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Preliminaries

In order to keep this document as self-contained as possible we repeat the preliminaries from the main
text as well as the definitions for the iterated mean divergences and corresponding conditional entropies.
We define N to be the set of strictly positive integers. Let H be a Hilbert space; we denote the set
of linear operators on H by L (H), the set of Hermitian operators on H by H (H), the set of positive
semidefinite operators on H by P(H) and the set of positive semidefinite operators with unit trace on H
by D(H). All Hilbert spaces in this work are finite dimensional unless otherwise stated. Given a linear
map E : L (H1) → L (H2), we say E is CPTP if it is completely positive and trace preserving. Given
two Hilbert spaces H and K we write HK as shorthand for H ⊗ K. Given two operators A,B ∈ L (H)
we write A ≤ B if B − A ∈ P(H). The support of an operator A ∈ L (H), denoted supp(A), is the
orthogonal complement of its kernel, ker(A) = {x ∈ H : Ax = 0}. For A,B ∈ L (H), we write A� B if
supp(A) ⊆ supp(B). For A ∈ L (H), A∗ denotes its adjoint and if A is nonsingular then A−1 denotes its
inverse. If A is singular then A−1 denotes the Moore-Penrose pseudo-inverse of A. We use the symbol
I to denote the identity operator. A collection of operators {M1, . . . ,Mn} forms an n-outcome POVM
on H if

∑n
i=1Mi = I and Mi ∈P(H) for all i = 1, . . . , n. Throughout this work we shall be interested

in classical systems that arise from measurements on some quantum system. To distinguish the classical
and quantum systems in this process we shall often write a single uppercase Roman character to denote
the classical system, e.g. A, and the denote the corresponding quantum system from which it is obtained
by QA.

The geometric mean of two positive definite matrices A and B is defined as

A#B = A1/2(A−1/2BA−1/2)1/2A1/2. (1)

This definition can be extended to positive semidefinite matrices A,B as limε→0Aε#Bε where Xε =
X + εI. The geometric mean has the property that if C ≤ D then A#C ≤ A#D [1, Corollary 3.2.3].

Let α ∈ (0, 1)∪ (1,∞), ρ ∈ D(H) and σ ∈P(H) with ρ� σ. The Petz-Rényi divergence [2] of order
α is defined as

Dα(ρ‖σ) :=
1

α− 1
log Tr

[
ρασ1−α] . (2)

The sandwiched Rényi divergence [3, 4] of order α is defined as

D̃α(ρ‖σ) :=
1

α− 1
log Tr

[(
σ

1−α
2α ρσ

1−α
2α

)α]
. (3)

In the limit α→ 1 both the Petz-Rényi divergence and the sandwiched Rényi divergence converge to the
Umegaki relative entropy [5]

D(ρ‖σ) := Tr [ρ(log ρ− log σ)] . (4)

The geometric Rényi divergence [6] of order α is defined as

D̂α(ρ‖σ) :=
1

α− 1
log Tr

[
ρ1/2

(
ρ−1/2σρ−1/2

)1−α
ρ1/2

]
. (5)
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In the limit α→ 1 the geometric Rényi divergence converges to the Belavkin-Staszewski relative entropy
Tr
[
ρ log(ρ1/2σ−1ρ1/2)

]
[7]. The geometric Rényi divergence is the largest Rényi divergence satisfying

data-processing. The max divergence is defined as

Dmax(ρ‖σ) := log inf{λ > 0 : ρ ≤ λσ}. (6)

Finally, the measured Rényi divergence is defined as the largest classical divergence obtained from mea-
suring ρ and σ. For α ∈ (1,∞) this is formally defined as

DM
α (ρ‖σ) :=

1

α− 1
log sup
{Mi}i

∑
i

Tr [Miρ]
α

Tr [Miσ]
1−α

, (7)

where the supremum is taken over all POVMs {Mi}. This divergence also admits the following variational
characterization [8]

DM
α (ρ‖σ) =

1

α− 1
log sup

ω>0
αTr

[
ρω1− 1

α

]
+ (1− α)Tr [σω] . (8)

Given bipartite state ρAB ∈ D(AB) and a Rényi divergence D we define a corresponding conditional
entropy

H↓(A|B)ρ := −D(ρAB‖IA ⊗ ρB) (9)

and a corresponding optimized conditional entropy

H↑(A|B)ρ := sup
σB∈D(B)

−D(ρAB‖IA ⊗ σB). (10)

The min-entropy is defined as

Hmin(A|B) = sup
σB∈D(B)

−Dmax(ρAB‖IA ⊗ σB). (11)

For the sequence αk := 1 + 1
2k−1

for k ∈ N, the iterated mean divergence of order αk is defined as

D(αk)(ρ‖σ) :=
1

αk − 1
logQ(αk)(ρ‖σ) , (12)

with

Q(αk)(ρ‖σ) := max
V1,...,Vk,Z

αkTr

[
ρ

(V1 + V ∗1 )

2

]
− (αk − 1)Tr [σZ]

s.t. V1 + V ∗1 ≥ 0(
I V1

V ∗1
(V2+V ∗2 )

2

)
≥ 0

(
I V2

V ∗2
(V3+V ∗3 )

2

)
≥ 0 · · ·

(
I Vk
V ∗k Z

)
≥ 0,

(13)

where the optimization varies over V1, . . . , Vk ∈ L (H) and Z ∈P(H). Additionally, we may assume that
Z � σ and Vi � σ for each i ∈ {1, 2, . . . , k}. Furthermore, for a bipartite state ρAB the corresponding
optimized conditional entropy can be expressed as

H↑(αk)(A|B)ρ =
1

1− αk
logQ↑(αk)(ρ) (14)

where

Q↑(αk)(ρ) = max
V1,...,Vk

(
Tr

[
ρ

(V1 + V ∗1 )

2

])αk
s.t. TrA [V ∗k Vk] ≤ IB

V1 + V ∗1 ≥ 0(
I V1

V ∗1
(V2+V ∗2 )

2

)
≥ 0

(
I V2

V ∗2
(V3+V ∗3 )

2

)
≥ 0 · · ·

(
I Vk−1

V ∗k−1
(Vk+V ∗k )

2

)
≥ 0 .

(15)
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SDP implementation details

The NPA hierarchy

In this subsection we briefly describe how we can use NPA hierarchy to optimize polynomials of bounded
operators. For more details we refer the reader to the original paper [9]. Consider a Hilbert space H,
a collection of bounded operators on H, X = (X1, . . . , Xn) and a state |ψ〉 ∈ H. Call the elements in
the collection X letters, then a word consists of an arbitrary product of letters and their adjoints. The
length of a word is the number of letters in the product. We consider I to be the empty word and define
its length to be 0. Let Wk be the set of all words of length no larger than k. Now consider the matrix Γ
whose elements are indexed by words in the set W and whose (W1,W2) element corresponds to

Γ(W1,W2) = Tr [W ∗1W2|ψ〉〈ψ|] . (16)

It was shown in [9] that this matrix is PSD for all k ∈ N. We refer to such a matrix as a certificate of
level k.

Now suppose we are given a conditional probability distribution p(a, b|x, y). We say p has a quantum
spatial realization if there exists a Hilbert space H, a state |ψ〉 ∈ H and POVMs {Ma|x}, {Nb|y} with

[Ma|x, Nb|y] = 0 for all (a, b, x, y) such that p(a, b|x, y) = Tr
[
Ma|xNb|y|ψ〉〈ψ|

]
. The above construction

allows us to derive necessary conditions for a distribution to have a quantum spatial realization. That
is, we know if a quantum realization were to exist then for each k ∈ N there exists a certificate of level
k. Thus, we can look for a positive semidefinite matrix Γ indexed by words on length no larger than k
generated from the set {I} ∪ {Ma|x} ∪ {Nb|y} which would be compatible with the distribution p. For
example, we know constraints such as

Γ(Ma|x,Nb|y) = Γ(Nb|y,Ma|x) = Γ(Ma|xNb|y,I) = p(a, b|x, y) (17)

and
Γ(I,I) = 1. (18)

After imposing all such constraints, finding a completion of the matrix that is positive semidefinite is
an SDP and so can be computed efficiently. The authors of [9] also proved a converse statement: if for
each k ∈ N there exists a certificate of level k then there exists a quantum realization of the probability
distribution.

