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8 KHOVANOV HOMOLOGY FROM FLOER COHOMOLOGY

MOHAMMED ABOUZAID AND IVAN SMITH

Abstract. This paper realises the Khovanov homology of a link in S3 as a Lagrangian Floer
cohomology group, establishing a conjecture of Seidel and the second author. The starting
point is the previously established formality theorem for the symplectic arc algebra over a field
k of characteristic zero. Here we prove the symplectic cup and cap bimodules which relate
different symplectic arc algebras are themselves formal over k, and construct a long exact
triangle for symplectic Khovanov cohomology. We then prove the symplectic and combinatorial
arc algebras are isomorphic over Z in a manner compatible with the cup bimodules. It follows
that Khovanov cohomology and symplectic Khovanov cohomology co-incide in characteristic
zero.

1. Introduction

Let Yn = χ|−1
S (t) be a smooth fibre of the restriction of the adjoint quotient χ : sl2n(C) → C2n−1

to a transverse slice S ⊂ sl2n(C) at a nilpotent matrix with two equal Jordan blocks. Let F(Yn)
denote the Fukaya category of closed exact Lagrangian branes in Yn, as constructed in [51]. The
paper [56] defines a symplectic structure ω on Yn which is exact and has contact type at infinity,
and an action of the braid group Br2n (by parallel transport varying t) on objects of F(Yn). Let
κ be a link in S3 realised as the closure of a braid βκ × id ∈ Br2n, with βκ ∈ Brn. There is
a distinguished Lagrangian submanifold L℘◦ ⊂ Yn, and a relatively Z-graded Floer cohomology
group

Khsymp(κ) = HF ∗(L℘◦ , (βκ × id)(L℘◦))

called the symplectic Khovanov cohomology of κ. The main theorem of [56] proved that this is
indeed a link invariant (independent of the choice of βκ, and in particular of n, up to shifts; the
relative grading can be refined to an absolute grading if one orients κ), and conjectured that it
co-incided with a singly graded version of Khovanov’s combinatorial / representation-theoretic
invariant Kh(κ) from [26]. This paper proves that conjecture in characteristic zero.

The categories F(Yn) and F(Yn+1) are related by various canonical bimodules ∪i and ∩i, for
1 ≤ i ≤ 2n+1, defined by symplectic analogues of the cup and cap bimodules of [27], cf. Section
4.5. Such bimodules play an implicit role in the construction of the link invariant Khsymp(κ), and
were further considered in the work of Rezazadegan [41]. Here we prove that the Floer cohomol-
ogy algebra generated by the Lagrangian iterated vanishing cycles associated to upper half-plane
crossingless matchings (the “symplectic arc algebra”) is isomorphic over Z to Khovanov’s arc
algebra [27], and we prove that the bimodules ∪i and ∩i are formal over any field k of char-
acteristic zero. We also construct a long exact triangle for symplectic Khovanov cohomology,
analogous to the skein triangle obeyed (tautologically) by its combinatorial sibling. It follows
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2 MOHAMMED ABOUZAID AND IVAN SMITH

that combinatorial and symplectic Khovanov cohomologies are isomorphic in characteristic zero,
in particular have the same total rank over Q.

Outline of the paper. The paper broadly divides into three Parts.

(1) In [6] we introduced an abstract formality criterion, due to Paul Seidel, for formality of
an A∞-algebra. In the first Part (Sections 2-4), we provide a complementary formality
criterion for A∞-bimodules. We explain how one can sometimes implement this crite-
rion for bimodules over Fukaya categories of Stein manifolds via appropriate counts of
holomorphic discs in a partial compactification, and as an application prove that the cup
bimodules are formal.

(2) In the second Part (Sections 5-6), we prove that the symplectic arc algebra is isomorphic
over Z to Khovanov’s combinatorial arc algebra Hn. The essential difficulty is one of
signs: over Z, Floer complexes are not intrinsically based by intersection points, but
by orientations of abstract lines associated to ∂-operators. We construct bases of the
symplectic arc algebra on 2n strands in which products of positive generators are positive
linear combinations of positive generators by an argument inductive on n. The induction
relies on reduction to special cases, on plumbing models, and on the existence of a natural
map from the cohomology of a symplectic manifold to the center of its Fukaya category.

(3) In the third part (Section 7 and the Appendix) we construct the exact triangle for sym-
plectic Khovanov cohomology, and conclude the proof. Our discussion of the exact tri-
angle is essentially self-contained, but adapts currently unpublished more general results
due to the first author and Ganatra [3], partly based on forthcoming work of the first
author and Seidel [5]. The argument uses a Fukaya category of a Morse-Bott Lefschetz
fibration, similar in nature to the categories studied by Seidel in the Lefschetz case,
and various canonical functors thereon. This formalism is reminiscent of the cobor-
dism techniques developed by Biran and Cornea [12, 13], rather than the quilted Floer
groups of Wehrheim and Woodward [62], and avoids technical issues1 stemming from
non-compactness of the correspondences in our setting.

The last section of the paper draws the various pieces together to complete the proof. The basic
architecture of the argument can be summarised, somewhat schematically, as follows. Com-
binatorial Khovanov homology is essentially determined by the arc algebra Hn and the col-
lection of cup functors (bimodules) ∪i which relate Hn and Hn+1, together with a particular
Hn-module P℘0 . More precisely, Khovanov constructs a braid group action on the derived cat-
egory D = D(mod − Hn), in which the braid group generators are obtained formally as cones
over co-units of adjunctions ∪i ◦ ∩i → id, and defines his invariant (for the knot closure of a
braid β) to be Ext∗D(P℘0 , (β × id)(P℘0)). Symplectic Khovanov cohomology is obtained from a
geometric braid group action on the Fukaya category F(Yn), and a choice of distinguished La-
grangian submanifold (hence module) L℘0 , as a Floer group HF ∗(L℘0 , (β × id)(L℘0)). In fact,
the symplectic theory really only uses the part of F(Yn) which can be understood as the derived
category of A∞-modules over the “symplectic arc algebra” Hsymp

n of [6], defined by a particular
finite collection of Lagrangians. The essential content of the equivalence is that

1Even if one is primarily interested in closed Lagrangian submanifolds and their monodromy images, a priori
the quilt theory construction of the exact triangle requires compactness for spaces of curves whose only Lagrangian
boundary condition is the correspondence itself.
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• the arc algebra and symplectic arc algebra agree at the level of cohomology, in a way
which entwines the distinguished modules P℘0 and L℘0 , and the cohomological actions
of the cup bimodules; (this paper, Sections 5-6);

• the symplectic arc algebra is formal, hence quasi-isomorphic to its cohomology, as are
the geometrically defined cup bimodules; ([6] and this paper, Sections 2-4);

• the generators of the geometric braid group action of [56], which are fibred Dehn twist
monodromies, can be identified with the co-units over the adjunctions between cup and
cap bimodules. This largely amounts to establishing a long exact triangle for the fibred
Dehn twists; (this paper, Section 7 and the Appendix).

A technical but important point is that the formality criteria for a given bimodule can be estab-
lished starting from any fixed quasi-isomorphism of the underlying A∞-algebra and its cohomo-
logical algebra, which enables one to establish formality of all the cup bimodules simultaneously.
The existence of the isomorphism Hn

∼= Hsymp
n is surprisingly involved, and we give an overview

of the strategy at the start of Section 5. The proof furthermore shows that the isomorphism
is compatible with cup functors, and hence (using formality) with their adjoint cap functors.
Via the exact triangle, we infer that the Fukaya category DF(Yn) generated by the Lagrangians
associated to upper half-plane crossingless matchings is braid-group equivariantly equivalent to
D(mod −Hn), which implies the main theorem. More precisely, it follows that for any oriented
link κ, and for the absolute grading on Khsymp mentioned above, one has isomorphisms

(1.1) Khksymp(κ)
∼=

⊕

i−j=k

Khi,j(κ) ∀ k ∈ Z

which establishes [56, Conjecture 2]. Any Floer group HF ∗(L℘◦ , (β × id)(L℘◦)) also inherits
a generalised eigenspace decomposition from the endomorphism induced by the nc-vector field
on F(Yn) constructed in [6]. One can view this as an additional “weight” grading, a priori by

elements in the algebraic closure k, and not a priori invariant under Markov moves.

Conjecture 1.1. The relative weight grading on HF ∗(L℘◦ , (β× id)(L℘◦)) is Markov invariant,
and recovers the relative second grading on Khsymp(κ).

Acknowledgements. We are grateful to Sabin Cautis, Sheel Ganatra, Robert Lipshitz, Ciprian
Manolescu, Jake Rasmussen and Paul Seidel, for their insights over the years on various aspects of
this project. We would also like to thank Paul Biran and Octav Cornea for sharing a preliminary
version of their manuscript [13] with us, and to thank the referee for suggesting many corrections
and improvements to the exposition.

2. Algebra

In this section we work over a coefficient field k, specialising where necessary to the case in which
k has characteristic zero.

2.1. Background. Let A be a Z-graded cohomologically unital A∞-algebra over k, equipped
with A∞-products

(2.1) µdA : A⊗d → A, 1 ≤ d
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of degree 2− d. The first two operations satisfy the Leibniz equation2:

(2.2) µ1
A(µ

2
A(a2, a1)) + µ2

A(a2, µ
1
A(a1)) + (−1)|a1|−1µ2

A(µ
1
A(a2), a1) = 0.

The cohomology groups with respect to µ1
A, denoted A = H(A), naturally form an A∞ algebra

for which all operations vanish except the product, which is induced by µ2
A.

Definition 2.1. A is formal if it is quasi-isomorphic to A.

The prequel formulated and proved a necessary and sufficient condition for the formality of an
A∞-algebra, due to Paul Seidel, in terms of the existence of a particular kind of degree one
Hochschild cohomology class. We recall that the Hochschild cochain complex CC∗(A,A) has
chain groups

(2.3) CCd(A,A) =
∏

s≥0

Homd(A[1]⊗s,A)

where [1] denotes downward shift by 1 and Homd denotes k-linear maps of degree d, equipped
with a differential

δ : CCd−1(A,A) → CCd(A,A)(2.4)

(δσ)d(ad, . . . , a1) =
∑

i,j

(−1)(|σ|−1)†iµd−j+1
A

(ad, . . . , σ
j(ai+j , . . . , ai+1), . . . , a1)(2.5)

+
∑

i,j

(−1)|σ|+†iσd−j+1(ad, . . . , µ
j
A
(ai+j , . . . , ai+1), . . . , a1).

Here †i =
∑i

k=1(|ak| − 1).

Definition 2.2. An nc-vector field is a cocycle b ∈ CC1(A,A).

In the definition, nc stands for non-commutative. On a graded algebra, we have a canonical
nc-vector field called the Euler vector field, which multiplies the graded piece Ai ⊂ A of A by i:

(2.6) e : Ai → Ai, a 7→ i · a.

More precisely, the fact that multiplication preserves the grading

(2.7) |a2a1| = |a2|+ |a1|

implies that there is a cocycle e ∈ CC1(A,A) which has no constant or higher order terms, i.e.
only a term with s = 1 in (2.3); this cocycle then defines a class in HH1(A,A). Note that there
is a natural projection of chain complexes

CC∗(A,A) → A(2.8)

b 7→ b0(2.9)

induced by taking the order-0 part of a Hochschild cochain. Given an element of the kernel of
this map, the first order part

(2.10) b1 : A → A

is a chain map, and hence defines an endomorphism of A.

2Our sign conventions follow those of Seidel in [51]: elements of A are equipped with the reduced degree
||a|| = |a| − 1, and operators act on the right.
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Definition 2.3. An nc-vector field b ∈ CC1(A,A) is pure if b0 = 0, and the induced endomor-
phism of A agrees with the Euler vector field.

If A admits a pure vector field, in a minor abuse of notation we say that A itself is pure. The
prequel paper proved:

Theorem 2.4 (Seidel). Suppose k has characteristic zero. If b is a pure vector field on A, then
A is formal. Indeed, there is an equivalence

(2.11) ψ : A→ A

acting trivially on cohomology, so [ψ1] = id : A → H(A) = A, with left inverse ψ−1, so that the
ψ−1-pullback of b to CC∗(A,A) agrees with the Euler vector field. �

2.2. Formality for bimodules. To shorten formulae, in this section we use the abbreviation

C(X0, X1, . . . , Xr) = homC(Xr−1, Xr)⊗ homC(Xr−2, Xr−1)⊗ · · · ⊗ homC(X0, X1)

for any A∞-category C, where r ≥ 1 (for r = 0 define the corresponding expression to equal the
ground field).

Take two A∞-categories A,B. Let P be an (A,B)-bimodule. This comprises a collection of
graded vector spaces P (Y,X) for any objects X ∈ A, Y ∈ B, together with multi-linear maps

µ
r|1|s
P : A(X0, . . . , Xr)⊗ P (Y0, X0)⊗B(Ys, . . . , Y0) → P (Ys, Xr)

for r, s ≥ 0, and any objects Xi, Yj of A respectively B. (Our ordering convention is such that
homA(X,X

′) = A(X,X ′) and if P is an (A,B)-bimodule there are maps

A(X,X ′)⊗ P (Y,X) → P (Y,X ′)

which fits with the ordering conventions for Floer theory multiplication from [51].) Assuming

that the generators of the domain of µ
r|1|s
P are written xr ⊗ · · · ⊗ x1 ⊗m⊗ y1 ⊗ · · · ⊗ ys, where

we underline the bimodule element, we write the A∞ relations as:

(2.12)

0 =
∑

(−1)⋆µ
r−R+S|1|s
P (xr , . . . , xR+1, µR−S+1

A
(xR,...,xS), xS−1, . . . , x1,m, y1, . . . , ys)+

+
∑

(−1)⋄µ
r−R|1|s−S
P (xr , . . . , xR+1, µ

R|1|S
P

(xR,...,x1,m,y1,...,yS), yS+1, . . . , ys)+

+
∑

(−1)⋄µ
r|1|s−R+S
P (xr , . . . , x1,m, y1, . . . , yR−1, µR−S+1

B
(yR,...,yS), yS+1, . . . , ys)

summing over all R,S, and where the signs are

⋄ = σ(y)sS+1 ⋆ = σ(y)s1 + deg(m) + σ(x)S−1
1

with σji = σ(x)ji =
∑j
ℓ=i(|xℓ|−1). The simplest equation in particular implies that the map µ

0|1|0
P

squares to zero, hence defines the structure of a chain complex on each group P (Y,X). Hence P
descends to a bimodule HP of the corresponding cohomological categories, and we require that
multiplication by the homological units of HA and HB agree with the identity map of HP .

We will view a (differential) graded category as an A∞-category with vanishing higher products,
so the usual associative composition x · y = (−1)|y|µ2(x, y) on the dg-category is obtained by
twisting the A∞-product by a degree-dependent sign. In particular, the cohomology of an A∞

algebra, which is a graded algebra equipped with the product induced by (−1)|y|µ2(x, y), will be
considered as a (formal) A∞ algebra with the product induced by µ2(x, y).
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With this convention, bimodules form a differential graded category, with the morphismsHA−B(P,Q)
from P to Q (sometimes called pre-morphisms) given by a collection of multi-linear maps

f r|1|s : A(X0, . . . , Xr)⊗ P (Y0, X0)⊗B(Ys, . . . , Y0) → Q(Ys, Xr)

for r, s ≥ 0. The differential assigns to such a sequence f the linear maps

(xr, . . . , x1,m, y1, . . . , ys) 7→
∑

(−1)⋆f r−R+S|1|s(xr, . . . , xR+1, µR−S+1
A

(xR,...,xS), xS−1, . . . x1,m, y1, . . . , ys)+
+
∑

(−1)⋄f r−R|1|s−S(xr , . . . , xR+1, µ
R|1|S
P

(xR,...,x1,m,y1,...,yS), yS+1, . . . , ys)+

+
∑

(−1)⋄f r|1|s−S+R(xr , . . . , x1,m, y1, . . . , yR−1, µS−R+1
B

(yR,...,yS), yS+1, . . . , ys)+

+
∑

(−1)⋄deg(f)µ
r−R|1|s−S
Q (xr, . . . , xR+1, fR|1|S(xR,...,x1,m,y1,...,yS), yS+1, . . . , ys)

summing over R,S, and where the signs are as before. The product is given by

(2.13) µ2(f, g)(xr , . . . , x1,m, y1, . . . , ys) =
∑∑

(−1)|g|·⋄f r−R|1|s−S(xr , . . . , xR+1, gR|1|S(xR,...,x1,m,y1,...,yS), yS+1, . . . , ys),

and all higher order operations vanish.

In particular, the bimodule endomorphisms of a fixed bimodule P form a cochain complex we
denote (E(P ), ∂) with cohomology EndA,B(P ). There are maps

(2.14)
νA : HH∗(A,A) → EndA,B(P )

νB : HH∗(B,B) → EndA,B(P )

induced by a chain map which we formally denote by σ 7→ µr|1|s ◦ σ, under which σ eats some
collection of the A-inputs respectively the B-inputs to P .

Definition 2.5. Let bA and bB be nc-vector fields on A and B. A bimodule P is equivariant if
the induced cohomology classes agree:

νA(bA) = νB(bB) ∈ End1A,B(P ).

A choice of equivariant structure is an endomorphism cP ∈ E0(P ) for which

(2.15) dcP = νA(bA)− νB(bB).

Let b be an nc-vector field on a category A. [6] introduced a weaker, homotopy-theoretic version
of purity of b (in the sense of Definition 2.3) which is also useful. For an object X ∈ ObA, a
b-equivariant structure on X is a choice of cochain c ∈ hom0(X,X) with dc = b|X . We say that b
defines a pure structure on A if every object X admits and is equipped with a choice of such an
equivariant structure cX , in such a way that the endomorphisms a 7→ b1(a)−µ2(cX , a)+µ

2(a, cX′)
of homA(X,X

′) agree with the Euler field. The stronger formality theorem proved in [6, Corollary
2.13] is that a pure category A is formal.

Now suppose that bA and bB induce pure structures on A and B. This means that all objects
X ∈ ObA and Y ∈ ObB come with chosen equivariant structures cX , cY . The elements cP , cX , cY
induce an endomorphism of the cohomology H∗(P (X,Y )) (taking cohomology with respect to

µ
0|1|0
P ). More precisely

(2.16) C∗(P (Y,X)) ∋ φ 7→ c1P (φ) − cX ◦ φ+ φ ◦ cY ∈ C∗(P (Y,X))

is a chain map, hence induces an endomorphism of H∗(P (Y,X)). We say that (P, cP ) is pure if
this endomorphism agrees with the Euler field, i.e. acts in degree i by multiplication by i.
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Lemma 2.6. If cP is pure, then P is formal; more precisely, given A∞-equivalences ψA : H(A) →
A and ψB : H(B) → B acting trivially on cohomology and pulling back the nc-vector fields on
A and B to the corresponding Euler vector field, there are inverse equivalences of H(A)-H(B)
bimodules ψ : H(P ) → P and φ : P → H(P ) so that

(2.17) ψ ◦ cP ◦ φ = EulerH(P ) ∈ EndH(A),H(B)(HP )

Proof. We begin by using ψA and ψB to pull back P to an H(A)-H(B) bimodule. Equipping
H(A) and H(B) with the Euler vector fields, the equivariant structure on P pulls back to
an equivariant structure in the category of H(A)-H(B) bimodules, for which we use the same
notation.

Consider the category H(A)
∐
P H(B), whose set of objects is the union of the objects of H(A)

and H(B), such that morphisms from objects of H(A) to those of H(B) are given by P [1], and
morphisms in the other direction vanish. The shift in degree implies that the products on H(A)

and H(B) defined from µ2
A and µ2

B by passing to cohomology, together with operations µ
s|1|r
P ,

define an A∞ structure.

The Hochschild complex of this category is the direct sum of the Hochschild complexes of H(A)
and H(B) with the endomorphism complex of P , so the data (bH(A), cP , bH(B)) induces an nc-
vector field on H(A)

∐
P H(B). By assumption, this vector field is pure, so we conclude from

Theorem 2.4 that there are inverse equivalences

(2.18) H(A)
∐
P H(B)

φ // H(A)
∐
H(P )H(B)

ψ
oo

which map the nc-vector field to the Euler vector field. Since the proof of Theorem 2.4 pro-
ceeds by induction on the order of non-vanishing of the A∞-structure, we can insure that the
induced endofunctors of H(A) and H(B) are the identity. Translating back from the category
H(A)

∐
P H(B) to the bimodule, we obtain the desired result. �

2.3. Functors and bimodules. Let A and B be A∞ categories as before, and recall (e.g. from
[51, Section (1b)]) that an A∞ functor F : A → B assigns an object to B to each object of A,
together with maps

(2.19) Fd : A(X0, . . . , Xd) → B(F(X0),F(Xd))

for each sequence (X0, . . . , Xd) of objects of A. These maps are required to satisfy the A∞-
equation for functors given, e.g. as Equation (1.6) of [51]. The first such equation implies that
F1 is a functor of cohomological categories, which we require to be unital.

The collection of functors from A to B forms an A∞-category, with morphisms from F to G given
by pre-natural transformations, i.e. collections of maps

(2.20) T d : A(X0, . . . , Xd) → B(F(X0),G(Xd)).

The A∞ operations are induced by the A∞ operations on the categories A and B, together with
the structure maps of the functors F and G (see e.g. [51, Section (1d)]).

Given a C−D bimodule P , and functors F : A → C and G : B → D, we obtain a 2-sided pullback

FPG which is an A − B-bimodule which assigns P (GY,FX) to a pair of objects X and Y (see
[22, Section 2.8]). The structure maps are

(2.21) µ
r|1|s

FPG
=

∑
µ
k|1|l
P ◦

(
Fik ⊗ · · · ⊗ Fi1 ⊗ IdP ⊗ Gjk ⊗ · · · ⊗ Gj1

)
.
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When either F or G are the identity, we obtain 1-sided pullbacks which we denote PG and FP .

We shall be particularly interested in the case of the diagonal: recall that the diagonal bimodule
of B (which we denote ∆B) assigns to a pair of objects (Y, Y ′) the morphism space B(Y, Y ′),
with structure maps µr|1|s = (−1)⋄+1µr+1+s. In this case, a functor F : A → B gives rise to
A−B bimodules and B−A-bimodules whose values on objects are:

F∆
B(Y,X) ≡ B(Y,F(X))(2.22)

∆B
F (X,Y ) ≡ B(F(X), Y ).(2.23)

The following standard result is proved e.g. in [31, Proposition 5.22]:

Lemma 2.7 (Yoneda Lemma). The assignment F 7→ F∆
B (resp. F 7→ ∆B

F ) extends to a cohomo-
logically fully faithful embedding from the category of functors to that of A−B bimodules (resp.
B−A-bimodules). �

The essential image of the embedding of functors into bimodules can be determined as follows:
we say that an A − B bimodule P is representable as a B-module if, for every object X of A,
there is an object F(X) of B so that the B-module P ( , X) is quasi-isomorphic to the (Yoneda)
module B( ,F(X)). The following result is proved, e.g. in [31, Proposition 5.23]:

Lemma 2.8. If P is representable as a B-module, then there is a functor F : A → B, such that

(2.24) P ∼= F∆
B.

�

By the Yoneda Lemma, the representing functor is in fact unique up to quasi-isomorphism. We
shall need an additional result comparing composition of functors (see [51, Sections (1b) and
(1e)]) to the tensor product of bimodules. Recall the definition of the tensor product of A − B

and B− C bimodules P and Q. This is the A− C bimodule, denoted P ⊗
B

Q, which is given by

(2.25) (P ⊗
B

Q)(Z,X) =
⊕

{Y0,...,Yd}∈ObB

P (Yd, X)⊗B(Y0, · · · , Yd)⊗Q(Z, Y0),

with differential induced by the structure maps of P and Q as B modules (together with the
differential µ1

B), and higher operations induced by the remaining structure maps of P and Q as
bimodules (see [50, Equation (2.14)]).

Lemma 2.9. Let F : A → B and G : B → C be A∞ functors. There is a natural quasi-isomorphism
of bimodules

(2.26) F∆
B ⊗

B
G∆

C −→ G◦F∆
C.

Sketch of proof: The map from

B(X0, . . . , Xr)⊗B(Yd,FX0)⊗B(Y0, · · · , Yd)⊗ C(Zs,GY0)⊗ C(Zs, . . . , Z0)
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to C(Z0, (G ◦ F)Xr) is:

(2.27) (xr , . . . , x1, p, yd, . . . , y1, q, y1, . . . , ys) 7→
∑

(−1)⋄µk+e+s
C

(
Gje(xr, . . . , xr−je+1), . . . ,

. . . ,Gik+j1(xj1 , . . . , x1, p, yd, . . . , yd−ik+2), . . . ,G
i1(yi1 , · · · , y1), q, z1, . . . , zs

)
.

At the linear level, we may fix an object Z of C. Letting GYZ denote the pullback under G of
the left Yoneda module of Z, the above map is exactly the linear term in the natural map of left
B-modules

(2.28) ∆B ⊗
B

GYZ −→ GYZ

The result therefore follows from the fact that tensoring with the diagonal bimodule induces
a quasi-isomorphism of bimodules by the acyclicity of the bar complex (see for instance [22,
Proposition 2.2]). �

2.4. Formality for functors. If A and B are equipped with nc-vector fields bA and bB, we say
that F is pure if either ∆B

F or F∆
B is pure. This implicitly means that A and B are equipped

with pure equivariant structures and that the pullback of the diagonal bimodule is equipped with
a pure equivariant structure; we write ψA and ψB for the induced equivalences from HA to A

and HB to B. In Corollary 2.12 below, we prove that purity as a left or right bimodule are
equivalent conditions.

By Theorem 2.4, the pure equivariant structures on A and B induce quasi-equivalences of these
categories with their cohomological categories. We say that F is formal if there is an equivalence
of functors between HF and the composition

(2.29) HA
ψA // A

F // B
ψ−1

B // HB.

Lemma 2.10. The functor F is formal if and only if ∆B
F (or F∆

B) is formal as a bimodule.

Proof. The HB-HA bimodule ∆HB
HF which represents HF is canonically isomorphic to H

(
∆B

F

)
.

If F is formal, we conclude that the pullback of ∆B
F to an HB-HA bimodule is quasi-isomorphic

to its cohomological module, hence is formal. In the other direction, if ∆B
F is formal, we conclude

that the bimodules representing HF and the composition of F with the equivalences from A and
B to their cohomologies are quasi-isomorphic, hence the corresponding functors are equivalent
by the Yoneda Lemma 2.7. �

Proposition 2.11. F is pure if and only if it is formal.

Proof. We consider the case in which F∆
B is pure: by Lemma 2.6, the pullback of F∆

B to an
HA−HB-bimodule is formal, hence equivalent to HF∆

HB. The result follows from the fact that
the left-sided pullback defines a (cohomologically) fully faithful embedding from the category of
functors to the category of bimodules. �

One can formulate the above Lemma more precisely, by noting that a quasi-isomorphism from
HF to the composition in Equation (2.29) equips F with a pure structure, and that a pure
structure induces a quasi-isomorphism between these two functors.



