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Abstract The individual processors of a chip-
multiprocessor traditionally have rigid boundaries.
Inter-core communication is only possible via memory, and
control over a core’s resources is localised. The specialisa-
tion necessary to meet today’s challenging energy targets
is typically provided through the provision of a range of
processor types and accelerators. An alternative approach is
to permit specialisation by tailoring the way a large number
of homogeneous cores are used. The approach here is to
relax processor boundaries, create a richer mix of inter-
core communication mechanisms and provide finer-grain
control over, and access to, the resources of each core. We
evaluate one such design, called Loki, that aims to support
specialisation in software on a homogeneous many-core
architecture. We focus on the design of a single 8-core tile,
conceived as the building block for a larger many-core
system. We explore the tile’s ability to support a range
of parallelisation opportunities and detail the control and
communication mechanisms needed to exploit each core’s
resources in a flexible manner. Performance and a detailed
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1 Introduction

Current multi-core approaches provide a rigid target for the
programmer and compiler. This inflexibility and the prede-
termined partitioning of resources complicates the writing
of parallel programs. The hard boundaries given to cores
also exposes the limitations described by Amdahl’s law by
forcing the mix of sequential and parallel capability to be
fixed at design-time. Furthermore, computation and com-
munication are often controlled by hardware mechanisms,
making it difficult to streamline the implementation of a
particular program to overcome increasingly severe power
constraints. Perhaps surprisingly, while such concerns per-
sist, the architecture of most multi-core chips diverge little
from older multi-node machines, even though the design
space on-chip is far less constrained. In this paper, we
introduce the Loki architecture as a testbed for exploring
solutions that address many of the upcoming problems faced
by computer architects.

We explore a new approach to embrace the abundance
of new parallel programming and compilation techniques
and to achieve the necessary step-change in energy effi-
ciency. By allowing greater control over the placement of
data, placement of execution, and of how communication
takes place, higher performance and more energy-efficient
solutions can be built than are possible on a traditional
multi-core architecture. We suggest the programmer and
compiler specify an application-specific virtual architecture
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or overlay for their target application. This is a network of
the best processors, helper engines, accelerators, memories
and routers for that application. The overlay can take advan-
tage of parallelism inherent in the application’s structure,
rather than requiring that the program be modified to suit
the architecture, and it is possible to implement a range of
overlays with different area-energy-performance tradeoffs.
The ability to describe this overlay purely in software offers
further advantages, as it becomes possible to dynamically
adapt it in response to changing conditions at run-time. This
saves power by minimising superfluous switching activity,
for example by providing a direct low-cost communica-
tion path between certain components or by specialising
the computation resources (and their control) to a particular
task.

This approach requires an architecture that is able to
provide a sea of resources that can be combined into the
required overlay. We achieve this by allowing a large num-
ber of simple cores and memory blocks to communicate
freely over a single on-chip network. This logical network is
partitioned into multiple physical networks, each optimised
to reduce costs for a particular communication pattern. In
accordance with Pollack’s rule, we reduce the resources
devoted to each core, and use the saved area and energy to
place many more cores on-chip, resulting in an increased
overall potential for computation. The design allows cores
and memories to be composed to form larger computa-
tion structures, and provides more direct access to on-chip
resources, effectively exposing individual datapath compo-
nents to others on the network. To achieve the desired level
of flexibility while maximising energy efficiency, the design
additionally supports bypassing of resources when they are
not required.

The choice of a homogeneous design means Loki is also
well placed to tackle emerging challenges as we move to
future fabrication nodes. This decision makes many aspects
of the design simpler, including fault tolerance, design and
verification, optimisation and scaling. Loki’s support for
software specialisation narrows the gap between its homo-
geneous structure and an optimised heterogeneous architec-
ture. We aim to provide flexibility without imposing the
limitations of reconfigurable architectures, such as FPGAs
and CGRA:s, in terms of limited virtualisation capabilities,
poor control-intensive code performance and rigid on-chip
communication structures.

Much as an FPGA provides a substrate for logic-level
emulation, Loki and similar architectures provide a flexi-
ble processing substrate for executing software efficiently.
These arrays of processing elements may provide sup-
port for a broader range of applications, where individual
cores may be programmed as traditional processors but also
viewed as configurable circuit-level components which per-
form a single task. Loki differs from other polymorphic
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chip multi-processors in its finer granularity and its greater
scope for flexibly using datapath resources. The flexibility
of the sea of cores and memories can also be exploited at
run-time rather than requiring that overlays are static during
execution or requiring an explicit reconfiguration phase.

Loki’s novelty lies in the breadth of virtual architec-
tures which can be implemented efficiently and the speed at
which they can be configured. This is achieved by expos-
ing many hardware elements through the instruction set
and performing all specialisation in software. This arti-
cle is an extension of a previous publication [5]; its main
contributions are:

— An overview of the Loki architecture; one instance
of the class of communication-centric architectures we
describe (Section 2);

— A framework for high-level energy modelling, and a
detailed performance, energy and area characterisation
for the Loki architecture (Section 3);

— A demonstration that tightly-coupled cores, through
the provision of software-controlled interconnect,
allow a broad range of parallelisation techniques
(Section 4);

— Evidence to suggest that flexibility is necessary
in the types of parallelism which can be exploited

by hardware, with different parallel structures
allowing different energy-performance tradeoffs
(Section 4).

2 Loki Architecture

Loki is a homogeneous, tiled architecture, composed of
cores and memories connected through an on-chip net-
work (Figure 1). Some of the tiles contain a number
of processor cores and level-1 cache banks, as shown,
while others are made up of banks of a distributed
level-2 cache. Each core has a relatively simple 32-bit
scalar pipeline (Figure 2). A traditional RISC instruc-
tion set is augmented with the facility to provide most
instructions with direct access to the on-chip network.
The studies in this paper focus on a single tile of the
Loki architecture.