This construction allows us to relax optimization problems of the form

max Tr [m(X)|ψ〉〈ψ|] (19)

where m(X) is some Hermitian polynomial of bounded operators and the maximization is taken over all
Hilbert spaces H, all collections of bounded operators on that Hilbert space and all states |ψ〉 ∈ H to
an SDP. We can add tracial constraints, e.g., Tr [n(X)|ψ〉〈ψ|] = c for some polynomial n(X), and also
operator inequalities to the optimization (19). Given a Hermitian polynomial q(X) ≥ 0, if we have a
quantum realization then the localizing matrix Γloc indexed by words in Wd whose entries are given by

Γloc
(W1,W2) = Tr [W ∗1 q(X)W2|ψ〉〈ψ|] (20)

is also PSD. Therefore, for each operator inequality we add to (19) we can relax the optimization by
adding an additional localizing matrix.

Further constraints for H↑
(2)(A|E)

The following proposition, taken from [10], provides a dilation theorem which can be used to simplify
some of our device-independent optimizations.

Proposition 1 (Proposition 1. [10]). Let n ∈ N and let {Vi : 1 ≤ i ≤ n} be a collection of bounded linear
operators on some Hilbert space H such that

∑n
i=1 V

∗
i Vi ≤ I. Then there exists a Hilbert space K, such

that H ⊆ K, and a collection of bounded linear operators {Si : 1 ≤ i ≤ n} on K satisfying
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1. Si(H) ⊆ H for each i ∈ {1, . . . , n}.

2. SiS
∗
j = δijIK for each i, j ∈ {1, . . . , n}.

3.
∑n
i=1 S

∗
i Si ≤ IK.

4. PHSi|H = Vi for each i ∈ {1, . . . , n}.

where PH is the projector onto the subspace H.

The proof of the above proposition, see [10], gives a construction of the operators Si. Briefly, it states
that we find can some (possibly infinite-dimensional) Hilbert space L such that K = H⊕L and operators
Si of the form

Si =

(
Vi Xi

0 Yi

)
(21)

for some suitably chosen operators Xi and Yi.
We now look to apply the this dilation theorem to improve convergence and efficiency of our device-

independent optimizations of H↑(αk). Let us first describe how the above proposition can be used to im-

prove the optimization of H↑(2), afterwards we shall describe the general case. Recall that inf H↑(2)(A|E) =

−2 log(QDI
(2)) where

QDI
(2) = sup

{Va}a,{Ma}a,|ψ〉〈ψ|,QA⊗E

∑
a

Tr

[
(Ma ⊗

Va + V ∗a
2

)|ψ〉〈ψ|
]

s.t.
∑
a

V ∗a Va ≤ IE

Va + V ∗a ≥ 0 for each a ∈ A

(22)

where the optimization is over all joint Hilbert spaces QAE, all states |ψ〉 ∈ QAE, all POVMs {Ma}a
on QA and all collections of linear operators Va ∈ L (E). For the moment we will drop the operator
inequalities Va + V ∗a ≥ 0 from the optimization and later we shall discuss how to reinsert them. In
general this optimization would also be augmented with constraints on the local statistics generated by
the POVMs {Ma} and likely would also include a second system QB with further POVMs. However,
we deal with the simpler case here from which the general case follows readily. Furthermore, the SDP
relaxations of this problem [9] provide lower bounds on the optimization even when the Hilbert spaces
QA and E are infinite dimensional.

Now consider a more restricted optimization

Q̂DI
(2) = sup

{Sa}a,{Ma}a,|ψ〉〈ψ|,QA⊗Ê

∑
a

Tr

[
(Ma ⊗

Sa + S∗a
2

)|ψ〉〈ψ|
]

s.t.
∑
a

S∗aSa ≤ IÊ

SaS
∗
b = δabIÊ for all a, b ∈ A.

(23)

By Proposition 1, any feasible point of (22) can be transformed into a feasible point of (23) with the

same objective value. Indeed, the proposition states that we can find a larger Hilbert space Ê = E⊕E⊥,

with operators of the form Sa =

(
Va Xa

0 Ya

)
satisfying the constraints of (23). Moreover, we can use

an isometry W : E → Ê to embed the state |ψ〉 ∈ QA ⊗ E in QA ⊗ Ê, i.e. W =

(
IE

0E⊥

)
. Defining
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|ψ̂〉〈ψ̂| = (I ⊗W )|ψ〉〈ψ|(I ⊗W ∗) we see that the objective value remains unchanged,∑
a

Tr

[
(Ma ⊗

Sa + S∗a
2

)|ψ̂〉〈ψ̂|
]

=
∑
a

Tr

[
(Ma ⊗

Sa + S∗a
2

)(I ⊗W )|ψ〉〈ψ|(I ⊗W ∗)
]

=
∑
a

Tr

[
(Ma ⊗

W ∗SaW +W ∗S∗aW

2
)|ψ〉〈ψ|

]
=
∑
a

Tr

[
(Ma ⊗

Va + V ∗a
2

)|ψ〉〈ψ|
]
.

(24)

Thus we have Q̂DI
(2) ≥ QDI

(2). However, as the optimizations range over all Hilbert spaces (assuming also

infinite dimensional) we have that any feasible point of (23) is trivially a feasible point of (22) and so

Q̂DI
(2) ≤ QDI

(2). Therefore we conclude that Q̂DI
(2) = QDI

(2) and we can impose the additional restrictions

of (23) when we drop the constraints Va + V ∗a ≥ 0.
Unfortunately, the dilation theorem does not immediately apply to the optimization that includes the

operator inequalities Va + V ∗a ≥ 0 as it need not hold that Sa + S∗a ≥ 0 if Va + V ∗a ≥ 0. One workaround
is to drop these constraints from the optimization, which is was what was done when computing the
rate plots from the main text. Alternatively, we can relax the constraint to a moment inequality as

Tr [(Va + V ∗a )|ψ〉〈ψ|] ≥ 0 =⇒ Tr
[
(Sa + S∗a)|ψ̂〉〈ψ̂|

]
≥ 0.

What remains is to consider how this dilation theorem may be used to impose additional constraints
on the other conditional entropies H↑(αk). For simplicity, let us consider the case of αk = 4/3, for the

other αk the procedure remains the same. Recall that,

QDI
(4/3) = sup

{V1,a}a,{V2,a}a,{Ma}a,|ψ〉〈ψ|,QA⊗E

∑
a

Tr

[
(Ma ⊗

V1,a + V1,a∗

2
)|ψ〉〈ψ|

]
s.t.

∑
a

V ∗2,aV2,a ≤ IE

V ∗1,aV1,a ≤
V2,a + V ∗2,a

2
for all a ∈ A.

(25)

Following the previous construction we can define a larger Hilbert space Ê and some operators {S2,a}a
that play the role of {V2,a} but satisfy the additional restriction of being coisometries with orthogonal
ranges. Unfortunately, we run into similar problems to the ones that we faced with the operator inequal-
ities Va + V ∗a ≥ 0 when dilating H↑(2). If we embed {V1,a} and |ψ〉〈ψ| using the isometry W as before, the

objective value remains unchanged but the constraints V ∗1,aV1,a ≤ V2,a+V2,a

2 must be interpreted on the

subspace E. This is because V ∗1,aV1,a ≤
V2,a+V ∗2,a

2 6=⇒ WV ∗1,aV1,aW
∗ ≤ S2,a+S∗2,a

2 . To see this note that
the left-hand-side of the second inequality has support only on the subspace E but the right-hand-side
may have support elsewhere and need not be positive semidefinite a priori.

Again, we can weaken this constraint from an operator inequality to a trace inequality

Tr
[
V ∗1,aV1,a|ψ〉〈ψ|

]
≤ Tr

[
V2,a + V ∗2,a

2
|ψ〉〈ψ|

]
. (26)

For this weaker constraint, its dilated counterpart Tr
[
WV ∗1,aV1,aW

∗|ψ̂〉〈ψ̂|
]
≤ Tr

[
S2,a+S∗2,a

2 |ψ̂〉〈ψ̂|
]

does

hold true as Tr
[
S2,a|ψ̂〉〈ψ̂|

]
= Tr [V2,a|ψ〉〈ψ|]. However, after numerical testing we found that this weaker

constraint often lead to much weaker results and so for all of the numerical examples we decided not to
add any additional constraints to the optimizations of H↑(4/3).

Sufficient relaxation level to observe ordering

We know for a given cq-state ρAE that H↑(αk)(A|E) ≥ H↑(αk−1)(A|E) ≥ Hmin(A|E). However, when

we perform device-independent optimizations of these quantities we relax the optimization problem to
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a semidefinite program via the NPA hierarchy [9]. For a given level of relaxation, the corresponding
relaxed problems need not always satisfy this ordering. However, it is possible to find a sufficient level of
relaxation such that the ordering holds.

