents. Tandem MS fragmentation gives rise to up to 8 or 11 different 

low mass reporter ion peaks with intensities proportional to the peptide relative abundance. 

Fragmentation also generates peptide fragment ion peaks that can be used for peptide and 

subsequently protein identifications. Biological and technical replicates can be accommodated 
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in the same analysis with no additional sample preparation and analysis time, therefore 

experimental designs can be improved in terms of throughput and statistical power. 

Hyperplexing by the combinatorial use of isobaric and metabolic labelling has also been 

described that enabled the simultaneous quantification of 18 samples and provided a tool for 

studying protein turnover (Dephoure and Gygi, 2012).  

The main limitation of isobaric labelling-based experiments is the presence of co-eluted 

peptides within the isolation window that has been applied for the selection and fragmentation 

of the peptide of interest. The co-isolation and co-fragmentation of interfering peptides of 

similar mass-to-charge, compromise protein quantification and result in an underestimation or 

compression of actual protein abundance differences in the analysed sample set (Rauniyar and 

Yates, 2014). The latest developments in mass spectrometry and the additional isolation and 

fragmentation event (MS3) scan can eliminate the ratio distortions. Ting et al., used a multi-

proteome model (mixture of human and yeast proteins) in a 6-plex isobaric labelling system to 

demonstrate the interference effect and how this can be eliminated with the multistage MS3-

based approach. Although, this approach reduced the contribution of any interfering signals, it 

also affected the overall sensitivity and data acquisition speed (Ting et al., 2011). This occurs 

because only the most intense fragment of a precursor is selected for subsequent interrogation 

per cycle, which results in only a small percentage of MS1 precursor ions to be converted into 

the MS3 reporter ions. Recently, McAlister et al. developed a method called MultiNotch MS3, 

that uses isolation waveforms with multiple frequency notches for synchronous precursor 

selection (SPS) of five or ten MS2 fragment ions, thereby increasing the number of reporter 

ions in the MS3 spectrum by 10-fold compared to the standard MS3 method (McAlister et al., 

2014). The MultiNotch MS3 approach in combination with the development of advanced mass 

spectrometers, such as Orbitrap Fusion Lumos and Orbitrap Eclipse have addressed the 

interference issue and have now made the use of isobaric labels a powerful tool for the 

quantitative study of proteomes and interactomes (Myers et al., 2019; Yu et al., 2020).  

Recently, an increased sample multiplexing capability was introduced with the synthesis of the 

next generation TMT reagents that are based on an isobutyl-proline immonium ion reporter 

structure (TMTpro) (Figure 6b) and enable the analysis of up to 16 samples simultaneously 

(Li et al., 2020a; Thompson et al., 2019) (Figure 6c). A comparison between the TMT (TMT 

10-plex or TMT-11plex) reagents and the TMTpro label tags revealed the same functionality 

and similar proteome coverage and quantitative precision for both reagents (Li et al., 2020a). 

The TMTpro application can be more beneficial, when more replicates are required or sample 

amount is limited as the mixture of 16 samples within one experiment can increase significantly 
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the sensitivity of the analysis (Thompson et al., 2019). Additionally, with the application of 

TMTpro, the number of different TMT experiments can be reduced, as more samples or 

replicates can be included in a single TMTpro experiment. This will result in increased high 

throughput and improved data quality as the missing quantitative values among samples and 

within replicates will be reduced. Recently, a 27plex approach was introduced, where 11-plex 

and 16-plex TMT approaches were successfully combined (Wang et al., 2020). In this approach 

the peptides were labeled by the two different TMT sets; the two types of tags display different 

mass and hydrophobicity and could be separated in LC-MS/MS, offering high multiplexity 

capacity. Overall, multiplexed isobaric labelling methods can remarkably improve the 

throughput of quantitative mass spectrometry and can be applied widely to study different 

functional biological systems. 

 

 

 

Figure 6. Chemical labelling. 

a) Chemical formula of TMT-6plex reagents. b) Chemical formula of TMTpro tags. c) Peptides from up to sixteen 

different samples are labelled using the different TMTpro tags and are mixed and fractionated prior to mass 

spectrometry analysis. At the MS2 or MS3 level the fragmentation will generate the reporter ion peaks and the 

peak intensity will give the relative quantification of this particular peptide across the different conditions. 

 

 

1.7 Thesis objectives 

The first aim of the thesis is the development and optimisation of a quantitative method for the 

study of the dynamics of protein complexes. For this purpose, we will combine the well-

established RIME approach with the TMT isobaric labelling technique, which provides a 
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powerful tool for global protein quantification with increased multiplexity and sensitivity. Our 

new approach will be compared with non-quantitative RIME and SILAC-RIME that have been 

previously applied for the characterisation of different protein interactomes. The second aim 

of the thesis is the application of the new quantitative method to characterise the interactome 

of ERα and well known ERα-coactivators using breast cancer cell lines as a model. In parallel, 

we aim to validate a selection of novel interactions, that will be found in the cellular models, 

in PDX and human clinical tumour samples and evaluate the application of our quantitative 

pipeline in vivo. Novel interactions will be validated using the proximity ligation assay (PLA) 

approach. The third aim of the thesis is the study of the effects of 4-hydroxytamoxifen, the 

active metabolite of tamoxifen, on the ERα interactome. To this end we will perform a time 

course experiment in a breast cancer cell line to explore the temporal effects of 4-

hydrotamoxifen on the composition of the ERα complex. We will combine the quantitative 

interactome assays with RNA-sequencing to validate the efficiency of the drug treatment as 

well as with whole proteome analysis to discriminate total protein changes induced by 4-

hydrotamoxifen treatment from changes specific for the ERα complex assembly. The 

application of our quantitative pipeline will enable the functional study of a drug that is widely 

used for the treatment of ERα positive pre-menopausal breast cancer patients, in an unbiased 

manner, without exclusively focusing on the effect of the assembly of ERα complex on specific 

genes. This can be an excellent tool to study ERα transcriptional repression and validate the 

application of our new developed quantitative method. The fourth aim of the study is the 

integration of all the quantitative interactome data, performed in vitro and in vivo, for the 

discovery of novel ERα-associated proteins with clinical potential. The functional role of the 

novel ERα-associated interactions will be characterised in depth by integrating different 

technologies. For this, the interactome of the novel candidate will be assessed, using our new-

developed quantitative pipeline to identify its partners and understand better its association 

with ERα. The functional role of this candidate interactor will be further assessed by combining 

siRNA with proliferation assays mainly using different breast cancer cell lines as models. We 

will also perform RNA-sequencing and whole proteome analysis to study the global effect in 

gene and protein expression following the knockdown of this factor. The expression data will 

be integrated with ChIP-sequencing experiments for profiling the genome binding of this factor 

in promoters or enhancers that are close to genes that are regulated upon knockdown. ChIP-

sequencing experiments will also be performed for other important factors such as ERα and 

known ERα interactors to evaluate the effect on their chromatin binding upon knockdown of 

the candidate factor. Building on the acquired knowledge from the above objectives, the 
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ultimate goal of the project is to investigate the dynamics of the ERα complex composition in 

cell models and clinical samples using proteomic approaches and to discover novel ERα-

associated proteins that may affect ERα function and its transcriptional activity. 
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Chapter 2 

 

2. Materials and Methods 

 

2.1 Cell lines and cell treatments 

ERα-positive breast cancer cell lines MCF7, T47D and ZR751, the Human embryonic kidney 

293 cell line (HEK293) and the AR-positive prostate cancer cell line LNCaP, were obtained 

from ATCC. MCF7 and HEK293 cells were grown in DMEM medium (Gibco, #41966-029), 

T47D, LNCaP, MDA-MB-231 and ZR751 cells in RPMI-1640 medium (Gibco, #21875-034). 

Both media were supplemented with 10% foetal bovine serum (Gibco, #A3160402), 50U/ml 

penicillin, 50μg/ml streptomycin (Gibco, #15070-063) and 2mM L-glutamine (Gibco, 

#25030). All cell lines were genotyped by short-tandem repeat (STR) genetic profiling using 

the PowerPlex 16HS Cell Line panel and analysed using the Applied Biosystems Gene Mapper 

ID v3.2.1 software by the external provider Genetica DNA Laboratories (LabCorp Specialty 

Testing Group). Cell cultures were tested routinely for mycoplasma contamination using the 

MycoProbe Mycoplasma detection kit (R&D Systems, #CUL001B) (Both were performed by 

the Research Instrumentation and Cell Services Core-CRUK-CI). For the cell treatments, 4-

Hydroxytamoxifen (Sigma-Aldrich, #HG278) or Fulvestrant (Selleckchem, #S1191) were 

prepared in ethanol and used at final concentration 100nM.  

 

2.1.1 Whole cell lysate preparation and western blot analysis 

Cells reaching about 70-80% confluency were collected and washed twice in ice-cold 

Phosphate Buffered Saline (PBS) and scraped in 500-1ml PBS contained protease inhibitors 

(Roche, #505648900). Cells were centrifuged at 8000g for 3min at 4oC and the supernatant 

was discarded. Cell pellets were reconstituted in 50-200μl (based on the pellet size) RIPA 

buffer (Thermo Scientific, #89901), that was supplemented with protease inhibitors (Roche, 

#505648900), followed by sonication using the Bioruptor Plus (Diagenode) for 2 cycles (30 

seconds on/30 seconds off) to degrade the DNA. The cellular debris was removed by 

centrifugation at 20,000rpm for 10min, at 4oC and supernatant was transferred to new tubes. A 

protein quantification assay was performed using the Direct Detect™ infrared (IR)-based 

quantification system (Millipore) to calculate protein concentration of the whole lysate. 25-

40ug from each sample was loaded on the gel (Invitrogen BoltTM  4-12%, #NW0412BOX) and 

the Precision Plus ProteinTM Dual Colour molecular weight marker (BIO-RAD, #1610374) was 

https://www.rndsystems.com/search?keywords=cul001
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used for the determination of protein sizes. The proteins were transferred onto a nitrocellulose 

membrane (Invitrogen, #IB23001/02) using the iBlot 2 Dry Blotting System (Invitrogen), 

followed by one hour blocking at room temperature using Odyssey® Blocking Buffer (Li-Cor, 

#927-60001). The membrane was immunoblotted with ERα antibody (Novocastra, #6045332, 

1:100) or ZNF207 antibody (Invitrogen, #PA5-30641, 1:1000) and rabbit (Cell signalling, 

#4970, 1:1000) or mouse beta-actin (Sigma-Aldrich, #A5441, 1:5000). Detection of the ERα 

and ZNF207 proteins was achieved using the IRDye 800CW Goat Anti-mouse (Li-Cor, #926-

32210) diluted to 1:5000 or the IRDye 800CW Goat Anti-rabbit (Li-Cor, #926-32211) diluted 

to 1:5000 retrospectively, while the loading control was detected using the IRDye 680RD Goat 

Anti-rabbit (Li-Cor, #926-68071,) diluted to 1:15000 or the IRDye 680RD Goat Anti-mouse 

(Li-Cor, #926-68070) diluted to 1:15000. All antibodies were diluted in Odyssey Buffer 

contained 0.1% Tween. The proteins were visualised using the Odyssey CLx Imaging System 

(Li-Cor) and images were taken with the automated capture option of the Image studio Version 

4.0 software.  

 

2.1.2 Small interfering RNA (siRNA) assay 

Cells were seeded in 100mm or 150mm plates and allowed to grow in complete media for 24h. 

The next day, cells were transfected with siNT (Horizon Discovery, #D-001810-10) or 

siZNF207 SMARTpool (Horizon Discovery, #L-019557-00) using Lipofectamine RNAiMax 

transfection reagent (Invitrogen, #13778150) diluted in Opti-MEM (Gibco, #31985047). The 

siRNAs were prepared in nuclease free water and aliquots of final concentration 20µM were 

stored at -80oC. For cell transfection, siRNAs were diluted in Opti-MEM and incubated for 

5min, before added to the transfection reagent/Opti-MEM mix and incubated for 20min at room 

temperature. The mix was added to the plates at a final concentration of 10nM and the cells 

were incubated with the respective siRNA for 48h. For DNA, flow cytometry, protein and RNA 

experiments, the media was changed 24h after the transfection. For proliferation assays, cells 

were left in transfection medium for the duration of the assay. 

 

2.1.3 Cell proliferation assays 

Cell proliferation assays were performed using the IncuCyte® ZOOM Live Cell Analysis 

System (Essen BioScience). Different cell lines were seeded in 48 or 96-well plates and after 

24h were transfected with siNT or siZNF207 in at least six technical replicates per condition. 

For each cell line the assay was conducted in three biological replicates, performing three 
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independent cultures and transfection treatments. Following the addition of the transfection 

mix to each well, plates were immediately placed in the IncuCyte® ZOOM Live Cell Analysis 

System (37°C with 5% CO2) and cell proliferation was monitored for 4-5 days via phase-

contrast images taken every 3 hours. Confluence was assessed using the default settings of the 

IncuCyte® ZOOM software. 

 

2.2 RNA-sequencing analysis 

MCF7 cells were washed twice with cold PBS and harvested in 350μl of lysis buffer (RLT, 

Qiagen #74106). For the RNA extraction the RNeasy® kit (Qiagen, #74106) was used 

according to the manufacturer’s instructions and for the quantification of the extracted RNA 

the NanoDrop® ND-1000 Spectrophotometer (Thermo Scientific) was used. For the library 

preparation the TruSeq Stranded mRNA Library Prep Kit High Throughput (Illumina) was 

used according to the manufacturer’s instructions and 2 lanes of 50 bp single-end reads were 

run on HiSeq 4000 to reach around 30M reads per sample (Library preparation and sequencing 

was conducted by the Genomics Core Facility-CRUK-CI). RNA-seq data processing and 

bioinformatic analysis was performed by the CRUK Cambridge Institute Bioinformatics core. 

Reads were aligned to the human genome version GRCh37.75 or GRCh38 using the aligner 

TopHat v2.1.0 (Trapnell et al., 2009) or STAR v2.5.3a (Dobin et al., 2013). Read counts were 

obtained using feature Counts function in Subread v1.5.2 (Liao et al., 2013) and read counts 

were normalized and tested for differential gene expression using the DESeq2 workflow (Love 

et al., 2014). Multiple testing correction was applied using the Benjamini–Hochberg method. 

Sashimi plots were generated from aligned bams in the Integrative Genomics Viewer (IGV) 

version 2.8.2 (http://software.broadinstitute.org/software/igv/). The minimum junction 

coverage was set to the IGV default, which is 1, when Sashimi plots were generated. 

 

2.3 Proximity ligation assay  

Ice-cold methanol (-20°C) was added (3min) for cell fixation and permeabilization, followed 

by three washing steps with cold PBS. PLA was carried out according to manufacturer’s 

instructions (Sigma-Aldrich, #DUO92007) and the following primary antibodies were used: 

ERα (Santa Cruz, sc-543 or sc-8002, 1:250), HP1γ (Santa Cruz, sc-365085, 1:400), NIPBL 

(Santa Cruz, sc-374625, 1:200), FOXK1 (Santa Cruz, sc-373810, 1:200), GFP (Abcam, 

ab1218, 1:200), NCOA3 (Bethyl Laboratories, A300-347A, 1:200), CBP (Bethyl Laboratories, 

A300-363A, 1:200), BAF170 (Santa Cruz, sc-17838, 1:200), HDAC1 (Santa Cruz, sc-81598, 
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1:200). The incubation with the primary antibodies and the secondary proximity probes 

(Sigma-Aldrich, Rabbit-PLUS, #DUO92002 and Mouse-MINUS, #DUO92004) was 

performed for 1h at 37°C. For the single PLA recognition experiment two ERα antibodies 

(Santa Cruz, sc-543, 1:800 and Invitrogen, MA5-13191, 1:1200) were used in combination. 

The Leica DFC340FX microscope was used for visualisation and images were captured at high 

resolution for a total of 8 separate observation fields with Leica Imaging software. Cell 

numeration and PLA labelling were performed using Image J software and cells along with red 

PLA dots were counted using the ‘Analyse Particles’ function. For each condition at least 200 

cells were imaged and analysed and the average value of number of spots per nucleus was 

calculated. For the statistical analysis student’s t-test was performed.  

 

2.4 Immunofluorescence  

Cells were fixed and permeabilised using ice-cold (-20°C) methanol for 3min followed by 

blocking with PBS-5% (w/v) Bovine Serum Albumin (BSA) (Sigma-Aldrich, #A9418) for 

30min at room temperature. The primary ERα antibody (Santa Cruz, sc-543, 1:250) was 

prepared in blocking solution (PBS-5 % (w/v) BSA) and added on coverslips for an incubation 

of 1h at 37 °C. The coverslips were washed 4 times in washing buffer (PBS-0.5% Tween) 

followed by incubation with the secondary antibody conjugated to Alexa Fluor 488 (Invitrogen, 

#A-21206, 1:500) for 1 hour at 37°C in the dark. After the completion of the incubation with 

the secondary antibody, coverslips were washed three times in washing buffer and once in PBS. 

For the α-Tubulin and CREST immunofluorescence staining, cells were fixed with 4% 

paraformaldehyde at room temperature for 10min, permeabilized with 0.5% Tween in PBS for 

10min and blocked for 10min at room temperature (RT) in blocking solution (PBS-5 % (w/v) 

BSA). The primary CREST (Antibodies Incorporated, #15-234, 1:2000) and α-Tubulin 

antibodies (Sigma-Aldrich, #T9026, 1:500) were diluted in blocking solution (PBS-5 % (w/v) 

BSA) and incubated on coverslips for 1h at RT. The coverslips were washed 3 times in washing 

buffer (PBS-0.2% Tween) followed by incubation with the secondary antibodies conjugated to 

Alexa Fluor 488 or 555(Invitrogen #A-21206 and #A-31570, 1:500) for 1h at RT in the dark. 

Coverslips were then washed again three times in washing buffer and Hoechst 33342 (Sigma-

Aldrich, #B2261, 1:500 in PBS) was used for DNA staining. For cell scoring the Zeiss 

widefield system was used at 63x magnification (oil immersion objectives). 
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2.5 PDX propagation and tissue collection 

PDX propagation and tissue collection was conducted by our collaborators in Australia 

(A/Professor Alex Swarbrick and A/Professor Elgene Lim labs). Viably frozen PDX tumour 

tissue was propagated in immune-compromised mice. Briefly, 1mm3 tumour pieces were 

implanted into the 4th mammary pad of NSG mice. All mice were supplemented with estrogen, 

using E2 pellets (made in-house) inserted into the dorsal scruff. A standard monitoring and 

measurements of tumour size were performed twice a week. When tumours reached 

appropriate size (~1000mm3), mice were sacrificed by cervical dislocation under deep, 

isoflurane induced anaesthesia. Tumours were resected, diced and processed by either snap 

freezing in liquid nitrogen, fixing in 10% neutral buffered formalin solution for subsequent 

paraffin embedding, embedding in optimal cutting temperature compound (OCT), or viably 

freezing in foetal calf serum (FCS) supplemented with 5% DMSO. This method section was 

provided by our collaborators in Australia (A/Professor Alex Swarbrick and A/Professor 

Elgene Lim labs). 

 

2.5.1 Sample preparation of clinical tumour material 

Human clinical tumours were collected from our collaborators in Australia (Professor Alex 

Swarbrick and Professor Elgene Lim labs) and frozen tissues were cryosectioned in 30µm 

slices by the Histopathology Core (CRUK-CI) using the Leica CM 3050 S cryostat. Tissue 

sections were fixed in a two-step procedure by adding 2mM DSG for 25min first. In the same 

suspension of tissue sections, 1% formaldehyde was added for another 20min without 

removing the DSG, followed by crosslinking quenching using glycine at 0.25M final 

concentration. Then samples were centrifuged for 3min at 2,500g, the supernatant was 

discarded and tissue pellets were washed twice with cold PBS. For pellet resuspension, 6ml 

LB3 buffer (10 mM Tris-HCl [pH 8], 100 mM NaCl, 1 mM EDTA, 0.5 mM EGTA, 0.1% Na-

deoxycholate, and 0.5% N-lauroylsarcosine) was added to each tumour, followed by tip 

sonication for 6min. Each extracted chromatin amount was split for ERα and IgG RIME pull-

down assays and added to the bead-bound antibody for overnight incubation at 4oC. The next 

day, the beads were washed 10 times with ice-cold RIPA buffer (150mM NaCl, 10mM Tris, 

pH 7.2, 0.1% SDS, 1% Triton X-100, 1% NaDeoxycholate) and twice with ice-cold (100nM) 

ammonium bicarbonate (AMBIC) prior to mass spectrometry analysis. Patient, and patient 

derived tissues used in this work were collected under protocol X13-0133, 

HREC/13/RPAH/187. HREC approval was obtained through the SLHD (Sydney Local Health 
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District) Ethics Committee [RPAH (Royal Prince Alfred Hospital) zone)] and site-specific 

approvals were obtained for all additional sites. Written consent was obtained from all patients 

prior to collection of tissue and clinical data stored in a de-identified manner, following pre-

approved protocols. All animal procedures were carried out in accordance to the relevant 

national and international guidelines and animal protocols approved by the Garvan/St 

Vincent’s Animal Ethics Committee (Animal ethics number 15/10). 

 

2.6 Immunohistochemistry 

FFPE blocks from PDX tumours were sectioned at 4µm onto Superfrost Plus slides. 

Immunohistochemistry was carried out by our collaborators in Australia (A/Professor Alex 

Swarbrick and A/Professor Elgene Lim labs) using the DAKO Bond Autostainer. Sections 

underwent dewaxing, heat induced antigen retrieval (DAKO reagent ER2, 30mins) and primary 

and secondary antibody incubations, using ERα antibody (Abcam, # ab108398,  1:500) and the 

EnVision+ Rabbit secondary system, respectively. Sections were counterstained with 

haematoxylin. This method section was provided by our collaborators in Australia (A/Professor 

Alex Swarbrick and Professor A/Elgene Lim labs). 

 

2.7 Flow cytometry  

MCF7 cells were grown in complete media for 24h before they were treated with siNT or 

siZNF207 for 48h at final concentration 10nM. Asynchronous MCF7 cells were fixed in 70% 

ethanol for 30min on ice and washed twice with ice-cold PBS. Each sample was resuspended 

in 1ml Flow stain solution [PBS+0.1%(v/v) Triton-X-100, Propidium Iodide solution 

(20µg/ml, Sigma-Aldrich, #P4864), Ribonuclease A (200µg/ml, Sigma-Aldrich, #R6513)] and 

the cell suspension was transferred to 5ml round bottom polystyrene tubes (Corning, #352235). 

Flow cytometry was performed using a Becton Dickson flow cytometer and analysed using the 

FlowJo® software package (Tree Star). The experiment was repeated twice and all statistical 

analyses were carried out by performing student’s t-test. 

 

2.8 ChIP-Seq and RIME assays  

Cells (2×106) were grown in complete media and for the cell crosslinking 1% formaldehyde 

(Thermo, #28908) prepared in PBS was added, followed by an incubation for 10min at RT. For 

the double crosslinking cells were incubated in PBS containing 2mM DSG (disuccinimidyl 

glutarate-Santa Cruz Biotechnology, #sc-285455A) for 20min at RT followed by incubation in 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/flow-cytometry
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1% formaldehyde for 10min at RT. The cell crosslinking was quenched by adding glycine to a 

final concentration of 0.1M and the cells were washed twice in ice-cold PBS and scraped in 

1ml PBS contained protease (Roche, #5056489001) and phosphatase inhibitors (Thermo 

Scientific, #78427). Cells were centrifuged at 8000g for 3min at 4oC and the supernatant was 

discarded. For both ChIP-seq and RIME experiments, cell pellets were resuspended in Lysis 

Buffer 1 (50mM Hepes–KOH, pH 7.5, 140mM NaCl, 1mM EDTA, 10% Glycerol, 0.5% NP-

40/Igepal CA-630, 0.25% Triton X-100) and rotated for 10min, at 4˚C for nuclear extraction. 

Then nuclei were pelleted, resuspended in Lysis buffer 2 (10mM Tris–HCL, pH8.0, 200mM 

NaCl, 1mM EDTA, 0.5mM EGTA) and rotated at 4˚C for 5min. Samples were resuspended in 

300μl Lysis buffer 3 (10mM Tris–HCl, pH 8, 100mM NaCl, 1mM EDTA, 0.5mM EGTA, 

0.1% Na–Deoxycholate) and sonicated using the Bioruptor Plus (Diagenode) for 10-20 cycles 

(30 seconds on, 30 seconds off). After sonication the samples were centrifuged at 20,000g for 

10 minutes at 4˚C and a small aliquot of the supernatant was kept as input for ChIP-seq. For 

each sample, 50-100ul of DynabeadsTM Protein A (Invitrogen, #0002D) and 5-10ug of specific 

antibody were used. Table 1 lists all the antibodies used for RIME and ChIP-seq assays. The 

bead-bound antibody and chromatin were incubated overnight at 4oC with rotation. For the 

spike-in ChIP-seq experiment, 5ug drosophila antibody (Active motif, #61686) and 50ng 

drosophila chromatin (Active motif, #53083) were added to each sample prior to overnight 

incubation. The next day, the beads for RIME assays were washed 10 times with ice-cold RIPA 

buffer (150mM NaCl, 10mM Tris, pH 7.2, 0.1% SDS, 1% Triton X-100, 1% NaDeoxycholate) 

and twice with 100nM ammonium bicarbonate (AMBIC, Fisher Scientific, #10207183) prior 

to mass spectrometry analysis.  

The beads for ChIP-seq were washed six times with RIPA buffer, followed by one wash with 

TE (Tris EDTA, pH 7.4). Then, both ChIP samples and inputs were de-crosslinked by adding 

200μl elution buffer (1% SDS, 0.1 M NaHCO3), followed by overnight incubation at 65˚C. 

After reversing crosslinking, DNA was purified using the phenol-chloroform-isoamyl DNA 

extraction method. Briefly, samples were treated with RNase A (Thermo Scientific, #AM2271) 

for 45min at 37˚C, followed by Proteinase K treatment (Thermo Scientific, #25530049) for 2 

hours at 55˚C, before DNA was purified by phenol-chloroform extraction. A volume of 800µl 

100% ethanol was added and samples were left overnight at -20˚C for DNA precipitation. The 

next day, pellets were washed with 70% ethanol and reconstituted in 13µl Tris-HCl. ChIP-seq 

and input libraries were prepared using the ThruPlex Sample Prep Kit (Illumina, #R400676). 

The sample pool was subjected to next generation sequencing using HiSeq 4000 or Novaseq 
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(Illumina) to reach approximately 30M reads per sample (The sequencing was performed by 

the Genomics core-CRUK-CI). 

 

 

Table 1. Antibodies used for RIME and ChIP-seq assays. 

Bait protein Antibody Application 

ZNF207 Santa Cruz sc-271942 ChIP, RIME 

Pol II (phospho S5) Abcam ab5131 ChIP, RIME 

ERα Abcam ab3575 

Millipore 06-935 

ChIP, RIME 

MED1 Bethyl A300-793A ChIP, RIME 

MED12 Bethyl A300-774A RIME 

MED26 Cell signalling 14950S RIME 

MED14 Abcam ab72141 RIME 

MED4 Santa Cruz sc-398179 RIME 

MED15 Abcam ab176593 RIME 

SMC1A Bethyl A300-055A ChIP 

TAF3 Abcam ab188332 ChIP 

FOXA1 Abcam ab5089 ChIP 

CBP Diagenode, C15410224 RIME 

AR Millipore 06-680 RIME 

NCOA3 Bethyl, A300-347A RIME 

IgG rabbit Abcam ab171870 RIME 

IgG mouse Santa Cruz sc-2025 RIME 

 

 

2.8.1 ChIP-seq data analysis 

The ChIP-seq materials and methods section has been provided from the CRUK-CI 

Bioinformatics core (Dr Ashley Sawle) and Dr Igor Chernukhin. Raw paired end reads in fastq 

files were aligned against the hg38 reference genome with the bwa-mem algorithm in bwa 

version 0.7.17 (Li and Durbin, 2009) by applying the default parameters. Read quality was 

assessed using FASTQC; the base calling qualities and the contamination with adapters was 

checked. The alignment rates should exceed 95% alignment and the duplication rates for ChIP 

samples should not exceed 20%. For inputs this should not be greater than 5%. Prior to peak 

calling, reads were filtered in four ways: (a) Unaligned reads were removed (b) Only reads 

aligned to canonical chromosomes were considered (c) Reads lying in regions of anomalous 
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enrichment in the inputs were filtered out using the R package GreyListChip (DOI: 

10.18129/B9.bioc.GreyListChIP) (d) Reads with a Mapping Quality of less than 15 were 

filtered out. Replicate input samples from each condition (siCtrl or siZNF207) were merged 

and separate inputs were made for each ChIP sample by down-sampling the merged input file 

to the same depth as the ChIP sample. Peaks were called using MACS2 version 2.1.2 (Zhang 

et al., 2008) with the default parameters. Differential binding analysis was carried out using 

the Bioconductor package DiffBind version 2.12.0 (Ross-Innes et al., 2012) in R version 3.6 

with the default parameters. DESeq2 version 1.24.0 (Love et al., 2014) was used to test 

statistical significance of differential binding in consensus regions. The Benjamini-Hochberg 

multiple testing correction was used to adjust p-values. Binding regions were called as 

statistically significant at FDR<0.05. Binding profiles were generated using Deeptools version 

3.3.0 (Ramirez et al., 2016). For the enrichment analysis, the ratio of the number of 

differentially bound regions for each factor in the promoters and enhancers of differentially 

expressed genes to the number of differentially bound regions in the promoters/enhancers of 

non-changing genes was calculated. To identify promoters or enhancers two methods were 

applied; (a) Proximity: Promoters: -1000/+250 bases of TSS; Enhancers: -5e4/+5e4 bases of 

TSS excluding the promoter regions (b) Promoter capture Hi-C: Promoters are the bait regions 

of the Hi-C loops and enhancers are the distal regions of the Hi-C loops. For the Hi-C approach, 

the RNAseq data were filtered for genes that Hi-C baits were detected and then the top 200 

downregulated genes were selected at FDR<0.01. In parallel, 200 constitutive (non-changing 

genes) were selected by filtering for genes with average expression in the same range as the 

average expression of the top 200 downregulated genes and then 200 genes with fold change 

closest to one were used for further analysis. For each of the repressed/constitutive genes the 

number of lost/gained/non-changing binding sites was counted in promoters and enhancers and 

for each of the lost/gained/non-changing sites the ratio of binding sites for repressed genes to 

constitutive genes was calculated. 

For the spike-in experiment, a combined genome reference was generated by merging the hg38 

human and the dm6 fruit fly genomes and the raw paired end reads in fastq files were aligned 

against the combined reference genome with the bwa-mem algorithm in bwa version 0.7.17 

(Li and Durbin, 2009) using default parameters. Then, the resulting bam files were split using 

SAMtools version 1.9 (Li et al., 2009) to generate separate files for reads aligned to human 

sequences and fruit fly sequences. Peaks were called using MACS2 version 2.1.2 (Zhang et al., 

2008). Differential binding analysis was carried out using the Bioconductor package DiffBind 

version 2.12.0 (Ross-Innes et al., 2012) in R version 3.6 with the default parameters and 
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normalisation of the human read counts was achieved by replacing the library sizes in the 

DiffBind object with the library sizes of the corresponding fruit fly bams. DiffBind calculated 

the scaling factors by dividing the library size for each sample by minimum library size. 

DESeq2 version 1.24.0 (Love et al., 2014) was used to test statistical significance of differential 

binding in consensus regions and the Benjamini-Hochberg multiple testing correction for 

adjusting p-values. Binding regions were called as statistically significant at FDR<0.05. For 

the Upset plots, DiffBind was used to generate a consensus set of binding regions that were 

present in at least two replicates for each factor. Using the consensus set from all factors, an 

overall consensus set was created that was the union of all the regions. This gave the total 

number of regions in the Upset plot.  Each of these regions was deemed to have been detected 

for a particular factor, if there was an overlapping region in that factor’s specific consensus set.   

To map a structural relation between binding factors and active transcriptome we measured the 

Binding Site Density (BSD) relative to the genomic regions with detectable gene expression. 

Genes that had a meaningful expression level detected in the MCF7 RNA-seq analysis were 

selected as active genes. BSD was calculated as sO/nG*corf where sO is the cumulative 

frequency, nG is the number of tested features (genes) and corf is the density mean-correction 

factor. The cumulative frequency of chip locations was calculated as a sum of ChIP-seq sites 

overlapping 1kb bin size within +/-500kb window of genomic region with TSS of tested genes 

as a midpoint. Denovo motif analysis was performed using Meme version 4.9.1 (Bailey et al., 

2009) to detect known and discover novel binding motifs amongst tag-enriched sequences. 

 

2.8.2 ChIP-qPCR 

After the DNA purification, 1-2µl per sample was diluted (1:10 dilution) for ChIP-qPCR 

analysis. The reaction mixture contained Power SYBR® Green PCR Master Mix (Applied 

Biosystems, #4309155), forward and reverse primers (final concentration 10µM each), 2µl 

diluted DNA template and nuclease-free water to a final volume of 15μl. Each reaction was 

performed in triplicates and for the analysis the BioRad CFX Connect Real Time System was 

used (10min at 95°C; 45 cycles of 15 seconds at 95°C and 30 seconds at 60°C). The sequences 

of primers used for ChIP-qPCR are shown in Table 2.  Relative enrichment was determined as 

percentage input or ER3.  
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Table 2. Primer sequences for ChIP-qPCR at ERα binding sites. 

 

 

 

2.9 Protein digestion and TMT labelling 

Digestion of bead-bound proteins was done by adding 10μL trypsin solution (15ng/μl) (Pierce) 

in 100mM AMBIC, followed by overnight incubation at 37°C. A second digestion step was 

performed the next day for 4h at 37°C and the supernatant solution was collected by placing 

the tubes on a magnet. The resultant peptides were acidified by the addition of 3μl 5% formic 

acid and purified using the Ultra-Micro C18 Spin Columns (Harvard Apparatus) according to 

manufacturer’s instructions. For qPLEX-RIME, the peptide samples were reconstituted in 

100μl 0.1M triethylammonium bicarbonate (TEAB) and labelled with the TMT reagents 

(Thermo Fisher). The peptide mixture was fractionated with Reversed-Phase cartridges at high 

pH (Pierce, #84868). Nine fractions were collected using different elution solutions in a range 

from 5% ACN to 50% ACN. For the whole proteome analysis, 200μl of 0.1 M TEAB, 0.1% 

SDS buffer was added to each cell pellet followed by probe sonication and boiling at 95oC. To 

estimate protein concentration, Bradford assay (BIO-RAD-Quick start) was performed 

according to manufacturer’s instructions. For protein reduction, 2μL 50mM tris-2-

carboxymethyl phosphine (ΤCEP, Sigma-Aldrich, #C4706) was added to each sample for 1h 

incubation at 60oC, followed by cysteine blocking for 10min at room temperature with the 

addition of 1uL 200mM methyl methanethiosulfonate (MMTS, Sigma-Aldrich, #64306). For 

proteolysis, trypsin (Pierce, #90058) solution was added at ratio protein/trypsin ~30:1 for 

overnight digestion at 37˚C. The next day peptides were labelled with the TMT10plex reagents 

(Thermo Scientific) and the reaction was quenched with 8uL of 5% hydroxylamine (Thermo 

 

Target Forward primer Reverse primer 

XBP1 ATACTTGGCAGCCTGTGACC GGTCCACAAAGCAGGAAAAA 

GREB1 GAAGGGCAGAGCTGATAACG GACCCAGTTGCCACACTTTT 

RARA GCTGGGTCCTCTGGCTGTTC CCGGGATAAAGCCACTCCAA 

MYC GCTCTGGGCACACACATTGG GGCTCACCCTTGCTGATGCT 

ESR1 GAAACAGCCCCAAATCTCAA TTGTAGCCAGCAAGCAAATG 

CA12 GGAGGCGTAACCCCTGTGTG ACGGCAAGGGACTTGCTGAC 

ER3 Control GCCACCAGCCTGCTTTCTGT CGTGGATGGGTCCGAGAAAC 

https://www.sigmaaldrich.com/catalog/search?term=2949-92-0&interface=CAS%20No.&lang=en&region=US&focus=product
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Scientific, #90115). Following the completion of the chemical reaction with the TMT tags, the 

samples were mixed and dried with speedvac concentrator. The TMT mix was fractionated into 

30 fractions on a Dionex Ultimate 3000 system at high pH using the X-Bridge C18 column 

(3.5μm 2.1x150mm, Waters).  Fractions were dried with speedvac and stored at -80oC prior to 

mass spectrometry analysis. 

 

2.9.1 Fe-NTA Phosphopeptide enrichment 

After the completion of the high pH reversed phase fractionation, twelve fractions were 

collected and subjected to phosphoenrichment using the Fe-NTA phosphopeptide enrichment 

kit (Thermo Scientific, #A32992) according to manufacturer’s instructions. Briefly, the peptide 

fractions were loaded to the spin columns in a low pH buffer followed by incubation with the 

resin material for 30min. At the end of the incubation the columns washed three times to 

remove non-phospho peptides that have been bound to the resin. After the washing step, the 

phosphopeptides were eluted from the column with a high pH buffer and collected to 

microcentrifuge tubes. The eluents were dried with speedvac concentrator and reconstituted in 

10ul loading solution (2 % acetonitrile, 0.1 % formic acid) for LC-MS analysis. 

 

2.9.2 LC-MS analysis 

For the analysis of the peptide fractions, the Dionex Ultimate 3000 UHPLC system coupled 

with the nano-ESI Fusion Lumos or Q-Exactive or Q-Exactive HF mass spectrometer (Thermo 

Scientific) was used. Each peptide fraction was reconstituted in solution contained 2% 

acetonitrile/0.1% formic acid and was loaded on the Acclaim PepMap 100, 100μm×2cm C18, 

5μm, 100 Ȧ trapping column using the ulPickUp injection method at 5μL/min flow rate for 

10min. For the peptide separation the EASY-Spray analytical column 75μm × 25cm, C18, 

2μm, 100 Ȧ column was used for multi-step gradient elution. Mobile phase (A) was 2% 

acetonitrile, 0.1% formic acid and mobile phase (B) was 80% acetonitrile, 0.1% formic acid. 

The gradient elution method at flow rate 300nL/min was as follows: for 95min gradient up to 

45% (B), for 5min gradient up to 95% (B), for 8min isocratic 95% (B), for 2min down to 5% 

(B), for 10min isocratic equilibration 5% (B) at 40°C. For the clinical sample analysis, a longer 

gradient separation was used as follows: for 160min gradient up to 40% (B), for 10min gradient 

up to 95% (B), for 8min isocratic 95% (B), for 2min down to 5% (B), for 10min isocratic 

equilibration 5% (B). The Lumos was operated in a data-dependent mode for both MS2 and 

SPS-MS3 methods. The full scans were performed in the Orbitrap in the range of 380-1500m/z 
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at 120K resolution. For MS2, peptides were selected in the quadrupole with MS isolation 

window 0.7Th and the MS2 scans were performed in the ion trap with collision energy 35%. 