10 MOHAMMED ABOUZAID AND IVAN SMITH

Corollary 2.12. If F∆
B is pure, so are ∆B

F and F∆
B
F , and vice-versa replacing left by right

sided pullbacks.

Proof. Purity implies formality of F, which implies formality of ∆B
F and F∆

B
F ; hence the existence

of a pure equivariant structures on these bimodules. �

Remark 2.13. By considering only the pure case, we avoided having to appeal to the follow-
ing result whose proof uses duality of bimodules: an equivariant structure on F∆

B induces an
equivariant structure on ∆B

F , and hence on F∆
B
F via the natural equivalence

(2.30) F∆
B ⊗

B

∆B
F → F∆

B
F .

Moreover, equipping the two-sided pullback with this equivariant structure, the natural map

(2.31) ∆A → F∆
B
F

of A − A-bimodules is equivariant. If F has an adjoint, cf. Section 2.5, this map gives rise to
the unit of the adjunction.

2.5. Adjunctions. Let F : A → B and G : B → A be A∞ functors. As before, denote by F∆
B

the A−B bimodule which is the pullback of the diagonal bimodule of B on the left by F, and by
∆A

G the A−B bimodule which is the pullback of the diagonal bimodule of A on the right by G.

Definition 2.14. An adjunction between F and G is an equivalence between F∆
B and ∆A

G as
A−B bimodules.

The equivalence between F∆
B and ∆A

G induces equivalences of A∞-bimodules

F∆
B
F
∼=F ∆B ⊗

B
∆B

F
∼= ∆A

G ⊗
B
∆B

F
∼= ∆A

G◦F(2.32)

∆B
F ⊗

A
F∆

B ∼= ∆B
F ⊗

A

∆A
G
∼= ∆B

F◦G.(2.33)

In particular, the natural maps

∆A → F∆
B
F(2.34)

∆B
F ⊗

A
F∆

B → ∆B(2.35)

induce maps called the unit and counit of the adjunction:

∆A → ∆A
G◦F(2.36)

∆B
F◦G → ∆B.(2.37)

Given that the category of functors embeds fully faithfully into the category of bimodules, we
conclude:

Lemma 2.15. An adjunction between F and G induces A∞-natural transformations

IdA → G ◦ F(2.38)

F ◦ G → IdB.(2.39)

�
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These maps are the unit and counit of the adjunction. Repeating the construction at the coho-
mological level, we obtain adjunctions:

IdHA → HG ◦HF(2.40)

HF ◦HG → IdHB.(2.41)

Proposition 2.16. If F is formal and is either left or right adjoint to G, then G is formal.
Moreover, the units and counits are formal; i.e. the unit and counit of the adjuction on HA and
HB are cohomologous (as A∞-natural transformations) to the pullback of the unit and counit on
A and B.

Proof. Using the homological perturbation lemma, it suffices to prove the result assuming that
A and B agree with their cohomology. In this case, we have a composite quasi-isomorphism

(2.42) ∆A
G
∼= F∆

B ∼= H(F)∆
B ∼= ∆A

H(G)

where the first map is the data of the adjuction, the second is the formality of F, and the last is
induced by the adjunction after passing to cohomology. This proves that G is formal.

To show that the unit of the adjunction is formal, we use the embedding of the category of
functors in the category of bimodules. We begin by noting that the compatibility of compositions
with natural transformations implies that the formality quasi-isomorphisms for F, G, induce a
formality quasi-isomorphism for their composite. Passing to bimodules, the compatibility of
compositions with tensor products yields a (homotopy) commutative diagram

(2.43) ∆B
F◦G

//

��

∆B
F ⊗

A
∆A

G

��
∆B
H(F)◦H(G)

// ∆B
H(F) ⊗

A

∆A
H(G).

Since the adjunction is represented by the composition

(2.44) ∆B
F◦G → ∆B

F ⊗
A

∆A
G → ∆B,

it thus suffices to compare the second map with the corresponding map of cohomological bimod-
ules. But this map was defined, using the data of the adjunction, via a factorisation

(2.45) ∆B
F ⊗

A
∆A

G → ∆B
F ⊗

A
F∆

B → ∆B.

This implies that the chosen equivalence ∆A
G

∼= ∆A
H(G) which we constructed above fits in a

commutative diagram

(2.46) ∆B
F ⊗

A

∆A
G

//

��

∆B
F ⊗

A
F∆

B //

��

∆B

��
∆B
H(F) ⊗

A
∆A
H(G)

// ∆B
H(F) ⊗

A
H(F)∆

B // ∆B,

where the bottom maps are cohomological. This proves formality of the unit, and a similar
argument yields formality of the counit. �



12 MOHAMMED ABOUZAID AND IVAN SMITH

3. Bimodules over Fukaya categories

This section collects geometric generalities in the spirit of [6, Section 3], but now concerning
bimodules. We recall the standing hypotheses of the prequel [6], whose notation and conventions
we adopt. We construct the Fukaya category in a slight generalisation of the framework intro-
duced by Seidel [51], that allows for clean intersections of Lagrangians by combining Floer theory
with Morse theory of auxiliary functions on intersections, as in Biran and Cornea’s “pearly tra-
jectories” [11]. This approach was implemented by Seidel in [52] and Sheridan in [58]. Depending
on the situation, we achieve compactness for moduli spaces of Floer holomorphic discs by one of
three mechanisms: by exactness; by using the existence of an effective compactification divisor at
infinity which is nef on rational curves; or from the existence of a holomorphic map to a bounded
domain in Cr, and maximum principle in the base coupled to exactness in the fibre.

This section is a direct extension of the results of [6, Section 3] from categories to bimodules,
and the reader will find a more leisurely exposition in the prequel.

3.1. Geometric set-up. The set-up introduced in [6] as a general setting for proving formality of

a Floer A∞-algebra had the following ingredients. We begin with a smooth projective variety ¯̄M
of complex dimension n, equipped with a triple of reduced (not necessarily smooth or irreducible)
effective divisors D0, D∞, Dr. We denote by M̄ the symplectic manifold obtained by removing

D∞ from ¯̄M , and by M the symplectic manifold obtained by removing the three divisors from
¯̄M . When the meaning is clear from context, we shall sometimes write D0 for D0 ∩ M̄ , and Dr

for both Dr ∩ M̄ and Dr ∩M . We assume:

Hypothesis 3.1.

the union D0 ∪ D∞ ∪ Dr supports an ample divisor D with strictly
positive coefficients of each of D0, D∞, Dr.

(3.1)

D∞ is nef (or, at least, non-negative on rational curves).(3.2)

M̄ admits a meromorphic volume form η which has simple poles along
D0 ∩ M̄ , and is holomorphic and non-vanishing away from this divisor
(in particular in M).

(3.3)

Each irreducible component of the divisor D0 ∩ M̄ moves in M̄ , with
base locus containing no rational curves.

(3.4)

To slightly clarify the hypotheses, in our examples the ample divisor in the first part will have
class Poincaré dual to the class n0D0 +n∞D∞ +nrDr with {n0, n∞, nr} ∈ R+; since the Di are
not assumed irreducible, one could also consider Kähler forms with class in the interior of the
positive cone spanned by the irreducible components of the Di. In the final part, the “moving”

hypothesis asserts that if D†
0 is an irreducible component of D0, the line bundle O(D†

0) →
¯̄M has

global holomorphic sections when restricted to M̄ , and that for any rational curve in D†
0 ∩ M̄

there is a holomorphic section of O(D†
0)|M̄ which is not identically zero on that curve. It may

be worth pointing out that, when this set-up is applied to the Milnor fibre in [6, Section 4], one

of the irreducible components of D0 is a curve of negative square which does not move on ¯̄M ; in
the sequel, we shall only use the existence of push-offs D′

0 of D0 on the open piece M̄ .

Remark 3.2. The third hypothesis strengthens (and corrects) the hypothesis of [6, Hypothesis
3.1], where we allowed the meromorphic volume form on M̄ to have zeroes (but not poles) on



KHOVANOV HOMOLOGY FROM FLOER COHOMOLOGY 13

Dr. In the two situations of relevance in [6], the stronger hypothesis holds. In the first, M
is a Milnor fibre, and Dr = ∅, so the situations become identical. In the second, M is the
nilpotent slice viewed as an open subvariety of the Hilbert scheme of a Milnor fibre, and Dr is
a relative Hilbert scheme. This is contained in the exceptional locus of the crepant Hilbert-Chow
morphism; the meromorphic volume form on the partially compactified Milnor fibre induces one
on its symmetric product, and this pulls back to one on the Hilbert scheme which has no zeroes (cf.
proof of [6, Lemma 6.3]). The stronger hypothesis is required for [6, Lemma 3.2], or equivalently
to conclude (3.5) below.

Remark 3.3. All the holomorphic curves that we study lie in M̄ , so that ¯̄M is only used to ensure
compactness for moduli spaces of stable discs in M̄ , via algebraic arguments such as positivity of
intersection. Any other method for ensuring compactness would achieve the same end, and our
use of this specific formalism is in great part due to the fact that we rely on many results and
constructions from [6]. At the end of this section (see Condition (3.18)), we introduce certain

domains M̊ ⊂M and ˚̄M ⊂ M̄ that were not needed in [6], but which will be required to compare
equivariant structures on different spaces.

Let D′
0 ⊂ M̄ be a divisor linearly equivalent to and sharing no irreducible component with D0,

and B0 = D0 ∩D′
0, which is then a subvariety of M̄ of complex codimension 2.

Fix a Kähler form ω ¯̄M in the cohomology class Poincaré dual to D. Ampleness implies that
M is an affine variety, in particular an exact symplectic manifold which can be completed to a
Weinstein manifold of finite type, modelled on the symplectization of a contact manifold near
infinity; see [48] for details. We will denote by λ a primitive of the symplectic form ωM given by
restricting ω ¯̄M to M , so dλ = ωM . By the third assumption above, M has vanishing first Chern

class; the fourth hypothesis then implies that for rational curves C ⊂ M̄ , there is an identity

(3.5) 〈c1(M̄), C〉 = 〈D0, C〉 ≥ 0.

Let A ∈ H2(M̄ ;Z) be a 2-dimensional homology class, with the property that

(3.6) 〈Dr, A〉 = 0 and 〈D0, A〉 = 1.

Consider the moduli space of stable rational curves in M̄ with one marked point

(3.7) M1(M̄ |1) =
∐

A∈H2(M̄ ;Z)
Condition (3.6) holds

M1;A(M̄)

which can be decomposed according to the homology class A ∈ H2(M̄ ;Z) represented by each

element. Let H lf
∗ (•;Z) denote the locally finite (or Borel-Moore) homology of a space •. The

evaluation image ev1(M1(M̄ |1)) defines a locally finite chain in M̄ , and hence by Poincaré duality
we obtain a well-defined associated Gromov-Witten invariant GW1 ∈ H2(M ;Z) counting such
curves (see [6, Lemma 3.6]).

Hypothesis 3.4.

GW1 =
∑

A

GW1;A|M = 0 ∈ H lf
2n−2(M ;Z) ∼= H2(M ;Z);(3.8)

B0 is homologous to a cycle supported on the union (D0 ∩Dr)∪D
sing
0 ,

where Dsing
0 denotes the singular locus of D0.

(3.9)
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Appealing to Hypothesis 3.4, we fix cochains

gw1 ∈ C1(M ;Z)(3.10)

β0 ∈ Clf2n−3(D0, (D0 ∩Dr) ∪D
sing
0 ;Z)(3.11)

satisfying

∂(gw1) = GW1(3.12)

∂(β0) = [B0].(3.13)

Let L ⊂ M denote an exact Lagrangian brane. Let ∆ denote the closed unit disc, R̄1
(0,1)(L)

denote the moduli space of Floer solutions comprising maps from (∆, ∂∆) to (M,L), with the
origin being the unique point mapping to D0, and a point on the interval (0, 1) ⊂ ∆ mapping
to D′

0 (the last condition imposes an additional real codimension one constraint). We assume
that perturbation data for the Floer equation is chosen as in [6, Section 3.4], so as in particular
to make the fibre product arising in (3.16) below transverse. By evaluation at 1, we obtain a
cochain

(3.14) b̃0D = ev∗[R̄
1
(0,1)(L)] ∈ C1(L;Z).

Consider also the moduli space

(3.15) R1
1(M̄ ; (1, 0)|L)

of discs in M̄ with boundary on L and one interior and one boundary marked point, with
intersection numbers (1, 0) with (D0, Dr); this has a natural map R1

1(M̄ ; (1, 0)|L) → M̄ via
evaluation at the interior marked point. We set

(3.16) co0(β0) = ev∗[β0 ×M̄ R1
1(M̄ ; (1, 0)|L)] ∈ C1(L;Z).

We recall from [6, Lemma 3.11] that the sum of the restriction of gw1 with b0D and co0β0 defines
a cycle

(3.17) b0D = b̃0D + gw1|L+ co0(β0) ∈ C1(L;Z).

A Lagrangian brane L is (infinitesimally) equivariant if the cycle in Equation (3.17) is null-
homologous. An (infinitesimally) equivariant structure on L, over k, is a choice of bounding
cochain in C0(L;k) for this cycle.

3.2. Restriction to subdomains. For our applications, we shall need to specify a domain
M̊ ⊂ M which will contain all Lagrangians of interest. It will be important to know not only
that stable curves in M which intersect M̊ are contained in M̊ , but that the same property holds

for curves in M̄ with respect to the closure ˚̄M of M̊ in M̄ .

To this end, we assume that

(3.18)
˚̄M ⊂ M̄ is a weakly pseudoconvex domain, i.e. a properly embedded codimension 0
submanifold whose boundary is defined by a weakly plurisubharmonic function.

In our applications, ˚̄M will be the inverse image of a domain in C under a holomorphic function
defined on M̄ .

In this setting, an integrated version of the maximum principle, see [4], implies:
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Lemma 3.5. If Σ is a stable Riemann surface with boundary, and u : Σ → M̄ a holomorphic map

mapping the boundary to ˚̄M , then the image of u is contained in ˚̄M . �

From this, we conclude that exact Lagrangians in M̊ are the objects of a Fukaya category F(M̊)

whose definition uses only curves that remain in M̊ , In particular, we have a fully faithful
embedding

(3.19) F(M̊) ⊂ F(M).

The equivariant structure on such Lagrangians depends only on curves in ˚̄M . More precisely, let

us denote by D
˚̄M
0 , D′,M̊

0 , BM̊ , and D
˚̄M
r the intersections of D0, D

′
0, B, and Dr with ˚̄M . Since

the embedding ˚̄M ⊂ M̄ is proper, the (relative) chains gw1 and β0 restrict to (relative) chains

gwM̊1 ∈ C1(M̊ ;Z), and βM̊0 ∈ Clf2n−3(D
˚̄M
0 , (D

˚̄M
0 ∩D

˚̄M
r ) ∪D

˚̄M,sing
0 ;Z).

From Equation (3.17) and Lemma 3.5, we conclude the following result:

Lemma 3.6. For each Lagrangian L ∈ M̊ , the obstruction b0D to equivariance depends only on

(i) the moduli space of stable holomorphic discs in M̊ and ˚̄M with boundary on L, and (ii) the

chains gwM̊1 and βM̊0 . In particular, it is independent of the inclusions ˚̄M ⊂ M̄ ⊂ ¯̄M . �

3.3. Bimodules from product Lagrangians. Consider two quasiprojective Kähler manifolds

M , N , with (partial) compactifications M ⊂ M̄ ⊂ ¯̄M and N ⊂ N̄ ⊂ ¯̄N by divisors D, DN each
satisfying Hypotheses 3.1 and 3.4, in particular DN is supported on the union of three divisors

DN
0 , DN

r , and DN
∞. Assume in addition that we are given weakly pseudo-convex domains ˚̄M ⊂ M̄

and ˚̄N ⊂ N̄ .

Let W be a quasiprojective Kähler manifold with a (partial) compactification W ⊂ W̄ ⊂ ¯̄W ,
equipped with an embedding

(3.20) ˚̄M × ˚̄N ≡ ˚̄W ⊂ W̄

which is compatible with the divisors in the sense that

D
˚̄W
0 = (D

˚̄M
0 × ˚̄N) ∪ ( ˚̄M ×D

˚̄N
0 )(3.21)

D
˚̄W
r = (D

˚̄M
r × ˚̄N) ∪ ( ˚̄M ×D

˚̄N
r ).(3.22)

We write πN for the projection from ˚̄W to ˚̄N . The domain ˚̄W admits embeddings in both ¯̄W

and ¯̄M × ¯̄N , but the resulting Fukaya category of Lagrangians in ˚̄W is independent of these

embeddings by Lemma 3.5, as is the equivariant structure on Lagrangians in W̊ ⊂ ˚̄W .

We shall assign a (F(W̊ )-F(M̊)) bimodule K to each Lagrangian brane K ⊂ N̊ . By construction,
this bimodule is representable, and hence corresponds to a functor on Fukaya categories. The
theory of pseudo-holomorphic quilts due to Mau-Wehrheim-Woodward [61, 33] could be used
to give a more general construction than the one we provide here, provided the relevant moduli
spaces of holomorphic curves with boundary on the correspondence behave well. We have avoided
using quilt theory because we would need to discuss the behaviour of the correspondence at the
boundary.
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Given objects L and L′ of F(M̊) and F(W̊ ), we choose a compactly supported Hamiltonian

(3.23) HL,L′ : [0, 1]× W̊ → R

whose flow maps L×K to a Lagrangian transverse to L′ and define

(3.24) K(L,L′) ≡ CF ∗(L×K,L′).

We shall write X(L×K,L′) for the set of intersection points of the time-1 image of L×K and L′,
so the vector space underlying the Floer complex is by definition the sum of the orientation lines
ox associated to points x ∈ X(L × K,L′). Note that, given our conventions for multiplication
from the right in Floer complexes, together with the usual conventions for bimodules as set out
in Section 2.2, this is indeed an F(W̊ )-left module and an F(M̊)-right module. To define the
structure maps of this A∞ bimodule, we introduce the moduli space

(3.25) Rr|1|s ≡ Rr+s+2

which is a copy of the interior of the Stasheff associahedron. Ordered counter-clockwise, the
marked points on the boundary of an element of Rr|1|s are denoted

(3.26) y0, z|s, . . . , z|1, y1, z1|, . . . , zr|.

This space admits a natural compactification with top dimensional boundary strata:
∐

1≤S≤R≤r

Rr−R+S|1|s × RR−S+2(3.27)

∐

1≤R≤r
1≤S≤s

Rr−R|1|s−S × RR|1|S(3.28)

∐

1≤R≤S≤s

Rr|1|s−S+R × RS−R+2.(3.29)

Here, the middle stratum corresponds to the case where the points y0 and y1 belong to different
components of the stable curve. These three degenerations are depicted in Figure 1.

Figure 1. Codimension one boundary facets to the moduli space Rr|1|s

On a given surface, the Floer data defining the pseudo-holomorphic curve equation comprise a
closed 1-form αΣ vanishing on the boundary and a family of Hamiltonians Hz on M̊ parametrised
by z ∈ Σ. If Xz is the Hamiltonian flow of Hz, the structure maps for the bimodule K are defined
by solutions to the family of inhomogeneous equations

(3.30) (du−Xz ⊗ αΣ)
0,1 = 0
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which are now parametrised by the universal family of punctured discs over Rr|1|s. We require all

the Hz to be compactly supported, and use the product complex structure on W̊ . Near y0 and y1,
the inhomogeneous term is induced by the function appearing in (3.23), near {zj||1 ≤ j ≤ r} by

the Hamiltonians used in F(W̊ ), and near {z|j|1 ≤ j ≤ s} by the pullbacks of the Hamiltonians

used in the definition of F(M̊) under the projection W̊ → M̊ .

More precisely, we first choose strip like ends {ǫj|j = 0, 1}, {ǫj||1 ≤ j ≤ r}, and {ǫ|j|1 ≤ j ≤ s}
near each of the punctures, which vary smoothly with respect to the modulus, and which are
compatible near the boundary with the data obtained from the boundary strata by gluing. The
strip-like ends are incoming at all punctures except y0, and outgoing at y0, i.e. modelled on Z+

at {y1, z|j, zi|} (respectively Z− at y0), where

(3.31) Z− = (−∞, 0]× [0, 1] and Z+ = [0,∞)× [0, 1]

The inhomogeneous data consist of a 1-form α on each punctured disc Σ in Rr|1|s, and a Hamil-
tonian Hz for each point z ∈ Σ. We require the pullback of α under each strip-like end to agree
with dt.

To state the conditions on the Hamiltonian, fix sequences (L0, . . . , Ls) and (Q0, . . . , Qr) of La-

grangian branes in M̊ and W̊ , i.e. objects of F(M̊) and F(W̊ ). We then require that3

Hǫ1(s,t) = HL0,Q0(t)(3.32)

Hǫ0(s,t) = HLs,Qr
(t)(3.33)

Hǫi|(s,t) = HQi−1,Qi
(t) 1 ≤ i ≤ r(3.34)

Hǫ|j(s,t) = HLj ,Lj−1(t) 1 ≤ j ≤ s.(3.35)

The Hamiltonians HQi−1,Qi
and HLj,Lj−1 are those which are respectively used in the defini-

tion of the Floer complexes CF ∗(Qi−1, Qi) and CF
∗(Lj , Lj−1); in the second case, we omit the

projection to M̊ from the notation. With these assumptions, finite energy solutions u of Equa-
tion (3.30), with boundary conditions given by L′

j and Lj × K have the following convergence
properties:

lim
s→+∞

u ◦ ǫ1(s, t) ∈ X(L0 ×K,Q0)(3.36)

lim
s→−∞

u ◦ ǫ0(s, t) ∈ X(Ls ×K,Qr)(3.37)

lim
s→+∞

u ◦ ǫj|(s, t) ∈ X(Qi−1, Qi) 1 ≤ i ≤ r(3.38)

lim
s→+∞

u ◦ ǫ|j(s, t) ∈ X(Lj , Lj−1)×K 1 ≤ j ≤ s.(3.39)

Note that the last of these properties is implied by the removal of singularities theorem [36].

Indeed, u◦ ǫ|j is the product of a solution to Floer’s equation on the half-strip with target M̊ and

boundary conditions Lj−1 and Lj, with an ordinary holomorphic equation with target N̊ and

boundary condition K. Oh’s removal of singularities [36] implies that the factor with target N̊
converges in the limit s→ +∞ to a point in K. (If there were no inhomogeneous perturbations,

exactness of K in N̊ would imply that the second factor was actually a constant disk.)

3We hope the use of s as an index for boundary marked points on disks and as a co-ordinate on the strip
R× [0, 1] and hence for the Hamiltonians will cause no confusion.
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L’

L’0

L0 x K

L’r

s x KL

1

Figure 2. Boundary conditions for the bimodule count

With this in mind, given chords

m0 ∈ X(Ls ×K,Qr)(3.40)

m1 ∈ X(L0 ×K,Q0)(3.41)

yi| ∈ X(Qi−1, Qi) 1 ≤ i ≤ r(3.42)

x|j ∈ X(Lj, Lj−1), 1 ≤ j ≤ s(3.43)

we define the moduli space

(3.44) Rr|1|s(m0; yr|, . . . , y1|,m1, x|1, . . . , x|s)

to be the space of maps

(3.45) u : Σ → W̊ ,

for Σ ∈ Rr|1|s with boundary segments mapping counter clockwise to

(3.46) (Ls ×K, . . . , L0 ×K,Q0, . . . , Qr)

and asymptotic conditions along the ends given by the chords in Equations (3.40)-(3.43), cf.
Figure 2. More precisely, near the puncture z|j , we require that

(3.47) lim
s→+∞

πM̊ ◦ u ◦ ǫ|j(s, t) = x|j(t)

where π is the projection from W̊ to M̊ . In particular, for each integer 1 ≤ j ≤ s, we have
natural evaluation maps

(3.48) ev|j : Rr|1|s(W̊ |m0; yr|, . . . , y1|,m1, x|1, . . . , x|s) → K.

For generic choices of Floer data, the domain of (3.48) is a smooth manifold of dimension

(3.49) deg(m0) + r + s− 1− deg(m1)−
s∑

j=1

deg(xj)−
r∑

i=1

deg(yi),

and, having fixed brane data on all Lagrangians, it is naturally oriented relative to the orientation
lines of the input and output chords. If

(3.50) deg(m0) = deg(m1) +

s∑

j=1

deg(xj) +

r∑

j=1

deg(yi)− r − s+ 1,

one therefore naturally associates to u ∈ Rr|1|s(W̊ |m0; yr|, . . . , y1|,m1, x|1, . . . , x|s) a map

(3.51) oyr| ⊗ · · · ⊗ oy1| ⊗ om1 ⊗ ox|1
⊗ · · · ⊗ ox|s

→ om0 .
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Taking the sum over all such pseudo-holomorphic curves u, for all collections of chords satisfying
Equation (3.50), we obtain the structure maps of K as an A∞-bimodule

(3.52)
µ
r|1|s
K

: CF ∗(Qr−1, Qr)⊗ · · · ⊗ CF ∗(Q0, Q1)⊗K(L0, Q0)

⊗CF ∗(L1, L0)⊗ · · · ⊗ CF ∗(Ls, Ls−1) −→ K(Ls, Qr).

To check that these operations satisfy the A∞-relation, we assume that the Floer data are compat-
ible with the boundary decomposition in Equations (3.27)-(3.29) of the moduli spaces of domains.
For the first stratum, this means that the component that lies in RR−S+2 carries the data used
in the definition of F(W̊ ), while for the third stratum, the component that lies in RS−R+2 carries

the product of the data used in the definition of F(M̊) with the (homogeneous) holomorphic curve

equation with target N̊ . The strata of the moduli space R̄r|1|s(W̊ |m0; yr|, . . . , y1|,m1, x|1, . . . , x|s)
of virtual codimension 1 are

(3.53)

∐

1≤S≤R≤r
y∈X(QS−1,QR)

Rr−R+S|1|s(W̊ |m0; yr|, . . . , yR+1|, y, yS−1|, . . . , y1|,m1, x|1, . . . , x|s)

× RR−S+2(W̊ |y; yR|, y, yS|)

(3.54)

∐

1≤R≤r
1≤S≤s

m∈X(LS×K,QR)

Rr−R|1|s−S(W̊ |m0; yr|, . . . , yR+1|,m, x|S+1, . . . , x|s)

×RR|1|S(W̊ |m; yR|, . . . , y1|,m1, x|1, . . . , x|S)

(3.55)

∐

1≤R≤S≤s
x∈X(LS,LR−1)

Rr|1|s−S+R(W̊ |m0; yr|, . . . , y1|,m1, x|1, . . . , x|R−1, x, x|S+1, . . . , x|s)

×RS−R+2(M̊ |x;x|R, . . . , x|S).

The last stratum can be more formally described as the fibre product

(3.56)
Rr|1|s−S+R(W̊ |m0; yr|, . . . , y1|,m1, x|1, . . . , x|R−1, x, x|S+1, . . . , x|s)ev|R

×π
N̊(

RS−R+2(M̊ |x;xR, x, xS)×K
)
.