For example, consider the commuting operator version of the min-entropy problem

− log max
∑
a

Tr [MaWa|ψ〉〈ψ|]

s.t.
∑
a

Wa ≤ I

Wa ≥ 0 for all a ∈ A∑
a

Ma = I

Ma ≥ 0 for all a ∈ A
[Ma,Wb] = 0 for all a, b ∈ A

(27)

and the corresponding problem for H↑(2)(A|E)

−2 log max
∑
a

Tr

[
Ma

Va + V ∗a
2

|ψ〉〈ψ|
]

s.t.
∑
a

V ∗a Va ≤ I

Va + V ∗a ≥ 0 for all a ∈ A∑
a

Ma = I

Ma ≥ 0 for all a ∈ A

[Ma, V
(∗)
b ] = 0 for all a, b ∈ A.

(28)

By applying an appropriate Naimark dilation to the Hilbert space we may assume that {Ma} forms
a projective measurement. Note that we could also make this assumption for {Wa}. However, to then
establish ordering we would have to include the additional constraints that were introduced in the previous
section. For simplicity we do not consider this but the strategy for enforcing an ordering works in the
same manner.

We know from the main text that for an explicit state ρAE , H↑(2)(A|E) and Hmin(A|E) are related by

the Cauchy-Schwarz inequality

1

2
Tr [Ma(Va + V ∗a )|ψ〉〈ψ|] ≤ Tr [MaV

∗
a Va|ψ〉〈ψ|]

1/2
. (29)

Now consider a certificate Γ of (28) which has the monomials {Ma,MaVa}a in its indexing set. Then as
Γ ≥ 0, for each a the submatrix

Ma MaVa( )
Ma Tr [Ma|ψ〉〈ψ|] Tr [MaVa|ψ〉〈ψ|]
MaVa Tr [MaV

∗
a |ψ〉〈ψ|] Tr [MaV

∗
a Va|ψ〉〈ψ|]

(30)

is positive semidefinite. Summing over a, the fact that each submatrix is PSD implies( ∑
a Tr [Ma|ψ〉〈ψ|]

∑
a Tr [MaVa|ψ〉〈ψ|]∑

a Tr [MaV
∗
a |ψ〉〈ψ|]

∑
a Tr [MaV

∗
a Va|ψ〉〈ψ|]

)
≥ 0. (31)
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By Lemma 2 and the fact that
∑
a Tr [Ma|ψ〉〈ψ|] = 1 this implies that∑

a

Tr [MaV
∗
a Va|ψ〉〈ψ|] ≥ (

∑
a

Tr [MaV
∗
a |ψ〉〈ψ|])(

∑
a

Tr [MaVa|ψ〉〈ψ|])

= (
∑
a

Tr [MaVa|ψ〉〈ψ|])2
(32)

which is exactly the Cauchy-Schwarz relation. The final line follows from the fact that if Γ is a real
symmetric matrix, which we can assume as if Γ is a certificate then so is (Γ + Γ)/2 (where Γ denotes the
entrywise complex conjugate of Γ), then Tr [MaVa|ψ〉〈ψ|] = Tr [MaV

∗
a |ψ〉〈ψ|]. Thus, optimizing over such

certificates we will always have

∑
a

Tr

[
Ma

Va + V ∗a
2

|ψ〉〈ψ|
]
≤

(∑
a

Tr [MaV
∗
a Va|ψ〉〈ψ|]

)1/2

. (33)

Now suppose Γ1 is a certificate for (27) and Γ2 is a certificate for (28) which implies the Cauchy-
Schwarz relation above. Then if for each monomial of the form XWa in the indexing set of Γ1 we add a
corresponding monomial XV ∗a Va to the indexing set of Γ2 we will always have

max
Γ2

∑
a

Tr

[
Ma

Va + V ∗a
2

|ψ〉〈ψ|
]
≤max

Γ2

(∑
a

Tr [MaV
∗
a Va|ψ〉〈ψ|]

)1/2

≤max
Γ1

(∑
a

Tr [MaWa|ψ〉〈ψ|]

)1/2

.

(34)

For example, when computing the plots from the main text we relaxed the Hmin computations to the
second level of the hierarchy. Then a sufficient relaxation for the H↑(2) computations is the second level of

the hierarchy together with monomials {Ma|xV
∗
c Vc}a,x,c∪{Nb|yV ∗c Vc}b,y,c where {Ma|x}a,x are operators

representing Alice’s measurements and {Nb|y}b,y are operators representing Bob’s measurements.

Let us now consider the case of H↑(4/3)(A|E) from which the general case of H↑(αk)(A|E) follows readily.

For this optimization we have additional operator inequalities

V ∗1,aV1,a ≤
V2,a + V ∗2,a

2
(35)

for each a ∈ A. Operator inequalities are imposed within the NPA hierarchy via localizing matrices
(cf. (20)). That is, we take a collection of monomials Wloc = {X1, . . . Xk} indexing a localizing matrix
Γloc ≥ 0 whose (Xi, Xj) entry corresponds to

Tr

[
X∗i

(
V2,a + V ∗2,a

2
− V ∗1,aV1,a

)
Xj |ψ〉〈ψ|

]
, (36)

for each Xi, Xj ∈ W. If the monomials {Ma} corresponding to Alice’s measurement operators are
included in this localizing set Wloc then Γloc ≥ 0 enforces that

Γloc
(Ma,Ma) = Tr

[
Ma

(
V2,a + V ∗2,a

2
− V ∗1,aV1,a

)
|ψ〉〈ψ|

]
≥ 0. (37)

By linearity of the trace this implies that Tr
[
Ma

V2,a+V ∗2,a
2 |ψ〉〈ψ|

]
≥ Tr

[
MaV

∗
1,aV1,a|ψ〉〈ψ|

]
. As in the

above example for H↑(2)(A|E), if we add enough monomials to the indexing set of the certificate Γ we can

enforce Cauchy-Schwarz relations (cf. (32)). The Cauchy-Schwarz relation allows us to conclude that

max
Γ

∑
a

Tr

[
Ma

V1,a + V ∗1,a
2

|ψ〉〈ψ|
]
≤ max

Γ

(∑
a

Tr
[
MaV

∗
1,aV1,a|ψ〉〈ψ|

])1/2

(38)
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and if we have sufficient monomials indexing the localizing matrices we can further conclude that

max
Γ

(∑
a

Tr
[
MaV

∗
1,aV1,a|ψ〉〈ψ|

])1/2

≤ max
Γ

(∑
a

Tr

[
Ma

V2,a + V ∗2,a
2

|ψ〉〈ψ|
])1/2

(39)

which is the objective function for H↑(2)(A|E). Note that we can move the max inside the exponentiation

as t 7→ t1/2 is monotonic. Furthermore the exponent can be taken outside of the logarithm to cancel with
the extra multiplicative factor of 2 that H↑(4/3) has. For general H↑(αk) this procedure can be repeated,

including enough monomials in the certificate to enforce all of the Cauchy-Schwarz relations and for each
operator inequality adding enough monomials to its corresponding localizing matrix to enforce the tracial
inequalities of the form (37).

Remark 1. It is important that all necessary monomials are included. For example, it is common when
certain variables in the optimization form a n-outcome POVM to remove one of them from the indexing
set, e.g., defining the final element as I−M1−M2−· · ·−Mn−1. However, if this is done for the {Ma} that

appear in the objective function of H↑(αk)(A|E) then this will result in suboptimal rates as the relevant

Cauchy-Schwarz relations will not be imposed.

From SDPs to min-tradeoff functions

As noted in the main text, solutions to our device-independent optimizations may be combined with the
entropy accumulation theorem [11, 12] in order to prove security of the respective device-independent
protocols [13, 14]. The entropy accumulation theorem specifies that, under reasonable assumptions, the
total smooth min-entropy of a large system can be lower bounded by the total von Neumann entropy of
its subsystems minus some correction term that scales sublinearly in the number of subsystems, i.e.