The top 10 most intense fragments were selected for Synchronous Precursor Selection (SPS) 

HCD-MS3 analysis with MS2 isolation window 2.0Th. The HCD collision energy was set at 

55% and the detection was performed in the Orbitrap in scan range 100-400 m/z, at 60K 

resolution.  For the analysis of phospho-fractions, an MS2 approach was used on the Fusion 

and peptides were selected for fragmentation in the Orbitrap with MS isolation window 1.2Th 

and collision energy 38% at 50K resolution. For the Q-Exactive or Q-Exactive HF analysis, 

the full scan was performed in the Orbitrap in the range of 400-1600m/z at 60K and 70K 

resolution respectively. For MS2, the ten most intense precursors were selected at 17,5K and 

30K resolution respectively. A 2.0Th isolation window was used and the HCD collision energy 

was 28%. 

 

2.9.3 Data processing of mass spectrometry raw data 

The collected HCD or CID tandem mass spectra were processed with the SequestHT search 

engine on the Proteome Discoverer 1.4 or 2.1 software. All spectra were searched against a 

UniProtKB/Swiss-Prot fasta file containing 20,365 reviewed human entries. The node for 

SequestHT included the following parameters: Precursor Mass Tolerance 20ppm, Fragment 

Mass Tolerance 0.5Da for CID spectra or 0.02Da for HCD spectra, Dynamic Modifications 

were Oxidation of Methionine (M) (+15.995 Da), Deamidation of Asparagine (N) and 

Glutamine (Q) (+0.984 Da) and Static Modifications were TMT6plex at any N-Terminus and 

Lysine (K) (+229.163 Da) for the quantitative data. Methylthio at Cysteine (C) (+45.988) was 

included for the total proteome and phosphoproteome data. Also, for the phosphorylation data 

phosphorylation at S, T, Y (+79.96) was added as dynamic modification and for the confidence 

of localization of phosphorylation sites the IMP-ptmRS mode was used. The Reporter Ion 

Quantifier node included a custom TMT 6plex (Thermo Scientific Instruments) Quantification 

Method, for MS3 scan events, HCD activation type, integration window tolerance 20ppm and 

integration method Most Confident Centroid. The consensus workflow included S/N (Signal-

to-noise ratio) calculation for TMT intensities as previously described by McAlister et al. 

(McAlister et al., 2014) and the level of confidence for peptide identifications was estimated 

using the Percolator node with decoy database search. Strict FDR was set at q-value<0.01. For 

the label-free quantification, the HCD tandem mass spectra were processed with the SequestHT 

search engine on Proteome Discoverer 2.2 software. The node for SequestHT included the 
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following parameters: Precursor Mass Tolerance 20ppm, Maximum Missed Cleavages sites 2, 

Fragment Mass Tolerance 0.02Da and Dynamic Modifications were Oxidation of M 

(+15.995Da) and Deamidation of N, Q (+0.984Da). The Minora Feature Detector node was 

used for label-free quantification and the consensus workflow included the Feature Mapper 

and the Precursor Ion Quantifier nodes using intensity for the precursor quantification. 

 

2.9.4 Analysis of proteomics data 

The Bioinformatics core at the CRUK Cambridge Institute developed an R package 

(qPLEXanalyzer) to perform downstream analysis of quantitative proteomics data. The 

analysis for the different datasets was conducted using only unique peptides identified with 

high confidence (peptide FDR<1%). Firstly, various statistics methods were used to check the 

quality of the different datasets and any outlier samples were excluded at this step from 

downstream analysis. For qPLEX-RIME experiments the efficiency of the pull-down was 

evaluated by generating a plot with the peptide sequence of the bait protein based on high 

confidence identified peptides (FDR<1%). Then, peptide-level S/N TMT values were corrected 

for equal loading across samples using different normalisation approaches depending on the 

experiment type (median scaling or median scaling within the group). The normalised peptides 

intensities were aggregated by calculating the sum to protein intensities and any further analysis 

was conducted at the protein level. For the regression-based correction, unique peptides were 

aggregated and proteins detected in all the three TMT experiments were kept for analysis. The 

normalisation on the bait protein level was carried out at protein level using log2 row-mean 

scaled values. To filter-out non-specific proteins, a limma-based differential analysis was 

performed comparing ERα and IgG control samples. In the regression analysis, the ERα profile 

was used as the independent variable (x) and the profile of any other protein as the dependent 

variable (y) excluding the IgG controls. The residuals of the y=ax+b linear model represent the 

protein quantification profiles that are not driven by ERα amount in the pull-down. For the 

detection of differentially regulated or bound proteins a limma-based analysis was carried out 

and a multiple testing correction was applied on p-value using the Benjamini-Hochberg method 

to control the False Discovery Rate (FDR). 

 

2.10 Promoter Capture Hi-C sample preparation 

Three biological replicates from MCF7 cells treated with siNT or siZNF207 were crosslinked 

with 2% formaldehyde prepared in PBS and incubated for 10min at room temperature. The 
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crosslinking reaction was quenched by adding 1M glycine to a final concentration of 0.125M 

for 5min at room temperature, followed by 15min incubation on ice. Crosslinked cells were 

washed twice in cold PBS, the supernatant discarded and the pellets were flash-frozen in liquid 

nitrogen. Cells were resuspended in 50ml freshly prepared ice-cold lysis buffer (10mM Tris-

HCl pH 8, 10mM NaCl, 0.2% Igepal CA-630) contained protease inhibitors, followed by 

incubation for 30min on ice with occasional mixing. Following lysis, the chromatin was 

pelleted and washed with 1.25x NEB Buffer 2. Then, samples were resuspended in 1.25x NEB 

Buffer 2 and aliquots of 5–6×106 cells per sample were prepared. For the digestion, the HindIII 

(NEB, #R0104M) restriction enzyme was added to each aliquot and incubated overnight at 

370C. The next day, digested chromatin ends were filled with biotin-14-dATP (Life 

Technologies, #19524-016) in a Klenow end-filling reaction (NEB, #M0210L). For the 

ligation, T4 DNA ligase (Invitrogen, 15224-025) was added to each sample followed by 

incubation for 4 hours at 16oC. DNA was de-crosslinked by adding proteinase K (Roche, 

03115879001) and incubated overnight at 65oC. DNA was purified by performing phenol 

(Sigma-Aldrich, #P4557) and phenol pH 8.0: chloroform (Sigma-Aldrich, #P3803) extractions. 

To monitor the library integrity, 2ul and 6ul aliquots of diluted Hi-C libraries (1:10 dilution in 

TE buffer) were loaded and run on an 2% E-gel (Invitrogen, #G402002) using a DNA ladder 

(Thermo Fisher, #1048809). The ligation efficiency was checked by conducting a PCR assay 

using the primers listed in the Table 3. An amount of 200ng of each library was purified using 

a PCR purification kit (Qiagen, #28106) and split into four samples; undigested, digested with 

HindIII-HF (NEB, #R3104S, High Fidelity), digested with Nhel-HF and digested with both 

HindIII-HF and Nhel-HF (NEB, #R3131S) enzymes. Digested samples for each primer pair 

were run on separate 2% E-gels. Biotin-14-dATP at non-ligated DNA ends was removed with 

T4 DNA polymerase (NEB, M0203L) and DNA was sheared to an average size of 400bp, using 

the manufacturer's instructions (Covaris E220). The sheared DNA was end repaired and 

fragments between 200–650 base pairs were selected using AMPure XP beads (Beckman 

Coulter, #A63881). Biotin-tagged DNA was pulled-down with streptavidin beads and ligated 

with paired-end adapter primers at final concentration 100µM. Eight cycles of PCR were 

performed to amplify libraries before capture (PE adapter 1: 5’-P-

GATCGGAAGAGCGGTTCAGCAGGAATGCCGAG-3’, PE adapter 2: 5’-

ACACTCTTTCCCTACACGACGCTCTTCCGATCT-3, Integrated DNA Technologies). The 

quality and quantity of the libraries was evaluated by Bioanalyzer (Agilent) and quantitative 

PCR using the KAPA Library Quantification kit (Illumina, #KK4824). Hi-C libraries 

corresponding to 750ng were dried with a speedvac concentrator and re-suspended in 4μl water. 
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Hybridisation of Hi-C libraries was carried out using the SureSelectXT custom DNA bait 

library (Agilent, #5190-4831) and the SureSelect SSEL TE Reagent ILM PE full adaptor 

kit (Agilent, #931108). Hi-C libraries along with the hybridisation buffers and RNA bait was 

incubated for 24 hours at 65oC. Then, the SureSelect adaptor kit was used to isolate promoter 

fragment-containing ligation products with Streptavidin beads (Life technologies, #65601).  

Capture Hi-C library was amplified using 4 PCR cycles (1 cycle of 30sec at 98°C, 30sec at 

65°C and 30sec at 72°C; 2 cycles of 10sec at 98°C, 30sec at 65°C and 30sec at 72°C; 1 cycle 

of 10sec at 98°C, 30sec at 65°C and 7min at 72°C) and purified twice using Ampure XP beads 

(Beckman Coulter, #A63881). Promoter capture Hi-C libraries were sequenced on the Novaseq 

platform to reach approximately one billion reads per sample.  

 

 

Table 3. Primer sequences for quality control of human Hi-C libraries. 

Primer Sequence 

hs AHF64 Dekker  GCATGCATTAGCCTCTGCTGTTCTCTGAAATC 

hs AHF66 Dekker CTGTCCAAGTACATTCCTGTTCACAAACCC 

hs MYC -538 TGCCTGATGGATAGTGCTTTC 

hs MYC +1820 AAAATGCCCATTTCCTTCTCC 

hs HIST1 F AAGCAGGAAAAGGCATAGCA 

hs HIST1 R TCTTGGGTTGTGGGACTTTC 

 

 

2.10.1 PCHi-C data processing and interaction calling 

The analysis of the PCHi-C data was performed by the CRUK-CI Bioinformatics core and this 

method section was provided by Kamal Kishore; Hi-C paired end raw sequencing reads were 

truncated through HiCUP v0.7.2 (Wingett et al., 2015). The truncated FASTQ files were 

mapped to the human reference genome (hg38) using bowtie (v1.2.1.1). The forward reads bam 

files were merged with reverse reads bam files (using only mapped reads from reverse reads 

bam file). After alignment, experimental artefacts and duplicate reads were removed. PCHi-C 

libraries contained three types of valid di-tags: i) promoter-promoter (reads between baits), ii) 

promoter-genome (reads between bait and non-promoter HindIII fragment) iii) genome-

genome (reads where neither is the capture bait). We determined how many of the valid di-tags 

are between promoter-promoter and promoter-genome to calculate the capture efficiency. Di-

tags consisting of only genome-genome reads were discarded prior to downstream analysis. 
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Significantly interacting regions were called using the CHiCAGO (Cairns et al., 2016) package. 

Interactions with a score ≥5 were considered to be statistically significant. To detect the 

significant differential interactions in Capture Hi-C data, the Chicdiff (Cairns et al., 2019) 

pipeline was used. The output files produced by the CHiCAGO pipeline, that contain 

interactions with CHiCAGO scores above a predefined cutoff (5) in at least one replicate, were 

used for the differential analysis. The analysis resulted in p-values for interactions adjusted 

based on the distance-dependent weights, followed by Benjamini-Hochberg (BH) multiple 

testing correction. 
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Chapter 3 

 

3. Results 

 

3.1 Development of a quantitative tool 

 

3.1.1 The qPLEX-RIME method 

To study the architecture and dynamics of chromatin-associated protein complexes, we have 

developed and optimised a quantitative pipeline which combines the previously described 

RIME method (Mohammed et al., 2013; Mohammed et al., 2016) with multiplex TMT 

chemical isobaric labelling (McAlister et al., 2012; Roumeliotis et al., 2017) (qPLEX-RIME). 

The development of our qPLEX-RIME quantitative pipeline along with various applications 

have been published (Papachristou et al., 2018). To demonstrate the feasibility of the method, 

we applied the developed workflow to study the Estrogen Receptor alpha interactome (ERα), 

a transcription factor involved in the development of breast cancer. The qPLEX-RIME 

workflow starts with a two-step fixation approach using disuccinimidyl glutarate (DSG) 

followed by formaldehyde (FA) that has been previously combined with ChIP assays to capture 

transient interactions with increased efficiency (Engelen et al., 2015; Nowak et al., 2005). 

Cross-linked protein complexes bound to the target protein are extracted from a nuclear-

enriched lysate by immunoprecipitation, using a specific antibody, followed by proteolysis and 

peptide labelling with different TMT tags. For reduction of sample complexity and purification, 

peptides are fractionated at high pH on a reversed phase spin column prior to mass spectrometry 

analysis. Peptide fractions are collected at different compositions of the elution buffer and 

analysed on a tribrid Orbitrap Lumos mass spectrometer with the MultiNotch MS3 method as 

previously described by McAlister et. al. (McAlister et al., 2014). The main steps of the 

qPLEX-RIME method are shown in Figure 7.  

The qPLEX-RIME method can be used for the discovery of proteins that are significantly and 

specifically associated with the bait protein directly or indirectly in a quantitative fashion. 

Negative control samples such as IgG pull-downs can be incorporated in the same experiment 

to discriminate unspecific binding based on the TMT signal intensity across specific (bait pull-

downs) and non-specific (IgG-pull downs) conditions. The main utility of the qPLEX-RIME 

method is to identify changes in the composition of protein complexes in response to cell 

perturbation and/or in variable genomic backgrounds (e.g. different cell lines or mutated 
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conditions), using multiple technical and biological replicates in a single TMT experiment for 

enhanced statistical power. The multiplexity can increase the quantitative sensitivity and 

accuracy in capturing the interaction interplay between different factors. For the downstream 

data analysis, the Bioinformatics core of the CRUK Cambridge Institute has developed a 

comprehensive bioinformatics tool termed qPLEXanalyzer, that allows the user to perform data 

processing, visualisation, normalisation and statistical analysis steps 

(DOI:10.18129/B9.bioc.qPLEXanalyzer). 

 

 

 

Figure 7. The qPLEX-RIME workflow. 

Cells in different conditions or variable genomic backgrounds are double-crosslinked followed by nuclei isolation 

and sonication (I and II). Target protein complexes are immunoprecipitated and digested on the beads with trypsin 

(III, IV). The peptides are labelled using the TMT tags and the pooled sample is fractionated using Reversed-

Phase spin columns at high pH (IV). Peptide fractions are analysed with the MultiNotch MS3 approach (V), 

followed by data processing and statistical analysis using the qPLEXanalyzer tool (VI). 

https://doi.org/doi:10.18129/B9.bioc.qPLEXanalyzer
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3.1.2 Characterisation of the ERα interactome in MCF7 cells 

Firstly, we applied qPLEX-RIME in asynchronous MCF7 breast cancer cells to assess whether 

we could successfully recover the ERα interactome. To this end, ERα qPLEX-RIME pull-

downs were performed (N=5) in independently grown cells at different passage numbers. To 

discriminate non-specific binding, an equal number (N=5) of matched IgG control samples was 

included in the analysis. In this experiment, single crosslinking with formaldehyde was used, 

to permit a comparison with previously published data (Mohammed et al., 2013). 

Data analysis with Proteome Discoverer 2.1 software identified 23,610 peptides (FDR<1%) of 

which 19,106 were quantified and matched to 2,955 proteins across the multiplexed set of all 

positive and negative samples. To examine the efficiency of the method in capturing and 

quantifying well-described ERα-associated proteins, we generated a list of known ERα 

interactors from BioGRID (Chatr-Aryamontri et al., 2017) (Biological General Repository for 

Interaction Datasets) and STRING (Szklarczyk et al., 2017) (Search Tool for the Retrieval of 

Interacting Genes/Proteins) databases. For BioGRID, we used only a subset of 386 proteins 

identified by high-throughput assays that were similar to the approach used here and for 

STRING we used only experimental associations (383 proteins, score>200). Noteworthy, only 

37 proteins were common between the two reference subsets. The qPLEX-RIME method 

identified 295 (76%) and 171 (45%) of the known ERα-associated proteins from BioGRID and 

STRING respectively of which 225 (58%) and 154 (40%) showed positive enrichment at adj. 

p-value<0.1 (Figure 8a). Specifically, we found known co-regulators (e.g. P300, NCOA3, 

CBP, NRIP1, TRIM24, GREB1, RARα, NCOR2 and HDACs), ERα-associated pioneer factors 

(e.g. FOXA1, AP-2γ) and putative pioneer factors (e.g. GATA-3) significantly enriched in ERα 

samples compared to control samples (mean log2Fold-Change of 2.4) (Figure 8b) (Anzick et 

al., 1997; Carroll et al., 2005; Jepsen et al., 2000; Liu and Bagchi, 2004; Mohammed et al., 

2013; Shang et al., 2000; Tan et al., 2011; Theodorou et al., 2013; Tsai et al., 2010). ERα was 

one of the most significantly enriched proteins (adj. p-value<0.1, log2Fold-Change=3.47) 

identified with 19 unique peptides (34.45% peptide coverage) (Figure 8c), consistent with 

previously published ERα RIME datasets (Mohammed et al., 2016). Taken together, our data 

demonstrate the ability of the qPLEX-RIME method to comprehensively characterise protein 

interactome networks. 
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Figure 8. Application of qPLEX-RIME for the identification of ERα-associated proteins. 

a) Bar plots illustrating the overlap of the qPLEX-RIME data with known ERα-associated proteins from BioGRID 

and STRING databases. b) Volcano plot summarising the quantitative results of the ERα qPLEX-RIME. ERα and 

several of its known interactors with significant enrichment are labelled. c) Sequence coverage of the ERα protein 

in the qPLEX-RIME analysis. d) Boxplots of the number of unique peptides for the overlapping ERα-associated 

proteins between the non-quantitative RIME and the qPLEX-RIME method. The RIME and qPLEX-RIME have 

been performed in MCF7 cells. 

 

 

3.1.3 Comparison between qPLEX-RIME and non-quantitative RIME 

We next performed a non-quantitative ERα RIME experiment with matched IgG controls to 

carry out a comparison between RIME and qPLEX-RIME methods in terms of recovery of 

known ERα interactors. The RIME was performed in two biological replicates and the 

comparison was limited to specific interactors after removing proteins found in both IgG 

samples. For more accurate comparison, we followed the same sample preparation workflow 

and samples were analysed on the same mass spectrometer for both approaches.  

The data analysis showed that 302 of the 323 (93%) proteins identified as ERα-specific in the 

non-quantitative ERα-RIME pull-downs, were also identified by qPLEX-RIME with 

significant enrichment over the IgG controls (mean log2Fold-Change of 2.5). Interestingly, we 
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observed an overall better peptide coverage for the overlapping ERα-associated proteins by 

qPLEX-RIME compared to the non-quantitative RIME method (Figure 8d), indicating higher 

sensitivity. The higher number of identified unique peptides can increase the reliability of the 

detected interactions and improve the accuracy of quantification. 

Furthermore, qPLEX-RIME recovered 124 additional known BioGRID and STRING 

interactors compared to the non-quantitative RIME analysis (175 proteins >1- log2Fold-Change 

and adj. p-value<0.01 in qPLEX-RIME versus 51 proteins in non-quantitative RIME). 

Importantly, the higher sensitivity of the qPLEX-RIME method led to the identification of 

novel candidate ERα-associated proteins not previously found in RIME experiments. To 

validate selected findings as  a means to assess the performance of the qPLEX-RIME approach, 

we conducted Proximity Ligation Assay (PLA) that allows the in situ detection of protein 

interactions with high specificity and sensitivity (Soderberg et al., 2006). The PLA confirmed 

the novel interactions of CBX3 (HP1γ), NIPBL and FOXK1 with ERα (Figure 9a). The GFP 

(green fluorescent protein) protein was included in the analysis as negative control to 

discriminate non-specific interactions (Figure 9b). Notably, treatment of the MCF7 cells with 

the Selective ERα Degrader (SERD) Fulvestrant (Wardell et al., 2011) disrupted the above 

interactions three hours post treatment, demonstrating the specificity of the PLA assay and 

validating the new ERα interactors detected by qPLEX-RIME method (Figure 9c). The 

efficiency of the drug treatment and the effect on ERα protein levels was validated with 

immunofluorescence staining (Figure 10). Overall, these findings demonstrate a gain in 

sensitivity using the qPLEX-RIME method that can promote the identification of known and 

novel interacting proteins with statistical robustness. 
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Figure 9. Validation of novel ERα-associated cofactors using Proximity Ligation Assay (PLA). 

a) MCF7 cells were treated for 3h with vehicle (ethanol) (panels i–iii) or with 100nM Fulvestrant (ICI) (panels 

iv–vi) and were analysed by PLA to validate protein interactions between ERα and CBX3 (panels i and iv), FOXK1 

(panels ii and v) and NIPBL (panels iii and vi). The experiment was performed in duplicate and the graphs are 

representative of one of the experiments. b) PLA assay using antibodies against ERα and GFP was used as a 

negative control (panels vii and viii). c) Quantification of the number of red PLA dots per cell was performed 

using Image J software (***Student’s t-test p-value<0.001). The error bars indicate standard deviation (SD). 

 

 

 

Figure 10. Decrease in ERα protein levels upon Fulvestrant treatment. 

Immunofluorescence staining for ERα in MCF7 cells treated with vehicle (ethanol) (panels i–iii) or with 100nM 

Fulvestrant (panels iv–vi) for 3h.  
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3.1.4 Optimisation of crosslinking, starting material and antibody concentration 

We next carried out a comparison between single and double crosslinking to examine whether 

the addition of DSG followed by FA can improve the crosslinking efficiency of nuclear-bound 

proteins to the bait, compared to standard FA crosslinking. To this end, we conducted ERα 

qPLEX-RIME pull-downs (4 biological replicates for each condition) using single or double-

crosslinked MCF7 cells. One IgG pull-down was performed by mixing chromatin of all 

replicates, for each crosslinking method separately. These were included in the 10plex-TMT 

experiment to filter for specific interactors for further comparisons between the two 

approaches. The comparison revealed that double crosslinking resulted in a stronger 

enrichment of well-known and previously validated ERα interactors related to transcription and 

chromatin organisation such as FOXA1 (Mohammed et al., 2013), NR2F2 (Erdos and Balint, 

2020) and NCOR2 (Jepsen et al., 2000) (Figure 11a). The enrichment obtained by double 

crosslinking can further improve the accuracy and robustness of the quantitative workflow.  

Based on the successful preliminary experiments using the qPLEX-RIME method for the study 

of ERα-associated factors, we next performed titration experiments to assess the lower limit of 

starting material required for our method without compromising the recovery of the target 

complex. To this end, we applied a two-step fixation followed by LC-MS analysis to define 

the minimum number of cells required for an efficient ERα non-quantitative RIME pull-down 

in MCF7 cells. Reducing the number of cell culture plates will increase the method’s 

throughput and facilitate the preparation of multiple replicates that can be accommodated in a 

single TMT experiment. The number of plates (150mm) was scaled down from four to one and 

the amount of beads and the antibody concentration for ERα or negative control IgG, was 

scaled proportionally. We started with four plates to match the number of cells used in previous 

published RIME experiments (Mohammed et al., 2013; Mohammed et al., 2015). Interestingly, 

the number of ERα peptides had small variation across the different numbers of plates as shown 

in Figure 11b. Regarding the coverage in known ERα interactors, an optimum number of 

peptides was obtained using two plates, above which no significant improvement was observed 

(Figure 11c). These results indicate that the starting material can be scaled down to one or two 

plates without significant loss in sensitivity of the assay. Therefore, for all the subsequent 

qPLEX-RIME, non-quantitative RIME and ChIP-seq experiments, we adopted the double 

crosslinking approach, using two plates (150mm) for each pull-down. 
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Figure 11. Comparison of crosslinking approaches and titration of starting material. 

a) Comparison of double versus single crosslinking using qPLEX-RIME analysis. The scale bar represents log2-

scaled protein abundance values. b) Number of unique peptides of ERα across different number of plates. c) 

Scaled number of unique peptides for well-known ERα interactors across different number of plates in an ERα 

RIME experiment.  

 

 

3.1.5 Evaluation of ChIP-seq and RIME grade antibodies for ERα 

An important factor for the performance of the pull-down approaches is the specificity and 

efficiency of the antibody that is used to target the bait protein. For the newly-developed 

qPLEX-RIME method and the comparison with previous non-quantitative RIME data, we used 

the ERα antibody sc-543 from Santa Cruz Biotechnology. Most published ChIP-seq and RIME 

experiments have also been conducted using the sc-543 antibody (Lei et al., 2018; Mohammed 

et al., 2015; Mohammed et al., 2016; Ross-Innes et al., 2012), yielding high quality data. 

Recently, the sc-543 antibody was discontinued, impacting the ability to study ERα function 

using established ChIP and other pull-down assays.  

To overcome this limitation, we compared the sc-543 (Santa Cruz Biotechnology) with other 

commercially available antibodies using MCF7 cells as a model. For this project I worked with 

my colleague Silvia E. Glont from the Carroll lab and our work on the evaluation of ChIP-seq 

and RIME grade antibodies was recently published (Glont et al., 2019b); Silvia performed the 

ChIP-qPCR and ChIP-seq experiments and I conducted the RIME experiments. Firstly, we 
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compared the commonly used sc-543 (Santa Cruz Biotechnology) antibody with the ab80922 

(Abcam), ab3575 (Abcam), sc-514857 (C-3) (Santa Cruz Biotechnology), C15100066 

(Diagenode) and 06–935 (Millipore) ERα available antibodies. We performed a ChIP-qPCR 

experiment in two biological replicates to assess ERα binding at well-known target regions 

(Carroll et al., 2006; Glont et al., 2019a) (XBP1, GREB1, RARA, MYC, ESR1, CA12). A 

known non-ERα binding site was included as negative control (ER3) (Carroll et al., 2006; Glont 

et al., 2019a). Interestingly, the ChIP-qPCR data suggested that 06-935 and ab3575 antibodies 

could successfully enrich for ERα-bound chromatin at selected loci compared to sc-543 

antibody (Figure 12a). 

In addition to ChIP-qPCR, we performed ChIP-seq experiments to further compare the 

performance of 06-935 and ab3575 with sc-543 in a global scale, including IgG as negative 

control. Each ERα ChIP-seq was performed in at least duplicates and the ERα negative MDA-

MB-231 cell line was used to assess non-specific binding. We observed 6,031 ERα binding 

sites for sc-543 (Santa Cruz) antibody, 6,192 peaks for ab3575 (Abcam) and 6,552 for 06-935 

(Millipore) with significant overlap between the three antibodies (Figure 12b). All antibodies 

showed robust enrichment at binding sites compared to background and motif analysis 

identified a high enrichment for the ERα response element (ERE) motif in the considered 

sequences (Figure 12c). Notably, neither of the ab3575 and 06–935 antibodies showed 

significant enrichment in the MDA-MB-231 cell line, highlighting their specificity (Figure 

12c). Figure 12d illustrates the ERα binding profile in two well-known ERα target genes, 

(GREB1 and RARA) in both MCF7 and MDA-MB-231 cell lines in the different ERα ChIP-

seq or IgG samples.  
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Figure 12. A comparison between different ERα antibodies by ChIP-qPCR and ChIP-seq. 

a) ChIP-qPCR analysis for known ERα binding sites in MCF7 cells. Results are shown as arbitrary units. 

Antibodies used: sc-543 (Santa Cruz Biotechnology), ab80922 (Abcam), ab3575 (Abcam), sc-514857 (C-3) (Santa 

Cruz Biotechnology), C15100066 (Diagenode) and 06-935 (EMD). b) Venn diagram showing the overlap between 

ERα binding sites for Santa Cruz (sc-543), Millipore (06–935) and Abcam (ab3575) antibodies in MCF7 cells. c) 

Top: De novo motif analysis of ERα binding sites using MEME. Bottom: Heatmap of total number of ERα binding 

sites identified in both technical replicates of MCF7 and in all three biological replicates for MDA-MB-231, 

respectively. d) ERα binding profile in two well-known ERα target genes in MCF7 and MDA-MB-231 cells. 
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We next aimed to evaluate the performance of ab3575 and 06-935 in RIME experiments 

compared to sc-543 antibody. For this analysis, we tested the 06-935, ab3575 and sc-543 

antibodies in two technical replicates using MCF7 cells. We included IgGs as negative controls 

to discriminate specific interactors and assess the antibody specificity. Firstly, we evaluated 

the pull-down efficiencies by comparing the sequence coverage of the bait protein achieved 

from the different antibodies. Interestingly, a similar number of unique ERα peptides was 

obtained (Figure 13a) across the different pull-downs, confirming that all three antibodies 

achieved efficient immunoprecipitation of the bait protein.  

Secondly, we evaluated the efficiency of the different antibodies in detecting ERα-associated 

proteins. For data interpretation, we used a label-free quantification method based on the 

Minora algorithm implemented in Proteome Discoverer 2.2 software. Principal component 

analysis (PCA) using scaled intensities of known ERα-associated proteins, from BIOGRID and 

STRING databases (n=319) displayed a strong separation between ERα RIME samples and 

IgG controls, demonstrating the high specificity of the antibodies (Figure 13b). Importantly, 

we found only small variation between the three antibodies, suggesting that they all efficiently 

pull-down known ERα-associated proteins. Hierarchical clustering showed an overall 

consistency between the antibodies (Figure 13c) and revealed an enrichment of well-known 

ERα interactors such as FOXA1, GATA3, NCOA3 and EP300 by all three antibodies 

compared to IgG samples (Figure 13d). Collectively, the data support that all three ERα 

antibodies perform similarly in ChIP-seq and RIME analyses and both ab3575 and 06-935 can 

replace the sc-543 antibody for characterising ERα interactors or profiling ERα binding on 

chromatin. Interestingly, the ab3575 and 06-935 antibodies recognise different protein epitopes 

(ab3575:  amino-acids 21-32; 06-935: C-terminus). To this end, the Carroll lab tested the 

combination of 06-935 and ab3575 antibodies compared to the individual use of these 

antibodies (ab3575, 06–935, sc-543) by ChIP-qPCR. The ChIP-qPCR was performed for two 

well-known ERα binding sites adjacent to GREB1 and RARA genes. Additionally, the ERα 

negative control binding region (ER3) was included (experiment conducted by Dr Sanjeev 

Kumar). Notably, ChIP-qPCR results showed a higher enrichment of ERα-bound chromatin 

following the addition of both antibodies compared to the application of individual antibodies 

(Figure 14). Taken together, our data show that the combination of two ERα antibodies can 

perform very well for the enrichment of ERα-bound chromatin and is suitable to substitute the 

sc-543 without affecting the sensitivity and specificity of the ChIP-experiments. For any new 

RIME or ChIP-seq experiment performed after the sc-543 was discontinued, the addition of 

both 06-935 and ab3575 antibodies was used. 
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Figure 13. Comparison of RIME data between Santa Cruz, Millipore and Abcam antibodies. 

a) Protein sequence coverage of ERα achieved by the use of Abcam (ab3575), Millipore (06-935) and Santa Cruz 

(sc-543) antibodies in RIME. b) PCA plot using a subset of known ERα interactors (n = 319, BIOGRID and 

STRING databases) for the four different RIME pull-downs. c) Hierarchical clustering of the scaled intensities of 

known ERα interactors from BIOGRID and STRING databases (n=319). d) Hierarchical clustering of well-

characterised ERα interactors. 

 

 

 

Figure 14. A comparison between different ERα antibodies by ChIP-qPCR. 

ChIP-qPCR analysis for ERα known binding sites in MCF7 cells. Results are shown as enrichment over negative 

control site (ER3). Antibodies used: sc-543 (Santa Cruz Biotechnology), ab3575 (Abcam), 06–935 (Millipore), 

combined ab3575 and 06-935. The experiment was performed including one replicate for each antibody. 
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3.2 Different applications of the qPLEX-RIME method 

 

3.2.1 Characterisation of different protein interactomes 

To investigate whether our quantitative pipeline can be used to study interactors of bait proteins 

other than ERα, we performed qPLEX-RIME pull-downs on three additional factors. Five 

biological replicates were collected for each bait and an equal number (N=5) of matched IgG 

control samples was included to discriminate the specific interactors for each experiment. 

Firstly, the qPLEX-RIME method was applied to explore the interactome of two well-

characterised co-activators of nuclear receptors (Lonard and O'Malley B, 2007); CBP (CREB-

binding protein) and NCOA3 (SRC-3). We quantified 1,437 and 1,135 proteins for CBP and 

NCOA3 respectively in the TMT 10plex sets of bait and IgG pull-downs (FDR<1%). 

Importantly, the target proteins CBP and NCOA3 were highly enriched in the bait pull-downs 

compared to the IgG controls (CBP: log2Fold-Change=3.2, adj. p-value<0.01; NCOA3: 

log2Fold-Change=3.39, adj. p-value<0.01), identified with 44 and 36 unique peptides 

respectively (Figures 15a & b). Well-described interactors of both bait proteins were identified 

including EP300, p160 coactivators, arginine methyltransferases and components of the ERα 

complex (Lonard and O'Malley B, 2007) (Figures 15a & b). Additionally, several subunits of 

the SWI/SNF chromatin remodelling complex such as SMARCA4 (BRG1), SMARCE1 

(BAF57), SMARCB1 (BAF47) and SMARCC2 (BAF170) were identified. We also revealed 

a strong enrichment of corepressors such NCORs and HDACs in both datasets, suggesting that 

both co-activators and co-repressors are part of the same complex. This finding is consistent 

with previously published data showing an extensive co-localisation of corepressors and 

coactivators using ChIP-seq (Siersbaek et al., 2017). 

Secondly, we explored the interactome of the phosphorylated-RNA polymerase II (Pol II) at 

serine-5 in the carboxy-terminal domain (CTD), to examine the efficiency of qPLEX-RIME 

on capturing phospho-interactomes. CDK7 in human TFIIH  phosphorylates the serine 5 (S5) 

of the Pol II carboxy-terminal domain (CTD), after the assembly of the pre-initiation complex 

(Mosley et al., 2009) and studies have shown that it is implicated in the regulation of 

transcription initiation, elongation, termination and mRNA processing (Phatnani and 

Greenleaf, 2006). We quantified 1,442 proteins across all multiplexed samples at peptide 

FDR<1%; the bait protein was one of the top enriched proteins (adj. p-value<0.01, log2Fold-

Change =4.2), identified with 96 unique peptides. The Figure 15c highlights the sequence 

coverage of the bait protein and the identification of known Pol II interactors, including 
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subunits of the SWI/SNF complex, proteins of the mediator complex, initiation and elongation 

factors (Hahn, 2004; Orphanides and Reinberg, 2000).  

 

 

 

Figure 15. Application of qPLEX-RIME in CBP, NCOA3 and Pol II. 

a) Sequence coverage of the CBP protein in the qPLEX-RIME analysis (top panel). The volcano plot shows the 

quantitative results of the CBP qPLEX-RIME (bottom panel). b) NCOA3 sequence coverage in the qPLEX-RIME 

analysis (top panel). The volcano plot displays the quantitative results of the NCOA3 qPLEX-RIME (bottom 

panel). c) Pol II sequence coverage in the qPLEX-RIME analysis (top panel). The volcano plot illustrates the 

quantitative results of the Pol II qPLEX-RIME (bottom panel). In all volcano plots, several known interactors of 

the bait proteins are shown in red font. 

 

 

Next, we performed a comparison of all four interactomes (ERα, CBP, NCOA3, Pol II), that 

were obtained by qPLEX-RIME. This revealed the identification of a significant number of 

uniquely identified interactors as well as a partial overlap across the four datasets (Figure 16a). 

We further examined, whether the shared proteins are more likely due to the common 

underlying biology of the four baits rather than an intrinsic technical bias that could be 

introduced by the method. To this end, we made a Venn diagram comparing random selections 

of proteins identified in the four qPLEX-RIME experiments, without filtering for specificity 

(Figure 16b). This analysis identified a smaller portion of overlapping proteins between the 

four interactomes, suggesting small contribution of technical factors to the observed overlap. 
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Overall, our data demonstrate that qPLEX-RIME can be widely used for the characterisation 

of different interactomes with specificity and statistical robustness. 

 

 

 

Figure 16. Comparison of the four interactomes (ERα, CBP, NCOA3, Pol II). 

a) The Venn diagram illustrates the comparison of the enriched interactors (log2Fold-Change>1, adj. p-

value<0.05, >1 unique peptide) of the four bait proteins (ERα, CBP, NCOA3, Pol II). b) Venn diagram 

highlighting the overlap of the four bait proteins using random selection of proteins identified in the four qPLEX-

RIME experiments.  

 

 

3.2.2 Study of ERα complex dynamics upon OHT treatment  

As part of our quantitative method optimisation, we performed three qPLEX-RIME 

experiments (3×10plex), to explore the dynamics of the ERα complex assembly upon treatment 

with the Selective Estrogen Receptor Modulator (SERM) 4-hydroxytamoxifen (OHT) 

(Dutertre and Smith, 2000). To this end, double cross-linked MCF7 cells were treated with 

100nM OHT for 2h, 6h and 24h or with ethanol for 24h (vehicle) in two biological replicates 

each condition, in each 10-plex-experiment to obtain a total of six replicates per time point. 

Additionally, control IgG pull-downs samples treated with OHT or ethanol for 24h were 

included in the same analysis to help eliminate non-specific binding in data analysis.  

In parallel, RNA-seq analysis was performed in six biological replicates using matched OHT 

treated samples to evaluate the efficiency of the drug treatment. The response to the drug 

treatment was evidenced by the transcriptional repression of a number of known ERα target 

genes at 6h and 24h, as OHT exhibits ERα antagonist activity in breast and blocks estrogen 

action. Figure 17a illustrates the suppression of ERα target genes such as PGR, PDZK1, TFF1, 

AREG, PKIB, SIAH2, MYB, HEY2, FOS, GREB1 and TFF3 (Caliceti et al., 2013; Frasor et al., 

2005; Frasor et al., 2003; Frasor et al., 2004; Ghosh et al., 2000; May and Westley, 1997), after 

24h OHT treatment compared to the vehicle (log2Fold-Change<-0.5, adj. p-value<0.05). 
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Figure 17. RNA-seq analysis and profile of ERα total protein levels. 

a) Scatter plot displaying the RNA-seq quantification results at 24h time point. Significantly regulated genes are 

highlighted (|log2Fold-Change|>0.5, adj. p-value<0.05) and known ERα target genes are labelled. b) Western 

blot showing the temporal changes of ERα upon OHT treatment in whole cell lysate (MCF7). Beta-actin had been 

used as a loading control.  

 

 

qPLEX-RIME analysis of the samples using the MultiNotch MS3 approach quantified 1,105 

proteins (FDR<1%) across all three replicate TMT experiments combined. Of these, 412 

proteins were significantly enriched in ERα pull-downs compared to IgG samples (log2Fold-

Change>1, adj. p-value<0.01). During the data interpretation of the qPLEX-RIME dataset, we 

observed a change in ERα levels upon OHT treatment, a finding that was validated by Western 

Blot (Figure 17b). A change in the levels of the bait protein due to biological mechanisms 

underlying the drug treatment, may influence the amount of purified proteins and result in 

systematic quantification biases. Indeed, our data showed a significant correlation of the 

quantified proteins on the amount of ERα pulled-down (Figure 18a). To correct for this effect, 

the Bioinformatics core applied a linear regression approach (McCarthy et al., 2017; 

Roumeliotis et al., 2017); the main advantage of this approach is that proteins with strong 

dependency on the target protein are subjected to more significant correction compared to those 

with small dependency, which are only slightly adjusted. Figure 18b illustrates the quantitative 
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profile of two well-known ERα interactors (GATA3 and HDAC2) before and after correction. 