2.1 Software Specialisation

Loki aims to permit a programmer to exploit a wide-range of
execution patterns, mirroring the techniques used by many
different architectures, e.g. SIMD, fine-grain dataflow, task-
level pipelines, ILP, etc. Such patterns are exploited at
run-time through software rather than explicitly writing to
a configuration memory. The aim is to tailor the execution
and communication patterns to each program or phase of
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Figure 1 Loki’s tiled I
architecture. Left: chip with one
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a program. Software management of each core’s instruc-  directly onto the network. The network is used to carry both
tion and data stores is possible (though not compulsory), instructions and data and allows arbitrary communication
and network buffers are exposed to software through the  between both cores and memories.

instruction set. A tile has a local network allowing communication
between its constituent cores and memories. Each tile is
2.2 Network-Centric Design also attached to a global chip-wide network, allowing access

to more distant cores, L2 cache banks and main mem-
The network is central to the design and provides the basic ~ ory. The local network is implemented as a collection of

mechanism by which resources can be accessed and com-  networks each optimised for a particular communication
posed in a low-cost fashion. The buffers that hold incoming  pattern (Figure 3). Cores and memories communicate with
data from the network are register mapped and the instruc-  each other over two fast crossbars (one in each direction)

tion set extended to allow instructions to place their results ~ with half-cycle latencies to minimise memory latency. Each

Figure 2 Loki core

microarchitecture block

diagram. IPK: Instruction Packet

— atomic group of instructions

similar to a basic block. CMT: 1 1 l l I

Channel Map Table — mapping c
o i c MT CMT
between logical and physical S . read Input rite | output
network addresses. S IPK buffers buffers
532 cache
= Scratch-
pad
Register .
read L ] Register
write
Decode —r —‘

Immediate
sign-extend

@ Springer



106

Figure 3 Loki subnetworks.

J Sign Process Syst (2015) 80:103-120

8 x 32b (256b) + control

from cores
c0 c7

?

Credit
Router

H

Off-tile links

— T T 111111

Core 0 Core 7

|

to cores

Request
Router

Response
Router

N, S, E,W

L1 Ring Network

16 x 32b (512b) + control

Off-tile links

core also has a dedicated bus to which it can write to com-
municate with arbitrary subsets of other cores on the tile
within one clock cycle. L1 cache banks are connected by
a ring network to satisfy requests (e.g. for some instruction
packets) that overflow into neighbouring cache banks.

The tiles are connected in a mesh toplogy by the
global network. This consists of three physical subnetworks:
a request network, a response network and a reply (or
credit) network. Each network is constructed from simple
wormbhole routers with basic support to ensure equality-of-
service. The possibility of deadlock is avoided through the
provision of multiple networks and additional guarantees
on the availability of buffer space. Buffer space guarantees
are provided by preallocating buffer space for responses,
providing dedicated buffer space for memory requests from
each core at the memory controller and through the use of
end-to-end flow control for all direct core-to-core communi-
cations. An additional virtual channel (or physical network)
is required if L2 memory tiles are interleaved with compute
tiles, rather than partitioning the two types of tile on either
side of the chip.

Access to memory from each core is provided over
the network in a decoupled fashion. This differs from
the provision of a blocking memory access stage in a
typical pipeline. A load instruction requests data from
memory which is written into one of the core’s input
buffers. The pipeline will only stall if a subsequent
instruction attempts to read this buffer when no data
is present.
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Instructions are grouped into atomic blocks called
instruction packets (IPKs), which roughly correspond to
basic blocks in the program. This approach is suited to
the networked design: it allows a single memory request
to result in a large transfer of instructions; and it makes
prefetching simple, making it easier to hide memory
latencies. Full compiler-based management of cache con-
tents is also possible. Instruction packets may be sent
directly between cores, enabling the execution of short
instruction sequences at remote cores (e.g. to access or
store data in a remote tile). This is achieved either
by requesting that memory sends a packet to a remote
core or by sending an inlined instruction sequence to a
remote core’s instruction buffer. When an instruction
packet is fetched, it does not execute immediately, as
in the case of a traditional branch instruction, but is
queued up to execute when the current packet has com-
pleted. This behaviour is similar to the atomic instruc-
tion blocks used by the SCALE architecture [18]. Loki
also supports predicated execution to reduce the amount
of control flow, increasing the average size of instruction
packets.

Channels are a fundamental design feature which allow
components to communicate. Each core and memory has
associated with it a number of channel-ends, to which it
can read and write. Each channel connects a single source
to one or more destinations. Channels are typically allo-
cated at compile-time, though it is also safe to perform
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run-time allocation if it is known that messages from dif-
ferent sources will not collide. Attempting to read from an
empty input buffer, or channel-end, will cause the pipeline
to stall. Writes also stall if the network is blocked or, in the
case of longer distance communications, if no buffer space
is available at the receiving core (end-to-end flow control
is used). A layer of indirection is provided when writing
to a channel in the form of a channel map table (CMT).
This small table, present in every core, holds the full net-
work addresses that data will be sent to, avoiding the need to
encode these at the instruction level. The channel map table
is also used to specify multicast groups and enable commu-
nications (or entire threads) to be remapped transparently at
run-time.

Figure 4 lists a fragment of the kernel of the CRC bench-
mark. Before the kernel begins, sefchmapi associates the
logical network address 1 with the physical network address
held in r11. The function itself begins with an instruction
fetch: in this case, the next instruction packet to be executed
is known immediately, and is fetched in advance. The load
instruction (ldw) demonstrates the ability to send data onto
the network with the - > notation; most instructions are able
to store their results locally, send them over the network,
or both. The load works by sending a memory address over
the network to the appropriate cache bank. The cache bank
also has a channel map table which has been configured to
send data back to channel 2 of the core. This data is used in
the final instruction: registers 2-7 are mapped to the input
buffers. The .eop marker denotes the end of the instruc-
tion packet and triggers the start of execution of the packet
fetched previously.