Hε
min(An1B

n
1 |Xn

1 Y
n
1 E) >

n∑
i=1

H(AiBi|XiYiE)−O(
√
n), (40)

where Fn1 = F1F2 . . . Fn. The total smooth min-entropy characterizes the number of random uniform
bits that can be extracted from An1B

n
1 and so operationally corresponds to the length of the raw secret

key for QKD (before losses due to error correction are taken into account) or the amount of gross uniform
randomness acquired in randomness expansion. In order to use the entropy accumulation theorem to
prove security of the protocol, one is required to construct min-tradeoff functions. Recall that these are
functions which lower bound the quantities H(AiBi|XiYiE) in terms of some expected values of some
statistical test C : ABXY → C, e.g. an expected Bell-inequality violation. In the following we will show
how it is possible to extract min-tradeoff functions directly from the solutions to our device-independent
optimizations.

Suppose we have a primal SDP of the following form

p∗(b) := sup
X

Tr [C X]

s.t. Tr [FiX] ≥ bi for all i = 1, . . . r

X ≥ 0

(41)

where C,F1, . . . , Fr are real symmetric matrices and bi ∈ R. In the context with which we are concerned
X would correspond to a moment matrix of the NPA hierarchy and the inequality constraints impose the
various constraints of the relaxation as well as the statistical constraints, e.g. a Bell-inequality violation.
Note that we can impose equality constraints via two inequality constraints, i.e. a ≥ b and −a ≥ −b
together imply a = b. We chose to use the primal form with inequality constraints as this is how we
implemented the SDPs, a similar computation could be done for an SDP with equality constraints.

8



The dual of this optimization problem can be expressed as

d∗(b) := inf
λi≤0

∑
i

λibi

s.t. C −
∑
i

λiFi − Y ≤ 0

Y ≤ 0.

(42)

Both the primal and the dual programs are parameterized by the constraint vector b = (b1, . . . , br). We
will now show that we can use any feasible point of the dual program parameterized by b to bound the
optimal solution to the primal program parameterized by some other constraint vector b̂ ∈ Rr. Let (λ, Y )

be a feasible point of (42) when parameterized by the constraint vector b and let X̂ be a feasible point

of (41) when parameterized by the constraint vector b̂. Then we have

0 ≥ Tr

[
(C −

∑
i

λiFi − Y )X̂

]
≥ Tr

[
CX̂

]
−
∑
i

λiTr
[
FiX̂

]
≥ Tr

[
CX̂

]
−
∑
i

λib̂i.

(43)

Thus, taking the supremum over all feasible X̂ we have
∑
i λib̂i ≥ p∗(b̂).

In the context of our device-independent optimizations we only need to vary certain parts of the
constraint vector, i.e. the parts that correspond to the values of the statistical test. Therefore we can
order the constraint vector such that it partitions into two smaller constraint vectors bfix and bvar which
are the fixed and varying parts of the full constraint vector respectively. We can also then partition the
dual solution vector λ = (λfix, λvar) in the same way. Writing α = λfix · bfix we have that the dual solution

provides us with an affine function g(b̂) := α+ λvar · b̂var which is always an upper bound on the primal

program, g(b̂) ≥ p∗(b̂).
Let us return to the task of constructing min-tradeoff functions. Recall that a statistical test is some

function C : ABXY → C. Given a distribution q : C → [0, 1], we say a strategy (QA, QB , E, |ψ〉, {Ma|x}, {Nb|y})
is compatible with the statistics q if for all c ∈ C we have∑

abxy:C(a,b,x,y)=c

µ(x, y)p(a, b|x, y) = q(c), (44)

where µ is some probability distribution on XY. Then a function f : P(C)→ R is a global min-tradeoff
function for the statistical test C if it satisfies

f(q) ≤ inf
ΣC(q)

H(AB|XY E) (45)

where the infimum is taken over all post-measurement states of all finite-dimensional strategies that are
compatible with statistics q. Similarly, we call f a local min-tradeoff function if f(q) ≤ infΣC(q)H(A|XE).

Let p∗NPA(q) be the optimal solution to an NPA relaxation of QDI
(αk) (see (22) and (28)) with additional

constraints of the form

±
∑

abxy:C(a,b,x,y)=c

µ(x, y)Tr
[
(Ma|x ⊗Nb|y ⊗ IE)|ψ〉〈ψ|

]
≥ ±q(c). (46)

9



Then for any k ∈ N and some fixed (x0, y0) ∈ XY we have

inf
ΣC(q)

H(AB|XY E) ≥ inf
ΣC(q)

µ(x0, y0)H(AB|X = x0, Y = y0, E)

= µ(x0, y0) inf
ΣC(q)

αk
1− αk

logQDI
(αk)

≥ µ(x0, y0)
αk

1− αk
log p∗NPA(q)

≥ µ(x0, y0)
αk

1− αk
log(α+ λ · q).

(47)

That is, we can lower bound the von Neumann entropy with an iterated means entropy, solve the relaxed
optimization of the iterated means entropy and then extract from the dual solution a lower bounding
functional. Many device-independent protocols use a spot-checking procedure wherein the statistical
test is performed infrequently and with high probability some fixed inputs (x0, y0) are input to the
devices. Hence the probability µ(x0, y0) will be close to one. In applications of the EAT the min-tradeoff
functions are restricted to be affine functions of the statistics. However, as − log(α + λ · q) is a convex
function of q and so one can derive an affine lower bound by taking a first order Taylor expansion of
µ(x0, y0) αk

1−αk log(α+λ ·q). The resulting function can then be used directly with the EAT. For example,

we could repeat the analysis of [15], which gave security proofs for randomness expansion using min-
tradeoff functions derived from the min-entropy program, using our iterated means entropies. Given the
comparisons between the iterated mean entropies and the min-entropy presented in the main text, redoing
the security proofs in [15] with the iterated mean entropies would likely give substantial improvements
on the finite round rates. For DI-QKD protocols one could look to adapt the analysis of [14], replacing
the tradeoff function derived for the CHSH game [16] with tradeoff functions derived from our SDPs.

Additional plots

Results for the bounds on local randomness for 2-input 2-output devices constrained by their full condi-
tional distribution are presented in Figure 1. As explained in the main text, for each detection efficiency
we allow ourselves to optimize over some class of two-qubit systems to find a conditional distribution
that maximizes the rate. We see a large difference between H↑(2)(A|E) and Hmin(A|E). However, like

in the corresponding plot for global randomness presented in the main document, we see a negligible
improvement on the randomness certified when comparing H↑(4/3)(A|E) and H↑(2)(A|E). Comparing with

the analytical bound from [16] and the TSGPL bound from [17], we found our bounds are almost every-
where lower. An exception to this is in the regime of high detection efficiencies where our lower bounds
converge to the optimum value of one and so surpass the TSGPL bound.

Another interesting comparison is to see whether H↑(αk)(A|E) converges to H(A|E) when the devices

are constrained only by a CHSH score. In this case we know tight analytical bounds on both H(A|E) [16]
and Hmin(A|E) [19]. In Figure 2 we include an additional plot that compares lower bounds the local

randomness as measured by H(A|E), H↑(8/7)(A|E) and Hmin(A|E). Unfortunately, we find in this scenario

that our technique gives only a negligible improvement over Hmin for the entropies in the family which
we could compute.

We suspect that this lack of improvement may be related to evidence that both the Petz H
↑
α(A|E)

and geometric Ĥ↑α(A|E) may converge slowly in this scenario. For example, we know that H
↑
α(A|E)

should converge to H(A|E) as α → 1. However, we can show that when the devices are constrained by

an expected CHSH score that inf H
↑
2(A|E) = inf Hmin(A|E). We provide a proof of these statements in

Lemma 1 and Corollary 1. It is also known that for the sandwiched entropies we have inf H̃↓2 (A|E) =
inf Hmin(A|E) [20]. The fact that these entropies provide no improvement at all over Hmin(A|E) is
consistent with the results we see in Figure 2.
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Figure 1: Local randomness vs. detection efficiency (η) in the 2222-scenario. We compare
lower bounds on different measures of the global randomness produced by 2-input 2-output devices that
have some fixed detection efficiency η ∈ [0.7, 1]. The curves for H↑(4/3)(A|E), H↑(2)(A|E) and Hmin(A|E)

were computed numerically, the red curve representing inf H(A|E) was computed using the analytical
expression from [16] and the TSGPL bound uses data from the authors of [17]. The red curve (analytic)
was computed by maximizing the CHSH score over two-qubit systems with a fixed η. All other curves
constrained the devices to satisfy some fixed probability distribution. For the TSGPL bound this dis-
tribution was chosen by maximizing the CHSH score for a fixed η. For the remainder of the curves we
optimized our choice of distribution using the method of [18].
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Figure 2: Local randomness vs. expected CHSH score. The curve of H↑(8/7)(A|E) was computed

numerically, the red curve representing inf H(A|E) was computed using the analytical expression from [16]
and the curve representing inf Hmin(A|E) was computed using the analytical expression from [19].