After correcting the quantitative data for the abundance of ERα using the linear regression 

approach, we identified 249 ERα-enriched proteins with altered profile in the interactome in at 

least one time point (|log2Fold-Change|>0.5, adj. p-value<0.05), allowing for a comprehensive 

mapping of the dynamic organisation of the ERα complex in response to OHT treatment as 

discussed in the next section.  

 

 

 

Figure 18. Correction of quantitative results for the dependency on ERα target protein by linear regression. 

a) Histogram of Pearson’s correlation coefficients between ERα protein profile and all ERα-enriched proteins. 

b) Scatter plots of ERα profile versus the raw (left panel) and corrected (right panel) quantitative values of GATA3 

(with strong dependency on ERα) and HDAC2 (with low dependency on ERα).  

 

 

3.2.2.1 Dissociation and recruitment of co-factors upon OHT treatment 

To better understand the cascade of molecular changes following OHT treatment of MCF7 

cells and evaluate whether the changes captured by qPLEX-RIME are consistent with previous 

reports and provide additional findings, we interrogated the significant differences observed in 

the ERα interactome at each time point (2h, 6h, 24h). Firstly, at 2h treatment with OHT, we 

observed a loss of 12 proteins including known ERα co-activators such as NCOA3 and CBP 

(Figure 19a). These proteins have been linked to histone acetylation and modulation of 

chromatin organisation and structure leading to activation of gene transcription (Metivier et al., 

2003; Shang et al., 2000). Their loss in the ERα complex is in line with previously published 

data, showing that the access of co-activators is blocked by the binding of antagonists (Shiau 
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et al., 1998). Additionally, a significant loss of the interaction between ERα and NRIP1 

(RIP140) protein was detected. NRIP1 can act as a corepressor or as a coactivator (Rosell et 

al., 2014) with previous evidence suggesting that NRIP1 is required for ERα-complex 

formation as well as for gene expression mediated by ERα (Rosell et al., 2014). Figure 19b 

depicts the quantification profile of these key ERα co-factors across all biological replicates. 

Furthermore, OHT treatment resulted in the loss of GREB1 and its paralog gene product 

GREB1L. Loss of GREB1 upon OHT treatment has been previously reported (Mohammed et 

al., 2013), but for the first time we observed the loss of both proteins simultaneously. 

Next, we examined the changes detected in the ERα interactome 6h post OHT treatment. The 

analysis of the data using the qPLEXanalyzer tool revealed 237 significantly enriched 

interactors (log2Fold-Change>0.5, adj. p-value<0.05) compared to the vehicle treatment. 

Notably, NCOA3, NRIP1, GREB1 and GREB1L remained at decreased levels in the 

interactome (log2Fold-Change<-0.5, adj. p-value<0.05) (Figure 19a). Amongst the enriched 

proteins we found recruitment of several components of the NuRD (Nucleosome Remodelling 

and Deacetylase) complex, e.g. HDAC1/2 and the signature components MTA1/2 (Lai and 

Wade, 2011; Liu and Bagchi, 2004), as well as an enrichment of the co-repressor NCOR2 

(SMRT) (Chen and Evans, 1995; Jepsen et al., 2000) (Figure 19b). Consistent with our data, 

NURD complex and NCOR2 have been previously shown by ChIP to be recruited to promoter 

regions of ERα target genes in a sequential manner, following OHT treatment, to create a 

repressive chromatin conformation (Liu and Bagchi, 2004; Shang et al., 2000). Additionally, 

we detected an enrichment for subunits of the ATP-dependent chromatin remodelling complex 

SWI/SNF, including SMARCC2 (BAF170), SMARCE1 (BAF57) and SMARCA4 (BRG1) 

(Figure 19b), which is known to regulate both gene activation and gene repression (Belandia 

et al., 2002; Zhang et al., 2007). The SMARCA4 protein, which was previously shown to be 

required for repression of ER-mediated transcription (Zhang et al., 2007), was one of the top 

enriched SWI/SNF proteins.  

A restoration of the ERα complex after 24 treatment with OHT was observed, with the 

exception of the NCOA3, NRIP1 and GREB1 proteins, which were still decreased (log2Fold-

Change<-0.5, adj. p-value<0.05) (Figure 19a). The complex restoration is likely associated 

with the half-life of the drug as the cells were treated once with OHT at the beginning of the 

assay. Also, the fact that co-activator levels remain decreased in the complex, highlights the 

important role of the elimination of co-activators in the antagonistic activity of OHT. To 

validate key findings from the qPLEX-RIME analysis, we performed PLA assays for factors 
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that change with OHT treatment after 2h or 6h. PLA confirmed the loss of NCOA3 and CBP 

at 2h and the enrichment of SMARCC2 (BAF170) and HDAC1 at 6h (Figure 20a & b).  

Next, we compared our findings at 2h treatment with OHT with previously published ERα 

RIME data (Mohammed et al., 2013), where MCF7 cells were labelled with SILAC reagents 

followed by 3 hours treatment with tamoxifen, to detect changes in the ERα complex based on 

SILAC ratios. This revealed the high correlation between the two different datasets, confirming 

the accurate quantification obtained by the MultiNotch MS3 level mass spectrometry analysis 

(Figure 21). Taken together, our unbiased analysis captured the dynamic interplay of distinct 

coregulatory complexes with high quantification accuracy and revealed that the inhibitory 

effect of OHT peaks at 6h, where ATP-dependent remodelling and corepressor complexes may 

coordinate to create a transcriptionally inactive chromatin environment. 

 

 

 

Figure 19. Temporal profiling of the ERα interactome following treatment of MCF7 cells with OHT. 

a) Volcano plots showing the enrichment or loss of proteins in the ERα interactome upon OHT treatment for 2h, 

6h and 24h. b) Boxplots illustrating the loss of ERα co-activator proteins CBP, NCOA3 and NRIP1 at 2h and the 

enrichment of SWI/SNF and NuRD complexes subunits at 6h (left to right). Quantitative values are normalized so 

that the median of the vehicle treated samples is zero (centred at the median of vehicle).  
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Figure 20. Validation of temporal changes in the ERα complex upon OHT treatment. 

a) PLA assay showing the loss of NCOA3 and CBP from the ERα complex at 2h treatment with OHT compared 

to vehicle treatments (left panel). b) PLA assay showing the enrichment of BAF170 and HDAC1 in the ERα 

complex at 6h treatment with OHT (left panel). Both experiments were performed in duplicate and the graphs are 

representative of one of the experiments. Bar plots showing the quantification of the number of red PLA dots per 

cell normalized to ERα counts (single recognition PLA assay) using Image J software (***Student’s t-test p-value 

<0.001) (right panels). The error bars indicate standard deviation (SD).  

 

 

 

Figure 21. Comparison between qPLEX-RIME and RIME-SILAC data. 

Comparison of the qPLEX-RIME data at 2h OHT treatment with published RIME-SILAC data, where MCF7 cells 

were treated with OHT for 3h, displayed a good correlation between the two datasets. 
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3.2.3 Identification of net changes in the ERα complex   

The qPLEX-RIME data indicated that OHT treatment in MCF7 cells caused significant 

changes in the composition of ERα complex. To evaluate whether these changes are specific 

for the interactome or result from changes in total protein levels, we conducted a time-course 

whole proteome quantification in matched samples under the same conditions (vehicle, 2h, 6h 

and 24h, four biological replicates each, 2×8plex). The TMT labelled fractions were analysed 

with the MutliNotch MS3 approach, which enabled the quantification of 8,916 and 8,342 

proteins in the first and second experiments respectively (FDR<1%). 

The analysis of the whole proteome data confirmed the up-regulation of ERα protein levels 

(log2Fold-Change: 2h 0.21, 6h 0.5 and 24h 1) upon OHT treatment, which was not due to an 

increase in gene transcription. This finding is in line with previous reports showing an increased 

ERα protein stability in the presence of OHT (Wijayaratne and McDonnell, 2001). Most 

importantly, the comparison between the qPLEX-RIME results and the whole proteome data 

showed that the changes detected in the ERα complex upon OHT treatment represent changes 

in protein recruitment as the respective total protein and mRNA levels were unchanged (Figure 

22a). GREB1 was the only ERα interactor with decreased mRNA and total protein levels at 

24h treatment. It is known that GREB1 is an ERα target gene (Ghosh et al., 2000; Mohammed 

et al., 2013) and this explains the decreased association between ERα and GREB1 at the later 

time point. 

Further k-means clustering of the significantly regulated proteins (adj. p-value<0.05) across 

the three time points in the whole proteome, identified clusters of up- and down- regulated 

proteins (Figure 22b). Notably, Gene Set Enrichment Analysis (GSEA) of the regulated 

proteins, revealed an enrichment of genes linked to estrogen response and tamoxifen resistance 

(Figure 22c). We also observed a down-regulation of proteins involved in cell cycle (Whitfield 

et al., 2002) (Figure 23a), consistent with the antiproliferative effects of OHT (Liu and Bagchi, 

2004). Taken together, the RNA-seq data demonstrated an early effect on gene expression, 

following OHT treatment (6h), coinciding with the strong stoichiometric changes in the ERα 

complex. Additionally, the whole proteome results revealed protein expression changes at the 

later time point (24h) and confirmed that the changes of ERα-associated proteins are specific 

for the complex and not due to global changes in protein levels. Figure 23b illustrates the low 

mRNA-to-protein correlation at 2h and 6h and the respective strong correlation at 24h. We 

conclude that our qPLEX-RIME data in combination with the total proteome measurements 



 

75 
 

outline both changes in the ER interactome and the associated downstream global effects using 

an unbiased and accurate approach. 

 

 

 

Figure 22. Comparison of qPLEX-RIME data with whole proteome and RNA-seq data. 

a) Line plots of the significantly enriched or lost proteins in the qPLEX-RIME data (top panel) and their respective 

profiles in the whole proteome (middle panel) and RNA-seq analysis (bottom panel). b) Line plots representing 

two k-means clusters of down- and up-regulated proteins identified in total proteome analysis. c) Gene set 

enrichment analysis for the down- and up-regulated protein clusters. 
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Figure 23. Differentially regulated proteins and correlation with gene expression. 

a) Hierarchical clustering of down-regulated proteins involved in cell cycle at 24h using total proteome 

measurements. The scale bars represent log2 ratios versus the vehicle treatment. b) Scatter plots of mRNA versus 

total protein at 2h, 6h and 24h treatment with OHT.  

 

 

3.2.4 Application of qPLEX-RIME in clinical tumour material 

 

3.2.4.1 Characterisation of ERα interactome in vivo 

To assess whether our method can be used to study chromatin associated protein-protein 

interactions in tumours, we conducted an ERα qPLEX-RIME experiment using three 

independent ERα positive human Patient Derived Xenograft (PDX) tumours (HCI-003, HCI-

005, HCI-006), that have been previously described (DeRose et al., 2011). To increase the 

efficiency of the crosslinking, we adjusted our pipeline by including a cryosectioning step to 

dissociate the tumours. To this end, cryosections (30µm) of each tumour were double-

crosslinked and each tumour was split into two parts to be used for ERα and IgG pull-downs.  

The MS3 analysis identified 2,319 proteins (FDR<1%) across all multiplexed samples with 

highly reproducible profiles (Figure 24a). We successfully detected ERα (log2Fold-

Change=1.72, adj. p-value=0.026, unique peptides=3) and known ERα interactors, such as 
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CBP (Shang et al., 2000; Zwart et al., 2011), NCOA2 (Zwart et al., 2011), HDAC1 (Liu and 

Bagchi, 2004), GREB1 (Mohammed et al., 2013), SMARCE1 (BAF57) (Belandia et al., 2002), 

SMARCA4 (BRG1) (Metivier et al., 2003) and NCOA5 (CIA) (Sauve et al., 2001) (Figure 

24b). We further analysed the sequences of the identified interactors and their respective 

quantified peptides to examine possible contamination from mouse stroma. The analysis 

revealed that 60% of the significant interactors were identified with at least one unique human 

peptide (i.e. a peptide that does not align to the mouse proteome), highlighting that the 

identified proteins were primarily derived from human cancer cells. Consistently, the tumour 

samples showed high cellularity and positive staining for human ERα exclusively in the cancer 

cells and not in the stroma (Figure 24c). 

 

 

 

Figure 24. ERα qPLEX-RIME application in PDX tissues. 

a) Hierarchical clustering of the qPLEX-RIME quantified ERα-enriched proteins in PDX tissues. The scale bar 

represents row-mean scaled log2 values. b) Volcano plot illustrating the quantitative results of qPLEX-RIME 

application in PDX tissues. Statistically significant proteins (log2Fold-Change>1, adj. p-value<0.05) are shown 

in red colour and several well-known ERα interactors are labelled. c) H&E (Haemotoxylin and Eosin) staining 

and ERα staining for the three PDX tumours that were used in the qPLEX-RIME experiment (magnification=20x, 

scale bar=200µm).  
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Next, we aimed to apply the same workflow in human cancer clinical tissues, using five 

independent human breast cancer tumours [ERα positive, PR (Progesterone Receptor) positive, 

HER2 (Human epidermal growth factor receptor 2) negative, Grade2/Grade3]. Approximately 

60 sections (30µm) were obtained per tumour and were double-crosslinked before they were 

split for ERα and matched IgG pull-downs (Figure 25a). The analysis of the samples yielded 

the quantification of 2,191 proteins (FDR<1%) across the multiplexed set. Notably ERα was 

recovered with excellent sequence coverage (17 unique peptides), similar to the coverage we 

previously achieved from the ERα qPLEX-RIME in MCF7 cells. Additionally, well-described 

ERα interactors such as FOXA1, GATA3, GREB1, EP300, CBP, HDACs, NCORs, NCOA2 

and subunits of the SWI/SNF complex were identified (Figure 25b). Figure 25c displays the 

high enrichment of several key ERα interactors in the bait samples compare to IgG controls.  

Integrating all the datasets of the ERα interactome in MCF7 cells, we identified a compendium 

of 253 novel ERα-associated proteins with consistent presence in all MCF7 datasets (Figure 

26); the vast majority of these factors, approximately 83%, can now be studied either in PDX 

or in human clinical tissues validating the relevance of these factors in vivo. To conclude, our 

data highlights the method’s sensitivity and ability to identify endogenous protein networks 

from heterogeneous PDX and human tumour material, facilitating the study of known and 

novel associations in a more clinically relevant environment. 
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Figure 25. Characterisation of ERα interactors from in vivo samples. 

a) ERα qPLEX-RIME workflow in human xenograft tissues or in human breast cancer tumours. b) Volcano plot 

summarising the quantitative results of the ERα interactome in human breast cancer tumours. Several well-known 

ERα interactors are labelled. c) Box plots illustrating the enrichment of selected known ERα interactors in the 

ERα samples compared to IgG controls in human breast cancer tissues. The log2 values are normalised so that 

the median of IgGs is zero. 

 

 



 

80 
 

 

Figure 26. Most frequently enriched ERα interactors. 

STRING network of 253 ERα interactors identified consistently across all the qPLEX-RIME analyses performed 

in MCF7 cells. The font size increases proportionally to the average fold change enrichment of these proteins 

across all the ERα samples compared to IgG controls. 

 

 

3.2.4.2 ERα interactome in clinical material with variable expression profile of PR 

As we showed in section 3.2.4.1, we detected proteins with high sensitivity, significantly 

enriched in the bait samples compared to IgGs in clinical samples. Next, we carried out a 

qPLEX-RIME-based analysis to study the dynamics of specific ERα-associated proteins in 

human clinical material with variable expression profile of progesterone receptor (PR), that has 

been correlated with clinical outcome (Blows et al., 2010; Purdie et al., 2014). PR expression 

is used as biomarker of ERα function and high expression of PR has been correlated with good 

prognosis in breast cancer. It is a known ERα target gene and it has been shown to interact 

directly with ERα and to regulate ERα chromatin binding and transcriptional activity 

(Mohammed et al., 2015). Our collaborators from Netherlands Cancer Institute (Wilbert Zwart 

lab) collected ten independent human breast cancer tumours, five ERα positive/PR positive 

(ERα+ PR+) and five ERα positive/PR negative tumours (ERα+ PR-). Importantly, 30 sections 

(30µm) were obtained per tumour, which is less starting material compared to our previous 
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application of qPLEX-RIME on the ERα positive clinical tumours for the characterisation of 

ERα interactome in vivo (section 3.2.4.1). This will evaluate the sensitivity of the pipeline and 

assess whether it can be used to study dynamics of interactomes, where the starting material is 

limited. To filter for non-specific binding, we used the list of specific interactors that was 

obtained in the section 3.2.4.1 describing the specificity experiment in human tumours.  

The MS3 analysis identified 1,041 specific ERα-associated proteins (FDR<1%) across all 

multiplexed samples, including the bait protein and known ERα interactors such as GREB1, 

CARM1 and PRTM1. The identification of ERα and key ERα interactors from small amounts 

of primary tumour material, highlights the improved sensitivity of the pipeline. Additionally, 

PR was detected, in line with previous findings showing a physical interaction between these 

two nuclear receptors (Mohammed et al., 2015). Interestingly, the association between PR and 

ERα was the most enriched interaction in the ERα+ PR+ compared to the ERα+ PR- tumours 

(log2Fold-Change=1.51, adj. p-value<0.1), a change that correlates with the low levels of PR 

in the latter patient cohort. Other significantly enriched interactions in ERα+ PR+ compared to 

the ERα+ PR- tumours were between ERα and TRPS1 protein (log2Fold-Change=1.06, adj. p-

value<0.1) and ERα and GREB1. These interactions have been previously detected in ERα-

RIME experiments (Mohammed et al., 2013; Serandour et al., 2018). TRPS1 expression has 

been positively correlated with ERα and PR expression status (Wu et al., 2014) that may 

explain the loss of interaction in the ERα+PR- patients. GREB1 has been defined as a novel 

progesterone-responsive gene (Camden et al., 2017), revealing that loss of the interaction may 

reflect changes in gene expression. Also, it has been described that breast tumours that express 

both GREB1 and PR have the best prognosis (Mohammed et al., 2013). These findings indicate 

that the application of qPLEX-RIME can reveal the identification and characterisation of 

possible prognostic markers for breast cancer. Surprisingly, only a few changes were observed 

on the ERα interactome (Figure 27), suggesting that variable expression of PR may not affect 

the assembly of ERα complex and its association with different cofactors. Also, further 

functional assays may give a better insight in role of progesterone expression in the complex 

dynamics, but this is beyond the scope of this experiment. Taken together, the high sensitivity 

of the qPLEX-RIME method enabled the detection and quantitative study of ERα interactors 

in patients with variable expression of PR, revealing important findings.  
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Figure 27. Analysis of tumours with variable expression profile of PR. 

Volcano plot summarising the quantitative results from the qPLEX-RIME analysis of ERα+ PR+ and ERα+ PR- 

tumours. We have compared ERα+ PR+ versus ERα+ PR- tumours. The components of the ERα complex that 

mainly change are highlighted in red. 

 

 

3.3 Characterisation of a novel ERα-associated transcription factor 

 

3.3.1 Identification of ZNF207 protein by qPLEX-RIME  

The application of the qPLEX-RIME method across different samples led to the generation of 

various interactome datasets that provided in-depth characterisation of the transcriptional 

regulation in ERα positive breast cancer cells and tumours. Integration and interpretation of the 

in vitro and in vivo interactome data revealed a very frequent identification of the ZNF207 

protein, a transcription factor that belongs to the zinc finger protein family (Fang et al., 2018). 

The Figure 28 summarizes the detection of ZNF207 protein in different interactome 

experimental datasets. Transcription factors can regulate ERα function, can influence its 

binding to chromatin and can affect response to therapeutic treatments (Bi et al., 2020; Hua et 

al., 2018). Because they hold such important roles, we decided to investigate further the role 

of ZNF207, as it could represent a promising novel co-regulatory transcription factor of ERα. 

Zinc finger-containing proteins (ZNFs) comprise the largest transcription factor family in the 

human genome and work together with other transcription factors or co-factors to regulate 
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development, differentiation and metabolism (Fang et al., 2018; Jen and Wang, 2016). Studies 

have described an important role of ZNF207 in mitosis in HeLa cells and Glioblastoma 

multiforme stem cells (GSCs) (Jiang et al., 2014) and more recently in self-renewal and 

pluripotency of human embryonic stem cells (Fang et al., 2018). 

 

 

 

Figure 28. Overview of ZNF207 discovery. 

Identification of ZNF207 factor in different datasets of qPLEX-RIME (ΕRα, Pol II, CBP, NCOA3) or non-

quantitative RIME (AR) experiments using as a model cell lines (MCF7 or LNCaP cells) or human clinical 

samples. 

 

 

In our data, the identification of ZNF207 coincided with the presence of nuclear receptors, 

essential coactivators as well as with components of the basal transcriptional machinery. 

Specifically, ZNF207 was significantly enriched in ERα compared to IgG controls in vitro 

(MCF7: adj. p-value<0.01, log2Fold-Change=1.32) and in vivo (Clinical samples: adj. p-

value<0.01, log2Fold-Change=2.86) (Figure 29a). Additionally, the application of label-free 

quantification using the Minora algorithm on AR (Androgen Receptor) and IgG RIME data in 

LNCaP cells, confirmed the association of ZNF207 with nuclear receptors. Each pull-down 

was performed in two biological replicates and ZNF207 protein had a significant enrichment 

in AR-RIME compared to IgG samples (adj. p-value<0.01, log2Fold-Change=7.5) (Figure 

29b). 
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Figure 29. Association of ZNF207 with nuclear receptors. 

a) Box plots illustrating the enrichment of ZNF207 in ERα pull-downs (human tissue and cell lines) compared to 

IgG controls in vitro and in vivo. The log2 values are normalized so that the median of IgGs is zero. b) Bar plot 

displaying the enrichment of ZNF207 in AR pull-downs compared to IgG controls. The protein intensities 

represent the average of two biological replicates. 

 

 

Moreover, ZNF207 was significantly enriched in the qPLEX-RIME interaction data of two 

well-known nuclear receptor co-activators; NCOA3 and CBP, (CBP-qPLEX-RIME: adj. p-

value<0.01, log2Fold-Change=2.67; NCOA3-qPLEX-RIME: adj. p-value<0.01, log2Fold-

Change=2.59), confirming its association with active nuclear receptor complexes (Figure 30a). 

Interestingly, ZNF207 was also identified as one of the top enriched proteins in the RNA 

polymerase II (Pol II) qPLEX-RIME experiment compared to IgG samples (adj. p-value<0.01, 

log2Fold-Change=4.6) (Figure 30b). For the Pol II pull-down an antibody that recognized the 

phosphorylated polymerase II at serine-5 was used, suggesting a potential involvement of 

ZNF207 in the transcription initiation complex. Taken together, the data support that ZNF207 

associates with nuclear receptors and coactivators and may have a distinct and vital role in ERα 

positive breast cancer but also in prostate cancer, via association with important components 

of gene transcription. Based on these results we decided to investigate further the functional 

role of this transcription factor. 
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Figure 30. Association of ZNF207 with co-activators and Pol II in MCF7 cells. 

a) Box plot illustrating the enrichment of ZNF207 in CBP pull-downs compared to IgGs. b) Box plot displaying 

the significant association between ZNF207 and NCOA3 compare to IgGs. For all the box plots, the log2 values 

are normalized so that the median of IgGs is zero. c) Scatter plot displaying the significant enrichment of ZNF207 

and known key interactors in Pol II pull-downs compared to IgGs. 

 

 

3.3.2 Functional importance of ZNF207 for cell proliferation 

To start delineating the role of this factor in cellular behavior, we looked up published data 

from a CRISPR high-throughput screening assay (Nagarajan et al., 2020) that was conducted 

in our lab to identify genes that are important in the proliferation of MCF7 cells. This analysis 

revealed the depletion of all guide RNAs targeting ZNF207 (Figure 31a), indicating an 

essential role of ZNF207 in cell proliferation (FDR<0.05). To follow up further on the CRISPR 

screening findings in different contexts, we developed an assay using small interfering RNA 

(siRNA) targeting ZNF207. We examined whether the siRNA-mediated ZNF207 knockdown 

affects the proliferation of cancer and non-cancer cell lines. To this end, different cell lines 

were transfected with a SMARTpool siRNA targeting-ZNF207 or a non-targeting SMARTpool 

siRNA control (siNT). Firstly, the efficiency of the siRNA was tested in different 

concentrations (10nM, 20nM and 30nM) (Figure 31b) and at different time points (24h, 48h, 

72h and 96h) (Figure 31c) in MCF7 cells by Western blot. For further experiments the lowest 
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concentration of siZNF207 or siNT (10nM) at 48h time point was used, based on the optimal 

efficiency in decreasing ZNF207 protein expression with lowest cell toxicity.  

 

 

 

Figure 31. CRISPR screening in MCF7 cells and siRNA transfection conditions. 

a) CRISPR screening revealed the temporal depletion of all five guide RNAs targeting ZNF207. Plasmid 

represents the gRNA counts from control library before infecting to cells. b) Western blot showing the effect of 

the siRNA-targeting ZNF207 in different concentrations (10nM, 20nM and 30nM) using whole lysate of MCF7 

cells. Cells treated with no siRNA or siNT were used as controls. c) Western blot showing the temporal decrease 

of ZNF207 levels upon siRNA treatment at 10nM. In both Western blot assays, beta-actin was used as loading 

control. The figure (a) was provided by my colleague Dr Sankari Nagarajan. 

 

 

Next, using the above optimised transfection conditions, we studied the effect of ZNF207 

knockdown on three different ERα positive breast cancer cell lines; MCF7, T47Ds and ZR751. 

Data showed that ZNF207 knockdown effectively decreased cell proliferation in all three cell 

lines compared to siNT (Figure 32), with a more pronounced effect on the proliferation of 

MCF7 cells. This independent phenotypic validation of the published CRISPR screen results 

confirmed the essentiality of ZNF207 in breast cancer cell lines. To test whether this effect is 

limited to breast cancer cell lines, we also performed a cell proliferation assay in the LNCaP 

prostate cancer cell line, following ZNF207 knockdown. The results showed a strong decrease 

in cell proliferation of LNCaP cells (Figure 33a), indicating that ZNF207 might be a general 

essential factor in hormone-dependent cancer cell lines. Interestingly, the profile of cell 

proliferation following knockdown of ZNF207 is similar between MCF7 and LNCaP cells, 

with cell growth decreasing significantly after 48h of the transfection, suggesting a strong 

dependency of these two different cell line models on ZNF207 expression.  
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To investigate if ZNF207 is essential for cancer cell proliferation in a broader range of cancer 

cell lines beyond hormone-dependent cancers, we analysed the publicly available data from the 

Cancer Dependency Map (DepMap) (Meyers et al., 2017), that uncovers gene dependency 

across hundreds of cancer cell lines using CRISPR and RNAi (RNA interference) screening. 

Both technologies from the DepMap data revealed that ZNF207 is an essential gene for cell 

lines across the majority of cancer types. The Figure 33b shows the data from the CRISPR 

screening. Specifically, in the CRISPR screening, 722 out of 739 cell lines that were included 

in the analysis, showed decrease proliferation and therefore, high dependency on ZNF207 

expression. Similarly, in the RNAi assay, the growth of 648 out of 710 cell lines was strongly 

affected by ZNF207 knockdown, classifying ZNF207 as a common essential gene. 

Additionally, we assessed the specificity of DepMap results by analysing the screening data 

for ESR1 gene. Notably, the results confirmed the unique role and essentiality of ERα gene in 

the proliferation of multiple breast cancer cell lines, highlighting the specificity and accuracy 

of these public datasets (Figure 33b). 

Next, we tested the essentiality of ZNF207 in HEK293 cells as a model representing a non-

cancer cell line. The efficiency of the knockdown HEK293 was validated with western blot 

and the proliferation assay showed a significant inhibition of HEK293 growth after 72h of 

transfection with siRNA-targeting ZNF207 (Figure 33c & d). Altogether, the data show that 

ZNF207 knockdown negatively affects cell fitness of both cancer and non-cancer cells. These 

results in combination with public RNA expression data from the Human Protein Atlas 

(https://www.proteinatlas.org/), where ZNF207 gene is found constitutively expressed across 

multiple different cell lines (Figure 34), suggest that the functional role of this factor is 

important in the majority of cellular contexts. 
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Figure 32. Proliferation assays. 

Growth assays displaying the temporal effect on proliferation of three different breast cancer cell lines (MCF7, 

T47Ds and ZR751) upon ZNF207 knockdown. The assays have been performed in triplicates and the graphs are 

representative of one of the experiments. The error bars indicate standard deviation (SD). 

 

 

 

Figure 33. Proliferation assays and analysis of DepMap data. 

a) Proliferation assay displaying the temporal effect on proliferation of LNCaP cells upon ZNF207 knockdown. 

b) CRISPR DepMap data displaying the effect of ERα or ZNF207 knock-out in a broad spectrum of cancer cell 

lines. c) Proliferation assay displaying the temporal effect on proliferation of HEK293 cells upon ZNF207 

knockdown). d) Western blot showing the efficiency of the siRNA assay in HEK293 cells (10nM, 48h). The 

proliferation assays have been performed in triplicates and the graphs are representative of one of the 

experiments. The error bars indicate standard deviation (SD). 
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Figure 34. Human Protein Atlas RNA-seq data. 

ZNF207 gene expression across multiple different cell lines. 

 

 

3.3.3 Identification of the ZNF207 target gene program 

To investigate further the functional role of ZNF207 and its target gene program, we performed 

RNA-sequencing (RNA-seq) analysis of six biological replicates of ZNF207 knockdown in 

MCF7 cells using matched non-targeting siRNA treated cells as control samples. The mRNA 

data showed a significant effect in 2,700 genes (adj. p-value<0.05, |log2Fold-Change|>0.5) 

upon decrease of ZNF207 gene expression levels (Figure 35a). The most downregulated gene 

was ZNF207 (adj. p-value<0.01, log2Fold-Change=-4.42), validating the efficiency of the 

siRNA assay. Pathway enrichment analysis revealed an over-representation of cell cycle 

processes in the downregulated genes (Figure 35b), consistent with previously published data 

(Fang et al., 2018). In contrast, the genes induced by ZNF207 knockdown did not display any 

significant enrichment for specific pathways or processes, indicating that these may change as 

a result of an overall genome remodelling due to the downregulation of genes linked to 

important signalling pathways.  

Previous studies have indicated that there are three alternative splice isoforms of ZNF207 

(isoform A, B and C) (Fang et al., 2018). The isoform C (canonical) contains all 12 exons, 

whereas the isoforms A and B are lacking the exon 6 and 9 respectively. Sequence analysis of 

the RNA data revealed that MCF7 cells express all known mRNA isoforms produced by 

alternative pre-mRNA splicing. Specifically, Sashimi plots (Katz et al., 2015) illustrated the 

presence of all three mRNA isoforms in our cell model, with isoform B to be the most common 

isoform across the samples. Figure 36 shows the read coverage and the detection of each 

splicing junction in the region of interest for the siCtrl samples. Interestingly, the expression 

of all isoforms was decreased upon knockdown of ZNF207 (Figure 36). To validate this 

observation, we selected an additional dataset from MCF7 cells and we re-analysed our RNA-
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seq data from vehicle or OHT-treated MCF7 cells, which confirmed the presence of all three 

isoforms in the MCF7 cells (Figure 36). This analysis of two different RNA-seq datasets 

supports the presence of all ZNF207 isoforms in our system, displaying no isoform specificity. 

The isoform analysis was performed by the CRUK-CI Bioinformatics core. 

We next investigated the association between ZNF207 and ERα by examining whether the 

transcription of ERα target genes was modulated by ZNF207 knockdown. To this end, genes 

significantly downregulated by ZNF207 knockdown (adj. p-value<0.05, log2Fold-Change<-

0.5) were compared with genes significantly repressed (adj. p-value<0.05, log2Fold-Change<-

0.5) after 24h OHT treatment using our RNA-seq data from OHT-treated MCF7 cells. We 

observed a small overlap between the two datasets as only 2% of the down-regulated genes by 

ZNF207 knockdown (total 41 genes), were overlapped with genes that were repressed by OHT 

treatment (Figure 37), highlighting an alternative effect of the ZNF207 knockdown. Further 

analysis of the common genes revealed known ERα targets but not an enrichment of specific 

pathways. Also, the expression levels of ZNF207 were unchanged upon OHT treatment, 

indicating that ZNF207 is not an ERα target gene. 

 

 

 

 



 

91 
 

 

Figure 35. RNA-seq analysis following ZNF207 knockdown. 

a) Scatter plot summarising the RNA-seq quantification results. Regulated genes are highlighted in red 

(|log2Fold-Change|>0.5, adj. p-value<0.05). b) Pathway enrichment for the downregulated genes identified in 

the RNA-seq analysis (p-value<0.01). The pathway enrichment was provided by the Bioinformatics core. 

 

 

 

Figure 36. Sashimi plots. 

Sashimi plot of ZNF207 gene in MCF7 cells treated with siNT (siCtrl sample-top panel) or siZNF207 (middle 

panel) or MCF7 treated with OHT for 6h (bottom panel) from RNA-seq data. The frequency of exon skipping is 

indicated by the numbers. The figures are representative of one of the replicates for each condition. The figure 

was provided by the Bioinformatics core. 
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Figure 37. Comparison of two RNA-seq datasets. 

A Venn diagram comparison between the significantly downregulated genes identified in the RNA-seq analysis 

following ZNF207 knockdown or OHT treatment for 24 hours.  

 

 

To assess whether the changes in gene expression correspond to altered protein levels, a TMT-

quantitative whole proteome experiment was conducted in MCF7 cells using the same 

transfection conditions with the RNA-seq experiments, in independently collected cells. The 

analysis included five biological replicates of ZNF207 knockdown in MCF7 cells using 

matched non-targeting siRNA treated cells as control samples. We quantified a total of 8,520 

proteins at FDR<1% and detected 308 significantly regulated proteins (adj. p-value<0.05, 

|log2Fold-Change|>0.3) (Figure 38), including ZNF207 as the most significantly 

downregulated protein in the whole proteome dataset (adj. p-value<0.01, log2Fold-Change =-

1.71). The analysis of the proteomics data did not indicate if any of the ZNF207 isoforms is 

more prominent, as only shared peptides between the three isoforms were identified. Although, 

a smaller number of changes were detected at the protein level compared to the transcript level, 

pathway enrichment analysis confirmed the downregulation of proteins significantly linked to 

cell cycle (Figure 38). Additionally, there was a significant correlation between mRNA and 

protein suggesting that changes at protein levels are largely regulated at the transcriptional level 

(Figure 39). Importantly, the largest proportion of changes was representing down-regulated 

proteins/genes, as a shift was observed in the density plot, including cell cycle related factors 

at both RNA and protein level. 

Next, we conducted a phosphoproteome analysis to study if the loss of ZNF207 affects the 

phosphorylation status of proteins through downstream pathways. We used matched cells 

pellets with the whole proteome analysis to permit any comparison between the two datasets 

for the detection of specific changes at phosphorylation status. An additional 

phosphoenrichment step, using IMAC, was applied in our pipeline to increase the sensitivity 
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and the discovery of low-abundant phosphopeptides. We quantified approximately 14,000 

unique phosphopeptides across the TMT multiplexed set with FDR<1%. Interestingly we did 

not observe many significant changes in the phosphoproteome or enrichment of specific 

pathways, suggesting that the negative effect on cell cycle gene transcription most likely is not 

regulated by prominent phosphorylation mechanisms.  

The findings from both the RNA-seq and whole proteome are in line with the essentiality of 

the ZNF207 and suggest that ZNF207 may have a role in the transcriptional regulation of genes 

related to cell cycle and cell proliferation. In addition to these observations, the analysis of the 

phosphoproteome is suggestive of a mechanism not dependent on phosphorylation of central 

signalling proteins. 

 

 

 

Figure 38. Whole proteome analysis. 

Volcano plot (left panel) summarising the quantitative results from the whole proteome analysis in MCF7 cells 

following ZNF207 knockdown. Significantly regulated proteins are highlighted in red (|log2Fold-Change|>0.3, 

adj. p-value<0.05). Pathway enrichment analysis (right panel) for the downregulated proteins showing strong 

association with cell cycle (p-value<0.01). 
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Figure 39. Correlation between protein and gene expression data.  

Scatter plot illustrating the correlation of all proteins versus mRNA data following ZNF207 knockdown. 

 

 

3.3.4 Effect of ZNF207 knockdown on cell cycle progression  

ZNF207 was originally discovered as a regulator of mitotic chromosome alignment in HeLa 

cells and Glioblastoma multiforme stem cells (GSCs) (Jiang et al., 2014). Whether ZNF207 

has a role in proper chromosome alignment and in the metaphase to anaphase progression in 

breast cancer cell lines is unknown. Given that abnormal mitosis can lead to impaired cell 

proliferation, it was important to assess the potential involvement of ZNF207 in mitosis in 

MCF7 cells and whether ZNF207 knockdown affects cell cycle progression. To this end, we 

performed a flow cytometry experiment to determine the relative proportion of cells in various 

stages of the cell cycle. The experiment was performed in two biological replicates by 

collecting and treating independently grown MCF7 cells. However, a third replicate will be 

included to increase the confidence of the findings. The flow cytometry analysis showed that 

the percentage of cells in G1, S and G2/M cell cycle phases remained unaffected after 48h 

treatment with siZNF207 at a concentration of 10nM (p-value cut-off <0.01) (Figure 40a). 

This observation suggests that knockdown of ZNF207 for 48h does not significantly affect cell 

cycle progression in MCF7 cells. Additionally, the absence of an increased G2/M cell 

population after siZNF207 treatment, indicates that ZNF207 knockdown is unlikely to have a 

profound effect upon metaphase chromosome alignment in MCF7 cells, since this would be 

anticipated to increase the time spent in mitosis and result in an increased mitotic cell fraction.  
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Abnormal chromosome alignment can result in incorrect attachment of chromosomes to the 

mitotic spindle (Jiang et al., 2014) and lead to chromosome segregation errors. Elevated rates 

of chromosome segregation errors and subsequent increased aneuploidy may affect cell 

viability (Janssen et al., 2009). We therefore assessed whether ZNF207 knockdown leads to an 

increase in chromosomal segregation errors. Asynchronous MCF7 cells grown on coverslips 

were fixed and stained by immunofluorescence (kinetochores were stained with CREST 

(centromere) antibodies, microtubules were stained with an anti-α-tubulin antibody and 

chromosomes were stained with Hoechst 33342). We scored 50 anaphase cells per sample and 

we did not observe any significant increase in the number of cells making chromosomal 

segregation errors between the control and ZNF207 knockdown cells (Figure 40b). The high 

number of chromosomal segregation errors in control MCF7 cells is consistent with previously 

published data quantifying the well documented chromosomal instability of this cell line 

(Bakhoum et al., 2014; Thompson and Compton, 2008). For this experiment I worked together 

with Rebecca Burrell from the Carroll group. 

