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Abstract For conformally invariant gravity theories defined
on Riemannian spacetime and having the Schwarzschild–
de-Sitter (SdS) metric as a solution in the Einstein gauge,
we consider whether one may conformally rescale this solu-
tion to obtain flat rotation curves, such as those observed in
galaxies, without the need for dark matter. Contrary to recent
claims in the literature, we show that if one works in terms of
quantities that can be physically measured, then in any con-
formal frame the trajectories followed by ‘ordinary’ matter
particles are merely the timelike geodesics of the SdS metric,
as one might expect. This resolves the apparent frame depen-
dence of physical predictions and unambiguously yields rota-
tion curves with no flat region. We also show that attempts
to model rising rotation curves by fitting the coefficient of
the quadratic term in the SdS metric individually for each
galaxy are precluded, since this coefficient is most naturally
interpreted as proportional to a global cosmological constant.
We further extend our analysis beyond static, spherically-
symmetric systems to show that the invariance of particle
dynamics to the choice of conformal frame holds for arbitary
metrics, again as expected. Moreover, we show that this con-
clusion remains valid for conformally invariant gravity theo-
ries defined on more general Weyl–Cartan spacetimes, which
include Weyl, Riemann–Cartan and Riemannian spacetimes
as special cases.

The modelling of galaxy rotation curves in general relativity
(GR) typically requires the inclusion of a dark matter halo in
order to reproduce observations [1–3]. The family of rotation
curves fitted to observations is, in fact, quite varied [4], but
particular focus has historically been placed on modelling the
approximately flat rotation curves observed in the outskirts
of large spiral galaxies and, to a lesser extent, the rising rota-
tion curves observed in smaller dwarf galaxies [5–9]. The
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absence of any direct experimental evidence for dark matter
[10], however, has led to the consideration of various mod-
ified gravity theories, which may not require a dark matter
component to explain the astrophysical data.

In its simplest form, the modelling of rotation curves in the
outskirts of galaxies may be performed merely by consider-
ing the motion of stars in the region exterior to a spherically-
symmetric representation of the galactic matter distribution.
In any metric-based gravity theory, this simplified approach
therefore considers the motion of massive test particles in a
spacetime with line element that can be written in the form1

ds2 = A(r) dt2 − dr2

B(r)
− r2(dθ2 + sin2 θ dφ2), (1)

for given functions A(r) and B(r).
In GR with a cosmological constant �, the relevant line-

element is Schwarzschild–de-Sitter (SdS), for which

A(r) = B(r) = 1 − 2GM

r
− kr2, (2)

where M is the galactic mass interior to the test particle orbit
and k = 1

3�, which is therefore a global constant unrelated
to the galaxy under consideration. Particle rest masses in GR
can be defined kinematically, so that massive (test) particles
merely follow timelike geodesics of the SdS metric. In this
case, for a circular orbit of coordinate radius r (in the equa-
torial plane θ = π/2), the velocity v of the test particle (as
measured by a stationary observer at that radius) satisfies

v2 = r

2B

dB

dr
= GMr−1 − kr2

1 − 2GMr−1 − kr2 . (3)

1 We adopt the following sign conventions: (+,−,−,−) metric signa-
ture, Rρ

σμν = 2(∂[μ
{

ρ
ν]σ

} + {
ρ

λ[μ
}{

λ
ν]σ

}
), where the metric (Christof-

fel) connection
{

ρ
λμ

} = 1
2 g

ρσ (∂λgμσ + ∂μgλσ − ∂σ gλμ), and Rρ
μ =

Rρσ
μσ . We also employ natural units c = h̄ = 1 throughout, unless

otherwise stated.
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In the weak-field limit appropriate for considering a galaxy
rotation curve one has B ≈ 1, so the two terms in the numer-
ator determine its shape [11,12]. The first term recovers the
standard Keplerian rotation curve v2 = GM/r and the sec-
ond term contributes v2 = −kr2 = − 1

3�r2, so that for a typ-
ical galaxy with M ∼ 1011 M� and assuming � ∼ 10−52

m−2, which is consistent with cosmological observations,
one obtains a rotation curve that falls for all values of r until
bound circular orbits are eliminated beyond the watershed
radius r = (3GM/�c2)1/3 ∼ 0.5 Mpc [13]. Thus, the rota-
tion curve has no flat region.