Proof of Proposition 2

For ease of reading recall that the iterated mean divergences are defined, for k ∈ N and αk = 1 + 1
2k−1

as

D(αk)(ρ‖σ) :=
1

αk − 1
logQ(αk)(ρ‖σ) (48)

where

Q(αk)(ρ‖σ) := max
V1,...,Vk,Z

αkTr

[
ρ

(V1 + V ∗1 )

2

]
− (αk − 1)Tr [σZ]

s.t. V1 + V ∗1 ≥ 0(
I V1

V ∗1
(V2+V ∗2 )

2

)
≥ 0

(
I V2

V ∗2
(V3+V ∗3 )

2

)
≥ 0 · · ·

(
I Vk
V ∗k Z

)
≥ 0.

(49)

Before we begin the proof of the proposition we make an observation that we can assume the support
of all operators within the optimization is contained within the support of σ, i.e., σ � Z and σ � Vi for
all 1 ≤ i ≤ k. To see this consider the decomposition of the Hilbert space as H = supp(σ) ⊕ supp(σ)⊥.
With respect to this decomposition we may write the operators in block matrix form as

ρ =

(
ρ(0, 0) 0

0 0

)
, σ =

(
σ(0, 0) 0

0 0

)
, Vi =

(
Vi(0, 0) Vi(0, 1)
Vi(1, 0) Vi(1, 1)

)
, Z =

(
Z(0, 0) Z(0, 1)
Z∗(0, 1) Z(1, 1)

)
. (50)

With this form the objective function may be written as

αkTr

[
ρ(0, 0)

V1(0, 0) + V ∗1 (0, 0)

2

]
− (1− αk)Tr [σ(0, 0)Z(0, 0)] (51)

and so only depends on the restriction of the operators to the subspace supp(σ). Now the positive-

semidefinite constraints in (49) may be rewritten as V ∗i Vi ≤
Vi+1+V ∗i+1

2 for 1 ≤ i ≤ k − 1 and V ∗k Vk ≤ Z.
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By direct computation we find that

Vi+1 + V ∗i+1

2
− V ∗i Vi =

(
Vi+1(0,0)+V ∗i+1(0,0)

2 − V ∗i (0, 0)Vi(0, 0)− V ∗i (1, 0)V ∗i (1, 0) ∗
∗ ∗

)
(52)

and so
Vi+1+V ∗i+1

2 − V ∗i Vi ≥ 0 =⇒ Vi+1(0,0)+V ∗i+1(0,0)

2 − V ∗i (0, 0)Vi(0, 0) − V ∗i (1, 0)Vi(1, 0) ≥ 0 =⇒
Vi+1(0,0)+V ∗i+1(0,0)

2 − V ∗i (0, 0)Vi(0, 0) ≥ 0. The final implication holds because V ∗i (1, 0)Vi(1, 0) ≥ 0.
Similarly, for the positive semidefinite constraint involving Z we find Z ≥ V ∗k Vk =⇒ Z(0, 0) ≥
V ∗k (0, 0)Vk(0, 0). Finally V1 + V ∗1 ≥ 0 =⇒ V1(0, 0) + V ∗1 (0, 0) ≥ 0. Thus, denoting the projec-
tor onto the subspace supp(σ) by Π, we have that for any feasible point (V1, . . . , Vk, Z), the point
(ΠV1Π, . . . ,ΠVkΠ,ΠZΠ) is also feasible, obtains the same objective value and all operators have their
support contained in supp(σ). We therefore assume henceforth that all operators in the optimization
have their support contained within supp(σ).

Proposition 2. Let ρ ∈ D(H), σ ∈P(H) and k ∈ N. Then the following all hold:

1. (Rescaling)

Q(αk)(ρ‖σ) = max
V1,...,Vk,Z

(
Tr

[
ρ

(V1 + V ∗1 )

2

])αk
s.t. Tr [σZ] = 1

V1 + V ∗1 ≥ 0(
I V1

V ∗1
(V2+V ∗2 )

2

)
≥ 0

(
I V2

V ∗2
(V3+V ∗3 )

2

)
≥ 0 · · ·

(
I Vk
V ∗k Z

)
≥ 0 .

(53)

2. (Dual formulations) We have

Q(αk)(ρ‖σ) = min
A1,...,Ak,C1,...,Ck

1

2k − 1

k∑
i=1

2k−iTr [Ai]

s.t. C1 ≥ ρ(
A1 C1

C1 C2

)
≥ 0

(
A2 C2

C2 C3

)
≥ 0 · · ·

(
Ak Ck
Ck σ

)
≥ 0 .

(54)

Or also

Q(αk)(ρ‖σ) = min
A1,...,Ak,C1,...,Ck

Tr [A1]

s.t. Tr [A1] = Tr [A2] = · · · = Tr [Ak]

C1 ≥ ρ(
A1 C1

C1 C2

)
≥ 0

(
A2 C2

C2 C3

)
≥ 0 · · ·

(
Ak Ck
Ck σ

)
≥ 0 .

(55)

Finally and eponymously

Q(αk)(ρ‖σ) = min
A1,...,Ak

Tr [A1]

s.t. Tr [A1] = Tr [A2] = · · · = Tr [Ak]

ρ ≤ A1#(A2#(. . .#(Ak#σ) . . . )).

(56)

3. (Submultiplicativity) Let ρ1 ∈ D(H1), σ1 ∈P(H1), ρ2 ∈ D(H2) and σ2 ∈P(H2). Then,

D(αk)(ρ1 ⊗ ρ2‖σ1 ⊗ σ2) ≤ D(αk)(ρ1‖σ1) +D(αk)(ρ2‖σ2) . (57)

13



4. (Relation to other Rényi divergences)

DM
αk

(ρ‖σ) ≤ D̃αk(ρ‖σ) ≤ D(αk)(ρ‖σ) ≤ D̂αk(ρ‖σ) (58)

5. (Decreasing in k) For all k ≥ 2,

D(αk)(ρ‖σ) ≤ D(αk−1)(ρ‖σ). (59)

6. (Data processing) Let K be another Hilbert space and let E : L (H) → L (K) be a CPTP map,
then

D(αk)(ρ‖σ) ≥ D(αk)(E(ρ)‖E(σ)). (60)

7. (Reduction to classical divergence) If [ρ, σ] = 0 then

D(αk)(ρ‖σ) =
1

αk − 1
log Tr

[
ραkσ1−αk

]
. (61)

Proof
Property 1. Rescaling

For any β > 0 we have

(
A B
B∗ C

)
≥ 0 ⇐⇒

(
A βB
βB∗ β2C

)
≥ 0. It follows then that for any feasible point

(V1, . . . , Vk, Z) of (49), (βV1, β
2V2, . . . , β

2k−1

Vk, β
2kZ) is another feasible point. This new feasible point

has an objective value αkβTr
[
ρ

(V1+V ∗1 )
2

]
−(αk−1)β2kTr [σZ]. We may also assume that Tr

[
ρ

(V1+V ∗1 )
2

]
≥

0 and Tr [σZ] > 0 by the following argument. As V1 +V ∗1 ≥ 0 we have Tr [ρ(V1 + V ∗1 )] ≥ 0. Furthermore,
as Z ≥ 0 and Z � σ we have Tr [σZ] = 0 ⇐⇒ Z = 0. However if Z = 0 then it follows from the
other constraints that we must also have V1 = V2 = · · · = Vk = 0 and in turn the objective value is

trivially 0. We also have that for any c > 0, the point (cI, 2c2I, . . . , 22k−1−1c2
k−1

I, 22k−1c2
k

I) is feasible

with an objective value αkcTr [ρ] − (αk − 1)22k−1c2
k

Tr [σ]. Rearranging we find that we have a strictly

positive objective value when we choose c < (21−2k αk
αk−1

Tr[ρ]
Tr[σ] )

1

2k−1 . Thus the choice of Z = 0 is always

suboptimal and we may also assume that Tr [σZ] > 0. So with Tr
[
ρ

(V1+V ∗1 )
2

]
≥ 0 and Tr [σZ] > 0 we

may maximize over the choice of β > 0 and we find a unique maximum occurring at

β∗ =

 αk
2k(αk − 1)

Tr
[
ρ

(V1+V ∗1 )
2

]
Tr [σZ]


1

2k−1

. (62)

For this choice of β the objective function simplifies to

Tr
[
ρ

(V1+V ∗1 )
2

]αk
Tr [σZ]

1

2k−1

. (63)

Note that after this rewriting, rescaling the operators as before with some β > 0 does not change the
objective value. Thus, we are free to rescale the operators so that Tr [σZ] = 1. Therefore we can rewrite
the optimization as

Q(αk)(ρ‖σ) = max
V1,...,Vk,Z

Tr

[
ρ

(V1 + V ∗1 )

2

]αk
s.t. Tr [σZ] = 1

V1 + V ∗1 ≥ 0(
I V1

V ∗1
(V2+V ∗2 )

2

)
≥ 0

(
I V2

V ∗2
(V3+V ∗3 )

2

)
≥ 0 · · ·

(
I Vk
V ∗k Z

)
≥ 0.