To conclude, the changes we detected in cell proliferation assays for various cell models, 

following ZNF207 knockdown, cannot be explained by altered cell cycle progression or mitotic 

abnormalities generating highly aneuploid cells. Despite excellent knockdown of ZNF207 at 

48h, no effect on cell cycle profile or chromosome segregation was seen. Given the strong 

effect on cell viability after 72h of ZNF207 knockdown, we would expect a significant mitotic 

phenotype at 48h if this was the explanation for reduced viability. While we cannot exclude 

that a longer siRNA treatment might reveal a mitotic phenotype, our observations after 48h 

treatment with siZNF207 indicate an alternative mechanism for the impact of siZNF207 on cell 

proliferation. Notably, recent published data in human embryonic stem cells described that 

ZNF207 regulates pluripotency and developmental gene expression without observing any 

significant role in mitotic chromosome alignment (Fang et al., 2018). These previous findings 

in combination with our data suggest that ZNF207 may have additional important functions 

besides a possible role in mitosis. 
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Figure 40. FACS and microscopy experiments. 

a) Bar plot summarising the cell population at different cycle stages upon treatment with siCtrl, siZNF207 or 

without siRNA. Phases of the cell cycle: G1 phase, S phase (synthesis) and G2/M (interphase/mitosis). b) Bar plot 

showing the percentage of anaphase cells with chromosomal segregation errors in cells treated with siCtrl or 

siZNF207. Both experiments were performed in two biological replicates and the error bars indicate standard 

deviation (SD). Both bar plots show no significant (n.s) difference between the conditions. The cell scoring was 

performed by Rebecca Burrell. Student’s t-test p-value cut-off<0.01). 

 

 

3.3.5 ZNF207 antibody testing using RIME and ChIP-seq 

As our data suggest a different role for ZNF207 compared to what has been described in the 

literature so far, we next sought to study the ZNF207 interactome in depth and characterise the 

proteins associated with this transcription factor in MCF7 breast cancer cells, by performing 

non-quantitative RIME and qPLEX-RIME experiments. This may help to better understand its 

function and whether ZNF207 interacts with specific proteins or protein complexes. Firstly, we 

conducted non-quantitative RIME experiments on untreated, asynchronous MCF7 cells to test 

the performance of six different antibodies; Abcam (ab123322), Atlas (HPA017013), Santa 

Cruz D12 (sc-271943), Genetex (GTX116214), Life technologies (LF) (PA530641), Santa 

Cruz E2 (sc-271942) against ZNF207, as there are no available ZNF207 interactome data in 

the literature. We included species-matched IgG negative controls (IgG-rabbit and IgG-mouse) 

to filter for non-specific interactors. To evaluate the pull-down efficiencies of the different 

antibodies, we compared the sequence coverage of the bait protein and the detection of specific 

ZNF207-associated proteins, by subtracting proteins identified in both IgG samples.  
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All antibodies achieved a good sequence coverage for ZNF207 except the D12 antibody 

(Figure 41a), where the bait protein was detected with one unique peptide. The Atlas and 

Genetex antibodies gave the highest peptide coverage for the bait protein, 7 and 6 peptides 

respectively (Figure 41a), that represents 85-100% of the theoretical number of tryptic 

peptides that can be detectable for ZNF207 (Figure 41b). The sc-E2 antibody achieved a good 

coverage for the bait protein (3 peptides, 40% of theoretical peptide coverage) and gave the 

highest number of unique peptides for ZNF207-associated proteins that are known components 

of the ERα complex and the transcription machinery, including co-activators, Pol II initiation 

and elongation factors (Figure 41c). A further comparison of the detected specific associated 

proteins in each of the three best-performing antibodies (Atlas, Genetex, sc-E2), showed a good 

overlap and interestingly revealed a high number of interactors uniquely identified with the sc-

E2 antibody (Figure 41d).  
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Figure 41. Comparison of 6 antibodies specific for ZNF207 with RIME. 

Protein sequence coverage of ZNF207 achieved by the use of different antibodies. b) Sequence of ZNF207 protein. 

Letters in italics indicate tryptic peptides theoretically detectable from the mass spectrometer. Orange font 

indicates tryptic peptides that were consistently identified in ZNF207-RIME experiments and blue font indicates 

amino acid sequence that was not detectable in our assays. c) Boxplot of the number of identified unique peptides 

for components of the ERα complex and the transcription machinery across the 6 antibodies. d) Venn diagram 

comparison of the specific interactors identified using Atlas, Genetex and sc-E2 antibodies. 

 

 

Despite the similarities between the RIME and ChIP-seq protocols, we have observed that 

antibodies performing robustly in RIME, do not always perform comparably in ChIP-seq. For 

this reason, we tested in parallel the performance of five out of the six antibodies (we excluded 

sc-D12) in a ChIP-seq experiment in untreated, asynchronous MCF7 cells, including ERα as a 

positive control. The ERα control ChIP-seq detected a high number of binding events (60,868) 

(Figure 42a), demonstrating the good quality of the assay. Surprisingly all antibodies 

performed poorly in terms of the number of binding events with the exception of sc-E2 

antibody, which achieved a large number of total peaks (45,643) (Figure 42a). Additionally, 
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the sc-E2 antibody has been used before for ZNF207 ChIP-seq experiments (Fang et al., 2018), 

in line with the conclusion from our evaluation experiment. Figure 42b displays snapshots of 

ChIP-seq tracks at GREB1 gene locus, a key ERα-regulated gene, demonstrating the high 

signal and the low background for the positive control. Additionally, the quality and signal 

intensity of the peaks confirmed the good enrichment achieved using the sc-E2 antibody and 

the poor binding profiling obtained using the other four ZNF207 antibodies. Interestingly, this 

pilot experiment revealed a strong overlap between ERα and ZNF207 as 70% of the ZNF207 

binding sites was overlapping with ERα binding, a common feature of co-localisation of 

chromatin-associated factors (Figure 42c). This finding is in an agreement with the qPLEX-

RIME data showing an association between ZNF207 and the ERα complex. As the sc-E2 

antibody performed well in both RIME and ChIP-seq assays, we used it for all the subsequent 

experiments that were conducted to study the function of ZNF207.  

 

 

 

Figure 42. ZNF207 antibody testing using ChIP-seq in MCF7 cells. 

a) The number of binding sites for 5 different ZNF207 antibodies (sc-E2, Atlas, Abcam, Genetex, LF) along with 

the number of binding sites detected for ERα. b) UCSC genome browser tracks of ChIP-seq signal near a key ERα 

target gene (GREB1) for the five ZNF207 antibodies and ERα. c) Venn diagram showing the overlap of binding 

sites between ZNF207 (using sc-E2 antibody) and ERα (top). Heatmap of the ZNF207-ERα shared binding sites 

(30,140) (bottom). 
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3.3.5.1 Characterisation of ZNF207 interactome 

Having optimised the pull-down conditions, we next studied the ZNF207 interactome by 

conducting ZNF207 qPLEX-RIME analysis in five independent biological replicates using the 

sc-E2 antibody. An equal number of IgG control samples was included to filter for non-specific 

binding. Data analysis using the qPLEXanalyzer tool confirmed the strong association of 

ZNF207 with ERα and well-characterised ERα interactors such as FOXA1, GATA3, NCOA3 

and CBP (adj. p-value<0.01, log2Fold-Change>1), in line with the overlap that we observed in 

the binding sites between ZNF207 and ERα by ChIP-seq. Interestingly, we identified six out 

of the twelve Pol II subunits in the pull down experiment (RPB1-4, RPB7, RPB9); all subunits 

were significantly enriched in the ZNF207 pull-downs compared to IgG samples (adj. p-

value<0.01, mean log2Fold-Change=2.13). Additionally, transcription initiation and elongation 

factors were detected, including TAF3 (Louder et al., 2016), SPT6 and SPT5 (Wada et al., 

1998) (adj. p-value<0.01, log2Fold-Change>1), highlighting a strong association of ZNF207 

with the Pol II complex. Importantly, we found that ZNF207 interacts with several subunits of 

the mediator complex, such as MED1, MED12, MED4 and MED15 (adj. p-value<0.01, 

log2Fold-Change>1). Notably, Mediator subunits are rarely detected in our pull-down 

experiments of ERα and associated proteins, highlighting the importance and specificity of the 

association between ZNF207 and the Mediator complex. Figure 43a summarises the 

quantitative findings from the ZNF207 qPLEX-RIME analysis. 

To validate the interaction between ZNF207 and Mediator complex, we executed non-

quantitative RIME experiments on different critical Mediator subunits (MED1, MED12, 

MED4, MED14 and MED26), covering the three out of the four distinct modules of the 

complex termed the middle, tail and CDK8 kinase module (Soutourina, 2018). We successfully 

identified the bait proteins with high peptide sequence coverage in the respective RIME 

samples along with most of the Mediator subunits and other well-known interactors, including 

Pol II, validating the efficiency of the pull-downs (Figure 43b). Notably, the RIME data 

confirmed the association between ZNF207, different subunits of the Mediator complex and 

components of the transcription initiation complex. Several coactivator proteins were also 

detected, validating the association between Mediator subunits and transcription coactivators, 

which is essential for the recruitment of Pol II and components of the general transcription 

machinery to promoters (Soutourina, 2018). Taken together, the interactome data demonstrate 

that ZNF207 has a strong association with ERα complex but also with subunits of the Mediator 
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complex, suggestive of a role of ZNF207 in Mediator function and regulation of gene 

transcription initiation. 

 

 

 

Figure 43. ZNF207 interactome and RIME for Mediator subunits. 

a) Volcano plot summarising the quantitative data from the ZNF207 qPLEX-RIME. The bait protein along with 

components of ERα complex and the transcription machinery complexes are highlighted in red. b) Heatmap 

displaying the sequence coverage (%) for bait proteins (MED1, MED12, MED14, MED15, MED26, MED4) and 

different Mediator-associated proteins identified in non-quantitative RIME experiments.         

 

                                                                                                                         

3.3.6 ZNF207 knockdown does not affect the assembly of the ERα complex 

Our interactome data have revealed the association of ZNF207 with ERα and well-described 

ERα interactors (such as FOXA1, NCOA3 and CBP). To determine whether ZNF207 

knockdown has any effect on the assembly of ERα complex, we conducted an ERα qPLEX-

RIME experiment on MCF7 cells, that have been treated with siZNF207 or siNT (5 biological 

replicates for siZNF207 or siNT-treated cells). We quantified 2,197 proteins with FDR<1% 

across the multiplexed TMT set; 122 proteins were significantly regulated (adj. p-value<0.1) 

(Supplementary Data 1). Interestingly, we observed a significant enrichment in the complex 

for transcription corepressors following ZNF207 knockdown; (1) CBX8, a component of the 

Polycomb PRC1 complex (Tang et al., 2019), (2) BAZ2A, a component of the NoRC 
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(nucleolar remodeling complex) that leads to heterochromatin formation and transcriptional 

silencing (Gu et al., 2015), (3) the MTG16 corepressor (Kumar et al., 2015)  and the (4) RCOR3 

which is a member of the REST (repressor element-1-silencing transcription factor) 

corepressor (CoREST) family (Xue et al., 2011). This could be partly due to differential 

expression of these cofactors, as they were detected to be upregulated in our RNA-seq and 

whole proteome data, suggesting that knockdown of ZNF207 causes an increase on the gene 

expression of transcription co-repressors. Similarly, other significantly regulated ERα-

associated proteins (adj. p-value<0.1) detected in this dataset were mainly linked to cell cycle 

and DNA damage and their expression levels in both our RNA-seq and whole proteome data 

were changed.  

For further analysis and filtering for specific interactors, we used the ERα qPLEX-RIME 

experiment (5-ERα qPLEX-RIME pull-downs compared to 5-IgG controls), that we conducted 

in MCF7s to characterise the ERα interactome. We defined the significant specific ERα-

associated factors from this dataset (adj. p-value<0.1) and compared this against a 

representative well-known STRING interactome of proteins directly associated with ERα 

(Figure 44a). Next, we examined if any of these factors were significantly changed as ERα 

interactors upon ZNF207 knockdown compared to siNT. Notably, the knockdown of ZNF207 

did not affect the assembly of the ERα complex, as most of the well-known interactors and 

ERα itself remained unaffected (Figure 44b).  

Overall, our data demonstrate that ZNF207 associates significantly with ERα and components 

of the ERα complex, but is not required for the assembly of the ERα complex, as the well-

known ERα interactors were unchanged following ZNF207 knockdown. Interestingly, we 

observed an enrichment in the ERα complex of specific co-repressors proteins, a likely 

consequence of an up-regulation of transcription of these factors. This upregulation may 

contribute to the significant number of down-regulated genes that were detected in the gene 

expression analysis. Notably, well-known ERα-target genes were only a small portion of the 

total number of decreased genes following ZNF207 knockdown, validating the qPLEX-RIME 

findings of minimal impact on the ERα complex in the absence of ZNF207. We speculate that 

ZNF207 was detected in ERα pull-down experiments given that nuclear receptors comprise a 

large family of transcription factors interacting with Mediator subunits as well as with members 

of the transcription machinery via chromatin loops that bridge distinct regulatory complexes 

(Kang et al., 2002). To conclude, our data suggest a more generic role for ZNF207, likely 

associated not only with ERα but with other factors to regulate gene expression and 

proliferation.  
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Figure 44. ERα qPLEX-RIME after ZNF207 knockdown. 

a) Schematic pipeline for the filtering of the data for the selection of well-known ER interactors from STRING 

database. b) Overview of the regulated profile of the well-known ERα interactors following ZNF207 knockdown. 

The enrichment or loss in the complex are indicated with red or blue font respectively and some of the most well-

described interactors are highlighted in bold. 

 

 

3.3.7 ZNF207 knockdown affects the assembly of the Mediator complex 

To explore the association between ZNF207 and the multi-subunit Mediator complex, we 

performed qPLEX-RIME experiments on MED1, MED4 and MED12 subunits in MCF7 cells, 

following ZNF207 knockdown. Five independent biological replicates of MED1, MED4 or 

MED12 qPLEX-RIME samples were collected from cells treated with either siRNA specific 

for ZNF207 or with siNT for 48h. MED1, MED4 and MED12 subunits were selected on the 

basis they were identified in the ZNF207 qPLEX-RIME as significantly enriched ZNF207-

associated proteins compared to IgG samples (MED1: adj. p-value<0.01, log2Fold-Change 

=1.72; MED12: adj. p-value<0.01, log2Fold-Change=1.55; MED4: adj. p-value<0.01, 

log2Fold-Change =2.14). Additionally, MED1 and MED12 are part of different functional 

domains within the Mediator complex (Kagey et al., 2010), providing a more comprehensive 

study of the complex. Regarding the MED4 subunit, it belongs to middle domain together with 

MED1 and has recently been characterised as an essential subunit (El Khattabi et al., 2019). 

We quantified 2,107, 1,882 and 2,522 proteins for MED1, MED12 and MED4 qPLEX-RIME 

respectively across knockdown and control samples at peptide FDR<1%. In the MED1 
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qPLEX-RIME, 158 proteins were significantly regulated (adj. p-value<0.1) compared to siNT 

samples (Supplementary Data 2). Gene Ontology enrichment analysis of all quantified 

proteins revealed a loss of interaction between MED1 and proteins that were related to 

transcription initiation and elongation. Specifically, we detected a significant loss on the 

interaction between MED1 and Pol II (adj. p-value<0.1) as well as with general transcription 

factors that are required for the assembly of the Pol II pre-initiation complex and the 

phosphorylation of the Pol II C-terminal domain, including TATA box binding protein-

associated factors (TAFs) (Tora, 2002). Additionally, the enrichment analysis showed a 

significant loss of the Mediator complex; the ZNF207 knockdown led to loss of interaction 

between MED1 and other Mediator subunits. In this experiment, all 33 subunits of the Mediator 

complex were detected and interestingly all showed an overall negative enrichment in the 

complex following ZNF207 knockdown, suggesting a global negative effect on the Mediator 

complex assembly in the absence of ZNF207. 

Previously published studies have shown that Mediator complex affects Pol II elongation 

through interactions with the super elongation complex (SEC) (Donner et al., 2010; Takahashi 

et al., 2011). Interestingly, in our interactome data we observed a decrease in the interaction 

between MED1 and members of the super elongation complex. Specifically, ZNF207 

knockdown decreased the association between MED1 and the positive elongation factor b (P-

TEFb), which comprises CDK9 as a catalytic subunit and cyclin T1 (CCNT1) or T2 as a 

regulatory subunit (Luo et al., 2012). We detected CDK9 and CCNT1 subunits in our data and 

both showed a decreased association with MED1 (adj. p-value<0.1). Additionally, we 

identified other members of the SEC that had the same profile as P-TEFb, including AFF4, 

MLLT3 (AF9) and  MLLT1 (ENL) (Luo et al., 2012). Notably, AFF4 and AF9 were the top 

depleted proteins in our data (AF9: adj. p-value<0.01, log2Fold-Change=-0.89; AFF4: adj. p-

value<0.01, log2Fold-Change=-0.72), suggesting a significant effect in the elongation process 

when ZNF207 was silenced.  

Analysis of the MED12 qPLEX-RIME data showed 211 regulated proteins (adj. p-value<0.1) 

in the MED12 siZNF207 pull-downs compared to siNT samples (Supplementary Data 3). 

Pathway enrichment analysis of the data, reproducibly identified the effect on the Mediator 

complex and the loss of interaction between the different subunits, which was also observed in 

the MED1 qPLEX-RIME. Interestingly, both quantitative experiments showed a loss of 

interaction with the MED14 subunit, the architectural and functional backbone of the Mediator 

complex (Cevher et al., 2014), suggesting a strong effect on the complex assembly and 

stabilisation. Structural and functional studies have indicated that the association between 
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subunits of the head or middle subcomplexes and MED14 is critical to reconstitute a functional 

and structural core that strongly associates with Pol II (Cevher et al., 2014). This finding may 

explain the loss of interaction between MED1 and Pol II in our data as the knockdown of 

ZNF207 had a significant effect on the Mediator subunits, including MED14.  

The findings from the above interactome studies were reproducibly confirmed by the MED4 

qPLEX-RIME data. Specifically, we identified 158 significantly regulated proteins (adj. p-

value<0.1) in the siZNF207 compared to siCtrl samples (Supplementary Data 4). The 

CORUM analysis confirmed the negative enrichment for Mediator complex (score=-0.72), 

indicative of a more general effect on the Mediator assembly upon ZNF207 knockdown as 

observations are consistent when different Mediator subunits were used as bait proteins. Figure 

45 illustrates the effect on Mediator complex, Pol II core complex, elongation and initiation 

factors in MED1, MED4 and MED12 qPLEX-RIME experiments in MCF7 cells, following 

ZNF207 knockdown. 

Next, we evaluated whether the disruption of the Mediator complex, following ZNF207 

knockdown, is specific for breast cancer models or a more general effect. To this end, we 

conducted two qPLEX-RIME experiments on MED1 and MED14 subunits in HEK293 cells, 

a non-cancer cell line, which as we showed above, its proliferative rate was decreased upon 

ZNF207 knockdown. Five independent biological replicates of MED1 or MED14 qPLEX-

RIME samples were collected from HEK293 cells treated with either siRNA specific for 

ZNF207 or with siNT. We quantified 2,638 and 2,274 proteins for MED1 and MED14 qPLEX-

RIME respectively across knockdown and control samples at peptide FDR<1%. The analysis 

of the MED1 and MED14 qPLEX-RIME data, showed a significant loss of 403 and 98 proteins 

(adj. p-value<0.1) respectively in the siZNF207 pull-downs compared to siNT samples 

(Supplementary Data 5 & 6). Gene Ontology enrichment analysis of both datasets revealed 

the effect on Mediator complex, RNA polymerase II core complex and general transcription 

factors (Figure 45), in agreement with the findings from the qPLEX-RIME experiments in 

MCF7 cells. Overall, the data suggest a disruption of the Mediator complex and the implication 

of ZNF207 on its assembly. We also observed the loss of interaction between the bait proteins 

and members of the super elongation complex such as AFF4 (MED1 qPLEX-RIME/AFF4: 

adj. p-value<0.01, log2Fold-Change=-0.64, MED14 qPLEX-RIME/AFF4: adj. p-value<0.01, 

log2Fold-Change=-0.84), validating the effect on the elongation process upon the decrease on 

ZNF207 expression levels.  

Knockdown of ZNF207 in cancer and non-cancer cell line models resulted in a less efficient 

assembly of the Mediator subunits along with a decreased interaction between Mediator 
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complex and important factors that control transcription initiation and elongation. These results 

suggest an important role of ZNF207 in the Mediator complex assembly that affects the 

recruitment of factors that play a crucial role in the initiation and elongation steps of gene 

expression by facilitating PIC establishment and function. 

 

3.3.8 ZNF207 knockdown affects the assembly of the Pol II complex 

In order to follow up on the results from the qPLEX-RIME experiments for different Mediator 

subunits and to assess the effect on the general transcription machinery, given that the Mediator 

complex has been showed to be involved in most stages of Pol II activation (Allen and Taatjes, 

2015; El Khattabi et al., 2019), we carried out a qPLEX-RIME experiment on the 

phosphorylated form of Pol II at serine-5. As before, five independent biological replicates 

were collected from MCF7 cells transfected with an siRNA-pool targeting-ZNF207 or siNT. 

We quantified 1,725 proteins (FDR<1%) across the multiplexed set of all different conditions. 

Of these, 275 proteins were significantly regulated compared to siNT control samples (adj. p-

value<0.1) (Supplementary Data 7). Notably, in all qPLEX-RIME experiments (Pol II, 

MED1, MED12, MED4 and MED14) where cells were treated with siRNA targeting-ZNF207, 

the most significant loss was observed in the interaction between the different bait proteins and 

the ZNF207 (Average log2Fold-Change=-1.5, adj. p-value<0.01), validating the efficacy of the 

siRNA assay.  

Gene set enrichment analysis (GSEA) showed decreased interaction between Pol II and general 

transcription factors (GTFs), such as TFIIA and TFIIH that are required for basal transcription 

(Johnson et al., 2002). Additionally, enrichment analysis using the CORUM database of protein 

complexes (Giurgiu et al., 2019) showed a significant decrease in the interaction with TAF 

factors that belong to the TFIID complex such as TAF3, TAF1 and TAF6, that have a vital role 

in facilitating the assembly of the pre-initiation complex (PIC) at the core promoters (Johnson 

et al., 2002; Louder et al., 2016), in line with the findings of the MED1 qPLEX-RIME 

experiment. Furthermore, a reduced interaction between Pol II and the complex formed by 

TFIID and TFIIA (DA complex) and the DAB complex that contains TFIID, TFIIA and TFIIB 

transcription factors was observed.  

Additionally, a negative enrichment for members of the SEC complex was detected, including 

AFF4, ENL and P-TEFb factors (adj. p-value<0.1, mean log2Fold-Change =-0.4), further 

supporting the MED1 data and the effect of ZNF207 knockdown on both transcription and 

elongation processes. We also observed an enrichment for corepressors, a finding consistent 
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with the ERα interactome analysis and the RNA-seq and whole proteome analysis. The 

enrichment of known corepressor proteins, following ZNF207 knockdown, may suggest a 

potential mechanism of preventing gene transcription. Dot plot (Figure 45) summarising the 

findings from the Pol II qPLEX-RIME in MCF7 cells upon ZNF207 knockdown.  

 

 

 

Figure 45. Overview of qPLEX-RIME experiments after ZNF207 knockdown. 

a) Dot plot summarising the effect on initiation factors, elongation factors, Mediator subunits and Pol II core 

complex detected in MED1, MED12, MED4 and Pol II qPLEX-RIME experiments in MCF7 cells and MED1 and 

MED14 qPLEX-RIME experiments in HEK293 cells following ZNF207 knockdown. The colour of the dots 

illustrates log2FC calculated by comparing siZNF07 versus sictrl samples and the size of the dot highlights the 

significance of the findings in -log10 (p-value). 

 

 

To verify whether the changes identified in core factors of the transcription machinery, by the 

qPLEX-RIME analysis, are specific for the respective complexes or result from changes in 
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total protein levels, we compared the findings of all the qPLEX-RIME experiments with the 

whole proteome analysis. We only compared the qPLEX-RIME data from MCF7 cells as the 

full proteome was performed using the same cell model. The comparison confirmed that the 

changes in the Pol II machinery and Mediator complex were specific to changes in recruitment 

of the complexes, since total protein levels were stable (Figure 46). Notably, many of the gene 

expression changes that we observed were probably linked to the disassembly on these 

complexes upon decrease of the ZNF207 levels, as these factors have a vital role in the 

regulation of gene transcription. The results indicate an important role of ZNF207 in the 

regulation of gene transcription, as knockdown of this factor is globally affecting the assembly 

of the Mediator complex and the interaction with transcription/elongation factors and Pol II, 

that is required for the formation of the PIC and the transcription elongation.  

 

 

 

Figure 46. Comparison of qPLEX-RIME changes with full proteome. 

Bar plots illustrating log2FC for the most significantly depleted proteins detected in the different qPLEX-RIME 

experiments (Pol II, MED12, MED1, MED4) and their respective log2FC detected in the full proteome (FP) 

following ZNF207 knockdown in MCF7 cells.  

 

 

3.3.9 siZNF207 does not affect chromatin loops  

It has been suggested that the Mediator complex has an important role in gene transcription by 

being involved in the formation and stabilisation of DNA chromatin loops that connect 

promoters with distal elements (Kagey et al., 2010). To investigate whether the changes in the 

Mediator complex, following ZNF207 knockdown, affect the chromatin loops tethering 

promoters to enhancers, we performed a promoter capture Hi-C experiment (PCHi-C) targeting 
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21,000 promoters (Schoenfelder et al., 2018). Three biological replicates were collected for 

each condition (siZNF207 or siNT) using MCF7 cells. A total number of 30×106 cells per 

sample was fixed by adding formaldehyde at a final concentration of 2% and the chromatin 

was digested by the restriction enzyme HindIII (Mifsud et al., 2015; Schoenfelder et al., 2018). 

Although this process generates small DNA fragments, the basic three-dimensional 

architecture of chromatin is maintained by the DNA-protein crosslinks introduced during the 

fixation step. For the PCHi-C experiment, we conducted the 18-days protocol that was publicly 

available (Schoenfelder et al., 2018) and we monitored the quality of the libraries at several 

steps. 

At the early steps of the protocol, we carried out two quality controls to assess the PCHi-C 

library quality. Firstly, we evaluated the quality and quantity of the libraries by checking the 

size of the different libraries into an E-Gel (agarose Gel).  All samples ran in the gel as a narrow 

band over 10kb size (Figure 47a), indicating the good quality and integrity of the library. Next, 

we tested the ligation efficiency by performing a PCR digest assay using primer sequences 

(AHF64+AHF66, myc locus and HIST1) for quality control of human Hi-C libraries, that have 

been published previously (Schoenfelder et al., 2018). A successful ligation would result in the 

disappearance of the original HindIII restriction site and the formation of a new Nhel 

recognition site (Figure 47b). Indeed, we achieved a complete Nhel digestion of ligation 

products, highlighting the high-quality of the library (Figure 47b). After the successful 

assessment of all quality steps and the completion of the protocol, the libraries were sequenced 

on the Illumina NovaSeq (Zhou et al., 2019) to an average depth of ~1 billion reads per sample. 
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Figure 47. PCHi-C pre-sequencing quality controls. 

a) Monitoring the library integrity and ligation by running 200ng of each library on a 2% E-gel. Each DNA 

library (total six) run as a band over 10kb. b) Left, schematic of DNA sequence after Hi-C ligation following 

unsuccessful (top) or successful (bottom) dNTP Klenow fill-in of restriction junctions and subsequent ligation. 

The figure adapted from Schoenfelder et al., 2018. Right, representative example of HindIII, NheI and 

HindIII/NheI restriction digests of our Hi-C ligation products using the AHF64+AHF66 Dekker primer pair. The 

figure is representative of two Hi-C libraries from the two different conditions (siCtrl+siZNF207). An undigested 

library that contained only water was included as control. For both gels a DNA Ladder was used to monitor the 

DNA size. 

 

 

After sequencing, the quality of the Capture Hi-C data was assessed using HiCUP, a pipeline 

that was designed for mapping, filtering and processing Hi-C data (Wingett et al., 2015). The 

downstream analysis of the PCHi-C data was performed by the Bioinformatics core. Firstly, 

for improving the mapping efficiency, Hi-C reads that contain sequences that align to two 

separate regions for the genome, were truncated at the putative Hi-C junction ligation. The 

paired-end read data were mapped against the hg38 reference genome and filtered for 

experimental Hi-C artefacts, invalid di-tags and identical di-tags to avoid incorrect 

interpretations regarding the genomic structure. The valid pairs and unique di-tags in our 

sequences were more than 70% and 60% respectively across all different samples. Notably, the 

percentage of unique di-tags was lower compared to published Hi-C data (Wingett et al., 2015), 

which can be explained by the very deep sequencing, generating 7.0 to 10.0 million di-tags 

with both ends uniquely mapped to the human reference genome. Additionally, the capture 

efficiency was between 67-73% (Total-Captured/Di-tags-Processed*100), validating the high-

quality PCHi-C libraries.  

Next, the input of the HiCUP pipeline was imported into the CHiCAGO (Capture Hi-C 

Analysis of Genomic Organization) algorithm (Cairns et al., 2016) to filter for robust 

promoters-distal elements interactions based on the number of reads and distance between the 

two elements. Interactions with a CHiCAGO score ≥5 were considered as high-confidence 
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interactions and used for downstream statistical analysis. Specifically, we detected 289,202 

and 274,009 significant interactions for the siZNF207 and siCtrl samples respectively between 

promoters and promoter-interacting regions. Analysis of CHiCAGO other ends, which are 

regulatory regions that interact with the bait (promoter), showed the enrichment over expected 

values for active histone marks (H3K4me1, H3K4me3, H3K27ac) in both samples (siZNF207 

and siCtrl), in line with the assumption that DNA loops are formed between promoters and 

distal regulatory regions such as enhancers. Figure 48a summarise the chromatin features of 

promoter-interacting fragments detected using CHiCAGO for the ZNF207 knockdown 

samples.  

Specifically, more than 90% of the significant promoter-genome contacts were between 

promoters and distal elements (Figure 48b). To assess further these interactions, we integrated 

our PCHi-C data with published epigenome datasets. We examined different histone 

modifications (Active enhancers: Distal H3K4me1 and H3K27ac, Inactive enhancers: Distal 

H3K4me3 and no H3K27ac) and we found that ~ 10% of the significant interactions were 

between promoters and active enhancers and ~ 18% were between promoters and inactive 

enhancers. These percentages of enhancer-promoter contacts are in line with previously 

published data (Schoenfelder et al., 2015), supporting that other types of elements may have a 

role in promoter regulation. Approximately 5-8% of the interactions (23,291 for siZNF207 and 

14,067 for siCtrl samples) were between two promoters (Figure 48b), suggesting that 

promoters can act as regulatory elements for distal genes. Further data interpretation 

highlighted a correlation between high enrichment for active histone marks (H3K4me1, 

H3K4me3, H3K27ac) and high levels of promoter expression (Figure 48c). In contrast, low 

promoter expression was correlated with low levels of active histone marks and an enrichment 

of the repressive histone mark H3K27me3 (Figure 48c). These results indicate that promoters 

of highly expressed genes interact with distal regions that are enriched for active histone 

markers, whereas promoters of low expressed or silenced genes interact with regions enriched 

for repressive histone marks that are associated with heterochromatin formation. This pattern 

of the epigenetic modifications at distal interacting sites has been observed before 

(Schoenfelder et al., 2015), indicating the finding of functional and relevant loops in our 

dataset.  

Confirming the high quality of the libraries and the consistency in our data with previously 

published Hi-C data, we next performed a differential analysis of the PCHi-C data using the R 

package Chicdiff (Cairns et al., 2019). Notably, the statistical analysis revealed no significant 

difference in promoters-distal regulatory elements interactions between ZNF207-knockdown 
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and control samples (Figure 48d). Despite, the significant effect on the Mediator complex 

assembly, the analysis showed no global effect on the contact frequency of the long-range 

promoter interactions. These findings are consistent with recently published work arguing that 

Mediator and Pol II are not required to bridge regulatory DNA regions (El Khattabi et al., 

2019). The authors from El Khattabi et al, showed that the Mediator complex does not create 

a stable topological bridge but regulates promoter-enhancer contacts indirectly, via recruitment 

of transcription factors and co-activators (El Khattabi et al., 2019). In line with these findings 

a more recent study confirmed the minimal effect on genome architecture following the 

degradation of the MED14 subunit, which acts as a central Mediator scaffold (Jaeger et al., 

2020). Overall, our data support that ZNF207 knockdown affects the assembly of the Mediator 

complex, the recruitment of  transcriptional regulatory proteins, including Pol II, general 

initiation and transcription elongation factors and the regulation of the initiation and elongation 

stages of transcription, without disrupting any of the DNA chromatin loops.  

 

 

 

 

https://www.sciencedirect.com/topics/neuroscience/regulator-protein
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/transcription-elongation-factor
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Figure 48. Promoter capture Hi-C data. 

a) Chromatin features of promoter-interacting fragments detected using CHiCAGO. Chromatin features were 

obtained from the ENCODE project. b) Stack bar plot showing the distribution of different significant promoter-

genome interactions. c) Heat map showing the enrichment/depletion for histone modifications and the correlation 

with promoter expression levels (promoter expression levels have been divided into 5 classes). d) Scatter plot 

summarising the differential analysis results using the Chicdiff package. The figures have been provided by Kamal 

Kishore. 

 

 

3.3.10 Genomic characterisation of ZNF207 function  

To study the potential genomic interplay between ZNF207, general transcription factors, 

Mediator complex, ERα, FOXA1 and Pol II, we performed chromatin immunoprecipitation 

sequencing for ZNF207, MED1, Pol II, TAF3, ERα and FOXA1 in asynchronous MCF7 cells 

treated with siZNF207 or siNT, using five independent biological replicates. The efficiency of 

the siRNA assay was validated for all five replicates with western blot before the ChIP-seq 

experiment (Figure 49a). It has been shown that cohesin depletion affects the promoter-

promoter and promoter-enhancer pairs, supporting the role of cohesin to tether regulatory 

elements (El Khattabi et al., 2019). We therefore conducted ChIP-seq for SMC1A (a subunit 

of the cohesin complex) to investigate whether the chromatin binding of cohesin is affected or 
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not following ZNF207 knockdown and if the presence of cohesin is enough to stabilise the 

chromatin loops even if Mediator complex is affected. Matched inputs from both conditions 

were included and peaks were called using MACS2 (Zhang et al., 2008). Peaks occurring in at 

least two out of the five independent replicates were considered for downstream analysis. This 

resulted in the identification of 63,086, 42,422, 38,250, 65,059, 55,050 73,017 and 77,994 

binding sites for ZNF207, MED1, Pol II, TAF3, ERα, FOXA1 and SMC1A respectively. The 

analysis of the ChIP-seq data was performed by the CRUK Cambridge Institute Bioinformatics 

core and Igor Chernukhin. 

Firstly, we investigated the distribution of binding sites for ZNF207 and we observed that the 

majority of ZNF207 binding sites were detected in intergenic and other gene distal regions 

(Figure 49b). Interestingly, although only a small fraction (13%) of ZNF207 binding events 

were detected in promoters, the strongest binding density for ZNF207 binding sites was 

clustered around the transcription start sites (TSS), in line with previously published data (Fang 

et al., 2018) (Figure 49c). The binding sites for siZNF207 samples on TSS sites had lower 

binding density compared to the siCtrl samples, validating the siRNA efficiency (Figure 49c). 

To investigate further the binding intensity profile of ZNF207 in our cell model system, we 

subdivided all ZNF207 binding sites into promoter and non-promoter sites (peaks 1250 bp 

downstream and 250 bp upstream of the TSS were defined as promoters and peaks outside of 

this region but within 50,000 bp of the TSS were defined as enhancers). In the same analysis 

we included all the factors to study their binding intensity profile and compare it with the 

ZNF207 binding. We observed binding of ZNF207 to both promoters and enhancers with the 

strongest occupancy in promoters (Figure 49d). The profiles were similar for the other factors, 

with TAF3 and Pol II showing a very strong binding to promoters. It has been reported before 

that 67% of RNA Pol II sites (Carroll et al., 2006) and 87% of TFIID-binding sites (Kim et al., 

2005) map to promoter-proximal regions, validating our findings.   

Next, we compared the ChIP-seq binding events between ZNF207, Pol II, MED1 and TAF3, 

confirming a significant overlap, which indicates colocalisation of ZNF207 with these master 

regulators of transcription (Figure 50a). This finding is consistent with the strong association 

of these factors that was observed in the qPLEX-RIME and non-quantitative RIME 

experiments. Interestingly, on the TSS sites, we detected a very strong overlap between 

ZNF207, MED1, Pol II and TAF3 (Figure 50b), highlighting the strong association between 

these factors. We also observed a colocalisation between ZNF207, ERα and the pioneer factor 

FOXA1 with 44% of the ZNF207 binding sites (28,162 sites) overlapping with both ERα and 

FOXA1 (Figure 51a). This finding is in line with the interactome data, where ZNF207 was 
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observed to significantly associate with ERα and components of the ERα complex. The higher 

number of unique binding events for FOXA1 may be explained from the fact that we had a 

higher number of detected binding sites for the FOXA1 ChIP-seq compared to the other two 

factors. Motif analysis of ZNF207 binding sites outside of promoters confirmed the association 

between ZNF207, ERα and FOXA1, with forkhead and AP-1 motifs being the most significant 

sequences within ZNF207 peaks (Figure 51b). The motif analysis for ZNF207 binding sites in 

promoters showed an enrichment for zinc finger transcription factor motifs (SP1, KLF5 and 

EGR1) that all belong to the C2H2 zinc finger class as ZNF207 (Figure 51b). 

The association between binding of ZNF207 and the different factors was further validated 

with Pearson correlation coefficient analysis, which showed that the binding profiles of MED1, 

TAF3 and ZNF207 were highly correlated mainly in promoters (0.96 positive linear 

correlation) (Figure 51c). As such, ZNF207 appears to have two distinct binding patterns, with 

co-occupancy at promoters with MED1 and TAF3 and co-binding at distal enhancers with ERα 

and FOXA1.  

 

 

 

Figure 49. ChIP-seq data. 

a) Western blot showing the decrease of ZNF207 levels upon siRNA treatment in all five biological replicates that 

were used for the ChIP-seq analysis. b) Pie chart showing the distribution of ZNF207 binding sites. c) Density 

plot illustrating the enrichment of ZNF207 binding sites close to TSS sites for the siCtrl and siZNF207 samples. 

d) Boxplots illustrating the protein-DNA binding intensity profile of the different factors (ERα, FOXA1, MED1, 

SMC1A, TAF3, ZNF207, POLR2A) in promoters and enhancers separately. The figures b, c and d have been 

provided by Igor Chernukhin. 
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Figure 50. Overlap between ZNF207, MED1, TAF3 and Pol II binding sites. 

a) UpSet plot summarises the comparison of total binding sites between ZNF207, TAF3, Pol II (POLR2A) and 

MED1. b) Density plot illustrating the enrichment of ZNF207, TAF3, Pol II (POLR2A) and MED1 binding sites 

close to TSS sites in the control samples and the overlap between the different factors. Figures have been provided 

by the Bioinformatics core and Igor Chernukhin. 

 

 

 

Figure 51. Overlap of ZNF207, ERα and FOXA1 binding sites and de novo motif analysis. 

a) UpSet plot summarises the comparison of total binding sites between ZNF207, ERα and FOXA1. b) De novo 

motif analysis of ZNF207 peak regions reveals enrichment of Forkhead and Ap-1 motifs in non-promoter 

regulatory elements (other) and enrichment of zinc finger transcription factor motifs in promoter regions. c) 

Heatmap illustrating the correlation in the promoter binding sites of the different factors (ZNF207, MED1, TAF3, 

SMC1A, POLR2A, ERα, FOXA1). Figures have been provided by the Bioinformatics core and Dr Igor 

Chernukhin. 



