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Abstract: Salisbury biochar (produced from British broadleaf hardwood) 

with two different particle sizes (≤ 2 mm and ≤ 0.15 mm) was applied on a 

kaolin with three different lead (Pb2+) contamination levels (50 mg/kg, 

300 mg/kg and 1000 mg/kg) at the dosage of 1% in w/w. The short-term 

impact of biochar on the mobility and speciation of Pb2+ in the kaolin 

was investigated using attenuation periods of 1, 7 and 28 days. The 

leachability and extractability of Pb2+ in carbonic acid leaching and 

EDTA extraction tests as well as the sepciarion of Pb2+ in soils were not 

significantly affected by biochar treatment during all periods. The 

insignificant effects of biochar on Pb2+ immobilisation were most likely 

attributed to the high adsorption capacity of kaolin towards Pb2+ and 

biochar failed to competitively adsorb Pb2+ against kaolin. Kaolin 

immobilised Pb2+ primarily through cation exchange, which represents the 

readily bioavailable fractions of Pb2+ in soils and may still pose 

environmental risks. This paper suggests the inefficiency of biochar 

treament on heavy-metal contaminated clay-rich soils. Therefore a 

laboratory treatablity study with respect to the soil type may be crucial 

when large-scale biochar applications in heavy-metal associated soil 

remediation are evaluated. 
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Abstract: Salisbury biochar (produced from British broadleaf hardwood) with two 

different particle sizes (≤ 2 mm and ≤ 0.15 mm) was applied on a kaolin with three 

different lead (Pb2+) contamination levels (50 mg/kg, 300 mg/kg and 1000 mg/kg) at 

the dosage of 1% in w/w. The short-term impact of biochar on the mobility and 

speciation of Pb2+ in the kaolin was investigated using attenuation periods of 1, 7 

and 28 days. The leachability and extractability of Pb2+ in carbonic acid leaching and 

EDTA extraction tests as well as the sepciarion of Pb2+ in soils were not significantly 

affected by biochar treatment during all periods. The insignificant effects of biochar 

on Pb2+ immobilisation were most likely attributed to the high adsorption capacity of 

kaolin towards Pb2+ and biochar failed to competitively adsorb Pb2+ against kaolin. 

Kaolin immobilised Pb2+ primarily through cation exchange, which represents the 

readily bioavailable fractions of Pb2+ in soils and may still pose environmental risks. 

This paper suggests the inefficiency of biochar treament on heavy-metal 

contaminated clay-rich soils. Therefore a laboratory treatablity study with respect to 

the soil type may be crucial when large-scale biochar applications in heavy-metal 

associated soil remediation are evaluated. 
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1 Introduction 

The application of biochar in soil remediation has recently attracted global interests 

due to its multiple environmental benefits: (1) biochar can be produced using 

agricultural and industrial wastes (e.g. crop residues, manure, sludge etc.) as the 

feedstocks [1]; (2) the co-products (syn-gas and bio-oil) during biochar production 

can be used as green energy and therefore offset energy use associated with 

producing biochar [2]; (3) biochar can immobilise contaminants in soils and therefore 

reduce their leachabilities and bioavailabilities [3]; (4) biochar can help retain the 

nutrients and improve the water holding capacity and resilience of soils, therefore 

aiding the greening or revegetation of the contaminated land [4]; (5) the recalcitrant 

form of carbon in biochar can remain in soil for hundreds to thousands of years [2]. 

In order to investigate the potential of biochar application in soil remediation, 

Salisbury biochar, derived from British broadleaf hardwood, was characterised and 

applied to a contaminated site in the UK in 2011 [5,6]. The biochar treatment 

successfully immobilised heavy metals and reduced their leachabilities in the sand-

dominated site soils three years after the treatment [6]. Due to the high availability of 

hardwood in the UK and the encouraging performance in the field trial, Salisbury 

biochar has the potential to be applied in soil remediation at a large scale. As the site 

soil is sand based (97% of sand particles), it is necessary to investigate the impact of 

this biochar on the immobilisation of metals in a soil predominantly comprising clay.  

Unlike sand particles (diameter range of 0.05 - 2 mm) which are relatively chemically 

inert, the layer structures of phyllosilicate result in active chemical properties for clay 

minerals such as relatively high cation exchange capacity (CEC) and surface area 

[7–9]. Therefore, the clay minerals have the ability to retain heavy metals on their 
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surfaces through cation exchange and reduce its leaching to the environment under 

field conditions [8]. However on the other hand, the retained heavy metals on clay 

particles have the risks to be uptaken by the plants grown on clay soil, bringing 

further hazards to human beings  [8,9]. Therefore, the impact of biochar on 

immobilisation of heavy metals in clay-rich soils is worth being investigated. However, 

the majority of studies to date have investigated the performance of biochar in sand-

dominated soils, as indicated in Table S1 [3,10–14]. Studies that applied biochar on 

clay-rich soils are very limited, leading to a poor understanding of the performance of 

biochar on clay soils contaminated with heavy metals and the remediation 

mechanisms involved. 

In this study, short-term laboratory incubation tests were carried out to investigate 

the impact of Salisbury biochar on the immobilisation of heavy metals in kaolin, a 

typical clay soil. Lead (Pb2+) was selected as a representative heavy metal as it is 

one of the most common contaminants in water and soil and represents serious 

concerns to human health and environment pollution [15], and demonstrated the 

highest sorption to Salisbury biochar in a previous study [5]. This study aims to 

investigate: (1) the impact of biochar on the mobility of Pb2+ in kaolin; (2) the impact 

of biochar on the speciation of Pb2+ in kaolin; (3) the short-term time dependence of 

the two impacts. 