(64)
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Property 2a. Dual form (a)
We start by establishing the following dual form, which is not included in the statement for brevity:

Q(αk)(ρ‖σ) = min
A1,...,Ak,C1,...,Ck

k∑
i=1

Tr [Ai]

s.t. C1 ≥ ρ(
A1

αk
2 C1

αk
2 C1 C2

)
≥ 0

(
A2

C2

2
C2

2 C3

)
≥ 0 · · ·

(
Ak

Ck
2

Ck
2

1
2k−1

σ

)
≥ 0 .

(65)

Introducing the dual variables

(
Ai Bi
B∗i Ci+1

)
for 1 ≤ i ≤ k for the positive-semidefinite constraints and

the dual variable C1 for the constraint V1 + V ∗1 ≥ 0 we can write the Lagrangian of the problem (49) as

L = αkTr

[
ρ

(V1 + V ∗1 )

2

]
− (αk − 1)Tr [σZ] + Tr [(V1 + V ∗1 )C1]

+ Tr [A1 +B1V
∗
1 +B∗1V1 + C2(V2 + V ∗2 )/2] + · · ·+ Tr [Ak +BkV

∗
1 +B∗kV1 + Ck+1Z]

=

k∑
i=1

Tr [Ai] + Tr
[
V1(αk2 ρ+ C1 +B∗1) + V ∗1 (αk2 ρ+ C1 +B1)

]
+ · · ·+ Tr

[
Vk( 1

2Ck +B∗k) + V ∗k ( 1
2Ck +Bk)

]
+ Tr

[
Z( 1

2Ck+1 − (αk − 1)σ)
]

=

k∑
i=1

Tr [Ai] + 2R
(
Tr
[
V1(αk2 ρ+ C1 +B∗1)

])
+ · · ·+ 2R

(
Tr
[
Vk( 1

2Ck +B∗k)
])

+ Tr
[
Z( 1

2Ck+1 − (αk − 1)σ)
]

(66)
where for the third equality we used the identity Tr [X +X∗] = 2R(Tr [X]). Now if we take a maximiza-
tion over the variables V1, . . . , Vk and Z, we find that the Lagrangian is finite only if C1 + αk

2 ρ+B∗1 = 0,
Bi = − 1

2Ci−1 for 2 ≤ i ≤ k and Ck = (αk − 1)σ. Note that the condition C1 + αk
2 ρ + B∗1 = 0 can be

rewritten as −B∗1 ≥ αk
2 ρ as C1 does not appear elsewhere. We relabel −B∗1 to αk

2 C1. Also, note that it

follows from Lemma 2 that

(
A −B
−B∗ C

)
≥ 0 ⇐⇒

(
A B
B∗ C

)
≥ 0. Therefore we can write the dual

problem as

Q(αk)(ρ‖σ) = min
A1,...,Ak,C1,...,Ck

k∑
i=1

Tr [Ai]

s.t. C1 ≥ ρ(
A1

αk
2 C1

αk
2 C1 C2

)
≥ 0

(
A2

C2

2
C2

2 C3

)
≥ 0 · · ·

(
Ak

Ck
2

Ck
2 (αk − 1)σ

)
≥ 0 .

(67)

It remains to show that we have strong duality. In order to show this we observe that for any c > 0 the

assignment V1 = cI, V2 = 2c2I, . . . , Vk = 22k−1−1c2
k−1

I and Z = 22k−1c2
k

I constitutes a strictly feasible

point of the primal program. In the dual problem, for 2 ≤ i ≤ k − 1 the constraints

(
Ai

1
2Ci

1
2Ci Ci+1

)
≥ 0

have a strictly feasible assignment Ci = Ci+1 = 2I and Ai = c
2I for any c > 1. Then the assignment

A1 = c
α2
k

2 and C1 = 2I satisfies the first positive semidefinite constraint and C1 ≥ ρ strictly. Now
recall that we may assume that we work in the subspace supp(σ) and so we have σ > 0. Therefore,
the assignment Ak = c

(αk−1)σ
−1 satisfies the final constraint strictly. As we have demonstrated strictly

feasible points to both the primal and the dual problems, it follows that we have strong duality.
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Property 2b. Dual form (b)

Firstly, note that it follows from Lemma 2 that for any β > 0 we have

(
A βB
βB∗ C

)
≥ 0 ⇐⇒( 1

βA B

B∗ 1
βC

)
≥ 0. Then we can rewrite the block matrix constraints of the dual problem (67) as

( 2
αk
A1 C1

C1
2
αk
C2

)
≥ 0

( 4
αk
A2

4
αk

1
2C2

4
αk

1
2C2

4
αk
C3

)
≥ 0 . . .

(
2k

αk
Ak

2k

αk
1
2Ck

2k

αk
1
2Ck

2k

αk
(αk − 1)σ

)
≥ 0. (68)

Making the change of variables Âi = 2i

αk
Ai and Ĉi = 2i

αk
Ci for 2 ≤ i ≤ k, we find that the dual

program (67) is equivalent to

min
A1,...,Ak,C1,...,Ck

1

2k − 1

k∑
i=1

2k−iTr [Ai]

s.t. C1 ≥ ρ(
A1 C1

C1 C2

)
≥ 0

(
A2 C2

C2 C3

)
≥ 0 · · ·

(
Ak Ck
Ck σ

)
≥ 0 ,

(69)

where we also used the fact that the coefficient of σ simplifies as 2k

αk
(αk − 1) = 1.

Property 2c. Dual form (c)
We now derive the third dual form from the second dual form (69). Firstly, let γ1 > 0 and note that it
follows from Lemma 2 that for any feasible point (A1, . . . , Ak, C1, . . . , Ck) of (69),

(γ1A1,
1
γ2
1
A2, A3, . . . , Ak, C1,

1
γ1
C2, . . . , Ck) (70)

is also a feasible point. By setting γ1 =
(

Tr[A2]
Tr[A1]

)1/3

we have Tr [γ1A1] = Tr
[

1
γ1
A2

]
. Furthermore, we

have for this choice of γ1 that

2Tr [γ1A1] + Tr
[

1
γ1
A2

]
= 3Tr [A1]

2/3
Tr [A2]

1/3

≤ 2Tr [A1] + Tr [A2] ,
(71)

where the second line follows from the arithmetic-geometric mean inequality. This shows that for any
feasible point we can transform it to another feasible point such that Tr [A1] = Tr [A2] and the objective
value does not increase under the transformation.

