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SUMMARY
Secular Dynamics of Self-gravitating Debris Discs

Antranik Awedis Sefilian

Debris discs are the leftovers from the epoch of planetary formation, akin to the Solar
System’s asteroid and Kuiper belts. They preserve a record of the physical processes
at work throughout the system’s age, not least planet–disc interactions. Deciphering
this record has become a central focus of modern celestial mechanics, as it may provide
unique insights into the formation and evolution of exoplanetary systems, in addition
to indirectly detecting planets based on the structures (e.g., gaps and spiral arms)
they imprint on debris discs. However, the problem is compounded by two interrelated
issues. First, most existing studies of planet—debris disc interactions do not account for
the (self-)gravitational effects of debris discs. That is, debris discs are usually treated
as a collection of massless particles, subject only to the gravity of external massive
companions. This is partly related to the second issue pertaining to the theoretical and
computational challenges involved in modelling the long-term (secular) gravitational
effects of discs in general. This dissertation aims to partly address these two problems.

In the first part of the dissertation, I provide a comparative analysis of the two
existing methods for the analytical computation of the secular disturbing function due
to a flat disc: softened and non-softened. I first show that the various methods which
are based on softening the Newtonian point-mass potential, in the appropriate limit,
may converge to the expected non-softened behaviour exactly, approximately, or not
converge at all. I then explain this variety of outcomes by formulating a generalised
Laplace–Lagrange theory for flat discs which is applicable for a wide variety of softening
prescriptions. Finally, I study the conditions that must be obeyed by any discretised
numerical treatment of self-gravitating discs to accurately reproduce the expected
gravitational potential, finding that a fine numerical sampling is required.

In the second part of the dissertation, I explore the secular dynamical interaction
between an eccentric planet and a massive, external debris disc. I first employ a
simplified model accounting only for the axisymmetric component of the disc gravity to
probe the ensuing basic dynamical effects. I find that even when the disc is less massive
than the planet, the system may feature secular resonances which in turn can sculpt
a gap within the debris disc through excitation of planetesimal eccentricities. I then
characterise the properties of the secular resonances and illustrate how the planet–disc
parameters can be constrained for a given system hosting a gapped disc. Then, using



a numerical method developed based on the first part of the dissertation, I examine
the case where the full gravity of the debris disc is accounted for, including both axi-
and non-axisymmetric components. In this case, I find new dynamical phenomena
whereby the secular resonances cause e.g. the planetary orbit to circularise in time,
as well as to launch a one-armed spiral arm beyond the gap. As an example, I apply
these results to known gapped debris discs, and show that they could be sculpted by a
single interior planet/companion, provided the discs have enough mass.

In summary, then, the contributions of this dissertation are three-fold: to better
understand the methods for quantifying the gravitational potential of discs in general;
to propose a new mechanism for sculpting gaps in debris discs; and more generally, to
pave the way for advancing the theory of debris disc modelling by including the effects
of disc gravity.
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Chapter 1

Introduction

1.1 Historical Overview and Motivation

Since the dawn of time, humanity has gazed into the night sky with wonder. With
the birth of astronomy with ancient stargazers millennia ago, it has been a consistent
human endeavour to understand the nature of the universe, our location within it, and
the origins of life: What are the origins of the sparkling objects in the sky? Is the Solar
System unique? What are the origins of life on Earth? Are we alone in the universe?

Astronomy has had a long and dramatic history, one filled with discoveries which
have and are continually affecting our view of Earth and our place in the universe.
These discoveries, beginning with mapping out the phases of the Moon as it orbits
the Earth by ancient stargazers, the identification of planets in our solar system by
the ancient Greeks, to the shift from Ptolemy’s geocentric model in 200 A.D. to the
heliocentric model of Copernicus during the Renaissance, followed by the discovery
of galaxies in the early 20th century, have all shown that our place in the cosmos is
not as unique as previously thought: neither the Earth nor our Sun is at the centre
of the Universe, but rather that the Solar System is a mere member of some ∼ 400
billion stars in our Galaxy, which itself represents one out of more than a trillion other
galaxies in the observable Universe!

