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Key points (2, 140 characters each including spaces) 1 

* Chromatin accessibility patterns at key heptad regulatory elements can predict cell identity 2 

in healthy progenitors and leukemic cells. 3 

* A sub-circuit comprised of GATA2, TAL1, and ERG regulates the stem cell to erythroid 4 

transition in both healthy and leukemic cells.  5 
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ABSTRACT  1 

Changes in gene regulation and expression govern orderly transitions from hematopoietic 2 

stem cells to terminally differentiated blood cell types. These transitions are disrupted during 3 

leukemic transformation but knowledge of the gene regulatory changes underpinning this 4 

process is elusive. We hypothesised that identifying core gene regulatory networks in healthy 5 

hematopoietic and leukemic cells could provide insights into network alterations that perturb 6 

cell state transitions.  A heptad of transcription factors (LYL1, TAL1, LMO2, FLI1, ERG, 7 

GATA2, RUNX1) bind key hematopoietic genes in human CD34+ haematopoietic stem and 8 

progenitor cells (HSPCs) and have prognostic significance in acute myeloid leukemia 9 

(AML). These factors also form a densely interconnected circuit by binding combinatorially 10 

at their own, and each other’s, regulatory elements. However, their mutual regulation during 11 

normal haematopoiesis and in AML cells, and how perturbation of their expression levels 12 

influences cell fate decisions remains unclear. Here, we integrated bulk and single cell data 13 

and found that the fully connected heptad circuit identified in healthy HSPCs persists with 14 

only minor alterations in AML, and that chromatin accessibility at key heptad regulatory 15 

elements was predictive of cell identity in both healthy progenitors and in leukemic cells.  16 

The heptad factors GATA2, TAL1 and ERG formed an integrated sub-circuit that regulates 17 

stem cell to erythroid transition in both healthy and leukemic cells.  Components of this triad 18 

could be manipulated to facilitate erythroid transition providing a proof of concept that such 19 

regulatory circuits could be harnessed to promote specific cell type transitions and overcome 20 

dysregulated haematopoiesis.  21 

  22 
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INTRODUCTION 1 

Haematopoietic stem cells (HSCs) reside in the bone marrow niche where they are mostly 2 

quiescent but retain the capacity to self-renew and replace terminal blood cell types 3 

throughout life
1
. Haematopoiesis is a hierarchical process with HSCs at the apex giving rise 4 

to a range of progenitor cells with increasing lineage restriction
1
. Although single cell 5 

transcriptomic data suggest a continuous differentiation process
2-7

, relatively pure progenitor 6 

populations corresponding to intermediate differentiation stages can be prospectively isolated 7 

based on surface marker expression
3
. Cell type transitions are controlled by cell intrinsic and 8 

extrinsic factors, and loss of control can lead to inappropriate proliferation and leukemic 9 

transformation
8-13

.  10 

 11 

Acute myeloid leukemia (AML) is characterised by an abundance of relatively 12 

undifferentiated cells (blasts) of the myeloid lineage
14

. AMLs likely originate in the earliest 13 

HSC compartments or acquire stem-cell-like transcriptional programs during leukemic 14 

transformation
15-19

.  Although blast cells can comprise the bulk of the AML population, self-15 

renewal is restricted to a smaller population of leukemic stem cells (LSCs) which can 16 

recapitulate the disease after ablation of the blast population
20-22

. LSCs drive relapse
23

, 17 

potentially because they possess stem cell transcriptional programs
24,25

. Thus, AML induces a 18 

parallel hierarchy of malignant cell types with LSCs at the top
26

. Therapies that induce LSC 19 

differentiation by targeting mutant proteins that block differentiation are effective but limited 20 

to a minority of AMLs
27-31

. 21 

 22 

AML is a heterogenous disease with numerous driver mutations
14,32-34

, many of which 23 

converge on corruption of the transcriptional networks that control normal 24 

haematopoiesis
13,35-37

. Transcriptional networks coordinate gene regulation and play a key 25 
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role in establishing and maintaining cell identity throughout the life of an organism
12,38

.  Such 1 

networks are cell type specific, and therefore need to be rewired during embryonic 2 

development and differentiation, while disruption can lead to oncogenic transformation
8-13

. 3 

Indeed, transcriptional networks are altered across AMLs with a wide spectrum of mutational 4 

origins, such that AML cells assume a new epigenetic identity distinct from any normal blood 5 

cell type
35

. Furthermore, epigenetic rewiring is increasingly being recognised as a non-6 

genetic cause of treatment resistance
39-41

. However, the specific molecular mechanisms 7 

underlying disruption of transcriptional networks in AML, and whether these can be 8 

therapeutically targeted, remain unknown. 9 

 10 

We and others have previously described seven transcriptional regulators (heptad; 11 

LYL1, TAL1, LMO2, FLI1, ERG, GATA2, RUNX1) which bind to key haematopoietic 12 

genes in normal human CD34+ haematopoietic stem and progenitor cells (HSPCs) and in 13 