We shall now demonstrate that we can inductively transform any feasible point into another such that
the objective value does not increase and the transformed point satisfies Tr [A1] = Tr [A2] = · · · = Tr [Ak].
Suppose we have a feasible point (A1, . . . Ak, C1, . . . , Ck) such that Tr [A1] = Tr [A2] = · · · = Tr [Ai−1]
for some 2 ≤ i ≤ k. Then by Lemma 2 the point

(γiA1, γiA2, . . . , γiAi−1, γ
−2(2i−1)
i Ai, Ai+1, . . . , Ak, C1, γ

−1
i C2, γ

−3
i C3, . . . , γ

−(2i−1)
i Ci, Ci+1, . . . , Ck)

(72)

is also feasible. By setting γi =
(

Tr[Ai]
Tr[A1]

) 1

2i+1−1
we get Tr [γiA1] = Tr

[
γ
−2(2i−1)
i Ai

]
. Furthermore, for

this choice of γi we have

2iTr [γiA1] + 2i−1Tr [γiA2] + · · ·+ 2Tr [γiAi−1] + Tr
[
γ
−2(2i−1)
i Ai

]
= 2(2i − 1)Tr [γiA1] + Tr

[
γ
−2(2i−1)
i Ai

]
= (2i+1 − 1)Tr [A1]

1− 1

2i+1−1 Tr [Ai]
1

2i+1−1

≤ 2(2i − 1)Tr [A1] + Tr [Ai]

= 2iTr [A1] + 2i−1Tr [A2] + · · ·+ Tr [Ai] ,
(73)
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where on the first line we used Tr [A1] = Tr [A2] = · · · = Tr [Ai−1], the second line we substituted in
our choice of γi and the third line is another application of the arithmetic-geometric mean inequality.
This shows that the objective value of the transformed point is no larger than that of the original
point. It then follows by induction that we can transform any feasible point of (69) into one which
satisfies Tr [A1] = Tr [A2] = · · · = Tr [Ak] without increasing the objective value. Finally, noting that

1
2k−1

∑
i 2k−iTr [A1] = Tr [A1] we find that we can rewrite (69) as

min
A1,...,Ak,C1,...,Ck

Tr [A1]

s.t. Tr [A1] = Tr [A2] = · · · = Tr [Ak]

C1 ≥ ρ(
A1 C1

C1 C2

)
≥ 0

(
A2 C2

C2 C3

)
≥ 0 · · ·

(
Ak Ck
Ck σ

)
≥ 0 ,

(74)

Property 2d. Dual form (d) We derive the final dual form from the third dual form (74) – an alter-
native dual form could be derived by starting at (69). Consider any feasible point (A1, . . . Ak, C1, . . . Ck)
of (74). By Lemma 3 we know that(

Ai Ci
Ci Ci+1

)
≥ 0 =⇒ Ci ≤ Ai#Ci+1. (75)

Therefore the block matrix constraints of (74) imply the operator inequalities

C1 ≤ A1#C2 C2 ≤ A2#C3 . . . Ck ≤ Ak#σ. (76)

Using the fact that if C ≤ D then A#C ≤ A#D, we can combine these inequalities together with ρ ≤ C1

to conclude that any feasible point of (74) is also a feasible point of the optimization problem

min
A1,...,Ak

Tr [A1]

s.t. Tr [A1] = Tr [A2] = · · · = Tr [Ak]

ρ ≤ A1#(A2#(. . .#(Ak#σ) . . . )).

(77)

Moreover, the objective value remains unchanged. Now consider a feasible point (A1, . . . Ak) of (77). As(
A A#B

A#B B

)
≥ 0 it follows that by choosing Ci = Ai#Ai+1 . . .#Ak#σ for each i = 1, . . . , k that

(A1, . . . , Ak, C1, . . . , Ck) is a feasible point of (74) with the same objective value. Therefore (74) and (77)
are equal.

Property 3. Submultiplicativity
Let (A1, . . . , Ak, C1, . . . , Ck) be the optimal point of the optimization (74) for the parameter pair (ρ, σ)

and let (Â1, . . . , Âk, Ĉ1, . . . , Ĉk) be the optimal point of (74) for the parameter pair (ρ̂, σ̂). Then

(A1 ⊗ Â1, . . . , Ak ⊗ Âk, C1 ⊗ Ĉ1, . . . , Ck ⊗ Ĉk) is a feasible point of (74) for the pair (ρ ⊗ ρ̂, σ ⊗ σ̂).
Moreover, we then have

Q(αk)(ρ⊗ ρ̂‖σ ⊗ σ̂) ≤ Tr
[
A1 ⊗ Â1

]
= Tr [A1] Tr

[
Â1

]
= Q(αk)(ρ‖σ)Q(αk)(ρ̂‖σ̂),

(78)

and so D(αk)(ρ⊗ ρ̂‖σ ⊗ σ̂) ≤ D(αk)(ρ‖σ) +D(αk)(ρ̂‖σ̂).

Property 4. Relation to other Rényi divergences
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Recall that DM
αk

(ρ‖σ) = 1
αk−1 log maxω>0 αkTr [ρω] + (1 − αk)Tr

[
σω2k

]
. Any ω > 0 defines a feasi-

ble choice Vi = ω2i−1

and Z = ω2k . This gives us immediately D(αk)(ρ‖σ) ≥ DM
αk

(ρ‖σ). Then by
submultiplicativity, for any integer n ≥ 1,

D(αk)(ρ‖σ) ≥ 1

n
D(αk)(ρ

⊗n‖σ⊗n)

≥ 1

n
DM
αk

(ρ⊗n‖σ⊗n) .

(79)

Taking the limit as n→∞, we get the sandwiched Rényi divergence and so D(αk)(ρ‖σ) ≥ D̃αk(ρ‖σ) [21].

Property 5. Decreasing in k
To show the fact that D(αk) is decreasing in k, we write using the Cauchy-Schwarz inequality and the
fact that Tr [ρ] = 1,

D(αk)(ρ‖σ) = 2k log max
V1,...,Vk,Z

Tr [ρ(V1 + V ∗1 )/2]

≤ 2k log max
V1,...,Vk,Z

√
Tr [ρV ∗1 V1]

≤ 2k log max
V2,...,Vk,Z

√
Tr [ρ(V2 + V ∗2 )/2]

= 2k−1 log max
V2,...,Vk,Z

Tr [ρ(V2 + V ∗2 )/2]

= D(αk−1)(ρ‖σ)

(80)

where the third line follows from the operator inequality constraint V ∗1 V1 ≤ V2+V ∗2
2 .

Property 6. Data processing
Let E† be the adjoint channel of some CPTP map E : L (A) → L (B). Note that E† is unital and
completely positive. Now consider the optimization

q = max
W1,...,Wk,Y

(
Tr

[
ρ

(E†(W1) + E†(W1)∗)

2

])αk
s.t. Tr

[
σE†(Y )

]
= 1

E†(W1) + E†(W1)∗ ≥ 0(
I E†(W1)

E†(W1)∗ (E†(W2)+E†(W2)∗)
2

)
≥ 0

(
I E†(W2)

E†(W2)∗ (E†(W3)+E†(W3)∗)
2

)
≥ 0 · · ·

(
I E†(Wk)

E†(Wk)∗ E†(Y )

)
≥ 0 ,

(81)
where the optimization is over linear operators on B. Identifying Vi = E†(Wi) and Z = E†(Y ) we see that
every feasible point for the above optimization defines a feasible point for the optimization Q(αk)(ρ‖σ)

with the same objective value. Therefore we must have Q(αk)(ρ‖σ) ≥ q. Now as E† is completely positive

it also preserves adjoints, i.e., E†(W ∗) = E†(W )∗. Therefore, using the fact that E† is also unital, we can
rewrite q as

q = max
W1,...,Wk,Y

(
Tr

[
E(ρ)

(W1 +W ∗1 )

2

])αk
s.t. Tr [E(σ)Y ] = 1,

E†(W1 +W ∗1 ) ≥ 0

(I2 ⊗ E†)
(
I W1

W ∗1
(W2+W∗2 )

2

)
≥ 0 (I2 ⊗ E†)

(
I W2

W ∗2
(W3+W∗3 )

2

)
≥ 0 · · · (I2 ⊗ E†)

(
I Wk

W ∗k Y

)
≥ 0 .

(82)
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Writing

Q(αk)(E(ρ)‖E(σ)) = max
W1,...,Wk,Y

(
Tr

[
E(ρ)

(W1 +W ∗1 )

2

])αk
s.t. Tr [E(σ)Y ] = 1,

W1 +W ∗1 ≥ 0(
I W1

W ∗1
(W2+W∗2 )

2

)
≥ 0

(
I W2

W ∗2
(W3+W∗3 )

2

)
≥ 0 · · ·

(
I Wk

W ∗k Y

)
≥ 0 ,

(83)

we see that we must also have q ≥ Q(αk)(E(ρ)‖E(σ)) as they have the same objective function but each

feasible point of the latter is a feasible point of the former as E† is completely positive. Hence, we have
Q(αk)(ρ‖σ) ≥ q ≥ Q(αk)(E(ρ)‖E(σ)) and as 1

αk−1 log(·) is monotonically increasing for all k ∈ N the result
follows.