Indeed, the space of maps from elements of RS−R+2 to W̊ that we are considering splits as the
product of RS−R+2(M̊ |x;xR, y, xS) with holomorphic discs with boundary on K. Since K is an
exact Lagrangian, all such latter curves are constant. Since the fibre product in Equation (3.56)
is taken over K, we can remove this factor from the right side, and obtain Equation (3.55).

Since constant discs are regular, and the data defining RS−R+2(M̊ |x;xR, x, xS) are regular (part
of the hypotheses that they could be used to define the Fukaya category), the right factor in
Equation (3.56) is also regular. Proceeding by induction on the value of the sum r + s, we
conclude:

Lemma 3.7. For generic choice of Floer data,

(3.57) R̄r|1|s(W̊ |m0; yr|, . . . , y1|,m1, x|1, . . . , x|s)
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is a compact 1-dimensional manifold with boundary whenever

(3.58) deg(m0) = deg(m1) +

s∑

j=1

deg(xj) +

r∑

i=1

deg(yi)− r − s+ 2.

Its boundary strata are given by Equations (3.53)-(3.55). �

We now note that the stratum (3.53) corresponds to the first term in Equation 2.12, the stratum
(3.54) to the second term, and (3.55) to the last term. We omit the discussion of signs, which
is essentially the same as those for the usual A∞-relations in the Fukaya category; the details
appear for instance in [22]. It follows that K does indeed define an A∞-bimodule. We will refer to
a bimodule K defined from a fixed Lagrangian brane K in this way as an elementary bimodule.

Finally, we note that, fixing an object L of F(M̊), the module over F(W̊ ) obtained by considering
K(L ×K, ) is quasi-isomorphic to the Yoneda module of L ×K. Appealing to Lemma 2.8, we
conclude that there is a functor

(3.59) F(M̊) −→ F(W̊ ),

unique up to quasi-isomorphism, which represents K. Composing with the embedding of W̊ into
W , we obtain:

(3.60) FK : F(M̊) −→ F(W ).

3.4. Equivariance for elementary bimodules. We continue in the setting of the previous
section, in particular assuming Hypothesies 3.4. We have explained that, by counting Maslov
index two discs with two interior marked points, constrained to a half-line and meeting D0

and D′
0, this allows us to construct a cycle b0D ∈ C1(L;Z), the vanishing of which amounts to

existence of an equivariant structure on the brane L. [6, Sections 3.5–3.9] explain that, given a
choice of cochain cL with dcL = b0D for each object L in (a subcategory of) F(M), by further
considering moduli spaces of Maslov index two discs with two interior marked points and any
number of boundary marked points, and with boundary constraints given by the cycles cL and
the chains appearing in Hypothesis 3.4, one can construct the higher order terms of a nc-vector
field b ∈ CC1(F(M),F(M)), with b0M = b0D. We refer to [6] for the details of the construction.

Restricting to M̊ , we obtain an nc-vector field on the Fukaya category of M̊ , which, by Lemma

3.5, only depends on data defined on M̊ and ˚̄M .

Suppose, then, we have nc-vector fields bM̊ ∈ CC1(F(M̊),F(M̊)) and bN̊ ∈ CC1(F(N̊),F(N̊)),
and bW ∈ CC1(F(W ),F(W )) induced by choosing bounding cochains

gwM̊1 ∈ C1(M̊ ;Z) βM̊0 ∈ C1(D
˚̄M
0 \ (D

˚̄M
0 ∩D

˚̄M
r ) ∪DM̊,sing

0 ;Z)(3.61)

gwN̊1 ∈ C1(N̊ ;Z) βN̊0 ∈ C1(DN̊
0 \ (D

˚̄N
0 ∩D

˚̄N
r ) ∪D

˚̄N,sing
0 ;Z)(3.62)

gwW1 ∈ C1(W ;Z) βW0 ∈ C1(DW
0 \ (DW

0 ∩DW
r ) ∪DW,sing

0 ;Z)(3.63)

For the bounding cochains on W , we assume that our chosen push-off of DW
0 is given, in ˚̄W , by

D′, ˚̄W
0 = (D′, ˚̄M

0 × ˚̄N) ∪ ( ˚̄M ×D′, ˚̄N
0 ).(3.64)
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We write gwW̊1 and βW̊0 for the restrictions to W̊ , and assume that we have equalities

gwW̊1 = gwM̊1 × [N̊ ] + [M̊ ]× gwN̊1 ∈ C1(M̊ × N̊ ;Z)(3.65)

βW̊0 = βM̊0 × [ ˚̄N ] + [ ˚̄M ]× gwN̊1 ∈ C1(DW̊
0 \ (DW̊

0 ∩DW̊
r ) ∪DW̊ ,sing

0 ;Z)(3.66)

where the fundamental cycles are defined by taking the sum of all top-dimensional simplices for
a chosen triangulation.

Remark 3.8. It would be sufficient to assume that gwW̊1 and βW̊0 differ by a boundary from the
product chains, but this would complicate the discussion by introducing more notation.

Let us now, in addition, assume that K is equivariant with respect to bN̊ over the field k. In
particular, we fix a cochain

(3.67) cK ∈ C0(K;k)

whose boundary is

(3.68) b0N + gwN̊1 |K + co0(βN̊0 ) ∈ C1(K;k).

For k ≥ 0, let Rk+1
(0,1) denote the moduli space of domains comprising the disc ∆

(1) with two marked points z0 = 0 and z1 ∈ (0, 1), and
(2) with k+1 boundary punctures at p0 = 1 ∈ ∂∆ and points {p1, . . . , pk} ⊂ ∂∆\{1} ordered

counter-clockwise.

It is important to note that the point 1 will play the role of an output, while the points pi will
correspond to inputs. Introduce the moduli spaces

(3.69) R
r|1|s
(0,1)

∼= R
r+s+2
(0,1) ,

where the marked points on the boundary are labelled as in Equation (3.26). We can describe
the boundary of these moduli spaces exactly as in Section 3.3, except that it is more important
to keep track of the position of the marked point y1. In particular, the strata in Equations (3.27)
split as

∐
R
r−R+S|1|s
(0,1) × RR−S+2(3.70)

∐
R
r−R|1|s−S
(0,1) × RR|1|S(3.71)

∐
R
r|1|s−S+R
(0,1) × RS−R+2(3.72)

while the boundary strata in Equation (3.29) split as
∐

Rr−R+S|1|s × RR−S+2
(0,1)(3.73)

∐
Rr−R|1|s−S × R

R|1|S
(0,1)(3.74)

∐
Rr|1|s−S+R × RS−R+2

(0,1)(3.75)

Given sequences (L0, . . . , Ls) and (Q0, . . . , Qr) of Lagrangian branes in M̊ and W̊ , and chords
as in Equations (3.40)-(3.43), we obtain a moduli space

(3.76) R
r|1|s
(0,1)(m0; yr|, . . . , y1|,m1, x|1, . . . , x|s)
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of maps u whose source lies in R
r|1|s
(0,1), with boundary conditions as in Figure 2 and such that

(3.77) u(z0) ∈ D0 and u(z1) ∈ D′
0.

These moduli spaces define a cochain

(3.78) c̃K ∈ EB,A(K)

whenever A ⊂ F(M̊) and B ⊂ F(W̊ ) are subcategories of the Fukaya categories of M̊ and

W̊ containing the branes Lj respectively Qi. In order to produce a cycle, we must add the

contributions coK(βW̊0 ) and COK(gwW̊1 ) which are defined in analogy with the corresponding
structures at the level of categories; here COK is the open-closed map

COK : C∗(W̊ ;k) −→ EB,A(K)

which is induced from the usual open-closed map of W̊ . In addition, we define an operator

(3.79) ν(cK) ∈ EB,A(K)

by counting the moduli spaces

(3.80) R
r|1|s
(0,1)(m0; yr|, . . . , y1|,m1, x|1, . . . , x|s)ev|R

×K cK

(where R varies). Here, cK is represented by a cycle in K, e.g. in terms of descending manifolds
of critical points of a Morse function.

With this in mind, we define

(3.81) cK ≡ c̃K + coK(βW̊0 ) + COK(gwW̊1 ) + ν(cK) ∈ EB,A(K).

Proposition 3.9. The cochain cK defines an equivariant structure on K.

Sketch of proof. The reader may wish to compare to the corresponding assertion in [6, Proposi-
tion 3.20]. We must verify Equation (2.15), and identify the boundary strata of the moduli spaces
with the terms in this equation. We discuss the essential part of the computation, neglecting the
contributions of the maps CO and co which are straightforward adaptations of the situation for
categories discussed in the prequel.

First, we use the embedding ˚̄W ⊂ ¯̄M × ¯̄N to see that all moduli spaces of stable discs that we
are considering are compact. The left hand side of Equation (2.15) corresponds to the boundary
stratum of Rr+s+1

(0,1) given in Equations (3.70)-(3.72) and Equation (3.75). The two terms on the

right hand side of Equation (2.15) respectively correspond to the boundary strata in Equations

(3.73) and those in Equation (3.75) for which the map on the factor RS−R+2
(0,1) is constant in the

factor N̊ . If the map is not constant in this factor, then we obtain

(3.82) R
r|1|s
(0,1)(m0; yr|, . . . , y1|,m1, x|1, x|s)ev|R

×K R1
(0,1)(K).

In the absence of contributions from the maps co and CO, this is precisely the boundary of the
moduli space in Equation (3.80), and it is accounted for by the term ν(cK) in Equation (3.81). �
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3.5. Purity for elementary bimodules. We now further suppose that:

Hypothesis 3.10. The nc-vector field bM is pure on A ⊂ F(M̊), and K ∈ F(N̊) is pure.

Denote by B = A×{K} the full subcategory of F(W̊ ) comprising objects of the form L′ = L×K,
for L ∈ A. The brane K defines an elementary (B−A)-bimodule K, as in the previous section.

Lemma 3.11. Assuming Hypothesis 3.10, cK defines a pure equivariant structure on K.

Proof. After unwinding definitions, this is a repackaging of the Künneth theorem in Floer coho-
mology. Let Li ∈ A, for i = 1, 2, and let L′

i = Li×K ∈ B ⊂ F(N̊). By choosing the Hamiltonian

perturbation in Equation (3.23) to be the sum of the Hamiltonians on M̊ and N̊ , we obtain an
isomorphism of cochain complexes

(3.83) K(L1, L
′
2) ≡ CF ∗(L1, L2)⊗ CF ∗(K,K).

The equivariant structure cK, together with the given nc-vector fields on A and B, yields an
endomorphism of the cochain complex K(L1, L

′
2) via (2.16). By forcing all equations to split,

our choices of auxiliary data ensure that this endomorphism also splits as a sum

(3.84) id⊗ b1N + b1M ⊗ id ∈ Aut(K(L1, L
′
2)).

Purity for cK therefore follows from purity for b1N and b1M . �

Corollary 3.12. The Künneth functor FK : A → B of (3.60) is formal relative to the formality
quasi-isomorphisms A ∼= HA and B ∼= HB induced by the equivariant structures on A and B.

Proof. This follows from the discussion before Proposition 2.11 together with Lemma 3.11. �

4. Cup bimodules

4.1. The Milnor fibre and the Hilbert scheme. Let A2n−1 denote the Milnor fibre
{
x2 + y2 +

2n∏

i=1

(z − i) = 0

}
⊂ C3

equipped with the restriction of the standard Kähler form from C3. This is the total space of
a Lefschetz fibration (from projection π to the z-plane) with nodal fibres over {1, 2, . . . , 2n}.

The Hilbert scheme of n points Hilb[n](A2n−1) contains a distinguished divisor Drel which is the
“relative Hilbert scheme” of the projection to the z-plane. (This is a minor abuse of notation,
initiated in the prequel, which comes from the fact that when n = 2, Drel is closely related
to the relative second symmetric product of that projection.) More precisely, the inclusion
C[z] ⊂ C[x, y, z] yields an inclusion

R = C[z] ∼= C[z]/(C[z] ∩ 〈x2 + y2 +

2n∏

i=1

(z − i)〉) ⊂ C[x, y, z]/〈x2 + y2 +

2n∏

i=1

(z − i)〉 = O(A2n−1)

and hence an ideal I ⊂ O yields an ideal I ∩ R ⊂ R, which we regard as the projection of the
subscheme O/I under projection A2n−1 → Cz. The scheme R/(I ∩R) has length at most n, and
we define Drel to comprise the ideals I for which it has length < n. When n = 2, the relative
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Hilbert scheme is in fact smooth, being a desingularisation of the relative second symmetric
product of the fibration over Cz. Note that there are subschemes supported on a single fibre which
do not lie in the relative Hilbert scheme: for instance, any length two subscheme supported at a
smooth point of a fibre with infinitesimal tangent direction not tangent to the fibre. The definition
of the relative Hilbert scheme, in our sense, extends naturally to fibred surfaces Z → B which

are not globally affine: it is straightforward to define Dn=2
rel ⊂ Hilb[2](Z) by the interpretation as

a desingularised relative symmetric product, and we can define the divisor Drel for larger n to

be the image of the natural map Dn=2
rel ×Hilb[n−2](Z) → Hilb[n](Z).

Let Yn ⊂ Hilb[n](A2n−1) denote the open subset of the Hilbert scheme given by removing the
relative Hilbert scheme (as defined above). By Manolescu’s work [32], this is holomorphically
isomorphic to the Springer fibre appearing in [56] (see Section 5.2). We equip Yn with an
exact Kähler form which is product-like (induced from the product form on An2n−1) outside an
arbitrarily small neighbourhood of the diagonal.

Let p : Bl0(C
2) → C2 denote the blow-up at the origin. The composition of this with the trivial

projection C2 → C, (x, y) 7→ x, is a Lefschetz fibration. Indeed, Bl0(C
2) = {((x, y), [z : w]) ∈

C2 × P1 |xw = yz} and in the chart w = 1 the map becomes {x = yz} 7→ Cx, which is just a
presentation of the usual Lefschetz singularity. It follows that the blow-up Z of P1 × P1 at 2n
points lying along a fixed section of the trivial projection P1 × P1 → P1 is a Lefschetz fibration

with 2n singular fibres, which we may view as a compactification ¯̄A2n−1 of the Milnor fibre.
Z contains divisors defined by sections s0, s∞ of its Lefschetz fibration structure over P1 (one
of which is the proper transform of the section that was blown up, the other coming from a
disjoint section) and a smooth fibre F∞ at infinity. We will write Ā2n−1 for the properification
of A2n−1 → C which is the complement of F∞ ⊂ Z; this admits a Lefschetz fibration over C with
general fibre P1 and 2n reducible fibres P1 ∨ P1. In the notation of Section 3.1:

• The projective variety is ¯̄M = Hilb[n](Z).
• D0 is the divisor of subschemes whose support meets s0 ∪ s∞ in Z.
• D∞ is the divisor of subschemes whose support meets F∞.

• Dr ⊂
¯̄M is the relative Hilbert scheme in the sense defined above.

The previous discussion implies that M = Yn and M̄ = ¯̄M\D∞ = Hilb[n](Ā2n−1). By taking
push-offs of the sections s0, s∞ in Z\F∞ one obtains the linearly equivalent divisor D′

0. When
we consider bimodules over products Yn × Yn−1 we compactify each factor as above. That
Hypotheses 3.1 and 3.4 hold for these choices (in particular vanishing of the Gromov-Witten
invariant GW1 in this situation) is proved in [6, Section 6], which also gives an explicit choice of
bounding cochain gw1. For the strengthened version of Hypothesis 3.1 part (3), cf. Remark 3.2,
the fact that the holomorphic volume form on the Hilbert scheme has no zeroes or poles on Dr

follows from the explicit formula for the volume form given in [9, p.766].

4.2. Crossingless matchings. Any path γ between critical values of A2n−1 → C defines a
Lagrangian matching sphere, so an n-tuple of pairwise disjoint paths ℘ which join the critical
points in pairs defines a Lagrangian submanifold L℘ ∼= (S2)n ⊂ Yn. The “Markov I” move of [56,
Lemma 48] implies that one can slide any arc of ℘ over any other arc (keeping the end-points
fixed) without changing the Hamiltonian isotopy class of the associated Lagrangian submanifold
L℘, even though the corresponding isotopy necessarily passes through the diagonal locus in the
Hilbert scheme (where the Kähler form is not product-like).
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Definition 4.1. The symplectic arc algebra Hsymp
n is the graded algebra ⊕℘,℘′HF ∗(L℘, L℘′),

where ℘, ℘′ run over the set of upper-half-plane crossingless matchings in C. The cochain level
A∞-algebra will be denoted CHsymp

n .

Since Yn is exact and convex at infinity, and the Lagrangians L℘ are simply-connected (hence
exact), Floer cohomology is defined unproblematically. The Lagrangians L℘ are orientable and

admit unique spin structures, so one can work in characteristic zero. There are 1
n+1

(
2n
n

)
upper

half-plane matchings, so the underlying graded algebra ofHsymp
n is a finite-dimensional k-algebra.

In fact c1(Yn) = 0 and the Lagrangians L℘ have vanishing Maslov class, hence admit gradings
in the sense of [46]. Any choice of gradings for the L℘ equips the graded algebra Hsymp

n with
an absolute Z-grading. There is no obvious preferred choice of grading, and indeed two distinct
gradings will be important in the argument: one which is “symmetric”, which is useful for purity,
discussed in Section 4.4; and one which is concentrated in even degrees, introduced in Section
5.3, which is useful for controlling signs in the cohomological algebra.

For an upper-half-plane crossingless matching ℘, we will denote by ℘̄ its reflection into the
lower half-plane. An iterative application of the Markov I move shows that L℘ is Hamiltonian
isotopic to L℘̄. For any upper half-plane matchings ℘, ℘′, the Lagrangians L℘ and L℘̄′ meet
transversely. As shown in [6, Section 4.5], the mod 2 degrees of all intersection points co-incide,
so the Floer differential in CF ∗(L℘, L℘̄′) vanishes identically. (As noted above, we will introduce
a different grading on the symplectic arc algebra in Section 5.3; in the current situation, the
Floer differential vanishes because the relevant moduli spaces are empty, and hence vanishes for
any choice of grading.) There is therefore a vector space isomorphism

Hsymp
n

∼=
⊕

℘,℘′

CF ∗(L℘, L℘̄′).

As a relatively graded group, CF ∗(L℘, L℘̄′) ∼= H∗(S2)⊗c(℘,℘
′), where c(℘, ℘′) is the number of

components of the planar unlink ℘ ∪ ℘̄′, see [6, Proposition 5.12].

4.3. Reduction to a basic case. We will say that crossingless matchings ℘, ℘′ of 2n points
meet in codimension k, or that the corresponding Lagrangian submanifolds have that property,
if HF ∗(L℘, L℘′) ∼= H∗(S2)⊗(n−k) has real rank 2n− 2k. (The terminology is inherited from the
structure of the “compact core” of the quiver variety underlying Yn, cf. Lemma 5.2.) Thus, in
general, ℘ and ℘′ meet in codimension n− c(℘, ℘′). The following is then manifest:

Lemma 4.2. The matchings ℘ and ℘′ meet in codimension zero if and only if ℘ = ℘′, and meet
in codimension one if and only if ℘ and ℘′ share exactly n− 2 arcs. �

If ℘ and ℘′ meet in codimension one, then, for any crossingless matching ℘′′, the codimension of
their intersection with ℘′′ differs by one, i.e.

(4.1) c(℘, ℘′′) = c(℘′, ℘′′)± 1.

The following result asserts that there is a way of interpolating between any two crossingless
matchings so that the codimensions form a monotone sequence.

Lemma 4.3. For any pair of crossingless matchings ℘0, ℘k which meet in codimension k, there
is an interpolating sequence

℘0, ℘1, . . . , ℘k
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such that ℘i and ℘i+1 meet in codimension one, ℘0 and ℘i in codimension i, and ℘i and ℘k in
codimension k − i.

Proof. The proof is by induction on the the codimension. In the inductive step, we pick any arc
in ℘k which does not lie in ℘i; we define ℘i+1 to be the unique matching containing this arc
which meets ℘i in codimension 1 (this process is illustrated in Figure 3). �

Figure 3. Interpolating crossingless matchings by ones which intersect in codi-
mension one

Since CF ∗(L℘, L℘̄′) ∼= H∗(S2)⊗c(℘,℘
′

) as a relatively graded group, there is a well-defined rank
one subspace

(4.2) kmin(℘, ℘
′) ⊂ CF ∗(L℘, L℘̄′) ⊂ Hsymp

n

which is spanned by any minimal degree generator. This subspace does not depend on the choice
of graded structures on the Lagrangians.

Lemma 4.4. Let ℘, ℘′ and ℘′′ be crossingless matchings such that ℘ and ℘′ meet in codimension
one. Suppose moreover that c(℘, ℘′′) = c(℘′, ℘′′)− 1. Then the Floer product

kmin(℘
′, ℘′′)⊗ kmin(℘, ℘

′) −→ kmin(℘, ℘
′′)

is non-trivial.

Proof. This follows from Lemma 5.20 in conjunction with Lemma 5.19, which together give
an explicit plumbing model for the relevant Floer product. One can also give a direct proof.
Lemma 4.2 implies that ℘ and ℘′ share n− 2 arcs, and the remaining two arcs belong to distinct
components of ℘′ ∪ ℘′′ but the same component of ℘ ∪ ℘′′. Place ℘′′ in the lower half-plane
and ℘, ℘′ in the upper half-plane. The minimal degree generator for CF ∗(L℘, L℘′) comprises the
odd intersection points if the critical points are labelled {1, . . . , 2n}. One sees that the constant
triangle is a solution; that it is then regular follows from the fact that the triple of arcs at each
intersection point in the A2n−1-surface has the correct cyclic order, compare to [6, Figure 14 &
Lemma 5.18]. Since the Lagrangians are exact, the area of any contributing holomorphic triangle
is determined by the actions of the isolated intersection points, which implies that the constant
triangle is then the only contribution to the product. �
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4.4. Purity of the symplectic arc algebra. We summarise the main result of [6]. Certain of
the Lagrangian submanifolds L℘ have a special role.

• The Lagrangian associated to the crossingless matching comprising a sequence of adjacent
arcs joining the critical values in pairs {1, 2}, {3, 4}, . . . , {2n− 1, 2n} is denoted L℘plait

;
this is the plait matching.

• The Lagrangian associated to the crossingless matching comprising a sequence of nested
arcs joining the critical values in pairs {1, 2n}, {2, 3}, . . . , {2n − 2, 2n − 1} is denoted
L℘mix ; this is the mixed matching.

Figure 4. The plait (left) and mixed (right) matchings of 2n points.

Proposition 4.5. [6] For any ℘, ℘′, the Floer cohomology HF ∗(L℘, L℘′) is a cyclic module,
generated by kmin(℘, ℘

′), over each of HF ∗(L℘, L℘) and HF
∗(L℘′ , L℘′). Furthermore, the rank

one subspace of HF ∗(L℘, L℘′) of largest cohomological degree lies in the image of the product

(4.3) HF ∗(L℘plait
, L℘′)⊗HF ∗(L℘, L℘plait

) −→ HF ∗(L℘, L℘′).

�

Given a grading on the plait Lagrangian L℘plait
, there is a unique grading on each match-

ing Lagrangian L℘ so that HF ∗(L℘plait
, L℘) is symmetrically graded in the sense that the

groups HF ∗(L℘, L℘plait
) and HF ∗(L℘plait

, L℘) are supported in the same range of degrees n −
c(℘, ℘plait) ≤ ∗ ≤ n+ c(℘, ℘plait).

The Gromov-Witten invariant GW1 ∈ H∗(Yn) is proved to vanish in [6]; since the L℘ are simply-
connected, it follows that they admit equivariant structures (relative to the nc-vector field con-

structed from counting discs in the compactification ¯̄M). Given a choice of brane structures on
the Lagrangians (which fix absolute gradings on Floer cohomology groups), we wish to choose
these equivariant structures so that the weight gradings enjoy the same symmetry as the coho-
mological gradings.

Theorem 4.6. [6] For any choice of equivariant structure on L℘plait
, there are unique equivariant

structures on the Lagrangians L℘ such that CHsymp
n is pure. �

By Theorem 2.4, we obtain a fixed quasi-equivalence between CHsymp
n and its cohomological

graded algebra, which is Hsymp
n .

4.5. Some elementary bimodules. Consider Yn ⊂ Hilb[n](A2n−1), with z : A2n−1 → C having
critical values at {1, 2, . . . , 2n} ⊂ C. A choice of domain U ⊂ C yields subdomains A2n−1|U ⊂
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(Ā2n−1)|U , by restricting z : A2n−1 → C and its properification Ā2n−1 → C to U , and hence
yields an open subset

˚̄M = M̄ |U = Hilb[n]((Ā2n−1)|U ).

Analogously, one can consider loci in the Hilbert scheme of n-tuples of points in Ā2n−1 precisely
one of which is required to lie over U and the remainder over a disjoint open set U ′ ⊂ C\U ,
which brings one into the setting studied in Section 3.3 with product-like embeddings

(Ā2n−1)|U ×Hilb[n]((Ā2n−1)|U ′) = ˚̄M × ˚̄N = ˚̄W

in an obvious notation.

We now specialise the general discussion to the particular setting of interest. Let U i ⊂ A2n+1

be the z-preimage a 2-disk z(U i) ⊂ C encircling the (i, i + 1)-critical values, so U i retracts to
a Lagrangian 2-sphere Li ⊂ A2n+1. See Figure 5. Let (U i)′ ⊂ A2n+1 denote the corresponding
z-preimage for the larger open disk of Figure 5, which encircles all the other critical values. For
each 1 ≤ i ≤ 2n, let Yin ⊂ Yn+1 = Mn+1 denote the open set M̊n+1 associated to the open disc
z((U i)′) ⊂ C, i.e. the open subset with quasiconvex boundary defined by the subschemes whose
support lies in (U i)′ ⊂ A2n+1. There is an obvious inclusion

(4.4) U i × Yin →֒ Yn+1.

1 2k2k−1i+2i+1ii−12

Figure 5. Subsets of the base of the A2k−1-surface.

Lemma 4.7. There is a distinguished equivalence F(Yin) → F(Yn).

Proof. A deformation of an open domain Ut ⊂ C for which no critical point of the fibration
A2n−1 → C crosses ∂Ut at any time t induces a deformation of pairs (M̄, M̄ |Ut

), i.e. one has

a family of codimension zero subdomains ˚̄M(Ut) := M̄ |Ut
⊂ M̄ which all have pseudoconvex

boundary. Counting continuation solutions inside M̄ yields equivalences between the categories

F( ˚̄M(Ut)) for different parameter values t.