The golden age of astronomy began in the early 1600s, when Galileo first pointed a
telescope to the skies and discovered that Jupiter is encircled by its own moons. This
essentially opened the door to the discovery of additional planets within the Solar
System and beyond. Through the centuries that followed, our understanding of the
motion of planets developed tremendously with the invention of celestial mechanics
by Kepler and Newton. In parallel, improvements in optics and telescopes opened the
door to the discovery of additional planets within our Solar System, and indeed led to
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the detection of Uranus by Herschel in 1781. At the same time, Laplace published his
treatise on celestial mechanics, setting the foundations of modern celestial mechanics.
The triumph of celestial mechanics came when irregularities in the orbit of Uranus
were taken as a gravitational one-way sign for the existence of an additional planet in
the Solar System beyond Uranus, and such a planet – Neptune – was discovered by
Adams and Le Verrier in the 1840’s. This marked the first instance when mathematics,
rather than a telescope, was used to predict and discover the presence of a planet.

For most of the 20th century, however, celestial mechanics remained devoted to the
study of the Solar System, with theories of planet formation and evolution designed
and tailored to understand its origins and characteristics. However, the possibility that
planets existed or not around other stars was not out of the question, with debates
that can be traced back to ancient times. Indeed, Aristotle (384–322 BC), a Greek
philosopher and polymath, and Copernicus (1473–1543), opposed the idea that planets
existed outside the Solar System, while on the other hand, Epicurus (341–270 BC),
another ancient Greek philosopher, postulated the presence of an infinite number
of planetary systems – see Dick (1996) for a historical review. These ideas evolved
throughout the centuries that followed, and the consensus in early 1900s was that
exo-planetary systems, if any, must be extremely rare. For instance, Eddington (1928)
noted in his The Nature of the Physical World that “I should judge that perhaps not
one in a hundred millions of stars can have undergone this experience in the right stage
and conditions to result in the formation of a system of planets”; see also Jeans (1919).

The evidence for the existence of planets outside our Solar System did not come to
light until the early 1990s, when the first two exoplanets were discovered by Wolszczan
& Frail (1992). These planets were found to be orbiting around not an ordinary star
but, somewhat surprisingly, around a millisecond pulsar – the remnant of a massive
star that has exploded as a supernova. Soon after in 1995, the first discovery of an
exoplanet orbiting a main-sequence star, namely 51 Peg, was made by Mayor & Queloz
(1995); a discovery which kicked the discipline of exoplanet astronomy into high gear.
Indeed, during the three decades that followed these discoveries, several thousands of
exoplanets have and are being discovered and characterised at an exponential rate using
different observational techniques; from radial velocity and transit, to microlensing
and direct imaging – each with its own strengths and biases of detection. Such
observational campaigns have revealed that exoplanets are (i) more common than
previously thought, with an overall planet occurrence rate of ∼ 50%, and (ii) vastly
diverse (Winn & Fabrycky, 2015). Indeed, the plethora of exoplanets has revealed
the existence of a large variety of exoplanets which are very different from what we
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Figure 1.1. The distribution of masses and semimajor axes of currently confirmed exoplan-
ets as discovered by various methods: radial velocity (orange), transit (blue), direct imaging
(green), and microlensing (red). For reference, the Solar System planets are shown by black
dots. The data were compiled from www.exoplanet.eu on 12th of August, 2021.

known from the Solar System’s planetary album, with some being much more massive
than Jupiter, while others orbiting their stars at extremely small (∼ 0.01 au) or large
separations (∼ 100 au) on highly non-circular and/or non-coplanar orbits. All of these
discoveries have presented serious challenges to our understanding of planet formation
and evolution. Figure 1.1 shows the masses and orbital semimajor axes of currently
confirmed exoplanets (as of August 12, 2021), along with the Solar System planets for
comparison.

Concurrently with the first discoveries of exoplanets, astronomers also detected
and confirmed the presence of the long hypothesised population of minor bodies in
the outskirts of the solar system beyond Neptune (Kowal et al., 1979; Scotti et al.,
1992; Jewitt & Luu, 1993): the Edgeworth–Kuiper belt (Edgeworth, 1943; Kuiper,
1951a), of which Pluto is a member. Since then, the number of known Kuiper belt
objects has increased to over a thousand, dramatically changing our view of the Solar
System. Indeed, the swarm of Kuiper belt objects represents the relics leftover from the
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epoch of planet formation, and as such its orbital structure is thought of as preserving
a record of gravitational interactions that took place throughout the lifetime of the
Solar System; especially in its early ages. Thus, decoding the orbital architecture of
the Kuiper belt has been the common goal of numerous dynamical studies, which
have provided many clues into the formation, architecture, and evolution of the Solar
System (see the review by Morbidelli et al., 2008, and references therein).