2 Materials and methods 

2.1 Biochar 

Salisbury biochar was purchased from Southern Woodland products (Salisbury, UK). 

It is produced from British broadleaf hardwood at 600 ºC under oxygen limited 

ambient conditions (but no additional protective gas was added) in a retort for 13.5 
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hours. The physical properties and adsorption characteristics of this biochar towards 

Pb2+ have been investigated in a previous study [5] and are briefly summarised in 

Table 1. In general, Salisbury biochar exhibited a relatively high adsorption capacity 

of Pb2+, which was significantly affected by the biochar particle size (30.04 mg/g for 

samples sieved to ≤ 2 mm versus 47.66 mg/g for those sieved to ≤ 0.15 mm). 

2.2 Kaolin 

The kaolin, PolwhiteE, was supplied by Richard Baker Harrison LTD (Midlands, UK). 

Soil pH was determined in a soil:water ratio of 1:2.5 (g/mL) based on BS 1377. Its 

CEC was measured by a compulsive exchange method based on [16]. Kaolin (1 g) 

was mixed with 20 mL of 0.5 M BaCl2 and shaken at 200 rpm for 2 h before filtration 

through a 0.45 µm filter. The concentrations of sodium, magnesium, aluminium, 

potassium, calcium, manganese and iron in the filtrate were tested by inductively 

coupled plasma/optical emission spectrometry (ICP-OES) (Perkin-Elmer, 7000DV) 

after acidification. CEC was calculated by the sum of the concentrations of the 

measured cations. The other physicochemical properties of the kaolin were obtained 

from the datasheet provided by the supplier and are summarised in Table 2 together 

with pH and CEC. 

2.3 Experimental design and sample preparation 

The experimental design is shown in Table S2. After considering the adsorption 

capacity and dosage (1% in w/w) of biochar, three soil contamination levels were 

designed: 50 mg/kg to represent lightly contaminated land (less than the adsorption 

capacities of biochar); 300 mg/kg to represent medium contaminated land 

(comparable to the adsorption capacities of biochar); and 1000 mg/kg to represent 

severely contaminated land (exceeds the adsorption capacities of biochar). A 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

previous study demonstrated that particle size has a significant impact on the 

sorption of Pb2+ by this biochar [5], therefore two particle sizes of ≤ 2 mm and ≤ 0.15 

mm were selected for this study in order to represent coarse and fine particle sizes. 

Throughout this paper, the terms “2 mm” and “0.15 mm” will be used to represent the 

biochar samples sieved to ≤ 2 mm and ≤ 0.15 mm respectively.  

The soil and biochar (or without biochar for the control samples) were dry mixed in a 

mixer (Kenwood, UK) and then the contaminants (Pb(NO3)2 dissolved in solution) 

were added and thoroughly mixed with the soil-biochar mixture. The samples were 

then incubated in order to maintain them at a moisture content of 40% (w/w) 

(between liquid and plastic limit to avoid either too dry or too wet) and a density of 

1.2 g/cm3 in polythene tubes, and the polythene tubes were then stored in moisture 

chambers.  

In order to investigate the short-term development of the immobilisation of biochar on 

Pb2+ in kaolin, the control and treated soil samples were incubated at a constant 

moisture content and temperature, and the time dependence of immobilisation was 

investigated using attenuation periods of 1, 7 and 28 days. 

2.4 Chemical analysis 

At the designated time, soil samples were collected and oven dried at 60 ºC for 48 h. 

Separate 1 g dry soil samples were taken for carbonic acid leaching, 

Ethylenediaminetetraacetic acid (EDTA) extraction and sequential extraction tests. 

The remainder of the dry samples were used to test soil pH, applying the same 

method as presented in section 2.2. 

Carbonic acid leaching (based on BS EN 12457-2) was used to indicate the release 

potential of hazardous and toxic elements from solid waste under slightly acidic rain 
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water [17]. The dry soil (1 g) was mixed with 10 mL carbonic acid (pH = 5.6) and 

shaken at 200 rpm for 24 h. The mixture was then filtered through a 0.45 μm filter 

and the Pb2+ concentration in the leachate was tested by ICP-OES. 

EDTA extraction was carried out to determine the potential bioavailability of Pb2+ in 

kaolin as suggested in [18]. The dry soil (1 g) was mixed with 5 mL of 0.01 M 

Na2EDTA and shaken at 200 rpm for 24 h. The mixture was then centrifuged at 3000 

rpm for 5 minutes and filtered using a 0.45 μm filter, and the concentrations of Pb2+ 

in the leachate was measured by ICP-OES. 

Sequential extraction based on [14,16,17] was used to determine the different 

geochemical phases (speciation) of Pb2+ present in the soils. The details of the 

procedure can be found in a previous study [6]. The metals were partitioned into five 

fractions through the following steps: Step 1 - exchangeable fraction (non-specific 

adsorption); Step 2 - fraction bound to CO3
2-/PO4

2- (specific adsorption); Step 3 - 

fraction bound to Fe/Mn oxides; Step 4 - fraction bound to organic matter; Step 5 - 

residual fraction. In order to investigate the speciation of Pb2+ on biochar, a certain 

amount (0.1 g) of biochar sample (0.15 mm) after reaching adsorption equilibrium in 

20 mL of 5 mM Pb2+ solution was collected and examined by sequential extraction. 

In order to investigate the adsorption capacity of Pb2+ on kaolin, the adsorption 

equilibrium study was conducted. A certain amount of kaolin (0.1 g) was added to 20 

mL solutions (pH = 5) containing different Pb2+ concentrations (0.1, 0.2, 0.3, 0.5, 1, 2, 

3 or 5 mM) and 0.01 M NaNO3. The mixture was shaken at 200 rpm at 20 °C for 24 h 

to reach equilibrium. Then the mixture was filtered with a 0.45 μm filter and the Pb2+ 

concentration in the collected filtrate was measured by ICP-OES. 
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All laboratory analysis in this study was conducted in a temperature controlled lab at 

20 ± 1 °C and 50 ± 2% humidity based on the department lab standard. 