If one instead considers a conformally invariant gravity
theory defined on Riemannian spacetime, then particle rest
masses cannot be fundamental, but must arise dynamically
[14]. This may be achieved by introducing a Dirac field with
Weyl weight w = −3/2 to represent ‘ordinary’ matter, which
is (Yukawa) coupled to a compensator scalar field ϕ with
w = −1 by making the replacement mψ̄ψ → mϕψ̄ψ in
the Dirac action, where m is a dimensionless parameter but
mϕ has the dimensions of mass in natural units. Indeed, the
full matter action in such theories is usually taken to have the
form [14–17]

SM =
∫

d4x
√−g [ 1

2 iψ̄γ ρ ←→
Dρψ − mϕψ̄ψ

+ 1
2 (∂ρϕ) (∂ρϕ) − λϕ4 + 1

12ϕ2R], (4)

where λ is another dimensionless parameter and the numer-
ical factors ensure that SM varies only by a surface term
under a conformal transformation gμν → �2(x)gμν , for
which ϕ → �−1(x)ϕ and ψ → �−3/2(x)ψ , where �(x)
is any smooth positive function. In the kinetic term for the
Dirac field in (4), we define ψ̄γ ρ←→

Dρψ ≡ ψ̄γ ρDρψ −
(Dρψ̄)γ ρψ , where the spinor covariant derivative has the
form Dμψ = (∂μ + �μ)ψ , the fermion spin connec-
tion �μ = 1

8 ([γ λ, ∂μγλ] − {
λ

νμ

}[γ ν, γλ]) and the position-
dependent quantities γμ = eaμγa are related to the standard
Dirac matrices γa using the tetrad components eaμ. The total
action is then ST = SG + SM, where the free gravitational
contribution SG depends only on the metric. In Riemannian
spacetime, the unique conformally invariant quadratic action
is SG = α

∫
d4x

√−g Cρσμν Cρσμν , where α is a further
dimensionless parameter and Cρσμν is the Weyl tensor. The
resulting action ST then describes so-called conformal grav-
ity (also known as Weyl or Weyl-squared gravity) [16,18]
coupled to Dirac matter and a compensator scalar field; the
special case for which α = 0 and ψ = 0 is often described as
Einstein conformal gravity [14,19]. Alternative local [20,21]
or non-local [22–24] higher-derivative conformally invariant
gravitational actions SG in Riemannian spacetime have also
been proposed.

In any case, the introduction of the compensator scalar
field ϕ is usually considered important for providing a means

for spontaneously breaking the scale symmetry. Most com-
monly one uses local scale invariance to set the scalar field to
a constant value ϕ = ϕ0, which is often termed the Einstein
gauge. This is usually interpreted as choosing some definite
scale in the theory, thereby breaking scale-invariance. As we
show in [25], however, this interpretation is questionable,
since in such scale-invariant gravity theories the equations
of motion in the Einstein gauge are identical in form to those
obtained when working in scale-invariant variables, which
involves no breaking of the scale symmetry. This suggests
that one should introduce further scalar fields, in addition to
the compensator field ϕ, to enable a true physical breaking
of the scale symmetry. The primary role of the compensator
field ϕ arises instead from its necessary inclusion into the cal-
culation of physical quantities, which renders them invariant
under local scale transformations.

In this note, we consider any conformally invariant grav-
ity theory in Riemannian spacetime with the matter action
(4) that has the SdS metric (2) as a solution in the Ein-
stein gauge (this includes conformal gravity). As shown
in [12], in this gauge the scalar field energy-momentum
tensor derived from the matter action (4) vanishes only if
Rμν − 1

2gμνR + 6λϕ2
0gμν = 0, so that the only vacuum

metric allowed (assuming that ψ = 0, apart from matter test
particles) has the SdS form (2) with k = −2λϕ2

0 . Thus, in
conformally-invariant gravity theories, unlike GR, the con-
stant k in (2) may be system dependent, if one assumes that ϕ0

may be so. Hence, there exists the possibility of attempting
to model some (typically rising) rotation curves by using the
expression (3) to fit for (negative values of) k separately for
each galaxy, as in [26]. Such an assumption seems question-
able when viewed in the Einstein gauge, however, where ϕ0 is
more naturally interpreted as a system-independent quantity
that leads to a ‘global’ cosmological constant � = −6λϕ2

0 .
In this case, one may therefore no longer fit for k separately
for each galaxy, or at all if one considers � to be fixed by cos-
mological observations. It is also worth noting that, to obtain
a positive cosmological constant �, one must have λ < 0,
which requires a negative scalar field vacuum energy λϕ4

0 , at
least with the usual sign conventions in the matter action (4).