During this same period, i.e., from 1980s and onward, it also became clear that
similar to the Solar System, exo-planetary systems are comprised not just of planets,
but also of belts of debris which are populated by bodies ranging from micron-sized
dust up to kilometre-sized planetesimals – somewhat analogous to the asteroid and
Kuiper belts. The first of such exo-Kuiper belts, or debris discs, was discovered around
the main-sequence star Vega (Aumann et al., 1984), and since then the number of
detected debris discs has increased to over a thousand. Simultaneously, thanks to
significant technical advancements in observational astronomy at all wavelengths, the
spatial (sub-)structures of debris discs have also come into sharp resolution. Indeed,
observational campaigns have revealed a large variety of debris disc morphologies such
as radial gaps, vertical warps, and eccentric rings – hinting at sculpting by planets
that are not detected as of yet (see e.g., the reviews by Hughes et al., 2018; Wyatt,
2018). Simultaneously with these discoveries, the field of planet formation has also been
revolutionised through imaging of protoplanetary discs, the nurseries in which planets
are ultimately born, allowing us to probe ongoing planet formation processes (Williams
& Cieza, 2011; ALMA Partnership et al., 2015). A remarkable discovery in the recent
years is that of two protoplanets orbiting within the cavity of a protoplanetary disc
surrounding the PDS 70 star (Keppler et al., 2018; Müller et al., 2018; Haffert et al.,
2019), with one of them seen to be surrounded by its own circumplanetary disc where
moons can be formed (Isella et al., 2019); see Figure 1.5. With all of these developments,
especially during the last three decades or so, I think it is fair to say that we are
now living through very exciting times in the field of planetary sciences. Indeed, we
are amassing an unprecedented amount of observational information on all stages
of planetary system formation and evolution, which is continually challenging our
theoretical understanding of the involved processes and mechanisms.

This dissertation is my small contribution to the study of planetary systems
outside our own Solar System. My research focuses on understanding the dynamical
evolution of exo-planetary systems and how they are shaped through gravitational
interactions amongst the different components: star, planets, and debris discs. Just
as the dynamical structures of the asteroid and Kuiper belts have revealed unique
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insights into the formation and evolution of our own Solar System, detailed images of
debris discs – and in particular those with high enough resolution – can be used to infer
the formation and evolutionary history of exo-planetary systems, and to even reveal
the presence of yet-unseen planets that are potentially shaping the debris discs. For
any accurate interpretation of debris disc observations, however, we must have a good
understanding of the various processes affecting the evolution of dust and planetesimals
in debris discs, including planet–disc interactions. This is where my research comes in.
Prior to describing the work conducted during my PhD, however, it is useful to take a
step back and describe the current paradigms of star and planetary system formation
and evolution, which would also help to put my research into context.

1.2 A Tale of Planetary System Formation and Evo-
lution

Planetary systems represent the final stage of a long and complex process that starts
with the formation of stars, to the ultimate formation of planets and circumstellar
discs from the remnant gas and dust in the stellar environment, followed by shaping
the final architecture of a planetary system due to interactions between planets and
discs. Here I provide a brief overview of our current understanding of this process,
framing the explanation – when possible – in the context of the planetary system that
we known best: our Solar System.

1.2.1 Star Formation

The formation of stars is a relatively well understood process (see e.g. Shu et al., 1987;
Carroll & Ostlie, 1996; de Pater & Lissauer, 2010). Stars are born within clouds of
interstellar gas and dust, known as molecular clouds. These vast clouds, with typical
diameters ranging from ∼ 10 to 200 parsecs, are massive and dense enough to be self-
gravitating; indeed, molecular clouds can contain more than 104M⊙ of material. The
structures of molecular clouds are generally complex, and are supported by turbulent,
thermal, and magnetic pressures. Following Shu et al. (1987), the process of star
formation can be categorised into four stages (see Figure 1.2). First, the interaction of
turbulence with gravity and magnetic fields leads to the fragmentation of molecular
clouds, or parts of it, into intricate filaments in which slowly rotating cores are formed
(Figure 1.2(a)). When the core is of high enough density that its own self-gravity
overcomes the internal pressure forces pushing it out, it collapses on itself inside out.
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Figure 1.2. A diagram depicting the four stages of star formation (taken from Shu et al.,
1987). Panel a: Slowly rotating cores form within the molecular cloud as a result of collapsing
clumps of gas and dust. Panel b: The core collapses inside out forming a central protostar
surrounded by an accretion disc, both embedded in an infalling envelope of gas and dust.
Panel c: The protostar accretes material from the disc and launches a jet. Panel d: The
envelope dissipates, leaving behind a newly formed star with a protoplanetary disc.