In the case at hand, we move the (i, i+1)-critical point pair towards infinity and then deform the
subdisk defining (U i)′ ⊂ A2n+1 to a standard disk in the base Cz over which Ā2n−1 fibres. This
deformation of quasiconvex subdomains of (compactified) Milnor fibres induces a deformation

of the corresponding quasiconvex subdomains ˚̄M of Hilbert schemes. These yield the required
quasi-isomorphisms F(Yn) ≃ F(Yin). �

The inclusion Yin × U i ⊂ Yn+1 is not an equality, and ¯̄Yn+1 does not co-incide with the product

compactification ¯̄Yin ×
¯̄
U i. However, there is an embedding of partial compactifications (comple-

ments of the divisors of subschemes supported on the fibres over ∞ ∈ P1)

(4.5) Y
i

n × Ū i → Yn+1
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coming from the subset of the Hilbert scheme of Ā2n+1 of subschemes with a length one subscheme
supported over U i and a length n subscheme over (U i)′. This embedding of partial compactifica-
tions is compatible with the divisors D0, Dr at infinity, which is exactly the situation considered

in Section 3.3 in the general discussion of product embeddings ˚̄M × ˚̄N = ˚̄W .

It follows that, via the inclusion Yn+1 ⊃ Yin × U i, and the identification Yin
∼= Yn of Lemma 4.7,

the Lagrangian sphere Li ⊂ U i defines an elementary (F(Yn+1),F(Yn))-bimodule. By Lemma
2.8, there is a corresponding functor

∪i : F(Yn) −→ F(Yn+1)

which we call ∪i.

4.6. Cup functors are formal. The theory of Section 3.5 defines an equivariant structure
on ∪i. It remains to prove that it is in fact pure, and hence formal. We separate out cases
depending on the parity of the index i at which we include the new component of the matching
when applying ∪i.

Lemma 4.8. If i is odd, the cup functor ∪i is formal.

Proof. Let CHsymp
n+1,i denote the subcategory of CHsymp

n+1 corresponding to crossingless matchings

containing the ith cup. By construction, ∪i factors through the inclusion CHsymp
n+1,i ⊂ CHsymp

n+1 .

By Corollary 3.12, the functor ∪i : CHsymp
n → CHsymp

n+1,i is formal with respect to the product

equivariant structure on CHsymp
n+1,i. Since the quasi-isomorphism from the cochains to cohomology

is determined by the equivariant structure, it remains to show that we can choose the equivariant
structure on the the vanishing cycle S2 factor so that the product equivariant structure agrees
with the restriction of the equivariant structure on CHsymp

n+1 fixed in Theorem 4.6.

To this end, it is useful to recall that the set of graded structures on a Lagrangian L, if non-
empty, is parametrised byH0(L); similarly, the set of equivariant structures on L, if non-empty, is
parametrised by H0(L). Elements of H0(L) act respectively by shifting the homological gradings
and the weights. The hypothesis that i is odd implies that the plait matching is an object of
CHsymp

n+1,i, and indeed that Ln+1
℘plait

= ∪iLn℘plait
. More precisely, ∪iLn℘plait

is Lagrangian isotopic

to a Lagrangian lying in the open set Yin × Ui ⊂ Yn+1, and under an appropriate identification
Yin

∼= Yn, has the form Ln℘plait
×Li. We can therefore choose the graded and equivariant structures

on the vanishing cycle Li so that the product equivariant structure on Ln+1
℘plait

= ∪iLn℘plait
agrees

with the one fixed in Theorem 4.6.

For each Lagrangian L℘ ∈ CHsymp
n , the Künneth formula in Floer cohomology implies that,

when equipped with product gradings, the Floer cohomology between ∪iL℘plait
and ∪iL℘ is

still symmetrically graded; hence the product grading on ∪iL℘ agrees with the one fixed for
Lagrangians in Yn+1. The product equivariant structure on ∪iL℘ has the property that weights
and gradings agree (i.e. it is pure, again by Künneth); hence it also agrees with the equivariant
structure fixed in Theorem 4.6.

We conclude that the functor ∪i is pure with respect to the fixed equivariant structures from
Theorem 4.6, hence is formal. �

Lemma 4.9. If i is even, the cup functor ∪i is formal.
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Proof. While the distinguished component Ln+1
℘plait

is not in the image of the functor ∪i, the

matchings ℘n+1
plait and ∪i℘nplait differ by a single handle-slide. It follows that the corresponding

Lagrangian submanifolds L℘n+1
plait

and L∪i ℘n
plait

intersect in codimension one in the sense of Section

4.3. By Lemma 4.4, we therefore know that the Floer triangle product for the triple

(4.6) (Ln+1
℘plait

,∪iL
n
℘plait

,∪iL
n
℘)

is non-trivial. As with the proof of purity of the symplectic arc algebra in [6, Proposition 6.10], in
the presence of a non-trivial Floer product, symmetry of the weights for two of the three possible
pairs of components implies symmetry of the weights for the third pair. Indeed, by Proposition
4.5 the top degree class lies in the image of the product

HF ∗(Ln+1
℘plait

,∪iL
n
℘)⊗HF ∗(∪iL

n
℘plait

, Ln+1
℘plait

) −→ HF ∗(∪iL
n
℘plait

,∪iL
n
℘)

which determines its weight given the weights on the domain groups; weights of all other classes
in the target are fixed by the cyclicity of the module action over H∗(∪iLn℘) say. For the two
components of the triple (4.6) in the image of ∪i we have symmetry of weights by construction,
and for the first two components we have symmetry by the choice of equivariant structure on
Li = S2. Varying ℘, we see that the equivariant structure on the target category is obtained by
restriction from CHsymp

n+1 as required. �

Note that, having fixed a quasi-equivalence CHsymp
n ≃ Hsymp

n , we may achieve formality for all
the ∪i-bimodules simultaneously.

5. Cohomology bases and conormal models

In the combinatorial arc algebraHn from [27], the module associated to a pair of matchings ℘∪℘′

is V ⊗c(℘,℘′), where V = Z[x]/(x2) has a distinguished basis {1, x}. We will pin down explicit bases
for the corresponding Floer groups appearing in Hsymp

n inductively in n, by making systematic
use of the constraints imposed by compatibility with module structures and cup-functors.

For this and the next section, all (Floer) cohomology groups are taken with Z coefficients.

5.1. A summary of the argument. To help the reader navigate the rest of this and the
subsequent section, we give a brief overview of the structure of the argument which identifies the
combinatorial and symplectic arc algebras. The combinatorial arc algebra is built upon a TQFT
in which part of the structure is a co-product V → V ⊗V which takes 1 7→ 1⊗x+x⊗1. The fact
that one only encounters terms of the shape 1⊗x+x⊗1, and not 1⊗x−x⊗1, is the key feature
which distinguishes Khovanov homology from its sign-twisted sibling “odd Khovanov” homology
[37]. The symplectic arc algebra is built, as a graded vector space, out of Floer cohomology
groups HF ∗(L℘, L℘′) which are identified in clean intersection models with cohomology groups
H∗(L℘ ∩ L℘′) (which are in turn certain tensor products of copies of V ). The Floer products

(5.1) H∗(L℘′ ∩ L℘′′)⊗H∗(L℘ ∩ L℘′) → H∗(L℘ ∩ L℘′′)

do not have any classical description for general triples (℘, ℘′, ℘′′), because there is no universal
model for a neighbourhood of three cleanly intersecting Lagrangian submanifolds; but for certain
triples we prove plumbing-type models are available, and infer the product (5.1) can be described
in terms of a convolution product.
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That convolution product depends on choices of orientation, which are themselves not canonical.
An important point is that if one picks complex orientations on all the L℘ and their iterated
intersections, then the signs do not work out correctly (this observation goes back to [60]).

To simplify the situation, we prove that each group H∗(L℘∩L℘′) is a cyclic module over H∗(Yn).
This allows us to focus attention on products of minimal degree generators, on the one hand,
and the action of H∗(Yn) on the other. We fix a convenient basis for H∗(Yn) (and hence each
H∗(L℘) by appealing to a certain “topological model” for the compact core, discussed in the
next subsection. Given that, the rest of the proof has three essential ingredients:

(1) We show that all Floer products are determined as compositions of products which can be
understood as convolutions. This involves an essential breaking of symmetry between the
components of the core, and indeed gives a distinguished role to one particular matching
℘plait, which has the feature that any ℘ is determined by L℘ ∩ L℘plait

.
(2) We build by hand a basis for Hsymp

2 , and then extend it inductively to all higher Hsymp
n

by insisting that the cup-functors ∪i are then compatible with bases – in the sense that
they take basis elements to positive linear combinations of basis elements – for certain
distinguished pairs, involving ℘plait.

(3) We prove that the bases constructed in fact behave well for all possible Floer products.
This is essentially a consistency check, which involves proving that there are sufficiently
many non-vanishing Floer products which are “well-understood”.

The details of the argument are quite intricate and use numerous features of our particular
situation, which makes it hard to axiomative effectively, but we hope this will help keep the
general picture in mind as we proceed.

5.2. Spaces of flags and the compact core. Let S = Sn ⊂ gl2n(C) be the affine subspace
consisting of matrices of the form

(5.2) A =




A1 I
A2 I
. . . . . .
An−1 I
An 0




with Ak ∈ gl2(C), and where I ∈ gl2(C) is the identity matrix. (In [56] we considered the
codimension one subspace lying in sl2n(C) and the adjoint quotient on configurations of total
mass zero, but the results carry over mutatis mutandis without the trace zero condition.) The
symmetric product Sym2n(C) is identified, via symmetric polynomials, with C2n. Grothendieck
[59] described a simultaneous resolution of the adjoint quotient map (which takes a matrix to its
collection of eigenvalues)

(5.3) χ : S → Sym2n(C)

via the space of pairs (A,F), where F is a flag and A ∈ S preserves the flag. The simultaneous
resolution maps to C2n, the space of ordered configurations, since the flag orders the eigenspaces.
The resolution of χ−1(0) contains a “compact core” which is the space of flags fixed by the
distinguished nilpotent matrix where Aj = 0 ∀j. We now summarise results of Cautis and
Kamnitzer [15, 23, 16], which give a fibrewise compactification of χ.

Fix a vector space C2 with basis {e1, e2} and consider C[z]-submodules Fi of C
2 ⊗ C(z) which

contain F0 = C2 ⊗ C[z]. More precisely, for a tuple w = (w1, . . . , w2n) ∈ C2n we consider the
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space of flags of modules:

Y w

n =
{
F0 ⊂ F1 ⊂ · · · ⊂ F2n ⊂ C2 ⊗ C(z), rk(Fi/Fi−1) = 1, (z − wiI)Fi ⊂ Fi−1

}
.

As we vary w, these spaces fit into a family Yn → C2n; we think of the base as the space of
ordered configurations of 2n points in C. There is an open subset

Y w,open
n =

{
(F0, . . . , Fn) ∈ Y w

n

∣∣ F2n/F0 = 〈z−1e1, z
−1e2, . . . , z

−ne1, z
−ne2〉

}

We say w is generic if each wi 6= wj . At the other extreme, when w = (0, . . . , 0), we have the
resolution of the nilpotent cone in S. The compact core

(5.4) Z = {(F0, . . . , F2n) | z
nF2n = F0} ⊂ Y 0,open

n

is the locus lying over the matrix given by Aj = 0 for each j in (5.2).

Proposition 5.1. The family Yn → C2n has the following properties.

(1) Each fibre Y w
n is an iterated P1-bundle, diffeomorphic to (S2)2n. If w is generic, then

Y w
n

∼= (P1)2n is holomorphically a product.
(2) Yn is a fibrewise compactification of the simultaneous resolution (5.3). In particular, if

w is generic, then Y w,open
n

∼= Yw
n are holomorphically isomorphic.

(3) The complement Y w
n \Y w,open

n is an irreducible divisor, of class (1, . . . , 1) ∈ H2(P1)2n if
w is generic.

Proof. The first two statements are directly from [15, Section 2.2] (see also [23, 16]). For the
third, since irreducibility is an open condition and χ is equivariant for a C∗-action rescaling all
eigenvalues, it suffices to work on the zero-fibre, i.e. with w = 0. In that case, Y 0

n \Y
0,open
n

is the locus where the natural map znF2n → F0 is not an isomorphism, which is a divisor of
determinantal type defined by vanishing of a section of the tensor product of the bundles Li
with fibres Fi/Fi−1. These deform to O(1)-bundles on the factors of (P1)2n, which gives the
statement on the degree. Finally, the divisor maps with degree one to the space of flags of
length 2n− 1, which implies its irreducibility. (An Euler characteristic computation shows that,
although irreducible, the divisor is singular, but we will not require that fact.) �

For an upper-half-plane crossingless matching ℘, let L̂℘ denote the Lagrangian multi-antidiagonal
of (P1)2n in which points paired by ℘ should take antipodal values, with the factor labelled by
the odd co-ordinates positively oriented. For instance, when n = 2 and we embed in (P1)4, the
two core components are

L̂℘plait
= {(z,−1/z̄, w,−1/w̄)} and L̂℘mix = {(z,−1/w̄, w,−1/z̄)}.

Lemma 5.2. The compact core Z is homeomorphic to ∪℘L̂℘ by a map which is a diffeomorphism
on each component. In particular, Z is a union of copies of (S2)n, indexed by crossingless
matchings, meeting pairwise cleanly, and the “small antidiagonal”

(5.5) {(z,−1/z̄, z,−1/z̄, . . . , z,−1/z̄)} ⊂ (P1)2n

lies in the common intersection locus of all of the L̂℘. �

Proof. See [43, Appendix A] and [63] for two different proofs. �
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Since the divisor at infinity in Yw
n is ample when w is generic, one can define the Fukaya category

of Yn with respect to a finite volume exact Kähler form which extends smoothly to the compact-
ification, arguing via positivity of intersection at infinity to ensure compactness of moduli spaces
of pseudoholomorphic discs. The map Yn → C2n is a differentiably trivial fibration with fibre
(S2)2n, which is symplectically trivial for a Kähler form in the class of the divisor at infinity by
fragility of the two-dimensional Dehn twist [44] (of course the monodromy is not fragile relative
to the divisor at infinity).

Lemma 5.3. The iterated vanishing cycle L℘ is smoothly isotopic to L̂℘.

Proof. This follows from the description of the Morse-Bott degeneration of the spaces Y w,open
n ⊂

Y w
n as a pair of eigenvalues coalesce, given in [23, Section 3], which in turns relies on the

factorisation property of the affine Grassmannian due to Beilinson and Drinfeld [10, Section
5.3.10]. In short, if we restrict the fibrewise compactification of S to a disc Dǫ parametrising
w = (µ+ ǫ, µ− ǫ, w3, . . . , w2n), Kamnitzer shows the singular fibre at ǫ = 0 is globally a product,
with one factor the compactification of the fibre of the smaller slice Sn−1 overw

′ = (w3, . . . , w2n),
and the other a singular quadric cone, i.e. a Hirzebruch surface F2 with the (−2)-sphere collapsed
to a point, which arises as the singular fibre of the compactified slice S1. (The global product
structure is not compatible with the divisors at infinity, so is not inherited by the resolution of
the open slice.) On the compactification, this product structure shows the co-isotropic vanishing
cycle is isotopic to the anti-diagonal in (S2 × S2) stabilised by the submanifold (S2)2n−2 corre-
sponding to w′. Since the vanishing cycles are iterated convolutions of the correspondences, the
result follows. �

Lemma 5.3 constructs an isotopy in Y w
n and not necessarily in Y w,open

n , but that is sufficient to
control the cohomological restriction maps H∗(Yn) → H∗(L℘).

Fix as usual the eigenvalues l = {1, . . . ,2n} ⊂ C and consider the fibre Yn = Yl
n of the ad-

joint quotient. According to [28, Theorem 2], the cohomology H∗(Yn;Z) is generated as a ring
by H2(Yn;Z), and is torsion-free, so we can identify H2(Yn) and H2(Yn)

∨ integrally. By [28,
Proposition 5], the map H2((P1)2n) → H2(Yn) is surjective, and indeed H2(Yn) is the quo-
tient of H2(P1)2n by the (1, . . . , 1) class; this can also be inferred from the Lefschetz hyperplane
theorem and Proposition 5.1. Via complex orientations, there is a distinguished basis ei for
H2(P1)2n = Z2n, where ei has 1 in the i-th place and 0’s elsewhere. The elements (−1)i+1ei,
with 1 ≤ i ≤ 2n− 1, therefore define a basis of H2(Yn;Z). By restricting these elements to L℘,
we obtain bases for H2(L℘) which make the following true tautologically:

Corollary 5.4. The elements vi = (−1)i+1ei, with 1 ≤ i ≤ 2n− 1, define a basis of H2(Yn;Z)
with the following property: under the restriction map

H2(Yn;Z) −→ H2(L℘;Z)

each basis element maps either to zero or to a basis element.

The force of the construction is that we restrict to zero or a basis element, and not to the negative
of a basis element. We immediately obtain monomial bases for the entire cohomology H∗(L℘),
which is generated in degree two. Henceforth, we will abuse notation and denote by vj a basis
element of either of H2(Yn) of H

2(L℘), depending on the context.
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The choice of basis of H2(Yn) also orients the 2-spheres Vi in view of the proof of Lemma 5.3,
which identifies them cohomologically with antidiagonals in factors of (S2)2n (the ith and i+1st

basis elements map to the same generator of the top cohomology of Vi). In particular, H2(L∪i℘)
inherits a basis from the Künneth theorem, i.e. the decomposition

(5.6) H2(L∪i℘;Z) −→ H0(L℘)⊗H2(Vi)⊕H2(L℘)⊗H0(Vi).

Corollary 5.5. The basis of H2(L℘;Z) is preserved by the cup-functors, in the sense that the
choice of basis induced by restriction from H2(Yn;Z) agrees with the basis induced by applying
the Künneth theorem to a presentation as the image of a cup functor.

Proof. This follows since the Lagrangians L℘ are iterated convolutions of the correspondences,
by Lemma 5.3. The orientations on the Vi define bases for H2(L℘), and hence bases for H2(L℘),
which by construction agree with those coming from H2(Yn). �

5.3. Another orientation convention. In [56], and for the discussion of purity in Section
4.4, we adopted a grading convention in which the symplectic arc algebra was “symmetrically”
graded, so for distinct matchings ℘, ℘′ meeting in codimension k the group HF ∗(L℘, L℘′) was
supported in degrees k ≤ ∗ ≤ 2n− k. For the purpose of computing products in the symplectic
arc algebra, a different convention is more convenient.

Definition 5.6. Let ℘ be a crossingless matching in the upper half-plane h. The depth of an
arc γ ⊂ ℘ is the number of other arcs γ′ ⊂ ℘\γ which meet a vertical line from γ to ∞ ∈ h.

Informally, depth is the number of arcs under which γ is nested in ℘. We orient the arcs γ by
the convention that arcs of even depth are oriented clockwise, and arcs of odd depth are oriented
anticlockwise: see Figure 6 for two examples. Equivalently, if the critical points are numbered
{1, 2, . . . , 2n} then all arcs are oriented towards their even end-point.

Figure 6. Cohomology bases for components of the compact core

In the Lefschetz fibration z : A2n−1 → C, the monodromy of the generic fibre T ∗S1 around
a critical point is a Dehn twist in the S1, which preserves the orientation on S1. Fix once
and for all the standard (anticlockwise) orientation on S1 ⊂ T ∗S1 = C∗ ⊂ C. Then a choice of
orientation for a matching path γ determines a well-defined orientation on the Lagrangian sphere
Lγ ⊂ A2n−1, which means that Definition 5.6 fixes bases for H2(L℘) for all the Lagrangians L℘.

Lemma 5.7. The orientation convention of Definition 5.6 yields the same bases for H2(L℘) as
the bases of Corollary 5.5. Furthermore, with these orientations the symplectic arc algebra is
graded in even degrees.
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Proof. An isolated intersection point of L℘ and L℘̄′ is a tuple of intersections of matching paths
in the A2n−1-surface, and the sign of the intersection is given by the product of the corresponding
signs on the surface. At any critical point of the fibration A2n−1 → C, the two matchings paths
of ℘ and ℘̄′ meeting at that critical point are coherently oriented, in the sense that the local
isotopy of Lefschetz thimbles given by rotating one path to the other through thimbles is an
orientation-preserving isotopy. Therefore the local intersection number of the two thimbles in
A2n−1 is positive. (It may be helpful to compare to the case of two copies of the same matching
sphere in A1, which defines S2 ⊂ T ∗S2, and to recall that Maslov indices agree with Morse
indices in a cotangent bundle T ∗Q if 〈∂q1 , . . . , ∂qn , ∂p1 , . . . , ∂pn〉 is an oriented basis; this differs

from the symplectic orientation of T ∗Q by a global sign (−1)n(n+1)/2.) We conclude that the
symplectic arc algebra is graded in even degrees.

�

5.4. A2-fibrations and the plumbing model for n = 2. Recall that two submanifolds Y0, Y1
meet cleanly if they intersect along a submanifold, and

(5.7) Tp(Y0 ∩ Y1) = TpY0 ∩ TpY1

for every p ∈ Y0∩Y1. The Lagrangians L̂℘ meet pairwise cleanly. It is not known if L̂℘ and L℘ are
Lagrangian isotopic (in Yn rather than its compactification) in general, but pairs of crossingless
matching Lagrangians can be Hamiltonian isotoped into a clean intersection model. This follows
from the description in [56] of the degeneration of the fibre Yn when three eigenvalues coalesce.

Take a tuple µ = (µ1, . . . , µ2n) with µ1 = µ2 = µ3, and which are otherwise pairwise distinct.
The adjoint fibre Yµn contains two orbits: the regular orbit Oreg has an indecomposable Jordan
block of size 3 for the eigenvalue µ1, whilst the subregular orbit O

sub has two Jordan blocks of sizes
1, 2 (the minimal orbit in the adjoint fibre χ−1(µ) consists of matrices with three independent
µ1-eigenvectors, but this orbit is disjoint from S). The singular set of the fibre Yµn is smooth,
and can be canonically identified with Y

µred

n−1 where µred = (µ1, µ4, . . . , µ2n), see [56, Lemma 25].

At a point y ∈ Osub ∩S let Ey be the µ1-eigenspace of its semisimple part ys. These spaces form
the fibres of a line bundle F → Osub ∩ S. We consider the associated vector bundle

(5.8) (F \ 0)×C∗ C4 = C⊕ F−2 ⊕ F2 ⊕ C.

We also introduce the map (the versal deformation of the A2-singularity)

(5.9) p : C4 −→ C2, p(a, b, c, d) = (d, a3 − ad+ bc).

The relevant statement from [56] is then:

Lemma 5.8. Let P →֒ Conf2n(C) be a small bidisc parametrized by (d, z), corresponding to the
set of eigenvalues

(µ1 + {all solutions of λ3 − dλ+ z = 0}, µ4, . . . , µ2n).

There is a neighbourhood of Osub ∩ S inside χ−1(P ) ∩ S, and an isomorphism of that with a
neighbourhood of the zero-section inside (F \ 0)×C∗ C4, which fits into a diagram

χ−1(P ) ∩ S
local ∼= defined near O

sub ∩ S
−−−−−−−−−−−−−−−−−−−→ (F \ 0)×C∗ C4

χ

y p

y

P
(d,z)

−−−−−−−−−−−−−−−−−−→ C2
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where p is given by (5.9) on each C4 fibre.

In particular, there is an open subset of a generic fibre Yn, for a tuple of eigenvalues sufficiently
close to µ, which is an A2-fibration over Yn−1. In the lowest non-trivial case, an open subset of
Y2 is a (non-trivial) A2-fibration over T ∗S2. For any arc γ in the A2-space, there is an associated
Lagrangian submanifold of Y2 given by taking the matching sphere Lγ ⊂ A2 fibrewise over the
zero-section of T ∗S2. We will refer to such a Lagrangian as lying in fibred position.

Lemma 5.9 (Section 4.3 of [56]). The Lagrangians L℘plait
and L℘mix in Y2 can be Hamiltonian

isotoped to lie in fibred position, given by arcs in A2 which meet transversely once. �

Lemma 5.10. Let L,L′ ⊂ X be cleanly intersecting Lagrangian submanifolds of a symplectic
manifold X. There is an open neighbourhood U = U(L ∩ L′) ⊂ X of L ∩ L′ in X, and a
symplectic embedding U →֒ T ∗L taking U ∩ L to the zero-section and U ∩ L′ to the conormal
bundle of L ∩ L′.

Proof. See e.g. [40, Proposition 3.4.1]. Briefly, Weinstein’s theorem gives a symplectomorphism
ψ : U → T ∗L taking U ∩ L′ into the conormal bundle ν∗L′ . The image ψ(L ∩ U) is tangent
to the zero-section along L ∩ L′, hence can locally be written as the graph of a 1-form φ which
vanishes along L∩L′, so which is exact φ = dk in a small neighbourhood of the intersection locus.
Composing the given symplectic embedding ψ with the time-one Hamiltonian flow of −k, which
preserves ν∗L′ and takes ψ(L ∩ U) into the zero-section, yields the desired map U →֒ T ∗L. �

According to [2], there is a “plumbing model” for the Fukaya category of a pair of exact graded
Lagrangians which meet pairwise cleanly. We only require the somewhat simpler cohomological
result, which goes back to Pozniak and follows fairly straightforwardly from Lemma 5.10; see for
instance [24]. It may help to recall that given a diagram of cleanly intersecting submanifolds

M??
i1

/� ⑧⑧
⑧⑧
⑧⑧

__
i2

/ O❄
❄❄

❄❄
❄

Q1 __

j1 / O❄
❄❄

❄❄
Q2??

j2/� ⑧⑧
⑧⑧
⑧

Q1 ∩Q2

The convolution product
H∗(Q1 ∩Q2)

⊗2 −→ H∗(Qi)

is by definition given by cup-product composed with the transfer (obtained from Poincaré duality
on Q1 ∩Q2, the push-forward on homology, and Poincaré duality on Qi).

Proposition 5.11. Let Q1 and Q2 be exact Lagrangian submanifolds of (M,ω) which meet
cleanly along C = Q1 ∩Q2 of codimension d. Grade the Qi so that the minimal degree generator
of HF ∗(Q1, Q2) lies in degree 0. The Donaldson category with objects Q1, Q2 is equivalent to the
(ordinary) category

Q1H∗(Q1) 55

H∗(C)
++ Q2 H∗(Q2)ii

H∗−d(C)

kk

and with the non-trivial compositions given by convolution.
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Note that the grading convention breaks symmetry: it amounts to choosing an ordering of
{Q1, Q2}.

Proof. In the dg-model from [2], the endomorphisms of objects are chain complexes underlying
classical cohomology, and the morphisms between the objects are given by cochains on a neigh-
bourhood U ⊂ Q1 of the intersection locus C in one direction, and cochains relative boundary
C∗(U, ∂U) on that neighbourhood in the other. The identification of the morphism groups as
given follows on passing to cohomology, and replacing H∗(U, ∂U) ≃ H∗−d(C), by the Thom iso-
morphism theorem. For the product structure, note that in the model provided by Lemma 5.10
all holomorphic triangles are constant; there is a real-valued action functional and all intersection
points have the same value of the action, so standard Morse-Bott techniques apply. The result
then follows easily. �

The first arc algebra H1 = Z〈1, x〉 is isomorphic to H
symp
1 = H∗(S2), where the cohomology

group is based by Corollary 5.5, which in this case just amounts to saying that the anti-diagonal
in P1 × P1 inherits a unique orientation from the complex orientation of the first factor, and the
opposite orientation of the second factor. This comes with three functors ∪combi : H1 → H2. We
also have the symplectic cup functors ∪i : Hsymp

1 → H
symp
2 , which come from the associated

elementary bimodules.