 

117 
 

Analysis using Diffbind (Ross-Innes et al., 2012) revealed the loss of 4,094 and 11,090 peaks 

for MED1 and TAF3 respectively in the siZNF207 compared to siNT samples (adj. p-

value<0.05). The effect on MED1 and TAF3 chromatin binding is consistent with depletion of 

these factors in the Pol II and Mediator complex in the qPLEX-RIME data, following ZNF207 

knockdown. Additionally, 2,223 and 3,433 peaks for MED1 and TAF3 respectively had a 

positive enrichment (adj. p-value<0.05). The knockdown of ZNF207 had a modest effect on 

ERα and FOXA1 binding as 296 and 1091 binding sites were significantly lost (adj. p-

value<0.05) and 1,876 and 2,205 binding sites were detected to be significantly gained 

respectively (adj. p-value<0.05). This finding is in line with the very mild effect that was 

detected on ERα complex following ZNF207 knockdown. The Diffbind analysis also revealed 

a mild effect on Pol II binding; a loss of 881 sites and a gain of 2,834 sites were detected 

following ZNF207 knockdown (adj. p-value<0.05). This result is suggestive of a more specific 

effect on the Mediator and general transcription factors recruitment, following ZNF207 

knockdown, with Pol II possible still be in the promoters but not be able to initiate a proper 

assembly of the pre-initiation complex. The loss of MED1 binding following ZNF207 

knockdown was confirmed by ChIP-qPCR in two well-known ERα binding sites (GREB1, 

XBP1), that were found with strong binding of MED1 in our data. The ER3 control site was 

included and each reaction was conducted in three technical replicates (Figure 52).   

To better understand the effect of ZNF207 knockdown and its association with MED1 and 

TAF3 in regulating gene expression, we mapped all genes that were close to the significantly 

regulated binding sites (gained or lost) for all three factors and performed a functional 

enrichment analysis using all human genes as a background/control. Following this approach, 

we tested whether there is any overrepresentation of genes that are linked to particular 

biological pathways. We also divided the regulated binding sites into promoters and distal 

regions and mapped them to genes that were close to these regulatory regions to assess any 

specific effect of regulation at promoters or enhancers. For this analysis, peaks 1250 bp 

downstream and 250 bp upstream of the TSS were defined as promoters and peaks outside of 

this region but within 50,000 bp of the TSS were defined as enhancers. The functional 

enrichment of the MED1 binding sites revealed a significant correlation between lost sites and 

genes linked to cell cycle. Importantly, the highest odds ratio (quantifies the strength of the 

association) was observed on the lost sites within promoters (FDR<0.05; average odds ratio>4) 

(Figure 53), indicating an effect on the binding of MED1 on promoters close to cell cycle 

genes following ZNF207 knockdown. Additionally, the functional enrichment for genes near 

TAF3 regulated sites correlated well with the observations from the MED1 ChIP-seq, as an 

https://en.wikipedia.org/wiki/Association_(statistics)
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enrichment for lost TAF3 sites was detected near promoters of genes related to cell cycle 

(FDR<0.05; average odds ratio>5) (Figure 53). The enrichment analysis did not indicate any 

significant enrichment for the detected gained binding sites for any of these two factors, 

suggesting that the effect following ZNF207 knockdown is related to loss of chromatin binding 

of Mediator subunits and transcription-related components. As ZNF207 mainly binds strongly 

to promoters, as we showed above, depletion of ZNF207 is likely to have a substantial impact 

on promoter biology and activity. Notably, it is the first time that ZNF207 knockdown is 

associated with an effect on chromatin binding of factors that have a vital role in the initiation 

of transcription. The enrichment analysis for the detected gained/lost binding sites for any of 

the other factors (ERα, FOXA1, Pol II), did not reveal any significant enrichment, highlighting 

the specific effect on TAF3 and MED1.  

 

 

 

Figure 52. MED1 ChIP-qPCR. 

ChIP-qPCR analysis for MED1 in two well-known ERα binding sites (GREB1, XBP1) in MCF7 cells. Results are 

shown as enrichment over input (*Student’s t-test p-value<0.005). The experiment was performed in three 

replicates and the replicates have been averaged. The error bars represent the standard deviation (SD).  
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Figure 53. Functional enrichment analysis. 

Heatmap summarising the results from the functional enrichment analysis for the lost or gained sites identified 

from the DiffBind analysis for MED1 and TAF3 ChIP-seq (FDR<0.05). The sites have been defined as sites close 

to promoters or enhancers for the functional enrichment analysis. The results highlight the significant enrichment 

(FDR<0.05) for the lost sites of MED1 and TAF3 close to promoters of genes that linked to cell cycle. Colour 

scale shows odds ratio and different colours at the top of the heatmap define the bait protein, the regulatory 

element (promoter or enhancer) and the regulation of binding sites upon ZNF207 knockdown (gain or lost sites).  

 

 

Next, we integrated the results from the functional enrichment analysis for TAF3 and MED1 

with our RNA-seq differential gene expression data. This comparison revealed that the genes 

that were linked to cell cycle and were mapped close to MED1 and TAF3 promoter binding 

sites were downregulated in our RNA-seq, indicating a direct effect of the MED1 and TAF3 

promoter loss binding following ZNF207 knockdown on gene expression (Figure 54). It is 

known from the literature that recruitment of Mediator complex facilitates the recruitment and 

stabilisation of Pol II, TAF factors and other PIC components (Soutourina, 2018). Thus, we 

hypothesise that ZNF207 knockdown affects the recruitment of Mediator complex and 

especially MED1 that cause a decreased recruitment of components of the pre-initiation 

complex, resulting in downregulation of a set of genes that are associated with cell cycle.  
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Figure 54. Correlation between ChIP-seq and RNA-seq data. 

Box plots summarising the quantitative values (siZNF207 compared to siCtrl) of all genes detected in RNAseq 

and the cell cycle genes detected close to MED1 or TAF3 depleted promoter binding sites in the ChIP-seq.  

 

 

We also conducted SMC1A (a subunit of the cohesin complex) ChIP-seq and Diffbind analysis 

to assess the effect of ZNF207 knockdown in cohesin recruitment. Here, we observed 1,091 

sites to be significantly gained and 867 binding sites to be significantly lost (adj. p-value<0.05). 

The functional enrichment analysis did not show any significant enrichment of gained or lost 

sites of SMC1A close to any gene groups (odds ratio<1). This finding supports the intact 

promoter-enhancer contacts that we observed in our PCHi-C experiment. It is possible that the 

presence of cohesin complex is sufficient to stabilise these architectural bridges even in the 

absence of specific subunits of the Mediator complex, following ZNF207 knockdown.  

In parallel, we integrated our RNA-seq and PCHi-C data from MCF7 cells with the ChIP-seq 

data to define more accurately promoters and enhancers, as the PCHi-C data provide great 

detail on the interaction between promoters (bait) and enhancers (distal HindIII fragments). We 

focused on regulatory elements that are connected to genes that were found significantly down-

regulated in the RNA-seq data (adj. p-value<0.05, |log2Fold-Change|>0.5). The analysis of all 

lost, gained and not changing sites for MED1, ERα, FOXA1, TAF3, SMC1A and ZNF207, 

confirmed the significant enrichment for MED1 lost sites on enhancers and promoters of the 

top 200 repressed genes identified from the RNA-seq analysis (adj. p-value<0.05) (Figure 55). 

Notably the enrichment was significantly higher in the promoters (enrichment score>7, adj. p-

value<0.05) validating the data from the initial functional analysis. We also observed a 

significant enrichment for TAF3 (adj. p-value<0.05) and ZNF207 lost sites (adj. p-value<0.05) 
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on promoters of the top 200 repressed genes, validating the effect on TAF3 binding near to 

promoters of repressed genes following loss of ZNF207 binding. Although, there were fewer 

genes for the analysis, as we lack regulatory element contacts for all the regulated genes, we 

gained confidence for our findings by having the same observations for MED1 and TAF3 and 

validating the strong association between MED1, TAF3 and ZNF207 on using two different 

approaches for the functional analysis of the ChIP-seq data.  

 

 

 

Figure 55. Correlation between ChIP-seq, RNA-seq and PCHi-C. 

Enrichment analysis for all gained, lost and unchanged binding sites for ERα, FOXA1, MED1, SMC1A, TAF3 

and ZNF207 on promoters (right panel) or enhancers (left panel) of the significantly downregulated genes from 

the RNA-seq analysis. For the analysis the top 200 downregulated genes were selected that had loops detected in 

the PCHi-C analysis. The enrichment ratio is the ratio of the number of binding sites associated with top 200 

repressed genes to the number of binding sites associated with 200 constitutively expressed genes. The 200 

constitutive genes were selected by filtering for genes having mean expression levels in the same range as the top 

200 repressed genes and then selecting the 200 with fold changes closest to one.  The asterisks indicate Fisher’s 

test adj. p-value<0.05. The figure has been provided by the Bioinformatics core.  

 

 

To allow more accurate data interpretation, a spike-in control can be included in the ChIP-seq 

analysis for normalisation (Chen et al., 2015), an important point given recent findings that 

global changes in ChIP-seq data can be masked by lack of normalisation between samples. To 

confirm whether ZNF207 knockdown affects the binding of MED1 on genes related to cell 

cycle, we repeated the ChIP-seq experiment for ZNF207 and MED1 by adding Drosophila 

melanogaster chromatin in an amount proportional to the number of cells for subsequent 

normalisation of the data, prior to chromatin-antibody incubation. Notably both analyses were 
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highly correlated, giving similar enrichment ratios for MED1 and ZNF207 lost or gained sites. 

Figure 56 illustrates the comparison between the two datasets for the MED1 lost and gained 

sites. This observation increased the confidence in our previous findings and confirmed the 

absence of any inherent normalisation issues. As discussed above, the ZNF207 knockdown 

selectively affects the functionality of cell-cycle transcriptional networks via disrupting MED1 

recruitment and subsequent assembly of the Mediator complex. A similar selective role of 

Mediator subunits disruption has been recently described, where the authors observed a 

selective and pronounced disruption of cell-type specific transcriptional circuits following 

mediator degradation (Jaeger et al., 2020).  

The integration of the different genomic approaches provided a clearer picture of how ZNF207 

impacts chromatin binding of Mediator complex and components of the transcription 

machinery mainly in promoters, leading to changes in transcriptional networks that regulate 

cell cycle. The depletion of important transcriptional networks, following ZNF207 knockdown, 

may explain the essentially of ZNF207 across multiple cell types. To conclude, knockdown of 

ZNF207 affected Mediator complex assembly and MED1 recruitment to promoters of cell 

cycle genes resulting in inhibited recruitment of initiation factors such as TAF3 in the 

promoters of these genes, displaying a negative effect on their expression profile.  

 

 

 

Figure 56. Correlation between ChIP-seq experiments with or without spike-in control (Drosophila 

melanogaster chromatin). 

Scatter plots showing the linear correlation of odds ratio for the MED1 significantly lost (right panel-Pearson’s 

R=0.99) or gained binding sites (left panel-Pearson’s R=0.98) (adj. p-value<0.05) that were detected in both 

experiments. 
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Chapter 4 

 

4. Discussion 

Cellular functions and signalling pathways are regulated by molecular events that involve 

dynamic protein-protein networks, as well as protein abundance and post-translational 

modification changes. In depth and detailed study of the dynamics of these spatiotemporal 

changes can provide a significant insight into the physiological cellular processes and abnormal 

protein networks linked to diseases. Breast cancer is the most common form of cancer among 

women in the western world and 75% of cases is estrogen dependent. The association between 

estrogen signalling and breast cancer has been the main focus of our lab and has also been 

studied by other groups mainly by genomics and gene expression methods (Rueda et al., 2019; 

Sorlie et al., 2001; Sorlie et al., 2003), as proteomic characterisation remains less studied. 

However, changes at protein level cannot be predicted accurately by genomic profiling 

methods alone, as it has been shown that the correlation between gene expression and relative 

changes at the protein levels in cancer tissues is moderate (Mertins et al., 2016). Advances in 

mass spectrometry together with innovations in sample preparation, data software and 

quantitative approaches have permitted the development of multiple strategies to characterise 

whole proteomes and protein interactomes with high efficiency and accuracy, providing a 

better understanding of the events that occur at the proteomic level. Although, recent studies 

(Lawrence et al., 2015; Mertins et al., 2016; Tyanova et al., 2016a) have accomplished the 

proteomic profiling of breast cancer clinical samples, offering a better understanding of key 

players and driving mechanisms, the dynamic crosstalk between factors in protein complexes 

and the mapping of tumour cell protein networks in vivo has been less extensively studied. 

To address this, we developed a quantitative method, called qPLEX-RIME, which enables the 

study of endogenous protein interactomes with high sensitivity and statistical robustness, 

giving insight into the functional interplay between proteins. The qPLEX-RIME approach 

integrates the well-established RIME immunoprecipitation method with advanced high-

resolution quantitative multiplexed mass spectrometry analysis. It quantifies cross-linked 

protein interactomes with multiplex isobaric labelling and MS3 analysis, overcoming the effect 

of interfering ions and improving the dynamic range of quantification. The multiplexed 

analysis of our pipeline eliminates the need to compare multiple data obtained by individual 

LC-MS runs, thereby increasing the quantification coverage in very low abundant protein 

interactors, that are stochastically captured between independent replicate runs. Our 
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quantitative pipeline can be further empowered with the recent advances in the TMT 

quantification approach and the availability of reagents with higher multiplexing capacity, 

termed TMTpro, that enable the analysis of up to sixteen samples in one experiment. This can 

offer an increased number of technical or biological replicates within one experiment and better 

coverage of proteomes and interactomes, as the samples are not distributed across separate 

multiplexed sets, reducing the missing values. The increased power of our qPLEX-RIME can 

delineate the dynamics of chromatin associated protein complexes in different biological 

contexts and experimental settings, offering in-depth protein detection, reproducible 

quantification and increased sensitivity and sample throughput. Preliminary data obtained in 

our lab using the 16plex qPLEX-RIME method have demonstrated the additional gain of 

accuracy, statistical power and depth (data not shown here), minimising the sample preparation 

and mass spectrometry time. Additionally, the combination of the qPLEX-RIME pipeline with 

mass spectrometry acquisitions, designed to identify cross-linked peptides (XL-MS), can offer 

a powerful approach for the detailed understanding of the structure and dynamics of 

heterogeneous protein networks. The cross-linking analysis identifies proximal residues 

between subunits of protein complexes, uncovering spatial orientation and protein 

connectivity. XL-MS studies have been performed for the structural characterisation of various 

protein systems by purifying specific complexes (Yu and Huang, 2018). The combination of 

the qPLEX-RIME approach with XL-MS can provide a tool for in vivo characterisation of 

physical interactions, increasing the information that can be obtained from the study of protein 

interactomes. Preliminary data from our lab have shown the feasibility of this approach and 

further optimisations can improve our strategy and provide important information for protein 

complexes in different disease states, increasing the variety of studies that qPLEX-RIME 

pipeline can be applied.  

In the present thesis, we focused on ERα, the major driving transcription factor in luminal 

breast cancer, which can be targeted by different drugs such as tamoxifen, that has been used 

for the treatment of ER+ breast cancer (Ali and Coombes, 2002; Rangel and Huang, 2013). 

ERα functions as part of a large transcriptional complex involving multiple transcriptional 

factors that can modulate the ERα transcriptional activity. While several ERα interactors 

involved in ERα-mediated gene expression have been studied, our knowledge about their 

importance at the tissue level and the impact of drugs such as tamoxifen on their global 

association with ERα remains incomplete. An efficient pull-down of ERα interactors was 

achieved by in vivo double cross-linking using a combination of cross-linkers; the crosslinker 

DSG was added, followed by formaldehyde, that has been used routinely for the detection and 
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quantification of protein-DNA interactions and interactions between chromatin proteins that 

are in close proximity (Orlando, 2000). The application of double-crosslinking increased the 

efficiently of our qPLEX-RIME and ChIP-seq experiments, without increasing the background 

and the unspecific protein or DNA binding. The combination of the two crosslinkers has been 

successfully used in our lab to characterise the interactome and genome binding of several 

transcription factors (Nagarajan et al., 2020; Siersbaek et al., 2020).  

The quantitative data obtained from the ERα qPLEX-RIME experiments and rigorous 

statistical analysis enabled the identification of significantly enriched key ERα specific 

interactors and novel ERα-associated proteins compared to the negative controls. These can 

include transient, direct, indirect or weak interactions, as it is known that ERα associates with 

a number of different cofactors rapidly in a cyclic fashion (Metivier et al., 2003; Shang et al., 

2000). As such the final result of our crosslinking-based pipeline represents the sum of all these 

interactions and the different complexes that are formed under particular conditions in the cell. 

Among these, we validated the novel interactions between ERα and three proteins, namely 

CBX3, NIPBL and FOXK1 using PLA assays. The PLA protocol does not require modification 

or tagging of the proteins for which their physical interaction is investigated, permitting the 

study of endogenous interactions with high sensitivity. This approach has been employed 

before to detect interactions between ERα and signalling proteins (Poulard et al., 2012). CBX3 

protein belongs to HP1 protein family, that has been implicated in gene regulation, DNA 

replication and nuclear architecture (Eissenberg and Elgin, 2000); NIPBL is a core subunit of 

the highly conserved protein complex cohesin that has an important role in chromatin structure, 

gene expression and DNA repair (Hill et al., 2016). The transcription factor FOXK1 is a 

member of the forkhead family and has an vital role in tumourigenesis (Katoh and Katoh, 2004; 

Wu et al., 2016). These findings display that the increased sensitivity gained by qPLEX-RIME 

can reveal novel ERα interactors that can be validated by alternative methods. Furthermore, 

our qPLEX-RIME data on three additional factors; CREBBP, NCOA3 and Pol II highlighted 

the wide applicability of our pipeline and displayed a comprehensive characterisation of the 

interactome of known nuclear receptors co-activators as well as the interactome of the 

phosphorylated form of Pol II at serine 5, that has a fundamental role in the initiation of 

transcription (Phatnani and Greenleaf, 2006). 

The qPLEX-RIME experiment targeting ERα after OHT treatment at three different time 

points, demonstrated dynamic changes in ERα co-regulators, following drug treatment, 

recapitulating but also broadening the existing knowledge of OHT mechanism. At 2h treatment 

with OHT, we detected a loss of important transcriptional co-activators such as NCOA3 and 
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CBP, whereas at 6h an enrichment in the recruitment of two well-conserved chromatin 

remodelling complexes, namely the NuRD and the SWI/SNF complex was observed. It is the 

first time that the SWI/SNF complex has been described to be recruited upon tamoxifen 

treatment, a finding that highlights the important role of this complex and its various functions 

as coactivator or corepressor. We also observed an enrichment of the basal corepressor 

NCOR2, which assists in the recruitment of HDAC proteins (Underhill et al., 2000). At 24h 

treatment with OHT, we observed a restoration of the ERα complex, which may be linked to 

the half-life of OHT, as we treated our cell line once with the drug prior to double-crosslinking. 

The exceptions were NRIP1, GREB1 and NCOA3; notably, NCOA3 is amplified in breast 

cancer (Anzick et al., 1997) and its expression levels have been linked to the effectiveness of 

tamoxifen treatment (Osborne et al., 2003). Previous ChIP-seq analysis has enabled the 

discovery of a number of binding sites of NCOA3 that are associated with genes that have 

predictive value for breast cancer patient outcome (Zwart et al., 2011), supporting an important 

role of this co-regulator in tamoxifen response.  

Our time course data suggest a switch between activation and repression of transcription 

following OHT treatment. This transition engages a two-step process with the quick loss of co-

activators, followed by the recruitment of co-repressors and ATP-chromatin remodelling 

complexes that may act together or in a sequential manner to achieve transcriptional repression. 

In parallel we integrated our qPLEX-RIME data with whole protein and mRNA analysis, 

displaying an extensive view of the activity of a transcription-associated complex over time. 

This strategy provides a better understanding of the drug mechanism and the discovery of 

protein changes that are associated with the complex assembly or gene and protein expression. 

Additionally, changes in the recruitment of these factors on chromatin or on their expression 

levels may be linked to endocrine resistance, highlighting the importance of studying drug 

function and the mechanisms that result in drug resistance, which remain elusive. A proposed 

model of OHT mechanism is depicted in Figure 57. 

In our qPLEX-RIME pipeline, the ability to combine the labelled peptides derived from 

multiple samples increased the sensitivity of the method and enabled the in-depth in vivo 

characterisation of the ERα interactome in PDX and clinical tumours. Key ERα interactors 

have previously been detected from clinical material, however this required a targeted mass 

spectrometry-based approach and has not been done in an unbiased manner (Mohammed et al., 

2013). The application of qPLEX-RIME in primary tumour material or PDX models can permit 

the study of protein network regulation across different types of cancers, leading to the 

discovery of protein signatures and potential therapeutic markers in heterogenous and more 
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physiologically relevant systems, where starting material is limited. In addition to increased 

sensitivity, the application of isobaric labelling resolves the experimental difficulties with cell 

lines that are not compatible with stable-isotope labelled culture media and provides a tool for 

the quantitative analysis of clinical samples that are not amenable to in vivo isotopic labelling 

techniques. Notably, our isobaric-labelling data showed high correlation with previously 

published SILAC data (Mohammed et al., 2013), confirming the highly accuracy of the 

quantification obtained by the MultiNotch MS3 level mass spectrometry analysis.   

 

 

 

Figure 57. A proposed model of OHT mechanism. 

In untreated conditions (0h), both co-activators and co-repressors are interacting with ERα in the chromatin. The 

pioneer factor FOXA1 is on chromatin as well. After 2h treatment, a loss of co-activators such as NCOA3 and 

CBP takes place. At 6h, an enhanced recruitment of the NuRD and SWI/SNF complexes is observed coinciding 

with the enrichment of the NCOR2 corepressor. The proteins NCOA3 and NRIP1 remain at low levels in the 

interactome. At 24h, we observed a full restoration of the ERα complex with the exception of the NCOA3 and 

NRIP1 proteins, which were maintained at decreased amounts in the complex. After 24h treatment, a 

downregulation of ERα target genes at transcript and protein level is observed. In the cartoon, intense and faint 

colours indicate enrichment or loss respectively. 
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CRISPR and RNAi screens can allow the systematic identification of core and context-specific 

essential/fitness genes governing cell proliferation across all cell types. Integrating the qPLEX-

RIME datasets from various cell line models and clinical tumours with previously published 

CRISPR and RNAi data, we identified a novel ERα-associated factor, namely ZNF207, which 

is a member of the zinc finger family, the largest transcription family in human genome (Jen 

and Wang, 2016). Zinc finger proteins (ZNFs) are implicated in development, differentiation, 

metabolism, autophagy and more recently have been linked to cancer progression, highlighting 

the importance to elucidate the functional role of this protein family (Jen and Wang, 2016). 

Specifically, amplification and overexpression of ZNF306 have been reported in invasive 

colorectal cancers, multiple myeloma and prostate cancer (Yang et al., 2008) and ZNF388 has 

been identified as an oncogene (Jen et al., 2017). Other members such as ZNF191, ZNF668, 

ZNF348 have been implicated in angiogenesis, proliferation and metastasis of breast cancer 

(Jen and Wang, 2016). The ZNF703 gene has been mapped in the 8p12-p11 region, that is 

commonly amplified in breast cancer and has been associated with poor prognosis in luminal 

B tumours (Reynisdottir et al., 2013) and high levels of expression of ZNF217 mRNA is 

associated with poor prognosis and the development of metastasis in breast cancer (Vendrell 

et al., 2012). Recently, a ZNF factor termed ZNF143 has been described as a regulator of 

chromatin loops (Ye et al., 2020). These studies highlight the diverse roles of ZNF factors in 

various cancer types and stimuli as well as their involvement in chromatin organisation and 

gene expression, illustrating the complexity and the different layers of regulation. Importantly, 

these transcription factors not only contain zinc finger domains for DNA binding, but also 

functional domains that may regulate subcellular localisation and binding with different 

interacting partners, affecting gene regulation (Jen and Wang, 2016). Our qPLEX-RIME data 

displayed a wide variety of ZNF207 interacting proteins, including nuclear receptors, co-

activators, Pol II and Mediator subunits.  

ZNF207 was initially discovered as a kinetochore-binding protein, that promotes mitosis in 

HeLa cells and Glioblastoma multiforme stem cells (GSCs) (Jiang et al., 2014) and more 

recently as a transcription factor that controls self-renewal and pluripotency of human 

embryonic cells (Fang et al., 2018). Here, our findings suggest that ZNF207 is a pan-essential 

factor in different cellular contexts and functions as a key regulator of the transcription 

machinery. We hypothesise that ZNF207 is required for the recruitment of the Mediator 

complex and members of the pre-initiation complex in the promoters of cell-cycle related 

genes, highlighting the diverse role of zinc finger proteins and the importance of studying 

further this protein family. The association between members of the zinc finger family and the 
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Mediator complex has not been described before, revealing a potential mechanism controlling 

Mediator complex recruitment and function. Although, the Mediator complex has emerged as 

the most critical coactivator, having a role in transferring signals from DNA-binding 

transcription factors to Pol II, the mechanistic understanding of its functions in human cells 

remains incomplete. This is because of experimental challenges related to its large size, 

conformational flexibility and the generation of Mediator subcomplexes, that display various 

functionalities, highlighting the importance of understanding the processes prior or after the 

recruitment of Mediator and the initiation of gene transcription (Soutourina, 2018).  

Our functional characterisation of ZNF207 using proteomic techniques indicated that ZNF207 

may act as a transcription co-activator affecting the assembly of the Mediator complex, 

especially for the subcomplex containing the MED1 subunit. In addition to MED1, we 

investigated the effect on MED4 and MED12 subunits to test whether the effect is general for 

the Mediator complex assembly or specific for the MED1 subcomplex, which only exists in a 

subpopulation (less than 20% of the total) (Zhang et al., 2005). We observed the disruption on 

Mediator complex in all three different qPLEX-RIME, validating the general effect on the 

Mediator complex following ZNF207 knockdown. Interestingly the MED1 subcomplex is 

tightly associated with Pol II (Zhang et al., 2005), that may support the effect on the PIC 

complex following ZNF207 knockdown. Importantly, this MED1-containing holoenzyme is 

involved in both basal- and activator-dependent transcription (Zhang et al., 2005), which is in 

line with the effect on gene expression and especially to genes that are associated with cell 

cycle signalling. Zinc finger proteins can also act either as transcription activators or as 

repressors (Jen and Wang, 2016), that may explain the equal numbers of up- and downregulated 

genes detected in the RNA-seq analysis, following ZNF207 knockdown. Recruitment of the 

Mediator complex results in the subsequent recruitment of the transcription machinery 

components and initiation of RNA polymerase II-dependent transcription. We hypothesise that 

knockdown of ZNF207 affects the assembly of the Mediator complex and leads to impaired 

stabilisation of the PIC complex in promoters of genes linked to cell cycle. The Mediator 

complex and its construct with the components of the pre-imitation complex are highly 

conserved from yeast to humans (Soutourina, 2018). The fact that ZNF207 knockdown affects 

such essential components of the basal transcription, indicates a more generic transcriptional 

role of ZNF207, in line with its essentiality across different cell lines. The effect on the 

Mediator complex in MCF7 cells was confirmed in additional experiments on a non-cancer 

cell line, where qPLEX-RIME experiments against MED1 and MED14 subunits in HEK293 

cells revealed the disruption of the Mediator complex, evidenced by reduced assembly. 
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Specifically, the effect on MED14 interactome was intriguing as it is known that it is the central 

backbone of the complex that has a vital role in bridging all the main modules of the Mediator 

complex (Cevher et al., 2014), highlighting the importance of ZNF207 protein in the regulation 

of the complex assembly. 

Characterisation of the genome binding profile of various factors, following ZNF207 

knockdown, validated the findings from the gene expression and interactome analyses and 

uncovered the specific effect on binding of MED1 and TAF3 close to promoters of genes linked 

to cell cycle. The genome-wide binding sites of ZNF207 have been previously profiled in 

human embryonic stem cells (Fang et al., 2018), however to our knowledge, our data is the 

deepest and highest quality ChIP-seq experiment, for ZNF207, that has been performed in a 

breast cancer model. An experiment that can be considered is to investigate the DNA binding 

profile of this factor in various cell systems and assess its regulatory role in different cancers 

or different stages of development. Additionally, application of ChIP-seq experiments on other 

Mediator subunits will be important to assess the effect of ZNF207 on subunits from different 

domains of the Mediator complex. It appears that ZNF207 knockdown mainly affects the 

association of Mediator with core promoters, but not the association with enhancers. Here, we 

chose to study the genome binding profile of MED1, which is part of the middle module, 

however one could consider to study the effect on subunits that belong to the tail module, which 

mainly associates with enhancers (Petrenko et al., 2016). Notably, we tested several antibodies 

targeting different Mediator subunits for ChIP-seq experiments, however most antibodies did 

not provide good binding profile coverage, except the one for the MED1 subunit. For future 

experiments, the development of customised antibodies for additional Mediator subunits or 

chromatin fractionation analysis (Raab et al., 2019), following ZNF207 knockdown, could 

provide a more comprehensive study of the effect of ZNF207 loss on the chromatin binding 

patterns of the Mediator complex. 

To our knowledge, this is the first time that a member of the zinc finger family is associated 

with the Mediator complex, the disassembly of the pre-initiation complex and the inhibition of 

the expression of cell cycle related genes. Overall, our findings support that knockdown of 

ZNF207 has an effect on the classic function of Mediator complex and the transmission of 

signals between transcription factors and pre-initiation complex affecting mainly the 

recruitment of general transcription factors. The Mediator complex is also involved in many 

other aspects of transcription, including elongation, termination, RNA processing, as well as 

its epigenetic regulation. In the qPLEX-RIME experiments for Mediator subunits and Pol II, 

we observed an effect on the recruitment of elongation factors and its association with Mediator 
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complex and Pol ll, following ZNF207 knockdown. It would be interesting to further 

investigate this effect and discover if ZNF207 regulates other mechanisms than those, where 

the Mediator complex is involved. Another perspective would be to study the effect of ZNF207 

knockdown on Pol II pausing. In the human genome, Pol II pauses at promoter-proximal sites 

for several minutes, before starting a productive elongation, which serves as a quality-control 

checkpoint (Luo et al., 2012). Recently, a compensatory feedback loop has been described with 

Pol II pausing being sufficient to maintain the gene transcription, compensating for defects in 

Pol II initiation, following MED14 degradation (Jaeger et al., 2020). Based on these findings, 

the study of the Pol II pause state and whether is affected by ZNF207 knockdown can be 

important to illuminate further the function of ZNF207. Furthermore, the establishment of an 

XL-MS approach can provide structural resolution to these different complexes and delineate 

how ZNF207 interacts with the various components. It can provide important answers about 

the physical interactions between the different molecules and potentially identify other factors 

that may mediate these different interactions. 

The observation of an upregulation of corepressors in the RNA-seq analysis may indicate a 

mechanism via which ZNF207 affects negatively the gene expression. It is possible that the 

disassembly of the Mediator complex affects the expression of these corepressors, as the 

Mediator complex has been linked with activation and repression of transcription (Balciunas 

et al., 1999). On the other hand, an interplay between the different corepressors may occur to 

enhance the effect of ZNF207 knockdown. BAZ2A is the largest subunit of the nucleolar 

remodelling complex NoRC, that is known to establish epigenetic silencing and transcriptional 

repression through association with DNA methyltransferases and histone modifier complexes. 

Is has also been shown that BAZ2A regulates numerous protein-coding genes and directly 

interacts with EZH2, the catalytic subunit of the Polycomb repressive complex 2 (PRC2) to 

maintain epigenetic silencing at genes repressed in metastasis (Gu et al., 2015). CBX8 is a 

transcriptional repressor, component of the Polycomb repressive complex 1 (PRC1), that has 

been described to have a critical role in the pathogenesis of cancer (Tang et al., 2019), whereas 

MTG corepressors can interact with other corepressor proteins such as Swi-independent 3A 

(SIN3A), NCOR1 and silencing mediator for retinoid and thyroid receptors (SMRT) to recruit 

histone deacetylases (HDACs), leading to gene repression by lysine deacetylation of histones 

(Kumar et al., 2015). All these corepressors that have been identified in our datasets play an 

important role in gene expression and it will be interesting to study further how they associate 

with ZNF207 and whether they affect the assembly of the Mediator complex and the expression 

of genes linked to cell cycle. 
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The combination of global proteome and phosphoproteome, complementing the study of 

endogenous interactions in cell lines and tissues in an unbiased manner, can lead to the 

discovery of novel protein function and uncover the links between functional alterations and 

phenotypes. Our phosphoproteome study revealed that knockdown of ZNF207 does not affect 

the phosphorylation status of members of the transcription machinery or proteins linked to cell 

cycle, at least for the phosphosites covered in this study. It has been reported that 

phosphorylation on serine or threonine residues of ZNFs regulate DNA binding abilities and 

recruitment of interactors, whereas acetylation facilitates protein interactions (Jen and Wang, 

2016). To this end, further study of phosphorylation or other post-translational modifications 

on ZNF207 and its interactors may reveal additional information of how the interaction 

between ZNF207 and the Mediator complex is regulated, with implications in gene activation 

or repression. This will be of high importance as the Mediator and components of the pre-

initiation complex are regulated by post-translational modifications especially 

phosphorylation. Two main phosphosites in Pol II, serine 5 and serine 2, have crucial roles in 

initiation of transcription and the release of Pol II into a productive transcription elongation 

(Soutourina, 2018).  

ZNF207 mRNA is the target of the splicing factor SFRS11 and during somatic reprogramming, 

ZNF207 changes from isoform B to A and C (Fang et al., 2018). It has been reported that the 

canonical protein is the dominant isoform in the embryonic stem cells and represent the 

functional form that interacts with different co-factors. This alternative isoform switches the 

function of ZNF207, indicating a distinct role for each isoform during development (Fang et 

al., 2018). Thus, we investigated whether there is a dominant ZNF207 isoform in MCF7 cells, 

that is linked to the changes in the gene expression and the effect on Mediator recruitment. Our 

analysis showed the existence of the canonical isoform and a significant number of reads for 

the exon 6 and 9 skipping, indicating the presence of all three isoforms. Further functional 

analysis may provide additional evidence for a dominant role of a specific isoform in our breast 

cancer system and whether there is a mechanism of switching isoforms that may play distinct 

roles in various cell types and systems. 

To study further the functional role of ZNF207, we performed Promoter Capture Hi-C to 

specifically enrich and capture interactions involving promoters and distal elements across the 

whole genome. We were interested to study whether ZNF207 has any role on chromatin loops 

formation, as we observed a significant effect on Mediator complex, that has been previously 

reported to regulate chromatin loops (Kagey et al., 2010). Additionally, it has been reported 

that other members of the zinc finger family can regulate DNA loops (Wen et al., 2018). 
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Analysis of the statistically significant interactions detected by the CHiCAGO pipeline 

revealed that interactions between promoters and annotated enhancers represent only a small 

fraction (~30%) of the total promoter-distal interactions, supporting that other regions that do 

not harbour classical enhancer markers can have regulatory function. To this end, studies have 

identified regulatory elements that control gene expression, but are devoid of enhancer marks 

(Mifsud et al., 2015). This is an interesting observation that can be studied further to gain more 

knowledge about the interactions between regulatory elements in different systems and 

understand better the transcriptional regulation of genes. Regarding the role of ZNF207 in 

regulating chromatin looping, we did not detect any significant change in the chromatin loops, 

following ZNF207 knockdown. Our data indicate, that the negative effect on the Mediator 

complex does not translate into changes in the formation and stabilisation of chromatin loops, 

a finding that was quite surprising. However, our observation is in line with a recent published 

study (El Khattabi et al., 2019) and suggests that the Mediator complex is not required for the 

DNA loop formation between promoters and enhancers as no significant effect was observed 

on promoter-enhancer contacts, following ZNF207 knockdown. Despite the effect on Mediator 

chromatin binding and Mediator complex assembly, the chromatin loops remain unaffected. 

For this experiment, each condition was represented by three biological replicates that were 

sequenced and aligned, which provides increased statistical power and confidence for our 

findings compared to previously published three-dimensional studies (El Khattabi et al., 2019; 

Schoenfelder et al., 2015), where no more than two biological replicates were included. These 

findings, taken together, are inconsistent with initial models that proposed that Mediator 

complex along with transcription factors, coactivators and Pol II creates an architectural bridge 

between promoters and distal elements (Kagey et al., 2010). This apparent discrepancy with 

the initial studies may be explained by experimental challenges or the study of particular 

Mediator subunits that may not be expected to participate in the looping formation. In our data, 

the observation of no effect in promoter-enhancer contacts may be explained and supported by 

the fact the cohesin complex, which is the primary factor in facilitating long-range interactions 

(El Khattabi et al., 2019), remains unaffected in the genomic regions close to genes linked to 

cell cycle following ZNF207 knockdown. It is possible that cohesin is the main factor for 

establishing and stabilising the chromatin loops and the Mediator complex or the specific 

subunits that have been studied in the present study may not be involved on this mechanism. 

Overall, studying the three-dimensional chromatin interactions can be critical and provide 

important information for different biological systems. It has been shown that three-

dimensional chromatin landscape remodelling is associated with endocrine resistance in ERα 
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positive breast cancer (Achinger-Kawecka et al., 2020) and the establishment of the method in 

our lab can facilitate the study of these underlying mechanisms and lead to the detection of 

changes that can be targeted for therapeutic purposes. The development and establishment of 

chromosome conformation capture studies can provide genome-wide evidence and establish a 

better understanding of the interactions between regulatory elements.   

Our conclusions resulted from the integration of different high-throughput approaches 

including interactome characterisation, genome binding profiling and three-dimensional 

structure, highlighting the importance of following different strategies to unravel the functional 

role of transcription factors. Two different approaches were also applied for the analysis of the 

ChIP-seq data, increasing the accuracy of our findings. Even if the two different experimental 

strategies (spike-in or without spike-in control) did not show significant differences that could 

affect the outcome of the analysis, the spike-in strategy will be applied to ensure an accurate 

comparison between experimental conditions for future experiments. Collectively, the results 

from the different functional approaches lead us to the model proposed for ZNF207 function 

in Figure 58.  