2.5 Statistical analysis 

All experiments were carried out in triplicates. The means and standard deviations 

were calculated and presented for each experiment. The normality of the data were 

tested and the Shapiro-Wilk results were used to indicate the normality of the data at 

the significance level (P) of 0.05. The homogeneity of the variances were checked at 

the significance level of 0.05. As in most cases, the data are normally distributed and 

a homogeneity of the variances between groups was found, the difference between 

two groups was evaluated by a one-way analysis of variance (ANOVA) at the 

significance level of 0.05. The data that were not normally distributed or without a 

homogeneity of the variances were indicated in the paper. The statistical analysis 

was conducted using SPSS 16.0. 

3 Results and discussion 

3.1 Soil pH 

The soil pH values of all samples across all incubation periods were within 4.54 - 

4.92 (Fig. 1), similar to the original pH value of the kaolin (4.78). Although the treated 

samples exhibited a significant increase in pH compared with the control samples at 

contamination levels of 300 and 1000 mg/kg (Fig. 1), the increases were only 0.08 - 

0.19, suggesting that the influence of biochar treatment on soil pH was small. No 

significant trends in the differences associated with particle sizes and incubation time 

on soil pH were found (Fig. 1). 

The relatively low dosage (1%) and low biochar pH values (6.78 - 6.96) may have 

resulted in the insignificant impact on soil pH. Puga et al. (2015) [21] employed 
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biochar produced from sugar cane straw (pH = 10.2) to a contaminated soil (pH = 

6.1; sand: 34%, silt: 24%, clay: 43%) and observed no significant changes in soil pH 

after 120 days of incubation with biochar dosages from 1.5% to 5%. Houben et al. 

(2013) [22] observed that the soil pH increased with biochar dosage when adding a 

miscanthus straw biochar (pH = 10.24) to a contaminated soil (pH = 6.57; 64% sand, 

24% silt and 12% clay) at dosages of 1 - 10% after 56 days of incubation, however 

increases were no more than 0.5 pH units. The pH value of Salisbury biochar was 

even smaller than the biochars in the studies of Puga et al. (2015) [21] and Houben 

et al. (2013) [22], therefore considering the low dosage, the insignificant influence of 

biochar on soil pH in this study was reasonable. 

The increase of soil pH can enhance the adsorption capacity of biochar due to 

deprotonation processes [23], however it requires a greater addition of biochar which 

will increase the cost in purchasing and transportation. A balance between 

performance and cost must therefore be seek during engineering application when 

considering the impact of biochar on soil pH. 

3.2 Carbonic acid leaching and EDTA extraction tests results 

The extracted concentrations of Pb2+ from carbonic acid leaching were low (≤ 1.04 

mg/L) compared with those from EDTA extraction (7.72 - 176.87 mg/L) (Fig. 2). The 

Pb2+ concentrations in both carbonic acid leachate and EDTA extraction were 

strongly affected by the contamination levels, whereas no time-related dependencies 

associated with biochar treatments were observed over the 28 days (Fig. 2). 

The Pb2+ leachability (extractability) for each extraction test can be obtained by 

dividing the amount extracted by the total amount in the soil. As shown in Fig. 3, the 

Pb2+ leachabilities in carbonic acid leaching tests were all ≤ 1.04% (Fig. 3a), whereas 
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those in EDTA extraction tests range from 76.74% to 97.28% (Fig. 3b). The 

influences of biochar treatment on Pb2+ leachability were not significant. Similarly, no 

significant trends associated with contamination levels and incubation time were 

found. 

The low Pb2+ leachabilities in carbonic acid leaching tests indicate a strong 

adsorption or immobilisation of Pb2+ by the soil itself, which is highly resistant to 

acidic rain water. The low soil pH values may have also contributed to this low 

leachability. As shown in Fig. 1, all the sample pH values were within 4.54 - 4.92, 

which were lower than that of the carbonic acid (5.6), making the carbonic acid 

unlikely to reverse the deprotonation process and release adsorbed Pb2+. The 

carbonic acid leaching results suggest that the kaolin itself has successfully 

immobilised the Pb2+ and the effect of biochar was negligible. 

The 0.01 M Na2EDTA solution extracted a high amount of Pb2+ from all samples, 

suggesting that a high proportion of Pb2+ is potentially bioavailable and therefore 

presents an ecological risk. EDTA extracts Pb2+ through chelation between its 

ligands and Pb2+ ions. The high amount of Pb2+ extracted indicates that high 

proportion of Pb2+ was bound to the soil through binding which is weaker than 

chelation. The high EDTA extractability (Fig. 3b) in this study is in line with the 

findings of Kim et al. (2003) [24]. They observed Pb2+ leachability values higher than 

80% at EDTA:Pb2+ mole ratios of 10 - 100 for one field soil (6238 mg/kg of Pb2+) and 

one artificial soil (oxidized glacial till contaminated with 2413 mg/kg of Pb2+). Kim et 

al. (2003) [24] also noted that the Pb2+ leachability was closely related to the 

EDTA:Pb2+ mole ratios in 0.1 - 10; while it did not significantly increased with 

EDTA:Pb2+ ratios in 10 - 100 for the artificially contaminated soil. The EDTA:Pb2+ 

mole ratios for the samples at contamination level of 1000, 300 and 50 mg/kg were 
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10, 35 and 207 in this study and did not increase the EDTA extractability, which 

coincides with the findings of Kim et al. (2003) [24] at high EDTA:Pb2+ mole ratios 

(10 - 100). This is most likely due to the excessive addition of EDTA: all Pb2+ bound 

weaker than chelation to the soils had been extracted while the residual Pb2+ which 

was stronger bound than chelation cannot be extracted even when EDTA was 

excessive. 