Turning to the dynamics of matter test particles, in the
Einstein gauge the rest mass m = mϕ0 of Dirac particles is
independent of spacetime position and so they follow time-
like geodesics of the SdS metric, hence yielding rotation
curves with no flat region. It has been suggested in [27,28],
however, that in such theories one may perform a conformal
transformation of this solution to a frame in which the orbital
velocity of a massive particle in a circular orbit is asymptot-
ically constant, thereby yielding a flat rotation curve in the
outskirts of galaxies. Nonetheless, since such theories are
(by construction) conformally invariant, such a transforma-
tion should not change the observable predictions, unless the
conformal symmetry is broken in some way, either dynami-
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cally or by imposing boundary conditions. Merely rescaling
the SdS solution to an alternative conformal frame (or scale
gauge) in which the compensator scalar field ϕ no longer
takes a constant value should preserve the predictions for
physically measurable quantities, such as a rotation curve.
We now demonstrate that this is indeed the case.

As we discuss in [12,25], one may construct an appropri-
ate action for a spin- 1

2 point particle and then transition to
the full classical approximation in which the particle spin is
neglected. In the presence of the above Yukawa coupling of
the Dirac field to the scalar compensator field ϕ, this action is
equivalent [30] to the standard action for a massive particle
conformally coupled to the scalar field ϕ, namely

Sp = −m

∫
dξ ϕ

√

gμν

dxμ

dξ

dxν

dξ
, (5)

where ξ is a parameterisation for which the length (squared)
u2 ≡ uμuμ of the tangent vector uμ = dxμ/dξ remains
equal to unity along the worldline.

Assuming a static, spherically-symmetric system with
ϕ = ϕ(r) and a line-element of the form (1), one finds that for
a massive particle worldline in the equatorial plane θ = π/2,
the t- and φ-equations of motion are

A�−1 dt

dξ
= 𝓀, r2�−1 dφ

dξ
= 𝒽, (6)

where 𝓀 and 𝒽 are constants, and we may replace the
r -equation of motion with the much simpler first integral
uμuμ = 1, which reads

A

(
dt

dξ

)2

− B−1
(
dr

dξ

)2

− r2
(
dφ

dξ

)2

= 1. (7)

Hereϕ(r) = �−1(r)ϕ0 and the constants𝓀 and𝒽 are defined
such that one recovers the familiar timelike geodesic equa-
tions in GR for an affine parameter ξ if ϕ(r) = ϕ0 and so
� = 1.

As discussed in [12,30,31], however, the parameter ξ

cannot be interpreted as the particle proper time, since it
has Weyl weight w(ξ) = 1 and so it is not invariant under
conformal transformations. Rather, the proper time interval
is instead given by dτ ∝ ϕ dξ , which is correctly invari-
ant under conformal transformations. Indeed, one sees from
(5) that the particle dynamics obeys a geodesic principle,
but one where ϕ must be included in the definition of the
path length to be extremised. Without loss of generality,
one may choose the constant of proportionality such that
dτ = (ϕ/ϕ0) dξ = �−1 dξ , so dτ and dξ coincide if
ϕ(r) = ϕ0. When expressed in terms of the proper time τ of
the particle, and denoting d/dτ by an overdot, the equations
of motion (6–7) become

A�−2 ṫ = 𝓀, (8a)

r2�−2φ̇ = 𝒽, (8b)

Aṫ2 − B−1ṙ2 − r2φ̇2 = �2. (8c)

If there exists a conformal frame in which a solution for
a static, spherically-symmetric system is given by the metric
(1) and ϕ(r) = ϕ0 (i.e. the Einstein frame), then � = 1 and
so the equations of motion (8) reduce to the familiar forms
for timelike geodesics in the equatorial plane θ = π/2 of the
line-element (1) [32]. In the special case of the SdS metric,
where (2) holds, one therefore recovers the rotation curve
(3), which has no flat region.

Suppose one now performs a conformal transformation
g̃μν(x) = �2(r)gμν(x) of the metric (1) and also brings the
angular part back into the standard form in (1) by making
the (radial) coordinate transformation r ′ = r�(r) to obtain
g̃′
μν(x

′) = Xρ
μXσ

ν g̃ρσ (x(x ′)), where Xρ
μ = ∂x ′ρ/∂xμ.

As discussed in [12], in so doing, one finds that the resulting
line-element again has the form (1), but expressed in terms
of the new radial coordinate r ′ and the metric functions

Ã′(r ′) = �2(r(r ′))A(r(r ′)), (9a)

B̃ ′(r ′) = f 2(r(r ′))B(r(r ′)), (9b)

where we have defined the function f (r) ≡ 1 + r d ln �(r)
dr .