Figure 4 CRC code example
showing features of Loki’s
instruction set.
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2.3 Instruction and Data Supply

Instruction packets can be stored in each core’s 64-word
level-0 (LO) instruction packet cache to take maximum
advantage of any available locality. Effective use of such
LO instruction caches has the potential to significantly
reduce power consumption [17, 24]. The cache is fully asso-
ciative and has a FIFO replacement policy to minimise
the number of conflict misses and maximise utilisation of
such a small store. If the position of an instruction in the
cache is known statically any tag checks can be bypassed,
saving energy.

Each core also has a 16-word instruction buffer. The
buffer is used for instructions which will only need to
be read once and for specialised code sequences which
fit in the smaller store. This includes simple tasks sent
between cores, but also includes code regions for which
the cache will perform poorly, allowing the relatively
expensive cache to be bypassed and reducing instruc-
tion supply energy. The buffer has priority over the
cache: if there are pending packets in both structures,
the one from the buffer is selected. Once an instruction
packet from either source begins execution, it continues
to completion.

A 256-word compiler-managed scratchpad is provided in
each core to reduce the cost of accessing small tables of
data, constant values, and sometimes sections of the stack.
The scratchpad has the advantage that when a table is stored,
element x of the table can often be stored at index x of
the scratchpad, eliminating the need to generate a memory
address.

uint32_t updateCRC32(uint8_t ch,

uint32_t crc)

{
return crc_32_tab[(crc ~ ch) & Oxff] ~
(crc >> 8);
}
(a) C code

setchmapi 1, riil # set up output channel 1
[...]
fetch rio0 # pre-fetch next packet
xXor ril, ri13, ri4 # rll = argl = arg2
11i r12, %lo(crc_32_tab) # lower 16 bits of label
lui r12, %hi(crc_32_tab) # upper 16 bits of label
andi ri1, ri1, 255 # ri1l = ri11 & 255
slli ri1, ri11, 2 # r11 = ri1l << 2
addu ril1, r12, ri1 # ril = r12 + ri1
ldw 0(r11) -> 1 # request data from memory
srli ri2, r14, 8 # r12 = r14 >> 8
XOor.eop ri1, r2, ri2 # use loaded data (r2)

(b) Loki assembly code
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2.4 Memory System

Each tile holds eight 8kB memory banks which make up
the unified L1 cache. To increase uniformity and flexibil-
ity, memory banks are also accessed over the network. This
allows cores to masquerade as memories, e.g. in order to
apply a transformation to memory addresses before access-
ing the banks themselves. It also makes the memory banks
easily accessible to multiple cores, reducing the need for
a hardware coherence mechanism. In order to reduce the
impact of the network latency when accessing memory,
arbitration is done in parallel with computation or memory
access — the total time required to access what is effectively
a 64kB banked L1 cache is two clock cycles in a zero-load
system.

The L2 memory system is left undefined for this work
as it is outside of the local tile. We are currently experi-
menting with a configurable L2 memory system that would
allow the L2 cache memory to be used in a number of
different ways. Loki does not currently support hardware
cache coherence between tiles; we are exploring various
low-complexity approaches to providing coherence when
necessary.

3 Methodology
3.1 Performance Modelling

The architecture is modelled in SystemC. Together
with performance data, fine-grain event counts are col-
lected in order to estimate energy consumption. Simula-
tion is cycle-accurate apart from the modelling of sys-
tem calls, which complete instantaneously. For this rea-
son, we lightly patch some benchmarks to remove sys-
tem calls from inner loops, to reduce their impact on
performance results.

The L2 cache is not fully modelled: it has a latency of
ten cycles (beyond the L1), consumes no energy, and is
large enough to hold all data required to execute a bench-
mark. The impact of this on our current compute intensive
benchmark suite is minimal.

3.2 Benchmarks

Our experiments are performed using the MiBench bench-
mark suite [9]. We use only integer benchmarks, since Loki
doesn’t yet have hardware floating point support, and we
use only those benchmarks which compile (some require
libraries which are not yet supported on Loki). We simu-
late ten benchmarks in total covering all six of the MiBench
categories: automotive, consumer, network, office, security
and telecom.
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All benchmarks are compiled using the settings sug-
gested by the MiBench makefiles and are executed using the
“small” inputs. We execute the benchmarks with the aid of
the Newlib [13] C standard library implementation.

We use a custom LLVM-based [19] compiler. Since the
compiler is not yet able to perform some optimisations, we
hand-modify the most frequently executed regions of each
benchmark. The modifications are expected to be within
reach of a standard optimising compiler, and include simple
optimisations such as removal of no-ops and filling branch-
and load-delay slots. Parallelisation of benchmarks is also
performed by hand at the source code level.

3.3 Energy Modelling

We describe all of the major datapath main components
in SystemVerilog and implement them using the Synop-
sys Design Compiler and IC Compiler tools. Parasitics are
extracted using StarRC and power is measured on a cycle-
by-cycle basis using Primetime. Simulation event logs are
then combined with energy consumption data in order to
form an energy model using a multiple regression analy-
sis for each component. Events of interest include the types
of operation performed and number of bits toggled. Power
is estimated assuming perfect clock-gating at the datap-
ath component level. Energy models for interconnects are
extracted in a similar way for fast, slow, well spaced and
congested scenarios. We use Orion 2.0 [14] to model the
high-level clock tree and validate it against a 1-bit bus of
comparable length. We use a commercial memory compiler
to obtain energy models for each of the SRAMs.