AML
42-44

. Heptad factors also bind combinatorially at their own, and each other’s, regulatory 14 

elements, forming a densely interconnected circuit that plays a role in maintaining the stem 15 

cell state 
42,44

. The heptad circuit appears to be established at the haemogenic endothelium 16 

stage of blood development
45

, and over-expression of all seven factors in a mouse in vitro 17 

differentiation system led to increased production of pre-HSPCs with capacity for 18 

multilineage differentiation 
46

. All seven factors are key haematopoietic regulators, and 19 

mutation or dysregulation is commonly associated with haematological or other 20 

malignancies
32,47-50

. Furthermore, the heptad circuit is maintained or reactivated in AML
43,51-

21 

53
, and heptad expression is predictive of patient outcome

43
. However, heptad circuitry and 22 

function have primarily been established using bulk ChIPseq experiments in heterogenous 23 

cell populations (i.e. HSPCs) which may obscure underlying sub-circuits or relationships that 24 

only exist in specific cell types/cellular contexts. Thus, key questions remain about the 25 
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precise roles of the heptad throughout normal and leukemic haematopoiesis, including 1 

whether all seven factors act together in single cells, and whether heptad TFs contribute to 2 

cell fate decisions as well as maintaining stemness.  3 

 4 

Here we integrate bulk and single cell data in normal human HSPCs and leukemic 5 

cells and find that chromatin conformation at key heptad regulatory elements is predictive of 6 

cell identity in normal and leukemic progenitors. The interconnected heptad circuit identified 7 

in normal HSPCs persists in AML, but single cell transcriptomics suggest that specific heptad 8 

sub-circuits exist in individual cells and play a key role in determining differentiation 9 

trajectories as cells exit the stem cell state.  10 

  11 
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METHODS  1 

Supplementary Methods detail standard techniques. 2 

  3 

NGS data generation/processing 4 

Chromatin immunoprecipitation (ChIP) was performed as described
43

 (antibodies in Table 5 

S1). Library construction/sequencing was performed by BGI Genomics (China) or Novogene 6 

(Hong Kong). Single cell RNA sequencing (scRNAseq) used the 10X Genomics pipeline. 7 

Aligned sequencing data was displayed in BigWig format, and read counts covering 8 

enhancers (Table S2) extracted using deepTools pyBigWig
54

 and plotted.  9 

 10 

Replicate ATACseq counts were added. Profiles were encoded as unit vectors by 11 

dividing by total counts across all heptad peaks. Cityblock distances on the multidimensional 12 

unit sphere between each sample and each average profile were used to compute the heatmap 13 

and predict cell types.  14 

 15 

scRNAseq Analysis 16 

Analysis for Figures 1, 4 is at https://github.com/iosonofabio/heptad_paper. Healthy 17 

hematopoietic cells data was downloaded as described 18 

https://github.com/dpeerlab/Palantir/blob/master/README.md, Rep1. Embedding 19 

coordinates, colours, cluster metadata, and smoothed counts data were extracted from the 20 

h5ad file and plotted using singlet (https://github.com/iosonofabio/singlet). 21 

 22 

Count and metadata tables from CellRanger (10X Genomics) were converted to loom 23 

format (http://loompy.org/) and normalised to “counts per ten thousand (uniquely mapped) 24 

reads”. The symmetric correlation matrix was ordered by hierarchical (average linkage) 25 

https://github.com/iosonofabio/heptad_paper
https://github.com/dpeerlab/Palantir/blob/master/README.md
https://s3.amazonaws.com/dp-lab-data-public/palantir/human_cd34_bm_rep1.h5ad
https://github.com/iosonofabio/singlet
http://loompy.org/
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clustering on L2 distance with optimal leaf ordering. Conditional distributions of gene 1 

expression were computed via quantiles followed by kernel density estimate in logarithmic 2 

space. 3 

 4 

Palantir data were subsampled to 40 cells/type. northstar’s subsample method
55

 was 5 

used to infer cell states within ME-1 guided by Palantir data
6
. For graph construction, 10 6 

external (non-mutual) neighbours were allowed to compensate for the fact that ME-1 cells are 7 

quite distant from actual hematopoietic cells. RNA velocity
56

 was computed using scVelo
57

 8 

and projected onto northstar’s embedding. Gene expression was plotted in the same 9 

embedding after iterative nearest-neighbour smoothing. For predicting ME-1 cell state, we 10 

trained a random forest classifier using scikit-learn and evaluated its performance via 11 

train/test splits.  12 

 13 

Data sharing 14 

 Table S3 shows public datasets. New data is deposited under accession GSE158797. Code is 15 

available from https://github.com/iosonofabio/heptad_paper. 16 

 17 

RESULTS 18 

Heptad expression during haematopoiesis 19 

To understand heptad expression patterns during haematopoiesis we interrogated existing 20 

scRNAseq data (Palantir) from bone marrow cells
6
 (Figure 1A). Diverging patterns of heptad 21 

transcription factor (TF) expression were observed across developmental time (Figure 1B). 22 

All seven TFs are expressed in HSCs, with increasing divergence during differentiation. For 23 

example, GATA2, TAL1, LYL1, and LMO2 are upregulated along the erythroid lineage, while 24 

RUNX1 is upregulated along the granulocytic/monocytic lineage.  25 

https://github.com/iosonofabio/heptad_paper
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 1 

Heptad regulatory region accessibility during normal haematopoiesis 2 

Heptad TFs form a densely interconnected circuit in bulk CD34+ HSPCs, with each 3 

corresponding gene having regulatory regions bound by most of the heptad
42

. Since heptad 4 

expression patterns are heterogeneous in single cells, we asked whether there is evidence for 5 

changes in heptad regulation at any of the combinatorially bound regions over developmental 6 

time. Although haematopoiesis is a continuum (Figure 1A), functionally defined 7 

subpopulations representing various waypoints can be isolated based on cell surface marker 8 

expression (Figure 1C). We queried chromatin accessibility data from sorted bone marrow 9 

subpopulations
4
, focussing on known heptad gene regulatory regions (LYL1 promoter (P), 10 