This leads to the formation of a protostar towards the core’s centre with a typical mass
of ∼ 0.1 − 1M⊙, along with an accretion disc surrounding it and lying perpendicular to
its axis of rotation; both of which would be embedded within an infalling envelope of
dust and gas (Figure 1.2(b)). During this protostellar phase (Classes 0 and I), which
is expected to last ∼ 0.1 − 1 Myr, the protostar and the disc continue to accumulate
material from the surrounding envelope through accretion, causing the protostar to
grow in mass, heat up, and launch collimated jets (Figure 1.2(c)). Eventually, the
envelope dissipates, leaving behind a pre-main sequence star (Class II, e.g. a T-Tauri
or Herbig star) surrounded by a protoplanetary disc (Figure 1.2(d)).

1.2.2 Protoplanetary Discs

Protoplanetary discs represent the nurseries in which planets are ultimately born (for an
excellent review from both observational and theoretical perspectives, see, e.g., Williams
& Cieza, 2011). They typically have a radial extent on the order of ∼ 100 au, and are
composed of gases (mainly, hydrogen and helium) and dust grains which, collectively,
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Introduction

at which protoplanetary discs should have been dispersed (e.g. via viscous evolution and

photoevaporation, Alexander et al., 2006; Clarke, 2007)). Moreover, even their dust size

distributions inferred from their SEDs differ. In protoplanetary discs it extends from sub-µm

sizes up to mm- or cm-sized grains as a result of the grain growth. On the other hand, debris

disc SEDs show no evidence of sub-µm grains, traced by the lack of NIR, and have spectral

slopes at millimetre wavelengths that indicate the presence of solids much bigger than the

observed wavelengths (& 10 cm).

1044 O. Panić et al.

Emission from the disc can be discerned from that of a back-
ground galaxy if the star is observed at a later epoch, following a
significant change of location due to its proper motion. Of all our
targets, only HD 115617 (61 Vir) exhibits a large proper motion of
(−1070.36, −1063.69) mas yr−1, enabling such a test within a rea-
sonable time-span, as shown in Wyatt et al. (2012). Another means
of discrimination is spatially resolved imaging, through which the
annular morphology of the emission would unequivocally indicate
a disc origin. In the millimetre, such studies of debris discs will be-
come more frequent with the high sensitivity provided by ALMA.

3.3 Dust mass evolution through the debris disc phase

Fig. 3 shows the measured dust masses of circumstellar discs during
the pre- and main-sequence evolution of low-mass stars. The stellar
masses of targets shown here span 0.2–3.3 M⊙. All measurements
are based on submillimetre and millimetre detections (850 µm–
2.6 mm) of optically-thin thermal dust emission from a large com-
pilation of literature data (see the caption of Fig. 3 for details).
For uniformity, we adopt a constant dust opacity of 1.7 cm2 g−1

(λ /850 µm) across all ages (Zuckerman & Becklin 1993). This is
a standard value adopted in most submillimetre papers. To convert
the flux to dust mass, we adopt average disc temperatures: 20 K for
T Tauri stars, 50 K for Herbig Ae stars and for each main-sequence
star we use a temperature corresponding to the blackbody fit to
the disc emission, i.e. the same method as applied in Section 3.1.
Optically thin to the stellar emission, the debris discs are heated

more efficiently and are consequently warmer than protoplanetary
discs. Using the above opacity and temperatures, we estimate the
dust masses from the observed (sub-)millimetre fluxes of all sources
shown in Fig. 3, using equation (1).