Proposition 5.12. There are bases of HF ∗(L℘plait
, L℘mix) and of HF ∗(L℘mix , L℘plait

) such that
the algebra

H
symp
2 = H∗(L℘plait

)⊕HF ∗(L℘plait
, L℘mix)⊕HF ∗(L℘mix , L℘plait

)⊕H∗(L℘mix)

is isomorphic to the combinatorial arc algebra H2 in a manner which is compatible with the three
cup functors ∪i : H1 → H2 respectively ∪combi : H1 → H2, i ∈ {1, 2, 3}.

Proof. Lemma 5.9 shows that L℘plait
and L℘mix can be isotoped to meet cleanly in a two-sphere

C. Knowledge of H∗(Y2), or the flag description given in Section 5.2, shows that C a priori
represents a class of square ±2 in each factor; with our orientation conventions, the plumbing
model is that of two copies of S2 ×S2 which meet along the diagonal submanifold, of square +2.

We take the given bases of the groupsH∗(L℘plait
), H∗(L℘mix) from Corollary 5.5, and the induced

basis ofH∗(C) coming from restriction: this gives a uniquely defined choice of generator ofH2(C).
The gradings agree with those in Proposition 5.11 by Lemma 5.7. The Floer products in the
plumbing model are then cohomological (convolution products), as in Proposition 5.11. Since the
Euler class of the normal bundle of the intersection locus is the (1, 1)-class, products of positive
generators all have positive coefficients. Given this, it is straightforward to compare to the arc
algebra H2.

We spell out the final comparison in the two most interesting examples. Consider the products

HomH2(℘plait, ℘mix)⊗ HomH2(℘mix, ℘plait) −→ HomH2(℘mix, ℘mix)

HomH2(℘mix, ℘plait)⊗HomH2(℘plait, ℘mix) −→ HomH2(℘plait, ℘plait).

In both cases, the diagrammatic product involves first merging two circles, and then splitting
again, hence is given by the composition ∆ ◦m, where

m : Z〈1, x〉⊗2 −→ Z〈1, x〉 and ∆ : Z〈1, x〉 −→ Z〈1, x〉⊗2
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denote the product respectively co-product in the Frobenius algebra H∗(S2) = Z〈1, x〉. The
composite ∆ ◦m therefore takes

1⊗ 1 7→ 1⊗ x+ x⊗ 1, 1⊗ x 7→ x⊗ x, x⊗ 1 7→ x⊗ x, x⊗ x 7→ 0.

The cohomology convolution product has exactly the same effect, with 1⊗x+x⊗ 1 arising from
the cohomology class of the diagonal C ⊂ S2 × S2. The other cases, and compatibility with the
cup-functors, follow similarly on unwinding the definitions. �

5.5. Iterated A2-fibrations and plumbing models for arbitrary pairs. Recall c(℘, ℘′)
denotes the number of components of the planar unlink ℘ ∪ ℘′, and that the two associated
Lagrangiansmeet in codimension one if c(℘, ℘′) = n−1. We shall say that two arcs in the unlink
are consecutive if one belongs to ℘ and one to ℘′ and they share exactly one end-point.

Lemma 5.13. Any pair L℘, L℘′ may be Hamiltonian isotoped to meet pairwise cleanly in a sub-

manifold (S2)c(℘,℘
′). In particular, any pair admits a plumbing model.

Proof. We give an inductive argument. Consider an innermost component of the unlink ℘ ∪ ℘′,
which is formed of matchings ℘in, ℘′

in on a subset 2m ≤ 2n of the critical points. If ℘in = ℘′
in

then these reduced matchings are both composed of a single arc which joins adjacent critical
points. There is then a Morse-Bott degeneration of Yn which brings these eigenvalues together
along the common arc (which might as well lie on the real axis). In the corresponding open subset
of Yn, which is a T ∗S2-bundle over Yn−1 by a simpler version of Lemma 5.8, the Lagrangians
L℘ and L℘′ are both fibred by copies of the zero-section. By the inductive hypothesis, the bases
of these fibrations, which are Lagrangians in Yn−1, can be isotoped to meet cleanly. Therefore,
assume no innermost component is an unknot meeting only two of the critical points.

In that case, the unknot ℘in ∪℘′
in admits a pair of consecutive arcs. We consider a degeneration

of Yn in which the three eigenvalues which are end-points of these arcs come together at one of
the outermost of the three points, by moving the eigenvalues along the given paths. This yields
an open subset of Yn which is an A2-fibration over Yn−1, and in which the matchings ℘in, ℘′

in

are explicitly fibred over (not necessarily half-plane) crossingless matchings in the base, with
fibres being the core arcs of the A2-space which meet transversely once. This procedure can be
iterated, until the Lagrangians in the base have no consecutive arcs, which happens only when
they co-incide up to isotopy (the last conclusion uses the innermost condition; otherwise the arcs
might differ by Markov I moves). The upshot is that there is an open subset of Yn which is
an iterated A2-fibration over Yn−k, where n − k = c(℘, ℘′), in which the two Lagrangians are
fibred over Hamiltonian isotopic Lagrangians in Yn−k, with fibres which are themselves products
of pairwise transverse vanishing cycles in the A2-fibres. The result follows. �

Lemma 5.14. In the situation of Lemma 5.13, one may further assume that the intersection
of the cleanly intersecting Hamiltonian images of L℘, L℘′ is smoothly isotopic to the iterated

antidiagonal L̂℘ ∩ L̂℘′ . In particular, we have an isomorphism HF ∗(L℘, L℘′) ∼= H∗(L̂℘ ∩ L̂℘′)
compatible with the natural module structures of both cohomologies over H∗(Yn).

Proof. In the inductive construction of the previous set-up, consider some innermost component
of ℘ ∪ ℘′, which involves a subset I ⊂ {1, 2, . . . , 2n} of cardinality 2m ≤ 2n of the critical
points. The degenerations along successive arcs for this component do not affect any of the other
components, by the innermost condition. Furthermore, they exhibit the space Ym as an iterated
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A2-fibration over T ∗S2, and the Lagrangians L℘in
and L℘′

in
intersect along a section of this

iterated fibration, i.e. they both fibre over the zero-section with fibres meeting transversely once.
It suffices to show that this intersection sphere is naturally identified with the small antidiagonal
in a copy (S2)2m ⊂ (S2)2n indexed by the subset I. As in Lemma 5.3, this holds because the
simultaneous resolution shows the vanishing cycles of an A1- respectively A2-degeneration depend
up to smooth isotopy only on the corresponding pair respectively triple of critical points which
are brought together. �

Corollary 5.15. The Floer cohomology group HF ∗(L℘, L℘′) is a cyclic module over H∗(Yn),
generated by any minimal degree generator. �

5.6. Conormal triples. Lemma 5.10 asserts that a pair of cleanly intersecting Lagrangians can
always be modelled by taking one to be a conormal bundle in the cotangent bundle of the other.
For three Lagrangians, the situation is slightly more subtle. We recall the linear situation.

Lemma 5.16. [14] Let (V, ω) be a symplectic vector space. An ordered triple of Lagrangian sub-
spaces (Λ0,Λ1,Λ2) is determined up to symplectomorphism by the quintuple of integers

(5.10) bij = dim(Λi ∩ Λj), b012 = dim(Λ0 ∩ Λ1 ∩ Λ2), s(Λ0,Λ1,Λ2)

where s is the Maslov triple index, i.e. the signature of the quadratic form on Λ0⊕Λ1⊕Λ2 given
by ω(u0, u1) + ω(u1, u2) + ω(u2, u0). �

Lemma 5.17. If the dimensions in (5.10) satisfy

(5.11) dimC(V ) + 2b012 = b01 + b02 + b12

then the Maslov triple index s = 0.

Proof. Let m = dimC(V ). Let Λ012 denote the triple intersection Λ0 ∩ Λ1 ∩ Λ2 and Λij the
corresponding double intersections for i 6= j. Both the Maslov triple index and the condition
(5.11) are invariant under symplectic reduction, so passing to Λ⊥ω

012/Λ012 we can assume b012 = 0.
This means that the vector space W = Λ01 ⊕ Λ12 ⊕ Λ20 has dimR(W ) = m; since the quadratic
form vanishes identically on W , it suffices to prove that the signature of V/W is zero. But
the 3m-dimensional space Λ0 ⊕ Λ1 ⊕ Λ2 contains isotropic subspaces S = Λ0 ⊕ Λ12 ⊕ {0} and
T = {0} ⊕ Λ12 ⊕ Λ2, which project to V/W as transverse m-dimensional subspaces, hence V/W
is the direct sum of their images. �

Lemma 5.18. Three cleanly intersecting real m-dimensional Lagrangians L0, L1, L2 are locally
symplectomorphic near L0 ∩ L1 ∩ L2 to two conormal bundles inside T ∗L0 if and only if the
dimension constraint holds:

(5.12) m+ 2b012 = b01 + b12 + b02.

In particular, this condition is symmetric under permuting indices.

Sketch. Given two submanifolds B0, B1 ⊂ L0 intersecting cleanly in a submanifold of dimension d,
their conormal bundles ν∗Bi

⊂ T ∗L0 meet cleanly in a submanifold of dimension 2d. This implies
that a pair of conormal bundles satisfies the desired equality. Conversely, suppose the dimension
constraint holds, and work inside T ∗L0 with L1 = ν∗L0∩L1

. From the linear algebra classification
of triples of Lagrangian subspaces, and the vanishing of the Maslov triple index established
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above, at a point p in the triple intersection B we can suppose that TpL2 = Tp(ν
∗
L0∩L2

). One
then constructs a local Hamiltonian isotopy, in an open neighbourhood U of B, taking L2 ∩ U
to ν∗L0∩L2

∩ U , via a flow tangent to L0 ∩ U and ν∗L0∩L1
∩ U , as in Lemma 5.10. �

We point out that (5.12) never holds if the triple intersection L0 ∩ L1 ∩ L2 co-incides with the
three pairwise intersections Li ∩ Lj (and the Lagrangians are not all identical). Given that, it

is easy to see that there are triples of components L̂℘i
of the compact core Z from Lemma 5.2

which, even though meeting cleanly, do not admit a conormal model.

For triples of Lagrangians, A2-degenerations are not sufficient to bring the Lagrangians into clean
intersection position (consider the case where no triple of critical points contains the end-points
of at least one arc in each matching). Nonetheless, we have:

Lemma 5.19. Any triple of Lagrangians L℘, L℘′ , L℘′′ , two of which meet in codimension one,
may be Hamiltonian isotoped to simultaneously meet pairwise cleanly. Moreover, the analogue of
Lemma 5.14 again holds, and the cleanly intersecting Hamiltonian images satisfy the conormal
condition (5.12).

Proof. Suppose L℘ and L℘′ meet in codimension one, meaning that they share n − 2 arcs. We
repeat the argument of Lemma 5.13, but considering consecutive arcs one of which is common
to ℘ and ℘′ and the other of which lies in ℘′′. The corresponding A2-degeneration bringing
eigenvalues together along such a consecutive pair of arcs manifests all three Lagrangians as
fibred simultaneously, with L℘ and L℘′ having identical fibres in the local A2-bundle, and L℘′′

having fibre the other core sphere in the A2-fibres. This can now be iterated as before, and the
analogue of Lemma 5.14 also holds as before.

For the final statement, in the notation of (5.12), let L0 = L℘, L1 = L℘′ and L2 = L℘′′ , and set
m = 2n to be the real dimension of L℘. Then b01 = 2n− 2. The dimensions b02 and b12 differ by
exactly 2, which means that (relabelling as necessary) we can assume b02 = 2j and b12 = 2j +2.
The triple intersection has codimension at most 2 in L℘′ ∩ L℘′′ , hence has dimension at least
2j, but is also contained in the 2j-dimensional submanifold L℘ ∩ L℘′′ . Therefore b012 = 2j, and
2n+ 2b012 = b01 + b02 + b12. �

The convolution model for Floer product for a pair of cleanly intersecting Lagrangians admits a
generalisation to the case of two conormal bundles. Again from [24, 34]:

Lemma 5.20. Let Ai ⊂ Q be closed submanifolds of an oriented spin manifold Q, i = 1, 2. Let
ν∗i ⊂ T ∗Q denote the conormal bundle of Ai. The product

(5.13) HF ∗(ν1, ν2)⊗HF ∗(Q, ν1) −→ HF ∗(Q, ν2)

is a convolution product, given up to sign by restriction and push-forward

(5.14) H∗(A1 ∩ A2)⊗H∗(A1) → H∗(A1 ∩ A2) → H∗(A2).

�

5.7. Some non-zero Floer products. We collect together several non-vanishing results for
Floer products which will be used in the construction of positive bases. For a pair of matchings
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℘, ℘′ we will denote by

(5.15) α℘,℘′ ∈ kmin(℘, ℘
′) ⊂ HF ∗(L℘, L℘′)

a minimal degree generator of HF ∗(L℘, L℘′). There are two choices, differing by sign. By
Corollary 5.15, the Floer product

(5.16) HF ∗(L℘′ , L℘′′)⊗HF ∗(L℘, L℘′) −→ HF ∗(L℘, L℘′′)

is completely determined by that of the minimal degree generators and the module structure.
Despite its seeming innocuity, the following result is the main reason why the arc algebra and its
symplectic analogue agree, since it asserts that, for the simplest products, basis elements appear
with coefficients that have the same sign.

We now consider a triple of matchings ℘, ℘′, ℘′′, and suppose ℘ and ℘′ meet in codimension one.
As remarked after Lemma 4.2, necessarily c(℘, ℘′′) = c(℘′, ℘′′)± 1.

Lemma 5.21. (1) If c(℘, ℘′′) = c(℘′, ℘′′)− 1, then

α℘′,℘′′ · α℘,℘′ = ±α℘,℘′′ .

(2) If c(℘, ℘′′) = c(℘′, ℘′′) + 1, then

α℘′,℘′′ · α℘,℘′ = ±(vij + vik)α℘,℘′′ 6= 0

for some vij , vik ∈ H∗(Yn) elements of the distinguished basis. Specifically, [vij + vik ] ∈

H∗(L̂℘ ∩ L̂℘′′) = HF ∗(L℘, L℘′′) is Poincaré dual to the homology class of the triple

intersection [L̂℘ ∩ L̂℘′ ∩ L̂℘′′ ].

Proof. The non-vanishing of the product if c(℘, ℘′′) = c(℘′, ℘′′) − 1 follows immediately from
Lemma 5.19 and Lemma 5.20. If c(℘, ℘′′) = c(℘′, ℘′′) + 1, the product α℘′,℘′′ · α℘,℘′ lands in
degree exactly two higher than the minimal degree. For the cleanly intersecting representatives
of the three Lagrangians, the triple intersection L℘ ∩ L℘′ ∩ L℘′′ co-incides with the intersection
L℘ ∩ L℘′′ , cf. the proof of Lemma 5.19. This defines a class

[L℘ ∩ L℘′ ∩ L℘′′ ] ∈ H2(L℘′ ∩ L℘′′) ∼= H2((S2)c(℘
′,℘′′)

which is the product of the minimal degree generators by the convolution model for Floer products
in conormal plumbings. The cohomology class can be identified with the corresponding class in
the model of Lemma 5.2, by Lemma 5.14. Geometrically, the triple intersection is homologous
to an antidiagonal in two factors

S2
ij × S2

ik ⊂ S2
i1 × · · · × S2

im ⊂ (S2)2n,

m = c(℘′, ℘′′), and each such is canonically the restriction of a class (vij + vik ) ∈ H2(Yn). This
yields the second statement. �

Lemma 5.22. If ℘, ℘′ meet in codimension k, i.e. c(℘, ℘′) = n− k, the minimal degree generator
α℘,℘′ ∈ HF ∗(L℘, L℘′) can be written as a product

α℘,℘′ = ±
0∏

j=k−1

α℘i,℘i+1

where ℘ = ℘0, . . . , ℘k = ℘′ is a codimension one interpolating sequence as in Lemma 4.3.
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Proof. The fact that the interpolating sequence has minimal possible length implies that

c(℘, ℘i+1) = c(℘, ℘i)− 1

for each i ≥ 1. Then use Lemma 5.21. �

Lemma 5.23. For any ℘, ℘′, ℘′′, there is an identity

(5.17) α℘′,℘′′ · α℘,℘′ = ±
∏

j

(vj1 + vj2)α℘,℘′′

where each (vj1 +vj2) ∈ H2(Yn) is a sum of positive basis elements and is dual to an antidiagonal
in (S2)2n (the right side of (5.17) may vanish).

Proof. Choose a sequence ℘ = ℘0, ℘1, . . . , ℘k = ℘′ with where k = n − c(℘, ℘′) as before. We
now write

α℘′,℘′′ · α℘,℘′ = ±
∏

j

(
((α℘′,℘′′α℘k−1,℘k

)α℘k−2,℘k−1
) · · ·α℘0,℘1

)

and again appeal to Lemma 5.21. �

Lemma 5.24. For any ℘, ℘′, the products

α℘plait,℘′ · α℘,℘plait
∈ HF ∗(L℘, L℘′) and α℘mix,℘′ · α℘,℘mix ∈ HF ∗(L℘, L℘′)

are both non-zero.

Proof. For ℘plait, this is exactly [6, Corollary 5.19]. To argue for ℘mix, consider for a moment
the fibre Yµn of the adjoint quotient corresponding to placing the 2n critical values at the roots of
unity. There are “cyclic” analogues ℘cycplait, ℘

cyc
mix of ℘plait, ℘mix for this configuration, which define

Lagrangian submanifolds of Yµn which are Hamiltonian isotopic to our usual crossingless matching
Lagrangians via parallel transport in the family over configuration space Conf2n(C) joining µ and
{1, 2, . . . , 2n}. The matchings ℘cycplait and ℘cycmix are exchanged by the symplectomorphism of Yµn
induced by cyclic rotation by exp(iπ/n) in the base of the complex surface A2n−1. That, and
Hamiltonian invariance of the statement of the Lemma, implies the corresponding non-vanishing
for products involving L℘mix . �

6. An inductive construction of positive bases

6.1. Positive pairs, triangles, and triples. Our aim is to construct a basis of the symplectic
arc algebra which is positive and preserved by cup functors, in the following sense.

Definition 6.1. A basis of Hsymp
n is positive if every product of minimal degree generators is

zero or of the form given in (5.17) with a + sign. We say a map of based vector spaces preserves
bases if it takes every basis element to zero or to a basis element.

Fix monomial bases of HF ∗(L℘, L℘) = H∗(L℘) for each ℘ as in Corollary 5.5. Such a basis
determines a trace

(6.1) tr : H2n(L℘) → Z

which is dual to the cohomology class [L℘] = vi1 · vi2 · · · · · vin .
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Lemma 6.2. An n-fold product
∏n
j=1(vj1 + vj2) of sums of positive generators of H2(L℘) either

vanishes, or is a positive multiple of [L℘]. �

The cohomological shadow of the fact that the Fukaya category is cyclic is the statement that
the trace is symmetric, i.e that we have

(6.2) tr(α · β) = tr(β · α)

whenever α⊗β ∈ HF ∗(L,L′)⊗HF ∗(L′, L), cf. [51, Section 12(e)]. Note that there is no sign in
the above formula, because all morphisms have even degree according to the grading convention
fixed in Definition 5.6.

For any {℘, ℘′}, HF ∗(L℘, L℘′) is a quotient of both HF ∗(L℘, L℘) and HF
∗(L℘′ , L℘′) via the nat-

ural module structures. A choice of minimal degree generator α℘,℘′ yields a basis forHF ∗(L℘, L℘′)
by multiplication by elements of H∗(L℘) on the right or by elements of H∗(L℘′) on the left; these
bases agree, since in both cases we can re-interpret the multiplication as coming from an element
of H∗(Yn), which acts centrally. In line with Definition 6.1, we will more generally say that a
product of minimal degree generators is “positive” (or is “positive with respect to the minimal
degree generator”) if it has the form of (5.17) with a + sign. We say that a pair (℘, ℘′) is positive
if we have chosen minimal degree generators α℘,℘′ and α℘′,℘ of the Floer groups between them
so that any of the conditions in the following result hold:

Lemma 6.3. The following are equivalent:

(1) There are positive basis elements vjk ∈ H2(Yn) such that
∏
j(vj1 + vj2)α℘′,℘ · α℘,℘′ is a

positive multiple of the fundamental class [L℘].
(2) There are positive basis elements vjk ∈ H2(Yn) such that

∏
j(vj1 + vj2)α℘,℘′ · α℘′,℘ is a

positive multiple of the fundamental class [L℘′ ].
(3) The products α℘,℘′ · α℘′,℘ and α℘′,℘ · α℘,℘′ are positive.

Proof. Pick v =
∏
j(vj1 + vj2) so that v · α℘,℘′ is a top-degree generator of HF ∗(L℘, L℘′). Since

all Floer morphisms that we are considering have even degree, the equivalence of the first two
statements follows from the fact that the Poincaré duality pairing introduces no signs, cf. (6.2).
The final part follows from cyclicity of the module structure. �

We now consider three matchings {℘i}i=0,1,2, and choices of minimal degree generators α℘i,℘i+1 ,
where the index is cyclic (i.e. considered modulo 3).

Lemma 6.4. The following conditions are equivalent:

(1) The triple product α℘1,℘2 · α℘0,℘1 · α℘2,℘0 is positive.
(2) The three possible triple products involving α℘1,℘2 , α℘0,℘1 and α℘2,℘0 are positive.

Proof. Consider a product
∏
j(vj + v′j) of sums of positive generators so that

(6.3)
∏

j

(vj + v′j)α℘1,℘2 · α℘0,℘1 · α℘2,℘0
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is a positive multiple of the top degree generator of the cohomology of L℘2 . Associativity and
cyclicity of the trace imply that the product in a different order (but with the same cyclic order)
is a positive multiple of a top degree generator of the cohomology of L℘0 or L℘1 . �

We say that {℘i}i=0,1,2 form a positive triangle if we have fixed minimal degree generators α℘i,℘j

so that the conditions of Lemma 6.4 hold in either cyclic ordering. There is no obstruction to a
triangle being positive: given two of the three morphisms, we can pick the third so that all cyclic
products are positive, and the choices for the two cyclic orderings are independent.

Definition 6.5. The matchings (℘0, ℘1, ℘2) form a positive triple if the corresponding triangle
as well as all pairs are positive.

Lemma 6.6. If (℘0, ℘1, ℘2) form a positive triangle, two of the pairs are positive, and there are
three non-cyclically ordered generators, involving all three Lagrangians, whose product does not
vanish, then (℘0, ℘1, ℘2) form a positive triple.

Proof. By relabelling the matchings and using cyclic symmetry, we may assume that the pairs
(℘0, ℘1) and (℘0, ℘2) are positive, that the triangle is positive, and that either (1) α℘2,℘0 ·α℘1,℘2 ·
α℘2,℘1 or (2) α℘2,℘1 ·α℘0,℘2 ·α℘2,℘0 is non-zero. We must show in either case that the pair (℘1, ℘2)
is positive.

Case 1: By associativity, we have

(6.4) α℘2,℘0 · (α℘1,℘2 · α℘2,℘1) = (α℘2,℘0 · α℘1,℘2) · α℘2,℘1 .

Since the pair (℘0, ℘1) is positive, positivity of the triangle implies that the product α℘2,℘0 ·α℘1,℘2

is positive with respect to α℘1,℘0 (i.e. the product of a positive basis element of H∗(Yn) with
this class). Since the pair (℘0, ℘2) is positive, positivity of the triangle further implies that the
product of this class with α℘2,℘1 is positive with respect to α℘2,℘0 . Equating the left and right
hand sides above, we conclude that the product α℘1,℘2 · α℘2,℘1 is positive.

Case 2: By Poincaré duality, our assumption implies that we have a non-zero product

(6.5) (α℘1,℘2 · α℘2,℘1) · (α℘0,℘2 · α℘2,℘0) = α℘1,℘2 · (α℘2,℘1 · α℘0,℘2) · α℘2,℘0 .

Using positivity of the triangle under both cyclic orderings, we see that the right hand side is
positive as in the previous case. Since the pair (℘0, ℘2) is positive, the expression α℘2,℘1 ·α℘0,℘2 ·
α℘2,℘0 is positive with respect to α℘2,℘1 . We conclude that α℘1,℘2 · α℘2,℘1 is positive. �

Corollary 6.7. Assume that (℘0, ℘1, ℘2) form a positive triangle, and two of (℘0, ℘1, ℘2) meet
in codimension one. Given positive bases for two pairs of matchings (℘i, ℘j), there are unique
bases for the remaining pair which yields a positive triple.

Proof. This follows on combining Lemma 5.21, which yields a suitable non-vanishing product,
with the previous result. �

To ease notation, in the next Lemma we write αij for α℘i,℘j
.
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Lemma 6.8. Let ℘0, ℘1, ℘2, ℘3 be matchings. If the triples containing (℘0, ℘3) are positive and
the triangle (℘0, ℘1, ℘2) is positive, then the remaining triangle (℘1, ℘2, ℘3) is positive whenever
the cyclic products α01 · α30 · α23 · α12 and α03 · α10 · α21 · α32 do not vanish.

Proof. We consider one of the two possible ordering: since (℘0, ℘1, ℘3) is a positive triangle,
the product α01 · α30 is a positive multiple of α31. So α31 · α23 · α12 is positive if and only if
the quadruple cyclic product is positive. On the other hand, α30 · α23 is a positive multiple of
α20 (because the triple (℘0, ℘2, ℘3) is positive), hence the quadruple product is positive because
α01 · α20 · α12 is positive. �

We note that non-trivial iterated products as required for the second part of Lemma 6.8 arise
naturally when combining Lemmas 5.21 and 5.22.

6.2. Description of the basis. We construct a basis of Hsymp
n by the following procedure.

Denote by Vi both the Lagrangian 2-sphere in A2n−1 joining the points {i, i+1} ⊂ {1, 2, . . . , 2n},
and also the Lagrangian 2-sphere fibre of the elementary correspondence associated to the Morse-
Bott degeneration which brings {i, i+ 1} together. Note that all these spheres are oriented.

We say a matching contains an odd cup if it contains the arc joining 2j + 1, 2j + 2 for some
0 ≤ j ≤ n − 1, and contains an even cup if it contains the arc joining 2j, 2j + 1 for some
1 ≤ j ≤ n− 1. Every matching contains at least one cup. The matching ℘plait is singled out by
containing all n odd cups, and ℘mix is singled out by containing all (n− 1) even cups.

The basis is constructed inductively, so we assume that we already have bases for the algebra
H
symp
n−1 , with the properties that (i) they are compatible with all cup-functors ∪j : Hsymp

n−2 →
H
symp
n−1 , where compatible means that any basis element is taken either to zero or to a basis

element by any given ∪j , and (ii) the algebra is isomorphic in the given bases to the arc algebra
Hn−1, by an isomorphism entwining ∪j and ∪combj . The induction is based by Proposition 5.12,
so we may assume throughout that n ≥ 3.

