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Abstract—In-network computing offers an appealing scalabil-
ity trajectory for network services, as application performance
scales with network devices. Despite its potential, in-network
computing may not be suitable for all applications, due to
paradigm assumptions and network-device limitations. As users’
Internet demands keep growing, any limitations on the scalability
of network services such as DNS limits the scalability of end-to-
end experience. In this paper we present P4DNS, an in-network
DNS solution, exploring the span and limitations of implementing
a realistic network service within a network device using P4.
P4DNS is a high performance DNS server, implemented in P4
over NetFPGA and providing ×52 performance improvement
compared with software-based solutions. P4DNS provides insight
into the limitations of implementing in-network services using
today’s paradigms, and the trade-offs between data and control
planes.

I. INTRODUCTION

The demand for moving and processing data is growing.
More than 10 zettabytes of data are processed every year —
a number expected to double by 2021 [1]. The increasing
demands burden both communication and computing infras-
tructure, as a significant number of network services are
associated with today’s communications.

Programmable network devices have opened a road to
scalable network services [2]. Processing data within network
devices offloads processing from servers, freeing clock cycles,
and achieves extremely high performance at the scale of
billions-of-operations per second [3]. Furthermore, moving
applications to the network reduces latency, which benefits
latency-sensitive applications [4]. While many works focus
on caching [3], [5], machine learning [6], [7] and stream
processing [8], network services are not ignored [2], [9].

Despite the impressive performance figures, cloud providers
have been hesitant to deploy such solutions [6]. Further
work discussed the limitations and challenges in deploying
in-network computing [10], [11]. Still, there has been little
detailed discussion on the architectural limitations of the
programmable data planes paradigm on the implementation
of real-world applications. For example, Tokusashi et al. [5]
studied the implications of design decisions on the perfor-
mance and power of a caching application, but did not discuss
functional limitations.

We focus on one specific limitation of programmable data
planes — the separation of control and data planes — and
the entailed separation of functionality. While the roots of
this separation are in software-defined networks (SDN) [12],

most commercial products [13] maintain this separation for
strong isolation, better manageability, and development sim-
plification [14]. Stateful data plane tasks require specialized
hardware [15] or user-defined modules (e.g., externs [16]).

We use one common network service, a domain name server
(DNS), as the leading use-case of our work. We present
P4DNS: a DNS implemented on a programmable platform,
NetFPGA-SUME [17], written in P4 [16], using the standard
P4-NetFPGA workflow [18]. While previous work [2] has
focused on the ability to reply to a DNS query, we explore
the limitations of deploying the complete service within a
network device. While our design achieves ×52 performance
improvement compared with a software-based solution, we
show that the separation of planes limits the potential scal-
ability of network services deployed within network devices.
Our code can be found at https://github.com/cucl-srg/P4DNS.

In summary, this work makes the following contributions:
• We introduce the hardware/software architecture of

P4DNS — a transparent, in-network DNS.
• We describe P4DNS’s implementation of a P4-based DNS

data plane architecture.
• We present P4DNS’s control plane, designed to support

high-rate updates.
• We discuss the limitations of data and control plane

separation — in particular that mutable state is managed
from the control plane, and how the P4 language and its
supporting architectures affect P4DNS’s design.

This paper is organized as follows: Section II describes
DNS. Section III describes P4DNS’s architecture. Sections IV
and V describe the design decisions in P4DNS’s data and
control planes respectively. In Section VI we benchmark
P4DNS. Finally, sections VII and VIII discuss P4DNS as a
whole and how it fits into the related work. We conclude in
Section IX.

II. BACKGROUND

DNS is a critical service for the Internet to map user-friendly
domain names to machine-friendly IP addresses. Each such
mapping is called an “A record” and is stored in a name
server. A domain name is a series of labels each of up to
255 octets. In addition, each record contains meta-data, such
as the remaining time the record is valid.

DNS records are accessed using DNS requests and DNS
responses. A DNS request specifies a number of questions
and elicits a DNS response specifying a number of responses.

https://github.com/cucl-srg/P4DNS
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Fig. 1. DNS packet structure. Each row is 16 bits long.

Fig. 1 illustrates the format of a DNS packet. Request and
response packets use the same structure, and questions and
responses are appended to the DNS header. DNS records
offer compression for domain names. Each requested name
only need appear once in full. Subsequent occurrences can be
replaced by a pointer to the first occurrence.