The EDTA extraction results indicate that although the release potential of Pb2+ 

under simulated acidic rain was low, the potential bioavailability of Pb2+ was high and 

the effect of biochar treatment on this was insignificant. 

3.3 Sequential extraction results 

3.3.1 Recovery 

The total recovery from sequential extraction tests can be obtained by dividing the 

total extracted Pb2+ in sequential extraction by the totally designated amount of Pb2+ 

in the soil and is shown and compared with that from EDTA extraction in Table S3. 

The total recovery from sequential extraction tests was within 61.50 - 89.30% and 

decreased with the increase of contamination level. No significant trend between 

biochar addition and the recovery was found. The recovery from sequential 

extraction was lower than that from EDTA extraction (76.92 - 97.28%) for most 

samples. Few studies have been carried out using sequential extraction tests to 

investigate the speciation of heavy metals in kaolin [25]. It is difficult to find the 

recovery of Pb2+ in kaolin in sequential extraction from literatures and make a 

relevant comparison with that in this study. The most similar one probably comes 

from Reddy et al., (2001) [26]. They used acid digestion method to determine the 

total concentrations of Chromium (Cr3+ and Cr6+), Nickel (Ni2+) and Cadmium (Cd2+) 
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in an artificially contaminated kaolin. The recovery of the heavy metals were within ~ 

78 - 113%. The recovery of Cd2+ and Ni2+ from one of the two samples were ~ 78% 

and ~ 88% respectively, which were comparable to the recovery of Pb2+ in this study. 

3.3.2 Speciation of Pb2+ in soils 

The speciation of Pb2+ in soils is shown in Table S4 and Fig. 4. Pb2+ was mainly 

bound to the exchangeable fraction (36.12 - 42.93%), CO3
2-/PO4

2- (19.82-25.70%) 

and Fe/Mn oxides (21.63 - 26.71%) in soils at the contamination level of 50 mg/kg. 

At contamination levels of 300 mg/kg and 1000 mg/kg, the exchangeable fraction 

(64.05 - 76.26%) dominated the existence of Pb2+ in soils whereas the fractions 

bound to CO3
2-/PO4

2- and Fe/Mn oxides decreased (to 15.00-19.53% and 5.97 - 

12.59% respectively) compared with those at 50 mg/kg. The fraction bound to 

organics and the residual fraction were low (5.11 - 6.70% and 6.93 - 9.85% 

respectively) at a contamination level of 50 mg/kg while these fractions were 

negligible at contamination levels of 300 mg/kg and 1000 mg/kg (≤ 2.44%). The 

biochar treatment did not have a significant influence on Pb2+ speciation in soil over 

the 28 day periods. It is difficult to find studies using biochar to remediate 

contaminated kaolin and make a relevant comparison. One similar study comes from 

Houben and Sonnet. (2015) who applied 5% miscanthus straw biochar to a 

contaminated soil (texture not shown) and used the same sequential extraction 

method to analyse Pb2+ speciation in the soil [27]. Only the cation exchangeable 

fraction was slightly reduced while the other four factions showed no significant 

changes 56 days after biochar treatment, although the soil pH was slightly increased 

from 5.66 to approximately 6.7 [27].  
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The solubility and bioavailability of heavy metals decrease with each step in 

sequential extraction and represent an increased binding strength with each step 

sequence [28,29]. Fractions from steps 2 to 5 account for more than 60% of the total 

Pb2+ at initial concentrations of 50 mg/kg.  At higher contamination levels (300 and 

1000 mg/kg), the relatively tightly bound fractions (steps 2 - 5) approach saturation 

and therefore the weakly bound fraction (step 1: cation exchange) increases and 

dominates the overall fraction (64.05 - 76.26%), in part due to the high cation 

exchange capacity of kaolin itself. The high proportions in fraction 1 represented a 

high readily available lead to the environment [25]. 

3.4 Biochar impact on the mobility and speciation of Pb2+ 

The kaolin itself immobilises Pb2+ well and the experiments in this study provide no 

evidence that biochar affects its speciation. Similarly, biochar did not have a 

significant impact on Pb2+ leachability in carbonic acid leaching and EDTA extraction 

tests. This could be caused by several reasons: (1) the addition of biochar was not 

sufficient to have significant influence; (2) the incubation period was too short and 

immobilisation by biochar had not fully developed; or (3) competitive adsorption: the 

adsorption capacity of kaolin itself was comparable to or higher than that of biochar. 

The 1 g samples of kaolin contaminated at 50 mg/kg, 300 mg/kg and 1000 mg/kg will 

contain 0.05 mg, 0.3 mg and 1 mg of Pb2+ respectively. The maximum adsorption 

capacity of Salisbury biochar (1% in the soil) towards Pb2+, calculated based on 

Shen et al. (2015) [5], was 0.30 mg and 0.48 mg for 2 mm and 0.15 mm samples 

respectively. Therefore, although 300 mg/kg and 1000 mg/kg contamination levels 

were comparable to or in excess of the adsorption capacities of biochar, a 1% 

addition of biochar is theoretically capable of fully treating 1 g of soil contaminated at 
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50 mg/kg Pb2+. However the impact of biochar on the mobility and speciation of Pb2+ 

at a contamination level of 50 mg/kg was insignificant, indicating reason 1 is unlikely 

to be the most significant factor.  