All results are obtained by targeting a commercial low-
power 40nm process. In particular, we use cells from
a general-purpose nominal-V; library. Leakage is subse-
quently low and is not reported here. Timing is closed using
a multi-corner PVT analysis where 0.99V and -40°Cis usu-
ally the worst-case corner. Energy results are reported for
the typical case (1.1V, 25°C). We target a 435MHz clock
rate due to timing constraints imposed by the instruction
packet cache, register file, and L1 cache banks. The design
is conservatively margined at the WC corner including
foundry recommendations for on-chip variation and clock
jitter. Our clock period is ~42 FO4 delays: within the typ-
ical range of 40-60 FO4 delays for modern system-on-chip
designs. We note that synthesising and modelling each dat-
apath component separately will likely overestimate costs
slightly due to the lack of cross-boundary optimisation.

The floorplan of a single tile is shown in Figure 5. A tile
size of Imm? permits 8 cores and 8x8kB memory banks,
with a crossbar latency of half a clock cycle and a mul-
ticast latency of one cycle. A larger tile would increase
the latency and energy costs of communication: adding an
extra cycle of L1 cache latency reduces performance by
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Figure 5 Floorplans for tile and core after all major subcomponents
have been placed and routed. The tile occupies an area of Immx Imm
and each core occupies 360Lm x 125pum.

an average of 15%. A smaller tile would reduce the gains
from coupling cores, as more communication would involve
traversing a higher level of the network hierarchy. It is inter-
esting that the network structures consume such a small

Figure 6 MiBench baseline
energy distribution.
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area — this highlights the opportunities for dense intercon-
nects and a rich variety of communication patterns. Each
core was configured as follows after a simple exploration of
the design space: 64-word instruction cache (with 16 cache
tags); 32-word register-file; 7 network buffers of 4 entries
each; 256-word scratchpad memory; 16-entry channel map
table.

4 Evaluation

In this section we explore some of the many parallel exe-
cution patterns possible when fast and efficient inter-core
communication is available. Mapping code across multi-
ple cores can be used to increase both performance and
energy efficiency. Three case studies are performed into
different types of parallelism, using subsets of the bench-
marks which are able to make use of each. Small studies
are performed to identify the effects of additional hardware
changes which could further improve the profitability of
particular execution patterns.

4.1 Baseline

Energy consumption for each benchmark running on a
single Loki core is shown in Figure 6 — data supply
consists of register and scratchpad accesses, and the net-
work interface consists of the channel map table and net-
work buffers. Energy per operation varies between 10.2pJ
and 20.6pJ, and is usually dominated by the supply
of instructions from the cache hierarchy. In general,
the benchmarks with the highest energy consumption per
operation are those for which the LO instruction cache
performs poorly: adpcm (both compression and decom-
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pression) consists mainly of a single loop which is too
large to fit in the local instruction store, and jpeg, gsort
and stringsearch contain extensive control-intensive code
sections.

An ARM1176JZF-S processor in the same process con-
sumes approximately 140pl/operation (scaled from pub-
lished data at 65nm [3] and confirmed through measure-
ment) and consumes an area of approximately 1mm? with
32kB cache and a double-precision floating point unit.
Dynamic instruction counts are 1.4-2.2x higher on Loki
than the ARM processor at present. Overall execution on a
single Loki core is typically 1-1.8x slower than the ARM
core clocked at the same frequency. In most cases, Loki is
able to close the performance gap when exploiting addi-
tional cores. The large difference in energy per operation
suggests that it is possible to execute many Loki instructions
in place of each ARM instruction to improve performance,
while still consuming relatively little power.

4.2 Data-Level Parallelism (DLP)

When all iterations of a loop are independent (DOALL),
executing them in parallel is trivial; the iterations can be
sliced in whichever way is most convenient, and distributed
across the cores.

When there are fixed cross-iteration dependencies
(DOACROSS), it is necessary to set up communication
channels before the loop begins, and modify the loop body
to use the network when appropriate. On Loki, this can usu-
ally be done with zero performance overhead, as reading
from the network replaces a register read, and sending onto
the network is an optional feature of most instructions. The
exception is that data must be copied into a register if it
is needed multiple times since reads from network buffers
are destructive. Also required are an initialisation phase
to send the initial live-ins, and a tidying phase where any
superfluous values are drained after the loop completes.

A number of loops exhibiting data-level parallelism
were selected from the benchmarks. adpcmc contains
DOACROSS parallelism, and all others are DOALL.
Figure 7 shows how performance and energy scale as the
number of cores used increases. The loops display a wide
range of behaviours: some, such as stringsearch scale well,
achieving a 5.4x speedup on 8 cores, and others such
as jpeg dct do not scale well because there are too few
loop iterations for the execution pattern to be worthwhile.
adpcmc converges on a speedup of approximately 2 when
it uses 3 cores; this is limited by the dependencies between
iterations and is not helped by the addition of further cores.
For many of the benchmarks, energy remains roughly con-
stant as more cores are used. This is because the same work
is being done, but spread across more cores. The height
of the line on the energy graph represents the overhead of
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the execution pattern: bifcount inner has very tight loops,
so the overhead is proportionally higher. For jpeg dct and
Jjpeg huff, energy increases because there are not enough
loop iterations to overcome the overheads of filling multiple
LO caches.

When mapping data-level parallelism across multiple
cores, much work is duplicated. This includes repeated com-
putation or access of data, and repeated fetching of identical
instructions. We explore using one core as a helper core
to provide common data required by all other cores. This
reduces the work done by the data-parallel cores and con-
tention at L1 banks, at the cost of reducing the number
of cores processing the input data by one. This process of
extracting redundant work is known as scalarisation [20].