TAL1+40, LMO2-25, FLI1-16, ERG+85, GATA2+3.5, RUNX1+23
42

). We included two 11 

putative regulatory regions; RUNX1+141, an intragenic RUNX1 region that was heptad-12 

bound in HSPCs
42

, and GATA2-117, a distal regulatory element for GATA2 that is 13 

dysregulated by translocation in the inv(3) AML subtype
58,59

. Strikingly, accessibility 14 

patterns differed throughout development with some elements (FLI1-15, ERG+85, 15 

GATA2+3.5, RUNX1+141) losing accessibility upon exiting the CD34
+
 progenitor stage, 16 

suggesting that heptad connectivity is lost once cells commit to terminal differentiation 17 

(Figure 1D). Individual heptad regulatory elements remain accessible in more differentiated 18 

cells (LYL1P, LMO2-25, RUNX1+23; monocyte lineage, and LYL1P and TAL1+40; erythroid 19 

lineage) consistent with expression of the related TF in these cells, with some exceptions 20 

such as the LMO2-25 enhancer, which is inaccessible in erythroid cells, even though LMO2 is 21 

highly expressed, presumably controlled by alternate regulatory regions. The TAL1+40 and 22 

GATA2-117 elements had the most restricted accessibility patterns with both biased toward 23 

the erythroid lineage in line with higher expression of TAL1 and GATA2 in these cells.  24 

 25 
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Heptad regulatory region accessibility in AML 1 

The heptad circuit can be active in AML
43,51-53

 and heptad expression can predict patient 2 

survival
43

. Data from two cohorts of AML cells showed that heptad regulatory regions were 3 

accessible in AMLs with diverse molecular lesions
35

 (Figure S1A) and in pre-leukemic 4 

HSCs, LSCs, and leukemic blasts isolated from the same patient
4
 (Figures 1E, S1B). Notably, 5 

the TAL1+40 enhancer was rarely accessible in AML, and the GATA2-117 enhancer varied 6 

between patient samples. 7 

 8 

Heptad regulatory region accessibility can classify normal and leukemic cells 9 

Genome-wide chromatin accessibility profiles reflect cell identity
4
. Since heptad expression 10 

and regulatory region accessibility are heterogenous throughout development, we asked 11 

whether the pattern of chromatin accessibility at heptad regulatory regions is sufficient to 12 

predict cell type. Using a classifier based on nine regulatory regions, we could correctly 13 

identify normal cells across the haematopoietic spectrum (Figure 1F).  Furthermore, this 14 

classifier could assign a “closest normal” type to AML samples sorted into pre-leukemic 15 

HSC (pHSC), LSC, and blast populations (Figure 1G). Consistent with known AML biology, 16 

pHSCs were predominantly classified as HSCs or MPPs, LSCs as LMPPs or GMPs, and 17 

blasts as more variable cell types. We compared our cell type assignments to published 18 

classifications of these samples based on whole genome accessibility patterns
4
 and found a 19 

high concordance in pHSC and LSC populations (Figures 1H, S1C). Consistent with lost 20 

heptad connectivity in more differentiated cells, the heptad-based classifier had reduced 21 

concordance with genome-wide classification in blast populations. Overall, our analysis 22 

indicates that heptad expression and accessibility are associated with cell identity in healthy 23 

haematopoietic progenitors and leukemic cells. 24 

 25 
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The heptad network persists in AML, with altered connectivity. 1 

We extended our analysis and asked which heptad TFs were bound at each regulatory region 2 

in normal and AML contexts, looking first at heptad binding patterns at the nine regulatory 3 

regions in CD34
+
 HSPCs

42
 (Figure 2A, left, Figure S2). Combinatorial binding was observed, 4 

with LYL1, FLI1, GATA2, and RUNX1 bound at all regions, and FLI1, ERG, GATA2, and 5 

RUNX1 each having at least one regulatory element bound by all seven TFs. Binding patterns 6 

were then used to infer the connectivity map of heptad autoregulation in HSPCs (Figure 2A, 7 

right).  8 

 9 

We next compared heptad connectivity in two AML cell lines, ME-1, and KG-1. 10 

AML cell lines recapitulate properties of primary AML cells
60

 and can be experimentally 11 

manipulated. ME-1 and KG-1 cells express all seven heptad genes, although the pattern of 12 

individual TF expression varies both between cell lines and compared to HSPCs (Figure S3).  13 

Consistent with primary AML accessibility, heptad ChIPseq in ME-1 (Figures 2B, S4) and 14 

KG-1 (Figure 2C, S5) revealed that the densely interconnected circuit observed in HSPCs 15 

persists in AML cells, although the precise pattern of connectivity varies. For example, both 16 

ME-1 and KG-1 have prominent binding peaks at LYL1P, while at TAL1+40, ME-1 and KG-17 

1 had fewer called peaks (4/7 and 2/7 respectively) than HSPCs (5/7), and these were 18 

generally small. Overall, heptad TFs remain highly connected in both AML cell lines, albeit 19 

with somewhat different circuit structures compared to HSPCs. Expression levels of 20 

individual TFs in HSPCs and AML cell lines were broadly in keeping with the number and 21 

binding intensities of TFs at the cognate regulatory element (Figure 2, S3), except for LMO2 22 

which had similar numbers and sizes of ChIPseq peaks across all cell types but was highly 23 

expressed in HSPCs.  24 

 25 
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Heptad regulatory elements require ETS and GATA motifs  1 

