

Accelerated sampling of energy

landscapes

Rosemary Genevieve Mantell

Department of Chemistry

University of Cambridge

This dissertation is submitted for the degree of

Doctor of Philosophy

Peterhouse October 2017

Accelerated sampling of energy landscapes

Rosemary Genevieve Mantell

In this project, various computational energy landscape methods were accelerated using

graphics processing units (GPUs). Basin-hopping global optimisation was treated using a

version of the limited-memory BFGS algorithm adapted for CUDA, in combination with

GPU-acceleration of the potential calculation. The Lennard-Jones potential was implemen-

ted using CUDA, and an interface to the GPU-accelerated AMBER potential was construc-

ted. These results were then extended to form the basis of a GPU-accelerated version of

hybrid eigenvector-following. The doubly-nudged elastic band method was also acceler-

ated using an interface to the potential calculation on GPU. Additionally, a local rigid body

framework was adapted for GPU hardware. Tests were performed for eight biomolecules

represented using the AMBER potential, ranging in size from 81 to 22 811 atoms, and the

effects of minimiser history size and local rigidification on the overall efficiency were ana-

lysed. Improvements relative to CPU performance of up to two orders of magnitude were

obtained for the largest systems. These methods have been successfully applied to both

biological systems and atomic clusters.

An existing interface between a code for free energy basin-hopping and the SuiteSparse

package for sparse Cholesky factorisation was refined, validated and tested. Tests were

performed for both Lennard-Jones clusters and selected biomolecules represented using the

AMBER potential. Significant acceleration of the vibrational frequency calculations was

achieved, with negligible loss of accuracy, relative to the standard diagonalisation procedure.

For the larger systems, exploiting sparsity reduces the computational cost by factors of 10

to 30.

The acceleration of these computational energy landscape methods opens up the possib-

ility of investigating much larger and more complex systems than previously accessible. A

wide array of new applications are now computationally feasible.

Declaration

This dissertation is the result of my own work and includes nothing which is the outcome of

work done in collaboration except as declared in the Preface and specified in the text. It is

not substantially the same as any that I have submitted, or, is being concurrently submitted

for a degree or diploma or other qualification at the University of Cambridge or any other

University or similar institution except as declared in the Preface and specified in the text.

I further state that no substantial part of my dissertation has already been submitted, or,

is being concurrently submitted for any such degree, diploma or other qualification at the

University of Cambridge or any other University or similar institution except as declared in

the Preface and specified in the text. It does not exceed the prescribed word limit of 60 000

words.

Rosemary Genevieve Mantell

October 2017

Acknowledgements

First and foremost, I wish to thank my supervisor, Professor David Wales, for giving me the

opportunity to undertake this work. His encouragement, enthusiasm and scientific insight

have been invaluable. I am also grateful to him for testing the GPU code through his work

on addressable Lennard-Jones clusters.

I am indebted to the many members of the Wales group and the wider Theory Sector,

both past and present, for their assistance and useful discussion. In particular, I would like

to thank Kyle Sutherland-Cash for his work on the AMBER 12 interface for CPU and the

SuiteSparse interface. Thanks are also due to Konstantin Röder for extensive testing of the

GPU code, particularly on the coiled-coil peptide described in this work. I also wish to

highlight Dr Chris Whittleston for his help in creating input files for GMIN and OPTIM

with AMBER. Dr James Farrell is the author of the Python script for generating random

potential energy surfaces that was used in preparing Figure 2.5.

The support I have received from the Department of Chemistry computer officers has

been most appreciated. Special mention must go to Dr Catherine Pitt for her work on the

GPU cluster and help in solving the many technical problems that we have encountered.

Funding for this work has been provided by the EPSRC and Peterhouse. In addition, the

EPSRC, Peterhouse and the Department of Chemistry have all contributed to the costs of

conference travel.

Finally, I would like to thank my family and friends for helping me to maintain a sense

of perspective during these last few years and keeping me motivated throughout the writing

process. I am especially grateful to my partner, Dr Stephen Millmore, for useful comments

on this document, assistance with using drawing and graphing programs, and his support

throughout my time studying in Cambridge.

Publications

The work presented in this thesis has been published in the following papers:

Chapter 3

• R. G. Mantell, C. E. Pitt and D. J. Wales, J. Chem. Theory Comput., 2016, 12, 6182–

6191.

• J. A. Joseph, K. Röder, D. Chakraborty, R. G. Mantell and D. J. Wales, Chem. Com-

mun., 2017, 53, 6974–6988.

• S. N. Fejer, R. G. Mantell and D. J. Wales, Phys. Chem. Chem. Phys., submitted.

Chapter 4

• K. H. Sutherland-Cash, R. G. Mantell and D. J. Wales, Chem. Phys. Lett., 2017, 685,

288–293.

Abstract

In this project, various computational energy landscape methods were accelerated using

graphics processing units (GPUs). Basin-hopping global optimisation was treated using a

version of the limited-memory BFGS algorithm adapted for CUDA, in combination with

GPU-acceleration of the potential calculation. The Lennard-Jones potential was implemen-

ted using CUDA, and an interface to the GPU-accelerated AMBER potential was construc-

ted. These results were then extended to form the basis of a GPU-accelerated version of

hybrid eigenvector-following. The doubly-nudged elastic band method was also acceler-

ated using an interface to the potential calculation on GPU. Additionally, a local rigid body

framework was adapted for GPU hardware. Tests were performed for eight biomolecules

represented using the AMBER potential, ranging in size from 81 to 22 811 atoms, and the

effects of minimiser history size and local rigidification on the overall efficiency were ana-

lysed. Improvements relative to CPU performance of up to two orders of magnitude were

obtained for the largest systems. These methods have been successfully applied to both

biological systems and atomic clusters.

An existing interface between a code for free energy basin-hopping and the SuiteSparse

package for sparse Cholesky factorisation was refined, validated and tested. Tests were

performed for both Lennard-Jones clusters and selected biomolecules represented using the

AMBER potential. Significant acceleration of the vibrational frequency calculations was

achieved, with negligible loss of accuracy, relative to the standard diagonalisation procedure.

For the larger systems, exploiting sparsity reduces the computational cost by factors of 10

to 30.

The acceleration of these computational energy landscape methods opens up the possib-

ility of investigating much larger and more complex systems than previously accessible. A

wide array of new applications are now computationally feasible.

Contents

Abbreviations xiii

1 Introduction 1

2 Methods 3

2.1 General-purpose computation on graphics processing units 3

2.2 Intermolecular potentials . 12

2.2.1 Lennard-Jones . 12

2.2.2 AMBER . 13

2.3 Basin-hopping global optimisation . 21

2.3.1 Limited-memory BFGS . 23

2.4 Transition state determination . 25

2.4.1 Doubly-nudged elastic band method 26

2.4.2 Hybrid eigenvector-following . 27

2.5 Local rigid body framework . 28

2.5.1 Root mean square force formulation 30

2.6 Free energy basin-hopping . 31

2.7 Cholesky factorisation . 33

3 GPU-acceleration of computational energy landscape methods 35

3.1 Introduction . 35

3.2 Methods . 37

3.2.1 Basin-hopping global optimisation 38

3.2.2 Local rigid body framework . 39

3.2.3 Hybrid eigenvector-following . 41

3.2.4 Doubly-nudged elastic band method 42

3.2.5 Potential calculation . 42

xii Contents

3.3 Results and discussion . 43

3.3.1 Basin-hopping global optimisation 44

3.3.2 Local rigid body framework . 50

3.3.3 Hybrid eigenvector-following . 54

3.3.4 Doubly-nudged elastic band method 58

3.3.5 Coiled-coil peptide . 59

3.3.6 Addressable clusters and aggregates 63

3.4 Conclusions . 67

4 Exploiting sparsity in free energy basin-hopping 69

4.1 Introduction . 69

4.2 Methods . 71

4.3 Results and discussion . 72

4.3.1 Atomic clusters . 72

4.3.2 Proteins . 77

4.4 Conclusions . 82

5 Conclusions and future work 83

Bibliography 87

Appendix A Shifting the Hessian eigenvalues 97

Abbreviations

BLAS Basic Linear Algebra Subprograms

CPU central processing unit

DNEB doubly-nudged elastic band

ECC error-correcting code

EF eigenvector-following

FEBH free energy basin-hopping

FSA factorised superposition approach

GB generalised Born

GPGPU general-purpose computation on graphics processing units

GPU graphics processing unit

HA haemagglutinin

L-BFGS limited-memory BFGS

LJ Lennard-Jones

MD molecular dynamics

MKL Math Kernel Library

NAB Nucleic Acid Builder

NADP+ nicotinamide adenine dinucleotide phosphate

NEB nudged elastic band

xiv Abbreviations

PAC phenylacetic acid

PB Poisson-Boltzmann

PME particle mesh Ewald

PUMA p53 upregulated modulator of apoptosis

QCI quasi-continuous interpolation

RMS root mean square

SIMT single-instruction, multiple-thread

SM streaming multiprocessor

SP streaming processor

vdW van der Waals

Chapter 1

Introduction

Computational chemistry involves the use of computer modelling and simulation to study

the structures and properties of molecules and materials. It is used both as an aid to interpret-

ing experimental work and as a stand-alone, predictive tool. As theoretical methods become

ever more sophisticated and computing power increases, its viability as an alternative to

experiment in real-world applications is increasing. In the pursuit of new insight, there is

a constant push towards the simulation of larger systems on longer timescales, using more

accurate methods. This effort leads to increased computational expense, and so drives the

development of new approaches to acceleration of computational methods.

The computational techniques that we accelerate in this work all fall into the category

of energy landscape methodology. Typically, we are interested in the potential energy, V , as

there are many computationally efficient ways to calculate this from the conformation of the

system. For a system consisting of N atoms in three dimensions, we often write the atomic

coordinates as a 3N-dimensional vector, X. The corresponding potential energy surface is

written as V (X), and describes the variation in potential energy as a function of the coordin-

ates.1 The concept of the PES rests upon the Born-Oppenheimer approximation,2 which

allows us to separate the nuclear and electronic degrees of freedom. Electrons adjust almost

instantaneously to changes in the nuclear coordinates due to their relatively small mass, so

the energy of a molecule in its ground electronic state can be considered a function of the

nuclear coordinates only.1 Sometimes we may also be interested in the free energy, which

incorporates the effects of entropy at a specified temperature. However, this is generally

more expensive to compute.3

Geometrical features of a landscape provide important information about the associated

system. Primarily, we are interested in minima and the transition states that connect them.

Minima are stationary points from which a small displacement in internal coordinates results

2 Introduction

in an increase in energy. The forces on the system vanish at a stationary point, i.e. ∇V = 0,

and the local minima represent stable structures of the system. The minimum that is low-

est in energy is known as the global minimum.1 According to the definition of Murrell

and Laidler, transition states are stationary points with one negative Hessian eigenvalue.4

They correspond to intermediate structures involved in the interconversion of minima. Path-

ways between pairs of local minima can be found, which may involve just one intervening

transition state, or many transition states and intervening minima.5 Positive and negative

displacements along the eigenvector corresponding to the unique negative Hessian eigen-

value associated with a particular transition state lead to the steepest-descent paths, defining

the connectivity of the minima.6 Most emergent thermodynamic and dynamic properties of

a system can be calculated from the minima and transition states of an energy landscape.

However, as the number of minima on a surface increases exponentially with system size,7

effective sampling of the minima and transition states becomes much more difficult for lar-

ger systems.1 Techniques to speed up the exploration of energy landscapes are therefore

very important.

In this work, we describe the development of some new techniques for accelerated

sampling of energy landscapes. Chapter 2 introduces the underlying theory and methodo-

logy required to set the results in context. Chapter 3 then presents the acceleration of various

computational energy landscape methods using graphics processing units (GPUs). Details

of the implementation are discussed and results for a range of biological systems are ana-

lysed for methods including basin-hopping global optimisation,8,9 a local rigid body frame-

work,10,11 hybrid eigenvector-following12 (EF) and the doubly-nudged13 elastic band14,15

(DNEB) method. Speedups of up to two orders of magnitude are obtained for the largest

systems. Applications that demonstrate the validity of these new methods are also presen-

ted. In Chapter 4, the refinement of an existing framework for accelerating free energy

basin-hopping16 (FEBH) using sparse Cholesky factorisation is considered. Test results for

atomic clusters and biological systems are detailed and a 10 to 30 times increase in speed

is demonstrated for the calculation of the vibrational density of states. Finally, the impact

of these new developments is summarised in Chapter 5 and possibilities for future work are

proposed.

Chapter 2

Methods

This chapter details established techniques and existing methodology relevant to the new

developments discussed in Chapters 3 and 4. An overview of each area is presented and the

connection to later chapters described.

2.1 General-purpose computation on graphics processing

units

The work presented in Chapter 3 focuses on the acceleration of various computational en-

ergy landscape methods using graphics processing units (GPUs). This is an example of

general-purpose computation on graphics processing units (GPGPU), a term coined by Mark

Harris in 2002 to refer to the use of GPUs for non-graphics applications,17 and is a fairly

recent trend in the field of parallel computing.18 Large increases in computational power

can no longer be obtained by increasing central processing unit (CPU) clock speeds, due to

heat and power restrictions. Similar reasons, coupled with the physical limits on transistor

size, also threaten the potential for speed increases through putting more transistors on a

chip.19 Consequently, there has been a move towards parallel computing to gain more com-

putational power for acceleration of applications.20 GPUs were originally designed for the

purpose of fast graphics rendering, but have become increasingly used in general-purpose

computations as massively parallel processors.21 Relative to a CPU, they have a greater

number of transistors devoted to data-processing than to data-caching and flow control. This

feature makes them ideal for data-parallel computations with high arithmetic intensity (the

ratio of arithmetic operations to memory operations).22 Throughout this document, we will

frequently refer to the CPU as the host and the GPU as the device.

4 Methods

To obtain a speedup using GPUs, the target application must be parallelisable.20 Compute-

intensive regions are offloaded to the GPU, while the rest of the code remains on the CPU.23

If a computationally expensive region of the code cannot be parallelised, the overall acceler-

ation may be limited, as this will remain on the CPU as a performance bottleneck.24 GPUs

are based on a parallelisation model defined by NVIDIA as ‘single-instruction, multiple

thread’ (SIMT), where multiple independent threads execute concurrently using a single

instruction.25 A thread can be thought of as a single flow of execution through a program.

SIMT instructions do allow threads to diverge from other threads through data-dependent

branching, although this should be avoided for performance reasons.22 Most modern pro-

cessors work on the basis of a cycle where instructions (single operations defined by the

processor instruction set) are fetched from memory, decoded and then executed.20 The ad-

vantage of the SIMT model is that it has a reduced overhead associated with the instruction

fetch stage relative to other models of parallelism, as only one instruction fetch needs to be

performed to enable the execution of many threads.26 One implication of this model is that

the calculations performed by the threads should be independent for effective parallelism.

For example, a simple loop that multiplies each element of an array by a constant factor is

parallelisable, as the current iteration never depends on the previous iteration. The larger

the array to be processed, the greater the available parallelism and resultant speedup. In the

case of GPU hardware, thousands to tens of thousands of running threads are required for

efficient use of the architecture, so the problem in question must be large. Having a large

number of concurrent threads also helps to hide the overhead of fetching instructions and

data from memory.20 The use of too few threads means that the GPU will become idle, wait-

ing on memory transactions. If an application is suitable for GPU-acceleration, it is possible

to achieve speedups of several orders of magnitude relative to optimised CPU code.17 How-

ever, it requires much more effort on the part of the programmer with regard to efficient use

of the hardware.18 The suitability of the present applications for parallelisation is discussed

in Chapter 3.

NVIDIA dominates the current market in GPUs for general-purpose computing.27 This

company is the creator of the parallel computing platform and programming model CUDA

(previously an acronym for ‘Compute Unified Device Architecture’), introduced in 2006.25

In the early days of GPU computing, writing code for GPUs required specialist knowledge

of shading languages and computer graphics. Shading languages are adapted for program-

ming graphical effects and cannot easily be used for standard programming tasks. There

was little flexibility with regard to how and where data could be input or output, floating-

point support was poor or absent, and there was no good way to debug code on the GPU.

2.1 General-purpose computation on graphics processing units 5

The CUDA architecture introduced IEEE compliant floating-point support, an instruction set

more suited to general-purpose computation, and a much more flexible memory architecture.

NVIDIA’s extension to the C language, CUDA C, made writing code for the GPU much sim-

pler and more accessible for programmers.21 Extensions to other languages, such as Fortran

and Python, were developed later.28 AMD also produce GPUs for general-purpose comput-

ing that have similar compute power to NVIDIA GPUs.29 However, these are less widely

used, perhaps due to their later entrance to the market.20 As CUDA is only supported on

NVIDIA hardware,30 AMD promote the use of their implementation of the open standard

OpenCL.31 NVIDIA GPUs were used in the present work, which allowed a choice between

a CUDA-based language extension and NVIDIA’s implementation of OpenCL. The decision

was made to use CUDA, because of the more mature debugging and profiling tools available,

the more extensive community support, and the wider range of highly optimised libraries

available at the start of the project. Even though the applications to be accelerated were

written in Fortran, CUDA C was chosen in preference to CUDA Fortran, due to the greater

number of online resources available for this language.

All NVIDIA GPUs have a compute capability that defines their features and technical

specifications.20,22 The hardware has changed rapidly over the last decade as GPUs have

evolved to become more suitable for general-purpose computation.20 The optimisations re-

quired for different compute capabilities, or even different cards with the same compute cap-

ability, can be very different.18 Some CUDA operations were only introduced at a relatively

high compute capability, so code initially developed for a modern device might need to be

extensively rewritten for compatibility with older devices. For example, atomic operations,

which allow threads to perform tasks in memory without interruption,20 only support certain

data types on earlier GPUs.22 Their performance also varies greatly between different cards,

so their use may not be advisable even if they are supported.20 Commercial applications

would typically have many versions of certain functions to ensure optimal performance on

all hardware. Compute 1.x (where x refers to the minor revision number) devices were

named Tesla,22,25 compute 2.x encompasses the Fermi architecture,22,32 compute 3.x are

Kepler cards,22,33 compute 5.x are known as Maxwell devices,22,34 and compute 6.x are

Pascal GPUs.35,36 The Volta architecture has recently been announced and the first cards

in the series will have compute capability 7.0.37–39 The naming of the first generation of

Tesla-class GPUs is potentially confusing, as NVIDIA also use the name Tesla to refer to

their server-class cards for scientific computing.40,41 In general, these differ from consumer-

grade cards in terms of their higher memory bandwidth, support for the NVIDIA System

Management Interface for remotely querying devices over a network, increased double pre-

6 Methods

cision capability (from compute capability 1.3) and ECC (error-correcting code) memory

(from compute capability 2.0).20 In general, double precision performance has increased

with respect to each previous generation of cards,20 with the exception of the Maxwell

architecture, which reduced double precision performance to 32 times less than single preci-

sion.42 The work described in Chapter 3 is optimised for devices of the Kepler architecture

with compute capability 3.5, specifically Tesla K20 and GTX Titan Black GPUs. The ra-

tio of double precision to single precision performance for Tesla K20 GPUs is 1:3, with a

theoretical peak single precision performance of 3.52 TFLOPS.43,44 The corresponding per-

formance ratio for Titan Black cards is just 1:24 in their default mode of operation, with a

peak single precision performance of 5.1 TFLOPS.45,46 However, they can be switched into

a full double precision mode, which reaches one third of the single precision performance

at a reduced clock rate.47

CUDA facilitates the task of effectively exploiting the specialised GPU architecture. It

allows the definition of functions known as ‘kernels’, which execute n times in parallel

on n threads. Each thread is assigned a thread ID that can be used for indexed access

into arrays.21 Small groups of threads execute in lockstep and are known as warps, with

a current standard size of 32 on NVIDIA hardware.22 Threads are grouped together into

blocks, many of which can execute concurrently, forming a grid.20 The maximum number

of threads per block is 1024 from the Kepler architecture onward,33–35 twice the previously

allowed maximum.20,32 This hierarchical structure of threads, blocks and grids is shown

in Figure 2.1. A GPU consists of a number of streaming multiprocessors (SMs), each of

which has a number of attached streaming processors (SPs), more commonly known as

CUDA cores. The GPU’s scheduler automatically allocates blocks from kernels to available

SMs, and only a subset of the total number of blocks may be running at any one time.20

Although many blocks can run concurrently on a single SM, the actual number is likely to

be less than the theoretical maximum, depending on the memory resources required by each

block.48 In the last decade, the number of CUDA cores per card has increased from hundreds

to thousands,32–35,49 greatly increasing the maximum throughput. Kepler GPUs have 192

single precision CUDA cores and 64 double precision units per SM, which underlies the 3:1

performance ratio for the two data types.33 The Tesla K20 has 13 SMs33,43, while the Titan

Black has 15, enabling a larger number of thread blocks to run concurrently.

The GPU memory architecture is complex, and understanding this complexity is essen-

tial for obtaining good speedups. We must consider both memory bandwidth (the amount

of data that can be read from or written to memory in a certain time period) and memory

latency (the time taken to complete a fetch request from memory).20 Although the peak

2.1 General-purpose computation on graphics processing units 7

Grid

Block (0,0) Block (1,0) Block (2,0)

Block (0,1)

Block (1,1)

Block (1,1) Block (2,1)

Thread (0,0) Thread (1,0) Thread (2,0) Thread (3,0)

Thread (0,1) Thread (1,1) Thread (2,1) Thread (3,1)

Figure 2.1 The hierarchical structure of threads, blocks and grids used in CUDA. Figure
redrawn from reference 22.

8 Methods

compute performance of a GPU is in the teraflop regime, this computation rate is many

times in excess of the memory bandwidth capacity, even though the memory bandwidth

is itself an order of magnitude greater than that of a CPU.22 Memory bandwidth is often

the limiting factor on the speed of an algorithm, even on a CPU. CPUs typically have sev-

eral levels of high-speed cache memory close to the processor core that store copies of the

data from frequently used memory locations. It is much faster to fetch data from cache

memory instead of from main memory, which helps to reduce the limiting effect of memory

bandwidth on performance. The first level (L1) cache is the smallest and fastest region of

cache. A second level (L2) and third level (L3) cache are often present too, with successive

levels being larger and having slower access due to their increased distance from the pro-

cessor core.50 Older GPU models have very little cache memory, but devices from compute

capability 2.0 and upwards have an L1 cache for each SM and a unified L2 cache.51 The

reduced cache size on a GPU, due to the absence of the L3 cache, makes the consideration

of memory bandwidth even more important. Although having a large number of threads

can hide memory fetch and instruction execution latency to some extent, through context

switching to other warps, poor use of memory can significantly limit the performance of

an application. The number of memory requests should be minimised and the amount of

work done with the data fetched should be maximised.20 Effective use must be made of the

different memory spaces available, which vary in their bandwidth, latency, size, scope and

lifetime. The main types of GPU memory are global memory, shared memory and register

memory. Read-only, cached constant memory and texture memory can also be used, though

they are simply virtually-addressed areas of the global memory. These memory types are

less frequently used on newer devices, which have an L1 and L2 cache.51 The scope and

approximate relative sizes of the three main GPU memory types are shown in Figure 2.2.

The majority of the available GPU memory is global device memory. A Tesla K20 card

has around 5 GB of global memory43,44 and a Titan Black card has approximately 6 GB.45,46

These values are several times greater than the available memory on earlier cards,20 though

still several times less than on the most recent cards.35 Global memory is accessible from the

host and is therefore used for communication between host and device. However, transfer

speeds are slow, with a maximum bandwidth of less than 10 GB/s.20 Therefore, the number

of transfers between host and device should be minimised, which can sometimes mean that

it is appropriate to implement certain non-parallel aspects of an algorithm on GPU.52 The

global memory is also available to any thread in any block over the lifetime of the applic-

ation, so it can be used for inter-block communication. The global memory bandwidth of

NVIDIA GPUs has increased by more than two orders of magnitude over the last fifteen

2.1 General-purpose computation on graphics processing units 9

Thread

Thread Block

Grid 0

Block (0,0)

Block (0,0) Block (1,0)

Block (1,0) Block (2,0)

Block (0,1)

Block (0,1)

Block (1,1)

Block (1,1) Block (2,1)

Grid 1

Global

Shared

Register
memory

memory

memory

Figure 2.2 The memory hierarchy on a GPU. Figure redrawn from reference 22.