Rees et al. (2014) applied biochar (originated from 80% coniferous and 20% 

hardwood) to two soils (Soil A: 33% sand, 47% silt, 20% clay; soil B: 24% sand, 60% 

silt, 16% clay) contaminated with 1120 mg/kg and 1080 mg/kg of Pb2+ respectively, 

and observed that the extractabilities of Pb2+ in Ca(NO3)2 were reduced by ~ 70% 

and ~ 10% respectively one week after biochar treatment [30]. Further, Uchimiya et 

al. (2012) applied several biochars to a slightly acidic soil (pH 6.27) containing 14847 

mg/kg of Pb2+ and observed that the soluble Pb2+ was significantly reduced one 

week after biochar treatment [31]. These findings suggest that insufficient contact 

time (reason 2) may not be a significant factor in the low impact of biochar. However, 

the soil used in this study is different from the soils Rees et al. (2014) and Uchimiya 

et al. (2012) used, therefore the long-term influence of biochar on immobilisation of 

heavy metals in kaolin is still suggested to investigate to form a comparison with the 

short-term findings in this study. 

In order to test reason 3, the equilibrium isotherm for Pb2+ adsorption onto kaolin 

was determined and the results are shown in Fig. S1. Kaolin exhibited high 

adsorption of Pb2+  at the initial adsorbate concentration of 0.1 - 5 mM (0.1 g kaolin 

in 20 mL solution). Linear Langmuir and Freundlich models were adopted to fit the 

data (Table S5). The poor regression for the Linear Langmuir model (R2 = 0.64) and 

good regression for the Linear Freundlich model (R2 = 0.96) suggest 

heterogeneously chemical adsorption dominates kaolin adsorption of Pb2+ rather 

than monolayer adsorption (Table S5). This is in line with the finding from the 

sequential extraction tests, which indicate that Pb2+ was bound to biochar through 5 
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different fractions. The high sorption of lead by the kaolin, together with the low 

carbonic acid leachability, suggests kaolin itself was able to immobise Pb2+ in the 

soils in this study.  

In a previous study, oak wood biochar was found to transfer the readily bioavailable 

fraction (exchangeable: step 1 in this study) of Pb2+ to more stable residual fraction 

(step 5) in a sandy loam soil [32]. Likewise, wine lees biochar was found to 

significantly increase the residual fraction (step 5) while decrease the reducible (step 

2) and oxidizable (step 4) Pb2+ in a paddy soil [33]. In these two studies, biochar may 

either have adsorbed competitively against the soil and transferred the weakly bound 

Pb2+ to stable fractions by itself; or enhanced the bonds of Pb2+ into soil lattice 

through increased soil pH and other mechanisms [28,29].  

The speciation of Pb2+ in salisbury biochar was investigated and shown in Table 3. 

The Pb2+ was adsorbed to biochar mainly through bond to carbonates/phosphates, 

which is an acidic soluble fraction [25]. Although it represents a slightly tighter bond 

than cation exchange, this bond is highly pH dependent [25] and it is difficult to win 

the competitive adsorption of Pb2+ against kaolin at such low soil pH values (4.54-

4.92). The X-ray absorption fine structure (XAFS) analysis in [32] observed that 62.7% 

Pb2+ was adsorbed on kaolinte 175 days after amending the contaminated soil with 5% 

oak wood biochar, indicating the affinity of kaolinite for Pb2+. The biochar itself failed 

to adsorb Pb2+ in a more stable form in this study and its influence on the soil pH 

was insignificant or small. Therefore, no significant impact of biochar on the 

speciation of Pb2+ in kaolin was observed.   

Hence, the insignificant influence of biochar on the mobility and speciation of Pb2+ in 

kaolin was most likely due to the fact that kaolin itself has an adsorption capacity 
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comparable to that of the biohcar and biochar failed to competitively adsorb Pb2+ 

againt kaolin or alter its speciation by enhancing soil pH values. 

It is of note that kaolin is mainly made of kaolinite which is a variable charge mineral 

with a relatively low CEC (which is confirmed in Table 1) due to its 1:1 phyllosilicate 

layer structure [9,34]. Soils dominated by clay minerals with 2:1 phyllosilicate layer 

structure (illite, smectite, vermiculite, palygorskite etc.) and permanently charged 

commonly have much higher CECs [9,34]. Since Salisbury biochar failed to 

competitively adsorb Pb2+ againt kaolin, it could be expected that this biochar may 

not be able to affect the mobility or specation of Pb2+ in soils dominated by 2:1 clay 

minerals. 

4 Conclusions 

In this study, it was found that biochar did not have a siginificant effect on the 

mobility or speciation of Pb2+ in a kaolin, suggesting that the performance of biochar 

in immobilising heavy metals in soils is related to the soil types and that biochar may 

not perform well on contaminated soils with high clay content. The reasons may be 

due to the high adsorption capacity (mainly CEC) of Pb2+ on kaolin itself and the 

failure of biochar to competitively adsorb Pb2+ againt kaolin. As other clay minerals 

such as illite, smectite, vermiculite, palygorskite etc. usually have higher CECs than 

kaolinite which forms the basis of kaolin, biochar may also fail to affect the mobility or 

speciation of heavy metals in soils rich in these clay minerals. This paper suggests 

the inefficiency of biochar treament on heavy-metal contaminated clay-rich soils. 

According to the suggestions in this study, field applications of biochar in heavy-

metal associated soil remediation need to take the soil type into account, and a 
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laboratory treatablity study with respect to the soil type is crucial when large-scale 

biochar applications are evaluated. 

It is of note that this was a short-term study carried out under laboratory conditions. 