As can be seen in Fig. 3, the largest measured dust masses
for debris discs from 10 to more than 1000 Myr are around
Mm.s.(max) = 0.5 M⊕, irrespective of age. The observable, small
dust grains can originate from collisional evolution of dust and
stochastic processes. Although dust is continuously lost from de-
bris discs due to radiation pressure, the presence of massive and old
discs suggests the existence of a sufficient reservoir of large parti-
cles to feed the range of dust sizes observable in the millimetre dur-
ing 1000 Myr of exposure to direct stellar radiation. Observations
of debris discs are severely affected by a detection bias because
low-mass discs are only detectable around nearby, and therefore
older, stars in the sample (Wyatt 2008). This effect can be seen in
Fig. 3 where there are several targets at ages >500 Myr with derived
masses lower than 0.01 M⊕ but none around younger stars, since
such stars are more distant. This means that the decrease detected
in the lower envelope of disc masses with age is due to an observa-
tional bias and not an indication of disc mass evolution. Surveys of
debris discs in the (sub-)millimetre-wavelength regime are not yet
complete enough to statistically compare the incidence of the ob-
served massive (≈0.5 M⊕) debris discs across ages from 10 to above
1000 Myr, and investigate possible evolutionary trends in mass dis-
tribution. Nonetheless, it is possible that disc mass remains nearly
constant on the main sequence. The maximum mass of ≈0.5 M⊕

Figure 3. Dust masses of circumstellar discs derived based on observed (sub)millimetre fluxes towards pre-main-sequence and main-sequence stars. Obser-
vational limits corresponding to the sensitivity of a few mJy are shown with arrows: blue for 20 K discs around T Tauri stars and red for 50 K discs around
Herbig Ae stars. Fluxes used in this plot are literature values from: Jewitt (1994), Osterloh & Beckwith (1995), Sylvester et al. (1996), Sylvester, Dunkin &
Barlow (2001), Nuernberger, Chini & Zinnecker (1997), Nuernberger et al. (1998), Mannings & Sargent (1997, 2000), Holland et al. (1998, 2003), Greaves
et al. (1998, 2004, 2005, 2012), Wyatt et al. (2005), Sheret, Dent & Wyatt (2004), Piétu, Dutrey & Kahane (2003), Piétu et al. (2006), Carpenter et al. (2005),
Najita & Williams (2005), Williams & Andrews (2006), Lin et al. (2006), Matthews, Kalas & Wyatt (2007), Cieza et al. (2008), Roccatagliata et al. (2009),
Ricci et al. (2010a,b), Nilsson et al. (2010), and the detections presented here.
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Figure 1.4: Dust mass derived from submillimetre observations towards pre-main sequence and
main sequence stars (taken from Panić et al., 2013). Observational upper limits are shown with
blue and red arrows for T Tauri stars and Herbig Ae stars, respectively.

It is worth noting that the distinction between protoplanetary and debris discs has become

less clear in the recent years due to the development of more sensitive instruments (see Wyatt

et al., 2015). First, it is not clear at what age debris discs actually form, i.e. when does

secondary dust start being produced by collisions between larger bodies. This could happen

either before or after protoplanetary disc dispersal. The population of known massive debris

discs could appear at a young age, being coeval to some ∼ 1− 5 Myr old protoplanetary discs,

or evolve from some of the massive long lived protoplanetary discs. However, the upper

limits of circumstellar dust around young (< 10 Myr) systems in nearby star forming regions

are generally higher than the dust masses observed in the massive nearby debris discs (e.g.

Ansdell et al., 2016). Because of this, it is impossible to conclude what type of protoplanetary

discs form the observed debris disc population. Secondly, there are protoplanetary discs with

ages significantly longer than 10 Myr (Scicluna et al., 2014), and a few massive debris discs in

young star forming regions definitely younger than 10 Myr (Carpenter et al., 2009b;

Riviere-Marichalar et al., 2013). Finally, some young systems with debris disc-like SEDs show

significant amounts of gas that could be comparable to protoplanetary discs (see §1.5).
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Protoplanetary discs

Debris discs

Figure 1.3. The evolution of dust mass in circumstellar discs derived from sub-millimetre
observations as a function of stellar age (adapted from Panić et al., 2013). The blue and
orange lines correspond to the sensitivity limits for T Tauri stars and Herbig Ae stars,
respectively. Note the abrupt drop in dust masses for systems older than ∼ 10 Myr.

weigh around ∼ 0.01−0.1M⊙ – with the gaseous component dominating the entire mass
budget (∼ 99% in mass). Thus, protoplanetary discs contain a sufficient reservoir of
the key ingredients to form multiple gas giant and terrestrial planets. For instance, the
lowest mass budget – known as Minimum Mass Solar Nebula (MMSN; Weidenschilling,
1977; Hayashi, 1981) – required to build the Solar System’s planets is estimated to
be around 0.01 − 0.07M⊙. However, protoplanetary discs evolve over time due to
various physical processes, such as viscous transport, accretion, photoevaporation, and
dynamical interactions with (sub-)stellar companions if any (e.g. Williams & Cieza,
2011, and references therein). These processes cause protoplanetary discs to gradually
lose their mass, until their eventual dispersal by ∼ 3 − 10 Myr (Panić et al., 2013;
Ercolano & Pascucci, 2017) – see Figure 1.3. By this time, accretion onto the central
star terminates and the latter reaches its main-sequence phase (Class III).