The impact of such helper cores is shown in Figure 8.
dijkstra and stringsearch are excluded as they are too
control-intensive to benefit from a helper core. adpcmc
is excluded because it makes use of DOACROSS paral-
lelism, so the cores require more decoupling than the helper
core allows. In most cases, energy consumption decreases
from the plain DLP implementations because less work is
being done in total. For bitcount inner, bitcount outer and
Jjpeg color, total energy consumption reduces as the number
of cores increases because the helper core is able to pro-
vide data to more cores at once, so needs to do so fewer
times. The performance impact depends on the amount of
work which can be offloaded onto the helper core and the
number of cores being used, and ranges from a 20% decline
for jpeg dct to a 16% improvement for jpeg color. Energy
consumption for 8 cores is an average of 11% lower than
without the helper core.

In practice, the helper core could take a variety of
forms, i.e. it could itself be a virtual processor composed
of multiple cores to take advantage of further parallelism.
Alternatively, the helper core could be used to allocate
work to the other cores, forming a worker farm. A worker
farm allows load balancing between cores, and is most
useful when there are many independent tasks to be per-
formed, with a high variance in execution time. Instead
of being allocated a static subset of tasks, worker cores
request new tasks from a master core when necessary. This
allows cores which complete their work quicker to con-
tinue being productive, while slower cores do not hold
up the others.

Loki’s worker farm implementation therefore offers a
tradeoff: plain DLP offers higher potential throughput by
using more cores, but is vulnerable to variance in task
length; worker farms spend a core to offer better load bal-
ancing. This is a similar tradeoff to that of scalarisation,
where one core is removed from the group to fetch data and
perform computations common to the rest of the cores. With
the current implementation, a worker farm is limited to five
workers, as each needs a separate communication channel
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with the master core; this could be improved by using a
hierarchy, or by allowing worker cores to share channels.

Energy for a worker farm is almost always going to
be higher than for normal DLP; all of the same work is
being performed, plus the overheads of the master core
issuing tasks. This technique is targeted at loops with vari-
able iteration execution times, and may be able to improve
performance in these cases.

Figure 9 shows how the largest worker farm (5 workers
and 1 master) compares with a DLP group of the same size,
and with the largest DLP group tested. Kernels which con-
tain no control flow are excluded as these will have very
little variance in execution time, and so will not be helped
by the worker farm execution pattern.

bitcount inner and stringsearch show no improvement
in performance when moving from DLP to a worker farm.
Their loops are tight, so the overheads of communicating
with the master core are not worthwhile. Performance losses
are less than the é which might be expected by remov-
ing one of the cores from the data-parallel computation,
indicating that load balancing helps slightly. bitcount outer
makes more effective use of its six cores than the plain
DLP implementation, but is not able to match the total
throughput of the 8 core version. dijkstra shows a large per-
formance improvement of 30% over 6-core DLP, and also

T T T T T I
3 4 5 6 7 8

Cores used

outperforms the 8 core implementation comfortably. This
indicates that there is a high variability in the execution
times of dijkstra’s loop iterations, and that in some cases,
intelligent management of computation can result in lower
execution times, even when far less execution resources
are available.

We also perform a limit study on the possibility of
each instruction being cached by only a single core, and
distributed to all others when necessary (Figure 10). Instruc-
tions are distributed before being decoded: Loki’s decode
logic is very simple, and existing buses can be used, rather
than requiring a wider bus for decoded instructions. In the
limit case (Lower bound), this will cut instruction supply
costs (including memory accesses and network activity) by
the number of cores. More realistic implementations are
also presented: Multicast direct includes the cost of com-
municating the instructions directly to other cores’ pipeline
registers, and Multicast to buffers uses the existing core-
to-core network to send instructions to cores’ instruction
buffers.

With no duplicate instructions in the cores’ LO caches,
the LO cache capacity of the group scales up by the number
of cores. Access costs remain constant, however, since only
a single cache is accessed at a time. Larger cache shows
the energy impact of LO caches which are 8 times larger
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Figure 8 Performance and ©
energy consumption as the

width of the number of 0 —

data-parallel changes, when
making use of a helper core,
relative to the baseline
sequential implementation.
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but have the same access costs. Techniques for switch-
ing between different cores’ instruction caches have been
demonstrated previously by the Elm architecture [4]. The

Tl

Figure 9 Performance comparison between worker farm and DLP for
a selection of benchmark kernels. All figures are relative to the single
core base case.
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extra cache capacity improves performance by an average
of 14% for 8 cores.

The technique is only suitable for DOALL paral-
lelism, since the cores all execute the same instruction
at (roughly) the same time. We assume that it is pos-
sible for data to be arranged in memory such that the
effects of additional contention at the L1 banks are
negligible.

Modern embedded processors often have SIMD exten-
sions to their instruction sets to improve performance and
reduce power consumption. We believe that Loki’s flex-
ibility allows us to increase coverage and accelerate a
higher fraction of code. In addition, this optimisation can be
applied in combination with scalarisation to further reduce
energy consumption.

4.3 Dataflow

Dataflow is an execution paradigm where a change in the
value of a variable automatically forces recomputation of
any variables which depend on it.

Dataflow can be implemented on Loki by placing a
small number of instructions on each core and setting up
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Figure 10 Energy consumption
of various instruction sharing 30 —
strategies. Results are for 8
cores. Default: DLP with no
instruction sharing; Large 25 -
cache: each core has 8 x the LO
cache capacity; Multicast to
buffers: instruction is read from 20 -
one LO cache and distributed to
instruction buffer of all other
cores; Multicast direct:
instruction is read from one LO
cache and distributed directly to
decode stage of all other cores;
Lower bound: instruction
distribution is instant and
consumes no energy.