Treatments on clay soils under field conditions and in the long term are needed in 

order to make a comparison with the findings in this study.  

Although this study found that the release potential of Pb2+ in kaolin under simulated 

acidic rain water was low, it existed primarily as the exchangeable fraction and the 

EDTA extractability was high. This suggests that the readily and potentially 

bioavailability of Pb2+ in kaolin was high. As biochar was found to reduce the 

bioavailable fractions and enhance the non-bioavailable fractions of metals in soils 

[25,28], it may still have the potential to be applied to reduce the bioavailability of 

metals in clay soils. Therefore, biochar derived from other feedstocks using different 

production methods (slow and fast pyrolysis) are suggested to apply on clay soils 

and investigate their performances in immobilising heavy metals.  
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Table 1 Physicochemical properties of Salisbury biochar. 

 2 mm 0.15 mm 

BET surface area (m2/g) 2.46 ± 0.03a 5.30 ± 0.06 

Cation exchange capacity (cmol/kg) 5.62 ± 0.15 7.20 ± 0.17 

pH 6.78 ± 0.01 6.96 ± 0.01 

C (%) 79.91 ± 2.33 

N (%) 0.73 ± 0.02 

Pb (%) 0.01 ± 0.0004 
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Adsorption capacity of Pb (mg/g) 30.04 47.66 

(“2 mm” and “0.15 mm” represent the biochar samples sieved to ≤ 2 mm and 0.15 

mm respectively; a - mean ± standard, n=3) 

 

 

 

 

 

Table 2 Physicochemical properties of kaolin. 

Properties Value 

pH 4.78 ± 0.02a 

CEC (cmol/kg) 5.49 ± 0.03 

BET surface area (m2/g) 8 

Specific gravity 2.6 

Water soluble salt content (%) 0.15 

SiO2 (%) 50 

Al2O3 (%) 35 
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Liquid limit (%) 47 

Plastic limit (%) 31 

Sand (0.05-2 mm) (%) 0 

Silt (0.002-0.05 mm) (%) 65 

Clay (0-0.002 mm) (%) 35 

(a - mean ± standard, n=3) 

 

Table 3 Speciation of Pb2+ in biochar (0.1 g biochar sample (0.15 mm) after reaching 

adsorption equilibrium in 20 mL of 5 mM Pb2+ solution). 

 

Pb2+ amount in biochar (mg) % 

Step 1 0.18 ± 0.01 4.29 

Step 2 3.53 ± 0.47 85.31 

Step 3 0.40 ± 0.11 9.66 

Step 4 0.02 ± 0.007 0.41 

Step 5 0.01 ± 0.0002 0.33 
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Fig. 1. Soil pH values. The different lower case letters indicate a significant 

difference between the treatments in each experiment with a specific contamination 

level at a specific time (P < 0.05). 
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Fig. 2. Pb2+ concentrations in (a) carbonic acid leachate and (b) EDTA extraction. 

Data not shown indicates below limit of detection (0.010 mg/L). The different lower 

case letters indicate a significant difference between the treatments in each 

experiment with a specific contamination level at a specific time (P < 0.05). N.N.D = 

not normally distributed. N.H.V = not homogeneity of variance. 
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Fig. 3. Pb2+ leachabilities in carbonic acid leaching test (a) and EDTA extraction test 

(b). The different lower case letters indicate a significant difference between the 

treatments in each experiment with a specific contamination level at a specific time 

(P < 0.05). N.N.D = not normally distributed. N.H.V = not homogeneity of variance. 
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Fig. 4. Sequential extraction results. The horizontal axis indicates the contamination 

level (mg/kg) + the dosage of biochar treatment (0% or 1% in w/w). 
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Table S1 Soil constitutes in existing biochar research associated with heavy-metal 

contaminated land 

 

 

 

 

 

 

 

 

Sand (%) Silt (%) Clay (%) Reference 

87.7 4.8 7.5 (Balwant and Singh 2010) 

    

83 16 1 (Beesley and Dickinson 2011) 

43 48 8 (Beesley and Marmiroli 2011) 

46  17 (Bian et al. 2013) 

42  18 

49  20 

52  16 

59  10 

54 39 7 (Brennan et al. 2014) 

92 8 (Cao et al. 2011) 

88 12 

83 6 12 (Hartley et al. 2009) 

83.4 9.1 7.5 

48.3 22.3 29.3 

64 24 12 (Houben et al. 2013) 

78 10 12 (Kargar et al. 2015) 

90 9.8 (Liang et al. 2014) 

85 12 3 (Moon et al. 2013) 

34 24 43 (Puga et al. 2015) 

33 47 20 (Rees et al. 2014) 

24 60 16 

42 38 20 (Riedel et al. 2015) 
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Table S2 Experimental design 

Specimens Biochar 

dosage 

(w/w) 

Biochar 

particle size 

(mm) 

Lead contamination 

level (mg/kg) 

Incubation time (day) 

0% 1% < 2 < 0.15 50 300 1000 1 7 28 

S1-3 ×    ×   ×   

S4-6 ×     ×  ×   

S7-9 ×      × ×   

S10-12  × ×  ×   ×   

S13-15  × ×   ×  ×   

S16-18  × ×    × ×   

S19-21  ×  × ×   ×   

S22-24  ×  ×  ×  ×   

S25-27  ×  ×   × ×   

S28-30 ×    ×    ×  

S31-33 ×     ×   ×  

S34-36 ×      ×  ×  

S37-39  × ×  ×    ×  

S40-42  × ×   ×   ×  

S43-45  × ×    ×  ×  

S46-48  ×  × ×    ×  

S49-51  ×  ×  ×   ×  

S52-54  ×  ×   ×  ×  

S55-57 ×    ×     × 

S58-60 ×     ×    × 



S61-63 ×      ×   × 

S64-66  × ×  ×     × 

S67-69  × ×   ×    × 

S70-72  × ×    ×   × 

S73-75  ×  × ×     × 

S76-78  ×  ×  ×    × 

S79-81  ×  ×   ×   × 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table S3 Recovery of sequential extraction and EDTA extraction 