In this new conformal frame, the massive particle equations
of motion are again given by (8), but with the replacements
r → r ′, A(r) → Ã′(r ′) and B(r) → B̃ ′(r ′). On substituting
the expressions r ′ = r�(r) and (9) into these equations
of motion, however, one finds after a short calculation that
one obtains precisely the original equations of motion (8)
with � = 1, thereby recovering the particle dynamics in the
Einstein frame. Thus, for example, if r = r(φ) is the orbit
equation for a particle in the equatorial plane θ = π/2 in the
Einstein frame, then the orbit equation in the new conformal
frame is given simply by r ′ = r ′(r(φ)).

This finding therefore eliminates, as it must, any ambi-
guity whereby physical predictions appear to depend on the
conformal frame in which the calculation is performed. Spe-
cialising to the case where (2) holds, this further demonstrates
as unwarranted the recent claims in the literature [27,28] that
one may obtain flat galaxy rotation curves by conformally-
rescaling the SdS metric. It is worth pointing out that these
claims arise from the use instead of the equations of motion
(6–7), which are expressed in terms of the parameter ξ , but
where the latter is interpreted as the particle proper time and
implicitly assumed to be invariant under conformal transfor-
mations, despite having a Weyl weight w(ξ) = 1. In that
case, on following an analogous procedure to that we have
described above, one arrives at the erroneous conclusion that
one does not recover the particle dynamics in the Einstein
frame and, more generally, that particle trajectories depend
on the conformal frame in which they are calculated, which
contradicts conformal invariance.

Although we have demonstrated that, when using the
equations of motion (8) expressed in terms of the appropriate
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conformally-invariant proper time τ , one cannot obtain flat
galaxy rotation curves by any conformal rescaling of the SdS
metric, it is worth discussing briefly the particular rescaling
considered in [27,28]. It is suggested in [28] that there are
physical reasons to require a metric of the form (1) to satisfy
the special condition A(r) = B(r), of which the SdS met-
ric (2) is an example.2 As shown in [12], the relations (9)
imply that in order to preserve this special condition, such
that Ã′(r ′) = B̃ ′(r ′), one requires the conformal rescaling
to have the unique form �(r) = (1 − ar)−1, where a is an
arbitrary constant, in which case r ′ = r/(1 − ar) (or, equiv-
alently, r = r ′/(1 + ar ′) and �′(r ′) ≡ �(r(r ′)) = 1 + ar ′).
This matches the conformal rescaling and coordinate trans-
formation adopted in [27,28] for a > 0. As shown in
[11,12,33,34], however, these transformations convert the
SdS metric into the Mannheim–Kazanas metric [35,36], so
that the claim in [27,28] that one obtains flat galaxy rotation
curves in this conformal frame is merely a restatement of
the long-standing claims that conformal gravity predicts such
rotation curves [37–42], although both claims are unjustified,
as we have shown above. It is also worth noting that r ′ → ∞
as r → 1/a, so that the r ′ coordinate patch covers only a
finite subset of the original r coordinate patch. Indeed, it is
straightforward to show that only a finite interval of proper
time τ is required for particle to travel radially from some
radius r ′ = r ′

0 > 2GM to r ′ = ∞. This contradicts the claim
in [28] that the r ′ coordinate patch is geodesically complete,
which is based on the fact that to reach r ′ = ∞ requires an
infinite interval of the parameter ξ , which is again mistakenly
interpreted as the particle proper time.

So far, our analysis has been limited to static, spherically-
symmetric systems, but our finding above that the particle
dynamics is independent of the choice of conformal frame
is, in fact, entirely general, as one might expect. As shown
in [12], the action (5) leads to massive particle equations of
motion in any conformal frame that are given by

uσuμ;σ = (gμσ − uμuσ )ϕ−1 ∂σ ϕ, (10)

where the semi-colon denotes the standard Riemannian
spacetime covariant derivative uμ;σ = ∂σuμ+{

μ
ρσ

}
uρ . Since

the action (5) is conformally invariant, these equations of
motion are covariant under conformal transformations, but
are not manifestly so. If one uses local scale invariance to
impose the Einstein gauge ϕ = ϕ0 (where, if desired, one can

2 We discuss the wider implications of the gauge choice A(r) = B(r)
in [29], and in particular describe how, in fact, it is not only unnecessary,
but also distorts the scaling properties of variables, thereby making it
extremely difficult to identify ‘intrinsic’ ϕ-independent quantities that
may be used for performing all calculations, including the derivation of
the geodesic equations.