The findings from the various functional assays attribute an important and novel role for a 

factor, that belongs to zinc finger family. Future work is needed to further investigate the 

consequences of ZNF207 loss on the Mediator assembly and PIC formation. One of the 

perspectives is to investigate, whether ZNF207 knockdown directly affects the Mediator 

assembly or other factors may be implicated in the Mediator recruitment and initiation of 

transcription. It seems that ZNF207 knockdown mainly influences gene promoters and the 

assembly of the mediator, which as our data suggest, is important for recruitment of the pre-

initiation complex and RNA pol II. It will be important to consider performing an experiment, 

where we remove Mediator function by knocking down the central MED14 subunit or other 

essential subunits and assess whether it has the same effect on recruitment of TAFs and other 

initiation and elongation factors as ZNF207 knockdown. This would show that removing 

ZNF207 has the same effect as removing Mediator activity, validating the vital role of this 

transcription factor. It would also confirm that the effect we see on the initiation and elongation 

factors, as well as in the Pol II core complex, is likely linked to the effect on the Mediator. It 

would also be important to understand why this factor has various roles in different biological 

systems and to consider that the expression of other factors may result in this 

multifunctionality. Additional ChIP-seq or ChIP-qPCR experiments on various Mediator 

subunits can be important for the in-depth study of the effect on the Mediator complex and to 

test whether ZNF207 has a specific role on the assembly of a particular domain. One more 



 

135 
 

experiment that can be considered, is the establishment of stable cells models overexpressing 

ZNF207, followed by interactome and genome profiling studies to test the effect on the 

recruitment of the Mediator complex or the components of the PIC complex. It will be 

interesting to see whether the overexpression affects other important pathways that may be 

associated or not with the Mediator assembly and the expression of genes linked to cell cycle. 

It may be of interest to overexpress different isoforms of ZNF207 to better understand their 

various roles in the different biological systems. We can also consider overexpressing ZNF207 

in cellular models that express ZNF207 in much lower levels compared to the cell models that 

we used in the present study. A recent proteomics study by Gygi’s lab has provided 

quantification profiling of the proteome of 375 cell lines from diverse lineages (Nusinow et al., 

2020). This large-scale profiling could help identify cell lines that have the lowest protein levels 

of ZNF207 transcription factor to be used as cellular models for the perspective experiments 

proposed above. 

To conclude, our qPLEX-RIME method can be used to monitor the dynamic changes of the 

composition of protein complexes and importantly can be applied to clinical samples to study 

interactome regulation in tumours with variable genomic backgrounds or numerous other 

biological and clinical questions. It provides a robust tool for the quantitative analysis of 

complexes that can be applied to generate comprehensive endogenous protein-protein 

interaction maps. The application of qPLEX-RIME led to the identification of the ZNF207 

transcription factor as an important player in the assembly of the Mediator complex and 

subsequently in gene expression regulation. Future work is warranted to assess the role of this 

factor in different biological systems. Given the ubiquitous expression of ZNF207 and its 

essential function, further investigation of its role and its possible association with other co-

factors or members of the zinc finger protein family to control important cellular signalling 

processes is particularly promising. We suggest ZNF207 as a transcription factor with a vital 

role in the initiation of transcription and particular in the recruitment of the Mediator complex 

and components of the PIC complex. 
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Figure 58. A proposed model of ZNF207 functional role. 

ZNF207 binds strongly to promoters and interacts with the Mediator complex and components of the pre-initiation 

complex, as well as with the ERα complex. Following ZNF207 knockdown, we observed changes in the assembly 

of the Mediator complex and decreases in MED1 recruitment to promoters of cell cycle genes, resulting in 

inhibited recruitment of initiation factors such as TAF3 in the promoters of these genes, displaying a negative 

effect on their expression profile. No effect was observed on cohesin, ERα complex and the formation of enhancer-

promoters chromatin loops, following ZNF207 knockdown. In the cartoon, faint colours indicate loss following 

ZNF207 knockdown.  
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4.1 Supplementary Data 

 

Supplementary Data 1: Regulated proteins identified in ERα-qPLEX-RIME following 

ZNF207 knockdown in MCF7 cells.              

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gene Symbol log2FC adj.P.Val

ZYX -0.44 0.011

SPECC1 -0.44 0.018

DHRS4 -0.44 0.069

TTK -0.45 0.072

SEC24B -0.46 0.094

ECT2 -0.47 0.094

QKI -0.48 0.011

FYCO1 -0.48 0.074

USO1 -0.49 0.063

MAEA -0.52 0.067

TOP2A -0.52 0.091

MPHOSPH8 -0.54 0.0053

CIZ1 -0.57 0.0065

KCTD20 -0.58 0.00063

RUNX2 -0.58 0.066

MOB4 -0.6 0.09

TFAP4 -0.65 0.00063

SQSTM1 -0.65 0.0031

CCND1 -0.72 0.024

BTBD10 -0.92 5.50E-05

BUB3 -0.97 6.00E-07

TDG -1.06 0.00018

ZNF207 -1.72 4.10E-06

Gene Symbol log2FC adj.P.Val

SLTM -0.24 0.063

SRRT -0.24 0.063

RBM17 -0.24 0.063

EIF3E -0.25 0.048

MAGED1 -0.25 0.063

HSPH1 -0.25 0.074

SF3B2 -0.26 0.061

DDX46 -0.26 0.063

SRSF2 -0.27 0.061

APC -0.27 0.087

SF3B1 -0.28 0.036

UHRF1 -0.28 0.044

JUNB -0.28 0.061

PIK3C2A -0.29 0.027

ELAVL1 -0.29 0.055

FBRSL1 -0.29 0.069

PNN -0.3 0.029

RPL36A -0.3 0.074

CFAP20 -0.3 0.078

PDLIM7 -0.3 0.094

VEZF1 -0.31 0.082

CDK4 -0.32 0.027

GBE1 -0.32 0.089

NMD3 -0.33 0.04

CDK11B -0.33 0.074

TET2 -0.33 0.081

CTCF -0.34 0.072

SDCCAG3 -0.34 0.072

RIF1 -0.34 0.089

TRIP6 -0.35 0.0057

ZC3H4 -0.35 0.01

SRSF11 -0.35 0.014

CDK5RAP2 -0.35 0.066

SEC16A -0.35 0.082

CBFB -0.36 0.042

PAWR -0.36 0.048

KRT80 -0.37 0.038

TAPT1 -0.37 0.063

YBX3 -0.38 0.0057

SEC24A -0.39 0.077

PDXDC1 -0.39 0.088

PPP1R12A -0.4 0.01

SRRM2 -0.41 0.0031

H3F3A -0.42 0.011

HNRNPUL1 -0.42 0.027

L3MBTL2 -0.42 0.061

UPF2 -0.42 0.072

DNAJC8 -0.43 0.0018

TJP1 -0.43 0.0018

FAM208A -0.43 0.0021

Gene Symbol log2FC adj.P.Val

CBX8 1.28 0.011

FAM199X 0.79 0.014

CBFA2T3 0.76 0.011

LMX1B 0.71 0.003

PFN2 0.58 0.0032

ARID3A 0.55 0.0021

LSM8 0.53 0.048

OTX1 0.52 0.038

NUCKS1 0.5 0.0057

LDB1 0.47 0.074

H1F0 0.44 0.03

ERF 0.43 0.074

RCOR3 0.42 0.082

AKAP8 0.39 0.061

DDX47 0.38 0.027

RXRB 0.37 0.035

ARHGDIA 0.37 0.072

RBM4B 0.37 0.086

RREB1 0.36 0.063

GTF2I 0.35 0.0031

RXRA 0.35 0.069

USP15 0.34 0.066

EWSR1 0.34 0.069

RARA 0.34 0.096

EP300 0.33 0.085

CANX 0.32 0.027

BAZ2A 0.31 0.033

CRIP2 0.3 0.063

TARS 0.3 0.091

NFATC2IP 0.29 0.08

NR2F6 0.28 0.082

RERE 0.28 0.094

PRDX6 0.27 0.04

HMCES 0.27 0.063

NACC1 0.26 0.074

DCP1A 0.26 0.077

CBX5 0.25 0.063

SRP14 0.23 0.09

CLK3 0.22 0.061

KMT2D 0.22 0.072

SMU1 0.21 0.066

WRNIP1 0.19 0.082

SF1 -0.21 0.087

RSRC1 -0.21 0.09

FAU -0.22 0.063

PPHLN1 -0.23 0.062

TRIM25 -0.23 0.067

CHERP -0.23 0.082

FAM120A -0.24 0.027
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Supplementary Data 2: Regulated proteins identified in MED1-qPLEX-RIME following 

ZNF207 knockdown in MCF7 cells. 

   

GeneSymbol log2FC adj.P.Val

SRP14 0.33 0.037

UBN2 0.4 0.038

POLDIP3 0.29 0.04

TRIM33 -0.27 0.041

NUDCD1 -0.33 0.041

ANP32E -0.4 0.041

TBL1XR1 -0.27 0.041

UBXN7 -0.31 0.042

PSIP1 -0.39 0.042

RBM12B 0.42 0.043

CLCN5 0.4 0.044

PTMA -0.38 0.044

DCAF7 -0.31 0.047

CCND1 -0.55 0.05

CREBBP -0.44 0.05

NPAT -0.34 0.051

QKI -0.41 0.052

HCFC1 -0.22 0.052

HADHB 0.5 0.052

HSPD1 0.43 0.054

ZC3H4 -0.36 0.056

MED6 -0.65 0.083

RBM6 0.73 0.06

RREB1 0.3 0.06

MED22 -0.63 0.076

UHRF1 -0.45 0.061

KRR1 0.47 0.061

RIF1 -0.43 0.061

DDX27 0.41 0.062

CRIP2 0.26 0.062

ANKRD11 0.82 0.064

SSBP1 0.38 0.065

SPINT2 0.37 0.067

SUGP2 0.32 0.067

ELAVL1 -0.25 0.067

EHD1 0.55 0.067

USP10 -0.38 0.067

KRT9 -0.85 0.068

MFAP1 0.27 0.068

CCT7 -0.3 0.068

OGT -0.33 0.068

MED4 -0.62 0.068

HK1 0.26 0.068

SNRPD1 0.29 0.068

MCM7 -0.32 0.068

CDK19 -0.66 0.068

MLH1 -0.63 0.068

ADSS -0.55 0.068

EMD 0.22 0.071

VEZF1 -0.46 0.073

RBM23 0.32 0.073

LSM2 0.3 0.074

CIT -0.59 0.074

MED14 -0.6 0.078

MLLT1 -0.39 0.074

JADE3 -0.37 0.074

KRT17 -0.3 0.074

HMGB1 -0.26 0.074

TRPS1 -0.35 0.074

HIRA 0.23 0.074

GeneSymbol log2FC adj.P.Val

CLMP 0.37 0.074

MED13 -0.56 0.074

HADHA 0.63 0.076

BCLAF1 0.36 0.076

AKAP8 0.25 0.077

SS18 -0.32 0.078

EWSR1 0.23 0.078

ARL6IP5 0.4 0.08

EP300 -0.34 0.08

FSBP -0.67 0.081

CCNT1 -0.25 0.081

NOP56 0.46 0.081

DLD 0.45 0.081

BICRA -0.52 0.081

ARF5 0.26 0.081

MCM3 -0.31 0.081

MORF4L1 -0.3 0.081

PKP3 0.33 0.083

FXR1 0.47 0.084

GBE1 -0.5 0.092

LUC7L3 0.22 0.092

UBAP2L 0.24 0.092

NCOA5 0.34 0.092

TKFC 0.46 0.092

ZNF638 0.39 0.092

RPL36A -0.28 0.092

MGMT 0.26 0.092

PATZ1 -0.34 0.092

EMG1 0.32 0.092

MED25 -0.5 0.06

MAGI1 0.51 0.094

DNAJA2 0.23 0.094

H1F0 0.45 0.096

CHMP5 0.35 0.096

TOR1A 0.41 0.098

MED27 -0.45 0.093

MED16 -0.43 0.074

MED20 -0.42 0.028

TMED10 0.35 0.02

GeneSymbol log2FC adj.P.Val

BUB3 -0.75 2.90E-05

TDG -0.88 0.00029

NSD3 -0.6 0.0019

TET2 -0.57 0.002

MLLT3 -0.89 0.0028

AFF4 -0.72 0.0034

LUC7L 0.44 0.0034

TRIM27 -0.42 0.0034

USP11 -0.64 0.0034

L3MBTL2 -0.43 0.0034

RCOR1 -0.42 0.0034

DNAJC8 -0.53 0.0055

LUC7L2 0.36 0.0066

NFIC -0.59 0.0066

YAP1 -0.88 0.0066

HMG20A -0.42 0.0074

PFN2 0.59 0.0081

DDR1 0.48 0.0083

VANGL1 -0.44 0.0083

SMC1A -0.37 0.0083

SUMO3 -0.44 0.0083

IRF2BP2 -0.68 0.0091

STAG2 -0.7 0.0091

GFPT1 -0.5 0.012

SMC3 -0.31 0.015

CLK3 0.36 0.016

SQSTM1 -0.58 0.019

TLK2 0.31 0.02

EDC4 0.32 0.02

NMD3 -0.4 0.02

MED12L -0.85 0.06

MED29 -0.69 0.02

IDH2 0.38 0.02

HNRNPUL1 -0.43 0.02

JUNB -0.47 0.023

SMARCA5 -0.41 0.023

SRSF5 0.36 0.024

CKS1B -0.59 0.024

CBX3 -0.31 0.024

AGO2 0.53 0.024

GRHL2 -0.27 0.025

KDM1A -0.27 0.025

PLK1 -0.56 0.025

FAM199X 0.33 0.025

FUBP3 0.34 0.025

RCOR3 0.5 0.028

TJP1 -0.37 0.028

MED28 -0.67 0.033

NCOA3 -0.37 0.028

SERPINB12 -0.47 0.028

DDX47 0.29 0.028

EIF4E2 0.45 0.031

PIAS1 -0.31 0.031

DIS3 -0.37 0.031

MED17 -0.66 0.081

SLC5A2 -0.62 0.035

ALDH18A1 -0.34 0.035

TONSL -0.48 0.037

NUP50 -0.45 0.037
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Supplementary Data 3: Regulated proteins identified in MED12-qPLEX-RIME following 

ZNF207 knockdown in MCF7 cells. 

   

GeneSymbol log2FC adj.P.Val

TRIP6 -0.33 0.036

MCM3 -0.33 0.037

TJP1 -0.33 0.062

MED24 -0.33 0.085

SF3B5 -0.31 0.064

DICER1 -0.31 0.083

MED1 -0.3 0.055

MED15 -0.3 0.062

CSE1L -0.3 0.096

NUP160 -0.3 0.096

CSDE1 -0.29 0.039

FAM120A -0.29 0.047

SRRM2 -0.29 0.056

MED27 -0.29 0.063

KPNA2 -0.28 0.036

NCBP1 -0.28 0.069

MED25 -0.28 0.096

SF3B1 -0.28 0.099

MCM5 -0.25 0.085

G3BP1 -0.24 0.065

PRKDC -0.24 0.096

MED14 -0.24 0.097

OGT -0.23 0.082

SMC1A -0.22 0.062

SMC3 -0.21 0.094

PRKCD 0.2 0.092

NACC1 0.21 0.094

DHX38 0.22 0.095

TRIR 0.25 0.085

RNGTT 0.26 0.062

RCC1 0.26 0.07

RBM25 0.26 0.085

EIF4H 0.27 0.087

H1F0 0.28 0.062

TIAL1 0.28 0.073

ARMT1 0.28 0.075

MMTAG2 0.28 0.096

TALDO1 0.29 0.038

HMGB2 0.29 0.058

HNRNPU 0.29 0.064

SUGP2 0.29 0.064

GTF2I 0.29 0.073

HMCES 0.3 0.03

SSB 0.3 0.047

HMGN2 0.3 0.058

REPIN1 0.3 0.068

TRA2B 0.3 0.094

APEX1 0.31 0.037

PCBP1 0.31 0.058

STRBP 0.31 0.061

PDCD6 0.31 0.062

PCBP2 0.31 0.062

TARDBP 0.31 0.062

C11orf98 0.31 0.062

EZR 0.31 0.083

RBM6 0.31 0.089

RBMX 0.31 0.097

HMGN1 0.32 0.03

MYEF2 0.32 0.051

KHSRP 0.32 0.064

PYGO2 0.32 0.069

DHX9 0.32 0.071

ZRANB2 0.33 0.037

DBR1 0.33 0.039

FUBP1 0.33 0.062

RBM45 0.33 0.078

RBMXL1 0.33 0.096

HNRNPL 0.33 0.096

HDGF 0.34 0.022

THUMPD1 0.34 0.033

VIM 0.34 0.058

GeneSymbol log2FC adj.P.Val

DSTN 0.34 0.062

LUC7L2 0.35 0.027

SRSF5 0.35 0.041

CELF1 0.35 0.044

UBE2M 0.35 0.049

ANXA7 0.35 0.056

C7orf50 0.35 0.061

PRKRIP1 0.35 0.062

NONO 0.35 0.071

MPG 0.35 0.073

NFIB 0.35 0.075

GIGYF2 0.36 0.041

ALDH16A1 0.36 0.056

HNRNPLL 0.37 0.03

HNRNPF 0.37 0.059

HNRNPA2B1 0.37 0.062

NOP16 0.37 0.066

ATP6V0A1 0.38 0.018

PABPN1 0.38 0.03

SH3BP5 0.38 0.038

SFPQ 0.38 0.062

EMG1 0.38 0.062

RAVER1 0.39 0.026

HMGA1 0.39 0.031

HNRNPUL2 0.39 0.035

HNRNPDL 0.39 0.058

GAR1 0.39 0.064

PPP4C 0.39 0.067

SEMA4C 0.4 0.018

HNRNPR 0.4 0.041

HINT1 0.4 0.068

ZCCHC17 0.41 0.049

SRP14 0.42 0.02

ARHGDIA 0.42 0.044

DAZAP1 0.42 0.059

FUBP3 0.43 0.024

MBNL1 0.43 0.068

CTSG 0.43 0.071

LMX1B 0.43 0.077

EBNA1BP2 0.43 0.082

CRIP2 0.44 0.0068

HNRNPA3 0.44 0.038

PFN2 0.44 0.044

LUC7L 0.45 0.018

KHDC4 0.45 0.04

INTS4 0.45 0.065

LANCL1 0.46 0.0048

ESRRA 0.46 0.047

CIRBP 0.46 0.049

VPS33A 0.46 0.058

PSMB3 0.46 0.071

NUCKS1 0.48 0.0097

AKAP8 0.48 0.018

PRR3 0.48 0.064

CLK3 0.49 0.018

ARGLU1 0.5 0.037

HNRNPA0 0.51 0.024

KHDRBS1 0.51 0.085

HSPD1 0.53 0.068

TSR1 0.54 0.077

PHF6 0.55 0.0028

RBM23 0.55 0.032

ZMAT5 0.55 0.097

EWSR1 0.56 0.019

EIF6 0.6 0.058

ZNF664 0.61 0.0068

GCA 0.61 0.0088

CXXC5 0.61 0.037

MEAF6 0.62 0.024

RBM4B 0.74 0.0016

GeneSymbol log2FC adj.P.Val

ZNF207 -1.4 1.20E-06

BUB3 -1.29 9.50E-07

BMP2K -0.99 0.064

SETD2 -0.91 0.0016

SCOC -0.91 0.018

ANAPC4 -0.87 0.064

AFF4 -0.85 6.10E-05

ANAPC1 -0.84 0.00097

CDC16 -0.78 0.0024

CDC23 -0.76 4.00E-04

KPNA3 -0.76 0.0016

PIK3C2A -0.73 0.018

CDC26 -0.68 0.0091

PICALM -0.67 0.062

FCHO2 -0.65 0.02

FOSL2 -0.64 0.038

GLUL -0.63 0.04

BRIP1 -0.63 0.049

CDC27 -0.62 4.00E-04

USP10 -0.61 0.085

TET2 -0.58 0.0028

CDK5RAP3 -0.57 0.0031

YAP1 -0.56 0.058

DIS3 -0.56 0.067

TRAFD1 -0.55 0.061

CLTB -0.55 0.093

ITSN1 -0.54 0.027

TFRC -0.54 0.044

CBFB -0.53 0.0088

AP2M1 -0.53 0.07

SMARCC1 -0.52 0.045

CDK9 -0.52 0.048

MED29 -0.51 0.03

RFC5 -0.51 0.038

HLTF -0.49 0.03

CCNT1 -0.49 0.082

NUP62 -0.48 0.024

NUP107 -0.47 0.058

ANAPC16 -0.46 0.0068

ANAPC7 -0.45 0.0053

MLLT1 -0.45 0.018

XPO6 -0.43 0.061

MLLT3 -0.43 0.062

MAD1L1 -0.42 0.037

CKS1B -0.42 0.062

TPR -0.41 0.024

AP2A1 -0.41 0.071

CIZ1 -0.4 0.064

AP2B1 -0.4 0.096

CDK4 -0.39 0.03

WDHD1 -0.39 0.037

NUP93 -0.39 0.058

FAM98A -0.38 0.03

DCAF7 -0.38 0.03

MED23 -0.38 0.059

SEC23IP -0.38 0.064

NUP58 -0.38 0.068

QKI -0.37 0.03

SUPT20H -0.37 0.031

NUP50 -0.37 0.045

DNAJC8 -0.36 0.026

FNBP4 -0.36 0.031

USP39 -0.36 0.044

NUP205 -0.36 0.058

MED30 -0.36 0.059

CAPRIN1 -0.36 0.064

CTCF -0.35 0.037

NUP133 -0.35 0.058

TSEN34 -0.34 0.056

NUP98 -0.34 0.063
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Supplementary Data 4: Regulated proteins identified in MED4-qPLEX-RIME following 

ZNF207 knockdown in MCF7 cells. 

   

GeneSymbol log2FC adj.P.Val

ZNF207 -1.69 3.00E-07

LONRF2 -1.24 0.0012

BUB3 -0.85 3.00E-05

BRIP1 -0.77 0.0095

TET2 -0.71 0.0017

SPTLC1 -0.68 0.00043

MED12L -0.67 0.00043

SMTN -0.67 0.011

RABGAP1 -0.64 0.0095

SRPK2 -0.64 0.012

CCND1 -0.62 0.033

SYNE4 -0.62 0.043

CCNL2 -0.56 0.061

TNS3 -0.56 0.092

RAB6A -0.53 0.04

BIRC5 -0.52 0.058

CDCA8 -0.52 0.066

SLC27A3 -0.52 0.076

KANK2 -0.51 0.071

CKS1B -0.5 0.0062

RNF216 -0.5 0.025

SMCHD1 -0.5 0.028

GPRC5A -0.5 0.061

PLD1 -0.5 0.071

PLK1 -0.49 0.0085

SPAG5 -0.49 0.058

CASP8AP2 -0.48 0.062

IQSEC1 -0.48 0.063

ASAP3 -0.46 0.023

RSBN1L -0.45 0.011

GSE1 -0.44 0.046

NUDT16L1 -0.43 0.028

TSEN34 -0.42 0.021

RHOBTB3 -0.42 0.055

HLTF -0.41 0.032

RRM2 -0.41 0.041

KRT80 -0.41 0.058

DYNLL2 -0.4 0.036

RPL37 -0.4 0.04

JUNB -0.4 0.088

SRRM2 -0.4 0.091

TOP3A -0.4 0.096

RPL34 -0.39 0.033

RPL12 -0.39 0.036

PRMT3 -0.38 0.022

INCENP -0.38 0.046

RCOR1 -0.37 0.0017

AFF4 -0.37 0.083

RPL15 -0.36 0.053

RPL32 -0.35 0.041

RPL29 -0.35 0.062

RPL8 -0.35 0.076

RPL36 -0.34 0.033

RPL36A -0.34 0.041

RPL13A -0.34 0.057

RPS28 -0.33 0.032

PPP6R3 -0.33 0.049

MED6 -0.33 0.071

ZNF277 -0.33 0.084

GeneSymbol log2FC adj.P.Val

NMD3 -0.32 0.02

HBS1L -0.32 0.032

RPL21 -0.32 0.032

RPS21 -0.32 0.04

RPL18A -0.32 0.041

MED13 -0.32 0.041

RPS17 -0.32 0.071

RPL35A -0.31 0.028

ABCE1 -0.31 0.039

HNRNPH3 -0.31 0.041

KDM1A -0.31 0.049

LCMT1 -0.31 0.082

RPRD1A -0.3 0.025

MED10 -0.3 0.047

RPL37A -0.3 0.058

CCNA2 -0.3 0.06

MED14 -0.3 0.076

RPS12 -0.29 0.032

RPL28 -0.29 0.041

EMC2 -0.29 0.071

ANAPC7 -0.29 0.073

NQO1 -0.29 0.091

RPS23 -0.28 0.076

MED17 -0.28 0.088

RPL23 -0.27 0.041

MED8 -0.27 0.079

NAPG -0.26 0.032

RNF114 -0.26 0.038

PPP6C -0.26 0.049

RPS2 -0.26 0.076

RAB14 -0.26 0.082

RPL3 -0.26 0.091

LIMS1 -0.26 0.094

ESRP1 -0.25 0.032

TRIP6 -0.25 0.041

TRIM25 -0.25 0.046

PMM2 -0.25 0.064

RPS15A -0.23 0.041

GRB2 -0.23 0.067

RPL30 -0.23 0.082

TPP2 -0.23 0.089

RPL11 -0.23 0.09

TRIM27 -0.23 0.091

GTF2H3 -0.22 0.049

PABPC1 -0.21 0.043

UHRF1 -0.21 0.071

COL6A6 -0.21 0.08

SUMO3 -0.21 0.09

EIF5 -0.2 0.071

DCAF7 -0.19 0.071

AKAP8 0.18 0.071

PRCC 0.19 0.088

ZMAT2 0.2 0.077

EDC3 0.21 0.091

RAVER1 0.22 0.063

HNRNPR 0.22 0.065

MFAP1 0.22 0.08

GSTK1 0.23 0.086

IK 0.24 0.036

WBP11 0.24 0.05

HNRNPUL2 0.25 0.043

GeneSymbol log2FC adj.P.Val

CTNNBL1 0.25 0.043

FUBP3 0.25 0.071

CRIP2 0.26 0.034

AGO2 0.26 0.099

GLYR1 0.27 0.046

GTF2B 0.28 0.041

PNISR 0.28 0.041

PFN2 0.28 0.041

ALB 0.28 0.06

TCERG1 0.29 0.016

WDR18 0.29 0.089

RBM23 0.3 0.045

HDGF 0.3 0.079

PELP1 0.33 0.052

PURB 0.34 0.032

IDH2 0.34 0.071

PHB2 0.34 0.091

NKTR 0.35 0.032

DCP1A 0.36 0.0078

LAS1L 0.36 0.049

LANCL1 0.37 0.0068

TRPM4 0.37 0.041

RBM4B 0.38 0.032

STOML2 0.38 0.068

ZFC3H1 0.47 0.0017

EIF4E2 0.47 0.024

ATP5F1A 0.48 0.093

ATP5F1B 0.49 0.038

DOCK6 0.49 0.071

ATP5PO 0.52 0.071

TBKBP1 0.55 0.046

PRDM11 0.56 0.011

NUCKS1 0.64 0.0021

NOS1AP 0.64 0.045

GIGYF1 0.73 0.00047

ATP5F1C 0.77 0.047

ZBTB6 0.94 0.036

ERVFC1 1 0.068
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Supplementary Data 5: Regulated proteins identified in MED1-qPLEX-RIME following 

ZNF207 knockdown in HEK293 cells. 

     

GeneSymbol log2FC adj.P.Val

BUB3 -0.96 5.00E-06

CREB5 -1.17 1.50E-05

MORC3 -0.95 3.60E-05

LUC7L 0.74 3.80E-05

SPEN -0.54 0.00012

RPRD1A -0.64 0.00015

ZNF207 -2.01 0.00015

DCAF7 -0.58 0.00034

AFF4 -0.64 0.00034

RNF216 -1.48 0.00034

TRAFD1 -0.66 0.00034

MYC -0.76 0.00034

MED19 -0.55 5.00E-04

TBL3 0.56 5.00E-04

ABCE1 -0.79 5.00E-04

HDGF 0.43 0.00058

RCOR1 -0.6 0.00058

FEN1 0.36 0.00058

LUC7L3 0.42 0.00058

WDR3 0.49 0.00058

FUBP1 0.45 6.00E-04

NUP62 0.46 0.00074

MED12L -0.63 0.00085

RCOR3 0.5 0.00085

HLTF -0.44 0.0011

RBPJ -0.48 0.0011

LUC7L2 0.41 0.0013

GLUL -0.9 0.0014

SUPT20H -0.42 0.0014

GFPT1 -0.53 0.0014

NUCKS1 0.46 0.0014

DIS3 -0.33 0.0016

GTF2H1 -0.63 0.0016

GTF2H4 -0.35 0.0016

UBXN7 -0.44 0.0017

ERCC2 -0.38 0.0017

MLLT3 -0.68 0.0018

TXNDC12 -0.44 0.0019

ZNF703 -0.49 0.0025

ANAPC7 -0.39 0.0026

PEF1 -0.32 0.0026

HOXB9 -0.49 0.0026

PHF6 0.36 0.0027

SPTLC1 -0.64 0.0028

PLK1 -0.32 0.003

SMPD4 0.36 0.0031

SMARCA1 0.53 0.0031

TAF12 -0.43 0.0035

PWP2 0.39 0.0035

ATF3 -1.16 0.0039

HNRNPUL2 0.31 0.0038

NDC1 0.41 0.0039

NUP210 0.44 0.0039

PCGF5 -0.4 0.0041

C15orf39 -0.48 0.0042

HSPA1B -0.22 0.0042

DIMT1 -0.51 0.0043

CCDC97 -0.62 0.0046

TP53BP1 0.37 0.0051

SUGP2 0.47 0.0052

CPNE3 -0.34 0.0054

CHEK2 -0.28 0.0054

CIT -0.35 0.0055

RAE1 0.44 0.0066

NUP93 0.31 0.0067

SMCHD1 -0.44 0.0067

HOXD13 -0.38 0.0068

NUP54 0.38 0.0074

ATXN7L3 -0.36 0.0074

ZNF503 -0.33 0.0075

ATF2 -0.65 0.0075

TXLNA 0.58 0.0075

HOXA11 -0.51 0.0075

NSRP1 -0.31 0.0075

KDM1A -0.3 0.0075

SRP14 0.25 0.0075

ZIC2 -0.44 0.0075

YWHAE 0.23 0.0076

FUBP3 0.33 0.0084

LANCL1 0.31 0.0084

EP300 -0.33 0.0084

HNRNPH3 -0.32 0.0088

CBX5 0.28 0.0088

CCAR2 0.29 0.0088

STAG2 -0.42 0.0088

OGT -0.25 0.0088

PDCD6 -0.24 0.0089

TADA1 -0.33 0.0089

NUP155 0.32 0.0089

GeneSymbol log2FC adj.P.Val

FBRS -0.37 0.0091

AFF1 0.46 0.0097

ATRX 0.33 0.0098

DNAJC9 0.26 0.0099

MED22 -0.33 0.01

NUP58 0.33 0.01

WRNIP1 -0.31 0.01

TRIM28 0.22 0.011

TAF5L -0.27 0.011

ARNT -0.41 0.011

CTBP2 -0.37 0.011

NUP35 0.37 0.011

GCFC2 -0.25 0.012

MED16 -0.3 0.012

HMGB2 0.22 0.012

PPP4R3A 0.32 0.012

MPHOSPH8 -0.27 0.012

HNRNPR 0.29 0.012

NUP98 0.38 0.013

MAT2A -0.37 0.013

SALL2 -0.4 0.013

MED14 -0.3 0.013

SRSF5 0.28 0.013

RAD21 -0.27 0.014

SRRM2 -0.27 0.014

GLE1 0.35 0.014

ELAVL1 -0.26 0.014

CDK9 -0.25 0.014

METAP1 0.4 0.014

NACC1 0.36 0.015

UNG 0.35 0.015

SS18 -0.36 0.015

KDM1B -0.31 0.015

GID8 -0.34 0.015

RBM3 -0.28 0.015

TAF6L -0.25 0.015

RNF138 -0.51 0.015

ERCC3 -0.3 0.015

KCNH1 -0.33 0.015

MED6 -0.3 0.015

UBE2S -0.23 0.015

MED23 -0.3 0.015

NUP88 0.28 0.015

YWHAZ 0.25 0.015

CDK7 -0.34 0.016

MMS22L -0.43 0.016

PALLD -0.33 0.016

ESD 0.24 0.016

MED8 -0.3 0.017

PGD 0.25 0.017

MED24 -0.28 0.017

DCUN1D5 -0.27 0.018

TAF5 -0.25 0.018

NUP188 0.3 0.018

TP53 0.36 0.018

TSEN34 -0.41 0.018

EWSR1 0.29 0.019

TXNDC17 0.43 0.019

BAG3 -0.26 0.019

PPME1 0.21 0.019

RBM12 -0.2 0.019

MGA -0.28 0.019

NAGK 0.31 0.019

SIRT1 -0.29 0.019

MED20 -0.29 0.019

PCF11 -0.3 0.019

POLR2D -0.26 0.019

WDR36 0.34 0.019

KIF11 0.32 0.019

L3MBTL2 -0.25 0.019

NUP214 0.23 0.019

DNAJB6 -0.26 0.019

MED17 -0.27 0.019

ATF7 -0.45 0.019

INTS13 -0.22 0.019

RIOX2 -0.23 0.02

SMC5 -0.24 0.02

TAF10 -0.34 0.02

RAI1 -0.31 0.02

SFPQ 0.18 0.02

TARDBP 0.19 0.02

TASOR -0.25 0.02

EIF4H 0.24 0.021

CSRP2 -0.31 0.021

ACP1 0.25 0.021

KDM4A 0.21 0.021

SIN3B 0.28 0.021

CKS1B -0.23 0.021

NFYA -0.35 0.021

NKTR 0.33 0.022

GeneSymbol log2FC adj.P.Val

TRRAP -0.18 0.022

PPP2R1B -0.51 0.022

FBRSL1 -0.25 0.022

PRRC2B 0.33 0.022

POLR2F -0.25 0.022

NSMCE1 -0.3 0.022

SCAF8 0.21 0.022

CREBBP -0.24 0.022

RNF20 -0.19 0.023

TMEM214 0.38 0.023

MED25 -0.28 0.023

MNAT1 -0.34 0.023

RUVBL1 -0.17 0.023

BIRC6 -0.41 0.023

CHMP4B 0.22 0.023

DDX24 -0.24 0.023

NUP205 0.29 0.024

HSPH1 -0.22 0.025

GTF2I 0.19 0.026

MED27 -0.26 0.026

DBR1 0.35 0.026

GNL3 -0.26 0.027

ATN1 -0.3 0.027

ZMYND11 -0.33 0.027

UBE2M 0.22 0.027

POLR2K -0.21 0.027

NCL 0.23 0.027

CARM1 -0.24 0.027

DDX23 0.17 0.027

MED18 -0.27 0.027

CDC27 -0.28 0.028

YWHAQ 0.17 0.029

C9orf78 0.26 0.029

ANAPC16 -0.81 0.029

MED30 -0.28 0.029

POLR1A -0.33 0.03

CTDP1 -0.26 0.03

BMS1 -0.36 0.03

SUPT7L -0.25 0.03

MED28 -0.27 0.03

POLR2G -0.21 0.03

DGCR8 -0.24 0.031

UFC1 0.28 0.031

INTS14 -0.29 0.031

PRPF3 0.22 0.032

FOXK1 -0.25 0.032

ZMAT2 0.2 0.032

PARP1 0.17 0.033

TALDO1 0.27 0.033

H3F3A -0.25 0.033

SMC2 0.2 0.034

RBM25 0.17 0.034

DNAJB1 0.23 0.034

TMEM209 0.36 0.034

POLR2B -0.18 0.035

TAF9B -0.38 0.035

PRPF38A 0.24 0.035

EED -0.31 0.035

ZNF608 -0.31 0.035

CAVIN1 -0.36 0.037

DCAF1 0.29 0.037

UBAP2L 0.37 0.038

MCM8 -0.28 0.038

CMAS -0.3 0.038

CRKL -0.23 0.038

TAF6 -0.22 0.038

CCNA2 -0.28 0.038

ZRANB2 0.22 0.038

E2F3 -0.3 0.038

LRRK1 0.51 0.04

HMGN4 0.4 0.04

BANF1 0.38 0.04

NSMCE3 -0.22 0.042

RBBP7 -0.3 0.042

HNRNPA0 0.25 0.042

DEK 0.18 0.042

TRPS1 -0.21 0.042

JUN -0.5 0.042

EDC4 0.36 0.043

RPP30 0.22 0.044

ZC3H4 -0.18 0.044

RCN2 -0.26 0.044

TFRC -0.38 0.044

PSME3 0.17 0.044

TADA3 -0.24 0.044

TAF15 -0.24 0.044

YAP1 -0.33 0.045

TRIP6 -0.24 0.045

ACLY -0.17 0.046

NUTF2 0.24 0.046

GeneSymbol log2FC adj.P.Val

GATA6 -0.22 0.046

POLR2I -0.25 0.046

CETN2 0.25 0.047

TMA7 0.24 0.047

KHSRP 0.16 0.047

OPA1 0.46 0.048

RNF2 -0.23 0.047

PARK7 0.21 0.048

FAM199X 0.57 0.048

THUMPD1 0.32 0.048

ARHGDIA 0.28 0.049

CSNK2A2 -0.23 0.049

PCGF3 -0.3 0.049

WAC -0.18 0.049

GON4L -0.25 0.049

NVL -0.23 0.049

CBX4 -0.3 0.049

POLR2A -0.16 0.049

SMC6 -0.21 0.049

UBA2 0.25 0.05

CDK19 -0.3 0.05

MCM6 0.17 0.051

SRRT -0.14 0.051

RAVER1 0.21 0.051

RAD51AP1 0.26 0.051

UBXN1 0.22 0.051

PNKP 0.26 0.051

RPL37 0.27 0.052

HMGN1 0.25 0.052

SRSF6 0.19 0.052

SAE1 0.21 0.052

NANS 0.21 0.052

CENPB 0.44 0.052

ANP32A -0.27 0.053

ARGLU1 0.27 0.053

BCOR -0.23 0.053

ARPC3 -0.27 0.053

SGF29 -0.22 0.053

FOXC1 -0.16 0.053

CSNK1A1 0.21 0.054

ALKBH5 0.19 0.055

LSM7 0.21 0.055

TRIM27 -0.23 0.055

KPNB1 0.16 0.056

ZBTB10 -0.2 0.056

NUMA1 0.17 0.058

CTCF -0.23 0.058

ZC3HC1 -0.17 0.058

GSTP1 0.24 0.058

NUDT21 -0.17 0.059

PFN1 0.17 0.059

KIAA1143 0.2 0.061

GNL3L -0.3 0.061

AKAP8 0.21 0.062

MED11 -0.21 0.062

EDF1 0.26 0.062

ANXA7 0.21 0.063

SIX4 -0.56 0.063

DHX40 0.17 0.063

GTF3C5 -0.2 0.064

MED29 -0.24 0.065

DDA1 0.22 0.066

XRCC5 0.12 0.066

PIN4 0.2 0.067

BAP18 0.26 0.067

MYEF2 0.19 0.069

RSU1 -0.32 0.069

SDE2 -0.24 0.069

SF3B3 -0.15 0.069

DHX9 0.13 0.07

CUL5 -0.18 0.07

POLR2C -0.16 0.07

CUL2 -0.17 0.071

RECQL 0.16 0.072

POLR2E -0.18 0.072

KIF4A 0.2 0.073

ATXN7L2 -0.25 0.073

PHF14 -0.28 0.073

STMN1 0.2 0.074

RUVBL2 -0.12 0.075

RBM23 0.33 0.075

BAZ1A -0.14 0.075

PNISR 0.22 0.075

API5 0.13 0.076

DBT 0.2 0.077

CUTC -0.25 0.078

TLE4 -0.15 0.079

EMC7 -0.25 0.079

ZNF579 0.29 0.079

TTLL12 0.29 0.079

NONO 0.16 0.081

GeneSymbol log2FC adj.P.Val

HIC2 0.38 0.083

AKAP17A 0.21 0.084

LDHA -0.16 0.084

CASP2 0.24 0.085

HMGB3 0.14 0.085

MED15 -0.19 0.085

CELF1 0.3 0.087

GAPDH 0.19 0.088

ARPC2 -0.26 0.088

MFAP1 0.17 0.088

SF1 -0.14 0.088

P3H4 -0.88 0.089

NUDT16L1 -0.26 0.09

TNPO3 0.23 0.09

KCTD15 -0.27 0.091

IVD -0.25 0.091

ASNS -0.22 0.092

AAAS 0.21 0.092

DNAH2 0.24 0.092

CENPE -0.26 0.092

PPP2R1A -0.16 0.094

VEZF1 -0.25 0.094

BCAP31 -0.28 0.094

TCERG1 0.12 0.094

CARHSP1 0.22 0.094

YTHDF2 0.34 0.095

ZNF281 -0.17 0.095

HNRNPA2B1 0.14 0.098

UTS2 -0.31 0.098

TAF3 -0.24 0.098

STRAP 0.14 0.098

HMG20A -0.18 0.098

ZNF830 0.19 0.098

LARP7 -0.13 0.099

PBRM1 0.19 0.099

PES1 -0.23 0.099

RFC1 0.15 0.099

TAF1 -0.22 0.099

INTS11 -0.18 0.099

ING3 -0.16 0.099

ARID3A 0.29 0.099

NCBP1 -0.2 0.099

WBP11 0.14 0.099
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Supplementary Data 6: Regulated proteins identified in MED14-qPLEX-RIME following 

ZNF207 knockdown in HEK293 cells. 