DNS achieves scalability using a hierarchy. Top-level name
servers store authoritative copies of DNS records. Lower-level
name servers cache records. When a low-level DNS server
receives a question it cannot answer, there are two ways to
resolve the request. Requests may be iteratively resolved, in
which case the DNS server responds with the address of
another name server for the requester to query, or they may be
recursively resolved, in which case the low-level server sends
the question to another name server. The type of resolution
is controlled with the “recursion desired” flag. Further details
can be found in RFC 1034 [19] and RFC 1035 [20].

III. ARCHITECTURE

P4DNS behaves similarly to a low-level name server while
enabling seamless integration into data center networks. To
achieve seamless integration, P4DNS needs no IP address like
traditional DNS servers, but snoops and responds to DNS re-
quests passing through a switch. For requests without a cached
responses, P4DNS uses recursive resolution if requested, and
otherwise forwards the response as a switch.

As an in-network computing DNS, P4DNS builds on the
programmability of data planes. However, P4DNS is not lim-
ited to the data plane alone, and uses a converged data and con-
trol plane architecture to achieve higher performance. P4DNS
achieves ×52 NSD’s [21] and ×10 Emu’s [2] throughput, with
no packet loss. It maintains low latency, and the difference
between median and tail latency is ±30ns for cached entries.

P4DNS’s architecture supports the following features:
1) Packet switching functionality for non-DNS records.
2) Response to A record queries of multiple lengths.
3) Update of the DNS cache when the switch passively

observes a DNS response on the wire.
4) Maintenance of the TTL of each cached domain name.
5) Recursive resolution with a multi-threaded control plane.
P4DNS’s architectural decisions are driven by the question:

“How much can be done within a match-action pipeline?”
Components that fit poorly into a match-action pipeline re-
quire the control plane, which quickly becomes a bottleneck.
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Fig. 2. P4DNS data plane state transitions.
P4DNS’s architecture is based on the design of, and maintains
the behavior of, a P4-based Ethernet switch. We envision our
architecture used in data center ToR switches, accelerating
DNS requests performed by many machines in the same rack.

The control plane implements important features of our
switch. The control plane handles learning behavior, recording
which ports MAC addresses correspond to. Beyond learning,
direct memory access (DMA) is used to send two types of
packets to the control plane: recursive DNS requests and
uncached DNS responses. The control plane spawns a new
thread to handle each packet it receives with DMA. The
control plane also manages an internal cache table with each
seen domain name and its TTL. It updates these TTLs every
second and sends these updated values to the data plane.
Finally, the control plane tracks the number of entries in
the data plane cache to prevent it from overflowing. All this
functionality exists in the control plane because it involves
managing state, which is not possible in the data plane without
complicated, proprietary and difficult to port P4 externs.

The data plane handles P4DNS’s performance-critical com-
ponents. It responds to DNS requests when possible and acts
as a switch when not. This is done using the parser and a series
of condition checks in the main action pipe. If the packet is a
DNS request, an exact match table is used to lookup the name.
Because of the vastly higher efficiency of the data plane, it is
best suited to quickly reply to queries.

We implement P4DNS on a programmable platform (NetF-
PGA SUME [17]). Our design is portable to most other
hardware targets, as it uses no target-proprietary modules.

IV. DATA PLANE

P4DNS’s uses a P4 data plane, designed to run on the
NetFPGA SUME platform [17]. We use the Xilinx SDNet P4C
compiler and build P4DNS on top of a reference P4 learning
switch, using SimpleSumeSwitch architecture1.

We include as much behavior as possible within the data
plane to reduce the load on the software control plane. This
section describes the components of the data plane, how
desired behavior is represented in P4 tables, and limitations
we encountered. There are three stages for each packet:

1Documentation for SimpleSumeSwitch is available at: https://github.com/
NetFPGA/P4-NetFPGA-public/wiki/Ethernet-Learning-Switch.
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1) Parser: extracts important fields from the packet.
2) Main action: handles forwarding and DNS behavior.
3) Deparser: reconstructs the packet for it to be emitted.

A. Parser

The parser inspects every incoming packet and extracts the
headers to the DNS layer. Parsing stops before non-existent
headers are parsed in non-DNS packets. The parser must
understand how the length of DNS headers changes as the
requested domain length varies. However, the P4C compiler
does not support parsing of variable length fields. To support
variable length domain names, we use a different state for each
supported packet length. To allow lookup of all names within
a single table, shorter names are padded with zeroes.