15

pJ/operation

bitcount_inner

the required communication paths between cores to sat-
isfy their data dependencies. The instructions on each core
are executed repeatedly until computation has finished. We
call these persistent instruction packets, and they are exe-
cuted by using a special version of the fefch instruction
which specifies that the packet should execute repeatedly
until a next instruction packet command is received or a
new packet is fetched. Loki’s blocking network accesses
mean that cores wait to receive new data before pro-
cessing it. One of the advantages of the dataflow execu-
tion pattern is that it reduces switching activity in each
pipeline. If the persistent instruction packet contains a sin-
gle instruction, it can remain in the execute stage and
much of the pipeline can be power gated after the first
access: the entire fetch pipeline stage (including pipeline
register); decoder; channel map table; and register file
(if nothing is written to it).

Although much of the pipeline is superfluous when one
instruction is executed repeatedly, network buffers, arbiters
and interconnect see increased activity. Dataflow execu-
tion is only beneficial if these costs are outweighed by the
savings in reduced pipeline activity.

Coarse-grained reconfigurable architectures (CGRAs)
are composed of a mesh of functional units and are
designed to execute dataflow graphs with low overhead.
Loki can be seen as similar to a CGRA, but with an
entire processor instead of a simple functional unit. This
increases computation overheads, but allows better per-
formance in other cases, such as control-intensive code.
It is possible to map multiple instructions to a single

i
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Loki core in cases where overheads of pure dataflow
are too high.

Figures 11 and 12 show how behaviour changes
for two benchmarks with tight loops which can make
use of the dataflow execution pattern. For each bench-
mark, a baseline running on a single core is com-
pared against a version where instructions are spread
across as many cores as possible to mimic traditional
dataflow (spread), and a version where all instruc-
tions on the critical path are placed on a single

core (perf).
10
84 ii

Figure 11 Energy distribution when using dataflow execution pattern.
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Figure 12 Relative behaviour 1.0 —

when using dataflow execution

pattern.
0.8
0.6
0.4
0.2
0.0 -

bitcount
bitcount_perf

Figure 11 shows that energy spent on instruction and
data supply decreases as the application is spread across
more cores. This is because the average number of instruc-
tions on each core decreases, and it is possible to fit them
into the more-efficient instruction buffer and bypass the LO
cache. Data supply energy is reduced due to fewer register
accesses, but is replaced by increased network costs. Com-
ponents such as the decoder and pipeline registers also show
reduced activity.

Figure 12 shows that execution time and performance
both improve over the baseline in all cases. crc sees a
reduction in the number of operations due to the increased
number of available registers. Performance does not
improve when the application is spread across more
cores because network latency is introduced to the criti-
cal path, slowing execution. Energy consumption doesn’t
see any improvement in these cases either. It was
found that keeping a value in a local register file was
3.7pJ cheaper than sending the value to another core
(assuming 50% of bits toggle). This is greater than the
2.7pJ saved when a core repeatedly executes a single
instruction and is able to bypass many components in
the pipeline.

Both latency and energy consumption can be improved
by taking inspiration from CGRAs and providing direct
links between functional units of neighbouring cores. This
would bypass much of the network, and reduce latency
to zero cycles, at a cost of larger multiplexers at ALU
inputs. Since each core can consume two inputs and pro-
duce one output but has only two neighbours, the worst case
is that two-thirds of dataflow communication can use these
direct links. In practice, the fraction is often much higher
because of operations with fewer inputs or outputs and
instructions which use multicast instead. 75% of bitcount’s
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crc_direct
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communication was between neighbouring cores, and 88%
for crc.

The results of using this technique are shown in the direct
entries in Figures 11 and 12. Network latency no longer
adds to the critical path, so performance matches the perf
case, but more cores are able to enter a low-energy state. bit-
count’s energy reduces by 28% compared with the spread
case to 4.5pJ/operation, and crc’s energy reduces by 19% to
7. 7TpJ/operation.

4.4 Pipeline-level Parallelism

Pipeline (or streaming) parallelism involves each core inde-
pendently processing data, and passing the result onto
the next core. This pattern has similarities to dataflow,
but is coarser-grained, generally has a linear communi-
cation structure, and has a greater focus on data local-
ity. Locality is improved by having each core working
on a small section of the program and usually on a
subsection of the input data. At the same time, paral-
lelism is exploited by executing multiple pipeline stages
simultaneously.

This can be implemented on traditional multi-core archi-
tectures, but we have more flexibility on Loki: each pipeline
stage can be made parallel (useful for eliminating bot-
tlenecks) and cheaper communication allows finer-grained
stages. We also explore the use of pipelining for reasons
other than improving performance: energy consumption can
be reduced by making use of the increased cache and
register capacity of multiple cores.

Each pipeline stage can be mapped to a virtual proces-
sor on the Loki fabric. The virtual processor can be a single
core, or it could be a group of cores, specialised for the
particular workload. The virtual processor can exploit any
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form of parallelism, or could be optimised to reduce energy
consumption (or both).

Pipeline parallelism was manually extracted from appli-
cable MiBench applications by creating a function for
each pipeline stage whose result was the input for the
next stage. Figure 13 presents the performance and energy
impact of this transformation. For stringsearch, perfor-
mance improved by 4.2x with 6 cores, and for jpeg color,
performance improved by 1.8x with 3 cores. In both cases,
energy consumption rose at first, due to the overheads of
the wrapper function used to implement pipelining, but then
fell as cores’ tasks became small enough to fit in the LO
cache. We expect that these overheads can be reduced with
compiler optimisation, improving the profitability of this
execution pattern in the process.