  

 

 

GeneSymbol log2FC adj.P.Val

PELO 1.11 0.00065

MORC3 -0.94 0.0013

ATF3 -1.06 0.0013

FSCN1 -0.94 0.0013

AFF4 -0.84 0.0013

CREB5 -1.12 0.0018

BUB3 -0.99 0.0042

RPRD1A -0.62 0.0042

LUC7L 0.63 0.0064

YAP1 -0.76 0.0064

SPEN -0.69 0.0064

ZNF207 -1.37 0.0064

DIMT1 -0.61 0.0064

TBL1X -0.71 0.0068

LANCL1 0.55 0.0079

MED12L -0.52 0.018

RBPJ -0.5 0.023

DCAF7 -0.49 0.025

ABCE1 -0.44 0.027

PWP2 0.63 0.031

SERPINB12 0.64 0.044

HLTF -0.36 0.044

HNRNPUL2 0.44 0.044

FBRSL1 -0.45 0.044

KRT77 0.81 0.044

MROH2B -0.5 0.044

MED23 -0.45 0.044

MNAT1 -0.43 0.044

RRP1B -0.72 0.044

PHF6 0.35 0.044

SUPT20H -0.43 0.044

TBL3 0.51 0.044

PCGF5 -0.51 0.044

STAG2 -0.53 0.044

PUM2 0.52 0.047

JUN -0.78 0.047

DNAJC9 0.33 0.047

WDR3 0.5 0.047

PLK1 -0.35 0.047

CTBP2 -0.38 0.047

MED16 -0.42 0.047

KRT17 1.19 0.047

TADA2B -0.47 0.047

FBRS -0.42 0.048

TAF5L -0.49 0.048

BANF1 0.36 0.048

UBXN7 -0.44 0.049

SPTLC1 -0.72 0.05

TAF6L -0.44 0.052

GeneSymbol log2FC adj.P.Val

NUCKS1 0.37 0.052

KRT16 0.78 0.052

ATXN7L3 -0.5 0.052

ERCC2 -0.37 0.052

C15orf39 -0.42 0.054

MED24 -0.42 0.054

CCDC9 -0.38 0.055

NUP37 -0.34 0.056

IGF2BP1 0.35 0.056

TAF10 -0.46 0.058

ABHD14B 0.54 0.063

WDR36 0.52 0.063

TFAP4 -0.42 0.063

UTS2 0.49 0.064

FEN1 0.31 0.065

KRT14 0.64 0.065

SIRT1 -0.44 0.065

CYB5R3 -0.49 0.065

SUGP2 0.34 0.065

RCOR3 0.43 0.065

KRT9 0.77 0.065

CLK1 -0.44 0.066

C7orf50 0.39 0.066

NFYA -0.4 0.066

ZNF629 0.43 0.066

GSTP1 0.44 0.066

NSRP1 -0.33 0.066

RBBP7 -0.36 0.066

TAF5 -0.4 0.066

KRT78 0.61 0.073

CDK7 -0.38 0.073

KRT79 0.64 0.073

EYA4 -0.44 0.073

MED19 -0.48 0.073

WRNIP1 -0.36 0.082

APEX1 0.28 0.082

SS18L2 -0.57 0.083

HDGF 0.35 0.083

KRT1 0.64 0.083

HMGN4 0.38 0.085

UBE2M 0.25 0.087

PHPT1 0.45 0.087

INTS13 -0.27 0.087

MYEF2 0.38 0.092

WDR55 0.37 0.092

TADA3 -0.32 0.098

SKP2 -0.32 0.099

AFF1 0.32 0.099

MEIS1 -0.47 0.099
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Supplementary Data 7: Regulated proteins identified in Pol II-qPLEX-RIME following 

ZNF207 knockdown in MCF7 cells. 

    

GeneSymbol log2FC adj.P.Val

ZNF207 -1.38 2.10E-06

BUB3 -1 3.30E-06

CCDC97 -1.88 3.30E-06

QKI -0.8 1.30E-05

SETD2 -0.8 1.40E-05

HNRNPUL1 -0.53 0.00011

MORC3 -0.98 0.00012

CBX5 0.7 7.00E-04

ELAVL1 -0.39 0.00081

AFF4 -0.54 0.0013

DNAJC8 -0.55 0.0013

VEZF1 -0.75 0.0013

HNRNPH3 -0.41 0.0013

PRDM11 0.66 0.0015

CBX4 -0.46 0.0024

SRBD1 -0.47 0.0033

PAPOLA -0.55 0.005

RBAK 0.57 0.0056

HLTF -0.57 0.0056

CBFB -0.66 0.0061

ZNF689 0.94 0.0081

SFSWAP -0.46 0.0081

NUCKS1 0.31 0.0092

CLK3 0.41 0.01

TRIM28 0.67 0.01

HNRNPH1 -0.26 0.011

PSIP1 -0.54 0.011

NUDT16L1 -0.38 0.011

FAM103A1 -0.34 0.011

CBX8 0.44 0.011

KPNA3 -0.67 0.011

CASP8AP2 -0.44 0.011

CENPB 0.6 0.012

SLBP -0.38 0.012

LUC7L2 0.43 0.012

PSPC1 -0.26 0.012

LUC7L 0.5 0.015

INTS4 0.28 0.015

SCAI -0.41 0.015

THOC2 0.48 0.015

CHERP -0.27 0.015

CTCF -0.54 0.015

RPL18A -0.37 0.016

U2SURP -0.27 0.016

RBM23 0.5 0.016

CDK9 -0.37 0.017

SETX 0.39 0.018

SNIP1 0.46 0.018

POGK 0.39 0.018

ZNF268 0.57 0.018

SF1 -0.23 0.019

CHD2 -0.34 0.02

FUS -0.26 0.02

FKBP15 0.74 0.02

TCEA2 0.38 0.021

ESRP1 -0.26 0.023

FAM199X 0.59 0.023

SF3B1 -0.31 0.023

SRP14 0.26 0.023

SINHCAF -0.86 0.023

PM20D2 0.56 0.023

USP39 -0.37 0.024

CTBP1 0.36 0.024

KRR1 0.37 0.024

BAZ2A 0.49 0.024

SYNCRIP -0.3 0.027

RPS23 -0.25 0.027

CHMP5 0.34 0.027

IBTK 0.5 0.027

SRP9 0.4 0.027

PFN2 0.24 0.03

TTLL12 0.41 0.03

ABCE1 -0.51 0.03

HMGB1 -0.31 0.031

RBPJ 0.29 0.032

MED31 0.46 0.032

HNRNPA1 -0.24 0.032

C7orf50 0.25 0.032

SNRPA1 -0.32 0.032

GeneSymbol log2FC adj.P.Val

SMC1A -0.29 0.033

GOLGB1 0.48 0.033

ZFR -0.23 0.033

ILF3 -0.25 0.033

ZCCHC17 0.58 0.033

ZNF8 0.6 0.035

CCAR1 -0.26 0.037

RBM17 -0.25 0.041

NANS 0.35 0.041

PCYT1A 0.27 0.041

CCDC59 0.31 0.041

TRIM24 0.64 0.042

PEBP1 0.23 0.042

VPS13C 0.34 0.042

WRNIP1 0.33 0.042

SET 0.26 0.042

ZNF768 0.44 0.042

PPP4R2 0.44 0.042

CHCHD3 0.37 0.043

CHD1 -0.35 0.043

SCAF1 0.39 0.043

RPL21 -0.38 0.043

EPS8L1 0.77 0.044

SF3B2 -0.34 0.044

NPLOC4 -0.67 0.045

PHF6 0.37 0.045

PRKDC -0.37 0.045

DXO 0.34 0.045

CLASRP -0.24 0.045

HSPD1 -0.33 0.046

DNAJB1 0.22 0.046

IKZF5 0.81 0.046

SF3A3 -0.36 0.046

PTMA -0.27 0.048

CMTR1 0.31 0.048

CROCC2 0.57 0.048

CCNT1 -0.27 0.048

MLLT1 -0.52 0.05

CCNT2 -0.27 0.052

RPL15 -0.36 0.054

BLVRB 0.22 0.055

CWC25 0.37 0.055

EWSR1 0.19 0.055

RPS17 -0.53 0.055

H1F0 0.34 0.055

XRN2 -0.17 0.055

DDX39A 0.25 0.055

SNRPB2 -0.27 0.055

HP1BP3 -0.29 0.057

UHRF1 -0.42 0.058

RBM4B 0.3 0.058

NMD3 -0.27 0.058

IRF2BP2 -0.26 0.058

CLK2 0.4 0.059

ILF2 -0.27 0.059

DDX47 0.27 0.06

MED22 0.24 0.06

TSEN34 -0.24 0.06

SF3B6 -0.21 0.06

KDM1A -0.38 0.06

UIMC1 0.52 0.06

CRIP2 0.23 0.06

TRPC4AP 0.44 0.06

C3 0.37 0.062

SF3A1 -0.32 0.062

ZNF140 0.44 0.063

RPS6KA4 0.28 0.064

TSGA10 0.37 0.064

EIF5A 0.25 0.065

SF3A2 -0.37 0.065

IMP4 0.51 0.065

PPP1CC 0.29 0.065

XPC -0.26 0.065

TCEAL4 0.23 0.065

PPIL2 0.2 0.066

CWC27 0.26 0.066

HSPH1 -0.26 0.069

CLP1 -0.21 0.069

CFL1 0.23 0.069

RBM25 0.24 0.069

GeneSymbol log2FC adj.P.Val

FAM208B 0.18 0.096

CHMP1A 0.33 0.096

KCNT2 0.4 0.096

MCM7 -0.29 0.096

SREK1IP1 0.23 0.096

HSPA4 0.24 0.096

ABT1 0.49 0.096

PTBP3 0.36 0.096

PSMA7 -0.24 0.096

CBX3 0.22 0.096

NAPA 0.29 0.096

PHC2 0.27 0.096

ECT2 1.02 0.096

MORF4L1 -0.35 0.096

ALDH18A1 -0.36 0.096

RBPMS -0.24 0.096

RPL32 -0.45 0.096

RTCA 0.44 0.096

TJP2 0.47 0.096

ZSWIM8 0.43 0.097

ZNF707 0.69 0.097

SMTN -0.3 0.098

RPRD2 0.25 0.098

RPL13A -0.43 0.098

SMN1 -0.41 0.098

NET1 -0.38 0.098

MSH2 -0.23 0.098

PHF2 -0.24 0.098

PDS5B -0.23 0.098

DCAF7 -0.18 0.098

MFAP1 0.23 0.098

MEAF6 -0.36 0.098

RNGTT 0.18 0.098

ARHGDIA 0.25 0.098

SUPT4H1 -0.22 0.098

SF3B3 -0.19 0.099

GeneSymbol log2FC adj.P.Val

MRFAP1 -0.41 0.069

H3F3A -0.4 0.071

STAG2 -0.82 0.071

PKHD1L1 0.62 0.072

IKZF2 0.46 0.072

KMT2A 0.28 0.072

THUMPD1 0.2 0.072

SF3B5 -0.3 0.072

CXXC1 -0.25 0.073

MYO18A 0.6 0.075

SRSF5 0.31 0.076

USP3 0.39 0.076

TONSL -0.31 0.076

ZMYND11 -0.24 0.076

GTF2I 0.22 0.076

A2M 0.46 0.078

BUD23 -0.21 0.078

SMC3 -0.21 0.078

HNRNPC -0.18 0.078

ESRP2 -0.22 0.078

SETD1B 0.28 0.078

AFF1 0.33 0.078

AKAP8 0.17 0.078

C1QC 0.44 0.078

MLLT6 0.48 0.078

FAM76B 0.39 0.078

RPS28 -0.25 0.081

SNX12 0.52 0.081

SUGP1 -0.2 0.081

NDRG1 0.59 0.081

HNRNPD -0.19 0.084

SYF2 0.3 0.086

KHDRBS1 -0.19 0.086

LENG1 0.2 0.086

BUD13 0.29 0.087

RBM12B 0.21 0.088

SMS 0.39 0.089

RBM6 0.21 0.089

IRS1 0.22 0.089

RIF1 -0.33 0.089

PIN4 0.23 0.089

GRHL2 -0.32 0.089

STK32C 0.42 0.089

PCIF1 0.18 0.089

NSRP1 0.35 0.089

ZMAT2 0.24 0.089

JUNB -0.56 0.089

NFIB 0.29 0.089

GTPBP4 0.17 0.089

TRNT1 0.22 0.089

GTF2H3 -0.26 0.089

PNPO 0.33 0.09

INPP5K 0.38 0.09

ZMYM2 -0.36 0.09

ERCC6 -0.19 0.091

TAF3 -0.43 0.091

TRPS1 -0.24 0.091

NXF1 0.18 0.091

HSP90AA1 -0.38 0.091

LYZ 0.41 0.092

SSU72 0.29 0.092

BRIX1 0.33 0.092

XPO5 -0.23 0.092

PDCD7 0.51 0.092

LAD1 0.44 0.092

DUSP23 0.31 0.092

CWF19L2 0.27 0.092

ARGLU1 0.34 0.092

WTAP 0.24 0.092

RRP15 -0.22 0.092

TAF15 -0.16 0.092

L1RE1 0.28 0.092

RBM4 -0.17 0.092

EPM2AIP1 -0.27 0.092

TBPL1 0.29 0.092

BCLAF1 0.32 0.092

LUC7L3 0.29 0.092

RPL22L1 0.31 0.092

RPL34 -0.3 0.095

PCNA -0.26 0.095
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A quantitative mass spectrometry-based approach
to monitor the dynamics of endogenous chromatin-
associated protein complexes
Evangelia K. Papachristou 1, Kamal Kishore1, Andrew N. Holding1, Kate Harvey2, Theodoros I. Roumeliotis3,
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Florian Markowetz 1, Matthew Eldridge1, Rasmus Siersbaek1, Clive S. D’Santos1 & Jason S. Carroll1

Understanding the dynamics of endogenous protein–protein interactions in complex net-

works is pivotal in deciphering disease mechanisms. To enable the in-depth analysis of

protein interactions in chromatin-associated protein complexes, we have previously devel-

oped a method termed RIME (Rapid Immunoprecipitation Mass spectrometry of Endogenous

proteins). Here, we present a quantitative multiplexed method (qPLEX-RIME), which inte-

grates RIME with isobaric labelling and tribrid mass spectrometry for the study of protein

interactome dynamics in a quantitative fashion with increased sensitivity. Using the qPLEX-

RIME method, we delineate the temporal changes of the Estrogen Receptor alpha (ERα)
interactome in breast cancer cells treated with 4-hydroxytamoxifen. Furthermore, we identify

endogenous ERα-associated proteins in human Patient-Derived Xenograft tumours and in

primary human breast cancer clinical tissue. Our results demonstrate that the combination of

RIME with isobaric labelling offers a powerful tool for the in-depth and quantitative char-

acterisation of protein interactome dynamics, which is applicable to clinical samples.
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Deciphering the role and the organisation of dynamically
regulated protein networks is critical for the accurate
molecular characterisation of biological systems1. Over

the last decade, the advancements made in mass spectrometry-
based proteomics have enabled the rapid analysis of complex
protein samples obtained from co-immunoprecipitation assays,
providing a powerful tool for the study of protein interactions
and protein complexes2. In this regard, the first systematic efforts
to generate human protein interactome maps using yeast two-
hybrid3–5 have been recently complemented by studies utilising
large-scale Affinity Purification followed by Mass Spectrometry
analysis (AP-MS)6,7. Additionally, the integration of AP-MS with
quantitative approaches has enabled the study of stoichiometric
changes in protein complexes8. More recently, the use of chemical
crosslinking combined with mass spectrometry has provided
information about endogenous protein assemblies in a proteome-
wide scale9.

Gene regulation relies on the coordinated action of transcrip-
tion factors and co-regulator complexes that control transcrip-
tional activation at promoters or enhancers. To gain insight into
the complex interactions between such regulators, the combina-
tion of Chromatin Immunoprecipitation (ChIP) with mass
spectrometry has been used to study the composition of
chromatin-associated complexes10–12. In line with this strategy
we have previously developed RIME (Rapid Immunoprecipitation
Mass spectrometry of Endogenous proteins)13, a method which
has several advantages for the analysis of protein interactomes14.
RIME provides a sensitive and rapid approach for the identifi-
cation of protein complexes from low amounts of starting
material and importantly involves purification of endogenous
protein, rather than the use of exogenous tagged approaches.

In the present study, we have established a modified RIME
assay to monitor the dynamics of chromatin-associated com-
plexes using a quantitative multiplexed workflow (quantitative
Multiplexed Rapid Immunoprecipitation Mass spectrometry of
Endogenous proteins or qPLEX-RIME). Specifically, we combine
RIME with isobaric labelling using Tandem Mass Tags (TMT-
10plex)15,16, peptide fractionation and MultiNotch MS3 analy-
sis17. This combination allows the simultaneous analysis of
multiple conditions and biological replicates with high sensitivity
in a single experiment. Additionally, we have developed a data
analysis workflow termed quantitative Multiplexed analyzer
(qPLEXanalyzer) that permits statistical analysis of the quanti-
tative interactome data and the identification of differential
interactions.

As a proof-of-concept, we apply the qPLEX-RIME method to
discover the temporal changes of Estrogen Receptor alpha (ERα)
interactors in breast cancer cells treated with 4-hydroxytamoxifen
(OHT) and to identify the ERα interactome in human patient-
derived xenograft (PDX) tumours and in human breast cancer
tissues. Our data demonstrate that the qPLEX-RIME method
combines multiplexity with quantitative accuracy and increased
sensitivity, to enable the in-depth characterisation of dynamic
changes in chromatin-associated protein complexes in vitro and
in vivo.

Results
The qPLEX-RIME workflow. The qPLEX-RIME approach
combines the RIME method13,14 with multiplex TMT chemical
isobaric labelling15,16 to study the dynamics of chromatin-
associated protein complexes. The workflow starts with a two-
step fixation procedure using disuccinimidyl glutarate (DSG) and
formaldehyde (FA) that has been previously applied in combi-
nation with ChIP assays to capture transient interactions more
efficiently12,18. A specific antibody against the target protein is

used for immunoprecipitation, followed by proteolysis, TMT-
10plex peptide labelling and fractionation. The main steps of the
qPLEX-RIME method are shown in Fig. 1. The main utility of the
qPLEX-RIME method is the quantification of changes in the
composition of protein complexes in response to cell perturbation
and/or in variable genomic backgrounds (e.g. different cell lines
or mutated conditions) using multiple biological replicates in a
single experiment. Also proteins that are significantly and speci-
fically associated with the bait protein can be discovered in the
same analysis using appropriate negative controls, such as IgG
pull-downs. For the downstream data analysis, we have developed
a comprehensive bioinformatics workflow (qPLEXanalyzer) that
includes data processing, visualisation, normalisation and differ-
ential statistics . In addition to the qPLEXanalyzer R package, the
complete qPLEX-RIME and full proteome data sets of this work
are included in the qPLEXdata R package. Both packages can be
found at (https://doi.org/10.5281/zenodo.1237825) and a detailed
description of the pipeline and the applications is provided in
Supplementary Notes 1 and 2.

Characterisation of the ERα interactome in MCF7 cells. We
first applied qPLEX-RIME to assess whether we could successfully
identify the ERα interactome in asynchronous MCF7 breast
cancer cells. To this end, we performed ERα qPLEX-RIME pull-
downs in five independent biological replicates. An equal number
of matched IgG control samples were prepared. In this experi-
ment we used single crosslinking with FA, to permit a compar-
ison with previously published approaches13. In addition to the
qPLEX-RIME, we included a standard non-quantitative ERα
RIME experiment with matched IgG controls (Supplementary
Data 1).

The qPLEX-RIME raw data processing quantified 2955
proteins across the multiplexed set of all positive and negative
samples at peptide false discovery rate (FDR) <1% (Supplemen-
tary Data 2). To test the efficiency of the method in capturing and
quantifying previously described ERα-associated proteins, we
compiled a list of known ERα interactors from BioGRID19 and
STRING20 resources. For BioGRID, we used only a subset of 386
proteins identified by high-throughput assays that are similar to
the approach used here and for STRING we used only
experimental associations (383 proteins, score > 200). Note-
worthy, only 37 proteins were common between the two
reference subsets. The qPLEX-RIME method identified 295
(76%) and 171 (45%) of the known ERα-associated proteins
from BioGRID and STRING, respectively, of which 225 (58%)
and 154 (40%) showed positive enrichment at adj. p-value < 0.1
(Limma moderated t-test) (Fig. 2a). Specifically, we found known
co-regulators (e.g. EP300, NCOA3, CBP, NRIP1, TRIM24,
GREB1, RARα, NCOR2 and HDACs13,21–25), ERα-associated
pioneer factors (e.g. FOXA126 and AP-2γ27), and putative pioneer
factors (e.g. GATA-328) with significant enrichment in the ERα
samples (Fig. 2b).

ERα was one of the most significantly enriched proteins
identified with 19 unique peptides (Fig. 2c), which is consistent
with previously published ERα RIME experiments14. A compar-
ison between the non-quantitative RIME and the qPLEX-RIME
data showed that 302 of the 323 (93%) proteins identified as
ERα-specific in the non-quantitative ERα-RIME pull-down
analysis were also identified by qPLEX-RIME with significant
enrichment over the IgG controls (mean fold-change of 2.5).
Notably, the application of qPLEX-RIME achieved overall better
peptide coverage for the overlapping ERα-associated proteins
compared to the non-quantitative RIME method (Fig. 2d).
Additionally, qPLEX-RIME identified 124 more known BioGRID
and STRING interactors compared to the non-quantitative RIME
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analysis (175 proteins > 2-fold and adj. p-value < 0.01 (Limma
moderated t-test) in qPLEX-RIME versus 51 proteins in non-
quantitative RIME). Importantly, using the qPLEX-RIME we
identified a number of novel ERα-associated candidate proteins.
We validated the interactions of CBX3 (HP1γ), NIPBL and
FOXK1 with ERα, using Proximity Ligation Assay (PLA)29

(Supplementary Fig. 1a). A GFP negative control was used to
moninor for non-specific interactions (Supplementary Fig. 1b).
Treatment of the MCF7 cells with the Selective ERα Degrader
(SERD) Fulvestrant30 (Supplementary Fig. 2) disrupted the above
interactions demonstrating the specificity of the PLA assay and
validating the interactors discovered by qPLEX-RIME (Supple-
mentary Fig. 1a and c).

To test whether our quantitative pipeline can be widely used to
study interactors of different bait proteins, we performed qPLEX-
RIME experiments on three additional factors following the same
experimental design as above. For these and all subsequent

experiments described in this study, we adopted the double
crosslinking approach as a comparison between single and double
crosslinking for ERα qPLEX-RIME data showed that the latter
increases the pull-down efficiency of known and previously
validated ERα interactors, including FOXA1, NR2F2 and NCOR2
(Supplementary Fig. 3a and Supplementary Data 3).

Firstly, the qPLEX-RIME method was applied to explore the
interactome of CBP (CREB-binding protein) and NCOA3 (SRC-
3); two well-characterised co-activators of nuclear receptors31.
We identified 1437 and 1135 proteins for CBP and NCOA3,
respectively, in the two multiplexed sets of bait and IgG pull-
downs at peptide FDR < 1% (Supplementary Data 4 and 5). Both
bait proteins were highly enriched in the target pull-downs
compared to the IgG controls (CBP:log2fold-change= 3.2 and
NCOA3:log2fold-change= 3.39) with a high number of unique
peptides (44 unique peptides for CBP and 36 unique peptides for
NCOA3) (Fig. 3a, b). Known interactors of CBP and NCOA3
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were identified including EP300, p160 co-activators, arginine
methyltransferases and the ERα complex31 (Fig. 3a, b). We also
identified several members of the SWI/SNF chromatin remodel-
ling complex, such as SMARCA4 (BRG1), SMARCE1 (BAF57),
SMARCB1 (BAF47) and SMARCC2 (BAF170). Additionally, in
the CBP qPLEX-RIME experiment we captured the association of
CBP with the transcription factor JunB32, as well as with subunits
of the mediator complex33, which are known to associate with
enhancer regions as well. Interestingly, in addition to other co-
activators, we also found a strong enrichment of co-repressors
such NCORs and HDACs in both data sets. This suggests that
both co-activators and co-repressors are part of the same
complex, which is consistent with previous findings demonstrat-
ing extensive co-localisation of co-repressors and co-activators by
ChIP-seq34.

Secondly, we studied the interactome of phospho-RNA
polymerase II (POLR2A) using an antibody that recognises the
phosphorylated serine-5, which serves as a platform for assembly
of factors that regulate transcription initiation, elongation,
termination and mRNA processing35. We identified 1442
proteins across all multiplexed samples (Supplementary Data 6)
and the bait protein was one of the top enriched proteins
(log2fold-change= 4.2), identified with 96 unique peptides

(Fig. 3c). A list of known polymerase II-associated factors were
also observed, such as subunits of the SWI/SNF complex, proteins
of the mediator complex, initiation and elongation factors36,37

that are highlighted in Fig. 3c. A comparison of the interactomes
of the four bait proteins (ERα, CBP, NCOA3 and POLR2A)
showed significant numbers of uniquely identified interactors as
well as partial overlap (Supplementary Fig. 3b). To examine
whether the overlapping proteins are more likely due to the
common underlying biology of the four baits rather than
technical bias, we made a venn diagram using a random selection
of proteins identified in the four qPLEX-RIME experiments,
without considering enrichment relative to the IgG pull-downs
(Supplementary Fig. 3c). This analysis showed a smaller number
of proteins in the intersection of the four bait proteins indicating
small contribution of technical factors to the observed overlap.

Taken together, our data demonstrate a gain in sensitivity
using the qPLEX-RIME method that can lead to the identification
of interacting proteins with statistical robustness and can be
widely used for the characterisation of different interactomes.

Study of ERα complex dynamics upon OHT treatment. To
investigate the dynamics of the ERα complex assembly upon
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treatment with the Selective Estrogen Receptor Modulator
(SERM) 4-hydroxytamoxifen (OHT), we performed three
qPLEX-RIME experiments (3 × 10plex) using independently
prepared biological replicates. MCF7 cells were crosslinked after
treatment with 100 nM OHT for 2 h, 6 h and 24 h or after 24 h of
vehicle (ethanol) treatment. Two biological replicates of each
condition were included in each experiment, resulting in a total of
six replicates per time point. Additionally, MCF7 cells were
treated with OHT or ethanol and crosslinked after 24 h treatment
in each experiment to be used for control IgG pull-downs, to
enable discrimination of non-specific binding.

To confirm that the drug treatment was successful, we
performed RNA-seq analysis of six biological replicates using
matched OHT treated samples. The mRNA data revealed
transcriptional repression of a number of known ERα target
genes at 6 h and 24 h, confirming the response to the drug
treatment. Specifically, at 24 h treatment the expression of PGR,
PDZK1, TFF1, AREG, PKIB, SIAH2, MYB, HEY2, FOS, GREB1
and TFF338–43 was significantly inhibited compared to the vehicle
treatment (log2Fold-Change <−0.5, adj. p-value < 0.05, Limma
moderated t-test) (Supplementary Fig. 4a and Supplementary
Data 7).

MultiNotch MS3 analysis of the qPLEX-RIME samples
quantified 1105 proteins (FDR < 1%) across all three replicate
experiments. Of these, 412 proteins were significantly enriched in
ERα pull-downs compared to IgG samples (log2Fold-Change > 1,
adj. p-value < 0.01, Limma moderated t-test) (Supplementary
Data 8). Total ERα levels changed upon OHT treatment
(Supplementary Fig. 4b), indicating that altered levels of antigen
may influence the amount of purified proteins. Our data showed
that this resulted in a significant dependency of the quantified

proteins on the amount of ERα pulled down (Supplementary
Fig. 5a). To correct for this effect, we applied a linear regression
approach15,44 using the ERα profile as the independent variable
and the profile of any other protein as the dependent variable.
The advantage of this approach is that proteins with strong
dependency on the target protein are subjected to significant
correction, whereas proteins with small dependency on the target
protein are only slightly corrected. Two such examples, of known
ERα interactors before and after correction are shown in
Supplementary Fig. 5b. Finally, using the quantification values
corrected for the abundance of ERα, we found 249 specific
proteins with altered profile in the interactome in at least one
time point (|log2Fold-Change| > 0.5, adj. p-value < 0.05, Limma
moderated t-test) allowing for a comprehensive mapping of the
dynamic organisation of the ERα complex in response to OHT
treatment.

Dissociation and recruitment of co-factors upon OHT
treatment. We next interrogated the significant changes observed
in the ERα interactome at each time point during OHT-mediated
growth inhibition. After 2 h treatment with OHT, a significant
loss of 12 proteins was observed including known ERα co-acti-
vators, such as NCOA3 (AIB1/SRC-3) and CREBBP (CBP)
(Fig. 4a). These proteins have been associated with histone
acetylation and activation of gene transcription23,45 and their loss
in the ERα interactome upon OHT treatment is consistent with
previous studies showing that OHT binding blocks access of co-
activators46. We also observed a significant loss of the interaction
between ERα and NRIP1 (RIP140) protein. NRIP1 can act as a
corepressor or as a coactivator47 with previous evidence
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suggesting that NRIP1 is required for ERα-complex formation
and ERα-mediated gene expression47. The quantification profile
of these key ERα co-activator proteins across all biological
replicates is shown in Fig. 4b. Furthermore, OHT treatment
resulted in the loss of GREB1 and its paralog gene product
GREB1L. Loss of GREB1 upon OHT treatment has been pre-
viously described13, but here we report the loss of both proteins
simultaneously.

After 6 h treatment with OHT, 237 specific interactors showed
significant enrichment (log2Fold-Change > 0.5, adj. p-value
< 0.05, Limma moderated t-test) compared to the vehicle
treatment, whilst NCOA3, NRIP1, GREB1 and GREB1L
remained at decreased levels in the interactome (log2Fold-
Change < -0.5, adj. p-value < 0.05, Limma moderated t-test)
(Fig. 4a). Notably, there was an enrichment in the recruitment
of several components of the NuRD (Nucleosome Remodelling
and Deacetylase) complex, e.g. HDAC1/224,48 and the signature
components MTA1/224,48, as well as an enrichment of the
co-repressor NCOR2 (SMRT)25,49 (Fig. 4b). Consistently, NURD
complex and NCOR2 has been previously shown by ChIP to be

recruited to promoter regions of ERα target genes following OHT
treatment23,24. Additionally, we found enriched subunits of the
ATP-dependent chromatin remodelling complex SWI/SNF,
which is known to regulate both gene activation and gene
repression50,51. Detected components included SMARCC2
(BAF170), SMARCE1 (BAF57) and SMARCA4 (BRG1) (Fig. 4b).
SMARCA4 protein, which was previously shown to be required
for repression of ER-mediated transcription50, was one of the top
enriched SWI/SNF proteins. The loss of NCOA3 and CBP at 2 h
and the enrichment of SMARCC2 (BAF170) and HDAC1 at 6 h
was validated with PLA assays (Supplementary Fig. 6a and b).

At 24 h we observed an almost complete restoration of the ERα
complex, with the exception of the NCOA3, NRIP1 and GREB1
proteins, which were still decreased (log2Fold-Change <−0.5, adj.
p-value < 0.05, Limma moderated t-test) (Fig. 4a). Taken together,
our results indicate that the inhibitory effect of OHT peaks at 6 h,
where ATP-dependent remodelling and corepressor complexes
may coordinate to create a transcriptionally inactive chromatin
environment.
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Identification of net changes in the ERα complex. Our data
suggest that treatment of MCF7 cells with OHT triggers sig-
nificant changes in the composition of ERα interactome. To
assess whether the changes identified by the qPLEX-RIME ana-
lysis are specific changes in interactions or result from changes in
total protein levels, we performed timecourse whole proteome
quantification in matched samples under the same conditions
(vehicle, 2 h, 6 h and 24 h, four biological replicates each) (Sup-
plementary Data 9). We confirmed the OHT up-regulation of
ERα protein levels (log2Fold-Change: 2 h 0.21, 6 h 0.5 and 24 h 1),
which was not due to an increase in gene transcription. This is
consistent with previous reports demonstrating increased ERα
stability in the presence of OHT52. A comparison between the
qPLEX-RIME results and the total proteome data confirmed that
the changes detected in the ERα complex upon OHT treatment
represent changes in protein recruitment as the respective total
protein and mRNA levels remained unchanged (Fig. 5a). GREB1
was the only ERα interactor with decreased mRNA and total
protein levels at 24 h treatment. This is consistent with GREB1
being an ERα target gene13,43 and explains the decreased asso-
ciation between ERα and GREB1 at this late time point.

Downstream k-means clustering of the most variable proteins
(adj. p-value < 0.05, Limma moderated t-test) across the three
time points in the total proteome, identified clusters of up- and
downregulated proteins (Fig. 5b). Gene Set Enrichment Analysis
of the clusters, performed in Perseus software53, displayed an
overrepresentation of genes related to estrogen response and
tamoxifen resistance (Fig. 5c). Our findings also revealed the
downregulation of proteins involved in cell cycle54 (Supplemen-
tary Fig. 7a), in line with the antiproliferative effects of OHT24.
Overall, significant changes in gene expression were observed
already at 6 h coinciding with pronounced changes in the ERα
interactome. As expected, the most significant changes in the total
proteome were observed at the later time point (24 h). These
results confirm that shuffling of ERα-associated proteins is not
typically due to global changes in protein levels. The low mRNA-
to-protein correlation at 2 h and 6 h and the respective strong
correlation at 24 h are shown in Supplementary Fig. 7b and c. We
conclude that our qPLEX-RIME data in combination with the
total proteome measurements delineate both the local molecular
events in the ER interactome and the associated downstream
global effects.
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Application of qPLEX-RIME in clinical tumour material. To
test whether qPLEX-RIME can be used to capture chromatin-
associated protein–protein interactions in cancer specimens, we
conducted an ERα qPLEX-RIME experiment using three inde-
pendent ER positive human PDX tumours (HCI-003, HCI-005,
HCI-006) that have been previously described55. Cryosections
(30 µm) of each tumour were double-crosslinked and each
tumour was split into ERα and matched IgG pull-downs (Fig. 6a).
The MultiNotch MS3 analysis identified 2319 proteins (FDR <
1%) across all multiplexed samples with highly reproducible
profiles (Supplementary Fig. 8a and Supplementary Data 10).
This analysis successfully recovered and quantified ERα

(log2Fold-Change= 1.72, adj. p-value= 0.026, Limma moderated
t-test, unique peptides= 3) using an unbiased mass spectrometry
approach in tissue. In addition, many validated and known ERα
interactors were discovered from the qPLEX-RIME conducted in
PDX material, including CBP23,56, NCOA256, HDAC124,
GREB113, SMARCE1 (BAF57)51, SMARCA4 (BRG1)45 and
NCOA5 (CIA)57 (Supplementary Fig. 8b). Sequence analysis of
the qPLEX-RIME data showed that 60% of the significant inter-
actors were identified with at least one unique human peptide (i.e.
a peptide that does not align to the mouse proteome), indicating
that the proteins identified above were primarily from the human
cancer cells. Consistently, the tumour samples showed high
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cellularity and positive staining for human ERα exclusively in the
cancer cells and not in the stroma (Supplementary Fig. 8c ).

Prompted by the successful application of qPLEX-RIME in
PDX tumours we sought to test the sensitivity of our method in
human cancer clinical tissues, collected from surgery. To this end,
we performed an ERα qPLEX-RIME experiment in five
independent human breast cancer tumours (ERα positive, PR
positive, Her2 negative and Grade2/Grade3). Approximately
60 sections (30 µm) were obtained per sample, which were
double-crosslinked and split for ERα and matched IgG pull-downs
(Fig. 6a). The analysis successfully recovered ERα with excellent
coverage (17 unique peptides), as well as 2191 proteins (FDR <
1%) that were quantified in all samples combined (Supplementary
Data 11). These included well-described ERα interactors such as
FOXA1, GATA3, GREB1, EP300, CBP, HDACs, NCORs and
NCOA2 and subunits of the SWI/SNF complex (Fig. 6b). The
enrichment of several ERα interactors in the bait samples
compared to IgG control samples is illustrated in Fig. 6c.

Our data highlights the method’s sensitivity and ability to
identify endogenous protein networks from heterogeneous
human tumour samples. Importantly, we report the identification
of interactors from human tumour tissue material in an unbiased
manner.

Discussion
Here, we describe qPLEX-RIME, a proteomic method which
enables comprehensive mapping of endogenous protein inter-
actomes with high sensitivity and statistical robustness. The
qPLEX-RIME approach integrates the well-established RIME
immunoprecipitation method with advanced high-resolution
quantitative multiplexed mass spectrometry analysis. The
method can be utilised to discriminate enriched bona fide binding
partners from contaminant proteins and to delineate the
dynamics of chromatin-associated protein complexes with in-
depth protein detection, reproducible quantification and
increased sample throughput. The filtering criteria for the
prioritisation of the best candidates depend on the type of
experiment and the biological question. For bait proteins where
very little is known about their interactome, we recommend the
use of more stringent specificity criteria in terms of enrichment
fold-change, p-value and number of unique peptides in combi-
nation with additional filtering based on functional annotations.
When the focus is on the dynamic changes of interactomes, the
prioritisation of the candidates mostly relies on their robust
quantitative profiling across different conditions.