Soil sample 

(Contamination 

level + biochar 

dosage) 

Day 1 (%) Day 7 (%) Day 28 (%) 

Sequential 

extraction 

EDTA 

extraction 

Sequential 

extraction 

EDTA 

extraction 

Sequential 

extraction 

EDTA 

extraction 

50 + 0% 87.95 ± 9.19 80.33 ± 6.25 88.18 ± 6.48 92.08 ± 

10.10 

89.30 ± 5.18 76.74 ± 2.53 

50 + 1% (2 

mm) 

77.13 ± 0.90 77.17 ± 3.65 72.75 ± 0.70 87.74 ± 1.18 76.96 ± 0.16 81.46 ± 1.20 

50 + 1% (0.15 

mm) 

82.63 ± 6.02 77.67 ± 0.43 76.56 ± 3.17 81.34 ± 2.01 78.20 ± 5.66 76.92 ± 1.20 

300 + 0% 69.31 ± 0.85 94.78 ± 1.85 70.14 ± 4.16 94.54 ± 3.30 74.45 ± 6.35 86.02 ± 4.70 

300 + 1% (2 

mm) 

69.75 ± 4.07 92.92 ± 0.27 72.13 ± 4.58 93.08 ± 3.57 70.50 ± 4.52 86.22 ± 2.88 

300 + 1% 

(0.15 mm) 

74.89 ± 1.14 86.59 ± 0.96 71.92 ± 1.67 91.03 ± 4.22 72.21 ± 1.68 85.24 ± 0.76 

1000 + 0% 64.29 ± 0.64 90.42 ± 4.48 66.62 ± 3.32 93.35 ± 2.38 68.32 ± 2.04 88.43 ± 3.50 

1000 + 1% (2 

mm) 

63.72 ± 2.11 94.22 ± 1.00 61.50 ± 2.33 93.62 ± 1.12 67.41 ± 2.22 81.90 ± 2.31 

1000 + 1% 

(0.15 mm) 

71.53 ± 5.78 97.28 ± 1.02 63.66 ± 1.28 87.57 ± 1.88 66.97 ± 0.52 82.98 ± 1.57 

 

 

 

 

 

 

 

 



Table S4 Sequential extraction results. 

 

Soil sample 

(Contamination 

level + biochar 

dosage) 

Step Day 1 Day 7 Day 28 

mg/kg % mg/kg % mg/kg % 

50 + 0% 
1 17.56 ± 0.05 37.66 17.75 ± 1.68 40.26 16.13 ± 0.52 36.12 

2 11.20 ± 1.82 25.47 10.37 ± 0.85 23.53 10.45 ± 1.49 23.41 

3 9.80 ± 1.10 22.28 10.07 ± 0.39 22.83 11.60 ± 0.82 25.98 

4 2.84 ± 0.35 6.47 2.59 ± 0.11 5.88 2.28 ± 0.31 5.11 

5 3.57 ± 0.13 8.13 3.31 ± 0.35 7.50 4.19 ± 0.11 9.38 

50 + 1% (2 

mm) 

1 14.12 ± 0.01 36.61 15.61 ± 0.06 42.93 15.18 ± 0.16 39.46 

2 8.92 ± 0.77 23.12 8.05 ± 0.04 22.14 7.63 ± 0.04 19.82 

3 10.30 ± 0.79 26.71 7.87 ± 0.04 21.63 9.53 ± 0.19 24.77 

4 2.44 ± 0.09 6.34 2.32 ± 0.14 6.38 2.42 ± 0.14 6.28 

5 2.79 ± 0.28 7.23 2.52 ± 0.15 6.93 3.72 ± 0.11 9.67 

50 + 1% (0.15 

mm) 

1 15.05 ± 0.05 36.44 15.28 ± 0.72 39.90 14.32 ± 0.18 36.61 

2 10.62 ± 1.47 25.70 8.56 ± 0.52 22.36 8.19 ± 0.16 20.94 

3 9.80 ± 0.50 23.72 9.07 ± 0.14 23.69 10.27 ± 0.25 26.26 

4 2.46 ± 0.13 5.95 2.57 ± 0.16 6.70 2.48 ± 0.07 6.34 

5 3.39 ± 0.18 8.20 2.81 ± 0.15 7.35 3.85 ± 0.25 9.85 

300 + 0% 
1 134.61 ± 0.04 64.74 149.23 ± 8.99 70.45 153.76 ± 14.57 69.15 

2 40.60 ± 1.67 19.53 37.92 ± 2.58 17.90 37.44 ± 3.49 16.84 

3 24.47 ± 0.57 11.77 17.53 ± 0.17 8.28 22.33 ± 0.81 10.04 

4 4.56 ± 0.40 2.19 3.66 ± 0.21 1.73 4.06 ± 0.28 1.83 

5 3.68 ± 0.21 1.77 3.49 ± 0.02 1.65 4.76 ± 0.03 2.14 

300 + 1% (2 

mm) 

1 138.93 ± 0.79 66.39 147.89 ± 11.13 68.35 140.19 ± 10.07 66.29 

2 38.82 ± 0.72 18.55 40.53 ± 1.94 18.73 38.27 ± 2.02 18.09 

3 21.61 ± 0.56 10.33 20.40 ± 0.17 9.43 23.53 ± 1.27 11.13 



4 4.13 ± 0.26 1.97 4.06 ± 0.41 1.88 4.35 ± 0.31 2.06 

5 5.76 ± 0.34 2.75 3.49 ± 0.28 1.61 5.15 ± 0.10 2.43 

300 + 1% 

(0.15 mm) 