10 Methods

years.20,34,35 A Tesla K20 card has a memory bandwidth of 208 GB/s,43,53 while a Titan

Black card has a bandwidth of 336 GB/s.45,46 The global memory is considered to be high

latency memory relative to the other memory types available on the GPU, so it is also import-

ant to minimise the number of relatively slow accesses to this type of memory from within

a kernel.20 If the thread memory access pattern for a warp is sequential and the start of the

memory area is suitably aligned, the accesses are coalesced by the hardware, and all data

elements can be served with a single memory transaction.22 For older devices, the penalty

for non-coalesced accesses was severe. However, newer devices have a L1 and L2 cache,

so memory accesses are coalesced into as few cache lines as possible. On these devices,

the performance penalty for misalignment is negligible and the extra cost for non-sequential

access is only significant when accesses are widely separated in address space.20

Each SM also has an area of relatively low access latency shared memory, which is

mainly used to allow threads within a block to share data, as it has the lifetime of the block.21

It is effectively a programmer-managed L1 cache, which can be much more effective than

a hardware-managed cache, as the programmer has a greater knowledge of the potential

for data reuse within a program. This memory has an access latency of a just a few clock

cycles, which is low compared to the hundreds of clock cycles required for access to global

memory.20 On both of our Kepler-based GPU models, there is a 64 kB area of memory per

SM, 75 % of which is allocated to the L1 cache and the remainder of which constitutes the

shared memory. However, this ratio of allocation can be reversed in favour of the shared

memory if desired.33 The size of this memory area contrasts with the much larger size of the

L2 cache at 1536 kB. Shared memory is divided into banks, each of which is 64 bits wide on

Kepler, and can service only one operation per cycle. Threads should access separate banks

to avoid bank conflicts, which result in the operations being serialised. The warp stalls while

the serial operations are performed, i.e. context switching to another warp cannot occur. One

exception to the requirement for single threads to access single banks is when all the threads

of a warp read from the same bank address, which causes the value to be broadcast across

the warp in a single cycle.21 Shared memory can also be used as a staging area for loads

from global memory, which is useful when coalesced access cannot be guaranteed. Instead,

segments of global memory are copied to shared memory and accessed from there, where

coalescing restrictions do not apply.20 Although shared memory can be useful, compute

capability 3.0 introduced the shuffle instruction, which allows threads within a warp to com-

municate directly to share values. This has a large benefit over the use of shared memory,

as there is no associated memory access overhead.20 Furthermore, the multiple instructions

2.1 General-purpose computation on graphics processing units 11

required to use shared memory are replaced by a single shuffle instruction and there is a

reduced need for explicit synchronisation of threads.54

Each thread can also make use of registers, which have the fastest access. Access to re-

gisters is effectively instantaneous, as they have a memory latency of only one clock cycle.20

Kepler GPUs have 65 536 32-bit registers per SM, which are partitioned between the run-

ning blocks.33 Having a large register file means that the data held in registers does not

have to be stored and then restored again when execution switches between different sets of

threads, as it would be on a CPU. This arrangement means that context switching between

warps has zero overhead, and so is very effective in hiding memory latency, providing there

are enough active threads.20 Despite the large number of registers, it is still possible to re-

quest more registers per thread than are available. On older GPUs, this causes the data to

spill into global memory, greatly reducing the performance of the application. On newer

GPUs, the L1 cache is used instead, although this setup is still not ideal as the L1 cache is

then unavailable for other purposes.20 Furthermore, requesting too many registers per thread

reduces the occupancy of the SMs, which can degrade performance.48 However, higher oc-

cupancy does not always equal better performance. If slower types of memory must be

used in order to run more blocks per SM, performance may decrease.55 Moreover, the warp

schedulers on Kepler are able to issue two instructions at once, so it is usually beneficial to

incorporate instruction level parallelism within a kernel. This effect can be achieved by hav-

ing multiple independent computations within a kernel that can occur simultaneously. This

is sometimes possible through the unrolling of small loops, which then also benefit from the

elimination of loop overhead. Instruction level parallelism greatly increases performance,

despite the increased register usage and attendant lower occupancy.20

The complexity of developing code for GPUs arises not only from the requirement for

parallelisation, but also from the necessity for detailed knowledge of the underlying hard-

ware.18 Many possibilities for optimisation exist, not all of which are covered here, and

not all of which will be relevant to every application. Due to this large number of consid-

erations, the best way to approach CUDA development is through an iterative process of

applying a single optimisation strategy, profiling the application, and then applying further

optimisations only if required based on this analysis. This can be a time-consuming pro-

cess, as many different options may need to be implemented and compared before the best

one is found.20 Subsequent optimisations also tend to produce diminishing returns in per-

formance for the amount of time required for implementation. Another aspect of CUDA

development that contributes to the increased development time required relative to CPU is

the increased complexity of debugging any errors that occur. Race conditions are possible

12 Methods

on GPU hardware, where multiple threads attempt to access a single value and the output is

then dependent on the undefined order of execution.56 Errors of this kind may not become

apparent until some time after they were introduced, making detection more challenging.

Furthermore, debugging using breakpoints and single stepping delays the thread being ob-

served, which can cause the problem to disappear under detailed observation.20 Another

type of error that may not be immediately apparent after its introduction is the erroneous

indexing of arrays in terms of block size and grid size. Problems may not be seen until an

example of a certain size is tried, so extensive testing must be performed after every ma-

jor change. CUDA performs very few runtime checks, so the programmer must explicitly

wrap all of their function calls in code that checks and handles errors that arise. However,

the reported location of errors can be misleading if the error checking around even a single

function is missed, and the occurrence of an ‘unknown error’ is not infrequent.20 In sum-

mary, impressive speedups of several orders of magnitude may be obtained using GPUs, but

the time and effort required for development is significant.

2.2 Intermolecular potentials

To investigate the potential energy landscape of a system, a method of calculating the po-

tential energy is required. We frequently refer to this potential energy function simply as

‘the potential’. Quantum mechanical methods may yield the most accurate energies, but

their application is limited due to computational expense. Therefore, we often use empirical

potentials or force fields that calculate the energy as a function of nuclear positions. The ba-

sic functional forms used for an empirical potential are parameterised to reproduce certain

properties, using quantum mechanical or experimental data as a reference. In some cases,

empirical potentials are capable of providing results as accurate as quantum mechanical cal-

culations, at a fraction of the computational cost.3 The two potentials used in this work are

described below.

2.2.1 Lennard-Jones

The Lennard-Jones (LJ) potential takes the form

VLJ = 4ε ∑
i< j

[(
σ

ri j

)12

−
(

σ

ri j

)6
]
, (2.1)

2.2 Intermolecular potentials 13

where ri j is the distance between particles i and j, ε is the pair equilibrium well depth

and 21/6σ is the pair equilibrium separation.57 It can be used to model van der Waals (vdW)

interactions between atoms or molecules and consists of a long-range attractive r−6 term and

a short-range repulsive r−12 term.58 It can also be parameterised to approximately reproduce

the behaviour of specific systems, such as the noble gases.59 Due to its mathematical and

computational simplicity, it is often used as a test system in molecular simulation. In this

scenario, ε and σ are commonly set to unity for convenience.9

2.2.2 AMBER

AMBER is a set of molecular mechanical force fields for the simulation of biomolecules,

and also a package of molecular simulation programs.60,61 It is so named because the ori-

ginal program was identified as Assisted Model Building with Energy Refinement.62 The

AMBER force fields take the form63

VAMBER =
nbonds

∑
i

bi(ri − ri,eq)
2 +

nangles

∑
i

ai(θi −θi,eq)
2

+
ndihedrals

∑
i

ni,max

∑
n

(Vi,n/2)[1+ cos(nφi − łi,n)]

+
natoms

∑
i< j

′
(

Ai j

r12
i j

− Bi j

r6
i j

)
+

natoms

∑
i< j

′ qiq j

4πε0ri j
.

(2.2)

Simple harmonic expressions are used for the bond and angle terms, with equilibrium bond

distance ri,eq, equilibrium bond angle θi,eq and force constants bi and ai. The torsional

potentials for the dihedral angles, φi, are represented by a truncated Fourier expansion in

which the individual terms have a potential Vi,n with periodicity n and phase shift łi,n. The

vdW interactions are represented by a potential of the LJ form with diatomic parameters Ai j

and Bi j. The last term is the electrostatic interaction between atom-centred point charges

qi and q j, separated by a distance ri j, where ε0 is the dielectric constant in vacuum. The

nonbonded vdW and electrostatic terms are only included for atoms in different molecules

or atoms separated by at least three bonds, as indicated by the prime symbols on the sum-

mations. The types of interactions and the distances and angles involved are shown in Fig-

ure 2.3. A distance-based cutoff can be applied to the nonbonded interactions to speed up

their evaluation,65 although the validity of this approximation is uncertain.63 Nonbonded

1-4 interactions (between atoms separated by exactly three bonds, as shown by the num-

bering in Figure 2.3) are reduced using separate scaling factors for vdW and electrostatic

14 Methods

1

2 3

4

5ri
φi

θi

ri j

Figure 2.3 A schematic view of the types of interactions in the AMBER force field.
Covalent bonds are represented by heavy, solid lines, and nonbonded interactions by light,
dashed lines. The bond length is denoted by ri, the angle between three atoms by θi, the
dihedral angle between the two planes through atoms 1, 2 & 3 and 2, 3 & 4 by φi and the
nonbonded distance between atoms i and j by ri j. Figure redrawn from reference 64.

interactions, termed SCNB and SCEE, respectively.66 SCNB reduces the exaggeration of

short-range repulsion caused by the 6-12 form of the LJ potential and the nonpolarisable

charge model.67,68 The value of SCEE was chosen to approximately reproduce the con-

formational energies of some small molecules.67,69

The values of the various parameters are derived from experimental, crystallographic

and quantum mechanical data and vary depending on the specific version of the force field.65

The ff99SB force field parameter set70 was the most recent version available at the start of

this project, and it is used throughout this work for consistency. This representation provides

improved secondary structure balance and dynamics relative to earlier force fields. However,

it has some weaknesses in side chain rotamer and backbone secondary structure preferences.

These issues have been addressed in the newer ff14SB parameter set.71

A symmetrised version of the AMBER force field is used throughout the present work.72,73

The potential energy should be invariant to the permutation of identical atoms or groups,

but this is not the case for the original AMBER potential. Permutational isomers can differ

slightly in energy, which causes problems when constructing kinetic transition networks, as

minima that should be identical are categorised as distinct. The observed energy differences

originate from the way improper torsions are defined. Improper torsions are a subset of

dihedral angles, where instead of forming a chain arrangement, one atom is connected to

three others. This arrangement allows more than one possibility for the definition of the two

planes defining the angle. In AMBER, the definition of the angle depends on the ordering of

the atoms, which is determined by atom type and atom number.74 A permutation of identical

atoms can result in a different definition for the improper torsion, and therefore a different

value for the energy. To symmetrise the potential, a script can be used to reorder the atoms

in the input file that define the improper torsion angles, such that swaps of identical atoms do

2.2 Intermolecular potentials 15

not change the definition of the angle. This reordering ensures that permutational isomers

always have the same energy.72,73

Generalised Born solvent model

AMBER potential calculations can be performed with the system in a vacuum (although this

is unsupported on GPU),75 but the use of a solvent model usually gives more physically rel-

evant results. Explicit solvent models explicitly represent the individual solvent molecules,

which allows the modelling of specific, short-range interactions with the solute, and can

be more accurate. Explicit solvent calculations are carried out using periodic boundary

conditions, where the central box containing the solute and solvent particles is surrounded

by identical images of itself to approximate the effect of an infinite bulk fluid.3 A long-

range correction is applied to the truncated vdW interactions76,77 and a particle-mesh Ewald

(PME) approach is used for calculating electrostatic interactions beyond the cutoff.76,78

However, the addition of the extra complexity associated with the explicit solvent degrees

of freedom is undesirable for energy landscapes applications. The use of an implicit solvent

model is preferred, where the solvent is represented as a homogeneous polarisable medium,

which is much more computationally efficient.60

AMBER uses the generalised Born (GB) implicit solvent model, in which the free en-

ergy of solvation is decomposed into electrostatic and non-electrostatic parts:79

∆Gsolv = ∆Gel +∆Gsurf. (2.3)

The non-electrostatic component, ∆Gsurf, is usually approximated by the solvent-accessible

surface area, multiplied by a proportionality constant derived from experiment. We intro-

duce the GB equation below, which provides an approximation to the electrostatic compon-

ent of the energy, and is itself an approximation to the linearised Poisson-Boltzmann (PB)

equation.80 The PB equation is a partial differential equation that must usually be solved

using numerical methods.3 This task is computationally expensive, and the GB approxima-

tion provides a much faster analytical alternative. In the GB model, atoms are represented

by spheres of radius ρi with central charges qi, filled with a low dielectric material and

surrounded by a solvent with a higher dielectric constant. The GB equation, including the

electrostatic screening effects of salt,81 is generally expressed as

∆Gel =−1
2 ∑

i j

qiq j

f GB(ri j,Ri,R j)

(
1−

exp[−κGB f GB
i j]

εω

)
, (2.4)

16 Methods

where εω is the dielectric constant of the solvent, ri j is the distance between atoms i and j,

Ri and R j are the effective Born radii of atoms i and j respectively, κGB is the Debye-Hückel

screening parameter, and f GB is a smooth function of its arguments.79 Still et al. incorpor-

ated this approximation into molecular mechanics calculations and proposed a commonly

used form of f GB where82

f GB = [r2
i j +RiR j exp(−r2

i j/4RiR j)]
1/2. (2.5)

The effective Born radius can be thought of as the degree of burial of an atom within a

molecule, and is therefore dependent on the molecular conformation. The accurate determ-

ination of the Born radii is very important for the overall accuracy of the calculation. When

using highly accurate estimates for the Born radii, the GB approach can achieve very good

agreement with the full PB treatment of the electrostatic energy.83 The popular Hawkins,

Cramer and Truhlar model,84 which we refer to as GBHCT, expresses the effective Born

radii as

R−1
i = ρ̃−1

i −I , (2.6)

where

I =
1

4π

∫

VDW
χ(|r|− ρ̃i)

1
r4 d3r. (2.7)

An adjusted value of the atomic radius, ρ̃i = ρi − 0.09Å, is used for better agreement with

PB calculations.82 The quantity I is a volume integral over all the solute vdW spheres,

excluding the atom for which the radius is being determined (using the step-function, χ),

and reflects the degree of burial of the atom. To reduce the computational expense, the

integration is often approximated as a sum over atom pairs,84,85 to which a cutoff for the

number of pairs considered can be applied to further reduce the calculation time.86 This

model is implemented in AMBER as solvent model igb= 1.

The GBHCT model for the effective Born radii was developed for small molecules and

proved much less accurate for larger molecules with greater interior regions. Onufriev, Bash-

ford and Case79 proposed the function

R−1
i = ρ̃−1

i −ρ−1
i tanh(αψ −βψ2 + γψ3) (2.8)

for the effective Born radii, where ψ = I ρ̃i and α , β and γ are adjustable dimensionless

parameters that rescale the function proportionally. This procedure corrects for the underes-

timation of the effective radii for deeply buried atoms, caused by interstitial spaces between

vdW spheres behaving as though filled with solvent. The hyperbolic tangent function also

2.2 Intermolecular potentials 17

places a cap on the value of Ri, preventing it from diverging and becoming negative, as can

happen in GBHCT. The following parameter set is referred to as GBOBC and is implemented

in AMBER as the solvent model igb= 2:

GBOBCII : α = 1.0,β = 0.8,γ = 4.85 (2.9)

Relative to GBHCT, GBOBC has reduced bias towards the native state and is better able to

model large-scale conformational changes.79 This solvent model is used extensively in the

present work.

GPU-acceleration

The AMBER developers accelerated their molecular dynamics (MD) code for both GB im-

plicit solvent63 and PME explicit solvent76 using CUDA on NVIDIA GPUs. We focus here

on the GB implementation described in the original paper,63 as this is the implementation

that has been interfaced with our energy landscapes programs, as described in Chapter 3. To

reduce expensive copying of coordinates between host and device, the entire MD algorithm

was implemented on GPU, including the potential calculation, restraints, constraints, ther-

mostats and time step integration. For the single-GPU implementation, copying of data

between CPU and GPU was restricted to the initial upload of information at the begin-

ning of a run and some downloads required for writing to the output file and trajectory file.

Cutoffs for the long-range nonbonded interactions (vdW and electrostatic) were not imple-

mented on GPU for the GB model, as the validity of these approximations has not been

determined, and the resulting acceleration made the use of infinite cutoffs computationally

feasible. However, support for cutoffs in calculating the effective Born radii was included.

For the calculation of the nonbonded forces, the pairwise interactions between atoms i

and j can be schematically represented as an N ×N interaction matrix, as represented in

Figure 2.4. This matrix can be divided into tiles of size W ×W , where W is the warp size

and N is the number of atoms. To store the results of partial reductions, (N/W)+1 output

buffers per atom are allocated, each of which is three values wide to store the x, y and z

contributions. Each tile stores two copies of the coordinates and associated parameters for

each atom. One set for atoms j to j+W −1 is in registers and the second set for atoms i to

i+W −1 is placed in shared memory.

For the off-diagonal tiles (blue in Figure 2.4), each thread starts at an offset equal to its

thread ID (i.e. each thread is offset by one relative to the previous thread). Each thread then

loops through the atoms in shared memory, calculating the interactions and accumulating

18 Methods

the forces in the appropriate output buffers. The thread offset avoids race conditions in

accumulation by ensuring that the threads are not simultaneously updating partial results for

the same atom. The symmetry of the interactions is exploited in that once the force for atom

i interacting with atom j is obtained, the result for atom j interacting with atom i is simply

obtained through negation.

On-diagonal tiles (red in Figure 2.4) include some self-interaction terms and so must

be treated differently to off-diagonal tiles. If the same thread offset approach were used as

for the off-diagonal tiles, race conditions would occur where more than one thread would

simultaneously try to update the partial result for a particular atom. Instead, no offset is used

and all of the interactions for atom i with atoms j of the tile are calculated simultaneously,

before stepping to the next column. The symmetry of the interactions is not exploited in this

approach.

Finally, a kernel using one thread per atom is used to cycle through the output buffers

and sum the partial results to obtain the total force on each atom. In AMBER 12, the use of

shared memory is replaced by faster operations using shuffle functions, available for devices

of compute capability 3.0 or higher. The reductions required for the calculation of the GB

terms and the bonded and 1-4 interactions are handled using methods analogous to those

used for calculating the nonbonded terms.

The AMBER code supports several precision models for the calculation of the contribu-

tions to the nonbonded forces and their accumulation. Their initial implementation in AM-

BER 11 included SPDP (nonbonded force contributions calculated using single precision

floating-point arithmetic, but bonded terms and force accumulation performed using double

precision), SPSP (everything calculated using single precision) and DPDP (everything cal-

culated using double precision). Using single precision is faster than using double precision,

but single precision rounding errors in the force accumulation lead to unphysical MD traject-

ories. The developers therefore recommended SPDP for MD in their initial implementation

as this provided sufficient accuracy at a reduced computational cost relative to the DPDP

model.

AMBER 12 introduced the SPFP precision model,87 designed to provide increased per-

formance relative to SPDP simulations with comparable numerical accuracy. An IEEE754

double precision number has an approximate relative precision of 10−16 and the largest

representable number of this type is approximately 1.8× 10308. Typical MD simulations

do not require the level of precision and dynamic range offered by 64-bit double preci-

sion floating-point numbers. The AMBER developers instead use fixed-point 64-bit integer

representations Qm̂. f̂ , where m̂ is magnitude bits and f̂ is fractional bits. This represent-

2.2 Intermolecular potentials 19

1

1 2

2

..
.

...

N

N

atom i

at
om

j

W

Figure 2.4 A schematic representation of the N ×N interaction matrix used for calculating
the nonbonded forces on GPU. A distinction is made between the on-diagonal tiles (red)
and the off-diagonal tiles (blue). It should be noted that the actual warp size on NVIDIA
hardware is 32. Figure redrawn from reference 63.

20 Methods

ation provides optimal performance on GPUs of the Maxwell architecture and consumer

GPUs, where single precision arithmetic usually greatly outperforms double precision. For

the force accumulation they use Q24.40 fixed-point integer accumulation. This approach

provides seven significant figures to the left of the radix point and 12 to the right, which

is more than enough range for a stable MD simulation. Energy accumulation uses Q34.30

fixed-point integers, which provides approximately 10 significant figures to the left of the

radix point and nine to the right. The energy does not affect the MD trajectory in any way

and is simply written to the output file.

As integer mathematics is associative, the order of summation will not lead to rounding

differences, so atomic operations can be used for accumulation in the SPFP model and

the force calculation is still deterministic. Using atomic operations provides a significant

speed increase for newer GPU architectures, e.g. Kepler atomic operation hardware is three

times faster relative to Fermi. Also, the global memory requirements are greatly reduced as

the large number of accumulation buffers is no longer needed. This formulation increased

the maximum system size for GB simulations from tens of thousands of atoms to millions,

depending on the device global memory size. A global memory size of 2 GB allows the

simulation of around a million atoms, where meaningful timescales are currently out of

reach for proper sampling, due to computational expense. Another possible limit on system

size now arises from the possibility of overflowing the fixed precision energy accumulator,

as the energy increases linearly with the number of atoms, although this limit would be well

past 10 million atoms.

Although the SPFP model provides large speed increases for MD, we have exclusively

used the DPDP precision model in this work. This is because our methods require a much

greater numerical range for the energies and forces than the SPFP model provides. Step-

taking in basin-hopping and the interpolation procedure used in transition state location

often produce initial highly strained structures with extremely large forces acting upon the

atoms. We wish to retain as many stationary points as possible located from these starting

points to maximise the efficiency of the energy landscape exploration. However, use of fixed-

point or single precision arithmetic results in frequent overflow of the forces and subsequent

failures of attempts to locate minima or transition states. We therefore use AMBER 12, as

the DPDP precision model has been deprecated in newer releases of AMBER.

2.3 Basin-hopping global optimisation 21

2.3 Basin-hopping global optimisation

The process of finding the lowest minimum of a function is termed global optimisation.1

The basin-hopping method, based on the ‘Monte Carlo-minimization’ approach of Li and

Scheraga,8 is a stochastic global optimisation procedure that has been applied with great

success in the context of potential energy surfaces to find the lowest energy structures of

many atomic, molecular and macromolecular systems.9 The database of local minima found

during the search may be used to calculate other properties of interest using statistical mech-

anics.88 The GPU-acceleration of the basin-hopping global optimisation implementation

found in the software package GMIN89 is described in Chapter 3.

The essential aspect of the method is a transformation of the original energy landscape

according to

Ṽ (X) = min{V (X)}, (2.10)

where min indicates that a local minimisation is carried out from the starting coordinates, X,

resulting in the energy of the local minimum at this point, Ṽ (X). The transformed landscape

takes the form of a collection of interpenetrating plateaux, or ‘basins of attraction’, each of

which represents the set of points in configuration space that will lead to a particular min-

imum through geometry optimisation.1 Figure 2.5 shows a schematic view of this landscape

transformation.

The coordinate space is explored stepwise using random structural perturbations. These

moves are often highly specific to the system under study. For biomolecules, the perturba-

tions might be Cartesian moves of the backbone atoms, rotations of amino acid side chains,

or short MD runs. After each step, a local minimisation is performed. The Metropolis

criterion can be employed to decide if the proposed coordinates are to be accepted or rejec-

ted. If the new energy is less than the old energy, Ṽnew < Ṽold, then the step is accepted. If

Ṽnew > Ṽold, the step is only accepted if exp{(Ṽold − Ṽnew)/kBT} is greater than a number

randomly chosen from between 0 and 1, where kB is Boltzmann’s constant and T is a ficti-

tious temperature.1 The main advantage of this method is the ease with which areas of the

landscape separated by high barriers can be explored, as downhill barriers are effectively

removed from the problem through the coordinate transformation.9

22 Methods
E

n
er

g
y

Figure 2.5 An untransformed, one-dimensional potential function is represented by a solid
blue line. The function obtained through the coordinate transformation of Equation (2.10)
is represented by the dotted line. Figure redrawn from reference 1.