(1) Fix bases of all groups H∗(L℘) as in Corollary 5.5.
(2) Suppose ℘ contains an odd cup ∪2j+1. Then both ℘ and ℘plait lie in the image of some

∪odd, say ℘ = ∪2j+1(℘
r), ℘plait = ∪2j+1(℘

r
plait) (r for reduced), and hence the Künneth

theorem gives canonical isomorphisms

HF ∗(L℘plait
, L℘) = HF ∗(L℘r

plait
, L℘r )⊗H∗(V2j+1)

HF ∗(L℘, L℘plait
) = HF ∗(L℘r , L℘r

plait
)⊗H∗(V2j+1).

By induction we have a basis for the first factor on the right, by the orientation convention
we have a basis for the second, and we take the induced basis.

(3) Suppose ℘ contains an even cup ∪2j . Write ℘ = ∪2j(℘
r), ℘mix = ∪2j(℘

r
mix), and use

Künneth and induction to take the bases induced from

HF ∗(L℘mix , L℘) = HF ∗(L℘r
mix
, L℘r)⊗H∗(V2j)

HF ∗(L℘, L℘mix) = HF ∗(L℘r , L℘r
mix

)⊗H∗(V2j)

(4) We fix a basis ofHF ∗(L℘plait
, L℘mix) as follows. Since n ≥ 3 there is at least one matching

℘ which contains both an odd and an even cup. Pick some such; we then have bases for the
pairs (℘plait, ℘) and (℘mix, ℘) (by the previous steps), and the triangle {℘, ℘plait, ℘mix}
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admits a non-trivial product by Lemma 5.24. We pick the generators α℘plait,℘mix and
α℘mix,℘plait

so as to make this a positive triangle.
(5) If ℘ contains no odd cup it necessarily contains an even cup so bases for the pair (℘mix, ℘)

are fixed in step (3). The triangle (L℘, L℘plait
, L℘mix) again admits a non-trivial product,

and we pick the unique minimal generators for (L℘, L℘plait
) making this a positive triangle.

(6) For any ℘, ℘′ we now have bases for the pairs (L℘, L℘plait
) and (L℘′ , L℘plait

). Since any
triangle involving L℘plait

has non-zero products, we now choose the basis for (L℘, L℘′) to
make the triangle (L℘, L℘′ , L℘plait

) a positive triangle.

At this stage, all groups in Hsymp
n have bases. The remaining task is threefold: to show that the

bases described above are well-defined (independent of the choices made along the way); to show
that these bases are preserved by cup functors Hn−1 → Hn; and to show that with respect to
these bases, products of positive generators are linear combinations of positive generators in a
way that matches the product in Hn.

6.3. Well-definition of the basis. We show independence of choices.

Lemma 6.9. In Steps (2) or (3) above, the choice of odd respectively even cup in ℘ does not
affect the resulting minimal degree generator.

Proof. Immediate from the Künneth theorem, and the fact that the basis for Hsymp
n−1 is compatible

with all the cup functors from H
symp
n−2 . �

In step (4), we make an arbitrary choice of a matching which contains both an odd and an even
cup. When n ≥ 4 one can interpolate between different choices, as follows. We are defining the
basis for the pair (L℘plait

, L℘mix) by choosing a matching ℘ = ∪2i+1 ∪2j ℘
′ which contains both

an odd and an even cup. Note that necessarily i and j are not adjacent, i.e. the four end-points
of the cups ∪2j and ∪2i+1 are distinct, since both belong to some matching. Let ℘2j denote
the matching which differs minimally from ℘plait whilst containing the cup joining the points
{2j, 2j + 1}, so it does contain one even cup. One considers a configuration

(6.6) L℘mix

☛☛
☛☛
☛☛
☛☛
☛☛
☛☛
☛☛
☛☛

✹✹
✹✹

✹✹
✹✹

✹✹
✹✹

✹✹
✹✹

L℘plait

L℘

②②②②②②②②
L℘2j

●●●●●●●●

The matchings in the bottom triple (℘plait, ℘2j,∪2i+1 ∪2j ℘
′) all contain ∪2j , so this is a positive

triple by the Künneth theorem and the choices fixed at Step (2). Similarly the three matchings
in the outer triple (℘mix, ℘2j,∪2i+1 ∪2j ℘

′) all contain the odd cup ∪2i+1, hence this is a positive
triple by the Künneth theorem. There is a non-trivial product involving all four matchings,
since (℘plait, ℘2j) form a codimension one pair by construction of ℘2j , and there is a non-trivial
product involving the three matchings in the top left triple by Lemma 5.24. Therefore, the two
possible basis elements for (℘plait, ℘mix) on the dotted arrow defined by either choosing ℘ or ℘2j

co-incide by applying Lemma 6.8. Iterating, one can compare any two choices of ℘ in Step (4)
consistently.
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We record an important consequence of the above construction:

Lemma 6.10. The triple (℘mix, ℘2j , ℘plait) is positive. In particular, so is the pair (℘mix, ℘plait).

Proof. The triangle (℘mix, ℘2j , ℘plait) is positive by the previous discussion, whilst the pairs
(℘mix, ℘2j) and (℘plait, ℘2j) are positive by the Künneth theorem. The result then follows from
Corollary 6.7. �

There is no further choice at Steps (5) and (6), so the bases are consistently determined.

6.4. The case n = 3. We now prove independence of choices when n = 3. There are exactly two
matchings containing an odd and an even cup: the plait matching joins pairs {(12), (34), (56)},
the mixed matching joins pairs {(16), (23), (45)} and the two possible matchings containing both
an odd and even cup are

℘25 = {(14), (23), (56)} and ℘14 = {(12), (36), (45)}

(the subscripts indicate which cups the matchings contain). Consider the triangle with vertices
℘mix, ℘25, ℘14 and with an interior vertex labelled ℘plait, cf. Figure 7. The previous steps of
the inductive construction have fixed bases for the pairs including ℘mix or ℘plait and one of the
other two vertices, at Steps (2) and (3). Moreover, the definition of the basis for the pair labelled
(℘14, ℘25) at step (6) ensures that the triangle (℘plait, ℘14, ℘25) is positive (this is independent
of the choice in Step (4)). The basis for the pair (℘plait, ℘mix) can be fixed by choosing either
of the other two vertices, and making the corresponding triangle positive. That leaves two
further triangles: the outer triple, and the remaining internal triangle. These have the same sign
by Lemma 6.8 (since Lemmas 5.22 and 5.24 together imply that there is a non-trivial product
involving all four Lagrangians) but that sign is not determined by consistency with choices already
made, so we need to compute it directly.

L℘mix

γ

��✡✡
✡✡
✡✡
✡✡
✡✡
✡✡
✡✡
✡✡

��
α

��✹
✹✹

✹✹
✹✹

✹✹
✹✹

✹✹
✹✹

✹

L℘plait

L℘25

δ

;;✇✇✇✇✇✇✇✇
L℘14

β

cc●●●●●●●●

Figure 7. Checking positivity when n = 3

Lemma 6.11. Suppose n = 3. The two minimal degree generators for the pair (℘plait, ℘mix)
obtained from Step (4) of the inductive strategy respectively using ℘14 or ℘25 agree.

Proof. We draw the four matchings in question in the diagram of Figure 8, where we have used
the Markov I move to slide certain arcs into the lower half-plane to remove excess intersections.
The Markov I move preserves the orientation of each arc, hence preserves the bases of H2(L℘)
and the associated monomial bases of H∗(L℘), so this Hamiltonian isotopy introduces no signs
into the computation of Floer products.
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Figure 8. Four matchings when n = 3

We have drawn the six critical points grouped into two triples, and consider the degeneration
which simultaneously collapses these triples, i.e. we work in an open subset of Y3 which is an
(A2 × A2)-fibration over T ∗S2. In this local model, the four matchings are all fibred over the
zero-section, with fibres being products of the two basic real arcs in A2, one in each factor of
A2 × A2. The key claim is then that the two products corresponding to β ◦ α and δ ◦ γ in
Figure 7 agree. We see this by explicit computation in the (A2 × A2)-fibred plumbing model.
Schematically, the arrows α, β, γ, δ are as follows:

α • • •
xx

• • •

β • • • •
&&

• •

γ • • • •
&&

• •

δ • • •ff • • •

The six critical points are grouped in the triples which define the local (A2 × A2)-fibration.
A solid line indicates that the morphism is between two Lagrangians which share that arc in
Figure 8, and represents the fundamental class of the corresponding S2-factor of the A2-fibre; an
arrow between a pair of dotted lines denotes the morphism given by the transverse intersection
point of the corresponding matching spheres in the A2-fibre. Since the fundamental class is a
cohomological unit, β ◦α and δ ◦ γ define the tensor product of the curved arrows in respectively
the first two and last two rows, hence represent the same Floer cycle. �

This shows that there is no ambiguity in the construction of the bases when n = 3. By con-
struction, all triangles among the quadruple (℘plait, ℘14, ℘25, ℘mix) are positive. In each case, two
pairs are also positive by the Künneth theorem, so Corollary 6.7 implies that all four triples are
positive.
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There is only one other matching when n = 3, namely the “horseshoe matching” ℘◦ (joining
pairs {(16), (25), (34)}) which enters into the definition of Khsymp . Consider the diagram

L℘mix

✹✹
✹✹

✹✹
✹✹

✹✹
✹✹

✹✹
✹✹

L℘plait

L℘◦

①①①①①①①①
L℘14

●●●●●●●●

where the solid lines denote pairs for which Floer groups were chosen either in Step (2) or Step
(4) of the inductive construction, and the dotted lines are the pairs for which a choice is made
only thereafter. The choice of bases up to Step (4) ensures that all solid lines connect positive
pairs, and the top right (solid) triple is positive. The two dotted arrows are then chosen to make
the remaining two internal triangles positive. Note that the bottom triangle is in fact a positive
triple because (℘plait, ℘14) is a codimension 1 pair. There is again a non-zero product involving
all four Lagrangians since two meet in codimension one, so Lemma 6.8 implies that all triangles
are positive. Noting that the top left triangle contains a codimension 1 pair, we conclude that
the top left triple is also positive by Corollary 6.7. We conclude that all triples are positive.

Finally, by symmetry between L℘14 and L℘25 one easily checks that all products are positive
when n = 3. An examination of the argument furthermore shows that the bases for Hsymp

3 are
indeed compatible with the cup functors ∪i : H

symp
2 → H

symp
3 ; compare to the formally identical

Lemma 6.15 proved below.

6.5. Cup-compatibility and positivity. We now return to the task of proving positivity and
compatibility with the cup functors for n ≥ 4.

In steps (2)-(3) of the construction of bases, new generators are constructed from old ones us-
ing the Künneth theorem, and the positivity of the relevant pairs is inherited. The morphism
constructed in step (4) was shown to be positive in Lemma 6.10.

Lemma 6.12. For the choice of basis in step (5), (L℘plait
, L℘) is a positive pair.

Proof. Fix an integer j so that L℘ lies in the image of ∪2j . Given the choices of bases on
the pairs (L℘plait

, L℘2j ) and (L℘, L℘2j ), which are induced by the Künneth theorem, and noting
that the pair (L℘plait

, L℘2j ) meet in codimension 1, Corollary 6.7 implies that there is a unique
choice of bases for the pair (L℘plait

, L℘) so that the triple (L℘2j , L℘plait
, L℘) is positive. To show

that the choice of basis fixed in step (5) agrees with this new one, it suffices to show that the
triangle (L℘mix , L℘plait

, L℘) is positive for the new choice of basis for the pair (L℘plait
, L℘). This
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is immediate from Lemma 6.8, applied to the quadruple (L℘2j , L℘plait
, L℘, L℘mix):

(6.7) L℘mix

☛☛
☛☛
☛☛
☛☛
☛☛
☛☛
☛☛
☛☛

✹✹
✹✹

✹✹
✹✹

✹✹
✹✹

✹✹
✹✹

L℘plait

L℘ L℘2j

●●●●●●●●

Lemma 6.10 implies that the triple (L℘2j , L℘plait
, L℘mix) is positive. On the other hand, the triple

(L℘2j , L℘plait
, L℘) is positive by construction, while (L℘2j , L℘, L℘mix) is positive by Künneth. �

Lemma 6.13. All triples containing ℘plait are positive. In particular, all pairs are positive.

Proof. Recall that matchings ℘ and ℘′′ meet in codimension n − c(℘, ℘′′), where c(℘, ℘′′) is
the number of components of the planar unlink ℘ ∪ ℘′′. Assume, by decreasing induction on
c(℘, ℘plait) , that the triple (℘, ℘′, ℘plait) is positive whenever c(℘, ℘plait) ≥ c(℘′, ℘plait). The
base case ℘ = ℘plait is a reformulation of the positivity of pairs containing ℘plait.

In the inductive step, we consider a Lagrangian L℘′′ so that c(℘, ℘′′) = n− 1, and c(℘, ℘plait) =
c(℘′′, ℘plait)− 1. By the inductive hypothesis, in the quadruple (L℘plait

, L℘, L℘′ , L℘′′), the triples
containing (L℘plait

, L℘′′) are both positive. The codimension 1 condition for ℘ and ℘′′ implies,
via Lemma 5.19 and Lemma 5.21, that either

(6.8) α℘,℘′ · α℘′′,℘ = ±α℘′′,℘′ or α℘′′,℘ · α℘′,℘′′ = ±α℘′,℘.

The two cases are similar; we consider the first. Reversing the roles of ℘ and ℘′′ in Lemma 5.21,
we see that multiplication by α℘,℘′′ is also necessarily non-trivial, yielding

(6.9) α℘,℘′′ · α℘′,℘ = ±(v1 + v2)α℘′,℘′′ .

We therefore obtain a non-zero product among the Lagrangians (L℘plait
, L℘′ , L℘, L℘′′) in forward

and backward ordering. Applying Lemma 6.8, we conclude that the triangle (L℘′ , L℘, L℘′′) is
positive. The inductive hypothesis yields that the pairs containing L℘′′ are positive. Since
(L℘, L℘′′) is a codimension 1 pair, we conclude that the triple (L℘′ , L℘, L℘′′) is positive, hence
the pair (L℘′ , L℘) is positive, which completes the proof of the inductive step. �

Lemma 6.14. For the bases constructed by the induction of Section 6.2, all Floer products are
positive in the sense of Definition 6.1.

Proof. The statement is equivalent to all triples being positive, and Lemma 5.22 implies it suffices
to know positivity for triples in which one pair is of codimension 1. Given a codimension one
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pair (℘, ℘′) and another matching ℘†, consider:

L℘

✸✸
✸✸

✸✸
✸✸

✸✸
✸✸

✸✸
✸✸

L℘′

L℘†
L℘plait

❋❋❋❋❋❋❋❋

By Lemma 6.13, the triples involving ℘plait are positive. Lemma 6.8 then says that the remaining
triple is positive. �

Lemma 6.15. The bases constructed by the inductive procedure of Section 6.2 are compatible with
all cup functors ∪i : H

symp
n−1 → Hsymp

n .

Proof. Compatibility with the odd cup functors is immediate from Step (2) of the construction,
and the fact that at Step (6) arbitrary bases are defined by comparison with ℘plait which contains
all the odd cups. (Compatibility with the even cup functors requires a consistency check, since
we have broken symmetry between ℘plait and ℘mix in Step (6) of the induction.) So suppose we
have two matchings which are both in the image of an even cup functor, ∪2i℘ and ∪2i℘

′. The
argument then follows the same strategy as in Lemma 6.12. We consider the configuration

L∪2i℘

L℘mix

::✈✈✈✈✈✈✈✈✈
// L∪2i℘′

which admits a non-trivial product involving all 3 Lagrangians, by Lemma 5.24. The Künneth
theorem in Floer cohomology, and the fact that all products are positive by Lemma 6.14, implies
that if we use Künneth bases for the three groups in the triple, all of which lie in the image of
∪2i, then the triple is positive. Lemma 6.14 implies that the triple is also positive with respect
to the basis we constructed in the induction, hence the two bases agree. �

The combinatorial arc algebra underlying Khovanov homology is based on a 2d TQFT with
underlying Frobenius algebra V = Z〈1, x〉 with the property that the co-product

V → V ⊗ V, 1 7→ 1⊗ x+ x⊗ 1

gives a positive linear combination of elements of the tensor product basis: the two terms in the
final expression have the same sign (rather than 1⊗ x− x⊗ 1). The corresponding positivity in
our setting was contained in Lemma 5.21.

Corollary 6.16. The positive basis for Hsymp
n constructed previously defines an isomorphism

Hsymp
n → Hn which entwines the ∪i and ∪combi .

Proof. A helpful model of the combinatorial arc algebra for our purposes is that given by Stroppel
and Webster [60]: they set

Hn = ⊕℘,℘′H∗(L̂℘ ∩ L̂℘′)



52 MOHAMMED ABOUZAID AND IVAN SMITH

and define a modified convolution product on these groups, which (they prove) co-incides with
Khovanov’s original TQFT product. There are natural maps from H∗(Yn) to the centre of both
Hn and Hsymp

n . The clean intersection models for pairs of Lagrangians give identifications of

HF ∗(L℘, L℘′) and H∗(L̂℘ ∩ L̂℘′) as modules over H∗(Yn). To see that these identifications yield
an algebra isomorphism, it is sufficient to know that one can choose minimal degree generators
for all groups such that all products between minimal degree generators agree. Furthermore, we
know from Lemma 5.22 and the Stroppel-Webster algorithm that it suffices to check products of
a minimal degree generator with a degree one generator arising from a pair (℘, ℘′) which meet
in codimension one.

The algebra isomorphism now follows from comparing Lemma 5.21 with [60, Section 4.2]. In
particular, one should compare the “push-forward” case on p. 503 of that paper, in which a
saddle cobordism leads to multiplication by an element ±(zj,i+1 + zσ(j),i+1) which is a sum of

two basis elements in H2(Yn), with the corresponding situation in Lemma 5.21. The essential
point is that the two H2-classes which appear have the same sign, rather than opposite signs, and
in both cases represent the Poincaré dual in cohomology to the appropriate triple intersection
submanifold. ([60] gives an explicit sign recipe for ensuring that all the terms ±(zj,i+1+zσ(j),i+1)
appear with a sign +; our construction of a positive basis gives an implicit proof that on the
symplectic side one can also ensure that only + signs appear.) Compatibility of the isomorphism
with cup functors follows from Lemma 6.15. �

Remark 6.17. The isomorphism of Corollary 6.16 identifies the projective module over Hsymp
n

defined by the Lagrangian submanifolds L℘ with the projective module over Hn defined by the
idempotent associated to ℘. In particular, the Lagrangian L℘◦ which enters into the definition of
symplectic Khovanov cohomology is identified with the corresponding module P℘◦ over Hn.

7. The isomorphism

We now combine the previous results with the exact sequence formulated and proved in Appendix
A to establish the isomorphism between Khovanov and symplectic Khovanov cohomology.

7.1. Parallel transport. We begin with a technical discussion of the choice of symplectic struc-
ture on the Slodowy slice, to ensure that the results of Appendix A can be applied to our setting.

We start in the following more general situation. Suppose we have a Stein manifold X with a
holomorphic map χ : X → B to a Stein manifold B, which is non-singular over the complement
of a discriminant divisor ∆ ⊂ B. Suppose moreover we have a smooth function ψ : X → R with
the properties that

• the form ω = −ddcψ defines a Kähler form on X;
• the set of critical values Crit(χ) is proper over B\∆;
• outside a compact set, ‖∇ψ‖2 ≤ Cψ for some constant C > 0.

The final equality is with respect to the Kähler metric associated to ω. Denote by Xt the fibre
of χ over a point t ∈ B. The form ω defines an exact Kähler form on Xt, provided t ∈ B\∆ is
generic so the fibre is smooth. In that case, the Liouville vector field Zt of ψt = ψ|Xt

satisfies

Zt · ψt ≤ Cψt
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and hence has globally defined flow, so (Xt, ω) is convex and has an infinite contact conical end.
Fix a compact subset B ⊂ B\∆ containing the point t. In this situation, [56] explained how to
relate distinct fibres of χ by “rescaled symplectic parallel transport maps” which were defined
on arbitrarily large compact subsets of the fibres. Here we expand on [56, Remark 30], defining
symplectic parallel transport globally for paths which stay away from the discriminant locus;
analogous arguments appear in [29, Section 6] and [25, Section 9], which we follow closely.

Proposition 7.1. There is a Kähler form ω′ on Xt, and an extension of this to a vertically
non-degenerate closed 2-form on X, for which parallel transport maps are globally defined along
paths in B.

Proof. Because of the properness of the critical values of ψ, we can find c > 0 for which the
truncated fibres Xb ∩ (ψ−1[0, c]) form a family of smooth Stein domains as in [56, Lemma 47],
and Gray’s theorem implies that the contact boundaries vary locally trivially. Following [29,
Section 6], we trivialise a collar neighbourhood of the horizontal boundary ∂horX of the fibration
X|B ∩ ψ−1[0, c] by the flow of the fibrewise Liouville field Zb, defining a diffeomorphism onto its
image

(7.1) ∂horX× [−ǫ, 0] −→W ⊂ X|B ∩ ψ−1[0, c], (v, t) 7→ φ−tZχ(v)
(v).

If α = −dcψ|∂horX is the contact 1-form on ∂horX, we obtain a 1-form α′ = et(φZ)
∗α ∈ Ω1(W )

with the property that dα′ is fibrewise symplectic on W , and its associated horizontal subspaces
are φZt

-equivariant in a collar neighbourhood of ∂horX.

Fix a cut-off function η : [−ǫ, 0] → R which equals 0 on [−ǫ,−3ǫ/4] and equals 1 on [−ǫ/4, 0].
Let η̂ :W → R denote the function obtained from η via (7.1). The form ω′ = ω+d(η̂ · (α′+dcψ))
is a closed vertically non-degenerate 2-form with the following properties:

• in X|B ∩ ψ−1[0, c] it agrees with ω on the complement of the neighbourhood W of the
horizontal boundary;

• its restriction to any fibre Xb ∩ ψ−1[0, c] agrees with the restriction of ω, for b ∈ B;
• the ω′-parallel transport maps over B commute with the Liouville flow inW , so are cones

on contactomorphisms.

The final condition implies that the ω′-parallel transport maps have globally defined flows on
the symplectic completions of the fibres (which was not obvious for the ω-parallel transport
maps). �

We now return to the particular situation of interest in this paper. Recall the slice S from
(5.2) and the adjoint quotient map (5.3), which defines a holomorphic fibration S → Sym2n(C).
Let w = {1, 2, . . . , 2n} and Yn = Yw

n denote the corresponding fibre of χ|S . Fix a compact
set B ⊂ Sym2n(C)\∆ = Conf2n(C) which lies away from the discriminant locus of non-simple
configurations (corresponding to repeated eigenvalues).

In [56] a Kähler form on S, and hence by restriction on its general fibre Yn, is defined as follows.
For each co-ordinate z of the matrix Ai, we take the function ξi(z) = |z|4n/i. The sum of these
define a proper C1-smooth function ξ : S → R, which can be smoothed near the co-ordinate
hyperplanes by replacing ξi 7→ ξi + ηi for suitable compactly supported functions ηi. Let ψ
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denote the function obtained by adding up all the ξi+ ηi over all entries of A ∈ S. It was proven
in [56, Section 5.1] that ψ satisfies the conditions listed before Proposition 7.1.

For each 1 ≤ i ≤ 2n − 1 we consider a holomorphic map wi : C → Conf2n(C) with wi(0) =
{1, 2, . . . , i− 1, i+ 1/2, i+ 1/2, i+ 2, . . . , 2n} and with image im(wi) ⋔ ∆ transverse at 0 to the
discriminant in the symmetric product Sym2n(C) and otherwise disjoint from the discriminant.
Let wi = {1, 2, . . . , i− 1, i+ 1, . . . , 2n}. Choosing B to be sufficiently large, we pull back χ|S by
wi to obtain a holomorphic map

Wi : E
B
i → D2

which is Morse-Bott-Lefschetz at 0, with zero-fibre having singular locus canonically isomorphic
to the space Ywi

n−1, and with generic fibre Yn. One can apply Proposition 7.1 in this setting, since
the required hypotheses on the Kähler form are preserved under pullback by wi. After a further
isotopy of Kähler forms, it follows that parallel transport is well-defined for Wi, in particular
the horizontal boundary W−1

i (∂D2) is exhibited as the mapping torus of a symplectomorphism.

There is another Kähler form in a neighbourhood ofW−1
i (∂D2) which is a flat symplectic fibration

in a neighbourhood of the boundary of the disc, obtained by parallel transport in radial directions
from the given Kähler form on the boundary. The two symplectic forms agree on the boundary,
and can be interpolated through forms with well-defined parallel transport. We write

(7.2) Wi : Ei → C

for an extension of the previous map Wi to a fibration over C, which, outside the unit disc, is
modelled after the symplectic mapping torus of the monodromy. By construction Wi is an exact
LG model in the sense of the Appendix, whose restriction to a neighbourhood of the critical point
agrees with the map constructed in [56].

Proposition 7.2. There is a Kähler form ω′ on Yn, and an extension of this to a vertically non-
degenerate closed 2-form on S, for which parallel transport maps are globally defined along paths
in B. Writing Symp∞(Yn) for the group of symplectomorphisms of (Yn, ω

′) which are modelled
on contactomorphisms at infinity, there is a global monodromy representation

Br2n −→ π0Symp∞(Yn).

In particular, the monodromy τi : Yn −→ Yn of Wi is well-defined in π0Symp∞(Yn).

Proof. The first statement is the conclusion of Proposition 7.1. For the final statement, the global
monodromy representation

Br2n −→ π0Symp∞(Yn)

is obtained from the previous construction by taking B to be the complement of a relatively
compact open neighbourhood of the discriminant, so B is a deformation retract of configuration
space. Similarly, parallel transport maps exist over compact subsets disjoint from the critical
values of the Morse-Bott Lefschetz fibrations obtained by restricting χ|S to a disc transverse to
the discriminant in Sym2n(C). It follows that parallel transport maps are globally defined for
Wi along paths which do not go into the origin, which completes the proof. �

Remark 7.3. There are at least three natural symplectic structures on Yn:

(1) the one just discussed, from [56], which has good parallel transport properties helpful for
establishing the long exact triangle;
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(2) the one discussed in Section 5.2, which extends smoothly to the compactification (S2)2n

and is convenient for comparing the Lagrangians L℘ to the anti-diagonals L̂℘ in the
topological model and computing the ring structure in the symplectic arc algebra;

(3) and the forms from Section 4.1 induced from Yn →֒ Hilb[n](A2n−1) which are product-like
away from the diagonal, with respect to which the Lagrangians L℘ are products of fibred
Lagrangians in Milnor fibres, and which we used in constructing the equivariant structure
on the Fukaya category in [6] and on the cup bimodules in this paper.