B. Main Action

After the parser, the main action checks whether a DNS
response (or other action) is required by checking header
fields. This is done after parsing to avoid complexity in the
parser which uses excessive hardware resources.

A flow diagram of P4DNS’s behavior is shown in fig. 2.
DNS requests are passed to the DNS table. The domain name
in the DNS packet is matched into the table. If a result is
found, a response packet is created by swapping the source and
destination addresses and appending a DNS response header.
DNS responses are forwarded as normal — DMA is used in
parallel to send a copy to the control plane which updates the
match action tables. When a packet with the recursion desired
bit set misses the DNS table, it is not forwarded, but sent to
the control plane using DMA to be resolved.

C. Deparser

The deparser is a mirror image of the parser. It emits
all parsed packet headers. If response fields are added, the
deparser also emits those. if conditions are not used in the
deparser, headers emission is implicitly controlled using a
validity bit that marks whether a field should be emitted.

D. Limitation and Challenges

We found that adding many states to the parser increased
compile time and hardware resource usage beyond reasonable
limits. We removed much boolean logic from the parser and
into the main action to address this. Largely, this is a limitation
of the parser model. Our parser does not require the full power
of a non-recursive state machine provided by P4C. In fact,
we could just extract the first 65B except P4’s behaviour
when extracting off the end of a packet is undefined, and in
practice means packets switching fails2. This problem could
be addressed with appropriate compiler optimization: given
the resource usage we suggest P4 compiler writers include
such optimizations for targets where the parser overhead is
high. However, relying on compiler optimizations is stopgap
rather than a solution because small program changes can

2The failure mode for parsing off the end of a packet is to make all fields
invalid. This safety and security feature leads to a parser that must have many
states to avoid disabling the Ethernet switching functionality on packets that
are short.
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Fig. 3. The logic flow of the control plane of P4DNS.

cause optimizations to silently fail. Alternatively, if lookahead
parsing without failing on short packets was possible, the
parsing of Ethernet, IPv4, UDP and DNS headers could be
compressed into a single state.

Beyond the parser state problems, we discovered that some
checks required by DNS do not fit the P4 model particularly
well. For example, DNS names are designed for C-style
for-loops, similar in concept to null terminated string. One
parsing approach is using externs, which comes at the cost
of portability. In our case, the packet length and several DNS
header fields were sufficient to determine the requested domain
name’s length. However, other applications may not have this
luxury.

V. CONTROL PLANE

The control plane is a highly parallel implementation in
Python that spawns a new thread to handle each packet
received via DMA. A flowchart of control plane behavior is
shown in fig. 3. Each incoming message is either a digest
containing a MAC address and source port for the learning
switch, or a whole DNS packet that may either request for
recursive resolution or a response to update the cache. For
digests, the control plane updates the switch forwarding tables.
If a whole packet is received and is a DNS response, the
response is extracted and the local caches are updated. If a
DNS request is received with the recursion desired bit set,
the control plane recursively resolves the request. If a domain
name is unresolvable, the control plane sends an appropriate
DNS error response.

A. Cache Updates

A significant part of the control plane is dedicated to man-
aging cache updates — identifying which DNS information to
cache, and inserting it into the hardware cache tables. There
are three opportunities to update the onboard caches:

• When a DNS response passes through the switch.
• When a recursive query is answered.
• When a TTL for a cached domain changes.
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1) Table Models: These updates are managed using a model
in the control plane of the P4 tables. The hardware cache in
the prototype has 64 entries and is managed using a FIFO
eviction protocol. When P4DNS’s control plane caches a new
response in a full hardware cache, an old response is evicted.

To keep the TTL of every DNS response accurate, a timer
updates the TTL of all DNS records stored in both the host and
onboard tables once a second. When a DNS record reaches a
TTL of 0, it is removed from both caches.