2.3 Basin-hopping global optimisation 23

2.3.1 Limited-memory BFGS

The local minimisations required for basin-hopping global optimisation are usually per-

formed using Nocedal’s limited-memory BFGS (L-BFGS) algorithm.90 This is the limited-

memory version of the BFGS algorithm, named for Broyden,91 Fletcher,92 Goldfarb93 and

Shanno94. It belongs to the family of quasi-Newton methods,95 which have their origins in

Newton’s method. However, they are less computationally expensive than Newton’s method,

as they do not require explicit calculation of the Hessian matrix of second derivatives. In-

stead, the Hessian or its inverse is approximated using a series of matrices determined from

the gradient at each iteration. As the name suggests, L-BFGS is based on the BFGS method

but requires less storage because the approximation to the full inverse Hessian is not stored

in its entirety. Instead, it is represented implicitly through a small number of vector pairs

that are updated at each iteration.90 An overview of the L-BFGS algorithm for the minimisa-

tion of a function, f , is shown in Algorithm 1.96 For our purposes, the function f is usually

a potential energy function, V (X), such as the LJ or AMBER potential.

Algorithm 1 L-BFGS

1: Choose a starting point, X0, and an integer history size, m > 0
2: k = 0
3: repeat
4: Choose an initial Hessian approximation, H0

k , e.g. using Equation (2.11)
5: Compute the step direction, Pk =−Hk∇ fk, using Algorithm 2
6: Compute the step Xk+1 = Xk + α̂kPk, choosing α̂k as in Algorithm 3
7: if k > m then
8: discard vector pair {Sk−m,Yk−m} from storage
9: end if

10: Compute and store Sk = Xk+1 −Xk,Yk = ∇ fk+1 −∇ fk

11: k = k+1
12: until convergence.

Unlike the BFGS method, the initial approximation to the Hessian, H0
k , may vary freely

between iterations. One commonly used method is to set H0
k = γ̂kI, where I is the identity

matrix. We calculate

γ̂k =
ST

k−1Yk−1

YT
k−1Yk−1

. (2.11)

using the change in coordinates, Sk−1, and the change in gradient, Yk−1, from the previous

iteration. This scaling factor, γ̂k, is an estimate of the magnitude of the second derivative

along the most recent search direction, ensuring that Pk is appropriately scaled.96

24 Methods

The BFGS update formula is

Hk+1 = ηT
k Hkηk +ξkSkST

k (2.12)

where

ξk =
1

YT
k Sk

(2.13)

and

ηk = I −ξkYkST
k . (2.14)

From this equation, a procedure for calculating Hk∇ fk can be derived.96 This formulation

is known as the two-loop recursion algorithm and is shown in Algorithm 2.96

Algorithm 2 Two-loop recursion

1: D̂ = ∇ fk

2: for i = k−1,k−2, ...,k−m do
3: α̂i = ξiST

i D̂
4: D̂ = D̂− α̂iYi

5: end for
6: J = H0

k D̂
7: for i = k−m,k−m+1, ...,k−1 do
8: β̂ = ξiYT

i J
9: J = J+Si(α̂i − β̂)

10: end for
11: stop with result Hk∇ fk = J.

We wish to find an appropriate step length, α̂k, for the step in the chosen direction, Pk,

according to line 6 of Algorithm 1. Taking steps that are frequently too large or too small

will result in the overall minimisation being inefficient. The best reduction in the function,

fk, would be given by a one-dimensional minimisation in the direction of the search, but

this would be expensive if performed exactly. Instead, the minimisation is often performed

approximately using a line search algorithm. A good line search finds a step length that res-

ults in an adequate reduction in the function at minimal computational cost. One commonly

used line search requires the proposed step to satisfy the Wolfe conditions, which require

both a sufficient decrease in the function and a sufficient change in the curvature (second

derivatives) of the function.96 In practice, the L-BFGS algorithm produces a well-scaled ini-

tial step, so a simpler procedure can be used. The approach used in GMIN checks whether

the step is a descent direction, and ensures that it does not exceed a maximum step size

and maximum energy rise, as specified by the user. This procedure results in fewer overall

2.4 Transition state determination 25

convergence failures for L-BFGS than a standard line search,97 and is further described in

Algorithm 3.

Algorithm 3 Step scaling in GMIN

1: if JT
k ∇ fk > 0 then ⊲ Check if step, Jk, is a descent direction

2: Jk =−Jk ⊲ If not, invert the step
3: end if
4: c = 1.0 ⊲ Initialise scaling factor for step size
5: if c|Jk|> |J|max then ⊲ Check if initial step larger than allowed maximum, |J|max
6: c = |J|max/|Jk| ⊲ If it is, find new scaling factor to reduce it
7: end if
8: for i = 1,2, ...,10 do
9: Xk+1 = Xk − cJk ⊲ Calculate coordinates of new, scaled step

10: if fk+1 − fk < ∆ fk,max then ⊲ Check energy change for new step
11: break ⊲ If less than allowed maximum, ∆ fk,max, accept current value of c

12: else ⊲ If energy change greater than ∆ fk,max
13: c = c/10 ⊲ Reduce c by a factor of 10
14: end if
15: end for
16: stop with result α̂k = c.

2.4 Transition state determination

In our software, transition states are usually located using the doubly-nudged13 elastic

band14,15 (DNEB) method to generate initial guesses between two minima, and then these

candidates are refined using hybrid eigenvector-following12 (EF). Then, small positive and

negative displacements along the eigenvector associated with smallest nonzero eigenvalue

are made and L-BFGS minimisations are performed from these points to determine the min-

ima directly connected to the transition state.5 The software package OPTIM98 contains an

implementation of these procedures and Chapter 3 describes the details of acceleration us-

ing GPUs. The minima to be connected may be distant from each other, separated by many

intervening minima and transition states. In this case, a complete connected pathway can-

not be found in a single application of DNEB and hybrid EF, so this procedure for transition

state determination must be applied many times in succession. We use Dijkstra’s shortest

path algorithm99 on the evolving database of local minima and transition states to choose

the endpoints for subsequent searches.5

26 Methods

2.4.1 Doubly-nudged elastic band method

The DNEB method is used for double-ended transition state searches, where the objective

is to locate transition states that join two end points.1 For our purposes, these initial end-

points are minima and we aim to find an approximate transition state for further refinement.

The DNEB method is derived from Henkelman and Jónsson’s nudged elastic band (NEB)

method,14,15 with modifications to increase its stability, efficiency and speed when used in

conjunction with minimisation algorithms such as L-BFGS.13 The path between the two

endpoints, X0 and Xn+1, is represented as a series of n images, {X1,X2 . . .Xn}, where Xi

represents the coordinates of image i. The initial image structures are generated using a

simple Cartesian interpolation between the endpoints and they are then refined using DNEB

in combination with L-BFGS. Each image is represented by a ‘true potential’, Vi. In addi-

tion, adjacent images are joined by n+ 1 harmonic springs,12 where the ‘spring potential’

is

Vspr =
1
2

kspr

n+1

∑
i=1

|Xi −Xi−1|2. (2.15)

However, the perpendicular component of the spring gradient, g⊥spr, can result in corner-

cutting where the images are pulled away from the path. Furthermore, the parallel compon-

ent of the true gradient, g‖, can cause images on the path to slide down towards the end

points. These problematic effects mean that poor transition state candidates are produced.

In the original NEB formulation, these problems were ameliorated by completely projecting

out the corresponding components of the gradient.14,15 However, when this new gradient is

used in combination with the L-BFGS minimiser, it is unstable, as the images diverge from

the path. This problem was found to be due to the complete removal of the perpendicular

component of the spring gradient, g⊥spr. A solution is to retain some portion of g⊥spr, giving a

new DNEB gradient of13

gNEB = g⊥+g‖spr +g∗spr, (2.16)

where

g∗spr = g⊥spr − (g⊥spr · ĝ⊥)ĝ⊥. (2.17)

In this context, the hat symbol denotes a unit vector. The improved stability of the DNEB

method makes it two orders of magnitude faster than the original NEB method.13 Some

corner-cutting still occurs, but the approximate transition states are good enough for further

refinement through hybrid EF.

2.4 Transition state determination 27

2.4.2 Hybrid eigenvector-following

Hybrid EF is a single-ended transition state search method, meaning that it starts from just

one initial point. In this context, that point is an approximate transition state produced using

the DNEB method and we wish to use hybrid EF to tightly converge this transition state

candidate.13 In this process, uphill steps with respect to the input structure are taken, along

the eigenvector associated with the unique negative Hessian eigenvalue. Minimisation is

performed concomitantly in the orthogonal subspace until a transition state is reached.12

Due to the changing geometry, the uphill eigenvector is recalculated frequently to ensure

that we continue in the right direction. For large systems, where we wish to avoid the

expense of computing and diagonalising the entire Hessian, or in cases where analytical

second derivatives are not available, a variational approach can be used to calculate the

smallest eigenvalue and the associated eigenvector. Analytical second derivatives for the

AMBER potential have not been implemented for GPU hardware, so we use this variational

approach in Chapter 3.

In the variational approach to finding the smallest eigenvalue, we minimise a Rayleigh-

Ritz ratio

λ (x) =
xT Hx

x2 (2.18)

with respect to the eigenvector x associated with the smallest eigenvalue λ (x) of the Hessian,

H. The eigenvalue, λ (x), can be approximated as a numerical second derivative of the

energy using the central difference approximation

λ (x)≈ V (X+ζ x)+V (X−ζ x)−2V (X)

(ζ x)2 (2.19)

where V (X) is the energy at point X in nuclear configuration space and ζ ≪ 1. Differentiat-

ing Eq. (2.19) gives:

∂λ

∂x
=

∇V (X+ζ x)−∇V (X−ζ x)
ζ x2 − 2λx

x2 . (2.20)

Roundoff error in Eq. (2.19) can result in loss of precision for systems with large values of

V (X). An alternative, mathematically equivalent formulation of λ (x) using

λ (x)≈ {∇V (X+ζ x)−∇V (X−ζ x)} ·x
2ζ x2 (2.21)

28 Methods

gives a significantly better estimate in these cases, especially when the magnitude of the

gradient is small in comparison to the energy.100 The same estimate for ∂λ/∂x is used, as

shown in Equation (2.20). Components of the eigenvector corresponding to overall trans-

lation or rotation of the system are removed by calculating unit vectors for infinitesimal

translational and rotational displacements and using these in a projection procedure. As the

eigenvector is approximate, it is also normalised at every iteration of the minimisation. After

the eigenvector associated with the smallest nonzero eigenvalue has been found, an uphill

eigenvector-following step is taken in this direction, with minimisation in all orthogonal

directions. To prevent minimisation in the uphill direction, x, the projection

P(∇V) =
∇V − (∇V ·x)x

|x|2 (2.22)

is used to remove the component of the gradient along x. This procedure is continued until

a converged stationary point is reached.

2.5 Local rigid body framework

The local rigid body framework in our programs, GMIN and OPTIM, provides a way of

reducing the number of degrees of freedom of a molecular system, while still retaining full

atomistic interactions between the bodies.10,11 Local rigidification can be applied in cases

where groups of atoms move very little with respect to each other, or when their displace-

ments are not of relevance to the problem under investigation. The reduction in the num-

ber of degrees of freedom in the transformation from atomistic to rigid body coordinates,

{ri}i∈I →{rI,pI}, greatly increases computational efficiency. Tests on small biological sys-

tems with rigid groupings of peptide termini, peptide bonds and side chain rings have shown

that mean first encounter times for locating the global minimum using basin-hopping global

optimisation are significantly reduced. These tests, performed on CPU, also showed that

both the required number of steps in the L-BFGS minimisations and the required number of

basin-hopping steps are reduced. Moreover, the topology of the energy landscape may be

relatively unaffected if groupings are chosen carefully.10,101 The groupings are frequently

chosen using physical intuition regarding the intrinsic rigidity of the structural elements,

although more formal approaches do exist.102–105

One great advantage of this method is the ability to combine it with potentials that re-

quire atomistic coordinates as input,11 such as AMBER. For this combination to be possible,

a method of converting rigid coordinates to atomistic coordinates prior to the potential call

2.5 Local rigid body framework 29

is required, and subsequently a way of projecting the calculated forces on the atoms to ob-

tain the forces and torques on the rigid bodies.10 As these transformations occur during

L-BFGS minimisation, their implementation on GPU hardware is described in Chapter 3.

The inverse procedure for converting atomistic coordinates to rigid coordinates is also oc-

casionally required, but it is not the focus of the present work as it does not need to occur

during L-BFGS minimisation.

The position of each rigid body is specified using three coordinates for the centre of geo-

metry, {rI}, and three for its orientation, {pI}. These three translational and three rotational

degrees of freedom therefore give each rigid body a total of six degrees of freedom.11 In this

discussion, capital letters are used to refer to rigid bodies and lower case letters to atoms.

The reference coordinates of the atoms in rigid body I, relative to the centre of geometry, are

denoted by {r0
i }i∈I . The rotational degrees of freedom are represented using an angle-axis

framework.106 The rotation vector can be expressed as pI = θIp̂I = (p1
I , p2

I , p3
I), where p̂I is

a unit vector defining the rotation axis and θI describes the magnitude of the rotation about

that axis.10 The components of the rotation vector in the x, y and z directions are denoted by

p1
I , p2

I , p3
I , respectively. The rotation matrix, RI , can be obtained from Rodrigues’ rotation

formula107 as

RI = I +(1− cosθI)p̃Ip̃I + sinθIp̃I, (2.23)

where I is the identity matrix. The skew-symmetric matrix, p̃I , is defined as

p̃I =
1
θI




0 −p3
I p2

I

p3
I 0 −p1

I

−p2
I p1

I 0


 , (2.24)

which is constructed using the rotation vector pI . The formula

ri∈I = rI +RIr0
i∈I (2.25)

defines the transformation from rigid body coordinates to atomistic coordinates.10

The projection of the atomistic forces onto the translational degrees of freedom of the

rigid bodies, ∂V/∂ rk
I (k = 1,2,3), is given by the sum10

∂V

∂ rk
I

= ∑
i∈I

∂V

∂ rk
i

. (2.26)

30 Methods

The accompanying projection of the forces on the atoms onto the rotational degrees of free-

dom is obtained through the use of the chain rule as

∂V

∂ pk
I

= ∑
i∈I

∇iV · (Rk
I r0

i), (2.27)

where
∂ri

∂ pk
I

= Rk
I r0

i (2.28)

follows geometrically from Eq. (2.25).11 The derivative of the rotation matrix, ∂RI/∂ pk
I , is

denoted by Rk
I , and can be expressed as108

Rk
I =

pk
I sinθI

θI
p̃2

I +(1− cosθI)(p̃k
I p̃I + p̃Ip̃k

I)+
pk

I cosθI

θI
p̃I + sinθIp̃k

I . (2.29)

Here, for example,

p̃1
I =

1
θI




0 p1
I p3

I /θ 2
I −p1

I p2
I /θ 2

I

−p1
I p3

I /θ 2
I 0 −(1− (p1

I)
2/θ 2

I)

p1
I p2

I /θ 2
I (1− (p1

I)
2/θ 2

I) 0


 . (2.30)

2.5.1 Root mean square force formulation

The root mean square (RMS) force is commonly used as a convergence criterion for geo-

metry optimisation procedures and is defined as
√

∇V ·∇V/3N for an N atom system. A

coordinate independent formulation for the RMS force must be defined for use with rigid

systems.11 As the translational and rotational degrees of freedom have different physical

dimensions, the standard Euclidean dot product would not be correct. Instead, we define a

weighted metric tensor (or distance measure)

gI,αβ = ∑
i

wi
∂ri

∂qI,α
· ∂ri

∂qI,β
(2.31)

with the generalised coordinates qI = {rI,pI}. For normal-mode analysis, the weights are

equivalent to the masses of the atoms. However, for the RMS force calculation we focus on

here, wi = 1. By inserting Equation (2.25) into Equation (2.31), we obtain components of

the metric tensor that depend on translational and rotational degrees of freedom only as

gtrans
I,αβ = W̃δαβ (2.32)

2.6 Free energy basin-hopping 31

grot
I,αβ = Tr(RI,αSIR

T
I,β) (2.33)

where Tr is the trace,

W̃ = ∑
i

wi, (2.34)

and

RI,α =
∂RI

∂ pI,α
. (2.35)

SI is the weighted gyration tensor in the reference frame of the rigid body with

SI,αβ = ∑
i

wir
0
i,αr0

i,β (2.36)

where r0
i,α is the α component of the vector r0

i . As rI is at the centre of geometry, mixing

terms vanish.

We now consider n rigid bodies where the coordinates are q= {qα}= {r1, . . . ,rn, p1, . . . , pn}
and gαβ is the metric tensor for the full system, which is block diagonal with each block

corresponding to the metric tensor of each individual rigid body. The correct dot product

for the gradient of the potential energy is then

v2 = ∑
αβ

∂V

∂qα
g−1

αβ

∂V

∂qβ
(2.37)

and the RMS force is
√

v2/6n where 6n is the total number of degrees of freedom.

2.6 Free energy basin-hopping

Free energy basin-hopping16 (FEBH) provides a means to locate the potential energy min-

imum corresponding to the lowest local free energy minimum of a molecular or condensed

matter system at a specified temperature. The procedure is analogous to basin-hopping

global optimisation,8,9 with approximate free energies calculated on the fly for each local

minimum visited. This procedure allows us to take into account entropic effects that may

be important at higher temperatures. FEBH has been implemented in the GMIN package

and Chapter 4 discusses the refinement and testing of an accelerated implementation that

exploits the sparsity of the Hessian matrix for short-ranged potentials.

The superposition approach109,110 can be used to express the global partition function,

Z(T), as a sum over contributions from the catchment basins of local minima. A catchment

basin is formally defined as the region of configuration space from which steepest-descent

32 Methods

paths lead to a particular local minimum.1 In the canonical ensemble,

Z(T) = ∑
i

Zi(T), (2.38)

where Zi(T) is the partition function of minimum i at temperature T , and the sum is over all

geometrically distinct minima on the surface, including all nonsuperimposable permutation-

inversion isomers of each structure. For a system containing NA atoms of element A, etc.,

a factor ni = 2NA!NB!NC! . . ./oi is used to account for degenerate structures contributing to

Zi(T), where oi is the order of the point group of minimum i. Employing the harmonic nor-

mal mode approximation, the vibrational component of the partition function can therefore

be written as

Z(T) = ∑
i

ni exp[−βTVi]

(βT hν i)κ
(2.39)

where βT = 1/kBT , h is Planck’s constant, κ is the number of nonzero eigenvalues for the

Hessian matrix, ν i = (∏κ
j=1 ν j

i)
1/κ is the geometric mean vibrational frequency of minimum

i with ν j
i the normal mode frequency of the j-th mode in minimum i, and Vi is the potential

energy of minimum i.16 The approximate free energy of minimum i is given by109

Fi(T) =−kBT lnZi(T). (2.40)

Combining equations (2.39) and (2.40), we find that the harmonic difference in free energy

between the current (old) minimum and the new minimum is

Fnew(T)−Fold(T) =Vnew −Vold + kBT ln
onewνκ

new

ooldνκ
old

, (2.41)

which is used in the accept/reject criterion for each basin-hopping step. Terms correspond-

ing to rigid rotor degrees of freedom have been shown to have a negligible effect in tests

using LJ clusters.16,111 Initial investigation, through the inclusion of rotational terms in tests

on a small number of minima, indicates that this is also the case for the biomolecules under

consideration in this work.

2.7 Cholesky factorisation 33

2.7 Cholesky factorisation

A Cholesky factorisation can be used to uniquely decompose a symmetric, positive definite

matrix into a product of a lower triangular matrix and its conjugate transpose:112

M = LLT . (2.42)

The determinant of the matrix can then be calculated from the product of diagonals of L

and LT .113 This forms the basis of the alternative method for calculating the log product

of positive eigenvalues of the Hessian required for FEBH, described in Chapter 4. There

are many possible ways of computing the factorisation, which all scale as O(N3), though

they vary in efficiency.114 A commonly used method can be represented in the following

form, where lower case letters refer to individual elements of the matrices denoted by the

equivalent capital letters:115

l11 =
√

m11,

l j1 =
m j1

l11
, j ∈ [2,n],

lii =

√√√√mii −
i−1

∑
p=1

l2
ip, i ∈ [2,n],

l ji =

(
m ji −

i−1

∑
p=1

lipl jp

)
/lii, i ∈ [2,n−1], j ∈ [i+1,n].

Cholesky factorisation is closely related to the LDL factorisation, M = LDLT , where D

is a diagonal matrix. The relationship can be expressed as:114

M = LDLT = LD
1
2 D

1
2 T LT = LD

1
2 (LD

1
2)T (2.43)

The computational complexity of the LDL factorisation is the same as for the Cholesky

factorisation when both are implemented efficiently.116 The package SuiteSparse117 con-

tains implementations of both Cholesky and LDL factorisation, but the developers have ap-

plied greater optimisation effort to their Cholesky implementation. The method described

in Chapter 4 therefore uses the Cholesky factorisation, although a conversion of the final

factor to LDLT form is applied for more straightforward array access to the required diag-

onal elements.

34 Methods

The scaling of these algorithms can be improved if the matrix to be factorised is sparse,

i.e. if only a small number of the matrix elements are nonzero. Operations on zeros can

then be skipped, saving both computational time and storage.112 This property applies to

the Hessian matrix for short-ranged potentials, allowing the acceleration of FEBH using an

algorithm for sparse Cholesky factorisation.

Chapter 3

GPU-acceleration of computational

energy landscape methods

3.1 Introduction

Basin-hopping global optimisation,8,9 the doubly-nudged13 elastic band14,15 (DNEB) method,

and hybrid eigenvector-following12 (EF) are well-established tools for the location of min-

ima and transition states in the characterisation of potential energy landscapes. Their applic-

ation to biomolecules has so far focused mainly on smaller systems, due to computational

expense. We would like to open up the study of larger biomolecules within the computa-

tional potential energy landscape approach, through the use of graphics processing units

(GPUs).

GPUs have become popular for the acceleration of scientific applications, and many

GPU-accelerated programs exist in the area of computational chemistry. The NVIDIA GPU

Applications Catalog118 contains many examples of GPU-accelerated programs, from areas

as diverse as fluid dynamics and finance, along with the speedups they have achieved. These

speedups range from a factor of two or three, up to two or three orders of magnitude. The

improvement depends very much upon the degree of data parallelism inherent in the applic-

ation, and also upon the nature of the hardware used in benchmarking.

The work described in this chapter makes use of the GPU-accelerated AMBER poten-

tial, described in Section 2.2.2. In the benchmarks for the original publication, AMBER

11 molecular dynamics (MD) simulations using generalised Born (GB) implicit solvent and

the SPDP precision model for GPU were around 10 to 20 times faster than a 12 core parallel

CPU run. In general, the DPDP model was around four to seven times slower in perform-

ance than the SPDP model.63 However, it is important to note that significant technological

36 GPU-acceleration of computational energy landscape methods

advances have been made in the design of GPU hardware since these numbers were recor-

ded. In particular, many professional cards now have greatly improved double precision

performance. AMBER 12 introduced the SPFP precision model, designed to increase per-

formance without sacrificing accuracy.87 This implementation is particularly suited to cards

for which the single precision performance is very high relative to the double precision per-

formance, such as consumer cards and cards based on the Maxwell architecture. On the

latest hardware, the AMBER 16 code using the SPFP model provides two orders of mag-

nitude speedup relative to a 20 core CPU MPI run for a system of 25 000 atoms, and MPI

runs using four GPUs provide around three times this single-GPU performance. We make

use of the AMBER GPU code in our applications, but we require the somewhat slower

DPDP model (deprecated beyond AMBER 12) for full double precision calculation of the

forces.

The limited-memory BFGS (L-BFGS) algorithm90–94 is a key component of the compu-

tational energy landscape methods considered here and has been implemented on GPUs by

various other authors.52,119–128 In adapting any application to make use of GPU hardware, a

decision must be made as to which computations should take place on the GPU and which

would better be left on the CPU. In ‘GPU Computing Gems’, Haque and Pande consider

this problem with reference to the L-BFGS algorithm. For their application, the function

and gradient evaluation are well-suited to efficient parallelisation on the GPU because of

high data parallelism and arithmetic intensity. Conversely, they find that the L-BFGS direc-

tion update is ill-suited to GPU parallelisation, as it consists of a large number of sequential,

low-dimensional vector operations, requiring frequent thread synchronisation and leaving

many idle threads. However, leaving the update operations on the CPU necessitates copying

large amounts of data between the host and device, which is expensive. In their case, im-

plementing the entire algorithm on the GPU turned out to be the most efficient approach.52

D’Amore et al.119 also point out the difficulty of parallelising the update operations in the

L-BFGS routine. Although a dot product computation has a high degree of parallelism,

each multiplication requires two read operations from the input vectors and one write oper-

ation to the output vector. The calculation is therefore strongly memory bandwidth bound.