Having shown that heptad binding at regulatory regions persists in AML, we wanted to 2 

understand the role of specific TF binding motifs within these regulatory regions. Cis-3 

regulatory elements integrate signals from multiple TFs which bind to specific DNA 4 

sequences, with direct binding occurring at consensus binding motifs. The heptad TFs belong 5 

to four broad classes of TFs with different consensus binding motifs – E-box (CANNTG, 6 

bound directly by LYL1 and TAL1 and indirectly by LMO2), ETS (GGAW, bound by FLI1 7 

and ERG), GATA (GATA, bound by GATA2) and RUNX (TGYGGT, bound by RUNX1).  8 

To identify consensus motifs likely to correspond to TF binding sites, we performed multiple 9 

sequence alignments using human, mouse, dog, and opossum genomes (Figure 3A). All 10 

regulatory elements contained conserved ETS and GATA motifs, while 7/9 contained a 11 

conserved E-Box motif and 6/9 a conserved RUNX motif. We mutated all conserved 12 

instances of each binding motif class (Table S4) and tested in luciferase reporter constructs in 13 

KG-1 and ME-1 cells.  14 

 15 

Deletion of ETS consensus motifs was universally deleterious, leading to significant 16 

loss of activity for all elements tested (Figure 3B). Deletion of GATA consensus motifs had a 17 

significant negative impact for all regions in at least one cell line. Deletion of E-box or 18 

RUNX motifs reduced luciferase reporter activity, however the effect was generally small 19 

compared to deletion of ETS or GATA motifs, and in one case (LMO2-25) deletion of the 20 

RUNX motif led to slightly increased activity.  Overall, regulatory region activity was 21 

impaired by loss of any class of TF binding motif, with loss of ETS or GATA motifs 22 

dominating. Two WT reporter constructs, TAL1+40 and RUNX1+141, showed minimal 23 

activity in one or both cell lines (Figure 3C), and were excluded from mutation analysis. 24 

Consistent with their activity, TAL1+40 had few heptad TF binding inputs in either cell line, 25 
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and RUNX1+141, which was active in ME-1 but not KG-1, had fewer inputs in KG-1 than in 1 

ME-1. 2 

 3 

Single cell transcriptomics reveal key regulators of the HSC – erythroid transition  4 

Altered enhancer activity reads out as gene expression changes. Encouraged by our results 5 

indicating that removing specific consensus motifs altered activity of heptad regulatory 6 

regions, we proceeded to scRNAseq analysis of heptad expression in ME-1 cells which are 7 

amenable to downstream perturbation. We quantified heptad heterogeneity and observed that 8 

for both high (e.g., LYL1) and low (e.g., ERG) expressed genes heterogeneity across the ME-9 

1 population spanned an order of magnitude (Figure 4A). Furthermore, the highest gene 10 

expression (LYL1) corresponded to the highest heptad binding at an associated regulatory 11 

region, while lower gene expression (TAL1 and GATA2) corresponded to lower heptad 12 

binding at their associated regulatory regions (Figure 2B).  13 

 14 

We next looked for pairwise expression correlations between TFs and found GATA2 15 

was positively correlated with TAL1, and negatively correlated with ERG and LMO2 (Figure 16 

4B). Because correlation measures are insensitive to extreme phenotypes, we performed 17 

complementary analysis to evaluate whether this effect is also seen at the extreme of the 18 

distribution and plotted conditional gene expression distribution in the bottom and top 19 

quantiles of expressors of GATA2 (Figure 4C).  Given the observed heterogeneity in heptad 20 

expression in ME-1 cells, and the strong association between heptad regulation and cell type 21 

we asked whether we could identify subpopulations within the ME-1 scRNAseq data. A 22 

canonical unsupervised clustering approach based on overdispersed features did not result in 23 

distinct biological patterns beyond cell cycle, as expected from a cell line. We reasoned that a 24 

more sophisticated feature selection together with soft guidance from healthy marrow data 25 
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could reveal additional hidden heterogeneity. We therefore switched from unsupervised 1 

clustering to northstar, a semi-supervised clustering algorithm that leverages information 2 

from training data to channel the axes of heterogeneity during feature selection, graph 3 

construction, and cell community detection
55

. Using healthy marrow transcriptomes
6
 (Figure 4 

1A) as training data, this analysis revealed two major subpopulations, HSC-like (pink) and 5 

Mono-precursor-like (purple, 1136 and 277 out of 1489 cells respectively) plus a minor 6 

population that was more similar to Ery-precursor cells (lime, 47 out of 1489 cells) and two 7 

small groups of cells resembling Megakaryocytes (18 cells) and Monocytes (11 cells, Figure 8 

4D). RNA velocity analysis
56

 (Figure 4D arrows) revealed a major trajectory along the HSC-9 

Mono-precursor axis, and an alternate trajectory connecting the HSCs to the Ery-precursor 10 

population. This flow diagram (independent of northstar clustering) confirmed population 11 

structure reminiscent of healthy haematopoiesis (Figure 4D inset). Primary AML cells also 12 

have population structures resembling normal haematopoiesis
61

 and have differential heptad 13 

expression between subpopulations (Figure S6A). We projected expression levels of the four 14 

previously identified genes on embedded cell plots (Figure 4E), and consistent with our 15 

correlation data and known biological functions, GATA2 and TAL1 expression were enriched 16 

in the Ery-precursor population. Conversely, ERG and LMO2 expression were enriched in the 17 