The multiplexed analysis of our pipeline eliminates the need to
compare multiple data obtained by individual LC-MS runs,
thereby increasing the quantification coverage in very low abun-
dant protein interactors that are stochastically captured between
independent replicate runs58. The ability to combine the labelled
peptides derived from multiple samples increased the sensitivity of
the method and enabled the characterisation of the ERα inter-
actome in clinical tumours. Whilst interactors have previously
been detected from clinical material, this required targeted mass
spectrometry-based approaches and has not been done in an
unbiased manner before13. Additionally, the use of isobaric
labelling resolves the difficulties encountered with cell lines that
are not compatible with stable-isotope labelled culture media and
provides a means for quantitative analysis for clinical samples that
are not amenable to in vivo isotopic labelling techniques.
Importantly, our isobaric-labelling data demonstrated high
reproducibility with previously published SILAC data13 (Supple-
mentary Fig. 7d), confirming the accurate quantification obtained
by the MultiNotch MS3 level mass spectrometry analysis.

Here, we focused on ERα, the major driving transcription
factor in luminal breast cancer56, which can be targeted by
tamoxifen, a drug used for the treatment of ER+ breast cancer59.
Although many ERα interactors involved in ER-mediated gene
expression have been discovered23,45 our knowledge about their
relevance at the tissue level and the impact of tamoxifen on their
global association with ERα remains limited. The quantitative
data obtained by the qPLEX-RIME experiments has provided us
with a list of ERα-associated proteins with significant enrichment
over the IgG samples. These include transient, indirect or weak
interactions, as it is known that ERα associates with a number of
different co-activators rapidly in a cyclic fashion23,45. As such the
final readout of the crosslinking-based qPLEX-RIME method
represents the sum of these interactions. Among these, we vali-
dated the interactions between ERα and three proteins; namely
CBX3, NIPBL and FOXK1. CBX3 protein is a member of the HP1
protein family, a group of proteins that have been implicated in
gene regulation, DNA replication and nuclear architecture60,
whereas NIPBL is a core subunit of the highly conserved protein
complex cohesin that has an important role in chromatin struc-
ture, gene expression, and DNA repair61. The transcription factor
FOXK1 belongs to the forkhead family and has an important role
in tumorogenesis62,63. These findings demonstrate that the gain
in sensitivity obtained by qPLEX-RIME can reveal novel ERα
interactors. Collectively, we identified a compendium of 253
proteins with consistent presence in all MCF7 data sets (Fig. 7).
Importantly, our data show that the vast majority of these ERα-
associated proteins (83%) can now be studied either in PDX or in
human clinical tissues validating the relevance of these factors
in vivo. Additionally, our qPLEX-RIME data on three additional
factors, the CREBBP, NCOA3 and the phosphorylated form of
POLR2A, highlight the wide applicability of our pipeline.

The application of qPLEX-RIME targeting ERα at multiple
time points after OHT treatment, revealed a dynamic change in
ERα co-regulators following drug treatment recapitulating and
expanding the existing knowledge of OHT mechanism. After 2 h
OHT treatment, we observed a loss of important transcriptional
co-activators, such as NCOA3 and CBP, whereas at 6 h we
observed enrichment on the recruitment of two well-conserved
chromatin remodelling complexes, namely the NuRD and the
SWI/SNF complex. This coincided with the enrichment of the
basal corepressor NCOR2, which assists in the recruitment of
HDAC proteins64. At the latest time point of 24 h, we observed a
restoration of the ERα complex, which may be linked to the half-
life of OHT. The exceptions were NRIP1, GREB1 and NCOA3.
Interestingly, NCOA3 is amplified in breast cancer22 and its
expression levels have been associated with the effectiveness of
tamoxifen treatment65. Further, ChIP-seq analysis has revealed
that a number of binding sites of NCOA3 are associated with
genes with a predictive value for breast cancer patient outcome56,
supporting an important role of this co-regulator in tamoxifen
response.

Our timecourse data indicate a switch between activation and
repression of transcription in response to OHT treatment. This
transition engages a two-step process with the immediate loss of
co-activators, followed by the recruitment of co-repressors and
ATP-chromatin remodelling complexes that may act coopera-
tively or in a sequential manner to accomplish transcriptional
repression. The integration of qPLEX-RIME data with global
protein and mRNA analysis provides a comprehensive view of the
activity of a transcription-associated complex over time. A pro-
posed model of OHT mechanism is depicted in Supplementary
Fig. 9.

The qPLEX-RIME method can be used to monitor any
dynamic changes of interest and importantly can be applied to
clinical samples to study tumour evolution, treatment response or

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04619-5 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:2311 | DOI: 10.1038/s41467-018-04619-5 |www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


numerous other biological and clinical questions. It provides a
robust tool for the quantitative analysis of complexes that can be
applied to generate comprehensive endogenous protein–protein
interaction maps.

Methods
Cell lines and cell treatments. ERα-expressing MCF7 breast cancer cells were
cultured in Dulbecco’s Modified Eagle Medium DMEM (Gibco, Thermo Scientific,
Leicestershire, UK, ref. 41965-239). Media was supplemented with 10% foetal
bovine serum (FBS), 50 U/ml penicillin, 50 μg/ml streptomycin and 2 mM
L-glutamine. MCF7 cells were obtained from ATCC and they were tested for
mycoplasma contamination. Also, the MCF7 cells were genotyped by short-tandem
repeat genetic profiling using the PowerPlex_16HS_Cell Line panel and analysed
using Applied Biosystems Gene Mapper ID v3.2.1 software by the external provider
Genetica DNA Laboratories (LabCorp Specialty Testing Group). For the cell
treatments, 4-Hydroxytamoxifen (Sigma-Aldrich, #HG278) or Fulvestrant (Sell-
eckchem, #S1191) were used at final concentration 100 nM.

Whole cell lysate preparation and western blot analysis. Cell pellets were
reconstituted in 100 μl RIPA buffer (Thermo Scientific, #89901) that was supple-
mented with protease inhibitors (Roche). 25 μg protein from each sample was
loaded on the gel (Invitrogen 4–12%) and the Precision Plus, ProteinTM dual
colour Standards Protein molecular weight marker (Bio-Rad, #161-0974) was used
for the determination of protein sizes. The proteins were transferred onto a
nitrocellulose membrane using the iBlot® 2 Dry Blotting System (Invitrogen) fol-
lowed by one hour blocking using Odyssey® Blocking Buffer (Li-Cor,
927-40000). The membrane was immunoblotted with ERα antibody (Novocastra
#6045332, 1:100) and beta-actin (Cell signalling #4970, 1:1000). Detection of the
ER was achieved using the IRDye® 800 CW Goat anti-Mouse (926-32210, Li-Cor
Biosciences) diluted to 1:5000, while the loading control was detected using the
IRDye 680LT Goat anti-Rabbit (926-68071, Li-Cor Biosciences) diluted to 1:15000.
All antibodies were diluted in Odyssey Buffer contained 0.1% Tween. Supple-
mentary Fig. 10 shows the uncropped scan of the blot.

RNA-seq analysis. Cells were washed twice with cold Phosphate buffered saline
(PBS) and harvested using 350 μl of lysis buffer (RLT). Total RNA was extracted
using the RNeasy® kit (Qiagen, #74106) according to the manufacturer’s instruc-
tions. The extracted RNA was quantified using a NanoDrop® ND-1000

Spectrophotometer (Thermo Scientific). For the library preparation, the Illumina
TruSeq Stranded mRNA Library Prep Kit High Throughput was used according to
the manufacturer’s instructions and two lanes of 50 bp single-end reads were run
on HiSeq 4000. Reads were aligned to the human genome version GRCh37.75
using TopHat v2.1.066. Read counts were obtained using feature Counts function in
Subread v1.5.267 and read counts were normalised and tested for differential gene
expression using the DESeq2 workflow68. Multiple testing correction was applied
using the Benjamini–Hochberg method.

RIME analysis. MCF7 cells (2 × 106) were grown in complete media. The media
was replaced with PBS containing 1% FA (Thermo #28908) and crosslinked for 10
min. For the double crosslinking cells were incubated in PBS containing 2 mM
DSG (disuccinimidyl glutarate- Santa Cruz Biotechnology, #sc-285455A) for 20
min followed by incubation in 1% FA for 10 min. Crosslinking was quenched by
adding glycine to a final concentration of 0.1 M. For the performance of RIME
experiments, 50 μl of Dynabeads® Protein A (Invitrogen) and 5 μg of specific
antibody were used for each sample. The antibodies used were: Rabbit polyclonal
ERα antibody (Santa Cruz, sc-543), rabbit polyclonal SRC3 antibody (Bethyl
laboratories, A300-347A), rabbit polyclonal CBP antibody (Diagenode,
C15410224), rabbit polyclonal RNA polymerase II (phospho S5) antibody (Abcam,
ab5131) and rabbit IgG antibody (Santa Cruz, sc-2027 or Abcam, ab171870). For
nuclear extraction the cell pellet was resuspended in LB1 buffer (50 mM HEPES-
KOH (pH 7.5), 140 mM NaCl, 1 mM EDTA, 10% glycerol, 0.5% NP-40 and 0.25%
Triton X-100) followed by rotation mixing for 10 min at 4 °C. Then, nuclei were
pelleted and resuspended in LB2 buffer (10 mM Tris-HCL (pH 8.0), 200 mM NaCl,
1 mM EDTA and 0.5 mM EGTA) and rotated at 4 °C for 5 min. The samples were
resuspended in LB3 buffer (10 mM Tris-HCl (pH 8), 100 mM NaCl, 1 mM EDTA,
0.5 mM EGTA, 0.1% Na-deoxycholate and 0.5% N-lauroylsarcosine). Chromatin
was sheared by sonication (Diagenode) to produce DNA fragments of 100–1,000
bp. The bead-bound antibody and chromatin were incubated overnight at 4 oC.
The next day the beads were washed 10 times with 1 ml ice-cold RIPA buffer and
twice with 500 μl 100 mM AMBIC (ammonium bicarbonate).

Proximity ligation assay. Cells were fixed and permeabilised by the addition of
ice-cold methanol (−20 °C) for 3 min followed by three washing steps with cold
PBS. PLA was carried out according to manufacturer’s instructions (Sigma Aldrich,
#DUO92007). The following primary antibodies were used for the PLA assay: ERα
(Santa Cruz, sc-543 or sc-8002, 1:250) HP1γ (Santa Cruz, sc-365085, 1:400), NIPBL
(Santa Cruz, sc-374625, 1:200), FOXK1 (Santa Cruz, sc-373810, 1:200), GFP
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(Abcam, ab1218, 1:200), NCOA3 (Bethyl Laboratories, A300-347A, 1:200), CBP
(Bethyl Laboratories, A300-363A, 1:200), BAF170 (Santa Cruz, sc-17838, 1:200),
HDAC1 (Santa Cruz, sc-81598, 1:200) and the incubation on the coverslips was
performed for 1 h at 37 °C. For the single PLA recognition experiment two ERα
antibodies (Santa Cruz, sc-543, 1:800 and Invitrogen, MA5-13191, 1:1200) were
used in combination. The secondary proximity probes (Sigma Aldrich, Rabbit-
PLUS, #DUO92002 and Mouse-MINUS, #DUO92004) were incubated for 1 h at
37 °C. The Leica DFC340FX microscope was used and images were captured with
Leica Imaging software. DAPI and PLA fluorescence were captured at high reso-
lution for a total of 8 separate observation fields. Cell numeration and PLA
labelling were carried out using Image J software. Cells and red PLA dots were
counted using the ‘Analyze Particles’ function. For each condition at least 200 cells
were imaged and analysed. Then, the average value of number of spots per nucleus
was calculated. All statistical analyses were carried out by performing Student’s t-
test.

Immunofluorescence. Cells were fixed and permeabilised with ice-cold (−20 °C)
methanol for 3 min and after fixation cells were blocked in PBS-5 % (w/v) Bovine
Serum Albumin (BSA) (Sigma-Aldrich) for 30 min at room temperature. The
primary ERα antibody (Santa Cruz, sc-543, 1:250) was diluted in blocking solution
(PBS-5 % (w/v) BSA) and incubated on coverslips for 1 h at 37 °C. Afterwards, the
coverslips were washed four times in washing buffer (PBS-0.5% Tween). Secondary
antibody conjugated to Alexa Fluor 488 (Invitrogen, #A-21206, 1:500) was diluted
in blocking solution and incubated on coverslips for 1 h at 37 °C in the dark.
Coverslips were then washed again three times in washing buffer and once in PBS.

PDX propagation and tissue collection. Viably frozen PDX tumour tissue was
propagated in immune-compromised mice. Briefly, 1 mm3 tumour pieces were
implanted into the 4th mammary pad of NSG mice. All mice were supplemented
with estrogen, using silastic E2 pellets (made in-house) inserted into the dorsal
scruff. Twice weekly standard monitoring and tumour measurement was con-
ducted. Once tumours reached appropriate size, ~1000 mm3, mice were sacrificed
by cervical dislocation under deep, isoflurane-induced anaesthesia. The tumours
were resected, diced and processed by either snap freezing in liquid nitrogen, fixing
in 10% neutral buffered formalin solution for subsequent paraffin embedding,
embedding in OCT, or viably freezing in FCS supplemented with 5% DMSO.

Sample preparation of clinical tumour material. Clinical samples were cryo-
sectioned in 30 µm slices using the Leica CM 3050 S cryostat. Tissue sections were
fixed in a two-step procedure by adding 2 mM DSG for 25 min. In the same
suspension of tissue sections, 1% FA was added for another 20 min without
removal of the DSG. Crosslinking was quenched by the addition of glycine to a
final concentration of 0.25M. Samples were centrifuged for 3 min at 2500 g and the
supernatant was discarded. Tissue pellets were washed twice with cold PBS and
resuspended in 6 ml LB3 buffer (10 mM Tris-HCl (pH 8), 100 mM NaCl, 1 mM
EDTA, 0.5 mM EGTA, 0.1% Na-deoxycholate, and 0.5% N-lauroylsarcosine), fol-
lowed by tip sonication for 12–20 cycles (30 s on, 1 min off) depending on the
tumour size. The downstream processing was performed as described above (see
RIME method section) and the tissue samples were separated in two parts for the
performance of ERα and IgG RIME pull-down assays. Patient and patient-derived
tissues used in this work were collected under protocol X13-0133,
HREC/13/RPAH/187. HREC approval was obtained through the SLHD (Sydney
Local Health District) Ethics Committee ((Royal Prince Alfred Hospital) zone), and
site-specific approvals were obtained for all additional sites. Written consent was
obtained from all patients prior to collection of tissue and clinical data stored in a
de-identified manner, following pre-approved protocols. All animal procedures
were carried out in accordance to relevant national and international guidelines
and animal protocols approved by the Garvan/St Vincent’s Animal Ethics Com-
mittee (Animal ethics number 15/10).

Immunohistochemistry. FFPE blocks from PDX tumours were sectioned at 4 µm
onto Superfrost Plus slides. Immunohistochemistry was carried out using the Leica
Bond Autostainer. Sections underwent dewaxing, heat induced antigen retrieval
(Leica reagent ER2, 30 mins), and primary and secondary antibody incubations,
using ERα antibody (ab108398, Abcam, 1:500) and the EnVision+ Rabbit sec-
ondary system, respectively. Sections were counterstained with haematoxylin.

Trypsin digestion and TMT labelling. A volume of 10 μL trypsin solution (15 ng/
μl) (Pierce) in 100 mM AMBIC was added to the beads followed by overnight
incubation at 37 °C. A second digestion step was performed the next day for 4 h.
After proteolysis the tubes were placed on a magnet and the supernatant solution
was collected after acidification by the addition of 2 μl 5% formic acid. The
resultant peptides were cleaned with the Ultra-Micro C18 Spin Columns (Harvard
Apparatus) according to manufacturer’s instructions. The peptide samples were
dried with speedvac, reconstituted in 100 μl 0.1 M TEAB (triethylammonium
bicarbonate) and labelled using the TMT-10plex reagents (Thermo Fisher) with a
randomised design. The peptide mixture was fractionated with Reversed-Phase
cartridges at high pH (Pierce #84868). Nine fractions were collected using different
elution solutions in the range of 5–50% ACN.

For the total proteome analysis 200 μl of 0.1 M TEAB, 0.1% SDS buffer was
added to each cell pellet followed by probe sonication and boiling at 95 °C. Protein
concentration was estimated with Bradford assay (BIO-RAD-Quick start)
according to manufacturer’s instructions. For each sample, 90 μg of total protein
were reduced for 1 h at 60 °C by the addition of 2 μL 50 mM tris-2-carboxyethyl
phosphine (TCEP, Sigma). Cysteines were blocked for 10 min on the bench with
the addition of 1 μL 200 mM methyl methanethiosulfonate (MMTS, Sigma). For
peptide generation, trypsin (Pierce #90058) solution was added at ratio protein/
trypsin ~30:1 for overnight digestion at 37 °C. The next day peptides were allowed
to react with the TMT-10plex reagents (Thermo Scientific) for one hour. The
reaction was quenched with 8 μL of 5% hydroxylamine (Thermo Scientific) and the
labelled samples were mixed and dried with speedvac concentrator. The TMT mix
was reconstituted and fractionated on a Dionex Ultimate 3000 system at high pH
using the X-Bridge C18 column (3.5 μm 2.1 × 150 mm, Waters) with 1% gradient.
UV signal was recorded at 280 and 215 nm and fractions were collected in a peak
dependent manner.

LC-MS analysis. Peptide fractions were analysed on a Dionex Ultimate 3000
UHPLC system coupled with the nano-ESI Fusion Lumos (Thermo Scientific).
Samples were loaded on the Acclaim PepMap 100, 100 μm× 2 cm C18, 5 μm, 100 Ȧ
trapping column with the ulPickUp injection method using the loading pump at 5
μL/min flow rate for 10 min. For the peptide separation the EASY-Spray analytical
column 75 μm× 25 cm, C18, 2 μm, 100 Ȧ column was used for multi-step gradient
elution. Mobile phase (A) was composed of 2% acetonitrile, 0.1% formic acid and
mobile phase (B) was composed of 80% acetonitrile, 0.1% formic acid. The elution
method at flow rate 300 nL/min included the following: for 95 min gradient up to
45% (B), for 5 min gradient up to 95% (B), for 8 min isocratic 95% (B), for 2 min
down to 5% (B), for 10 min isocratic equilibration 5% (B) at 40 °C. For the clinical
sample analysis, a longer gradient separation was used as follows: for 160 min
gradient up to 40% (B), for 10 min gradient up to 95% (B), for 8 min isocratic 95%
(B), for 2 min down to 5% (B), and for 10 min isocratic equilibration 5% (B). The
Lumos was operated in a data-dependent mode for both MS2 and SPS-MS3
methods. The full scans were performed in the Orbitrap in the range of 380–1500
m/z at 120 K resolution. The MS2 scans were performed in the ion trap with
collision energy 35%. Peptides were isolated in the quadrupole with isolation
window 0.7 Th. The 10 most intense fragments were selected for Synchronous
Precursor Selection (SPS) HCD-MS3 analysis with MS2 isolation window 2.0 Th.
The HCD collision energy was set at 55% and the detection was performed with
Orbitrap resolution 60k and in scan range 110–400m/z.

Data processing and interpretation. The collected CID tandem mass spectra
were processed with the SequestHT search engine on the Proteome Discoverer
2.1 software for peptide and protein identifications. The node for SequestHT
included the following parameters: Precursor Mass Tolerance 20 ppm, Fragment
Mass Tolerance 0.5 Da, Dynamic Modifications were Oxidation of M (+15.995
Da), Deamidation of N, Q (+0.984 Da) and Static Modifications were TMT6plex at
any N-Terminus, K (+229.163 Da) for the quantitative data. Methylthio at C
(+45.988) was included for the total proteome data. The Reporter Ion Quantifier
node included a TMT 6plex (Thermo Scientific Instruments) Quantification
Method, for MS3 scan events, HCD activation type, integration window tolerance
20 ppm and integration method Most Confident Centroid. The consensus work-
flow included S/N calculation for TMT intensities and the level of confidence for
peptide identifications was estimated using the Percolator node with decoy data-
base search. Strict FDR was set at q-value < 0.01.

Bioinformatics Analysis. We developed an R package (qPLEXanalyzer) to per-
form downstream data analysis. All analyses were performed using only unique
peptides identified with high confidence (peptide FDR < 1%) across all experi-
ments. Peptide-level signal-to-noise (S/N) TMT values were corrected for equal
loading across samples using different normalisation approaches based upon the
experiment type. For the regression-based correction, unique peptides were
aggregated and proteins identified in all the experiments were kept for further
analysis. The normalisation on the bait protein level was carried out at protein level
using log2 row-mean scaled values. To filter-out non-specific proteins, a limma-
based differential analysis was performed comparing ER and IgG control samples.
In the regression analysis, the ERα profile was used as the independent variable (x)
and the profile of any other protein as the dependent variable (y) excluding the IgG
controls. The residuals of the y= ax+ b linear model represent the protein
quantification profiles that are not driven by ERα amount in the pull-down. More
details on the normalisation methods used can be found in Supplementary Note 2.
The identification of differentially bound proteins was carried out using the limma-
based analysis. A multiple testing correction was applied on p-value using the
Benjamini–Hochberg method to control the FDR.

Code availability. The qPLEXanalyzer and qPLEXdata R packages are available at
(https://doi.org/10.5281/zenodo.1237825). Both pipelines are described in detail in
Supplementary Notes 1 and 2.
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Data availability. RNA-seq data have been deposited in NCBI’s Gene Expression
Omnibus69 and are accessible through GEO Series accession number GSE104872.
The mass spectrometry proteomics data have been deposited to the ProteomeXchange
Consortium via the PRIDE70 partner repository with the data set identifier
PXD007968. All other data supporting the findings of this study are available from the
corresponding authors on reasonable request.
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Abstract

Estrogen Receptor alpha (ERα) plays a major role in most breast cancers, and it is the target

of endocrine therapies used in the clinic as standard of care for women with breast cancer

expressing this receptor. The two methods ChIP-seq (chromatin immunoprecipitation cou-

pled with deep sequencing) and RIME (Rapid Immunoprecipitation of Endogenous Proteins)

have greatly improved our understanding of ERα function during breast cancer progression

and in response to anti-estrogens. A critical component of both ChIP-seq and RIME proto-

cols is the antibody that is used against the bait protein. To date, most of the ChIP-seq and

RIME experiments for the study of ERα have been performed using the sc-543 antibody

from Santa Cruz Biotechnology. However, this antibody has been discontinued, thereby

severely impacting the study of ERα in normal physiology as well as diseases such as

breast cancer and ovarian cancer. Here, we compare the sc-543 antibody with other com-

mercially available antibodies, and we show that 06–935 (EMD Millipore) and ab3575

(Abcam) antibodies can successfully replace the sc-543 antibody for ChIP-seq and RIME

experiments.

Introduction

In the last decades, there has been significant interest in studying Estrogen Receptor alpha

(ERα) due to its causal role in more than three quarters of breast cancers[1]. Its key role in

breast cancer progression makes ERα the major target for endocrine therapies, which have

substantially improved patient survival. However, resistance to these therapies occurs in many

patients[2], which leads to incurable metastatic disease. Therefore, it is important to under-

stand the mechanisms underlying ERα action in cancer initiation as well as progression of the

disease. In addition, ERα plays an important role in development[3] and other diseases such as

ovarian cancer[4].

Our understanding of ERα-mediated gene transcription has evolved in recent years, due to

delineation of ERα-chromatin binding mechanisms through ChIP-seq (chromatin immuno-

precipitation followed by next generation sequencing) experiments[5–15]. It is now clear that
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differential binding of ERα to chromatin is associated with clinical outcome in primary ERα-

positive breast tumours[5], suggesting that changes in ERα binding mediates the altered gene

expression program that dictates endocrine responsiveness and clinical outcome. In addition

to changes in binding to chromatin, ERα transcriptional activity can be modulated by its asso-

ciation with different co-regulators and other associated transcription factors. Our lab has pre-

viously developed a method termed RIME (Rapid Immunoprecipitation of Endogenous

Proteins) for the study of protein complexes using mass spectrometry[16, 17]. A key compo-

nent of ERα ChIP-seq and RIME assays is the antibody that specifically and with high sensitiv-

ity targets ERα. Most ChIP-seq and RIME experiments have been performed using the ERα
antibody sc-543 from Santa Cruz Biotechnology[5, 9, 17–21]. This antibody has recently been

discontinued, impacting the ability to study ERα function in breast cancer as well as in other

diseases and physiological conditions. Here, we compare the sc-543 (Santa Cruz Biotechnol-

ogy) with other commercially available antibodies using breast cancer cells as a model and

demonstrate that 06–935 (EMD Millipore) and ab3575 (Abcam) antibodies can replace sc-543

in ChIP-seq and RIME assays.

Materials and methods

Cell culture

MCF7 cells were cultured in Dulbecco’s Modified Eagle Medium DMEM (Gibco, Thermo Sci-

entific) and MDA-MB-231 cells were grown in RPMI-1640 medium (Gibco, Thermo Scien-

tific). Both media conditions were supplemented with 10% foetal bovine serum (FBS), 50 U/

ml penicillin, 50 μg/ml streptomycin and 2 mM L-glutamine. Cell lines were obtained from

ATCC (Middlesex). For both ChIP-seq and RIME experiments, 2x106 cells were seeded in 15

cm2 plates and collected at 80–90% confluency.

ChIP-Seq and RIME assays

The sc-543 (Santa Cruz), ab80922 (Abcam), ab3575 (Abcam), sc-514857 (C-3) (Santa Cruz

Biotechnology), C15100066 (Diagenode) and 06–935 (EMD Millipore) antibodies were used

for ChIP-qPCR. The sc-543, ab3575 and 06–935 antibodies were then used for ChIP-seq and

RIME. For each ChIP, 10μg of each of the antibodies sc-543, 06–935 and ab3575 or the rabbit

IgG ab37415 (Abcam) were used together with 100μl of Dynabeads Protein A (Invitrogen).

The antibody and the beads were incubated overnight at 4˚C with rotation. MCF7 cells were

fixed for 10 minutes using 1% formaldehyde (Thermo, #28908) and quenched with 0.1M gly-

cine. Cells were then washed and harvested in ice-cold PBS containing protease inhibitors

(Roche). In order to enrich for the nuclear fraction, pellets were resuspended in Lysis Buffer 1

(50mM Hepes–KOH, pH 7.5, 140mM NaCl, 1mM EDTA, 10% Glycerol, 0.5% NP-40/Igepal

CA-630, 0.25% Triton X-100) and rotated for 10 minutes, at 4˚C. Cells were then pelleted,

resuspended in Lysis buffer 2 (10mM Tris–HCL, pH8.0, 200mM NaCl, 1mM EDTA, 0.5mM

EGTA) and incubated for 5 minutes, at 4˚C with rotation. For both ChIP-seq and RIME

experiments, cells were pelleted, resuspended in 300 μl Lysis buffer 3 (10mM Tris–HCl, pH 8,

100mM NaCl, 1mM EDTA, 0.5mM EGTA, 0.1% Na–Deoxycholate) and sonicated using the

Bioruptor Pico sonicator (Diagenode, Liege, Belgium) for 10 cycles (30 seconds on, 30 seconds

off). After sonication the samples were centrifuged at maximum speed for 10 minutes at 4˚C

and a small aliquot of supernatant was kept as input for ChIP-seq. The rest of the supernatant

was added to the Protein A Dynabeads, which were incubated overnight with antibody. The

next day, the beads for ChIP-seq were washed six times with RIPA buffer (150mM NaCl,

10mM Tris, pH 7.2, 0.1% SDS, 1% Triton X-100, 1% NaDeoxycholate), followed by one wash

with TE (pH 7.4). Both ChIP samples and inputs were then de-crosslinked by adding 200 μl
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elution buffer (1% SDS, 0.1 M NaHCO3) overnight at 65˚C. After reverse crosslinking, DNA

was purified using the phenol-chloroform-isoamyl DNA extraction method. ChIP-seq and the

input libraries were prepared using the ThruPlex Sample Prep Kit (Illumina). ERα ChIP-seq

was performed in at least duplicates for each condition. For RIME, the antibody-bound beads

incubated with the chromatin samples were washed 10 times with RIPA buffer and twice with

100mM AMBIC (ammonium bicarbonate) prior to mass spectrometry analysis.

Sample preparation, LC-MS/MS analysis and data processing

A 10μL trypsin solution (15ng/ul) (Pierce) prepared in 100mM AMBIC was added to the

beads followed by overnight incubation at 37˚C. The next day, trypsin solution was added for

a second digestion step followed by incubation for 4h at 37˚C. At the end of the second step

digestion, the tubes were placed on a magnet and the supernatant solution was collected and

acidified by the addition of 2μl 5% formic acid. The peptides were cleaned with the Ultra-

Micro C18 Spin Columns (Harvard Apparatus) and were analysed in the Dionex Ultimate

3000 UHPLC system coupled with the Q-Exactive HF (Thermo Scientific) mass spectrometer.

Samples were loaded on the Acclaim PepMap 100, 100μm × 2cm C18, 5μm, 100Ȧ trapping col-

umn with the ulPickUp injection method at loading flow rate 5μL/min for 10 min. For the

peptide separation the EASY-Spray analytical column 75μm × 25cm, C18, 2μm, 100 Ȧ was

used for multi-step gradient elution. Mobile phase (A) was composed of 2% acetonitrile, 0.1%

formic acid, 5% dimethyl sulfoxide (DMSO) and mobile phase (B) was composed of 80% ace-

tonitrile, 0.1% formic acid, 5% DMSO. The full scan was performed in the Orbitrap in the

range of 400-1600m/z at 60K resolution. For MS2, the 10 most intense fragments were selected

at resolution 30K. A 2.0Th isolation window was used and the HCD collision energy was set

up at 28%. The HCD tandem mass spectra were processed with the SequestHT search engine

on Proteome Discoverer 2.2 software. The node for SequestHT included the following parame-

ters: Precursor Mass Tolerance 20ppm, Maximum Missed Cleavages sites 2, Fragment Mass

Tolerance 0.02Da and Dynamic Modifications were Oxidation of M (+15.995Da) and Deami-

dation of N, Q (+0.984Da). The Minora Feature Detector node was used for label-free quantifi-

cation and the consensus workflow included the Feature Mapper and the Precursor Ion

Quantifier nodes using intensity for the precursor quantification. The protein intensities were

normalized by the summed intensity separately for the IgG and ERα pull downs (within group

normalization). The plots for ERα coverage were created using the qPLEXanalyzer tool[22].

Heatmaps and PCA plot were done with the Phantasus Web tool (https://artyomovlab.wustl.

edu/phantasus/). The mass spectrometry proteomics data have been deposited to the Proteo-

meXchange Consortium via the PRIDE[23] partner repository with the dataset identifier

PXD012930.

ChIP-seq data analysis

Reads were mapped to the GRCh38 genome using bwa version 0.7.12[24]. Prior to peak call-

ing, reads were filtered according to four criteria: (1) only reads aligning to canonical chromo-

somes (1–22, X, Y, MT) were considered for further analysis; (2) read aligning in blacklisted

regions were excluded[25]; (3) grey lists were generated using the R package GreyListChIP

and reads aligned in these regions were excluded; (4) reads with a mapping quality of less than

15 were excluded. Peak calling was carried out on each ChIP sample with MACS2 version

2.1.1.20160309 using the relevant input sample[26]. Peaks with a q-value < 0.01 were accepted

for further analysis. To create tag heatmaps, a consensus peak set was generated using the R

package DiffBind[5, 16]. The consensus peak set was composed of any peak that was called in

at least two samples. Motif analysis was carried out using AME[27] from the MEME suite

ChIP-seq grade ER antibodies

PLOS ONE | https://doi.org/10.1371/journal.pone.0215340 April 10, 2019 3 / 10

https://artyomovlab.wustl.edu/phantasus/
https://artyomovlab.wustl.edu/phantasus/
https://doi.org/10.1371/journal.pone.0215340


version 4.12.0[28] and the HOCOMOCO Human (v10) motif database[29]. Sequences for

motif analysis for each sample were derived by selecting the top 1000 peaks by q-value from

the MACS2 peak set and then extracting the genomic sequence 500 bases either side of the

peak summits. A detailed description of the pipeline can be found in S1 File. ChIP-seq data

have been deposited in NCBI’s Gene Expression Omnibus[30] and are accessible through

GEO Series accession number GSE128208.

Results and discussion

ChIP-sequencing validates 06–935 and ab3575 as specific ERα antibodies

Given the discontinuation of anti-ERα antibody sc-543, we sought to validate alternatives for

immunoprecipitation experiments. We first compared the established sc-543 (Santa Cruz Bio-

technology) antibody with ab80922 (Abcam), ab3575 (Abcam), sc-514857 (C-3) (Santa Cruz

Biotechnology), C15100066 (Diagenode) and 06–935 (Millipore). For this purpose, we used

the ERα positive cell line MCF7 and performed ChIP-qPCR in biological duplicates (S1 Fig)

to assess ERα binding at known target regions (S1 Table).

The ChIP-qPCR comparison suggested that 06–935 (Millipore) and ab3575 (Abcam) could

successfully enrich ERα-bound chromatin at these selected loci and could therefore substitute for

sc-543. We performed ChIP-seq to compare these three antibodies in MCF7 cells using IgG as a

negative control. ERαChIP-seq was performed in at least duplicates for each condition, using the

same batch of chromatin, to ensure that antibodies could be directly compared. In addition, we

included the ERα negative MDA-MB-231 cell line in order to assess non-specific binding by these

antibodies. For MDA-MB-231, ChIP-seq was performed in biological triplicates.

We observed 6,031 ERα binding sites for sc-543 (Santa Cruz) antibody, 6,192 peaks for

ab3575 (Abcam) and 6,552 for 06–935 (Millipore). Importantly, none of these binding sites

were observed in the IgG negative control. The vast majority of sites identified in MCF7 cells

by sc-543 overlapped with those detected by ab3575 and 06–935 (Fig 1A). Consistently, we

found a strong correlation between the binding intensities for the three antibodies, which was

similar to the correlation between replicates for the same antibody (Fig 1B). All three antibod-

ies showed robust enrichment at binding sites compared to background and motif analysis

identified the ERα response element (ERE) as highly significantly enriched at these sites (Fig

1C). Importantly, neither of the ab3575 and 06–935 antibodies showed any significant enrich-

ment in the ERα negative cell line MDA-MB-231 (Fig 1C). In total, one peak was detected in

ER-negative cells using ab3575, two peaks for 06–935 and 124 binding sites for sc-543, con-

firming the specificity of the antibodies. Examples of ERα binding to previously described

ERα binding sites[16, 31] are illustrated in Fig 1D. Taken together, this indicates that the

ab3575 (Abcam) and 06–935 (Millipore) antibodies perform similarly to the sc-543 (Santa

Cruz) antibody in ChIP-seq experiments, both in terms of sensitivity and specificity.

Validation of 06–935 and ab3575 antibodies using RIME

We next sought to evaluate the performance of ab3575 (Abcam) and 06–935 (Millipore) in

RIME experiments to directly compare with the sc-543 (Santa Cruz) antibody, which has pre-

viously been successfully used in RIME experiments to explore the ERα interactome[9, 16, 22].

To this end, we tested the 06–935, ab3575 and sc-543 antibodies in two technical replicates

each using MCF7 cells. IgG controls were also analysed to discriminate specific associations

from non-specific interaction events.

To evaluate the pull-down efficiencies, we compared the sequence coverage of the bait pro-

tein obtained by the different antibodies. ERα was identified with a similar number of peptides

(Fig 2A) across the three different pull-downs, confirming that all three antibodies achieve
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Fig 1. ChIP-seq comparison between Santa Cruz (sc-543), Millipore (06–935) and Abcam (ab3575) antibodies. A) Venn diagram showing

the overlap between ERα binding sites for Santa Cruz (sc-543), Millipore (06–935) and Abcam (ab3575) antibodies in MCF7 cells. B) Pearson’s

correlation between each replicate of all three antibodies in MCF7 cells. C) Top: De novo motif analysis of ERα binding sites using MEME.

Bottom: Heatmap of total number of ERα binding sites identified in both technical replicates of MCF7, and in all three biological replicates for

MDA-MB-231, respectively. D) Examples of ERα- bound regions. Tag densities are shown as reads per million.

https://doi.org/10.1371/journal.pone.0215340.g001

Fig 2. Comparison of RIME data between Santa Cruz (sc-543), Millipore (06–935) and Abcam (ab3575) antibodies. A) Protein sequence coverage of

ERα achieved by the use of Abcam (ab3575), Millipore (06–935) and Santa Cruz (sc-543) antibodies in RIME. B) PCA plot of known ERα interactors

(n = 319, BIOGRID and STRING databases) for the four different RIME pull-downs. C) Hierarchical clustering of the scaled intensities of known ERα
interactors from BIOGRID and STRING databases (n = 319). D) Hierarchical clustering of well-characterized ERα interactors.

https://doi.org/10.1371/journal.pone.0215340.g002
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efficient immunoprecipitation of the bait protein. Next, to compare the efficiency of the differ-

ent antibodies to detect known ERα interactors, we used a label-free quantification method

based on the Minora algorithm implemented in Proteome Discoverer 2.2 software (S2 File).

The PCA plot using intensities of known ERα-associated proteins (n = 319, BIOGRID and

STRING databases) across all four samples revealed a good separation between the ERα RIME

samples and the IgG controls, indicative of high specificity of all antibodies (Fig 2B). Impor-

tantly, we identify only minor differences between the three antibodies, suggesting that they all

efficiently pull down known ERα-associated proteins (Fig 2B and 2C). Specifically, amongst

the known ERα interactors we identified FOXA1, GATA3 and members of the p160 family that

were all highly enriched by all three antibodies (Fig 2D). Taken together, the three ERα anti-

bodies perform similarly in RIME experiments, enriching for well-known key ERα interactors.

Conclusions

Genome-wide analyses of ERα-chromatin binding sites using ChIP-based methods have expo-

nentially increased our knowledge of the role of ERα in breast cancer. Most of the published

ChIP-seq and RIME studies for ERα have been performed using the sc-543 antibody from

Santa Cruz Biotechnology[13, 16, 17, 19–21, 32] and the quality and specificity of sc-543 has

made it the ‘golden standard’ for immunoprecipitation experiments. However, this antibody

has recently been discontinued, which has significantly impacted our ability to study ERα biol-

ogy. Here, we have assessed commercially available alternative antibodies. We demonstrate

using ChIP-seq and RIME that the two antibodies 06–935 (Millipore) and ab3575 (Abcam)

perform similarly to sc-543, in terms of sensitivity and specificity. We therefore propose that

these antibodies can replace the sc-543 antibody for immunoprecipitation-based experiments

such as ChIP-seq and RIME to explore ERα function.

Supporting information

S1 Fig. ERα antibody comparison by ChIP-qPCR. ChIP-qPCR analysis for ERα known

binding sites was performed in MCF7 cells in biological duplicates. Results are shown as arbi-

trary units. Antibodies used: sc-543 (Santa Cruz Biotechnology), ab80922 (Abcam), ab3575

(Abcam), sc-514857 (C-3) (Santa Cruz Biotechnology), C15100066 (Diagenode) and 6–935

(EMD Millipore).

(TIF)

S1 File. Main steps of the ChIP-seq analysis. The file provides details for the main steps of

the Bioinformatic analysis of the ChIP-seq data.

(PDF)

S2 File. Quantitative proteomics analysis results. The file contains the protein intensities

across all the different RIME samples based on a label free quantification method using the

Minora algorithm in Proteome Discoverer 2.2.

(XLSX)

S1 Table. ChIP-qPCR primers. Table listing the primers used for the ChIP-qPCR experi-

ment.

(DOCX)
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