set ϕ0 to unity without loss of generality), then (10) reduces
to

uσuμ;σ
.= 0, (11)

where
.= denotes that the equality holds only in a specific

gauge. Thus, in the Einstein gauge, a particle moving only
under gravity follows a geodesic of the metric gE

μν in this
frame, as we already noted above for the special case of a
static, spherically-symmetric system. As described in [25],
however, it is unnecessary to break the scale symmetry by
adopting a particular gauge, since one may instead work
in terms of scale-invariant variables. Suppose in some arbi-
trary gauge, the metric and scalar field are related to those
in the Einstein gauge by gμν = �2gE

μν and ϕ = �−1ϕ0. As
mentioned above, one should identify dτ = (ϕ/ϕ0) dξ =
�−1 dξ as the interval of particle proper time along its world-
line. This leads one to define the scale-invariant 4-velocity

ûμ ≡ dxμ

dτ
= dξ

dτ

dxμ

dξ
=

(
ϕ

ϕ0

)−1

uμ = �uμ, (12)

which clearly has Weyl weight w = 0. One may also define
the scale-invariant metric ĝμν ≡ (ϕ/ϕ0)

2gμν = �−2gμν and
its associated Christoffel connection
{̂

μ
ρσ

} = 1
2 ĝ

μν(∂ρ ĝνσ + ∂σ ĝρν − ∂ν ĝρσ ),

= {
μ
ρσ

} + ϕ−1(2δ
μ

(ρ∂σ)ϕ − gρσ gμν∂νϕ). (13)

It is then straightforward to show that (10) may be written in
terms of the above scale-invariant variables as

ûσ ûμ

;̂σ = 0, (14)

where we have defined ûμ

;̂σ ≡ ∂σ ûμ + {̂
μ
ρσ

}
ûρ . Thus, irre-

spective of the gauge and without breaking the scale sym-
metry, the scale-invariant 4-velocity ûμ, which is appro-
priately defined in terms of the particle proper time, sat-
isfies the geodesic equation of the scale-invariant metric
ĝμν = �−2gμν = gE

μν , which is equal merely to the met-
ric in the Einstein gauge. Thus, we arrive at the conclusion
that, quite generally, the particle dynamics is independent of
the choice of conformal frame, as expected, and moreover
satisfies the weak equivalence principle.

Finally, we conclude by noting that the above conclu-
sion applies not only to conformally-invariant gravity the-
ories defined on Riemannian spacetimes, but also to those
defined on more general Weyl–Cartan spacetimes, which
include Weyl, Riemann–Cartan and Riemannian spacetimes
as special cases. In a Weyl–Cartan (Y4) spacetime, the covari-
ant derivative ∇μ = ∂μ +�σ

ρμXρ
σ , where �σ

ρμ is an affine
connection and Xρ

σ are the GL(4, R) generator matrices
appropriate to the tensor character of the quantity to which
∇μ is applied. In particular, in a Y4 spacetime, ∇μ satisfies
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the semi-metricity condition

∇σ gμν = −2Bσ gμν, (15)

where Bμ is the Weyl potential (and we have included a factor
of −2 for later convenience). On performing the simultane-
ous conformal (gauge) transformations gμν → �2(x)gμν ,
Bμ → Bμ − ∂μ ln �(x), the condition (15) is preserved
[43]. From (15), the connection is given by

�λ
μν = {

λ
μν

} + δλ
ν Bμ + δλ

μBν − gμνB
λ + K ∗λ

μν, (16)

where K ∗λ
μν is the Y4 contortion tensor, which is given

in terms of (minus) the Y4 torsion T ∗λ
μν = 2�λ[νμ] by

K ∗λ
μν = − 1

2 (T ∗λ
μν − T ∗

ν
λ
μ + T ∗

μν
λ) (the asterisks and

the sign of the torsion are consistent with the usual notation
adopted in Weyl gauge theory [25,44]). The matter action
adopted in Y4 spacetime typically has the same form as that
in (4) et seq., but with the replacements

{
λ

μν

} → �λ
μν and

∂μ → ∂∗
μ = ∂μ + wBμ, where w is the Weyl weight of

the field being differentiated. As shown in [30], however,
the corresponding action for a spin- 1

2 point particle is again
equivalent to (5), which thus yields the equations of motion
(10). Equivalently, as shown in [25], the equations of motion
derived from the point particle action in Y4 spacetime may
be rewritten directly as (10). In either case, one thus arrives
at the same conclusions as reached above for Riemannian
spacetimes.
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