HSC-like and Mono-precursor-like populations. We then computed the fold expression 18 

change in heptad genes between HSC and Ery-precursor cells in both ME-1 and normal BM 19 

cells (Figures 4F, S6B, S6C, Tables S5, S6).  In ME-1 cells, ERG expression was reduced 20 

(0.6x) and GATA2 and TAL1 expression increased (11x and 3.5x respectively) in Ery-21 

precursor cells (Figure 4F left).  We observed a similar pattern in healthy cells, although 22 

FLI1, RUNX1, and LMO2 also showed expression changes in this context (Figure 4F right).  23 

 24 
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To better understand how heptad TFs influence cell-specific gene expression we 1 

interrogated TF binding in bulk HSPCs. As these cells are a mixture of progenitor types, we 2 

focussed on ATACseq peaks uniquely accessible in HSCs or MEPs (Figure S7, Table S7). 3 

ERG, FLI1 and RUNX1 had higher expression in HSCs compared to Ery-precursors and 4 

showed higher average binding at HSC-unique peaks, while GATA2, TAL1, and LYL1 were 5 

more highly expressed in Ery-precursors but had similar average binding at both MEP- and 6 

HSC-unique peaks (Figure S7). LMO2 had higher expression in Ery-precursors, but higher 7 

binding at HSC-unique peaks. TFs bind DNA directly via their cognate binding motifs, or 8 

indirectly via protein-protein interactions. HSC-unique peaks were highly enriched for ETS 9 

motifs (Table S8, significance value (sv) 5.50E-171), and enriched for RUNX motifs (Table 10 

S8, sv 5.70E-08), consistent with higher ERG, FLI1, and RUNX1 binding at these peaks. 11 

MEP-unique peaks were bound by GATA2 and highly enriched for GATA motifs (Table S8, 12 

sv 3.20E-111). GATA2 was also bound at HSC-unique peaks, although GATA motifs were 13 

enriched in only a minor fraction of HSC-unique peaks (Table S8, 33/7396, sv 3.10E-02), 14 

suggesting that GATA2 binding at these sites may be mediated by interactions with other 15 

transcription factors rather than direct DNA binding.  16 

 17 

Finally, we asked whether heptad expression was sufficient to classify ME-1 cells as 18 

HSC-like or Ery-Precursor-like (Figure 4G). Using a random forest classifier based on 19 

Palantir data, we found heptad expression was able to correctly classify cells with high 20 

accuracy (area under ROC = 0.80), and that GATA2 expression was the best performing gene 21 

in terms of model accuracy (area under ROC = 0.84). 22 

 23 

Direct manipulation of GATA2 and ERG promotes erythroid trajectory. 24 
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 We then evaluated effects of perturbing heptad factors on i) expression of other 1 

heptad factors, ii) global transcriptome of perturbed cells, and iii) cell function. Specifically, 2 

we predicted that high levels of GATA2 or TAL1 and low levels of ERG would promote 3 

transition along the HSC-Ery-precursor axis (Figure 5A). We first knocked down key heptad 4 

genes in ME-1 cells (Figure S8A) and measured the response of other heptad genes. GATA2 5 

knockdown led to decrease of TAL1 and most other heptad genes, except for ERG which was 6 

unaffected by GATA2 knockdown (Figure 5B, left). Similarly, TAL1 knockdown led to 7 

decreased GATA2 and most other heptad genes except for ERG (Figure 5B, centre). 8 

Conversely, ERG knockdown led to decreased LMO2 expression, but increased expression of 9 

GATA2, FLI1, and TAL1 (Figure 5B, right). RUNX1 expression showed inconsistent changes, 10 

possibly due to dysregulation via translocation of its essential binding partner CBFβ in ME-1 11 

cells
62

. Similar results were observed using additional shRNAs targeting GATA2 or ERG 12 

(Figure S8B). Heptad gene expression also changed following knockdown of GATA2, TAL1, 13 

or ERG in two additional AML cell lines (Figure S8C, S8D), although response patterns 14 

varied between cell lines, likely reflecting the unique cell subpopulations in each. 15 

 16 

Since the bulk of ME-1 cells were assigned as HSC-like, we reasoned that ERG 17 

knockdown, or GATA2 overexpression, might alter their trajectory away from the HSC-like 18 

and towards the Ery-precursor-like state. ERG knockdown reduced ME-1 colony formation in 19 

methylcellulose (Figure S8E), consistent with a shift away from the HSC-like state. We also 20 

analysed RNAseq data from GATA2 over-expression in ME-1 cells
63

 and found that increased 21 

GATA2 led to increased TAL1 and RUNX1, and reduced ERG and LMO2, similar to 22 

expression changes between Ery-precursor-like and HSC-like ME-1 cells (Figure 5C, left, 23 

compare to Figure 4F, left). GSEA analysis was used to compare GATA2 driven changes in 24 

global gene expression to expression differences between Ery-precursors and HSCs. 25 
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Globally, genes that were high in Ery-precursors tended to increase following GATA2 1 

overexpression, while genes that were low in Ery-precursors tended to decrease (Figure 5C, 2 

right). ERG overexpression in HSPCs promotes progenitor expansion
64

, and we have now 3 

shown that ERG expression is reduced across the HSC to Ery-precursor boundary in normal 4 