The upper limit for GPU-acceleration of the dot product is given by the ratio of GPU to

CPU memory bandwidth, which is usually less than ten. D’Amore et al. made use of the

cuBLAS library in their work, a GPU-accelerated version of the complete standard Basic

Linear Algebra Subprograms (BLAS) library.

Several other authors have also implemented versions of L-BFGS with both the function

and gradient evaluation and vector update operations taking place on the GPU, namely Fei

3.2 Methods 37

et al.,120 Zhang et al.121 and Wetzl et al.122 In contrast, others have opted to put only the

function and gradient evaluation on the GPU.123–128 In cases where the problem size has

low dimensionality, the cost of data transfer between host and device is lowered, and the

poor parallelisation of the update steps becomes more significant.125 However, several of

these authors speculate that costly memory transfer negatively impacts the performance of

their applications.126–128 The most efficient approach likely depends on the hardware, the

nature of the cost function, and the L-BFGS parameters selected.

The remainder of this chapter describes the implementation of basin-hopping global

optimisation, a local rigid body framework, hybrid EF and the DNEB method to provide

GPU-accelerated calculations. Speedups of up to two orders of magnitude are observed for

tests performed on selected biomolecules represented using the AMBER force field, and

an analysis of the effects of L-BFGS history size and local rigidification on the overall

efficiency is presented. A GPU implementation of L-BFGS, with an interface to the GPU-

accelerated AMBER potential, forms the basis of the accelerated versions of basin-hopping

global optimisation and hybrid eigenvector-following. Comparison of an implementation

of L-BFGS with the update operations on GPU, with an implementation with the update

operations on CPU, shows that the benefit of the full implementation of L-BFGS on GPU

with the AMBER potential is only seen for very large and complex systems. However,

preliminary tests on a smaller system represented using a GPU-accelerated Lennard-Jones

(LJ) potential show an order of magnitude speedup relative to having the update operations

on CPU. The study of much larger biomolecular systems is now possible, and the GPU

implementation of the energy landscape framework provides a good basis for acceleration

using other potentials in future work. Applications to a coiled-coil peptide represented using

the AMBER potential129,130 and addressable clusters and aggregates represented using the

LJ potential131 are also described.

3.2 Methods

To identify the most time-consuming components of basin-hopping global optimisation in

GMIN and transition state location in OPTIM, some short profiles were performed using

Callgrind from the Valgrind Tool Suite132 for an 81-atom model alpha helix133 using the

AMBER 12 potential and for a 100-atom LJ cluster. The calculation of the potential energy

and gradient was found to take 80 to 99 % of the total time, depending on the L-BFGS

history size used. Smaller values for the history size resulted in the potential calculation

forming a greater percentage of the overall run time. The remainder of the compute time

38 GPU-acceleration of computational energy landscape methods

was found to consist mostly of calls to the vector operations of L-BFGS. For basin-hopping

global optimisation, the calls to the potential were found to originate almost exclusively

from within the main L-BFGS routine. For transition state location, the calls to the potential

were found to originate partly from the two modified versions of L-BFGS in hybrid EF, and

partly from the modified version of L-BFGS in the DNEB method. The proportions of time

taken by these different routines depended greatly on the parameters used for the overall

run.

3.2.1 Basin-hopping global optimisation

First, we discuss the CUDA implementation of the L-BFGS routine for the acceleration of

basin-hopping global optimisation. It is not immediately obvious whether implementing

L-BFGS on GPU would be beneficial. Although many of the individual vector calculations

in the routine are amenable to parallellisation, the loops through the history size, m in Al-

gorithm 2 (Section 2.3.1), are necessarily serial. The larger the history size, the larger the

number of vector calculations that must therefore be performed sequentially. This scaling

gives a more accurate step direction, so fewer steps (and hence fewer costly potential calls)

would be required for convergence. Although simpler potentials only require a small history

size, a large history size is usually optimal for the AMBER potential on CPU. As mentioned

in Section 3.1, the maximum speedup for the update operations is not large, but having these

operations on GPU may be worthwhile to avoid costly memory copying between host and

device.

We chose to port the whole L-BFGS algorithm to GPU so that we could compare it

to having just the potential energy function on GPU. Our implementation is a modified

version of ‘CudaLBFGS’122,134 (Creative Commons Attribution 3.0 Unported License), an

existing GPU-accelerated version of L-BFGS, authored by Wetzl and Taubmann. They

programmed all the vector operations of Algorithms 1 and 2 (Section 2.3.1) on GPU using

the NVIDIA cuBLAS library, which delivers 6 to 17 times faster performance than the

latest Intel Math Kernel Library (MKL) implementation of the BLAS routines.135 Single-

threaded kernels are used to perform operations in device memory not involving vectors

or matrices. Various modifications were made to the code to enable it to run correctly,

including the correction of some deprecated CUDA syntax and removal of memory leaks.

We also implemented the step scaling procedure described in Algorithm 3 (Section 2.3.1)

using cuBLAS, and made various other modifications to make the L-BFGS routine as similar

as possible to its CPU equivalent in GMIN. The most serious problem with the minimiser

3.2 Methods 39

occurred when the starting structure used was near to a minimum already, which meant that

the change in coordinates, S, and the change in gradient, Y, were very small. Minimisations

would not converge due to components ST
k−1Yk−1 and YT

k−1Yk−1 becoming too small for the

calculation of the Hessian approximation of Equation (2.11) to give sensible values. This

problem was fixed by resetting these values to ±10−20 if they fell inside this range.

3.2.2 Local rigid body framework

If the entirety of the L-BFGS algorithm is to be on the GPU, the coordinate transformation

and gradient projection from our local rigid body framework should also take place there

to avoid unnecessary memory copying. The rotation matrix of Eq. (2.23) (Section 2.5) is

calculated independently for each rigid body, presenting an obvious opportunity for paral-

lelisation. A kernel to calculate the rotation matrices was implemented, launching a number

of threads equal to the number of rigid bodies, each of which also constructed the inter-

mediate skew-symmetric matrix of Eq. (2.24) (Section 2.5) in registers. The calculations

involving loops through small, nine-element matrices were unrolled for performance. The

resulting rotation matrices, stored in global memory, were passed as an argument to the sub-

sequent transformation kernel. This kernel encoded the main transformation of Eq. (2.25)

(Section 2.5) and utilised a greater degree of parallellisation than the previous kernel, with

a number of active threads equal to the number of atoms. Single atoms not in rigid bodies

were also copied using a one thread per atom kernel design.

For the sum of Eq. (2.26) (Section 2.5), providing the translational forces on the rigid

bodies, an approach based on the ‘Shuffle On Down’ algorithm was used to perform a par-

allel reduction.54 This procedure makes use of the shuffle instruction, which allows threads

to read the registers of other threads in the same warp. There are four shuffle intrinsics,

but only the shuffle down instruction is used in this case, specifically the double precision

implementation detailed on the NVIDIA Developer blog.54 The final result of the shuffle

down instruction is that values held in registers for each thread are shifted to lower thread

indices. Reduction within a warp can be achieved by summing pairs of values obtained

through a shuffle down operation, where the shift is initially half the warp size, and then

repeatedly bisected until thread 0 holds the final value, i.e. constructing a reduction tree. A

schematic representation of this process can be seen in Figure 3.1. Parallel reduction using

shuffle instructions in this way is much faster than using shared memory to exchange data

between threads. This function was implemented for summations involving rigid bodies of

32 atoms or fewer. Using a kernel launch with a number of threads equal to 32 times the

40 GPU-acceleration of computational energy landscape methods

number of rigid bodies, the register values to be summed are either the appropriate value

read from global memory, or zero where the atom does not exist. The first thread of each

warp was designated to write the final reduced values to global memory.

warpId 0

1 11 11111

1 2

2 22 2

3 4

44

5 6 7

8

tmp+=__shfl_down(tmp,4)

tmp+=__shfl_down(tmp,2)

tmp+=__shfl_down(tmp,1)

Figure 3.1 A reduction algorithm using shuffle down. It should be noted that the full warp
size is 32 and that all threads of the warp shift values simultaneously, although arrows are
only included here for threads contributing to the final result. Figure redrawn from
reference 54.

The most frequently employed local rigid groupings do not involve more than 32 atoms

and so the above approach is sufficient in these cases. However, sometimes larger rigid

bodies are needed, so the reduction must be extended to summing more than 32 values. To

reduce across a whole block of threads, reductions must first be performed within each warp.

The first thread of each warp can then write its partial sum to an array in shared memory.

After thread synchronisation, the first warp can read these values from shared memory and

perform another warp reduction to give the final value.

To perform a reduction across the whole grid, more than one kernel launch is needed for

global communication. A kernel was designed such that the number of values to be reduced

for each rigid body was equal to the number of atoms in the largest rigid body in the system,

rounded up to the nearest multiple of the block size, so that no block contained a mixture

of values from different rigid bodies. The kernel launched a number of threads equal to

this number multiplied by the number of rigid bodies. A block reduction was performed for

all blocks, with the results written to a temporary array in global memory. Another similar

kernel was then used to reduce this array in sections (one section per rigid body). This

3.2 Methods 41

kernel was configured to launch repeatedly until the number of blocks became equal to the

number of large rigid bodies, at which point the reduced value for each block was written to

the global memory gradient array.

In a similar manner to the coordinate transformation, a kernel using one thread per rigid

body was used to calculate the derivatives of the rotation matrices following Eq. (2.29) (Sec-

tion 2.5). The nine-element loops were unrolled as before and the final values were written

to global memory. Due to higher register use, optimal performance required a smaller block

size than that for the coordinate transformation kernel.

The derivatives of the rotation matrices were passed in global memory to another kernel,

which performed the matrix multiplication and dot product of Eq. (2.27) (Section 2.5) in

parallel for each atom. This result was again saved in global memory and passed to another

pair of parallel reduction kernels, similar to the previous implementation of the ‘Shuffle On

Down’ algorithm, to obtain the rotational forces on the rigid bodies. Single atoms not in

rigid bodies were copied via a kernel using one thread per atom.

In our tests, we used the root mean square (RMS) force formulation described in Sec-

tion 2.5.1, based on a distance measure for angle-axis coordinates that is invariant to global

translation and rotation. This approach gives a more accurate result than the standard proced-

ure, and fewer minimisation steps are required for convergence. This method was adapted

for GPUs using techniques similar to those already discussed, such as incorporating paral-

lelism equivalent to either the number of atoms or the number of rigid bodies, unrolling

fixed-size loops, and performing reductions using the ‘Shuffle On Down’ algorithm.

3.2.3 Hybrid eigenvector-following

As the AMBER developers have not implemented second derivatives on GPU for their poten-

tial, a variational approach must be used to calculate the smallest nonzero eigenvalue and

associated eigenvector. L-BFGS has proved faster than conjugate gradient algorithms for

minimisation of the Rayleigh-Ritz ratio and also for the subspace minimisation,136 mean-

ing that much of the CUDA code written for basin-hopping global optimisation can be

reused. The approximate eigenvalue and its derivative, λ (x) and ∂λ/∂x of Eq. (2.19) and

Eq. (2.20) (Section 2.4.2), were calculated using the cuBLAS library. Orthogonalisation

and normalisation of the uphill eigenvector required a mixture of cuBLAS operations and

custom kernels with vector length parallelisation for more complex vector operations. The

determination of the length of the EF step took place on CPU, with the actual step itself

42 GPU-acceleration of computational energy landscape methods

performed using a cuBLAS call. The projection of gradient components in the subspace

minimisation, defined in Eq. (2.22) (Section 2.4.2), also used cuBLAS.

3.2.4 Doubly-nudged elastic band method

As the putative transition states located by the DNEB method are only intended to be ap-

proximate, they are not converged to high accuracy, since this task is performed using hybrid

EF. A small history size of four is usually used for the L-BFGS minimisation, as there is

little benefit to using more accurate steps in this situation. Having seen initial results for

the other methods, it was not thought likely that implementing the whole algorithm on GPU

for the DNEB method would bring much benefit with the AMBER potential. Calls to the

GPU-accelerated AMBER potential from the CPU algorithm were inserted to provide accel-

eration.

3.2.5 Potential calculation

The calculation of the potential energy and gradient is the most time-consuming part of all

of these energy landscape methods. For testing purposes during the development of the

CUDA implementation of L-BFGS, the LJ potential was implemented using CUDA. The

kernel was designed to launch N ×N threads, where N is the number of atoms. Each thread

handled the interaction of one atom with one other atom, with positions stored in registers,

and calculated the contribution to the energy and gradient for that atom. The ‘Shuffle On

Down’ reduction was used to perform the summations of the appropriate partial results to

obtain the total energy and final 3N-dimensional gradient. Although a respectable speedup

was obtained, this potential was initially intended only as a test system, so there is possibly

scope for further optimisation with regard to efficient global memory access and register

usage. Detailed comparison to CPU results has not been performed for this potential, as our

main aim was to achieve acceleration for biomolecular systems, so it was judged a better use

of development time and computational resources to focus on the GPU-accelerated AMBER

potential.

Much of the previous work employing basin-hopping to investigate biomolecular sys-

tems has used the CPU implementation of the AMBER potential interfaced with our GMIN

code.89 The interface with the CPU code of AMBER 12, implemented by Kyle Sutherland-

Cash, is henceforth referred to as ‘A12GMIN’. To allow the use of the existing AMBER

12 setup routines and the existing basin-hopping procedure, the GPU implementation of L-

BFGS was interfaced with GMIN. The ISO_C_BINDING module was used to ensure the

3.3 Results and discussion 43

safe interaction of the C/C++ and Fortran code. It was programmed such that the starting

coordinates and other relevant parameters were copied from host to device at the start of a

calculation, and the energy, gradient and other useful output values were copied from device

to host at the end. This newly interfaced code will be referred to from this point onwards

as ‘CUDAGMIN’. The GB implicit solvent GPU potential from AMBER 1263 was then

interfaced with CUDAGMIN. The DPDP precision model was used, in which contributions

to forces and their accumulation are both performed in double precision. A few functions

were written to copy the coordinates from the device memory being used by L-BFGS to the

expected structures in the AMBER code and to then copy back the energies and gradients

for further use in L-BFGS. The AMBER energy and gradient function was modified to pre-

vent automatic copying of the energies back to the CPU and a double precision reduction

kernel was implemented to obtain a total energy on the GPU. Another ISO_C_BINDING

interface was implemented to allow the GPU-accelerated potential to be called directly from

CPU for purposes of comparison and debugging. In addition, the GPU-accelerated L-BFGS

routines have been interfaced with OPTIM, in a similar manner to the interface with GMIN,

to form ‘CUDAOPTIM’. The GPU-accelerated AMBER potential has also been interfaced

with CUDAOPTIM. The existing AMBER 12 CPU interface for OPTIM, implemented by

Kyle Sutherland-Cash, is referred to as ‘A12OPTIM’.

3.3 Results and discussion

Here we present results for CUDAGMIN and CUDAOPTIM with the AMBER potential.

Eight different systems of varying sizes (shown in Figure 3.2) were used to test these meth-

ods: the pentapeptide Ac-WAAAH+-NH2 (W1H5)133 (81 atoms), the p53 upregulated mod-

ulator of apoptosis (PUMA) protein137,138 (581 atoms), the myoglobin structure from the

AMBER GPU Benchmark Suite139 (2492 atoms), human aldose reductase with its nicot-

inamide adenine dinucleotide phosphate (NADP+) cofactor140 (5113 atoms), an epoxide

hydrolase from Acinetobacter nosocomialis141 (10 053 atoms), the trimeric haemagglutinin

(HA) glycoprotein of the influenza A(H1N1) virus142 (22 811 atoms), a monomeric ver-

sion of HA (7585 atoms), and finally a truncated version of this monomer (3522 atoms).

HA has previously been used to investigate receptor binding.143,144 Due to its large size, a

truncated monomer structure was employed to make the simulations computationally feas-

ible on CPU. All systems used the AMBER ff99SB force field with an effectively infinite

nonbonded cutoff (999.99Å). Although a finite cutoff would be more usual for CPU calcula-

tions, this option is not supported on GPU, so an infinite cutoff was used in both cases for a

44 GPU-acceleration of computational energy landscape methods

proper comparison. The modified GB solvent model79,80 (AMBER input flag igb= 2) was

used at a salt concentration 0.2M with a cutoff of 12Å for the calculation of the effective

Born radii. CUDAGMIN and CUDAOPTIM were compiled on the x86_64 architecture run-

ning the Ubuntu 14.04.4 operating system, using Intel compiler version 14.0.4 and NVIDIA

CUDA Toolkit 6.5.145 GeForce GTX TITAN Black GPUs with the NVIDIA Linux driver

version 346.59 and 2.10 GHz Intel Xeon E5-2620 v2 CPUs were employed. A12GMIN and

A12OPTIM were compiled on the x86_64 architecture running the Scientific Linux release

6.2 operating system, using Intel compiler version 14.0.4, and run on 2.67 GHz Intel Xeon

X5650 CPUs.

(a) W1H5 (81 atoms) (b) PUMA (581 atoms) (c) Myoglobin (2492
atoms)

(d) HA truncated
monomer (3522 atoms)

(e) Aldose reductase
(5113 atoms)

(f) HA monomer (7585
atoms)

(g) Epoxide hydrolase
(10 053 atoms)

(h) HA trimer (22 811
atoms)

Figure 3.2 The structures of the biomolecules used in the present tests.

3.3.1 Basin-hopping global optimisation

Basin-hopping global optimisation can be viewed in terms of sequential L-BFGS minim-

isations. Profiling of the CPU code shows that routines other than L-BFGS account for

a negligible amount of the overall run time, so it is reasonable to benchmark L-BFGS in

isolation so that test minimisations can run concurrently. The calculation of the energy and

gradient accounts for the majority of the time spent in L-BFGS, with the percentage of time

3.3 Results and discussion 45

taken up by linear algebra operations increasing with the size of the history of updates, m.

As the history size increases, a larger number of vector operations are performed in the se-

quential loop through the history and fewer L-BFGS steps (and hence fewer potential calls)

are needed for convergence, as the directions of the steps taken are more accurate. It is not

immediately clear whether a larger history size would result in reduced time for convergence

on GPU hardware, although this is the case for the AMBER potential on CPU. Results are

presented here for both a small history size of four and a relatively large history size of 1000.

For each of the eight systems, 100 configurations were extracted from high temperature MD

runs and used as starting structures for minimisation. Table 3.1 shows the average L-BFGS

minimisation times for these sets of structures for a history size of four. Timings are shown

for three different implementations: both the L-BFGS vector operations and the potential

function on GPU, L-BFGS on CPU with the potential on GPU, and both L-BFGS and the

potential on CPU. The equivalent results for a history size of 1000 are shown in Table 3.2.

All minimisations used a maximum L-BFGS step size of 0.4 Å, with the maximum rise in en-

ergy allowed per step capped at 10−4 kcalmol−1, and a convergence condition for the RMS

force of 10−5 kcalmol−1 Å
−1

. These are parameters that have been successfully used in

basin-hopping global optimisation previously for similar systems, although the RMS force

convergence criterion is rather stricter than is usual.

46
G

PU
-acceleration

of
com

putationalenergy
landscape

m
ethods

Table 3.1 L-BFGS benchmarking (m = 4) using two GPU implementations and a CPU implementationa

System Number
of atoms

Average
minimisation time

for GPU
Implementation 1

(m = 4) / s

Average
minimisation time

for GPU
Implementation 2

(m = 4) / s

Average
minimisation time

for CPU
Implementation

(m = 4) / s

Time for CPU
Implementation /

GPU
Implementation 1

(m = 4)

Time for CPU
Implementation /

GPU
Implementation 2

(m = 4)

A 81 2.6 1.2 1.9 0.7 1.6

B 581 5.9 3.4 131.6 22.3 39.2

C 2492 32.8 29.0 4192.1 127.8 144.4

D 3522 40.1 39.4 5937.7 148.1 150.8

E 5113 69.2 71.7 11768.0 169.9 164.2

F 7585 489.9 492.1 86552.8 176.7 175.9

G 10053 1333.4 1374.4 248394.9 186.3 180.7

H 22811 2546.9 2527.1 517567.7 203.2 204.8

aGPU Implementation 1 has the entire L-BFGS routine on GPU, including the calculation of the potential energy and gradient. GPU Implementation 2 has
just the potential calculation on GPU. Averages are taken from the minimisation of 100 different starting structures from high temperature MD trajectories.
The systems used are are labelled as follows: ‘A’ is W1H5, ‘B’ is PUMA, ‘C’ is myoglobin, ‘D’ is the truncated monomer of HA, ‘E’ is aldose reductase and
NADP+, ‘F’ is the full monomer of HA, ‘G’ is epoxide hydrolase and ‘H’ is the full trimeric HA structure. The ff99SB force field was used for all systems
with the modified GB solvent model79,80 (AMBER input flag igb= 2).

3.3
R

esults
and

discussion
47

Table 3.2 L-BFGS benchmarking (m = 1000) using two GPU implementations and a CPU implementationb

System Number
of atoms

Average
minimisation time

for GPU
Implementation 1

(m = 1000) / s

Average
minimisation time

for GPU
Implementation 2

(m = 1000) / s

Average
minimisation time

for CPU
Implementation

(m = 1000) / s

Time for CPU
Implementation /

GPU
Implementation 1

(m = 1000)

Time for CPU
Implementation /

GPU
Implementation 2

(m = 1000)

A 81 11.3 0.4 0.6 0.1 1.4

B 581 144.5 14.1 92.9 0.6 6.6

C 2492 475.9 201.9 3091.1 6.5 15.3

D 3522 382.1 239.6 4561.2 11.9 19.0

E 5113 421.8 364.4 9123.3 21.6 25.0

F 7585 1249.5 1609.0 48754.5 39.0 30.3

G 10053 2478.7 4217.0 142404.4 57.5 33.8

H 22811 2392.5 4747.1 337077.0 140.9 71.0

bImplementation and parameters are identical to those in Table 3.1.

48 GPU-acceleration of computational energy landscape methods

Comparing the times shown in Tables 3.1 and 3.2 for all three implementations, the

CPU-only minimisations are all faster for the larger history size of 1000. However, the cal-

culations where the GPU is used are mostly faster for the smaller history size of four. These

CPU results can be explained by the fact that fewer expensive potential calls need to be

made for a larger history size. This result is also true for the GPU, but the large acceleration

of the potential calculation means that it is fastest to employ a smaller history size that uses

more potential calls and fewer vector operations (which are relatively slower and must be

performed sequentially), even if this requires a greater number of steps. Comparing times

for the two GPU implementations within the same history size, very little difference can be

seen in average times for history size m = 4, as vector operations are only a tiny percentage

of the overall calculation. However, for history size 1000, where more vector operations are

performed, we see that L-BFGS with both the potential and vector calculations on the GPU

is slower than the implementation with just the potential calculation on the GPU for small

systems, but faster for larger systems. These results occur because BLAS calculations, such

as dot products, are actually slower on the GPU relative to CPU for small vectors. Speed

improvements start to be seen for cuBLAS in the three largest systems. Profiling runs show

that memory copying between host and device does not become a significant bottleneck for

either GPU implementation, even at these large history sizes, presumably because the poten-

tial calculation is sufficiently time-consuming in comparison. Overall, excellent speedups

are obtained for a range of history sizes. The only system for which a significant improve-

ment is not seen is W1H5, which is too small for the GPU arithmetic hardware to be fully

utilised.63

It is sensible to optimise the history size to find the fastest balance between the number

of potential calls and cuBLAS calls, particularly for larger systems where the speedup for

cuBLAS operations becomes more significant. Referring to Tables 3.1 and 3.2, the 22 811-

atom full trimeric HA system actually minimises faster with the larger history size of 1000,

than for the smaller history size of four. Results are collected in Table 3.3, showing average

minimisation times for both GPU implementations for a range of history sizes. Timings for

the whole L-BFGS algorithm are faster than those with just the potential on the GPU for

all history sizes, except the very smallest. The fastest average minimisation time is for the

all-GPU implementation with a history size of 75.

3.3 Results and discussion 49

Table 3.3 Variation of HA minimisation time with history size using two GPU
implementationsc

History size (m)

Average HA
minimisation time for

GPU Implementation 1
/ s

Average HA
minimisation time for

GPU Implementation 2
/ s

4 2546.9 2527.1

10 2035.3 2047.2

50 1817.9 1917.8

75 1788.3 1951.3

100 1836.3 1999.6

250 1880.8 2253.0

500 2010.1 3229.4

750 2223.8 4067.4

1000 2392.5 4747.1

cGPU Implementations 1 and 2 are described in Table 3.1. HA refers to the full trimeric structure (‘H’ in
Tables 3.1 and 3.2).