Property 7. Reduction to classical divergence
If [ρ, σ] = 0 then there exists a common eigenbasis of ρ and σ, i.e. there exists an orthonormal basis
{|x〉} such that ρ =

∑
x px|x〉〈x| and σ =

∑
x qx|x〉〈x| with px, qx ≥ 0 and

∑
x px =

∑
x qx = 1. Let

P : L (H)→ L (H) be the pinching map

P(A) =
∑
x

|x〉〈x|A|x〉〈x| (84)

defined by this common eigenbasis. Now consider any feasible point (A1, . . . Ak, C1, . . . , Ck) of the dual
problem (69). As the pinching map P is completely positive, ρ = P(ρ) and σ = P(σ), it follows that
(P(A1), . . . ,P(Ak),P(C1), . . . ,P(Ck)) is another feasible point of the dual problem. Moreover, this new
feasible point has the same objective value as the original point. Therefore, when ρ and σ commute we
may assume that all variables in the optimization also commute.

Now we know that [1, Proposition 3.3.4](
A1 C1

C1 C2

)
≥ 0 =⇒ C1 ≤ A1#C2 = A

1/2
1 C

1/2
2 (85)

where the final equality holds as all operators are assumed to commute. Similarly, we have(
A2 C2

C2 C3

)
≥ 0 =⇒ C2 ≤ A2#C3 = A

1/2
2 C

1/2
3 . (86)

As all operators commute, these inequalities, together with ρ ≤ C1, imply that ρ ≤ A
1/2
1 A

1/4
2 C

1/4
2 .

Repeating this for the remaining PSD constraints in the dual problem we find that ρ ≤ A1/2
1 . . . A

1/2k

k σ1/2k

or equivalently ρσ−1/2k ≤ A
1/2
1 . . . A

1/2k

k . Noting that −αk/2k = 1 − αk, by taking both sides of the
inequality to the power of αk we arrive at

ραkσ1−αk ≤ Aαk/21 . . . A
αk/2

k

k . (87)

It follows that

Tr
[
ραkσ1−αk

]
≤ Tr

[
A
αk/2
1 . . . A

αk/2
k

k

]
≤

k∑
i=1

αk
2i

Tr [Ai]

=
1

2k − 1

k∑
i=1

2k−iTr [Ai] ,

(88)
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where the second line follows from the arithmetic-geometric mean inequality. Thus, when [ρ, σ] = 0 we
know that D(αk)(ρ‖σ) ≥ 1

αk−1 log Tr
[
ραkσ1−αk

]
.

It remains to show that there always exists a feasible point that achieves this bound. For this we
choose A1 = A2 = · · · = Ak = ραkσ1−αk . It can be verified that this choice satisfies the inequality

ρ ≤ A1#(A2#(. . .#(Ak#σ) . . . )) (89)

as well as the other constraints of the dual form (77). Therefore, there exists a feasible point of (77)
achieving the lower bound Tr

[
ραkσ1−αk

]
and so the result follows.

Additional Lemmas

Lemma 1. For each ω ∈ [3/4, 2+
√

2
4 ] and each x ∈ {0, 1}, there exists a state ρQAQBE ∈ D(C2⊗C2⊗C2)

and POVMs {{Ma|x}a}x, {{Nb|y}b}y such that the system (ρQAQB , {{Ma|x}a}x, {{Nb|y}b}y) achieves a
CHSH score of ω and

H
↑
2(A|X = x,E) = − log

(
1

2
+

√
4ω(1− ω)− 1

2

)
, (90)

where A denotes the classical register recording the outcomes of the measurements {Ma|x}a on the system
QA.

Proof. To show this we exhibit an explicit set of states and measurements, the choices of which are
inspired by [16, 20]. Let ρQAQBE = |ψ〉〈ψ| where

|ψ〉 =

√
λ

2
(|00〉+ |11〉)⊗ |0〉+

√
1− λ

2
(|00〉 − |11〉)⊗ |1〉 (91)

for some λ ∈ [1/2, 1]. Furthermore, let

M0|0 =
I + σz

2

M0|1 =
I + σx

2

N0|0 =
I + cos(θ)σz + sin(θ)σx

2

N0|1 =
I + cos(θ)σz − sin(θ)σx

2

(92)

with θ = atan(2λ− 1). A direct calculation shows that measuring these POVMs with the reduced state
ρQAQB results in an expected CHSH score of ω = 1

2 +
√

1− 2λ(1− λ).
Now in [22] it was shown that the optimized Petz conditional entropies had an explicit form

H
↑
α(A|E) =

α

1− α
log Tr

[
TrA [ραAE ]

1/α
]
. (93)

Computing this quantity for α = 2 and the cq-state ρAE , where A is the register recording the outcome
of the measurement {Ma|0} on the system QA, we find that

H
↑
2(A|X = 0, E) = − log

(
1

2
+
√

(1− λ)λ

)
. (94)

Solving the equation ω = 1
2 +

√
1− 2λ(1− λ) for λ and substituting into the above expression we arrive

at the expression stated in the lemma. For the case X = 1 we can repeat the above argument with
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measurements defined by the projectors

M0|0 =
I − σx

2

M0|1 =
I + σz

2

N0|0 =
I + cos(θ)σz − sin(θ)σx

2

N0|1 =
I − cos(θ)σz − sin(θ)σx

2
.

(95)

Corollary 1. Let ΣCHSH(ω) be the collection of tuples (QA, QB , E, |ψ〉〈ψ|, {Ma|x}, {Nb|y}) such that on
expectation the bipartite system (TrE [|ψ〉〈ψ|] , {Ma|x}, {Nb|y}) achieves a CHSH score of ω. Then for

each ω ∈ [3/4, 2+
√

2
4 ] and each x ∈ {0, 1} we have

inf
ΣCHSH(ω)

H
↑
2(A|X = x,E) = − log

(
1

2
+

√
4ω(1− ω)− 1

2

)
, (96)

where A denotes the classical register recording the outcomes of the measurement {Ma|x}a on the system
QA.

Proof. In [19] the authors showed that for each x ∈ {0, 1} and each ω ∈ [3/4, 2+
√

2
4 ] we have

inf
ΣCHSH(ω)

Hmin(A|X = x,E) = − log

(
1

2
+

√
4ω(1− ω)− 1

2

)
. (97)

Now as H
↑
2(A|X = x,E) ≥ Hmin(A|X = x,E) we must have infΣCHSH(ω)H

↑
2(A|X = x,E) ≥ − log( 1

2 +√
4ω(1− ω)− 1

2 ). However, by Lemma 1 we know there exists an explicit strategy achieving this lower

bound and so we have equality.

The following lemma provides a useful characterization of positive semidefiniteness for block matrices.

Lemma 2 (Schur complement). Let A,B,C ∈ L (H). Then the following are all equivalent:

1.

(
A B
B∗ C

)
≥ 0.

2. A ≥ 0, (I −AA−1)B = 0 and C ≥ B∗A−1B.

3. C ≥ 0, (I − CC−1)B∗ = 0 and A ≥ BC−1B∗.

Furthermore, if we restrict to positive-definite matrices then the following are equivalent:

1.

(
A B
B∗ C

)
> 0.

2. A > 0 and C > B∗A−1B.

3. C > 0 and A > BC−1B∗.

The following lemma relates block positive semidefinite matrices to the matrix geometric mean.

Lemma 3. Let A,B ∈ P(H) and T ∈ H (H). Then A#B ≥ T ⇐⇒ ∃W ∈ H (H) such that W ≥ T
and (

A W
W B

)
≥ 0. (98)
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Proof. It is well-known that (see e.g., [1, Proposition 3.3.4]) that for A,B ∈P(H) and W ∈H (H) then(
A W
W B

)
≥ 0 =⇒ A#B ≥W . Therefore if in addition W ≥ T we have A#B ≥ T . Additionally, they

also show that

(
A A#B

A#B B

)
≥ 0 and so the converse holds also.
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A new generalization and some properties. Journal of Mathematical Physics 54, 122203 (2013).

[4] Wilde, M. M., Winter, A. & Yang, D. Strong converse for the classical capacity of entanglement-
breaking and hadamard channels via a sandwiched rényi relative entropy. Communications in Math-
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[19] Masanes, L., Pironio, S. & Aćın, A. Secure device-independent quantum key distribution with
causally independent measurement devices. Nature Communications 2, 238 (2011).

[20] Murta, G., van Dam, S. B., Ribeiro, J., Hanson, R. & Wehner, S. Towards a realization of device-
independent quantum key distribution. Quantum Science and Technology 4 (2019).

[21] Tomamichel, M. Quantum Information Processing with Finite Resources: Mathematical Founda-
tions, vol. 5 (Springer, 2015).

[22] Tomamichel, M., Berta, M. & Hayashi, M. Relating different quantum generalizations of the condi-
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