BM and ME-1 (Figure 4F). Furthermore, an independent method using scRNAseq landscapes 5 

as references predicts that perturbing ERG in mouse or human LMPPs would push cells 6 

towards an erythroid fate
65

. We therefore asked whether ERG knockdown in HSPCs 7 

promoted an Ery-progenitor phenotype. ERG knockdown led to downregulation of FLI1, 8 

LYL1, and LMO2, and upregulation of GATA2 and TAL1 (Figure 5D, left), similar to 9 

expression changes across the HSC-Ery-progenitor transition in Palantir data (Figure 4F, 10 

right). GSEA analysis was used to compare ERG knockdown driven changes in global gene 11 

expression to expression differences between Ery-precursors and HSCs. Globally, genes that 12 

were high in Ery-precursors tended to increase following ERG knockdown, while genes that 13 

were low in Ery-precursors tended to decrease (Figure 5D, right). To evaluate functional 14 

consequences of ERG knockdown in HSPCs (Figure 5E) we measured colony forming 15 

capacity and found that cells with reduced ERG expression were skewed towards erythroid 16 

colony formation (Figure 5F). Together, the perturbation data supports the notion that heptad 17 

genes, and in particular the triplet GATA2, TAL1, and ERG, form a functionally relevant 18 

interconnected network and play a key role in regulating cell state transitions in healthy blood 19 

and leukemic cells.  20 
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DISCUSSION  1 

Gene regulatory networks control cell fate decisions in development and disease. We focused 2 

on heptad transcription factors and identified parallel phenotypes between healthy 3 

haematopoiesis and leukemic cells spanning single cell gene expression, chromatin state, and 4 

enhancer use (Figure 6A). Our data suggest that GATA2, TAL1, and ERG constitute a heptad 5 

sub-circuit that regulates stem cell to erythroid transition in healthy blood and leukemia 6 

(Figure 6B). 7 

  8 

Insights into enhancer biology 9 

Genome-wide chromatin state can be used to classify cell types
4
. We show that chromatin 10 

accessibility at only nine heptad enhancers could classify all early stages of haematopoiesis 11 

and subpopulations of AML cells. While the transcriptional network determining 12 

haematopoietic cell fate decisions undoubtedly contains additional enhancers, the heptad 13 

enhancers studied here give significant insight into the transcriptional control of blood cell 14 

identity.  Most heptad enhancers were accessible in HSPCs and became selectively 15 

inaccessible at terminal differentiation, though exceptions were observed. We found the 16 

GATA2-117 (mice: Gata2-77) enhancer was open only in CMPs and MEPs, suggesting a 17 

central role for this enhancer in erythroid transition and confirming previous murine models, 18 

where its deletion blocked erythroid and megakaryocytic differentiation
66

.  19 

 20 

This enhancer has been previously studied in inv(3) AML where it is translocated 21 

close to oncogene MECOM/EVI1 leading to increased EVI1 and decreased GATA2 22 

expression
58,59

. We found this enhancer was accessible in a subset of leukemic cells, and 23 

strongly heptad-bound in both AML cell lines compared to HSPCs. In our reporter assays 24 

GATA2-117 also drove more luciferase activity than GATA2+3.5, the other GATA2 regulatory 25 
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element. Thus, even in its normal genomic context GATA2-117 may play a role in driving 1 

GATA2 expression in AML. Unlike GATA2-117, the ERG+85 enhancer was open in all 2 

HSPC subsets and across AML subtypes (Figure S1A). This enhancer has been linked to 3 

AML prognosis
43

  and used to identify LSCs within bulk AML populations
67,68

. Enhancers 4 

are replete with sequence motifs enabling binding of distinct TF families, either directly to 5 

DNA or indirectly via protein scaffolding, as observed for LMO2
69,70

 and RUNX1
42,44

. Here, 6 

we showed that evolutionarily conserved heptad enhancers rely heavily on ETS and GATA 7 

motifs, in agreement with previous reports that ETS-ETS-GATA motifs were enriched at 8 

blood enhancers
71

.  9 

 10 

Regulation of cell fate transitions by GATA2, TAL1 and ERG 11 

Combinatorial binding of TFs is a key component of cell fate transitions
38

. We 12 

identify a triad of TFs-GATA2, TAL1, and ERG, whereby high GATA2 and TAL1, and low 13 

ERG expression biased fate decisions towards the erythroid lineage in both HSPCs and ME-1 14 

leukemic cells. A similar circuit, comprised of GATA2, TAL1, and FLI1 (an ETS TF closely 15 

related to ERG) has been previously reported during embryonic HSC specification
72

, while 16 

GATA1, TAL1 and KLF1 form a sub-circuit in erythroid cells
73

. Indeed, recycling of 17 

regulatory modules is a key feature of developmental networks
38

, underlining the utility of 18 

cell classification strategies such as northstar
55

.  19 

 20 

Each member of this triad is known to play complex roles in healthy blood and 21 

leukemia development. GATA2 controls blood cell emergence in the embryonic aorta
74

, and 22 

is required for HSC maintenance
75

. Germline loss of function mutations in GATA2 23 

predisposes to MDS and AML
76

 and high GATA2 expression is associated with poor 24 

prognosis in AML patients
77

. TAL1 is also required for embryonic blood formation
48,78

 and 25 
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drives erythroid and megakaryocytic differentiation programs
79

 but is dispensible for HSC 1 

maintenance
48,80,81

.  However, dysregulation of TAL-1 is associated with T-ALL
48

. ERG is 2 

not required for HSC specification or differentiation but promotes HSC maintenance by 3 

restricting differentiation
82,83

. High ERG expression is a poor prognostic marker for AML
49,84-

4 

86
 and is leukemogenic in mouse models

87-90
, although its role in human leukemia is more 5 

subtle
64

.  6 

 7 

Clinical Implications 8 

Therapeutic approaches to AML which force LSCs to differentiate have been 9 

sought
91

.  Although TFs are relatively difficult drug targets, small molecules upregulating 10 