50 GPU-acceleration of computational energy landscape methods

3.3.2 Local rigid body framework

The local rigid body framework10 is available on GPU for both CUDAGMIN and CUDA-

OPTIM. Benchmarking was performed for just the L-BFGS algorithm, as for basin-hopping

global optimisation. Locally rigid systems were compared to their atomistic equivalents us-

ing the implementation of L-BFGS where the whole algorithm is on the GPU. A comparison

to CPU timings was not performed, because the aim was not to show an acceleration for the

rigid body calculations on GPU, but to demonstrate that they do not add much extra over-

head at each step and to analyse their use relative to atomistic GPU calculations. However,

the average number of L-BFGS steps required was recorded, which will be very similar to

the number of steps required on CPU. The same parameters were used for L-BFGS as for

the atomistic benchmarking and two systems with different patterns of rigidification were

considered. The results in Table 3.4 are for a system containing a large number of small

local rigid bodies, namely the HA monomer, which was used in the previous benchmarking

set, with aromatic rings, peptide bonds and sp2 centres rigidified (a total of 671 rigid bodies,

none exceeding a size of 11 atoms). The results in Table 3.5 are for a system with one large

rigid body and a few small rigid bodies, as might be used in a factorised superposition ap-

proach140 (FSA) calculation of binding free energy (the extensive rigidification substantially

reduces the number of minima on the energy landscape). The system in question is aldose

reductase with aromatic rings, peptide bonds and sp2 centres rigidified between 16Å and

17Å distant from the binding site of the phenylacetic acid (PAC) ligand (a total of 22 bodies,

none exceeding a size of 11 atoms), and everything beyond 17Å grouped as one large rigid

body of size 3678 atoms. Starting structures for the test minimisations were taken from

a basin-hopping run for the locally rigidified structure, with random perturbations at each

step consisting of side chain group rotations and backbone Cartesian moves. The first 100

starting structures to successfully converge formed the benchmarking set. The average min-

imisation times, the average number of L-BFGS steps taken, and the time per step averaged

over the whole set are shown in Tables 3.4 and 3.5 for a range of history sizes for both rigid

and atomistic systems. Different sets of history sizes are used for the two cases, which were

chosen to best illustrate the variations observed.

3.3
R

esults
and

discussion
51

Table 3.4 GPU minimisation of the HA monomer for locally rigid and atomistic representationsd

History size (m)
Average minimisation time
(GPU Implementation 1) / s

Average number of L-BFGS
steps

Average time per step / s

Rigid Atomistic Rigid Atomistic Rigid Atomistic

4 360.6 296.2 19639 16514 0.018 0.018

10 281.6 236.0 15102 13006 0.019 0.018

25 249.2 219.4 12799 11563 0.019 0.019

50 252.4 230.4 12013 11296 0.021 0.020

75 256.9 245.6 11279 11249 0.023 0.022

100 265.5 265.9 10837 11238 0.024 0.024

250 348.8 385.3 9885 11023 0.035 0.035

500 496.9 581.3 9450 10979 0.053 0.053

750 635.7 719.9 9153 10757 0.069 0.067

1000 757.4 890.1 8858 10561 0.085 0.084

dGPU Implementation 1 has the entire L-BFGS routine on GPU, including the calculation of the potential energy and gradient. Averages were taken for the
minimisation of 100 different starting structures obtained from a basin-hopping run. The atomistic HA monomer is labelled ‘F’ in Tables 3.1 and 3.2. The
rigid representation has aromatic rings, peptide bonds and sp2 centres grouped as local rigid bodies.

52
G

PU
-acceleration

of
com

putationalenergy
landscape

m
ethods

Table 3.5 GPU minimisation of aldose reductase for locally rigid and atomistic representationse

History size (m)
Average minimisation time
(GPU Implementation 1) / s

Average number of L-BFGS
steps

Average time per step / s

Rigid Atomistic Rigid Atomistic Rigid Atomistic

4 335.8 49.2 32431 5224 0.010 0.009

250 110.9 102.9 4155 3999 0.027 0.026

500 92.8 162.1 2200 3890 0.042 0.041

750 87.9 215.5 1739 3827 0.050 0.056

1000 94.7 265.7 1571 3798 0.059 0.069

1500 82.7 347.5 1391 3713 0.057 0.092

2000 78.6 414.6 1350 3691 0.057 0.109

eGPU Implementation 1 has the entire L-BFGS routine on GPU, including the calculation of the potential energy and gradient. Averages were taken for the
minimisation of 100 different starting structures obtained from a basin-hopping run. Aldose reductase is is complex with with the PAC ligand, and the
rigidified version is considered for an FSA simulation with an atomistic layer of radius 16Å, a local rigid layer of 1Å with rigid aromatic rings, peptide bonds
and sp2 centres, and the rest of the protein (3678 atoms) rigidifed as a single large rigid body.140

3.3 Results and discussion 53

The average time per step for both systems shows that the coordinate and gradient trans-

formations add very little overhead to each step, as they are well optimised for the GPU.

As for basin-hopping global optimisation, a large history size gives optimal minimisation

time on CPU. It was found in the original work for rigid body systems on CPU, that min-

imisation takes less time than for atomistic representations, as fewer steps are taken due to

the reduction in the number of degrees of freedom.10 Looking at the average number of

L-BFGS steps taken for rigid and atomistic systems in Tables 3.4 and 3.5, we see that this

result holds only for larger history sizes. At small history sizes, rigid body systems actually

take more steps than their atomistic equivalents, an effect that is particularly pronounced for

the system with FSA rigidification in Table 3.5. This result implies that rigid body systems

require a more accurate step direction in minimisation. Rigid body timings only become

lower than atomistic timings for history sizes where fewer steps are taken. On GPU, due to

the competing effects of history size, it follows that the optimal history size for fast minim-

isation may be larger for locally rigid systems than for atomistic. This result is certainly true

for the highly rigidified system in Table 3.5, but the average number of L-BFGS steps does

not decrease as steeply with increasing history size for the system with minimal rigidifica-

tion, so the optimal history size is the same as for atomistic. We note that for both systems

the fastest minimisation is still for the atomistic system with a fairly small history size. It is

likely that individual L-BFGS minimisations will only be faster for locally rigid systems on

GPU when the system is sufficiently large and complex that a large history size is required

for the atomistic representation. However, excellent speedups compared to CPU are indeed

obtained for locally rigid systems, and the advantage of the significant reduction in minima

on the potential energy surface is still present.

54 GPU-acceleration of computational energy landscape methods

3.3.3 Hybrid eigenvector-following

Hybrid EF12 and DNEB13 optimisations account for the majority of the time spent in locat-

ing transition states with the OPTIM program. As explained in Section 2.4.2, gradient-only

hybrid EF consists of two different modified versions of L-BFGS with an uphill EF step

in between. This overall process of finding a transition state starting from coordinates pro-

posed by the DNEB method was analysed as a whole, rather than for the separate compon-

ents, as the Rayleigh-Ritz minimisation and the orthogonal subspace minimisation (with

uphill gradient components projected out) are never performed separately in real applica-

tions. The implementation of L-BFGS with the entire routine on GPU was used in these

tests. The same systems were used as for basin-hopping global optimisation (shown in Fig-

ure 3.2), excluding the smallest, where too few unique transition states were found. Short

basin-hopping runs were performed to generate a distinct second endpoint for each system.

Connection attempts using OPTIM were then performed to try and locate some transition

states between the two endpoints. The first 100 starting coordinates generated by the DNEB

procedure, which went on to successfully converge to transition states, were saved as the

reference coordinates.

The approximation of Eq. (2.21) (Section 2.4.2) was used to calculate the eigenvector in

all cases. A maximum L-BFGS step size of 0.4 Å with a maximum allowed rise in energy

of 10−4 kcalmol−1 was used in both versions of L-BFGS. The maximum number of itera-

tions in the Rayleigh-Ritz ratio minimisation for calculating the smallest nonzero Hessian

eigenvalue12 was set to 1000 and a convergence criterion of 0.01kcalmol−1 Å
−1

was adop-

ted for the RMS gradient, with the additional constraint that the percentage change of the

eigenvalue must have fallen below 1 % for the final two steps. The subspace minimisation

was limited to a maximum of 20 iterations before the eigenvalue converged, as judged by

modulus overlap with the previous vector better than 0.9999, and then increased to a max-

imum of 200 iterations when this condition was achieved. A trust radius of 0.5 was used for

adjusting the size of the maximum uphill step along the eigenvector,146 where the trust ratio

is defined as |1−λ (x)predicted/λ (x)actual|, and the maximum step is increased or decreased

by 10 % depending on whether the trust ratio is less than or greater than the trust radius,

respectively. The predicted value of the eigenvalue, λ (x)predicted, is calculated through the

finite difference of the present and previous components of the gradient in the given eigen-

direction. The maximum step size was constrained between the bounds of 0.01Å and 0.5Å

and an overall maximum of 1000 iterations of hybrid EF was allowed. Transition state con-

vergence was deemed to have occurred when the RMS force fell below 10−5 kcalmol−1 Å
−1

and the magnitude of the hybrid EF step fell below 0.02Å. Again, these parameters were

3.3 Results and discussion 55

chosen as they had been used successfully for similar applications using the AMBER poten-

tial, although the RMS force convergence criterion is stricter than would usually be applied.

The same initial guess for the eigenvector was used for all 100 starting DNEB structures,

and the time taken to converge to a transition state was recorded for both CPU and GPU

tests.

Table 3.6 shows the average time taken for hybrid EF with both GPU and CPU, and the

corresponding speedups using a small history size of four. The equivalent results for large

history sizes of 1000 are shown in Table 3.7. Again, the GPU implementation is fastest

with a history size of four and the CPU implementation is fastest with a history size of 1000.

Excellent speedups are obtained on GPU hardware, though slightly below those found for

basin-hopping global optimisation, due to the greater number of dot products and other

vector operations performed in projecting out components of the gradient in the subspace

minimisation.

56
G

PU
-acceleration

of
com

putationalenergy
landscape

m
ethods

Table 3.6 Hybrid EF benchmarking (m = 4) for GPU and CPUf

System Number of
atoms

Average time for
GPU

Implementation
(m = 4) / s

Average time for
CPU

Implementation
(m = 4) / s

Time for CPU
Implementation

/ GPU
Implementation

(m = 4)

B 581 14.8 192.1 13.0

C 2492 20.2 2102.4 104.2

D 3522 25.7 3529.1 137.4

E 5113 51.4 7399.4 143.8

F 7585 197.1 36779.8 186.6

G 10053 195.9 33549.2 171.3

H 22811 1047.6 176550.7 168.5

f The GPU implementation has the entire Rayleigh-Ritz L-BFGS and L-BFGS routines with gradient projection on GPU, including the calculation of the
potential energy and gradient. 100 DNEB structures that successfully converged to transition states during a connection attempt between two random minima
were used as starting points for the searches. The systems used are labelled as follows: ‘B’ is PUMA, ‘C’ is myoglobin, ‘D’ is the truncated monomer of HA,
‘E’ is aldose reductase and NADP+, ‘F’ is the full monomer of HA, ‘G’ is epoxide hydrolase and ‘H’ is the full trimeric HA structure. The ff99SB force field
was used for all systems with the modified GB solvent model79,80 (AMBER input flag igb= 2).

3.3
R

esults
and

discussion
57

Table 3.7 Hybrid EF benchmarking (m = 1000) for GPU and CPUg

System Number of
atoms

Average time for
GPU

Implementation
(m = 1000) / s

Average time for
CPU

Implementation
(m = 1000) / s

Time for CPU
Implementation

/ GPU
Implementation

(m = 1000)

B 581 113.3 142.7 1.3

C 2492 215.1 1650.3 7.7

D 3522 186.3 3160.9 17.0

E 5113 238.3 6576.0 27.6

F 7585 669.6 32046.2 47.9

G 10053 449.9 30073.3 66.8

H 22811 1225.4 169234.0 138.1

gImplementation and parameters are identical to those in Table 3.6.

58 GPU-acceleration of computational energy landscape methods

3.3.4 Doubly-nudged elastic band method

The DNEB method generally uses a fixed maximum number of steps, rather than continuing

to convergence, as we only aim to find approximate guesses for transition states. Therefore,

the time taken to apply the method to a particular system with a fixed set of parameters

varies little between different pairs of starting minima. This consistency makes the ana-

lysis of the DNEB method straightforward, as it is only necessary to test a small number

of pairs for each system. In these tests, 10 images were employed in the DNEB and the

maximum number of DNEB iterations was set to 300. A small history size of m = 4 was

employed. The convergence tolerance for the RMS DNEB force on all the images was set

to 0.01kcalmol−1 Å
−1

.

The speedups are shown in Table 3.8 along with the average times taken for both CPU

and GPU (only the potential is implemented on GPU). These times are an average of those

for the first three individual DNEB runs performed in the connection attempts used for

generating the DNEB structures for benchmarking hybrid EF. Again, speedups of more

than two orders of magnitude have been obtained with the AMBER potential, providing a

significant acceleration for the complete process of transition state location.

Table 3.8 DNEB benchmarking (m = 4) for GPU and CPUh

System Number of
atoms

Average time for
GPU

Implementation
(m = 4) / s

Average time for
CPU

Implementation
(m = 4) / s

Time for CPU
Implementation

/ GPU
Implementation

(m = 4)

B 581 2.8 90.1 32.5

C 2492 10.5 1203.8 114.2

D 3522 18.6 2275.3 122.2

E 5113 30.9 4593.6 148.5

F 7585 59.5 9569.0 160.8

G 10053 100.1 16535.6 165.2

H 22811 452.9 80680.2 178.1

hThe GPU implementation has just the potential calculation on GPU. The average of three DNEB runs of 300
iterations each was taken from a connection attempt between two random minima. The systems used are the
same as those in Tables 3.6 and 3.7.

3.3 Results and discussion 59

3.3.5 Coiled-coil peptide

The results described in this chapter have been successfully applied to investigating the

effects of point mutations on the energy landscape of a coiled-coil peptide,129,130 through a

collaboration with Konstantin Röder. The coiled-coil system is known as GCN4-pLI, and is

derived from the leucine zipper of the yeast transcription factor, GCN4.147 In the native state,

two identical helical dimers form a parallel tetrameric configuration. However, competing

parallel and antiparallel structures are seen experimentally for a single mutation, E20S,148

suggesting the existence of a multifunnel energy landscape. The sequence of the monomer

of the parent structure is MKQIED-KLEEILS-KLYHIEN-ELARIKK-LLG.

The GPU-accelerated versions of the DNEB method, hybrid EF and L-BFGS interfaced

with the AMBER potential were used to explore the potential energy landscapes of the di-

mer and the E20S mutant. A parallel and an antiparallel configuration were used as the

starting structures for each system, and kinetic transition networks were constructed. The

procedure described in Section 2.4 was used to construct initial connected paths, and these

were further refined to remove artificially high barriers and kinetic traps using the SHORT-

CUT149,150 and UNTRAP150 schemes. Two new techniques were used in this work to im-

prove the efficiency of finding an initial path for large systems. After each Dijkstra analysis,

only minima and transition states on the current best path were included in the database, to

prevent the expense of the required distance calculations between minima from increasing

too quickly. Also, connection attempts between minima were initially restricted to distances

larger than 20Å.

The results of the GPU-accelerated sampling of the energy landscapes were presented

using disconnectivity graphs.151,152 In this method of visualisation, branch termini represent

the energies of minima on a vertical scale, and separate branches join at energies where

the associated minima can interconvert via connected transition states. The horizontal axis

has no physical meaning, although branches can be arranged horizontally in space to best

highlight specific features. This representation allows a broad overview of the features of

the energy landscape. For this application, two structural order parameters were defined for

colouring the graphs. The first, q1, is a continuous measure between zero and one, where the

limiting values correspond to a parallel structure and an antiparallel structure, respectively.

The second, q2, defines the degree of kinking observed in one helix of the dimer, and ranges

from zero to one, from a straight helix to the maximum degree of kinking observed.

Figure 3.3 is coloured using order parameter q1 and shows that the energy landscapes

for the parent sequence and the E20S mutant both contain parallel and antiparallel regions.

The parallel configuration is the lowest energy region in both cases, but a much smaller en-

60 GPU-acceleration of computational energy landscape methods

ergy difference is observed for the mutant landscape. The increased stability of the parallel

regions relative to the antiparallel regions may result in part from the principle of max-

imum symmetry, which implies that structures with a higher symmetry content may result

in deeper funnels on the energy landscape.152 GPU-accelerated minimisation was also per-

formed on tetrameric structures formed from the combination of pairs of dimers. Analysis

of these structures revealed that the increased stability of the parallel configurations that is

observed experimentally also results from an increased number of interhelical polar side

chain interactions and the formation of a solvent-excluded hydrophobic core. The smaller

energy difference between the parallel and antiparallel regions on the mutant landscape can

be accounted for by the absence of the Lys15-Glu20 salt bridges that occur in the parent

structure, which enhance the relative stability of the parent parallel configuration.

8kcalmol−1

q1 1.0

0.0
(a) Parent sequence

8kcalmol−1

q1 1.0

0.0
(b) E20S mutant

Figure 3.3 Disconnectivity graphs are shown for the energy landscapes of the parent
sequence and the E20S mutant of the coiled-coil peptide. They are coloured using order
parameter, q1, which differentiates parallel structures (red) from antiparallel structures
(blue). Figure adapted from references 129 and 130.

Two main subfunnels appear in the antiparallel region of the parent energy landscape.

The funnel most distant from the parallel region (in terms of rearrangements via single

3.3 Results and discussion 61

transition states) corresponds to structures that can form a hydrophobic core in the tetra-

meric conformation, but have a reduced number of favourable polar side chain interactions

relative to the parallel configuration. This funnel is characterised by the presence of a Lys15-

Glu22 salt bridge. The subfunnel closer to the parallel region corresponds to structures that

also form this salt bridge, in addition to a Lys15-Glu20 salt bridge (also observed in the

parallel structures). The formation of both of these salt bridges causes a rotation of one

of the helices, which prevents the formation of a hydrophobic core in tetrameric structures.

This effect means that tetrameric antiparallel configurations are destabilised relative to par-

allel structures and therefore have a very low equilibrium occupation probability. These

salt bridge interactions do not occur on the antiparallel mutant landscape. This difference

results in relative stabilisation of the antiparallel configuration for mutant structures, fur-

ther explaining the smaller energy difference observed between the parallel and antiparallel

regions relative to the parent landscape.

Figure 3.4 is coloured using order parameter q2 and highlights a third region of the

mutant landscape corresponding to structures with a kink near to the point mutation. These

structures are separated from the parallel and antiparallel regions by relatively low energy

barriers and could therefore act as intermediates in structural interconversion between the

two regions. This possibility accounts for the experimental observation of both of the struc-

tures in equilibrium.148 However, no such kinked structures exist on the parent landscape,

making the antiparallel region kinetically inaccessible. Although formation of the kinked

structures incurs an energy cost for helix breaking, reduced solvent exposed area and in-

creased contact between the strands encourages their formation for the mutant sequence. In

tests using GPU-accelerated geometry optimisation, kinked structures were not found to be

stable for the parent sequence. This result was ascribed to increased exposure of hydro-

phobic residues to the solvent.

62 GPU-acceleration of computational energy landscape methods

8kcalmol−1

q2 0.7

0.0
(a) Parent sequence

8kcalmol−1

q2 1.0

0.0
(b) E20S mutant

Figure 3.4 Disconnectivity graphs are shown for the energy landscapes of the parent
sequence and the E20S mutant of the coiled-coil peptide. They are coloured using order
parameter, q2, which differentiates kinked structures (blue) from structures that are not
kinked (red). Figure adapted from references 129 and 130.

The databases of local minima and transition states obtained were also used in calculat-

ing the heat capacity and the landscape entropy for both systems. This analysis supported

the observed difference between the multifunnel energy landscape of the E20S mutant and

the more dominant single funnel of the parent landscape. The effects of the E20S mutation

are in agreement with experimental observations,148 so the study was extended to predic-

tions of the behaviour of systems with E20A, E20P and E20G mutations.

In summary, this application shows that the novel GPU-accelerated energy landscape

methodology presented in this chapter can be successfully used to explore complex energy

landscapes, and the agreement with experiment strongly supports the validity of the results

obtained. Although the system size for this application was relatively small compared to

those benchmarked in this chapter, a useful acceleration was obtained for this work. Larger

systems can now be accessed in future work.

3.3 Results and discussion 63

3.3.6 Addressable clusters and aggregates

The GPU-accelerated methods described in this chapter have also been applied to address-

able clusters, in collaboration with Prof. Wales and Dr Fejer. Addressable systems have the

specific relative positions, or ‘addresses’, of their components encoded in their interactions,

so that they can self-assemble into desired target structures. Doubly-addressable systems

consist of addressable components that have a choice of two target morphologies. Hierarch-

ical self-assembly behaviour is possible when interactions within the target monomer are

significantly stronger than those between monomers.

An addressable form of the LJ potential incorporating a bias towards a particular local

minimum was previously formulated, where the magnitude of non-nearest-neighbour inter-

actions was reduced with reference to the target structure.153 The latest application uses

a more flexible formulation,131 which enables us to design greater specificity into the po-

tential energy landscape of target structures (target monomers), and tune the interactions

so that aggregates of multiple target monomers retain recognisable monomer components.

This formulation uses separate coefficients for the repulsive and attractive terms and can be

expressed as

V = 4 ∑
i< j

[
ε

rep
i j

(
σ

ri j

)12

− εatt
i j

(
σ

ri j

)6
]
, (3.1)

where ri j is the distance between atoms i and j. Each atom is then programmed with know-

ledge of the local environment for a reference structure in which the distances are r0
i j:

ε
rep
i j =





ε
rep
NN, r0

i j ≤ rc,

ε
rep
NNN, r0

i j > rc,
εatt

i j =





εatt
NN, r0

i j ≤ rc,

εatt
NNN, r0

i j > rc.
(3.2)

The cutoff, rc = 1.2, distinguishes nearest-neighbour contacts (NN) and non-nearest-neighbours

(NNN). To design a potential with multiple addresses we use the minimum value of rR
i j over

all the reference structures, R, in place of r0
i j.

For multiple copies of a particular target monomer containing N particles, we use D(i,N)=

Mod(i− 1,N)+ 1, where Mod(i− 1,N) is the particle index modulo N, ranging from 0 to

N−1. The function D(i,N) therefore produces an address label in the range 1 to N, and for

64 GPU-acceleration of computational energy landscape methods

a single reference structure with interparticle distances r0
i j we choose

ε
rep
i j =





ε
rep
NN, r0

D(i,N)D(j,N) ≤ rc,

ε
rep
NNN, r0

D(i,N)D(j,N) > rc,

ε
rep
self, D(i,N) = D(j,N),

εatt
i j =





εatt
NN, r0

D(i,N)D(j,N) ≤ rc,

εatt
NNN, r0

D(i,N)D(j,N) > rc,

εatt
self, D(i,N) = D(j,N),

(3.3)

where separate factors are introduced for particles that share the same address.

Multiple copies of the target cluster were considered for 13 LJ atoms, setting the ref-

erence structure to the global minimum Mackay icosahedron.154 This addressable cluster

is denoted LJIh

13, and the aggregate containing n copies of the target monomer is written[
LJIh

13

]
n
. The repulsive term that acts between particles with the same address is needed to

obtain aggregates of the addressable LJIh

13 cluster where the target monomers can be distin-

guished. For εatt
self = 0 a value of ε

rep
self = 104 produces a clear separation of target monomers

for LJIh

13. The large value arises because the repulsion needs to have a significant effect at

relatively large separations.

The energy landscapes for both single and multiple copies of the target monomers were

explored. Structure prediction employed basin-hopping global optimisation, starting from a

set of random configurations and from candidates obtained by explicit construction. Kinetic

transition networks were sampled by systematic searches for transition states and pathways

connecting local minima using the DNEB approach and hybrid EF. The largest systems used

the GPU-accelerated implementations of these methods with the CUDA implementation of

the LJ potential, modified for addressability.

Studies of the energy landscapes for LJIh

13 for a range of values of the next-nearest-

neighbour attraction confirmed that maximal bias towards the target structure is obtained for

εatt
NNN = 0. This value was also used for investigation of the aggregate structures. Since the

global minima for the aggregates will be composed of correctly addressed target monomers,

we can explore configuration space efficiently by moving the monomers as local rigid bod-

ies. For the largest aggregates, the CUDA implementation of the local rigid body framework

was employed.