1 150.56 ± 0.18 67.02 143.52 ± 3.54 66.52 138.75 ± 4.25 64.05 

2 40.93 ± 1.08 18.22 41.12 ± 0.53 19.06 40.69 ± 0.55 18.79 

3 24.00 ± 1.45 10.68 22.60 ± 0.19 10.47 27.27 ± 0.66 12.59 

4 4.72 ± 0.27 2.10 4.54 ± 0.28 2.11 4.63 ± 0.16 2.14 

5 4.45 ± 0.27 1.98 3.99 ± 0.16 1.85 5.28 ± 0.36 2.44 

1000 + 0% 
1 490.40 ± 0.06 76.27 506.43 ± 28.03 76.01 514.40 ± 15.45 75.29 

2 96.43 ± 6.01 15.00 109.07 ± 3.96 16.37 110.00 ± 3.33 16.10 

3 44.60 ± 2.83 6.94 39.80 ± 0.23 5.97 46.00 ± 1.72 6.73 

4 6.86 ± 0.43 1.07 5.62 ± 0.15 0.84 6.28 ± 0.61 0.92 

5 4.65 ± 0.59 0.72 5.33 ± 0.13 0.80 6.51 ± 0.19 0.95 

1000 + 1% (2 

mm) 

1 460.62 ± 0.05 72.29 446.88 ± 13.75 71.59 496.93 ± 17.15 73.71 

2 117.89 ± 18.42 18.50 113.07 ± 7.42 18.70 113.89 ± 4.36 16.89 

3 46.53 ± 1.60 7.30 43.67 ± 0.37 7.82 49.60 ± 1.23 7.36 

4 7.53 ± 0.99 1.18 6.29 ± 0.48 1.09 7.79 ± 0.46 1.16 

5 4.60 ± 0.10 0.72 5.13 ± 0.19 0.97 5.93 ± 0.25 0.88 

1000 + 1% 

(0.15 mm) 

1 538.27 ± 3.45 75.25 455.68 ± 15.62 72.66 490.40 ± 2.67 73.22 

2 116.16 ± 7.73 16.24 119.07 ± 4.25 18.38 112.67 ± 2.17 16.82 

3 47.60 ± 2.86 6.65 49.80 ± 0.14 7.10 52.73 ± 1.09 7.87 

4 7.95 ± 0.48 1.11 6.96 ± 0.46 1.02 7.72 ± 0.07 1.15 

5 5.35 ± 0.11 0.75 5.05 ± 0.14 0.83 6.23 ± 0.39 0.93 

 

 

 

 

 



Table S5 Isotherm model parameters 

 

 

 

 

 

 

 

 

 

Isotherm models  Parameters 

  

  
 

 

   
  

 

  
    

Linear Langmuir:    (mmol/g) and   (L/mmol) are the 

Langmuir constants related to the 

maximum adsorption capacity and 

rate of adsorption;    (mmol/g) is the 

adsorbed amount of adsorbate per 

unit mass of adsorbent at the 

equilibrium aqueous concentration of 

   (mM). 

Q0 

(mmol/g) 

     0.19 

b (mM-1) 0.45 

R2 0.64 

    

      
 

 
     

Linear Freundlich:    (mmol/g) and   are Freundlich 

constants; and    and     are the 

same as Linear Langnmuir 

KF 

(mmol/g) 

0.05 

1/n 0.58 

R2 0.96 



Figure S1. Equilibrium isotherm for Pb2+ adsorption onto kaolinite (0.1 g kaolinite in 

20 mL solution (0.01 M NaNO3), initial Pb2+ concentration 0.1-5 mM; reaction 

temperature 20 °C; initial solution pH 5; contact time 24 h). 
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The immobilisation of biochar on heavy metals in clay soils has been yet or limited 

investigated compared with sand-based soils. The short-term laboratory incubation study 

found that biochar failed to affect the mobility or speciation of lead in kaolin. Further chemical 

analysis suggests it was very likely due to that the biochar failed to competitively adsorb the 

lead against kaolin. The findings in this study offer a new view towards the biochar potential 

in soil remediation.  

 

*Novelty Statement



Abstract: Salisbury biochar (produced from British broadleaf hardwood) with two 

different particle sizes (≤ 2 mm and ≤ 0.15 mm) was applied on a kaolin with three 

different lead (Pb2+) contamination levels (50 mg/kg, 300 mg/kg and 1000 mg/kg) at 

the dosage of 1% in w/w. The short-term impact of biochar on the mobility and 

speciation of Pb2+ in the kaolin was investigated using attenuation periods of 1, 7 

and 28 days. The leachability and extractability of Pb2+ in carbonic acid leaching and 

EDTA extraction tests as well as the sepciarion of Pb2+ in soils were not significantly 

affected by biochar treatment during all periods. The insignificant effects of biochar 

on Pb2+ immobilisation were most likely attributed to the high adsorption capacity of 

kaolin towards Pb2+ and biochar failed to competitively adsorb Pb2+ against kaolin. 

Kaolin immobilised Pb2+ primarily through cation exchange, which represents the 

readily bioavailable fractions of Pb2+ in soils and may still pose environmental risks. 

This paper suggests the inefficiency of biochar treament on heavy-metal 

contaminated clay-rich soils. Therefore a laboratory treatablity study with respect to 

the soil type may be crucial when large-scale biochar applications in heavy-metal 

associated soil remediation are evaluated. 

 

*Abstract