CEBPA
92,93

  or downregulating PU.1
94

 and RUNX1
95

 have been developed. Regulatory 11 

circuits such as the GATA2-TAL1-ERG triad described here may provide a conceptual 12 

framework within which to develop such therapies. A first approach would be to alter TF 13 

expression directly, as upregulating GATA2 or downregulating ERG promotes erythroid 14 

differentiation. However, population structure of malignant cells within primary AML varies 15 

between patients and different leukemias may be primed towards specific differentiation 16 

pathways
61

. As such, ERG perturbation is especially promising as this TF appears to preserve 17 

the progenitor state rather than bias towards a particular fate, and knockdown may favour exit 18 

from the stem cell state across a range of primary AMLs. A second approach would be to 19 

focus on transcriptional regulators of these TFs. USP9X, a deubiquitinase that regulates ERG 20 

stability
96

 and is positively regulated by ERG in a feed forward loop is one such candidate
67

. 21 

A third approach would be to focus on specific enhancers such as GATA2-117, which is 22 

inaccessible in normal HSCs but open in the transitional progenitor states characteristic of 23 

AML, enabling preferential cytotoxicity in leukemic cells. Overall, a deeper understanding of 24 
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heptad regulatory circuits and their roles in maintaining and exiting normal and leukemic 1 

stem cell states can help shape novel, data-based approaches to innovative cancer therapies.  2 
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FIGURE LEGENDS 1 

Figure 1 – Heptad regulatory regions have dynamic accessibility profiles across normal 2 

and leukemic blood development, and accessibility patterns are sufficient to classify 3 

normal and leukemic cells 4 

(A) tSNE plot of single cell RNAseq in normal bone marrow, with cells labelled by inferred 5 

identity as determined by Setty et al 2019. HSC = haematopoietic stem cell, CLP = common 6 

lymphoid progenitor, DC = dendritic cell, Ery = erythoid lineage cells, Mega = 7 

megakaryocytes, Mono = monocyte lineage cells. (B) Relative expression of CD34 and 8 

heptad genes projected on to the tSNE plot in A. (C) Schematic of the branching hierarchy 9 

model of normal blood development showing relationships between the cell populations 10 

shown in D. (D) ATACseq peaks at heptad regulatory regions over developmental time. Plots 11 

show merged data from available replicates (Corces et al 2016). (E)  ATACseq peaks at 12 

heptad regulatory regions in one representative AML patient, showing pre-leukemic HSCS 13 

(pHSC), leukemic stem cells (LCS), and leukemic blasts (Blast). (F) Classification of normal 14 

cell types using only ATACseq signal at heptad regulatory regions. Heatmap shows 15 

calculated distance between each sample and the training set. The red box indicates a single 16 

MEP replicate that was misclassified as a CMP.  (G) Classification of AML nearest normal 17 

cell type using only ATACseq signal at heptad regulatory regions. Plots show distance from 18 

each normal cell type for pre-leukemic HSCS, LSCs, and leukemic blasts from seven AML 19 

patients. (H) Performance of the heptad regulatory region classifier compared to previous 20 

classification of these samples using genome wide enhancer cytometry (Corces et al 2016).  21 

 22 

Figure 2 - A densely interconnected heptad autoregulatory circuit persists in AML cells 23 

with altered connectivity compared to CD34+ HSPCs.      24 
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(A) Left: ChIPseq binding pattern at heptad regulatory regions in CD34
+
 HSPCs. Grey boxes 1 

indicate regulatory regions not computationally called as binding peaks for the indicated TF. 2 

Plots are scaled to 5x the height of the smallest called peak for that TF to allow visualisation 3 

of a wide range of peak heights. Right:  Corresponding inferred heptad autoregulatory circuit. 4 

Most regulatory elements have all seven heptad TFs bound, * and bold border indicate 5 

regions where binding of a particular TF is absent. (B) Left: ChIPseq binding pattern at 6 

heptad regulatory regions in ME-1 AML cells. Grey boxes indicate regulatory regions not 7 

computationally called as binding peaks for the indicated TF. Plots are scaled to 5x the height 8 

of the smallest called peak for that TF to allow visualisation of a wide range of peak heights. 9 

Right:  Corresponding inferred heptad autoregulatory circuit. Most regulatory elements have 10 

all seven heptad TFs bound, * and bold border indicate regions where binding of a particular 11 

TF is absent. (C) Left: ChIPseq binding pattern at heptad regulatory regions in KG-1 AML 12 

cells. Grey boxes indicate regulatory regions not computationally called as binding peaks for 13 

the indicated TF. Plots are scaled to 5x the height of the smallest called peak for that TF to 14 

allow visualisation of a wide range of peak heights. Right:  Corresponding inferred heptad 15 

autoregulatory circuit. Most regulatory elements have all seven heptad TFs bound, * and bold 16 

border indicate regions where binding of a particular TF is absent 17 

 18 

Figure 3 - Specific TF consensus binding motifs, particularly ETS and GATA motifs, 19 

are critical for function of heptad regulatory elements.   20 

(A) Schematic showing process for selecting TF binding motifs for mutation, and luciferase 21 

reporter workflow. (B)  Left panel: Schematics showing conserved TF binding motifs in 22 

heptad regulatory elements that were highly bound by heptad TFs in AML cell lines, and 23 

activity of wild type (WT) and mutated luciferase constructs in KG-1 and ME-1 cells. 24 
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Activity is scaled relative to the empty vector, and graphs show representative data from a 1 

single transfection experiment (* P < 0.05, ** P < 0.01, *** P < 0.001, t-test). Right panel: 2 