The global minima for
[
LJIh

13

]
n

with 2 ≤ n ≤ 13 were characterised through basin-

hopping global optimisation on CPU. Larger aggregates of 55, 147, 309, and 561 target

monomers were also studied, which correspond to the sizes where complete Mackay icosa-

hedra154 exist. The basin-hopping runs for the aggregates of 309 and 561 monomers, con-

taining 4017 and 7293 atoms in total, respectively, were performed using GPU-acceleration.

The predicted global minima for the larger aggregate structures are shown in Figure 3.5.

3.3 Results and discussion 65

In each case, global optimisation runs were initiated from structures with the target

monomers placed on a suitably scaled icosahedral template. Steps were taken using a local

rigid body scheme for the target monomers, with full relaxation of all atomic degrees of

freedom for the lowest minima. At each size, the predicted global minimum is based on un-

derlying icosahedral packing. To check whether the same putative global minimum was loc-

ated, additional basin-hopping runs were performed from randomly positioned monomers

for
[
LJIh

13

]
55

and
[
LJIh

13

]
147

. The same lowest minimum was located for 11 out of 17 runs

of 20 000 steps for
[
LJIh

13

]
55

, and four out of 17 runs of 15 000 steps for
[
LJIh

13

]
147

. The re-

maining runs succeeded in finding a low-lying minimum with one of the vertex LJIh

13 clusters

displaced to a surface site. None of the runs initiated from randomised starting geometries

produced a lower energy, providing strong evidence that the structures based on hierarch-

ical icosahedral ordering are indeed the global minima. Only minor local reorientations

were observed when the lowest minima identified with rigid target monomers were fully

relaxed. The energetic ordering was unchanged on relaxation for all the aggregates.

This study further illustrates the validity of the GPU-accelerated energy landscape frame-

work, using a different potential. The acceleration has facilitated access to system sizes

beyond the reach of the standard implementations on CPU.

66 GPU-acceleration of computational energy landscape methods

Figure 3.5 Lowest minima located for
[
LJIh

13

]
55

,
[
LJIh

13

]
147

,
[
LJIh

13

]
309

,
[
LJIh

13

]
561

(top to

bottom) with ε
rep
NN = εatt

NN = ε
rep
NNN = 1, εatt

NNN = 0, ε
rep
self = 104, εatt

self = 0. The 13 different
particles with distinct addresses are coloured consistently, with the central particle
magnified to highlight the overall structure. The three views correspond to approximate
2-fold, 3-fold and 5-fold axes (left to right).

3.4 Conclusions 67

3.4 Conclusions

This chapter has detailed the implementation of various key components of computational

energy landscape theory on GPU hardware. First, basin-hopping global optimisation was ac-

celerated in the GMIN code, using a version of L-BFGS adapted for CUDA and an interface

to the GPU-accelerated AMBER potential.63 The LJ potential was also implemented using

CUDA. These results were then extended to form the basis of a GPU-accelerated version

of hybrid EF, one component of transition state location in the OPTIM code. The DNEB

method, the other component employed in OPTIM for transition state characterisation, was

also accelerated using the interfaced potential. Additionally, the local rigid body framework

was adapted for GPU hardware. Testing performed for AMBER system sizes in the range

of 81 to 22811 atoms gave a speedup relative to CPU of up to two orders of magnitude on

Titan Black GPUs. Hence it will now be feasible to explore the energy landscapes of much

larger biological systems than previously accessible, opening up a wide array of new applic-

ations. Two applications of CUDAGMIN and CUDAOPTIM to the energy landscapes of

various mutations of a coiled-coil peptide and the hierarchical self-assembly of icosahedral

LJ clusters are summarised in Sections 3.3.5 and 3.3.6, demonstrating the validity of these

new, GPU-accelerated methods.

Although significant benefit is only seen for the implementation of L-BFGS with the

whole algorithm on GPU for very large systems, this analysis is likely to be potential de-

pendent. In the case of AMBER, the cost of evaluating the potential is very much greater

than the cost of copying arrays between the host and device, so the importance of minim-

ising the number of these copy operations is not high. Preliminary GPU benchmarking of

L-BFGS with the LJ potential has been performed, using a history size of four and a test sys-

tem of 1024 atoms with 100 random starting configurations. An order of magnitude speedup

was obtained for the version of L-BFGS entirely on GPU, relative to the version with only

the LJ potential on GPU. This result may be due to the cost of memory transfer between

the host and device being more significant relative to the cost of the potential. Brief tests

also indicate that this performance differential between the two implementations becomes

even more pronounced for larger LJ clusters, highlighting the importance of having the en-

tire L-BFGS algorithm on GPU. A full analysis on a range of LJ cluster sizes would be

an interesting avenue for future work. The advances described in this chapter will provide

an excellent foundation for the addition of other GPU-accelerated potentials to GMIN and

OPTIM.

Chapter 4

Exploiting sparsity in free energy

basin-hopping

4.1 Introduction

So far, we have mainly considered the potential energy landscape, which does not incorpor-

ate the effects of entropy at nonzero temperatures. The global potential energy minimum

is not necessarily the same as the global free energy minimum at a specified temperature,

and extensive reordering of the relative free energies of local minima can occur as the tem-

perature is changed.16 Various methods exist for constructing entire free energy landscapes,

particularly through projection onto selected order parameters,155–161 but these are compu-

tationally expensive. Free energy basin-hopping16 (FEBH) presents a more computation-

ally affordable alternative for applications where we are interested in the free energies of

individual minima, particularly the global free energy minimum of a system at a relevant

temperature.

FEBH retains all the advantages of standard basin-hopping global optimisation. Fur-

thermore, the accept/reject test for step-taking based on free energies results in lower mean

first encounter times for the global minimum using FEBH than for simply performing basin-

hopping using the potential energy and calculating the free energies of the minima a posteri-

ori.16 In FEBH, the mass-weighted Hessian and the log product of its nonzero eigenvalues

must be calculated for each minimum in the chain of proposed moves in order to calculate

the local free energies. These additional calculations significantly increase the computa-

tional expense for each step involving a new minimum.

We routinely use the LAPACK DSYEV routine162 for matrix diagonalisation and vibra-

tional normal mode analysis, which provides the information required to calculate equilib-

70 Exploiting sparsity in free energy basin-hopping

rium thermodynamics and rates within the harmonic approximation1. However, the indi-

vidual normal mode frequencies are not required in FEBH. Only the log product of positive

Hessian eigenvalues is needed within the harmonic approximation to the vibrational density

of states, which is identical to the log of the determinant of the Hessian with zero eigen-

values shifted to unity (a procedure described in Appendix A). Not only does the DSYEV

routine generate unnecessary information, but the algorithm also scales as O(N3), making

it expensive for larger system sizes.

Georgescu and Mandelshtam have tackled a similar problem in their method for estim-

ating free energies,163 and they exploited two properties of the Hessian matrix to speed up

their calculations. Firstly, the Hessian is symmetric positive definite if the zero eigenvalues

corresponding to translation and rotation are excluded. This property means that a Cholesky

factorisation can be used to calculate the determinant of the Hessian. Secondly, the Hessian

is expected to be sparse, with many negligible components, for reasonably short-ranged in-

teratomic potentials. The two potentials we focus on here are the Lennard-Jones (LJ) form57

and the AMBER force field.70 The second derivative of the LJ potential tends to zero as r−8,

where r is the interatomic distance, so components of the Hessian corresponding to inter-

actions between distant atoms are negligible. The AMBER potential consists of bonded

terms, which are short-ranged by definition, and nonbonded terms.65 The van der Waals

(vdW) interactions are modelled using the LJ form and are hence relatively short-ranged.

The electrostatic interactions are modelled as point charges and are longer-ranged. These

interactions are often truncated through the use of a cutoff.

In this chapter, we describe the refinement of an implementation of sparse Cholesky

factorisation for acceleration of FEBH and present tests that demonstrate the acceleration

obtained relative to the standard, non-sparse diagonalisation procedure. The graphics pro-

cessing unit (GPU) implementation of the AMBER 12 potential was used,63,164 which does

not support the use of a cutoff for the electrostatic interactions. For this reason, we took an

alternative approach and simply set all values of the Hessian below a certain threshold to

zero after the calculation of the second derivatives to ensure sparsity. For the results shown

here, this approach was also applied to LJ systems. Then, we employed a sparse Cholesky

factorisation on CPU (the GPU implementation provides little benefit for the system sizes

we consider), instead of DSYEV, to find the log product of eigenvalues. In the best case, the

cost of the Cholesky algorithm can be reduced from O(N3) to O(N) for sparse matrices.163

Our results indicate that run times can be decreased by factors of 10 to 30 for the larger

examples considered, providing faster structure prediction, and access to more complex sys-

tems.

4.2 Methods 71

4.2 Methods

For the accelerated implementation of FEBH, the usual call to DSYEV after the calculation

of the mass-weighted Hessian was replaced with a call to routines for sparse Cholesky factor-

isation. At a local minimum, the Hessian for an isolated molecule has six zero eigenvalues

corresponding to overall translation and rotation, so the determinant will be zero. It is ne-

cessary to calculate the log product of the nonzero eigenvalues corresponding to vibrational

modes, so we implemented a procedure that shifts the zero eigenvalues by λshift = 1. After

ensuring that the Cartesian coordinates are in the centre-of-mass frame and coincident with

the principal axes of rotation, this procedure constructs normalised eigenvectors, ννν , corres-

ponding to infinitesimal translations and rotations of the system (see Appendix A).165 The

corresponding Hessian eigenvalues are then shifted according to the following equation:

H
†
αβ = Hαβ +λshiftνανβ . (4.1)

Before the Cholesky factorisation, all values of the Hessian below a specified cutoff mag-

nitude are set to zero to ensure the sparsity of the matrix.

The initial interface to the Cholesky factorisation procedure in SuiteSparse (a package

of sparse matrix solvers) was implemented by Kyle Sutherland-Cash.117 This interface was

then further refined through the correction of some errors, and then validated and tested. The

SuiteSparse library is mostly written in C, so an interface was constructed using the Fortran

ISO_C_BINDING module to ensure interoperability between C and Fortran types, and to

allow safe management of pointers and their associated memory. For our purposes, we re-

quired only functionality from the SuiteSparse CHOLMOD package.166 The nonzero lower

triangular elements of the Hessian were copied into a cholmod_triplet matrix, as triplets

of nonzero values with their row and column indices. The cholmod_triplet_to_sparse

function was used to convert this representation into a cholmod_sparse object in compressed

sparse column form, which was then passed to cholmod_analyze. This function selects a

matrix ordering option that gives the best reduction in matrix fill-in and performs a sym-

bolic factorisation. The most efficient algorithm to use for factorisation (either supernodal

or simplicial) is automatically selected. The numeric factorisation was then performed using

cholmod_factorize. Finally, the cholmod_change_factor function was used to convert

the returned factor to an LDLT form, where D is diagonal. This procedure allowed the

required diagonal entries to be accessed more easily, so that the determinant could then be

calculated through accumulation of the logarithms of these values. The integration of SuiteS-

72 Exploiting sparsity in free energy basin-hopping

parse into our existing CMake build was greatly facilitated by the CMake scripts available

on GitHub written by Jose Luis Blanco and Jerome Esnault.167

4.3 Results and discussion

Tests were run to compare the calculation of the Hessian determinant using DSYEV and the

new sparse Cholesky factorisation method as a function of system size for both LJ clusters

and selected biomolecules represented by the AMBER force field.70 Our objective was to

achieve a significant speedup with minimal loss of accuracy. To this end, we wish to find

the largest magnitude for the Hessian cutoff that still provides sufficient accuracy. If the

Hessian cutoff is too large, not only do we lose accuracy, but the Cholesky factorisation

can fail outright because the matrix is no longer positive definite. Factorisation failures

due to non-positive definite matrices can also occur if the minima are not converged tightly

enough, so the root mean square (RMS) force convergence criterion for the local minima is

also an important parameter. For a given set of parameters, even if the calculations are still

reasonably accurate, too many factorisation failures will reduce the efficiency of the FEBH

procedure. We regard a proportion of factorisation failures below 1 % as ideal.

The GMIN FEBH code89 was compiled on the x86_64 architecture running the Ubuntu

14.04.4 operating system, using Intel compiler version 16.0.4 with the MKL library version

11.3.4. The tests were run on 2.40 GHz Intel Xeon E5-2620 v3 CPUs and employed version

4.5.3 of SuiteSparse.

4.3.1 Atomic clusters

Tables 4.1a and 4.1b show the percentage of factorisation failures for LJ1000 and LJ5000

clusters respectively, for various combinations of the RMS force convergence criterion for

local minimisation and the Hessian cutoff. These percentages are calculated from 100 FEBH

runs of nine steps each, starting from randomly generated atomic configurations, giving

1000 local minima. The FEBH step size was set to a maximum of 0.43σ for any individual

Cartesian coordinate, and angular steps were taken for individual LJ atoms above a pair

binding energy tolerance of 0.52ε . For both cluster sizes, the values for the RMS force

were chosen to span a range showing the effects of both ‘under-convergence’ and ‘over-

convergence’. The effect of an RMS force that is too large can be seen in Table 4.1a for

a value of 10−3 εσ−1 and in Table 4.1b for 10−4 εσ−1, both of which exhibit factorisation

failure frequencies greater than 1 %. Similarly, the Hessian cutoff spans a range of values

4.3 Results and discussion 73

that demonstrate the effects of a cutoff that is both too large and too small. An increased

number of factorisation failures is observed for a Hessian cutoff value that is too large, as in

Table 4.1a for 10−2 εσ−1 and in Table 4.1b for 2× 10−3 εσ−1. A visual representation of

the effect of varying the Hessian cutoff on overall sparsity for LJ1000 is shown in Figure 4.1.

Table 4.1 Percentage of factorisation failures for two LJ cluster sizes as a function of RMS
force convergence threshold and the cutoff for neglect of Hessian matrix elementsi

(a) LJ1000

RMS force
/ εσ−1

Hessian cutoff / εσ−2

10−6 10−3 10−2

10−3 4.1 4.1 18.2

10−5 0.7 0.7 15.3

10−7 0.9 0.9 13.3

(b) LJ5000

RMS force
/ εσ−1

Hessian cutoff / εσ−2

10−6 10−3 2×10−3

10−4 3.2 3.1 11.4

10−6 0.4 0.4 6.5

10−8 0.0 0.0 4.3

iFactorisation failures result from a non-positive definite Hessian being used for the sparse Cholesky
factorisation. Percentages are calculated from a total of 1000 structures generated from 100 FEBH runs of
nine steps each, starting from randomly generated atomic configurations.

74
E

xploiting
sparsity

in
free

energy
basin-hopping

(a) 10−2 εσ−2 (b) 10−3 εσ−2 (c) 10−6 εσ−2

Figure 4.1 A visualisation of the effect of cutoff variation for neglect of Hessian matrix elements on the sparsity of the resulting
matrix. The plots are derived from a single LJ1000 minimum converged to an RMS force tolerance of 10−5 εσ−1. Nonzero matrix
elements are coloured black and matrix elements set to zero are coloured white. Each subfigure is labelled with the appropriate
value for the cutoff.

4.3 Results and discussion 75

We aim for the calculation of the log product of Hessian eigenvalues using this sparse

matrix method to produce results of comparable accuracy to full diagonalisation. Tables 4.2a

and 4.2b show the percentage errors in the sparse calculations for the same range of values

of the RMS force convergence threshold and Hessian cutoff as Tables 4.1a and 4.1b. We

see that the results are accurate, even for values of the cutoff and RMS force threshold that

produced relatively large numbers of failures due to non-positive definite matrices.

Table 4.2 Percentage errors in the log product of positive Hessian eigenvalues for two LJ
cluster sizes as a function of RMS force convergence threshold and the cutoff for neglect of
Hessian matrix elementsj

(a) LJ1000

RMS force
/ εσ−1

Hessian cutoff / εσ−2

10−6 10−3 10−2

10−3 0.01 0.01 0.15

10−5 0.01 0.01 0.15

10−7 0.01 0.01 0.15

(b) LJ5000

RMS force
/ εσ−1

Hessian cutoff / εσ−2

10−6 10−3 2×10−3

10−4 0.01 0.02 0.04

10−6 0.01 0.02 0.04

10−8 0.01 0.02 0.04

jThese results are generated from the same structures used in Table 4.1. Percentage errors are calculated for
sparse Cholesky factorisation relative to a non-sparse diagonalisation procedure.

76 Exploiting sparsity in free energy basin-hopping

The principal objective of this study was to speed up the calculation of the log product

of eigenvalues of the Hessian, and Tables 4.3a and 4.3b summarise the results. The values

are reported as the average time for a DSYEV calculation divided by the average time for

a sparse Cholesky calculation from the same basin-hopping runs used to produce all the

preceding results. Timings for the calculations that failed were not included in the averages.

As expected, the speedups are greater for larger values of the Hessian cutoff, due to the

greater sparsity of the resulting matrices. The RMS force threshold does not seem to affect

the speedups obtained for either system to a large extent. Greater efficiency gains were

obtained for the large Hessian matrices associated with the larger LJ5000 cluster.

Table 4.3 Average speedups for finding the log product of positive eigenvalues for two LJ
cluster sizes as a function of RMS force convergence threshold and the cutoff for neglect of
Hessian matrix elementsk

(a) LJ1000

RMS force
/ εσ−1

Hessian cutoff / εσ−2

10−6 10−3 10−2

10−3 2.9 4.6 7.7

10−5 2.8 4.5 7.8

10−7 2.8 4.5 7.7

(b) LJ5000

RMS force
/ εσ−1

Hessian cutoff / εσ−2

10−6 10−3 2×10−3

10−4 7.7 34.0 37.7

10−6 9.2 35.2 36.8

10−8 10.1 36.2 38.1

kThese results are generated from the same structures used in Table 4.1. Speedups are calculated for sparse
Cholesky factorisation relative to a non-sparse diagonalisation procedure.

4.3 Results and discussion 77

4.3.2 Proteins

The activity of biological systems can be strongly dependent on temperature, so these mo-

lecules constitute an important application for structure prediction using FEBH.16 The sys-

tems investigated here are a truncated monomeric version (3522 atoms) of the trimeric

haemagglutinin (HA) glycoprotein of the influenza A(H1N1) virus and a full monomeric

structure (7585 atoms),142 as seen previously in Figures 3.2d and 3.2f. The AMBER ff99SB

forcefield70 was used in both cases with an effectively infinite nonbonded cutoff (999.99Å).

All tests used the modified GB solvent model79,80 (AMBER input flag igb= 2) at a salt

concentration 0.2M with a cutoff of 12Å for the calculation of the effective Born radii.

Each test employed a set of 100 starting structures, taken from high temperature molecu-

lar dynamics (MD) runs. For the truncated monomer, nine basin-hopping steps were taken

for each structure to generate 1000 local minima, with Cartesian moves of the backbone

atoms set to a maximum value of 0.2Å. However, due to the computational expense of the

DSYEV calculations for the full monomer, no basin-hopping steps were performed for these

starting structures and only 100 minimised structures were obtained. To reduce the over-

all time taken for the tests, the minimisations were carried out using the GPU-accelerated

implementation168 of the limited-memory BFGS (L-BFGS) algorithm.90–94 GeForce GTX

TITAN Black GPUs were used, with NVIDIA Linux driver version 375.26 and NVIDIA

CUDA Toolkit 8.0.

Due to the lack of GPU-accelerated, analytical second derivatives for the AMBER po-

tential, numerical second derivatives with calls to the GPU-accelerated AMBER energy and

gradient subroutine were used in calculating the Hessian matrix. A central difference ap-

proximation of the form

∂ 2V

∂xix j
≈ ∇iV (X+ζ x)−∇iV (X−ζ x)

2ζ x j
(4.2)

was employed in calculating these derivatives, where V (X) is the energy at configuration X

in nuclear configuration space and ζ ≪ 1. We performed some preliminary tests to determ-

ine the optimal value of ζ for the final benchmarks. We minimised the 100 full monomeric

structures for a range of values of ζ and recorded the percentage of factorisation failures

resulting from a non-positive definite Hessian matrix. Based on the results in Table 4.4, we

chose a value of 10−4 for ζ .

78 Exploiting sparsity in free energy basin-hopping

Table 4.4 Percentage of factorisation failures for the HA full monomer as a function of the
value of ζ used in calculating the numerical second derivativesl

ζ
% of

factorisation
failures

10−2 5

10−3 3

10−4 0

10−5 11

10−6 25

10−7 9

lFactorisation failures result from a non-positive definite Hessian being used for the sparse Cholesky
factorisation. Percentages are calculated from a total of 100 minimised structures, starting from structures

taken from high temperature MD trajectories. A value of 10−6 kcalmol−1 Å
−1

was used for the RMS force
convergence threshold and the cutoff for neglect of Hessian matrix elements was set to 10−6 kcalmol-1 Å-2.

We also tested the SuiteSparse GPU implementation169 to accelerate our calculations.

However, we opted not to use this approach in our benchmarks as the speedup only amoun-

ted to about 5 to 10 % for the examples considered here. This result is likely due to the

relatively small size of our matrices compared to those benchmarked by the developers, for

both the clusters and proteins considered here.

4.3 Results and discussion 79

Tables 4.5a and 4.5b show the percentage of factorisation failures for the truncated

monomer and the full monomer with various values of the RMS force convergence cri-

terion and the Hessian cutoff. As for the atomic clusters considered in Section 4.3.1, fewer

factorisation failures are observed for smaller values of the RMS force and Hessian cutoff.

Table 4.5 Percentage of factorisation failures for two protein examples as a function of
RMS force convergence threshold and the cutoff for neglect of Hessian matrix elementsm

(a) Truncated HA monomer

RMS force
/

kcalmol-1 Å-1

Hessian cutoff / kcalmol-1 Å-2

10−8 10−5 3.5×10−5

10−4 1.8 1.8 6.3

10−5 0.8 0.8 5.2

10−6 0.0 0.0 4.7

(b) Full HA monomer

RMS force
/

kcalmol-1 Å-1

Hessian cutoff / kcalmol-1 Å-2

10−9 10−6 6.0×10−6

10−4 3.0 3.0 24.0

10−5 0.0 0.0 20.0

10−6 0.0 0.0 19.0

mFactorisation failures result from a non-positive definite Hessian being used for the sparse Cholesky
factorisation. Percentages are calculated from a total of 100 minimised structures, starting from structures
taken from high temperature MD trajectories. The structures used in Table 4.5a are the same as those used in
Table 4.4.

80 Exploiting sparsity in free energy basin-hopping

Tables 4.6a and 4.6b show the percentage errors for these calculations for the same range

of values for the RMS force convergence threshold and Hessian cutoff. Again, this error is

very small for all combinations of parameters.

Table 4.6 Percentage errors in the log product of positive Hessian eigenvalues for two
protein examples as a function of RMS force convergence threshold and the cutoff for
neglect of Hessian matrix elementsn

(a) Truncated HA monomer

RMS force
/

kcalmol-1 Å-1

Hessian cutoff / kcalmol-1 Å-2

10−8 10−5 3.5×10−5

10−4 0.10 0.10 0.10

10−5 0.10 0.10 0.10

10−6 0.10 0.10 0.10

(b) Full HA monomer

RMS force
/

kcalmol-1 Å-1

Hessian cutoff / kcalmol-1 Å-2

10−9 10−6 6.0×10−6

10−4 0.06 0.06 0.06

10−5 0.06 0.06 0.06

10−6 0.06 0.06 0.06

nThese results are generated from the same structures used in Table 4.5. Percentage errors are calculated for
sparse Cholesky factorisation relative to a non-sparse diagonalisation procedure.

4.3 Results and discussion 81

The associated speedups are shown in Tables 4.7a and 4.7b. The efficiency gains with

respect to Hessian cutoff and RMS force are similar to the results we obtained for the LJ

clusters.

Table 4.7 Average speedups for finding the log product of positive eigenvalues for two
protein examples as a function of RMS force convergence threshold and the cutoff for
neglect of Hessian matrix elementso

(a) Truncated HA monomer

RMS force
/

kcalmol-1 Å-1

Hessian cutoff / kcalmol-1 Å-2

10−8 10−5 3.5×10−5

10−4 7.3 7.7 8.4

10−5 7.1 7.8 8.6

10−6 7.3 7.7 8.5

(b) Full HA monomer

RMS force
/

kcalmol-1 Å-1

Hessian cutoff / kcalmol-1 Å-2

10−9 10−6 6.0×106

10−4 14.6 16.9 17.3

10−5 14.6 16.8 16.6

10−6 14.8 16.7 18.0

oThese results are generated from the same structures used in Table 4.5. Speedups are calculated for sparse
Cholesky factorisation relative to a non-sparse diagonalisation procedure.