B. Design Challenges

The concurrent implementation introduces bottlenecks
where many threads compete for shared resources (P4 ta-
bles and table models). P4 table writes are not atomic in
P4→NetFPGA, so are not thread safe. P4DNS uses a wrapper
class with locks around SDNet calls to ensure thread safety.
Using locks forces careful consideration to avoid deadlock. We
follow the traditional approach of ensuring locks are always
taken in the same order. However, crashes while holding locks
still cause deadlock. For example, if we receive A records with
a TTL of 0. Careful management of these records is required
to ensure that they are not marked as expired and removed
before a response packet is sent to the requesting host. To
address this issue more generally, locks are acquired within
try, finally blocks — locks are released if there is a crash,
although data may remain in an inconsistent state.

The SDNet APIs presented challenges beyond concurrency.
Attempting to insert entries into full hardware tables results in
silent failure. Our table models (section V-A1) address this.

Python library Scapy [22] is used to process packet data. We
use a custom Scapy packet structure to process Ethernet digest
information. When processing DNS packets, we found that
packet length in the control plane varies from the actual length
on the wire despite no visible content difference. This issue
is related to DNS compression — a domain name appearing
more than once in a packet can be replaced by a pointer to
another occurrence. Scapy “helpfully” decompresses packets,
resulting in larger sizes in Python than Wireshark. We patched
Scapy in our control plane to prevent DNS decompression.
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Fig. 5. P4DNS vs. NSD response latency CDF.

VI. EVALUATION

In this section, we evaluate P4DNS’s performance. We
compare P4DNS’s latency and throughput on cached responses
to NSD [21] and Emu [2], and discuss the limitations of
P4DNS’s functionality compared with NSD and Emu.

A. Experimental Setup

Our experimental setup uses an ExaNIC HPT capture
card [23] and an optical tap to measure latency and throughput
of DNS servers. DNS requests entering the DNS server under
test are mirrored to a capture card using an optical tap. The
DNS response is also sent to the capture card. In this setup,
the capture card receives one copy of each packet: one before
the request enters the server and one as the reply is sent. The
difference between arrival times indicates device latency.

OSNT [24], an open source network tester, is used to
generate DNS packets. A single 10GE port is used to generate
traffic s both Tx and Rx traffic can be captured on a (dual port)
ExaNIC HPT. Where used, NSD runs on an Intel Xeon E5-
2637 v4 machine running at 3.50GHz with 64GB of RAM
and using a Solarflare SFC9220 NIC.

1) Throughput: To measure throughput, we generate 10
million 64B DNS requests with OSNT, and calculate the
throughput based on the time required to process 10 million
80B replies. We find that P4DNS can respond to DNS requests
at line rate (11 million responses per second at 10GE). Fig. 4
shows this is 52 times the performance of NSD (226,000
responses per second, on the same machines, as reported
in [2]), and 10 times the performance of Emu, (1.1 million
responses per second as reported in [2]).

2) Latency: To measure latency, we send individual DNS
requests using tcpdump with a large inter-packet gap in to
test DNS servers under no load. We used the same setup for
both P4DNS and NSD (for Emu we used the results from [2]).
All latency experiments were run with 1000 packets.

Latency tests show little difference between latency distribu-
tions of different sized queries hitting our cache. For P4DNS,
The median response latency of cached responses is 3.33 µs
(99th percentile 3.35 µs) for both 64B and 65B DNS request
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packets. In NSD, the median latency is 122.25 µs and (99th

percentile 181.73 µs).
To understand the effect of our underlying switch, we per-

formed the same measurement on the learning switch without
P4DNS. In this experiment, the median latencies are lower,
at 1.675 µs (99th percentile 1.696) and 1.67 µs (99th percentile
1.691) for 64B and 65B packets respectively. P4DNS latency
is higher as we add more parsing logic and match-action stages
to this original design. We note that latencies are expected to
be significantly better using SDNet releases 2019.1 and the
same P4DNS design.

In traditional data centers, DNS requests have inherent
switching latency costs. We envision a data center environment
where P4DNS sits as a ToR switch transparently resolving
DNS queries. P4DNS negates switching latency costs, resolv-
ing DNS queries for free by piggy-backing on a packet that
is already being switched.

Tail latency is particularly important in data center environ-
ments. Fig. 5 shows that P4DNS’s latency is far lower than
NSD’s in all observed cases.