We further explored the effects of pipelining for
improved cache behaviour with the adpcmc benchmark; its
main loop body does not have an obvious point at which it
can be split, and there are dependencies between loop iter-
ations which prevent traditional pipeline parallelism. The
loop body was naively split at the basic block boundary clos-
est to the halfway point such that each section fit in an LO
cache, and register contents were communicated across the
network as necessary. This transformation effectively cre-
ates a virtual processor which is tailored to the application
by providing sufficient instruction cache space. A positive
side effect is that the number of registers and functional
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units also increase, allowing for parallelism and reduced
register pressure. After applying the basic optimisations
described in Section 3.2, performance improved by 153%
and energy reduced by 69% to 9.6pJ/operation. These super-
linear improvements were helped by improved caching, ILP
extraction, and a 15% reduction in instruction count due to
the extra registers. Mapping the code across two cores out-
performs a single core with twice as much cache by 2x and
improves energy consumption by 20%.

4.5 Summary

We have shown that it is possible to use tightly-coupled
cores to profitably exploit multiple forms of parallelism:
DLP, dataflow and task-level pipelines. This allows a
broader coverage of parallelism, as each application can
only usefully be parallelised using a subset of execution
patterns. We also suggest small modifications to the hard-
ware, such as allowing more direct communication between
neighbouring cores, which improve performance and energy
consumption further. SIMD execution with instruction shar-
ing achieves an average of 3.6 x speedup with 8 cores with
only 2% more energy consumed. bitcount inner sees a 6.4 x
speedup and bitcount outer sees a 20% energy reduction
over the single core baseline. Dataflow execution was able
to improve performance of crc by 4.7 x using 5 cores, with
a 35% drop in energy consumption. Task-level pipelining
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allows core resources to be used more efficiently, resulting
in a 2.5 x speedup and 70% energy reduction with two cores
for the adpcmc benchmark — far better than when exploiting
DOACROSS parallelism in the same benchmark.

Also possible, though beyond the scope of this paper,
is the ability to exploit instruction-level parallelism across
multiple cores. This can be performed in a VLIW-like way,
using the low-latency network for data forwarding, or by
assigning decoupled instruction strands to each core.

The ability to use multiple cores to increase the resources
available to an application suggests that it may be sensible to
deliberately under-provision each core, with the expectation
that the appropriate number will be grouped together for the
task at hand. This would mean lower-power building blocks
for virtual architectures, and the ability to provide resources
at a finer granularity.

Figure 14 presents a comparison of execution patterns
for each of the nine benchmark kernels used to demonstrate
execution patterns in this paper. It can be seen that there
is no execution pattern which is always the best: different
patterns are useful in different situations. Indeed, there is
often a selection of configurations for a particular bench-
mark which lie on the Pareto front, allowing for different
energy-performance tradeoffs. This is the case even with
optimistic limit study data included (marked with asterisks).
Interestingly, the Pareto curve for a particular benchmark
often contains configurations from multiple different exe-
cution patterns. This is because different execution patterns
scale differently: task-level pipelines improve cache per-
formance, but only up to the point where all code is held
locally, while data-level parallelism’s performance potential
is limited instead by dependencies between loop iterations,
for example. Since benchmarks have different affinities to
each execution pattern, the overall configuration space is
complex, and unique to each benchmark.

For example, the inner loop of bitcount can be executed
in the shortest time by using a data-parallel SIMD structure
to execute several loop iterations simultaneously, but energy
is lowest when taking advantage of power gating with the
dataflow execution pattern. This is because all iterations are
independent, allowing an arbitrary number of them to be
executed at the same time. The loop is also very tight, mak-
ing dataflow a good match, as many cores can be specialised
so much that they repeatedly execute a single instruction,
and are able to power gate large sections of their pipelines.
Loop unrolling would be required to increase the number
of operations per clock cycle performed by the dataflow
pattern.

Conversely, JPEG colour conversion is fastest when
many cores are used to exploit DLP, with one core reserved
to provide common data, while energy is lowest when a
pipeline structure is used. Again, all loop iterations are inde-
pendent, but this time, a significant fraction of the work is
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Figure 14 Summary of execution patterns. All results are relative
to a single-core baseline. dip: data-level parallelism pattern; scalarise:
DLP with common work extracted to a helper core; farm: DLP
using a worker farm for load balance; inst-share: DLP with instruc-
tion sharing; pipeline: task-level pipeline execution pattern; dataflow:
dataflow execution pattern; dataflow-network: dataflow with direct
links between neighbouring cores; dataflow-pipeline: dataflow with
two ALUs per core; <execution-pattern>N: pattern used a total of N
cores; <execution-pattern>*: results are estimated from a limit study,
rather than a simulation.
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Figure 14 (continued)

repeated in all iterations, so a performance (and energy effi-
ciency) boost is seen when this work is extracted to a helper
core. The task-level pipeline reduces energy consumption
by reducing the amount of code executed by each core so
that it fits entirely in the low-energy LO instruction cache.
Energy is lowest when each core works on a separate colour
channel.

This confirms that flexibility is an important fea-
ture of the Loki architecture, as it allows acceleration
or energy reduction for a wider range of applications

117

A scalarise8

[
@ dip8 O A scalarise7
di7 O A scalarise6
3 - dips O o
dip5 O A scaarlseSl
a o dip4 O A scalarise4
o o | dip3 O A scalarise3 calarise!
c
[} dip2 O
s @ o
.; - o inst-share8* dip1 O
©
% ‘O_ | = baseline1
©
o
o
o
[ T I 1
0.0 0.5 1.0 15
Relative execution time
(g) JPEG DCT
N dip8
[aY] P
O dip7
0 dip6
sca:arises ﬁ
0 scalarise? dip3 A
o = scalarise6 AA o P2 Tscalarise2
> scalarise5 = A dipt
5 scalarise4  scalarise3 o
c ; "
o o | ¢ Inst-share8 baseline1
[ : =
= 7
kS
(o)
T |
o
o
o
[ I T I I T I 1
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Relative execution time
(h) JPEG Huffman encoding initialisation
d|p7dl 6 _dIp5
e u 8:135 O a4 dip3 b2 N dpt
- P v v pipeline2 &
farme farms farm4 farm3 farm2
o _| o inst-share8* pipeline3 g baseline
- + T
3 © pipeline6 pipeline4
o S|
c
o)
o ©_]
= ©
©
o <]
r o
N
o
o |
o
[ I T T I T 1
0.0 0.2 0.4 0.6 0.8 1.0 1.2

Relative execution time

(i) String search

than an architecture limited to any subset of execution
patterns.