82 Exploiting sparsity in free energy basin-hopping

4.4 Conclusions

We have described the refinement and testing of an interface between our FEBH global op-

timisation routines and the SuiteSparse package, which allows us to perform sparse Cholesky

factorisation to obtain vibrational frequencies within the FEBH framework. Tests were per-

formed for both LJ clusters and selected biomolecules represented using the AMBER po-

tential. A significant speedup of around 10 to 30 times was achieved for the calculation of

the vibrational density of states from the product of nonzero Hessian eigenvalues, with neg-

ligible loss of accuracy, with respect to the fastest matrix diagonalisation routine that does

not exploit sparsity. Exploiting sparsity will therefore accelerate structure prediction and

provide access to larger and more complex systems. This capability may be important for a

wide range of molecular and condensed matter systems where finite temperature effects are

significant. It enables us to estimate local free energies, along with other potentially useful

thermodynamic properties, such as the heat capacity.

Chapter 5

Conclusions and future work

Basin-hopping global optimisation,8,9 a local rigid body framework,10,11 hybrid eigenvector-

following12 (EF) and the doubly-nudged13 elastic band14,15 (DNEB) method have been ac-

celerated on graphics processing units (GPUs) for systems represented by the AMBER and

Lennard-Jones (LJ) potentials. Tests on biomolecular systems demonstrated an increase in

performance of up to two orders of magnitude. This increase greatly extends the scope of

future work on biomolecular energy landscapes and the range of computationally accessible,

biologically relevant systems. Applications were presented for a coiled-coil peptide129,130

and aggregates of addressable LJ clusters in Chapter 3.131

These GPU-accelerated methods have also been successfully applied to the investigation

of virus capsid self-assembly through the reoptimisation of dimer configurations predicted

using docking,170,171 the study of the multifunnel energy landscapes underlying fibril elong-

ation for the amyloid-β42 protein,172–174 characterisation of large-scale structural trans-

itions of the C-terminal domain of the bacterial transcription factor RfaH,175–177 and bench-

marks for a modified quasi-continuous interpolation (QCI) procedure through location of

low energy transition states for epidermal growth factor receptor kinase activation.173,178,179

Ongoing applications include the location of pathways for formation of cylindrin (an amyl-

oid oligomer),180 investigation into the effects of mutations on kinase activation,181–184 the

analysis of the effects of mutational changes on the folding and binding behaviour of 7SK

RNA,185 and studies of antibody folding and sequence optimisation to improve antigen

binding affinities.

The most obvious avenue for further work is the implementation of other potentials on

GPU. Preliminary tests for a small system represented by the LJ potential showed an order of

magnitude speedup for the GPU implementation of L-BFGS relative to having the L-BFGS

update operations on CPU. This result indicates that the GPU implementations of the energy

84 Conclusions and future work

landscape framework will be highly beneficial for systems where the cost of evaluating the

potential is comparable to that of copying the coordinates and gradient between host and

device. The tests also imply that the version of L-BFGS used in DNEB might benefit from a

full implementation on GPU. It would be interesting to perform further history size analysis

and comparisons to having the L-BFGS algorithm on CPU for other potentials, as the trends

observed are likely to be potential dependent. The addition of new potentials to the code has

been made relatively simple through the use of a C++ class for the potential, from which

new potentials can be derived using inheritance. Due to the vast array of possibilities for

optimisation using CUDA, and the increased time required to implement and test code for

the GPU relative to code for the CPU, the sensible way to approach development is through

an iterative process of profiling followed by necessary optimisations to address the current

performance bottlenecks. It is therefore possible that further optimisations may need to be

applied to the current CUDA code when it is used with a new potential.

Although an effort was made to include the functionality of most of the frequently used

input options from GMIN and OPTIM in the CUDA code, a few options remain unimple-

mented and may need to be added in future. The most important development is likely to be

implementation of hybrid EF when an analytical Hessian is available. This scheme is quite

different from the algorithm involving Rayleigh-Ritz minimisation and involves the use of

Lagrange multipliers to follow the analytically determined eigenvector uphill.1

Given the poor parallelisability of the L-BFGS algorithm, it might also be worth explor-

ing alternative local minimisation algorithms more suited to implementation on GPU. One

possibility to explore might be the FIRE minimiser (named for ‘fast inertial relaxation en-

gine’),186 which is based on principles from molecular dynamics (MD) simulations, with an

extra velocity term and an adaptive time step to allow acceleration in steeper directions. It

is more amenable to parallelisation as it does not use a sequential history of the steps taken

as L-BFGS does. However, FIRE has been shown to be three to four times slower than

L-BFGS in tests of local minimisation similar to our applications on CPU,97 which might

mitigate any increase in speed due to increased parallelisability.

One effect observed from the analysis of the timings for the different history sizes and

implementations with the AMBER potential was that the version of L-BFGS entirely on

GPU was faster than just the potential on GPU only for sufficiently large and complex

systems that required a large history size. It has been informally observed that L-BFGS

minimisation often requires a larger history size when closer to a minimum, presumably

because the reduced step size makes accurate estimation of the step direction more difficult.

The fastest overall minimisation scheme for AMBER systems of moderate size might be

85

an initial minimisation using a small history size, followed by another minimisation using

a large history size when closer to convergence. This would be a worthwhile hypothesis to

test in future work.

It is also hoped that two interesting projects initiated in association with the development

of the GPU code may be completed in future work. The first of these is the application of

GPU-accelerated basin-hopping global optimisation in conjunction with local rigidification

to the factorised superposition approach (FSA).140 This is an energy landscape approach to

calculation of relative binding free energies of macromolecules, which has the potential for

useful applications in the field of computational drug design. The initial stage of the calcu-

lation involves sampling the energy landscape to collect minima, for which basin-hopping

global optimisation can be used. The fundamental idea underlying the method is that the

number of minima on the surface is greatly reduced through the extensive rigidification of

regions distant from the binding site in a self-consistent manner. Initial tests on GPU for

the aldose reductase system have not yet managed to reproduce the convergence of the free

energy demonstrated in the original paper. However, it is hoped that the efficacy of basin-

hopping global optimisation in this context can be proved for a smaller system initially.

Once any problems have been resolved, sampling for larger systems may be resumed.

Tests are also currently underway for the DNEB and hybrid EF approach to finding

pathways between minima, using a fragment of the influenza A(H1N1) haemagglutinin gly-

coprotein. The process under investigation is the structural transformation of this peptide

that facilitates fusion with the host cell membrane to allow viral entry, and the initial aim

is to find a connection between a pre-fusion structure and a post-fusion structure. Details

of the folding mechanism could then be elucidated and the effects of mutations (known to

increase transmissibility or pathogenicity of the virus) on this process could be probed. If

these tests are eventually successful, further runs could be performed on the whole trimeric

structure.

As a result of the GPU-acceleration, fresh challenges have arisen in applying the current

methodology to very large systems. For example, the large number of minima and transition

states that end up in the database can quickly become unwieldy and the calculation of the

list of distances between all pairs of minima becomes expensive. One way of preventing the

database from growing too quickly is to only add minima and transition states to the database

if they are on the best path (determined using Dijkstra’s algorithm5,99) for that connection

attempt and then discard all other stationary points. Additionally, we find it is more efficient

to concentrate the transition state searches on larger gaps before smaller gaps are considered

when trying to find an initial connection for a very large distance.129 One other method that

86 Conclusions and future work

has also recently been implemented aims to reduce the cost of calculating the distances

between pairs of minima by initially assigning fictitious distances between pairs and only

calculating the true distance when the connection appears on the best path.187,188 Efforts are

also being made to increase the efficiency of the DNEB algorithm for large systems. The

current formulation uses a Cartesian interpolation to generate initial images for the band,

but over large distances this approach can generate poor estimates, many of which cannot

be further refined due to overflow of the forces. A refined QCI scheme is currently being

modified for use with AMBER and will hopefully resolve this problem.173,189

The sparse Cholesky factorisation applied in the free energy basin-hopping (FEBH) pro-

cedure also represents an important step forward. Previously the most time-consuming

component, the calculation of the log product of eigenvalues of the Hessian is now approx-

imately 10 to 30 times faster. The new bottleneck in these calculations is now the calculation

of the Hessian matrix of second derivatives. For potentials with analytical second derivat-

ives, GPU-acceleration may be the best way to speed these calculations up. The numerical

second derivative calculations for the AMBER potential are particularly slow due to the

large number of function calls required. Analytical second derivatives would be much faster

and are available on CPU within the Nucleic Acid Builder (NAB) package.190 A large ac-

celeration could be achieved by implementing these derivatives on GPU, although this task

would be formidable, due to the complexity of the expressions involved.

In conclusion, significant acceleration has been obtained for several methods used for

sampling energy landscapes. Larger system sizes are now accessible for study, opening

up a wealth of new applications. Recent and ongoing applications that exploit the new

CUDA interfaces have been run for a variety of systems. The corresponding results would

have accounted for thousands of years of CPU time, dramatically demonstrating the new

frontiers that the present work has opened up.

Bibliography

[1] D. J. Wales, Energy Landscapes, Cambridge University Press, Cambridge, 2003.

[2] M. Born and R. Oppenheimer, Ann. Phys., 1927, 389, 457–484.

[3] A. R. Leach, Molecular Modelling: Principles and Applications, Pearson Education,
Harlow, 2nd edn., 2001.

[4] J. N. Murrell and K. J. Laidler, Trans. Faraday Soc., 1968, 64, 371–377.

[5] J. M. Carr, S. A. Trygubenko and D. J. Wales, J. Chem. Phys., 2005, 122, 234903.

[6] D. J. Wales and T. V. Bogdan, J. Phys. Chem. B, 2006, 110, 20765–20776.

[7] F. H. Stillinger, Phys. Rev. E, 1999, 59, 48–51.

[8] Z. Li and H. A. Scheraga, Proc. Natl. Acad. Sci. U. S. A., 1987, 84, 6611–6615.

[9] D. J. Wales and J. P. K. Doye, J. Phys. Chem. A, 1997, 101, 5111–5116.

[10] H. Kusumaatmaja, C. S. Whittleston and D. J. Wales, J. Chem. Theory Comput., 2012,
8, 5159–5165.

[11] V. Rühle, H. Kusumaatmaja, D. Chakrabarti and D. J. Wales, J. Chem. Theory Com-
put., 2013, 9, 4026–4034.

[12] L. J. Munro and D. J. Wales, Phys. Rev. B: Condens. Matter Mater. Phys., 1999, 59,
3969–3980.

[13] S. A. Trygubenko and D. J. Wales, J. Chem. Phys., 2004, 120, 2082–2094.

[14] G. Henkelman, B. P. Uberuaga and H. Jónsson, J. Chem. Phys., 2000, 113, 9901–
9904.

[15] G. Henkelman and H. Jónsson, J. Chem. Phys., 2000, 113, 9978–9985.

[16] K. H. Sutherland-Cash, D. J. Wales and D. Chakrabarti, Chem. Phys. Lett., 2015, 625,
1–4.

[17] General-Purpose Computation on Graphics Hardware, http://gpgpu.org/, (accessed
August 2017).

[18] O. Maitre, in Massively Parallel Evolutionary Computation on GPGPUs, ed. S. Tsut-
sui and P. Collet, Springer-Verlag, Berlin, 2013, pp. 15–34.

http://gpgpu.org/

88 Bibliography

[19] M. M. Waldrop, Nature, 2016, 530, 144–147.

[20] S. Cook, CUDA Programming: A Developer’s Guide to Parallel Computing with
GPUs, Morgan Kaufmann, Waltham, 2012.

[21] J. Sanders and E. Kandrot, CUDA by Example: An Introduction to General-Purpose
GPU Programming, Addison-Wesley, Boston, 2010.

[22] CUDA C Programming Guide, http://docs.nvidia.com/cuda/
cuda-c-programming-guide/, (accessed August 2017).

[23] WHAT IS GPU-ACCELERATED COMPUTING?, http://www.nvidia.com/object/
what-is-gpu-computing.html, (accessed August 2017).

[24] M. D. Hill and M. R. Marty, Computer, 2008, 41, 33–38.

[25] E. Lindholm, J. Nickolls, S. Oberman and J. Montrym, IEEE Micro, 2008, 28, 39–55.

[26] S. W. Williams and D. H. Bailey, in Performance Tuning of Scientific Applications,
ed. D. H. Bailey, R. F. Lucas and S. Williams, CRC Press, Boca Raton, 2010, ch. 2,
pp. 11–32.

[27] AMD vs. Nvidia: Who Dominates GPUs?, http://www.investopedia.com/news/
amd-versus-nvdia-amd-nvda/, (accessed August 2017).

[28] Language Solutions, https://developer.nvidia.com/language-solutions, (accessed Au-
gust 2017).

[29] High-Performance Computing, http://www.amd.com/en-us/products/graphics/
workstation/firepro-remote-graphics/gpu-compute, (accessed August 2017).

[30] CUDA GPUs, https://developer.nvidia.com/cuda-gpus, (accessed August 2017).

[31] OpenCLTM Zone - Accelerate Your Applications, http://developer.amd.com/
tools-and-sdks/opencl-zone/, (accessed August 2017).

[32] Whitepaper: NVIDIA’s Next Generation CUDATM Compute Architecture:
FermiTM, http://www.nvidia.co.uk/content/PDF/fermi_white_papers/NVIDIA_
Fermi_Compute_Architecture_Whitepaper.pdf, (accessed August 2017).

[33] Whitepaper: NVIDIA’s Next Generation CUDATM Compute Architecture:
KeplerTM GK110/210, http://international.download.nvidia.com/pdf/kepler/
NVIDIA-Kepler-GK110-GK210-Architecture-Whitepaper.pdf, (accessed August
2017).

[34] Whitepaper: NVIDIA GeForce GTX 980, https://international.download.nvidia.com/
geforce-com/international/pdfs/GeForce_GTX_980_Whitepaper_FINAL.PDF, (ac-
cessed August 2017).

[35] Whitepaper: NVIDIA Tesla P100, http://www.nvidia.com/object/
pascal-architecture-whitepaper.html, (accessed August 2017).

http://www.nvidia.com/object/pascal-architecture-whitepaper.html
http://developer.amd.com/tools-and-sdks/opencl-zone/
http://international.download.nvidia.com/pdf/kepler/NVIDIA-Kepler-GK110-GK210-Architecture-Whitepaper.pdf
http://www.nvidia.co.uk/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.amd.com/en-us/products/graphics/workstation/firepro-remote-graphics/gpu-compute
http://www.nvidia.com/object/pascal-architecture-whitepaper.html
http://www.nvidia.com/object/what-is-gpu-computing.html
http://www.nvidia.com/object/what-is-gpu-computing.html
http://www.nvidia.co.uk/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://developer.nvidia.com/cuda-gpus
http://www.amd.com/en-us/products/graphics/workstation/firepro-remote-graphics/gpu-compute
http://developer.amd.com/tools-and-sdks/opencl-zone/
https://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_980_Whitepaper_FINAL.PDF
https://developer.nvidia.com/language-solutions
http://www.investopedia.com/news/amd-versus-nvdia-amd-nvda/
https://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_980_Whitepaper_FINAL.PDF
http://international.download.nvidia.com/pdf/kepler/NVIDIA-Kepler-GK110-GK210-Architecture-Whitepaper.pdf
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://www.investopedia.com/news/amd-versus-nvdia-amd-nvda/

Bibliography 89

[36] Pascal Compatibility Guide for CUDA Applications, http://docs.nvidia.com/cuda/
pascal-compatibility-guide/index.html, (accessed August 2017).

[37] J.-H. Huang, presented in part at the NVIDIA GPU Technology Conference, San
Jose, May, 2017.

[38] Whitepaper: NVIDIA TESLA V100 GPU ARCHITECTURE, http://www.nvidia.
com/object/volta-architecture-whitepaper.html, (accessed August 2017).

[39] Inside Volta: The World’s Most Advanced Data Center GPU, https://devblogs.nvidia.
com/parallelforall/inside-volta/, (accessed August 2017).

[40] N. Wilt, The CUDA Handbook: A Comprehensive Guide to GPU Programming,
Addison-Wesley, Upper Saddle River, 2013.

[41] Tesla, http://www.nvidia.co.uk/object/tesla-high-performance-computing-uk.html,
(accessed August 2017).

[42] L. Polok and P. Smrz, in Proceedings of the 24th High Performance Computing Sym-
posium, Society for Computer Simulation International, San Diego, 2016, pp. 1–8.

[43] NVIDIA® TESLA® GPU ACCELERATORS, http://www.nvidia.co.uk/content/tesla/
pdf/NVIDIA-Tesla-Kepler-Family-Datasheet.pdf, (accessed August 2017).

[44] P. Zhang and Y. Gao, in High Performance Computing, ed. J. M. Kunkel and T. Lud-
wig, Springer International Publishing, Cham, 2015, vol. 9137, pp. 17–30.

[45] GeForce GTX TITAN Black, http://www.nvidia.co.uk/gtx-700-graphics-cards/
gtx-titan-black/, (accessed August 2017).

[46] J. Kussmann and C. Ochsenfeld, J. Chem. Theory Comput., 2017, 13, 2712–2716.

[47] A. Charara, H. Ltaief and D. Keyes, in Euro-Par 2016: Parallel Processing, ed. P.-F.
Dutot and D. Trystram, Springer International Publishing, Cham, 2016, vol. 9833, pp.
477–489.

[48] D. D. Donno, A. Esposito, L. Tarricone and L. Catarinucci, IEEE Trans. Antennas
Propag., 2010, 52, 116–122.

[49] Board Specification: NVIDIA Tesla C870 GPU Computing Processor Board,
http://www.nvidia.co.uk/docs/IO/43395/C870-BoardSpec_BD-03399-001_v04.pdf,
(accessed August 2017).

[50] J. L. Hennessy and D. A. Patterson, Computer Organization and Design: The Hard-
ware / Software Interface, Morgan Kaufmann, Amsterdam, 5th edn., 2013.

[51] R. Farber, CUDA Application Design and Development, Morgan Kaufmann, Amster-
dam, 2011.

[52] I. S. Haque and V. S. Pande, in GPU Computing Gems Emerald Edition, ed. W.-m.
W. Hwu, Morgan Kaufmann, Boston, 2011, ch. 2, pp. 19–34.

http://www.nvidia.co.uk/gtx-700-graphics-cards/gtx-titan-black/
http://www.nvidia.co.uk/content/tesla/pdf/NVIDIA-Tesla-Kepler-Family-Datasheet.pdf
http://www.nvidia.co.uk/gtx-700-graphics-cards/gtx-titan-black/
https://devblogs.nvidia.com/parallelforall/inside-volta/
http://docs.nvidia.com/cuda/pascal-compatibility-guide/index.html
http://www.nvidia.co.uk/content/tesla/pdf/NVIDIA-Tesla-Kepler-Family-Datasheet.pdf
http://www.nvidia.co.uk/docs/IO/43395/C870-BoardSpec_BD-03399-001_v04.pdf
http://docs.nvidia.com/cuda/pascal-compatibility-guide/index.html
http://www.nvidia.co.uk/object/tesla-high-performance-computing-uk.html
http://www.nvidia.com/object/volta-architecture-whitepaper.html
https://devblogs.nvidia.com/parallelforall/inside-volta/
http://www.nvidia.com/object/volta-architecture-whitepaper.html

90 Bibliography

[53] O. Villa, M. Fatica, N. Gawande and A. Tumeo, in Euro-Par 2013 Parallel Pro-
cessing, ed. F. Wolf, B. Mohr and D. an Mey, Springer International Publishing,
Cham, 2013, vol. 8097, pp. 813–825.

[54] Faster Parallel Reductions on Kepler, https://devblogs.nvidia.com/parallelforall/
faster-parallel-reductions-kepler/, (accessed August 2017).

[55] V. Volkov and J. W. Demmel, SC ’08: Proceedings of the 2008 ACM/IEEE Confer-
ence on Supercomputing, IEEE, 2008, pp. 1–11.

[56] D. Storti and M. Yurtoglu, CUDA for Engineers: An Introduction to High-
Performance Parallel Computing, Addison-Wesley, New York, 2015.

[57] J. E. Jones, Proc. R. Soc. A, 1924, 106, 463–477.

[58] F. M. Mourits and F. H. A. Rummens, Can. J. Chem., 1977, 55, 3007–3020.

[59] J. D. Honeycutt and H. C. Andersen, J. Phys. Chem., 1987, 91, 4950–4963.

[60] D. A. Case, T. E. Cheatham, T. Darden, H. Gohlke, R. Luo, K. M. Merz, A. Onufriev,
C. Simmerling, B. Wang and R. J. Woods, J. Comput. Chem., 2005, 26, 1668–1688.

[61] Amber Home Page, http://ambermd.org, (accessed August 2017).

[62] P. K. Weiner and P. A. Kollman, J. Comput. Chem., 1981, 2, 287–303.

[63] A. W. Götz, M. J. Williamson, D. Xu, D. Poole, S. Le Grand and R. C. Walker, J.
Chem. Theory Comput., 2012, 8, 1542–1555.

[64] J. W. Ponder and D. A. Case, in Advances in Protein Chemistry, ed. V. Daggett,
Academic Press, San Diego, 2003, vol. 66, pp. 27–85.

[65] D. A. Pearlman, D. A. Case, J. W. Caldwell, W. S. Ross, T. E. Cheatham III, S. De-
Bolt, D. Ferguson, G. Seibel and P. Kollman, Comput. Phys. Commun., 1995, 91,
1–41.

[66] Y.-P. Pang, Biochem. Biophys. Res. Commun., 2015, 457, 183–186.

[67] W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, D. M. Ferguson, D. C.
Spellmeyer, T. Fox, J. W. Caldwell and P. A. Kollman, J. Am. Chem. Soc., 1996, 118,
2309–2309.

[68] S. J. Weiner, P. A. Kollman, D. A. Case, U. C. Singh, C. Ghio, G. Alagona, S. Profeta
and P. Weiner, J. Am. Chem. Soc., 1984, 106, 765–784.

[69] W. D. Cornell, P. Cieplak, C. I. Bayly and P. A. Kollmann, J. Am. Chem. Soc., 1993,
115, 9620–9631.

[70] V. Hornak, R. Abel, A. Okur, B. Strockbine, A. Roitberg and C. Simmerling, Proteins:
Struct., Funct., Bioinf., 2006, 65, 712–725.

[71] J. A. Maier, C. Martinez, K. Kasavajhala, L. Wickstrom, K. E. Hauser and C. Sim-
merling, J. Chem. Theory Comput., 2015, 11, 3696–3713.

http://ambermd.org
https://devblogs.nvidia.com/parallelforall/faster-parallel-reductions-kepler/
https://devblogs.nvidia.com/parallelforall/faster-parallel-reductions-kepler/

Bibliography 91

[72] E. Małolepsza, B. Strodel, M. Khalili, S. Trygubenko, S. N. Fejer and D. J. Wales, J.
Comput. Chem., 2010, 31, 1402–1409.

[73] E. Małolepsza, B. Strodel, M. Khalili, S. Trygubenko, S. Fejer, J. M. Carr and D. J.
Wales, J. Comput. Chem., 2012, 33, 2209–2209.

[74] A. Dejoux, P. Cieplak, N. Hannick, G. Moyna and F.-Y. Dupradeau, J. Mol. Model.,
2001, 7, 422–432.

[75] Amber 12 Reference Manual, http://ambermd.org/doc12/Amber12.pdf, (accessed
August 2017).

[76] R. Salomon-Ferrer, A. W. Götz, D. Poole, S. Le Grand and R. C. Walker, J. Chem.
Theory Comput., 2013, 9, 3878–3888.

[77] M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Oxford University
Press, Oxford, 1991.

[78] T. Darden, D. York and L. Pedersen, J. Chem. Phys., 1993, 98, 10089–10092.

[79] A. Onufriev, D. Bashford and D. A. Case, Proteins: Struct., Funct., Bioinf., 2004, 55,
383–394.

[80] A. Onufriev, D. Bashford and D. A. Case, J. Phys. Chem. B, 2000, 104, 3712–3720.

[81] J. Srinivasan, M. W. Trevathan, P. Beroza and D. A. Case, Theor. Chem. Acc., 1999,
101, 426–434.