B. Comparison to NSD and Emu

P4DNS represents a midway point in functionality between
NSD and Emu. P4DNS is not a fully fledged DNS server,
and does not compete with NSD on features. However, as
we have seen above, limiting the scope to the most commonly
used DNS features [25] enables the design of efficient and high
performance hardware DNS caches. Emu took this philosophy
to the extreme providing bare-minimum functionality. In Emu,
the user must manually select a single domain name for
which responses can be issued. P4DNS’s match-action pipeline
enables a dynamic approach, supporting more entries and more
features (e.g., TTL updates) combined with higher throughput.
Emu is not fully pipelined, and therefore can not achieve full
line rate, unless each stage in the pipeline runs as a separate
thread (which is not the case in [2]).

VII. DISCUSSION

P4DNS supports line rate DNS responses for sustained
periods of time. P4DNS supports:

• Fast, near-host generation of DNS responses before they
traverse the network, supported on all four ports.

• Passive cache updates from DNS responses traversing the
network.

• Intelligent cache management strategies.
• Resolution of recursive DNS requests.
Although the P4→NetFPGA workflow enabled many fea-

tures, we encountered several limitations. First, the generality
of the parser was a problem. P4DNS does not require the
power of a state machine. However, parsing off the end of
a packet results in all parsed bits being invalidated. This
restriction means a state is required for each protocol even if
the parser state does not subsequently diverge. Instead, if the
parser yielded as many valid bits as possible, we could parse
the entire packet with one call to packet.extract and
save a number of states in the parser. The parser is also made

complicated as variable length fields are not supported by
P4→NetFPGA3. Lighter-weight parsing mechanisms enable
more complex in-network computing.

Further, we found handling C-style strings cumbersome.
This is not entirely surprising, but applications using C-style
strings might have to rely heavily on externs.

Finally, although P4DNS’ data plane can generate DNS
responses at line rate, the control plane has far weaker perfor-
mance. Control plane scalability depends on host resources,
limiting packet processing rate, and leading to drops in the
listener function even with a moderate percentage of traffic
going to control plane. Application designers should bear in
mind that the control plane is unsuitable for high packet rates
(which is why in-network computing was originally called
for). Therefore applications where critical packets are sent to
the control plane will gain little in performance. A direct effect
on P4DNS is that P4DNS cannot support TCP-based DNS
without significant reliance on externs to manage the state of
each connection.

VIII. RELATED AND FUTURE WORK

In-network computing has been introduced as a means
to accelerate applications and offload hosts [6]. It achieved
billions of operations per second for caching applications [26],
[27], supporting distributed system functionality [9], stream
processing [8] and more. P4DNS can be ported to programma-
ble switches, as it uses no externs, and match their line rate.
P4DNS stands out from many of these projects (e.g., [26],
[27]) as it integrates an existing protocol rather than design a
new one. Further, P4DNS acts as a transparent cache rather
than a mandatory part of the system as is the case in Eris [9].

DNS acceleration in hardware was presented in Emu [2].
However, Emu’s DNS server supports a single, fixed, A record,
and no recursive resolution or dynamic cache updates. Marinos
et al. [28] explored accelerating DNS within a traditional soft-
ware environment and achieved 9× throughput improvements
over NSD by specializing the network stack.

In-network computing is gradually being adopted and stan-
dardized, with groups such as IRTF COIN 4 looking at the
greater picture of realistic deployments and the creation of
RFCs. Hopefully, P4DNS will contribute to this discussion.

Future extensions of P4DNS will support any valid length
packets and a bigger cache. Matching domain names on a per-
label basis is another challenge, requiring multiple chained
match-action tables and C-style string parsing, but enabling
NS responses with redirection. P4DNS has not implemented
security aspects of DNS, such as DNSSEC and DoH, which
are beyond the scope of this work. We believe that such
separate contributions can be integrated with P4DNS.

IX. CONCLUSION

We present a P4 implementation of a DNS accelerator
capable of running on a NetFPGA. We find latency and

3This will be supported in newer SDNet releases
4https://datatracker.ietf.org/rg/coinrg/
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throughput improvements over state-of-the-art software so-
lutions, by bringing computation closer to the end host. In
achievable throughput, P4DNS outperforms NSD by a factor
of 52 and Emu by a factor of 10. Our work shows the
feasibility for network application caching to be implemented
within switches with positive results. We further identify the
computational power of the parser as both more than necessary
for our needs, and a source of increased resource usage.
Importantly, we identify the control plane as a limiting factor
in the design of stateful hardware. To enable the scalability of
future in-network computingsolutions, designs are required to
reduce data plane’s dependence on control plane operations.
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