5 Related Work

The Raw processor [25] also provides tightly coupled on-
chip networks. Raw’s static networks provide low-latency
communication between cores. Access to them is provided
by register mapped input and output FIFOs. The static
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routers themselves execute programs that dictate the how
the network is configured on a cycle-by-cycle basis. In con-
trast, Loki exploits statically allocated channel buffers and
end-to-end flow control when required. Loki also places
a number of cores within a single tile supported by local
point-to-point and multicast networks.

Raw was later commercialised by Tilera and now pro-
vides up to 72 cores on a single package [26]. Adapteva’s
Epiphany [2] is a similar commercial processor in this area,
with a large number of cores connected by a mesh network.
Epiphany’s design is focused on high-throughput and low-
power floating-point computation, with less of a focus on
cooperation between cores. Like Loki, KALRAY’s many-
core architecture [15] can combine its cores in a variety of
different ways to exploit different forms of parallelism, but
its base computation unit is much more complex, and shared
memory is used instead of direct message passing.

ACRES [1] explored the compilation issues and oppor-
tunities when programs are to be mapped spatially across a
homogeneous fabric. Loki is able to emulate many of the
capabilities of the ACRES proposal.

PPA [23] and Smart Memories [21] both allow an archi-
tecture to reconfigure itself in software to adapt to an
application’s needs. Smart Memories is able to partition its
physical memory into virtual memories, each with differ-
ent capacities, line sizes, replacement policies, and so on.
PPA is able to dynamically adjust the number of functional
units being used, depending on the available parallelism in
the program. SCALE [18] and TRIPS [7] both introduce
new ways of executing programs. SCALE is an instantia-
tion of the vector-thread paradigm, which allows execution
to move between SIMD and MIMD depending on the type
of parallelism available. TRIPS makes use of the EDGE
ISA to efficiently exploit dataflow parallelism on a homo-
geneous fabric and blur the boundaries between cores. Loki
uses tightly-coupled cores to provide further flexibility: as
well as changing the number of cores being used, it is
also possible to change the type of parallelism they exploit.
Loki is able to efficiently emulate the SIMD parallelism
exploited by PPA, the master-slave and independent exe-
cution patterns of SCALE and the dataflow execution of
TRIPS.

The Elm architecture [4] explores a number of tech-
niques that permits software to better control the movement
of instructions and data in order to improve energy effi-
ciency. Both communication resources and the movement
of instructions and data through the storage hierarchies
can be managed by the compiler. Groups of four proces-
sors are grouped within an Ensemble and local intercon-
nects permit register-mapped single-cycle communication
(blocking and non-blocking) between the cores. SIMD
execution is supported by allowing a single core to broad-
cast instructions to others in the group. Elm’s contributions
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are mostly focused on improving efficiency within a single
core, so can be seen as generally orthogonal to this work.

There have also been a number of recent architec-
tures described that are able to dynamically compose
a small number of cores to create more powerful multiple-
issue cores [6, 12]. A related approach starts with a
complex superscalar core and makes modifications to allow
it to switch between single-thread-high-performance and
multiple-thread-high-throughput modes [16]. These archi-
tectures are limited in the types of parallelism they are
able to exploit, so in some cases will have to settle for a
sub-optimal configuration.

In this paper, parallelism was extracted manually. There
has been a lot of recent work on automatic paralleli-
sation, however, and much of this could be applied to
Loki. It is possible to extract DOALL parallelism [10],
DOACROSS parallelism [8], and pipeline parallelism [22].
Dataflow graphs are standard intermediate representations
within compilers, and can be mapped to cores auto-
matically. There also exist transformations to increase
the amount of time that an execution pattern can be
used; Zhong et al. use speculation to extract more
DOALL parallelism [27], and pipeline parallelism can
become an enabling transformation for other forms of
parallelism [11].

6 Conclusion

The addition of low-latency and low-cost point-to-point
and multi-cast interconnect between cores provides an
opportunity to exploit a variety of parallel execution
patterns on a relatively simple low-power homogeneous
platform. This flexibility allows better application perfor-
mance and/or energy consumption than any fixed subset of
parallelism types because the underlying structures of appli-
cations can be mapped to hardware in a more direct way.
Streamlined processor pipelines permit energy per opera-
tion to be reduced to around 10pJ, more than an order of
magnitude lower than typical mobile application processors.
Furthermore, many of the execution patterns explored are
able to simultaneously improve performance and energy as
more cores are employed.

Modern mobile systems are required to provide
1000GOPS at around 1pJ per operation for specialised tasks
such as 4G signal processing. This work is a step towards
many-core systems with more than 1000 cores which will,
we predict, be able to reach and exceed this target with-
out the need for complex heterogeneous architectures. We
suggest that design and verification effort is better spent on
optimising a regular, all-purpose architecture, rather than a
wide range of programmable processors and fixed-function
accelerators.
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7 Future Work

The work in this paper is currently being extended to explore
different ways in which cores across multiple tiles can be
used. As a group, we are also extending our compiler’s sup-
port for exploiting multiple cores given modest amounts
of ILP; exploring dynamic reconfiguration, and the ability
to reconfigure more of the design, such as network proto-
cols; and investigating the possibility of providing access to
configurable accelerators.

Longer term plans include the fabrication of a test chip
(scheduled for 2015) and the exploration of improved sup-
port for security and operating systems.
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