All three of these symplectic structures are in fact Stein structures for a fixed complex structure
J = J tn on Yn = Ytn (the complex isomorphism type depends on the eigenvalues, i.e. the point t
in configuration space). They are therefore related by linear interpolation through exact Kähler
forms. Non-compactness of Yn means that those deformations need not integrate to global sym-
plectomorphisms, but they do yield symplectic embeddings of compact subdomains. In particular,
if M ⊂ Yn is a compact subdomain with J-convex boundary (a notion depending only on the com-
plex structure J), the Liouville completion of M is independent up to exact symplectomorphism
of which of the above Stein structures one chooses, cf. [17]. It follows that Floer theory for closed
Lagrangians in M is also independent of that choice.

To compare the Lagrangians themselves, note that Manolescu showed [32] that one can embed a

large compact subset of the Hilbert scheme Hilb[n](A2n−1) symplectically into (Yn,−ddcψ) in such
a way that the Lagrangians obtained as products of matching spheres are Hamiltonian isotopic
to the iterated vanishing cycles. One can therefore identify Floer theory for vanishing cycles in
Yn, equipped with the symplectic structure from [56], with Floer theory for products of matching
spheres in the Hilbert scheme, as used to study formality in [6].

The Kähler form from section 5.2 was only used to simplify the study of cohomological properties
of the restriction H∗(Yn) → H∗(L℘), by reduction to the smooth models L̂℘; those cohomolog-
ical properties then carry over to any other model, even without identifying the corresponding
Lagrangians up to Hamiltonian isotopy. We may therefore appeal to the formality results for cup
and cap functors, the long exact triangle, and the vanishing cycle description of Lagrangians (and
the corresponding clean intersection models arising from Lemma 5.13) simultaneously. We do so
without further comment.

7.2. The cup and cap functors revisited. Let TwHn−1 denote the category of twisted com-
plexes overHn−1, and let ∆τ−1

i
denote the TwHn bimodule associated to the inverse monodromy

of Wi (i.e. the monodromy around a clockwise oriented path encircling 0 ∈ C). Recall that we
previously constructed a functor ∪i : Hn−1 → Hn, which we proved to be formal in Section 4.6.

Proposition 7.4. There is a functor ∩i : Hn → TwHn−1 which is left adjoint to ∪i. Moreover,
the cone of the unit

(7.3) ∆TwHn → ∆TwHn
∪i◦∩i

is quasi-isomorphic to the graph bimodule ∆τ−1
i

.

Proof. Keeping in mind that τ−1 corresponds to a clockwise path around the critical point, this
is a direct application of Proposition A.4, whose assumptions it therefore suffices to verify. In
the notation of op. cit. we have A = Hn−1, with M = Yn−1, and A′ = Hn with W = Yn; we
set E = C3 → C to be the standard Lefschetz fibration, with fibre N = T ∗S2; and we obtain the
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inclusionM×E → E′ = Ei, compatible with the mapWi, from the existence of A1 degenerations
as pairs of eigenvalues come together, as in [56, Lemma 27]. (Strictly speaking, E and N should
be defined as subdomains of C3 respectively T ∗S2 with contact boundary, and similarly for the
fibration EL′ introduced below, but we will keep to the simpler notation and hope no confusion
will arise.) To fulfil the hypotheses of Proposition A.4 we require:

(1) For each object L′ of A′, there exists a Lefschetz fibration EL′ → C, with fibre NL′ ,
including E as a subfibration containing all critical points, and an inclusionM×EL′ ⊂ E′

compatible with the maps to C such that L′ is contained in M ×NL′ ;
(2) For each object L′ of A′, there is an object L of A such that either (i) L′ is quasi-

equivalent to the product of L ×K or (ii) L′ is quasi-equivalent to a Lagrangian which
meets L×K cleanly along a section of the projection to K.

Recall from Lemma 5.24 that if one places the eigenvalues wcyc ∈ Conf2n(C) defining the fibre
Y
wcyc
n at the roots of unity, there is a cyclic symmetry which acts transitively on consecutive

pairs, and hence relates the different Morse-Bott fibrations Wi. Without loss of generality we
therefore suppose i = 1.

If L′ is in the image of ∪i, say L′ = ∪iL, we simply take EL′ = E. This corresponds to case (i)
of Condition (2) above.

If L′ is not in the image of ∪i, say L′ = L℘, then since i = 1, we can suppose that ℘ contains
the arcs (2, p) and (1,m) for some p < m. The hypothesis that i = 1 additionally implies
that the arc (1,m) ⊂ ℘ is necessarily outermost. Embed Wi into the larger two-parameter
degeneration in which the triple of eigenvalues {1, 2, p} come together along the arcs [1, 2] ⊂ R

and (2, p) ⊂ ℘ ⊂ C, as in [56, Lemma 29], which is reproduced as Lemma 5.8 above. Let EL′

be T ∗S2 × C, equipped with the Lefschetz fibration EL′ → C which has generic fibre NL′ the
A2-Milnor fibre, and a unique critical value. One can view this as a subset, containing only one of
the two critical values, of the stabilisation of the fibration E → C, which gives a fibre-preserving
inclusion E ⊂ EL′ . Lemma 5.8 implies that there is an open subset of E′ which is an A2-fibration
over Yn−1

∼= Crit(Wi), and this fulfils the first set of required conditions.

From the construction of the A2-degeneration, L℘ is fibred over the matching given by removing
the arc (2, p) ⊂ ℘, replacing the critical points {1, 2, p} by a single point ∗ viewed as lying at
position {1}, and considering the matching ℘r comprising ℘\(2, p), which contains the arc (∗,m)
(which is uniquely defined to isotopy, and still an upper half-plane matching, since (∗,m) is still
outermost). We set L = L℘r

∈ A. Then ∪i(L℘r
) and L℘ meet in codimension one, and are

given locally by fibrations over a common base with fibre the two arcs of the compact core of the
A2-fibre NL′ . This fulfils the requirements of case (ii) of Condition (2), completing the proof. �

If we consider the monodromy twist τi instead of τ−1
i , functoriality of the construction of the

graph bimodule implies that ∆τi is the bimodule inverse (under tensor product) to ∆τ−1
i

. Since

inverse bimodules are uniquely determined up to quasi-isomorphism, we conclude that this bi-
module agrees with the diagramatic inverse twist:

Corollary 7.5. The bimodule ∆τi is quasi-isomorphic to the cone of the counit:

(7.4) ∆τi ≃ Cone
(
∆TwHn

∪i◦∩i
→ ∆TwHn

)
.

�
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We therefore reach the main theorem:

Theorem 7.6. For any link κ, and characteristic zero field k, we have an isomorphism

(7.5) Khsymp(κ;k) ∼= Kh(κ;k).

Proof. Khovanov homology is completely determined by the arc algebra, the cup functors, and
the distinguished module P℘◦ associated to the Hn-idempotent defined by ℘◦. Indeed, the cap
functors are adjoints to cups, the twist functors are cones on adjunctions, and the link invariants
are obtained from the resulting braid group action as Ext-groups

Kh(κβ) = ExtD(mod−Hn)(P℘◦ , (β × id)(P℘◦ ))

for β ∈ Brn and β × id ∈ Br2n having closure κβ . From our description of the long exact
triangle for the braid group half-twists, the symplectic link invariant Khsymp is obtained by
exactly the same procedure, starting from the symplectic arc algebra and its cup functors, and
the Lagrangian L℘◦ which corresponds to P℘◦ , cf. Remark 6.17. Therefore symplectic and
combinatorial Khovanov cohomologies co-incide over k. �

Up to this point, we have not discussed gradings. One can use Theorem 7.6, or the underlying
fact that we have compatible braid group actions on the derived category of graded modules over
the arc algebra on both the combinatorial and symplectic sides, to equip Khsymp with a relative
Z × Z-grading. However, this is of limited interest ,in the sense that the resulting bigrading
is not defined or Markov invariant for intrinsically symplectic reasons. Instead, we show that
the isomorphism of Theorem 7.6 is compatible with the symplectically defined absolute grading
mentioned in the Introduction.

Let β ∈ Brn be a braid. The Lagrangian submanifold L℘◦ admits a grading; by parallel trans-
port, the image (β × id)(L℘◦) is also graded, which yields an absolute Z-grading on the group
HF ∗(L℘◦ , (β × id)(L℘◦)), which is independent of choices. Then

(7.6) Kh∗symp(κβ) = HF ∗+n+w(L℘◦ , (β × id)(L℘◦))

defines a Markov-invariant absolute Z-grading on symplectic Khovanov cohomology, where n is
the number of strands in the braid β, and w is the writhe, and the braid closure κβ is canonically
oriented as a link by orienting each of the strands of β in the same direction. We also recall
the unoriented skein relation4 for Khovanov homology, which reads (for a positive respectively
negative crossing)

(7.7) · · · −→ Khi,j(!) −→ Khi,j−1(X) −→ Khi−v,j−3v−2(1)

−→ Khi+1,j(!) −→ · · ·

and

(7.8) · · · −→ Khi,j(") −→ Khi−v+1,j−3v+2(1) −→ Khi+1,j+1(X)

−→ Khi+1,j(") −→ · · ·

Here, in the complement of the crossing under consideration, one takes the arc which ends at
the top left corner of the crossing, and sets v to be the signed number of crossings between this
arc and the other connected components of the complement (this compensates for the non-local

4According to long-standing convention, a positive (fibred Dehn) twist in the braid group corresponds to the
negative crossing in a link diagram, and vice-versa.
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change of orientation that occurs in the given way of resolving the crossing). To extend the
definition of (7.6) to a diagram of a link which is not a braid closure, such as the unoriented
crossing resolution, one should interpret the shift n + w as the sum of the number of cups n in
the diagram with the writhe w as before, compare to [15, Section 5] or [42, Equation 40]. Given
this, considering for instance the first of the two skein triangles (for the positive crossing and
hence negative twist monodromy), one finds that in the k = i− j grading the terms which occur
in the first line have degrees k, k+1, k+2v+2 respectively. Suppose the given link is presented
as a braid closure for β ∈ Brn with writhe w; then the corresponding absolute Floer gradings are
for a sequence (in an obvious schematic notation)

(7.9)

· · · −→ HF k+n+w(!) −→ HF (k+1)+n+(w−1)(X) −→ HF (k+2v+2)+(n+1)+(w−2v−1)(1)

−→ HF (k+1)+n+w(!) −→ · · ·

Here we note that the writhe decreases by one in !→ X whilst the number of cups increases by
one in X → 1. Furthermore, if the original β has a positive crossings and b negative crossings,
then the unoriented resolution has a−v−1 positive and b+v negative crossings, so the writhe of
the third term differs from w by 2v+1. In short, the degrees in the exact triangle in i− j grading
are precisely those associated with the mapping cone construction of the twist in Corollary 7.5,
with the boundary map of the mapping cone having cohomological degree +1 and the other
arrows degree 0 respectively 2 (the last being the dimension of the vanishing sphere, cf. the
degrees in [45]). The same discussion applies to the skein triangle for the negative crossing,
versus the mapping cone of Proposition 7.4. Note that if © is the unknot, the absolute grading
on Khsymp(©) concentrates that group in symmetric degrees {±1}. Given that the cohomological
grading in the symplectic arc algebra agrees with the i− j-grading collapse in the combinatorial
arc algebra (which is concentrated in a single homological degree, and is given by tensor products
of H∗(S2)[1] in the j-grading), one infers that, in the absolute grading, one has an isomorphism

Khksymp =
⊕

i−j=k

Khi,j

which completes the proof of [56, Conjecture 2].

Appendix A. The long exact sequence of a twist

A.1. The result. Let (E,ω = dθ, J) be an exact symplectic manifold equipped with a compat-
ible almost complex structure J such that E is geometrically bounded in the sense of Sikorav
[49]. Recall that this means that for some auxiliary Riemannian metric g on E, we have that

(1) J is uniformly tamed, so there are positive constants α and β so that ω(X, JX) ≥ α‖X‖2g,
ω(X,Y ) ≤ β‖X‖g · ‖Y ‖g;

(2) the Riemannian manifold (E, g) has sectional curvature uniformly bounded above and
injectivity radius uniformly bounded below.

The conditions imply completeness of g, as well as the monotonicity Lemma which bounds the
diameter of holomorphic curves in terms of their area, which yields the following a priori estimate:

Proposition A.1. Let K ⊂ E be a compact subset. For each positive real number A, there
is a compact subset K(A) so that any map from a compact Riemann surface with boundary to
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E, which is J-holomorphic outside of K and has geometric energy bounded by A, has image
contained in K(A). �

Definition A.2. An exact Landau-Ginzburg model is a smooth map W : E → C such that,
outside a compact set K ⊂ C, W is a J-holomorphic submersion, and the symplectic connection
defined by ω over C\K is flat.

For convenience, we specify that the compact set is the disc of radius 1/4 centered at (−1/2, 0),
and assume that the triple (E, θ, J) is trivial over the right half-plane. For the purpose of defining
Z-graded Fukaya categories, we will furthermore assume that c1(E) = 0, and fix a trivalisation
of the top exterior power of TE as a complex vector bundle.

We will find it useful to study inclusions of Landau-Ginzburg models, in the following set-up.
Recall that a Lefschetz fibration W : E → C consists of the data of an exact symplectic manifold
E with contact boundary, equipped with a map to C, whose singularities are disjoint from the
boundary and are locally modelled after the quadratic map

(A.1)
∑

z2i : Cn → C.

In addition, we require that W be a symplectic fibration away from the critical points, i.e. that
the fibres are symplectic submanifolds of E.

Consider the following specific geometric situation: (i) M is a Liouville domain, (ii) W : E → C

is a Lefschetz fibration with a unique critical point, whose smooth fibre we denote N , and (iii)
W ′ : E′ → C is an exact Landau-Ginzburg model with fibre M ′, equipped with an inclusion

(A.2) M × E ⊂ E′

which is compatible with the map to C, and so that the difference between the chosen Liouville
forms is exact. In particular, we have a symplectic embedding M ×N ⊂M ′.

Consider subcategories A ⊂ FM and A′ ⊂ FM ′ , and assume that the following technical condition
holds:

(A.3)
For each object L′ of A′, there exists a Lefschetz fibration EL′ → C, with fibre NL′ ,
including E as a subfibration containing all critical points, and an inclusion M ×EL′ ⊂
E′ compatible with the maps to C such that L′ is contained in M ×NL′ ⊂M ′.

Remark A.3. Note thatM ′ is exact and geometrically bounded, but no Liouville structure is spec-
ified, so that it does not directly fall within the purview of Seidel’s construction [51]. Nonetheless,
the construction of the category of compact exact Lagrangians in M ′ is standard, as the only
issue is to ensure compactness of moduli spaces of (pseudo)-holomorphic curves, which follows
under the assumption that all perturbations are compactly supported by Proposition A.1.

We denote by φ : M ′ → M ′ the inverse monodromy of the fibration, i.e. the symplectomorphism
obtained by parallel transport along a loop going clockwise once around a circle lying in the
region where W ′ is locally flat. We write ∆TwA

′

φ for the graph bimodule over the category of

twisted complexes on A′ associated to the endo-functor of the Fukaya category induced by φ.

Fix a closed exact Lagrangian K ⊂ N . As in Section 4.6, let ∪ : A → FM ′ denote the functor
which assigns to a Lagrangian L ∈ ObA its product with K (we constructed this indirectly as a
representing functor for the bimodule K). The following result is proved in Section A.13, at the
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very end of this Appendix, as a consequence of Theorem A.6; the latter in turn is a special case,
sufficient for our purposes, of a more general result which will appear in forthcoming work of the
first author and Sheel Ganatra [3].

Proposition A.4. Assume that for every object L′ of A′, there is an object L of A such that
either (i) L′ is quasi-equivalent to the product of L × K or (ii) L′ is quasi-equivalent to a La-
grangian which meets L ×K cleanly along a section of the projection to K. There is a functor
∩ : TwA′ → TwA which is left adjoint to ∪. Moreover, the graph bimodule ∆TwA

′

φ is quasi-
isomorphic to the cone of the unit:

(A.4) ∆TwA
′

φ ≃ Cone
(
∆TwA

′

→ ∆TwA
′

∪◦∩

)
.

The reader may compare with Proposition 7.4 to see how this result is applied. Its assumptions are
neither optimal nor natural. Assumption (A.3) would more naturally be replaced by the property
of being a fibration with Morse-Bott critical locus and globally integrable symplectic connection
(yielding global parallel transport maps), and the hypothesis on objects of A′ should be dropped.
The global properties of parallel transport are unfortunately not well understood in the desired
application, because the Kähler form on the slice Sn is only known to have well-defined parallel
transport maps out of bounded subsets of the critical locus of a generic fibre in the discriminant
locus of the adjoint quotient χ. In a different direction, omitting the conditions (i) or (ii) on
objects of A′ in the statement of the Proposition would require additional algebraic machinery,
which whilst natural in a general development is not needed for our particular application (this
however is undertaken in the forthcoming work of Abouzaid-Ganatra).

A.2. The setting. The proof of Proposition A.4 relies on a more abstract adjunction involving
the Fukaya category FW of a Landau Ginzburg potential W : E → C, which we construct in
section A.4. The idea that there should be such a Fukaya category is due to Kontsevich. There are
many implementations, some of which are not yet in the literature (see, e.g. [51, 1, 53, 54, 13, 5]).
We shall adopt a viewpoint which is a mixture of Seidel’s approach in [53] and Abouzaid-Seidel’s
approach in [5], and where the Lagrangians we consider are similar to those studied by Biran
and Cornea in [12, 13]. In particular, the objects of this category satisfy the following geometric
condition:

Definition A.5. An exact Lagrangian in E is horizontally admissible if it is proper over C, and
its image under W agrees, outside a compact set, with a finite union of half-lines parallel to the
positive real axis.

Note that [51, Lemmas 16.2 & 16.3] show that, over any half-line δ : [0,∞) → C near infinity with
W (E) ⊃ im(δ), such an admissible Lagrangian L is smoothly fibred over δ, and the component
L ∩W−1(im(δ)) is obtained by parallel transport along δ of a smooth Lagrangian submanifold
of W−1(δ(0)).

The height h(L) of an admissible LagrangianL is the collection of real numbers which appear as y-
coordinates of the corresponding half-lines near infinity. A brane structure on such a Lagrangian
consists of a choice of Spin structure and a real lift of the S1 valued phase. If W (L) comprises a
single half-line near infinity, we say that L has one end.
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Let M denote a fibre of W over the right half-plane. We denote by φ : M →M the monodromy
symplectomorphism obtained by parallel transport along a loop going clockwise once around a
circle which is sufficiently large that it lies entirely in the region where W is locally flat. In
Section A.5 we construct a particular model for the Fukaya category FM of this fibre. We write
∆φ for the graph bimodule of the endo-functor of the Fukaya category induced by φ.

In section A.8, we construct a functor D : FM → FW which the first author first heard described
by Dima Orlov. Let D∆FW

D
denote the 2-sided pullback of the diagonal bimodule ∆FW of FW

by D. Applying D induces a natural map

(A.5) ∆FM → D∆FW

D

of bimodules which we call the unit.

Theorem A.6 (Abouzaid-Ganatra). The cone over the unit ∆FM → D∆FW

D
is quasi-isomorphic

to the graph bimodule ∆φ of the clockwise monodromy.

Very schematically, the functor D involves taking the parallel transport of a Lagrangian L ⊂M
along an arc which has two ends and encircles the origin, cf. Figure 12. There is a canonical
two-step filtration of Floer complexes for objects in the image of D with objects in the fibre,
coming from the two-ended structure, and the exact triangle arises from that filtration.

A.3. Floer cochains and operations. If h(L) is disjoint from h(L′), we define the Floer
complex CF ∗(L,L′) using the methods of [51]; i.e. we pick a compactly supported pair (H,K)
consisting of a Hamiltonian on E and a perturbation of the complex structure J , so that regularity
is achieved for all moduli spaces of finite energy solutions to Floer’s equation with boundary on
L and L′. The Floer complex is generated by Hamiltonian chords starting at L and ending on L′,
and the Floer differential counts solutions to Floer’s equation with such ends. The moduli spaces
of Floer trajectories are precompact because (i) projection to the base is holomorphic outside
a compact set, so that the maximum principle applies, and (ii) Proposition A.1 implies that
moduli spaces of pseudo-holomorphic curves of bounded energy whose boundaries are contained
in a compact set cannot escape to infinity (exactness provides the necessary energy bound).

By choosing a proper Morse function fL : L→ [0,∞), and defining

(A.6) CF ∗(L,L) = CM∗(L; fL),

we extend this definition to the case L = L′.

There is a special case in which this complex may be readily computed: we say that L−ǫ is a
small negative perturbation of L if is obtained by a small Hamiltonian isotopy which decreases all
heights by −ǫ < 0. For an appropriate almost complex structure, the Floer complex CF ∗(L,L−ǫ)
is isomorphic to the Morse complex of a function on L whose gradient flow points outwards at
infinity (see [20, 1]). In particular:

Lemma A.7. There is a canonical degree 0 generator of CF 0(L,L−ǫ) for −ǫ sufficiently small.
�

We shall need a technical result, a version of which forms the basis to all approaches to the
Fukaya category of W . Consider a half-plane Ha = [a,∞) × R, and two collections of functions
{fi}i∈A and {f ′

j}j∈A′ on [a,+∞), which are locally constant on a neighbourhood of a and ∞.
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Figure 9.

Let Γ and Γ′ denote the unions of the graphs of these functions; assume that the curves in each
of these sets are pairwise disjoint.

Definition A.8. A monotone pair (Γ,Γ′) is a pair which satisfies:

(A.7)
dfi
dx

(x) ≥
df ′
j

dx
(x) for all (i, j) ∈ A×A′, with strict inequality if fi(x) = f ′

j(x).

Consider Lagrangians L and L′ which respectively project to the graphs of Γ and Γ′, and assume
that their intersections overHa are transverse. Assuming that the heights of L and L′ are disjoint,
let CF ∗(L,L′) be defined with respect to a Hamiltonian supported away from W−1(Ha), and
a perturbation of almost complex structures for which W is holomorphic over Ha. Consider
CF ∗

in(L,L
′) ⊂ CF ∗(L,L′) to be the submodule generated by intersections projecting away from

Ha. We claim this is a subcomplex:

Lemma A.9. The differential preserves CF ∗
in(L,L

′), and all holomorphic curves which contribute
to the differential on this subcomplex have image which project to C\Ha.

Proof. Let u be a holomorphic strip whose input is a generator of CF ∗
in(L,L

′). After possibly
deforming a, each component Σ of (W ◦ u)−1(Ha) is a surface with corners; we shall show by
contradiction that all such components are constant and contained in the vertical line x = a.
Letting v denote the restriction of W ◦ u to such a component we first consider the situation in
which this component does not include the outgoing end. In this case, every boundary segment
of Σ which maps under v to a curve in Γ or Γ′ must have both endpoints at the same point of
the vertical line x = a. In particular, the intersection number of the boundary of v(Σ) with a
horizontal half-ray starting at x = a must vanish. This implies invariance of the signed count
of pre-images of any point in the plane, which then vanishes because of vanishing at infinity.
By the open mapping theorem, we conclude that the image of this component is constant, and
contained in the boundary.

In order to extend this argument to the case that Σ includes the outgoing end, let v denote the
extension of W ◦ u to the compactification Σ, and let z denote the image of the point at infinity.
The two segments of ∂Σ meeting at the point at infinity map to curves γ and γ′ in Γ and Γ′
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γ

γ′

Figure 10.

which meet at z. The situation is summarised in Figure 10, and the ordering convention for the
output of a Floer differential is such that the degree of v over the unique embedded triangle in
that figure must be negative in order for the degree to vanish for large values of the x-coordinate.
By positivity of degree (and the open mapping theorem) we conclude that such a component
cannot exist. �

The same methods yield a higher product

(A.8) µd : CF
∗(Ld, Ld−1)⊗ · · · ⊗ CF ∗(L0, L1) → CF ∗(L0, Ld)[2− d]

whenever all Floer complexes are defined. The case in which some of the Lagrangians are equal is
handled by counting configurations of holomorphic discs and (perturbed) gradient flow lines, as
in [11, 52, 58]. Chosen inductively, these products satisfy the A∞ relation. The same argument
as in Lemma A.9 shows:

Lemma A.10. If L0, · · · , Ld project to collections of curves Γ0, · · · ,Γd such that each pair (Γi,Γj)
is monotone if i < j, then µd preserves interior Floer cochains. �

A.4. The Fukaya category of W . The collection of horizontally admissible branes forms a
partially ordered set, with L > K if and only if h(L) > h(K) as subsets of R. We define a
category OW with objects such branes and morphisms

(A.9) OW (L,K) =

{
CF ∗(L,K) if L ≥ K

0 otherwise.

The A∞ operations are given by Equation (A.8).

We shall define the Fukaya category as a localisation of OW , following [5]. To this end, consider
a pair (L,L′) such that there is a real number 2 < a, and a small negative perturbation L−ǫ of
L which projects to straight lines on Ha such that (i) L′ agrees with L−ǫ away from W−1(Ha),
and (ii) the pair (L,L′) projects to a monotone pair of arcs outside a compact set. In that case,
Lemma A.9 implies that we have a subcomplex

(A.10) CF ∗(L,L−ǫ) = CF ∗
in(L,L

′) ⊂ CF ∗(L,L′),

hence Lemma A.7 yields a class which we call a quasi-unit

(A.11) κ ∈ HOW (L,L′).

Definition A.11 (Abouzaid-Seidel). The Fukaya category FW is the localisation of OW with
respect to quasi-units.
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The definition of localisation relies on the quotient construction of A∞ categories. Following
Drinfeld [19] in the differential graded case, a convenient model for such quotients was provided
by [30]. By the universal property of localisations, there is a functor OW → FW . The main
justification of our definition is the following result:

Proposition A.12. If L > K, the localisation map induces an isomorphism on cohomology

(A.12) HOW (L,K) ∼= HFW (L,K).

Sketch. The proof is completely formal once one shows that multiplication with respect to quasi-
units induces an isomorphism on homology among directed objects, i.e. if L > K, and κ+ : L+ →
L and κ− : K → K− are quasi-units, then the maps

µ2( , κ+) : CF
∗(L,K) → CF ∗(L+,K)(A.13)

µ2(κ−, ) : CF ∗(L,K) → CF ∗(L,K−)(A.14)

induce isomorphisms on homology. The essential point is that, in the isotopy between L and L+,
no intersections with K at infinity are created or destroyed (and similarly for swapping the roles
of K and L). The proof then follows from invariance of Floer cohomology under continuation
maps [53, 12]; compare to [55, Lemma 10.7] for a related localisation construction. �

Remark A.13. The category FW is a “partially wrapped” category, in the terminology of e.g.
[7]. In constructing any version of the Fukaya category of a Liouville manifold which involves
non-compact Lagrangian submanifolds L and perturbations by a Reeb-type flow φH at infinity
defined by a Hamiltonian function H, one must always contend with the fact that A∞-operations
in Hamiltonian Floer cohomology are defined by maps

(A.15) CF ∗(L, φH1(L))⊗ · · · ⊗ CF ∗(L, φHk
(L)) −→ CF ∗(L, φH1+···+Hk

(L))

which involve multiples Hi = λiH of a given Hamiltonian function, and the fact that the Floer
complex on the right of (A.15) is not isomorphic at chain level to the factors on the left. The
“telescope construction” of [4] circumvents this for “fully wrapped” categories, but there are ad-
ditional complications for compactness of spaces of holomorphic curves, and well-definition of
the required continuation maps for direct systems of partially wrapped Floer groups, when the
Hamiltonian flow is degenerate on a subset of the contact boundary (roughly stemming from
non-properness of H on the completion). The localisation construction of [5], borrowed above, is
designed to circumvent these issues.