[82] W. C. Still, A. Tempczyk, R. C. Hawley and T. Hendrickson, J. Am. Chem. Soc., 1990,
112, 6127–6129.

[83] A. Onufriev, D. A. Case and D. Bashford, J. Comput. Chem., 2002, 23, 1297–1304.

[84] G. D. Hawkins, C. J. Cramer and D. G. Truhlar, J. Phys. Chem., 1996, 100, 19824–
19839.

[85] M. Schaefer and C. Froemmel, J. Mol. Biol., 1990, 216, 1045–1066.

[86] V. Tsui and D. A. Case, Biopolymers, 2000, 56, 275–291.

[87] S. Le Grand, A. W. Götz and R. C. Walker, Comput. Phys. Commun., 2013, 184,
374–380.

[88] D. J. Wales, Phys. Biol., 2005, 2, S86–S93.

[89] GMIN: A program for finding global minima and calculating thermodynamic prop-
erties from basin-sampling., http://www-wales.ch.cam.ac.uk/GMIN/, (accessed Au-
gust 2017).

[90] J. Nocedal, Math. Comput., 1980, 35, 773–782.

[91] C. G. Broyden, IMA J. Appl. Math., 1970, 6, 222–231.

http://www-wales.ch.cam.ac.uk/GMIN/
http://ambermd.org/doc12/Amber12.pdf

92 Bibliography

[92] R. Fletcher, Comput. J., 1970, 13, 317–322.

[93] D. Goldfarb, Math. Comput., 1970, 24, 23–26.

[94] D. F. Shanno, Math. Comput., 1970, 24, 647–656.

[95] J. E. Dennis, Jr. and J. J. Moré, SIAM Rev., 1977, 19, 46–89.

[96] J. Nocedal and S. J. Wright, Numerical Optimization, Springer, New York, 2nd edn.,
2006.

[97] D. Asenjo, J. D. Stevenson, D. J. Wales and D. Frenkel, J. Phys. Chem. B, 2013, 117,
12717–12723.

[98] OPTIM: A program for optimizing geometries and calculating reaction pathways,
http://www-wales.ch.cam.ac.uk/OPTIM/, (accessed August 2017).

[99] E. W. Dijkstra, Numer. Math., 1959, 1, 269–271.

[100] D. J. Wales, J. M. Carr, M. Khalili, V. K. de Souza, B. Strodel and C. S. Whittleston,
in Proteins: Energy, Heat and Signal Flow, ed. D. M. Leitner and J. E. Straub, CRC
Press, Boca Raton, 2010, vol. 1, ch. 14, pp. 318–319.

[101] J. A. Joseph, C. S. Whittleston and D. J. Wales, J. Chem. Theory Comput., 2016, 12,
6109–6117.

[102] A. Kitao and N. Go, Curr. Opin. Struct. Biol., 1999, 9, 164–169.

[103] O. F. Lange and H. Grubmüller, J. Phys. Chem. B, 2006, 110, 22842–22852.

[104] D. J. Jacobs, A. J. Rader, L. A. Kuhn and M. F. Thorpe, Proteins: Struct., Funct.,
Bioinf., 2001, 44, 150–165.

[105] M. F. Thorpe, M. Lei, A. J. Rader, D. J. Jacobs and L. A. Kuhn, J. Mol. Graphics
Modell., 2001, 19, 60–69.

[106] D. J. Wales, Phil. Trans. R. Soc. A, 2005, 363, 357–377.

[107] ROTATION, http://www.mech.utah.edu/~brannon/public/rotation.pdf, (accessed Au-
gust 2017).

[108] D. Chakrabarti and D. J. Wales, Phys. Chem. Chem. Phys., 2009, 11, 1970–1976.

[109] B. Strodel and D. J. Wales, Chem. Phys. Lett., 2008, 466, 105–115.

[110] D. J. Wales, Mol. Phys., 1993, 78, 151–171.

[111] F. Calvo, D. Schebarchov and D. J. Wales, J. Chem. Theory Comput., 2016, 12, 902–
909.

[112] W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, Numerical Recipes
in C: The Art of Scientific Computing, Cambridge University Press, Cambridge, 2nd
edn., 1992.

http://www-wales.ch.cam.ac.uk/OPTIM/
http://www.mech.utah.edu/~brannon/public/rotation.pdf

Bibliography 93

[113] K. Singh, Linear Algebra: Step by Step, Oxford University Press, Oxford, 2014.

[114] G. H. Golub and C. F. Van Loan, Matrix Computations, The John Hopkins University
Press, Baltimore, 3rd edn., 1996.

[115] N. J. Higham, Wiley Interdiscip. Rev. Comput. Stat., 2009, 1, 251–254.

[116] A. Krishnamoorthy and D. Menon, in Signal Processing: Algorithms, Architectures,
Arrangements, and Applications (SPA), IEEE, 2013, pp. 70–72.

[117] SuiteSparse, http://faculty.cse.tamu.edu/davis/suitesparse.html, (accessed August
2017).

[118] GPU Applications, http://www.nvidia.com/object/gpu-applications.html, (accessed
August 2017).

[119] L. D’Amore, G. Laccetti, D. Romano, G. Scotti and A. Murli, Int. J. Comput. Math.,
2015, 92, 59–76.

[120] Y. Fei, G. Rong, B. Wang and W. Wang, Comput. Graph., 2014, 40, 1–9.

[121] Q. Zhang, H. Bao, C. Rao and Z. Peng, Opt. Rev., 2015, 22, 741–752.

[122] J. Wetzl, O. Taubmann, S. Haase, T. Köhler, M. Kraus and J. Hornegger, in Bild-
verarbeitung für die Medizin 2013, ed. H.-P. Meinzer, M. T. Deserno, H. Handels
and T. Tolxdorff, Springer, Berlin, 2013, pp. 21–26.

[123] S. Yatawatta, S. Kazemi and S. Zaroubi, in 2012 Innovative Parallel Computing (In-
Par), IEEE, 2012, pp. 1–6.

[124] B. Sukhwani and M. C. Herbordt, in Numerical Computations with GPUs, ed. V.
Kindratenko, Springer International Publishing, Cham, 2014, ch. 18, pp. 379–405.

[125] M. Gates, M. T. Heath and J. Lambros, Int. J. High Perform. Comput. Appl., 2015,
29, 92–106.

[126] J. Gu, M. Zhu, Z. Zhou, F. Zhang, Z. Lin, Q. Zhang and M. Breternitz, in APSys ’14
Proceedings of 5th Asia-Pacific Workshop on Systems, ACM, New York, 2014, pp.
1–7.

[127] G. Rong, Y. Liu, W. Wang, X. Yin, D. Gu and X. Guo, IEEE Trans. Vis. Comput.
Graphics, 2011, 17, 345–356.

[128] J. Martinez, F. Claux and S. Lefebvre, Raster2Mesh: Rasterization based CVT mesh-
ing, [Research Report] RR-8684, INRIA, Nancy, 2015.

[129] K. Röder and D. J. Wales, J. Chem. Theory Comput., 2017, 13, 1468–1477.

[130] J. A. Joseph, K. Röder, D. Chakraborty, R. G. Mantell and D. J. Wales, Chem. Com-
mun. (Cambridge, U. K.), 2017, 53, 6974–6988.

[131] S. N. Fejer, R. G. Mantell and D. J. Wales, Phys. Chem. Chem. Phys., submitted.

http://faculty.cse.tamu.edu/davis/suitesparse.html
http://www.nvidia.com/object/gpu-applications.html

94 Bibliography

[132] J. Weidendorfer, M. Kowarschik and C. Trinitis, in Computational Science - ICCS
2004, ed. M. Bubak, G. D. van Albada, P. M. A. Sloot and J. Dongarra, Springer,
Berlin, 2004, vol. 3038, pp. 440–447.

[133] D. De Sancho and R. B. Best, J. Am. Chem. Soc., 2011, 133, 6809–6816.

[134] cudaLBFGS, https://github.com/jwetzl/CudaLBFGS, (accessed October 2013).

[135] cuBLAS, https://developer.nvidia.com/cublas, (accessed August 2017).

[136] Y. Kumeda, D. J. Wales and L. J. Munro, Chem. Phys. Lett., 2001, 341, 185–194.

[137] J. Yu, L. Zhang, P. M. Hwang, K. W. Kinzler and B. Vogelstein, Mol. Cell, 2001, 7,
673–682.

[138] C. L. Day, C. Smits, F. C. Fan, E. F. Lee, W. D. Fairlie and M. G. Hinds, J. Mol. Biol.,
2008, 380, 958–971.

[139] AMBER 12 NVIDIA GPU ACCELERATION SUPPORT: Benchmarks, http://
ambermd.org/gpus12/benchmarks.htm, (accessed August 2017).

[140] K. Mochizuki, C. S. Whittleston, S. Somani, H. Kusumaatmaja and D. J. Wales, Phys.
Chem. Chem. Phys., 2014, 16, 2842–2853.

[141] C. D. Bahl, K. L. Hvorecny, A. A. Bridges, A. E. Ballok, J. M. Bomberger, K. C.
Cady, G. A. O’Toole and D. R. Madden, J. Biol. Chem., 2014, 289, 7460–7469.

[142] S. Chutinimitkul, S. Herfst, J. Steel, A. C. Lowen, J. Ye, D. v. Riel, E. J. A.
Schrauwen, T. M. Bestebroer, B. Koel, D. F. Burke, K. H. Sutherland-Cash, C. S.
Whittleston, C. A. Russell, D. J. Wales, D. J. Smith, M. Jonges, A. Meijer, M. Koop-
mans, G. F. Rimmelzwaan, T. Kuiken, A. D. M. E. Osterhaus, A. García-Sastre, D. R.
Perez and R. A. M. Fouchier, J. Virol., 2010, 84, 11802–11813.

[143] C. Shang, C. S. Whittleston, K. H. Sutherland-Cash and D. J. Wales, J. Chem. Theory
Comput., 2015, 11, 2307–2314.

[144] C. S. Whittleston, unpublished work.

[145] CUDA Toolkit 6.5, https://developer.nvidia.com/cuda-toolkit-65, (accessed August
2017).

[146] D. J. Wales and T. R. Walsh, J. Chem. Phys., 1996, 105, 6957–6971.

[147] P. B. Harbury, T. Zhang, P. S. Kim and T. Alber, Science, 1993, 262, 1401–1407.

[148] M. K. Yadav, L. J. Leman, D. J. Price, C. L. Brooks III, C. D. Stout and M. R. Ghadiri,
Biochemistry, 2006, 45, 4463–4473.

[149] J. M. Carr and D. J. Wales, J. Chem. Phys., 2005, 123, 234901.

[150] B. Strodel, C. S. Whittleston and D. J. Wales, J. Am. Chem. Soc., 2007, 129, 16005–
16014.

https://developer.nvidia.com/cuda-toolkit-65
http://ambermd.org/gpus12/benchmarks.htm
https://developer.nvidia.com/cublas
https://github.com/jwetzl/CudaLBFGS
http://ambermd.org/gpus12/benchmarks.htm

Bibliography 95

[151] O. M. Becker and M. Karplus, J. Chem. Phys., 1997, 106, 1495–1517.

[152] D. J. Wales, M. A. Miller and T. R. Walsh, Nature, 1998, 394, 758–760.

[153] D. J. Wales, J. Chem. Phys., 2017, 146, 054306.

[154] A. L. Mackay, Acta Crystallogr., 1962, 15, 916–918.

[155] G. M. Torrie and J. P. Valleau, J. Comp. Phys., 1977, 23, 187–199.

[156] A. P. Lyubartsev, A. A. Martsinovski, S. V. Shevkunov and P. N. Vorontsov-
Velyaminov, J. Chem. Phys., 1992, 96, 1776–1783.

[157] B. A. Berg and T. Neuhaus, Phys. Rev. Lett., 1992, 68, 9–12.

[158] F. Wang and D. P. Landau, Phys. Rev. Lett., 2001, 86, 2050–2053.

[159] A. Laio and M. Parrinello, PNAS, 2002, 99, 12562–12566.

[160] S. V. Krivov and M. Karplus, J. Chem. Phys., 2002, 117, 10894–10903.

[161] D. Gfeller, P. De Los Rios, A. Caflisch and F. Rao, Proc. Natl. Acad. Sci. U. S. A.,
2007, 104, 1817–1822.

[162] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney and D. Sorensen, LAPACK Users’
Guide, Society for Industrial and Applied Mathematics, Philadelphia, 3rd edn., 1999.

[163] I. Georgescu and V. A. Mandelshtam, J. Chem. Phys., 2012, 137, 144106.

[164] D. A. Case, T. A. Darden, T. E. Cheatham III, C. L. Simmerling, J. Wang, R. E. Duke,
R. Luo, R. C. Walker, W. Zhang, K. M. Merz, B. Roberts, S. Hayik, A. Roitberg,
G. Seabra, J. Swails, A. W. Goetz, I. Kolossvai, K. F. Wong, F. Paesani, J. Vanicek,
R. M. Wolf, J. Liu, X. Wu, S. R. Brozell, T. Steinbrecher, H. Gohlke, Q. Cai, X. Ye,
J. Wang, M. J. Hsieh, G. Cui, D. R. Roe, D. H. Mathews, M. G. Seetin, R. Salomon-
Ferrer, C. Sagui, V. Babin, T. Luchko, S. Gusarov, A. Kovalenko and P. A. Kollman,
AMBER 12, University of California, San Francisco, 2012.

[165] M. Page and J. W. McIver, J. Chem. Phys., 1988, 88, 922–935.

[166] Y. Chen, T. A. Davis, W. W. Hager and S. Rajamanickam, ACM Trans. Math. Softw.,
2008, 35, 22.

[167] suitesparse-metis-for-windows, https://github.com/jlblancoc/
suitesparse-metis-for-windows, (accessed August 2017).

[168] R. G. Mantell, C. E. Pitt and D. J. Wales, J. Chem. Theory Comput., 2016, 12, 6182–
6191.

[169] S. C. Rennich, D. Stosic and T. A. Davis, Parallel Comput., 2016, 59, 140–150.

[170] Z. Antal, J. Szoverfi and S. N. Fejer, J. Chem. Inf. Model., 2017, 57, 910–917.

https://github.com/jlblancoc/suitesparse-metis-for-windows
https://github.com/jlblancoc/suitesparse-metis-for-windows

96 Bibliography

[171] J. A. Speir, B. Bothner, C. Qu, D. A. Willits, M. J. Young and J. E. Johnson, J. Virol.,
2006, 80, 3582–3591.

[172] K. Röder and D. J. Wales, unpublished work.

[173] K. Röder and D. J. Wales, unpublished work.

[174] T. Lührs, C. Ritter, M. Adrian, D. Riek-Loher, B. Bohrmann, H. Döbeli, D. Schubert
and R. Riek, Proc. Natl. Acad. Sci. U. S. A., 2005, 102, 17342–17347.

[175] J. A. Joseph and D. J. Wales, unpublished work.

[176] G. A. Belogurov, M. N. Vassylyeva, V. Svetlov, S. Klyuyev, N. V. Grishin, D. Vas-
sylyev and I. Artsimovitch, Molecular Cell, 2007, 26, 117–129.

[177] B. Burmann, S. Knauer, A. Sevostyanova, K. Schweimer, R. Mooney, R. Landick,
I. Artsimovitch and P. Rösch, Cell, 2012, 150, 291–303.

[178] C.-H. Yun, T. J. Boggon, Y. Li, M. S. Woo, H. Greulich, M. Meyerson and M. J. Eck,
Cancer Cell, 2007, 11, 217–227.

[179] Y. Kawakita, M. Seto, T. Ohashi, T. Tamura, T. Yusa, H. Miki, H. Iwata, H. Kamigu-
chi, T. Tanaka, S. Sogabe, Y. Ohta and T. Ishikawa, Bioorg. Med. Chem., 2013, 21,
2250–2261.

[180] A. Laganowsky, C. Liu, M. R. Sawaya, J. P. Whitelegge, J. Park, M. Zhao, A. Pens-
alfini, A. B. Soriaga, M. Landau, P. K. Teng, D. Cascio, C. Glabe and D. Eisenberg,
Science, 2012, 335, 1228–1231.

[181] S. W. Cowan-Jacob, G. Fendrich, P. W. Manley, W. Jahnke, D. Fabbro, J. Liebetanz
and T. Meyer, Structure, 2005, 13, 861–871.

[182] W. Xu, A. Doshi, M. Lei, M. J. Eck and S. C. Harrison, Mol. Cell, 1999, 3, 629–638.

[183] C. W. Müller, G. J. Schlauderer, J. Reinstein and G. E. Schulz, Structure, 1996, 4,
147–156.

[184] M. B. Berry, B. Meador, T. Bilderback, P. Liang, M. Glaser and G. N. Phillips, Pro-
teins: Struct., Funct., Bioinf., 1994, 19, 183–198.

[185] D. Martinez-Zapien, P. Legrand, A. G. McEwen, F. Proux, T. Cragnolini, S. Pasquali
and A.-C. Dock-Bregeon, Nucleic Acids Res., 2017, 45, 3568–3579.

[186] E. Bitzek, P. Koskinen, F. Gähler, M. Moseler and P. Gumbsch, Phys. Rev. Lett., 2006,
97, 170201.

[187] F. Noé, M. Oswald, G. Reinelt, S. Fischer and J. Smith, Multiscale Model. Simul.,
2006, 5, 393–419.

[188] F. Noé, D. Krachtus, J. C. Smith and S. Fischer, J. Chem. Theory Comput., 2006, 2,
840–857.

[189] D. J. Wales and J. M. Carr, J. Chem. Theory Comput., 2012, 8, 5020–5034.

[190] R. A. Brown and D. A. Case, J. Comput. Chem., 2006, 27, 1662–1675.

Appendix A

Shifting the Hessian eigenvalues

The translational and rotational eigenvalues must be shifted from zero to one at each local

minimum of interest to obtain the product of positive Hessian eigenvalues. To do this, we

must find normal mode vectors for translation and rotation, where the molecule is aligned

so that the principal axes and the centre of mass coincide with the fixed axis system and the

origin. The corresponding Hessian eigenvectors are then orthogonal, as detailed below.

Let Xαx be the x coordinate of atom α , etc. A rotation of the position vector of atom α ,

X0
α , through angle θ about an axis defined by the unit vector n̂ is given by

Xα = X0
α cosθ + n̂(n̂ ·X0

α)(1− cosθ)+X0
α ∧ n̂sinθ . (A.1)

Taking a Taylor series about θ = 0, the displacement vector for this rotation is

∆∆∆α = Xα −X0
α = θ




n̂zX
0
αy − n̂yX0

αz

n̂xX0
αz − n̂zX

0
αx

n̂yX0
αx − n̂xX0

αy


+

1
2

θ 2



−X0

αx + n̂2
xX0

αx + n̂x(n̂yX0
αy + n̂zX

0
αz)

−X0
αy + n̂2

yX0
αy + n̂y(n̂xX0

αx + n̂zX
0
αz)

−X0
αz + n̂2

z X0
αz + n̂z(n̂xX0

αx + n̂yX0
αy)




(A.2)

A Taylor expansion of the potential energy gives

V (X0) =V (X0 +∆∆∆) =V (X0)+∇V (X0)T ∆∆∆+
1
2

∆∆∆T H(X0)∆∆∆+ . . . , (A.3)

where ∆∆∆= {∆∆∆1,∆∆∆2, . . . ,∆∆∆N}T , ∇V (X0)= ∂V (X0)/∂Xα , and Hαβ (X
0)= ∂ 2V (X0)/∂Xα∂Xβ .

The potential energy of an isolated molecule must be invariant to rotation, so the terms in ∆∆∆

must be equal to zero. At a stationary point, ∇V (X0) = 0 and equating terms in θ 2 to zero

98 Shifting the Hessian eigenvalues

gives

H(X0)∆∆∆ =




n̂zX
0
1y − n̂yX0

1z

n̂xX0
1z − n̂zX

0
1x

n̂yX0
1x − n̂xX0

1y
...




= 0. (A.4)

This result implies that ∆∆∆ is an eigenvector of H with eigenvalue zero. We require eigen-

vectors of the mass-weighted Hessian corresponding to mass-weighted coordinates, QX =

Xα
√

mα , where mα is the mass of atom α , and the corresponding components are




√
m1(n̂zX

0
1y − n̂yX0

1z)√
m1(n̂xX0

1z − n̂zX
0
1x)√

m1(n̂yX0
1x − n̂xX0

1y)
...



. (A.5)

We can prove that the rotational eigenvectors are orthogonal if we choose rotations about

directions corresponding to eigenvectors of the moment of inertia tensor:

Ĩ = ∑
α

mα



(X0

αy)
2 +(X0

αz)
2 −X0

αxX0
αy −X0

αxX0
αz

−X0
αyX0

αx (X0
αx)

2 +(X0
αz)

2 −X0
αyX0

αz

−X0
αzX

0
αx −X0

αzX
0
αy (X0

αx)
2 +(X0

αy)
2


 . (A.6)

Using equation (A.5) with two eigenvectors of Ĩ corresponding to Ĩêa = λaêa and Ĩêb = λbêb,

replacing n̂, we can construct the dot product as:

∑
α

mα

[
(êazX

0
αy − êayX0

αz)(êbzX
0
αy − êbyX0

αz)+(êaxX0
αz − êazX

0
αx)(êbxX0

αz − êbzX
0
αx)

+(êayX0
αx − êaxX0

αy)(êbyX0
αx − êbxX0

αy)
]

= ∑
α

mα

[
êaxêbx

{
(X0

αz)
2 +(X0

αy)
2}− êbyêaxX0

αxX0
αy − êbzêaxX0

αxX0
αz

+êayêby

{
(X0

αz)
2 +(X0

αx)
2}− êbzêayX0

αyX0
αz − êbxêayX0

αyX0
αx

+êazêbz

{
(X0

αx)
2 +(X0

αy)
2}− êbxêazX

0
αzX

0
αx − êbyêazX

0
αzX

0
αy

]

= êT
a Ĩêb = êT

a λbêb = λbêT
a êb = 0. (A.7)

99

The dot product of an infinitesimal rotation and a translation corresponding to axes defined

by eigenvectors êa and êb of Ĩ is

∑
α

mα [(êazX
0
αy − êayX0

αz)êbx +(êaxX0
αz − êazX

0
αx)êby +(êayX0

αx − êaxX0
αy)êbz]

=(êayêbz − êazêby)∑
α

mαX0
αx +(êazêbx − êaxêbz)∑

α

mαX0
αy +(êaxêby − êayêbx)∑

α

mαX0
αz

=(êa ∧ êb) ·∑
α

mαX0 = 0, (A.8)

when the centre of mass is at the origin, because ∑α mαX0 = 0. Hence the Hessian eigen-

vectors corresponding to infinitesimal rotations and translations are orthogonal if the system

centre of mass is at the origin and the system is oriented so that the principal axes of the

inertia tensor are aligned with the global frame. This alignment enables us to shift the six

corresponding eigenvalues to unity individually.

	Contents
	Abbreviations
	1 Introduction
	2 Methods
	2.1 General-purpose computation on graphics processing units
	2.2 Intermolecular potentials
	2.2.1 Lennard-Jones
	2.2.2 AMBER

	2.3 Basin-hopping global optimisation
	2.3.1 Limited-memory BFGS

	2.4 Transition state determination
	2.4.1 Doubly-nudged elastic band method
	2.4.2 Hybrid eigenvector-following

	2.5 Local rigid body framework
	2.5.1 Root mean square force formulation

	2.6 Free energy basin-hopping
	2.7 Cholesky factorisation

	3 GPU-acceleration of computational energy landscape methods
	3.1 Introduction
	3.2 Methods
	3.2.1 Basin-hopping global optimisation
	3.2.2 Local rigid body framework
	3.2.3 Hybrid eigenvector-following
	3.2.4 Doubly-nudged elastic band method
	3.2.5 Potential calculation

	3.3 Results and discussion
	3.3.1 Basin-hopping global optimisation
	3.3.2 Local rigid body framework
	3.3.3 Hybrid eigenvector-following
	3.3.4 Doubly-nudged elastic band method
	3.3.5 Coiled-coil peptide
	3.3.6 Addressable clusters and aggregates

	3.4 Conclusions

	4 Exploiting sparsity in free energy basin-hopping
	4.1 Introduction
	4.2 Methods
	4.3 Results and discussion
	4.3.1 Atomic clusters
	4.3.2 Proteins

	4.4 Conclusions

	5 Conclusions and future work
	Bibliography
	Appendix A Shifting the Hessian eigenvalues