In recent years, thanks to the advent of new generation of instruments, a large
number of young protoplanetary discs have been observed, allowing for detailed studies
of not only their properties but also their spatial (sub-)structures. Indeed, observations
have revealed a variety of structures, such as concentric rings and spiral arms (e.g.
ALMA Partnership et al., 2015; Andrews et al., 2016, 2018; Long et al., 2018; van
der Marel et al., 2019). As an example, Figure 1.4 shows images of four young
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Figure 1.4. High-resolution ALMA images of four protoplanetary discs characterised with
ringed (or gapped) structures in their ∼mm dust distributions. From top left to bottom right,
these are: TW Hyd (Andrews et al., 2016), V883 Ori (Cieza et al., 2016), HL Tau (ALMA
Partnership et al., 2015), and HD 163296 (Isella et al., 2016). One the most commonly
accepted explanations for such structures is the presence of yet unseen planets. Credit: ESO.

protoplanetary discs exhibiting a series of concentric rings separated by gaps in their ∼
mm dust distribution as seen by the Atacama Large Millimetre/sub-millimetre Array
(ALMA). Such observations have revolutionised the view of protoplanetary discs, which
were previously thought to have a smooth density profile.

1.2.3 Planetesimal and Planet Formation

The dispersal timescale of protoplanetary discs presents one of the major challenges to
planet formation processes, as it sets a limit on the time available for planets to form.
Indeed, within this time period, sub-µm dust grains must grow by at least nine orders
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of magnitude, i.e., until they form ∼ km-sized objects. This multiplex process can
be generally divided into three main steps: planetesimal formation, terrestrial planet
formation, and giant planet formation – which are reviewed below. For a more detailed
overview of these processes, the reader is referred to the literature (e.g., Lissauer, 1993;
Armitage, 2010; Morbidelli et al., 2012; Morbidelli & Raymond, 2016).

The formation of planetesimals, which represent the building blocks of planets, is
not well understood and remains an active area of research. In the classical picture,
µm-sized dust grains first settle to the midplane of the protoplanetary disc rather
quickly – typically in a few thousand years – due to the stellar gravity and strong
coupling with the gas. During this process, µm-sized grains collide with each other
and grow to ∼ mm sizes via pairwise accretion and sticking due to electrostatic forces
(e.g., Dominik & Tielens, 1997). The most economical hypothesis following this step
is that the same process continues until the formation of ∼ km-sized planetesimals
(e.g., Weidenschilling, 1980; Weidenschilling & Cuzzi, 1993). This classical picture,
however, comes with severe problems (see e.g., Morbidelli & Raymond, 2016). On one
hand, when grains become ∼ cm- or mm-sized, mutual collisions do not lead to sticking
and net growth, but rather to bouncing of grains off of each other, inhibiting further
growth (e.g., Zsom & Dullemond, 2008; Güttler et al., 2009). This is the so-called
“bouncing barrier”. On the other hand, once particles attain ∼metre sizes, they would
decouple from the gas and migrate towards the star due the drag force they experience
because of the deviation between the gas and Keplerian orbital velocities. This gives
rise to large relative velocities among particles of various sizes, and hence destructive
collisions. At the same time, the migration happens quickly, so much so that particles
are lost from the system way before they can grow any further (Weidenschilling, 1977).
For instance, a particle of 1 meter at 1 au would drift towards the Sun in a few hundred
years. This is the well-known “meter-size barrier”.

Over the past decade, several mechanisms have been proposed to overcome these
barriers (see, e.g., the review by Blum, 2018). One promising mechanism, known as
the streaming instability, is that planetesimals can be formed directly through the
gravitational collapse of a concentrated clump of mm-sized dust pebbles, bypassing
the barriers described above (Youdin & Goodman, 2005; Johansen et al., 2009; Bai &
Stone, 2010; Yang et al., 2017). Another mechanism which has been proposed is that
dust grains grow as fractals composed of sub-micrometre monomer particles which
remain sticky and well coupled to the gaseous component of the disc (Kataoka et al.,
2013). Other possibilities involve modified collisional processes (Boley et al., 2014),
clumping of small particles due to disc turbulence (Cuzzi et al., 2001; Johansen et al.,
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2007), and even accounting for the gravitational effects of the protoplanetary disc as a
means of reducing collisional velocities particularly in more hostile systems hosting
binary stars (e.g., Silsbee & Rafikov, 2015a,b, 2021).