One-ended Lagrangians, which by definition project to a single arc outside a compact set, play a
special role in the theory. In our intended applications, we shall need a more flexible notion: to
this end, we say that a Lagrangian L is weakly one-ended if there exists a positive real number
x0 ∈ R such that W (L) agrees near the vertical line x = x0 with a horizontal line (say y = y0).
Let Λ denote the fibre of L over (x0, y0), and let Lin ⊂ L be the submanifold of L (with boundary
Λ) defined by the inequality that the real part of W is bounded by x0. We define TL be the
Lagrangian which agrees with Lin to the left of x = x0, and with the parallel transport of Λ
along y = y0 to the right of this line.

Lemma A.14. The Lagrangians L and TL are quasi-isomorphic in FW .
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Sketch of proof: To show that L is a summand of TL in FW , it suffices to construct Lagrangians
T+
L and T−

L which are quasi-equivalent to TL in FW , together with maps f ∈ HF ∗(T+
L , L) and

g ∈ HF ∗(L, T−
L ) such that the product

(A.16) µ2(g, f) ∈ HF ∗(T+
L , T

−
L ))

is a quasi-unit.

Pick a C2-small Morse function h on L whose restriction to a neighbourhood of Λ agrees with
the sum of a Morse function on Λ with a small multiple of (x − x0)

2 + (y − y0)
2). We can then

pick T+
L (respectively T−

L ) to agree with Hamiltonian pushoff of Lin by −h (respectively h) in
the region x ≤ x0, and with the parallel transport of Λ by a line above y = y0 (respectively below
y = y0) which does not intersect W (L). Since all relevant intersection points project to the left
of the line x = x0, we have identities of sets

L ∩ T−
L = T+

L ∩ L = T+
L ∩ TL− = crit(h|Lin

);

at the level of Floer cochains, these yield isomorphisms of Floer groups

(A.17) HF ∗(L, T−
L ) ∼= HF ∗(T+

L , L)
∼= HF ∗(T+

L , T
−
L )) ∼= H∗(Lin),

since all of the complexes are identified with the Morse complex of h|Lin
. These isomorphisms

are compatible with multiplication, hence the quasi-unit in HF ∗(T+
L , T

−
L ) can be written as a

product as in Equation (A.16). This completes the proof that L is a summand of TL; the proof
that they are quasi-isomorphic follows by reversing their rôles in the above argument. �

A.5. The Fukaya category of M . Let M be the fibre of W at a point in the upper half-plane;
by our assumptions on W , parallel transport in the right half-plane yields an identification of
any pair of such fibres which preserves the primitive θ|M and the complex structure J |M .

To ease comparison with FW , we define a version of the Fukaya category of M by localisation:
fix a finite collection of exact Lagrangian branes LM in M . The objects of OM are pairs (L, i),
with L ∈ LM , and i a negative integer. Choose a sequence of Hamiltonian perturbations {Li} of
L which are uniformly C2-small, so that

(A.18) Li is transverse to Kj whenever i 6= j.

We obtain a directed category with morphisms

(A.19) OM ((L, i), (K, j)) =

{
CF ∗(Li,Kj) if (L, i) ≥ (K, j)

0 otherwise,

where we again choose an auxiliary Morse function on each Lagrangian to define self-Floer co-
homology, and the partial order is (L, i) > (K, j) if and only if i > j. The definition of the
Floer cochains uses perturbed almost complex structures, but we require that the inhomoge-
neous terms vanish. Given that the Hamiltonian perturbations were assumed to be C2-small,
there is a canonical element

(A.20) κi,j ∈ HF ∗(Li, Lj)

under the identification of Floer cohomology with Morse cohomology. If i ≥ j, this represents a
morphism in HOM ((L, i), (L, j)).

Definition A.15. The Fukaya category FM of M is the localisation of OM at the continuation
elements κi,j.
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The objects (L, i) and (L, j) are quasi-isomorphic in FM , but not identical. If FM denotes the
“usual” Fukaya category, as constructed in [51] and used in the body of this paper, one can
construct an A∞-functor OM → FM which sends κi,j to a quasi-isomorphism for every i, j. From
that point, a formal argument based on the properties of localisation again shows that FM and
FM are quasi-equivalent; see [5] and [55, Remark 10.8].

A.6. Vertical Lagrangians. Pick a monotonically increasing function g on R which agrees with
−1 for y ≪ 0, with 1 for 0 ≪ y, and which vanishes with non-zero derivative at the origin. Let
gi = (1 + 1

i )g(y), as shown on Figure 11. For each negative integer i, Lagrangian L ∈ LM , and

point p in the right half plane, let Vp(L, i) denote the parallel transport of Li along the curve
p+(gn(y), y). The Lagrangians Vp(L, i) are not horizontally admissible in the sense of Definition
A.5, but they are vertically admissible. Extending the choices of almost complex structure on
M used to define CF ∗(Li00 , L

i1
1 ) to E, we obtain a canonical isomorphism

(A.21) CF ∗(Li00 , L
i1
1 ) ≡ CF ∗(Vp(L0, i0),Vp(L1, i1))

of free abelian groups given by the inclusion of intersection points. Moreover, given a sequence
(Li00 , · · · , L

id
d ), the maximum principle implies that all holomorphic discs in E with boundary

on the sequence obtained by applying Vp are contained in the fibre over 0, i.e. we have an
identification between moduli spaces of holomorphic discs in E and M . The following result was
proved by Seidel in [51]:

Proposition A.16. If id < · · · < i0, regularity for holomorphic discs with boundary condi-
tions (Li00 , · · · , L

id
d ) is equivalent to regularity of the corresponding disc with boundary conditions

(Vp(L0, i0), · · · ,Vp(Ld, id)). �

We can extend this discussion to Lagrangians which are equal by choosing the Morse function
on Vp(L, i) to be the sum of the Morse function on Li with (y − p)2. With these choices, the
A∞-structure on OM can be equivalently defined as a subcategory of a category of vertically
admissible Lagrangians in E.

A.7. The restriction bimodule. Given a horizontally admissible Lagrangian T and a vertically
admissible Lagrangian V , we define CF ∗(T, V ) by choosing a compactly supported Hamiltonian
on E which maps T to a Lagrangian transverse to V . More generally, given sequences (T0, . . . , Ts)
and (Vr, . . . , V0) of horizontally and vertically admissible Lagrangians projecting to arcs which
are disjoint outside a compact set, the count of discs with r + s + 2 boundary marked points
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defines an operation

(A.22) CF ∗(Vr−1, Vr)⊗ · · · ⊗ CF ∗(V0, V1)⊗ CF ∗(Ts, V0)

⊗ CF ∗(Ts−1, Ts)⊗ · · · ⊗ CF ∗(T0, T1) −→ CF ∗(T0, Vr),

which satisfies the equation for an A∞-bimodule.

We now define an OM -OW bimodule R, called the restriction bimodule, as follows: given objects
(L, i) of OM and T of OW , we set

(A.23) R(T, (L, i)) =

{
CF ∗(T,V(L, i)) if 2i+ 1 < h(T )

0 otherwise.

The structure maps are obtained from Equation (A.22) and the identifications of morphism spaces
in OM with Floer groups among vertical Lagrangians. The key point is that, given sequences
(T0, . . . , Ts) and ((Lr, ir), . . . , (L0, i0)), the condition 2i0 + 1 < h(Ts) implies 2ir + 1 < h(T0)
whenever ik+1 ≤ ik for all 0 ≤ k ≤ s−1 and h(Tk) ≤ h(Tk+1) for all 0 ≤ k ≤ r−1. In particular,
given sequences such that Tk ≤ Tk+1 and (Lk+1, ik+1) ≤ (Lk, ik), the Floer complexes between
horizontal and vertical Lagrangian appearing in Equation (A.22) are respectively isomorphic
to R(Ts, (L0, i0)) and R(T0, (Lr, ir)), and all other complexes are morphism groups in OM or
OW . The A∞ equation for the bimodule R therefore follows from the A∞ equation satisfied by
Equation (A.22).

A.8. The Orlov functor. Fix a point q ∈ C, lying in the region where W is a locally flat
symplectic fibration. For concreteness, we also assume that q lies to the left of the line x = 2,
though the entire construction can done without this assumption by changing constants below.
In this section, we build a functor from OMq

to OW ; the key input is a careful construction of a
sequence of arcs in the plane. Let γi be a sequence of arcs as in Figure 12, indexed by negative
integers i. More precisely, we first list the properties which only involve one curve at a time:

(1) γi agrees in [3,+∞)× R with horizontal lines at heights 2i+ 1 and 2i+ 2.
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(2) γi intersects [2, 3]×R in two components, which are graphs of monotonically decreasing
functions with values 1− 1/i and −2− 1/i at 2.

(3) γi is disjoint from (−1, 2)× (−1, 1) .

The next conditions are required for all pairs i > j:

(1) γi is transverse to γj .
(2) The intersection of the pair (γi, γj) with [2,+∞)× R is monotone (c.f. Definition A.8.)
(3) γi ∩ γj ∩ (−∞, 2]× R = {q}.

To define a functor, we set D(L, i) to be the parallel transport of Li along the curve γi,
parametrised monotonically so that t = 0 maps to the point q. If fLi is the Morse function
used to define the self-Floer cochains of Li, the function fLi + t2 is Morse on D(L, i), so we
obtain an identification

(A.24) CF ∗(Li, Li) = CF ∗(D(L, i),D(L, i)),

of self-Floer cochains. For pairs, we note that D(L, i) and D(K, j) are transverse if i 6= j, so we
can define all A∞ operations among such Lagrangians without using inhomogeneous terms. We
have an inclusion

(A.25) CF ∗(Li,Kj) ⊂ CF ∗(D(L, i),D(K, j)),

corresponding to the intersection points lying over q ∈ C. Lemma A.9 implies that this is an
inclusion of subcomplexes. Since j < i implies that h(D(K, j)) < h(D(L, i)), we obtain an
inclusion of morphisms in the directed categories:

(A.26) OMq
((L, i), (K, j)) ⊂ OW ((L, i), (K, j).

This inclusion yields a functor

(A.27) D : OMq
→ OW

with trivial higher order terms by the generalisation of Lemma A.9 to multiple Lagrangian
boundary conditions. As quasi-units are defined in the same way on OMq

and OW we obtain, by
the universal property of localisation, a functor

(A.28) D : FMq
→ FW .

A.9. An equivalence of bimodules. The Orlov functor and the restriction bimodule can be
compared whenever p = q lies in the right half plane. For concreteness, we set q = (1, 1). In this
case, note that D(L, i) and V(L, i) meet cleanly along a copy of Li over q, as shown in Figure
13. Given any horizontally admissible Lagrangian T , the count of holomorphic polygons with
corners mapping to this clean intersection defines a map

(A.29) CF ∗(D(Lr−1, ir−1),D(Lr, ir))⊗ · · · ⊗ CF ∗(D(L0, i0),D(L1, i1))

⊗ CF ∗(Ts,D(L0, i0))⊗ CF ∗(Ts−1, Ts)⊗ · · · ⊗ CF ∗(T0, T1) −→ CF ∗(T0,V(L, i)).

Using the inclusion of morphism spaces in OM as subcomplexes of morphism spaces among the
images of these Lagrangians under D, we obtain a map of OM -OW bimodules

(A.30) D∆OW → R.
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x = 2

T

D(L,−1)

D(L,−2)

D(L,−3)

V(L,−1)
V(L,−2)

q

Figure 13.

Lemma A.17. Whenever 2i+ 2 < h(T ), the induced map

(A.31) OW (T,D(L, i)) → R(T, (L, i))

is a chain equivalence.

Proof. Up to equivalence, the map is invariant under isotopies of D(L, i) among horizontally
admissible Lagrangians of fixed height, and all isotopies of V(L, i) among vertically admissible
Lagrangians. By moving the intersection point q so that its x and y coordinate are both much
larger than 0, we may assume that all intersections points of T with D(L, i) and V(L, i) occur
along the ends of T , and all these ends have height smaller than the y-coordinate of q (see Figure
13). Each end of T projects to an arc which intersects the arcs defining V(L, i) and D(L, i)
once, in the second case along the path going from q to the horizontal line of height 2i + 2 by
assumption. The result follows from a straightforward count of holomorphic triangles which are
constant in the fibre. �

Corollary A.18. D represents the bimodule R, i.e. there is a natural quasi-equivalence of
FM -FW -bimodules

(A.32) D∆FW ∼= R.

�

A.10. A two-step filtration. Consider the right-pullback Wq of R by the functor D: this is a
OMp

-OMq
-bimodule which assigns to (L, i) ∈ Ob OMp

and (K, j) ∈ Ob OMq
the complex

(A.33) Wq((K, j), (L, i)) =

{
CF ∗(D(K, j),V(L, i)) if i < j

0 otherwise.
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q 0

D(K,−1)

D(K,−2)

V(L,−1)
V(L,−2)

Figure 14.

The bimodule structure maps arise from the identification of morphisms in OMp
with the Floer

complexes among the Lagrangians V(L, i), and the inclusion of morphisms in OMq
as the subcom-

plex of the Floer complexes among the Lagrangians D(K, j) corresponding to the intersection
points lying over q.

The definition of Wq is summarised in Figure 14: since the generators of all these complexes, as
well as the intersection points among the Lagrangians corresponding to D and V, take place in
the region x < 2, we have only illustrated this subset of the base.

The intersection points between D(K, j) and V(L, i) which occur over points in the lower half-
plane generate a submodule which we denote W+

q ((K, j), (L, i)).

Lemma A.19. The differential preserves W+
q ((K, j), (L, i)).

Proof. We apply the same argument as in Lemma A.9 to the dashed line in Figure 14, which
separates the intersection points in the lower half plane from the region where the fibration is
not flat and which contains the intersection points in the upper half plane. �

Generalising the above argument to the case of holomorphic polygons, we find a sub-bimodule
W+
q ⊂ Wq, given on pairs by the subcomplex W+

q ((K, j), (L, i)). We introduce the quotient
complex

(A.34) W+
q → Wq → W−

q ,

whose value on a pair is the Floer complex W−
q ((K, j), (L, i)) generated by all intersection points

occurring in the lower half plane.
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A.11. Parallel transport and the exact triangle. Let us return to the situation considered
in the proof of Lemma A.17, where p = q is a point in the upper right quadrant of the plane.
In this case, all intersection points defining the bimodule W+

q lie over this point and hence so
do all holomorphic discs contributing to the bimodule structure maps. Since the Lagrangians
D(K, j) and V(L, i) intersect this fibre along Kj and Li, the bimodule W+

q therefore represents
the diagonal bimodule of OMq

.

Lemma A.20. The inclusion W+
q → Wq agrees with the unit OMq

→ D∆OW

D
, i.e. the following

diagram commutes:

(A.35) OMq

��

// W+
q

��
D∆OW

D
// Wq

Proof. The bottom arrow is induced (by pullback under D) by the equivalence between D∆OW ∼=
R. Commutativity is implied by the fact that all holomorphic curve counts take place over q, as
in Lemma A.17. �

In order to compute W−
q , we move q along a path from (1, 1) to (1,−1) that moves counterclock-

wise (e.g. going through (−2, 0)). Having fixed the isomorphism between the categories OM(1,1)

and OM(1,−1)
arising from parallel transport in the right half-plane, the above path induces the

monodromy symplectomorphism between these fibres; and hence acts correspondingly on Fukaya
categories. On the other hand, setting p = q = (1,−1) we have that W−

(1,−1) is isomorphic to

diagonal bimodule. Pulling back again to a point in the upper right quadrant, we conclude

Lemma A.21. The bimodule W−
q is quasi-isomorphic to the graph bimodule of the clockwise

monodromy. �

Combining the triangle W+
q → Wq → W−

q with Lemma A.20, we obtain Theorem A.6, namely:

Corollary A.22. The graph bimodule ∆φ is quasi-isomorphic to the cone ∆FM → D∆FW

D
of

the unit. �

A.12. Lefschetz fibrations. We now implement some of the above ideas in the setting of a
Lefschetz fibration W : E → C on a total space of dimension 2n, with a unique critical point
(by convention, we can set the value to be −1/2 to remain consistent with the previous section).
Fix the thimble T which projects to the subset [−1/2,+∞) of the real axis. As an object of
FW , a thimble T has self-Floer cochains generated by the critical points of any proper Morse
function on T ∼= Rn. We fix such a Morse function fRn with a unique minimum, which near the
unit sphere is the sum of a Morse function on the sphere with (‖W‖ − 1)2. Denoting by k the
category with one object whose endomorphism group is k, we obtain a functor

(A.36) T : k → FW ,

which is a fully faithful embedding since the class of the minimum maps to the identity, which
generates the self-Floer cohomology of a thimble. We abuse notation and write T either for the
functor, or for the corresponding object of FW .
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T+

T−

D (K)

Figure 15.

Let K ⊂M = π−1(1) denote the vanishing cycle. Consider the Yoneda module K of this object
of FM ; note this FM module can be equivalently thought of as a k− FM bimodule.

Lemma A.23. The pullback of R by T is quasi-isomorphic to K.

Proof. The Yoneda module assigns to any Lagrangian L the Floer complex with K, computed
in the fibre M , whereas the module TR is obtained by taking the Floer complex of the vertically
admissible Lagrangian associated to L with the thimble T. For L 6= K, these agree by the
maximum principle, whereas for L = K they agree because our choice of Morse function on T

restricts to a Morse function on K, which we use to define the self-Floer complex of K. �

Lemma A.23 explains the nomenclature restriction bimodule: there is a basic link between R and
the geometric process of “restricting” a Lefschetz thimble to a generic fibre. We next consider
the functor D.

Lemma A.24. There is a quasi-isomorphism DK ∼= T ⊕ T[n− 1].

Proof. Let D(K) be a representative of the image of the Orlov functor with ends at ±1, and T±

be representatives of T in OW with ends at ±2 (see Figure 15). Note that the product

(A.37) HF ∗(D(K),T−)⊗HF ∗(T+,D(K)) −→ HF ∗(T+,T−) ∼= H∗(K)

is in the correct order for computing morphisms in FW . The existence of an embedding of
two shifted copies of T as summands in D(K) is equivalent to the existence of classes p0, p1 ∈
HF ∗(D(K),T−) and ι0, ι1 ∈ HF ∗(T+,D(K)), whose products satisfy

(A.38) µ2(pj , ιi) = δi,j ,

since, up to shifts, this yields (mutually orthogonal) projections and inclusions of T± → D(K).
By deforming the Lefschetz fibration if necessary, it suffices to prove the result for the standard
Lefschetz fibration π : Cn → C, π : (z1, . . . , zn) 7→

∑
z2j . The Lagrangians T± project to the arcs

shown in Figure 15, hence in particular agree with small perturbations of iRn in a neighbourhood
of the origin in Cn. We can therefore perform the Floer-theoretic computation in T ∗Rn, in which
case we have a natural isomorphism HF ∗(T+,T−) ∼= H∗

c (R
n). Using the fact that DSn−1 meets
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TLLγ

Figure 16.

iRn cleanly along Sn−1, we have a commutative diagram

(A.39) HF ∗(DSn−1,T−)⊗HF ∗(T+,DS
n−1) //

��

HF ∗(T+,T−)

��
H∗(Sn−1)⊗H∗(Rn,Rn \ Sn−1) // H∗

c (R
n).

,

(If U is an open neighbourhood of Sn−1 ⊂ iRn, the plumbing model for clean intersections is
usually stated with morphism groups C∗(U) and C∗(U, ∂U), cf. Proposition 5.11; we have used
excision to identify H∗(U, ∂U) ∼= H∗(Rn,Rn\Sn−1).) The classes p0 and p1 can now be chosen
to be generators of the two non-zero graded components of HF ∗(DSn−1,T−) ∼= H∗(Sn−1), with
ι0 and ι1 their Alexander-Lefschetz duals. �

Consider now a closed exact Lagrangian L ⊂M :

Lemma A.25. If L meets K at a single point, there is a quasi-isomorphic DL ∼= T.

Proof. Polterovich proved that, if Lagrangian submanifolds K,L ⊂ M meet transversely at a
single point, there is a Lagrangian cobordism Γ ⊂ M × C between K ∐ L and the Lagrange
surgery K#L, fibred over a tripod (figure Y , thickened at the vertex) with the surgery lying
over a small neighbourhood of the trivalent vertex and the Lagrangians K,L,K#L lying over
the three ends (see [39, 12]). Supposing further that K ∼= Sn ⊂ M is a Lagrangian sphere, this
cobordism can be extended inside the Lefschetz fibration E with fibre M and vanishing cycle K
by continuing the edge labelled by K into the critical point (this was also used by Biran and
Cornea [13]). This yields a Lagrangian TL ⊂ E, which after Hamiltonian isotopy is horizontally
admissible with ends fibred by copies of L and the monodromy image L#K = τK(L). The
Lemma will follow from the claim that Lγ is Hamiltonian isotopic to TL, together with Lemma
A.14, which asserts the equivalence of TL with the thimble T.

The Hamiltonian isotopy is a consequence of the λ-Lemma. Given a hyperbolic critical point
(x, y) = (0, 0) ∈ Rk × Rm of a flow (φt), with local unstable manifold Wu = {0} × Rm and
stable manifold W s = Rk × {0}, the λ-Lemma (see e.g. [18]) asserts that if ∆ is an m-disc
transverse to W s, then its image under φR, for sufficiently large R ≫ 0, is the graph of a
function φ : Wu → R with values and derivatives bound by eλT . (Schematically, although the
given flow takes exponential time into the origin, one can consider the flow associated to a system
whose critical point is shifted slightly, and then reparametrise the flow-lines to have uniformly
bounded time.) In the Lefschetz fibration, apply the Hamiltonian flow of Im(π), which is the
gradient flow of Re(π). This flows the complement of an open neighbourhood of −1 ∈ γ into the
right half-plane, and the λ-lemma implies that the resulting fibred Lagrangian with boundary can
be completed to a piecewise-smooth Lagrangian submanifold which contains a compact subset of
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the Lefschetz thimble, and which after smoothing is Hamiltonian isotopic to Lγ . That smoothing
yields the surgery TL presented in fibred position, cf. Figure 16. �

A.13. The fibred twist. It would be natural, next, to consider the generalisation of the dis-
cussion of the previous section to the Morse-Bott case; for exact Morse-Bott fibrations with
globally defined parallel transport that is relatively straightforward. However, to obtain a theory
applicable to the geometric setting relevant to symplectic Khovanov cohomology with minimal
further technical development, we consider the following setting introduced at the beginning of
Appendix A. Namely, letM be a Liouville domain, W : E → C an exact Lefschetz fibration with
a unique critical point and fibre N , and W ′ : E′ → C an exact Landau-Ginzburg model with
fibre M ′. Assume there is an exact inclusion

(A.40) M × E ⊂ E′

compatible with the maps to C. We now generalise the construction of the previous section to
this setting. First, associated to each Lagrangian L ⊂ M , we obtain a thimble TL which is an
object of FW ′ , by taking the product with the thimble T of E which projects to the real axis.

Lemma A.26. The assignment L→ TL extends to a fully faithful embedding

(A.41) T : FM → FW ′ .

Proof. We fix the Morse fRn on Rn used in the previous section, with a unique minimum on the
unit sphere. This induces an inclusion

(A.42) CF ∗(L0, L1) ⊂ CF ∗(L0 ×K,L1 ×K),

which defines the A∞-homomorphism T. As in Proposition A.16, holomorphic curves inM which
are regular are regular as curves in M × E, hence in E′. �

Let K ⊂ N = W−1(1) denote the vanishing cycle as before. As in Section 3.3, we assign to
K an FM ′ -FM -bimodule K by considering Floer theory in M ′. The proof of the next result
is a straightforward generalisation of the proofs of Lemmas A.23 and A.24, using the fact that
products of regular holomorphic curves are regular.

Lemma A.27. In the setting and notation of Lemma A.26:

(1) The pullback of the bimodule R by T is quasi-isomorphic to K.
(2) For each Lagrangian L ⊂M , there is a quasi-isomorphism

D (L×K) ∼= TL⊕ TL[n− 1].

�

Consider now a closed exact Lagrangian L′ ⊂ M ′, and a Liouville domain NL′ equipped with
a Liouville inclusion NL′ ×M ⊂ M ′, containing the image of L′. Moreover, we assume that
N ⊂ NL′ , and that the inclusion E ×M ⊂ E′ extends to an inclusion

(A.43) EL′ ×M ⊂ E′

where EL′ → C is a Lefschetz fibration with fibre NL′ all of whose critical points are contained
in E.
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Lemma A.28. If L′ meets K × L cleanly along a section of the projection to K, there is a
quasi-isomorphic DL′ ∼= TL.

Proof. This is the Morse-Bott version of Lemma A.25; the construction of the sugery and the
cobordism takes place in the product of the Lefschetz fibration EL′ withM , in which the gradient
flow of the real part ofW is integrable. The result follows by the Morse-Bott case of the λ-Lemma
(see e.g. the proof of [8, Theorem 25]). �

To conclude, we prove the version of the exact sequence of a twist that we use in the main part
of the paper:

Proof of Proposition A.4. By assumption, every object of A′ either satisfies the hypothesis of
Lemma A.25 or is a product of a Lagrangian in M with K. We conclude that the functor
D : A′ → FW (composed with the inclusion FW → TwFW ) is equivalent to a functor which
factors through the image of T. Since T is a fully faithful embedding, we may therefore fix a
functor ∩ : TwA′ → TwA so that we have a diagram which commutes up to equivalence:

(A.44) TwA′ ∩ //

D

%%❑
❑❑

❑❑
❑❑

❑❑
❑ TwA

T

��
TwFW .

Theorem A.6 therefore implies that the graph bimodule ∆TwA
φ is quasi-isomorphic to the cone

of the unit ∆TwA → ∩∆
TwA
∩ . It remains to show that we have an equivalence

(A.45) ∩∆
TwA
∩

∼= ∆TwA
′

∪◦∩ ,

i.e. that ∩ is adjoint to ∪, where ∪ is the Künneth-type functor representing K. Observe that
the two-sided pullback of ∆FW by T is equivalent to ∆A because T is a fully faithful embedding,
so ∩∆

A is equivalent to D∆FW

T
. Corollary A.18 implies that RT is represented by D∆FW

T
, but

Lemma A.27 implies that ∪ is represented by RT , which proves the existence of the adjunction,
hence establishes the equivalence in Equation (A.45). �
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