Heatmaps showing aggregate data from all luciferase experiments. Data from biological 3 

replicates were normalised to WT activity for each experiment, then aggregate data scaled 4 

relative to empty vector. Heatmaps are scaled from 0 to maximum luciferase activity for each 5 

regulatory element. (C) Schematics showing conserved TF binding motifs in heptad 6 

regulatory elements that were highly bound by heptad TFs in AML cell lines, and activity of 7 

WT luciferase constructs in KG-1 and ME-1 cells. Activity is scaled relative to the empty 8 

vector, and graphs show representative data from a single transfection experiment (* P < 9 

0.05, ** P < 0.01, *** P < 0.001, t-test). 10 

 11 

Figure 4. Single cell transcriptomics in ME-1 cells reveals branching heterogeneity 12 

consistent with GATA2 regulation.  13 

(A) Cumulative expression distributions for heptad genes in single ME-1 cells. cppt: counts 14 

per ten thousand reads. (B) Pairwise Spearman correlations between heptad genes in single 15 

cells. (C) Censored distributions of gene expression for the gene pairs highlighted in B. The 16 

two lower panels show the expression of the second gene in the lowest 10% and highest 5% 17 

of expressing cells for the first gene. P values refer to a Kolmogorov-Smirnov 2-sample test 18 

between the purple and yellow distributions. (D) UMAP embedding of ME-1 cells and cell 19 

state assignment based on northstar (Zanini et al 2020) and the Palantir data as atlas (see 20 

Figure 1). Stream-lines show RNA velocity as computed by scVelo (Bergen et al 2019), 21 

projected onto the same embedding. Inset: Schematic of the branching phenotype within ME-22 

1 cells, indicating the cell flux into the Ery-precursor-like state is a rare event. (E) Expression 23 

of four heptad genes highlighted in B on the embedding. Colour legend: purple = no 24 
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expression, green = low expression, yellow = high expression. (F) Left: Fold increase in 1 

heptad gene expression across the HSC to Ery-precursor-like state in ME-1 cells. Right: Fold 2 

increase in heptad gene expression across the HSC to Ery-precursor state in normal CD34
+
 3 

HSPCs cells.  (G) Performance of random forest classifiers between HSC-like and Ery-4 

precursor-like states in ME-1 trained solely on Palantir data with a spectrum of selected 5 

features. The presence of GATA2 expression in the model is essential for its accuracy. Error 6 

bars indicate SD over 10 runs of the predictor with data resampling in each run. 7 

 8 

Figure 5 - Manipulating GATA2 and ERG in bulk ME-1 cells and normal CD34
+
 9 

HSPCs leads to altered heptad expression and can push cells towards the Ery-like state  10 

(A) Schematic of the branching phenotype within ME-1 cells indicating relative expression of 11 

key heptad genes highlighted in Figure 4. (B) Effect of knocking down GATA2, TAL1, or 12 

ERG on heptad genes in ME-1 cells (error bars show 95% confidence interval). (C) Left: 13 

Effect of over-expressing GATA2 on heptad genes in ME-1 cells (RNAseq). Right: GSEA 14 

plots showing enrichment of genes associated with the Ery-precursor/Ery-precursor-like state 15 

in response to over-expressing GATA2 in ME-1 cells. (D) Left: Effect of knocking down 16 

ERG on heptad genes in CD34+ HSPCs (RNAseq). Right: GSEA plots showing enrichment 17 

of genes associated with the Ery-precursor/Ery-precursor-like state in response to knocking 18 

down ERG in CD34
+
 HSPCs.  FDR q-value for GSEA plots = 0 except where indicated by * 19 

q-value = 0.02. (E) Effect of knocking down ERG on heptad genes in CD34
+
 HSPCs using 20 

two different shRNAS (error bars show 95% confidence interval). (F) Left: Colony forming 21 

capacity of CD34
+
 cells transduced with control (shCON) or ERG (shERG, shERG-2) 22 

shRNAs. CD34
+
 cells produce colonies derived from granulocyte and/or macrophage 23 

progenitor cells (CFU-GM; grey), multipotential progenitor cells (CFU-GEMM; black), and 24 
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erythroid progenitor cells (blast forming unit-erythroid (BFU-E); red). Right: Proportion of 1 

total colonies which are erythroid (BFU-E).  2 

 3 

Figure 6 – Proposed model of heptad activity across haematopoietic differentiation.  4 

(A) Heptad transcription factors form a densely interconnected network, with key regulatory 5 

elements accessible and heptad-bound in normal and leukemic stem cells. Accessibility of 6 

regulatory elements, and consequently heptad connectivity, is reduced as cells become more 7 

differentiated.  (B) Schematics representing sc-RNAseq populations in normal and ME-1 cell 8 

populations. GATA2, TAL1, and ERG promote cell state changes along the HSC-Ery 9 

precursor axis in both normal CD34+ HSPCs and ME-1 cells. 10 
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