I now move on from planetesimals to discuss the formation of terrestrial planets.
Once ∼km-sized planetesimals are formed in the protoplanetary disc, their further
growth is reasonably well understood. Indeed, planetesimals can keep growing by
accreting smaller bodies (i.e., pebbles) present in the disc through a process known as
“runaway growth” (e.g., Greenberg et al., 1978; Ida & Makino, 1993). This results in
several objects which are large and massive enough (i.e., ∼ 1000 km in size and ∼ 10−2−
10−1M⊕ in mass) that they can be considered as planetary embryos, or protoplanets.
Such embryos interact with each other gravitationally, while also perturbing the material
near their orbits, hampering the growth of additional planetesimals. From this stage
on, embryos grow through mutual collisions under gravitational focusing, resulting in
terrestrial planets similar to those in the Solar System. This final stage could extend
well beyond the protoplanetary disc lifetime, with the final assembly of terrestrial
planets taking around ∼ 100 Myr.

As to giant planet formation, there are two competing models – core accretion and
gravitational instability – each with its own strengths and weaknesses. In the core
accretion scenario (see e.g. Pollack et al., 1996; Rafikov, 2004; Levison et al., 2010),
a solid core of ∼ M⊕ has already formed according to the scenario described above.
In addition to accreting planetesimals, however, the core now starts to accrete gas
and form an atmosphere. Once the mass of the newly acquired atmosphere becomes
comparable to the solid core (∼ 10M⊕), the gas accretion accelerates, acquiring more
atmosphere mass, until no more gas remains along the planetary orbit. This scenario
can readily result in gas giant planets, similar to Saturn and Jupiter, and even ice
giant planets, similar to Uranus and Neptune. This said, core accretion has difficulty
in explaining the origin of ≳ 1MJ exoplanets, especially at large distances, as the
timescale for enough gas to be accreted onto the planetary embryo can well exceed the
protoplanetary disc lifetime (Matsuo et al., 2007; Rafikov, 2011).

In the gravitational instability scenario (see e.g., Kuiper, 1951b; Boley, 2009; Boss,
1997, 2011), on the other hand, giant planets are formed as a result of local instabilities
in the protoplanetary disc. Such gravitational instabilities would fragment the disc into
dense clumps of material, which then quickly accrete the surrounding gas forming giant
planets within the space of a few thousand years. The development of the gravitational
instability, however, requires the disc to be massive or cold enough. As such, this
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Figure 1.5. Observations of the PDS 70 system (taken from Isella et al., 2019). Left:
ALMA continuum observations of the PDS 70 protoplanetary disc, along with the locations
of the two planets, PDS 70b and PDS 70c. The latter is thought to be surrounded by a
circumplanetary disc. Right: Near-infrared observation of the system using VLT/SPHERE
(Müller et al., 2018).

scenario tends to form giants (or even brown dwarfs) at large separations from the star
(i.e., ≳ 50 au), as it is very unlikely to operate close to the star (Rafikov, 2005).

Once planets are formed in one way or another, they generally do not remain on the
same orbits indefinitely. Gravitational interactions both amongst themselves as well
as the surrounding protoplanetary disc can lead to various dynamical outcomes – for
instance, migration of planets, modulation of orbital eccentricities and inclinations, and
even scattering and ejection of planets (e.g., Armitage, 2010, and references therein).
Planets can also leave observational fingerprints on their surrounding protoplanetary
disc e.g. through carving inner cavities, launching spiral arms, and even forming gapped
or ringed structures – features which have come into increasingly sharp resolution with
the advent of new generation instruments (e.g., Andrews, 2020, and references therein);
see also Figure 1.4. While other processes that do not require the presence of planets
can also explain such structures, the planet-disc interaction hypothesis remains as the
most widely accepted explanation. A remarkable confirmation of this hypothesis has
been provided recently by observations of the PDS 70 system, which hosts a ∼ 5 Myr
T-Tauri star surrounded by a protoplanetary disc extending from ∼ 60 − 140 au (see
Isella et al., 2019, and references therein). Indeed, two gas giant planets, PDS 70b
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and PDS 70c, with estimates masses of ∼ 4 − 12MJ were detected to be orbiting the
star well within the protoplanetary disc’s cavity, i.e., at ∼ 25 and 35 au separations,
respectively (Keppler et al., 2018; Müller et al., 2018; Haffert et al., 2019) – see Figure
1.5. Further analysis with resolved Hα emissions also indicated that PDS 70 c is
surrounded by a circumplanetary disc (Isella et al., 2019). This represents the first
time that young planets have been detected in their birth environment, and suggests
that planet formation might occur early in the history of a young stellar system.

1.2.4 Debris Discs

Following the dispersal of a protoplanetary disc, the host star (which has now reached
its main sequence phase) may have its own planetary system composed of (i) any
planets that formed successfully during the protoplanetary phase, (ii) as well as – or, at
the very least – of smaller solid materials left over from the epoch of planet formation.
Such residual bodies may have failed to accrete into full-sized planets either because
their agglomeration into larger bodies was hampered by the gravitational perturbations
of newly formed planets (e.g., Safronov, 1991), or because surface densities were too
low and accretional timescales too high for planet formation to progress efficiently (e.g.,
Weissman, 1995). These relics of planet formation are the constituents of planetesimal
belts, or debris discs (see reviews by Wyatt, 2008; Krivov, 2010; Hughes et al., 2018;
Wyatt, 2018; Wyatt, 2020, from which the following is summarised). Figure 1.6 depicts
a schematic diagram of a typical planetary system composed of (both terrestrial and
giant) planets and a debris disc.

A good example of debris discs is found in our cosmic backyard (see e.g. reviews
by Chapman et al., 1978; Wyatt, 2020; Gladman & Volk, 2021, and references therein).
Indeed, our Solar System has its own debris disc, with the majority of its mass being
concentrated in two distinct belts: the Asteroid belt, spanning from ∼ 2 to 4 au
between the orbits of Mars and Jupiter, which is composed of objects ranging from ∼
cm-sized pebbles up to ∼ 100 km-sized rocky bodies; and the Kuiper belt – of which
Pluto is a member – located beyond the orbit of Neptune from ∼ 30 to 50 au, which is
mainly populated by bodies that are composed of frozen ices. Beyond this region, there
also resides a sparse population of icy minor bodies known as trans-Neptunian objects
which, collectively, populate the so-called scattered disc, which is further surrounded
by the Oort cloud of comets which extends out to thousands of au. Last but not least,
another component of the Solar System’s debris disc is the Zodiacal cloud which is
primarily found within ∼ 5 au and composed of ≲ 1 mm dust produced by asteroid
collisions and comets (Nesvorný et al., 2010, see also Figure 1.7).
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Figure 1.6. A cartoon schematic of a typical planetary system composed of both planets
and a debris disc (taken from Su & Rieke, 2014). The debris disc has been categorised into
five different zones as a function of observational wavelength.

Debris discs are the natural by-products of star and planet formation processes and
hence are expected to be ubiquitous around main-sequence stars. Indeed, according to
recent observational surveys, debris discs have been detected around at least ∼ 20% of
main-sequence stars in the Solar neighbourhood (Montesinos et al., 2016; Sibthorpe
et al., 2018). They typically have radii ranging from a few to hundreds of au, and
contain ≲ 1M⊕ in emitting small (i.e., ≲ mm-sized) grains. As in the Solar System,
extrasolar debris discs are comprised not only of single-sized bodies, but rather a
range of sizes ranging from (sub-)µm all the way up to ∼km sizes – which cannot
be detected with current technologies. As such, estimates of debris disc masses are
uncertain, as they require extrapolating the masses of the observed dust to the masses
of the unobservable planetesimals (Krivov & Wyatt, 2021). Nevertheless, it is expected
that the total disc mass is larger than the observed dust mass by several orders of
magnitude, with estimates on the order of ∼ 10 − 100M⊕ (see Wyatt & Dent, 2002;
Krivov et al., 2018; Krivov & Wyatt, 2021, and Section 2.6). As such, extrasolar debris
discs that are detected thus far are much more massive than the asteroid and Kuiper
belts, which weigh ∼ 5 × 10−4M⊕ (DeMeo & Carry, 2013) and ∼ 0.1M⊕ (Gladman
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Figure 1.7. The zodiacal light as seen from the summit of Mauna Kea, Hawaii (Source:
Courtesy M. Ishiguro, ISAS.).

et al., 2001), respectively. Indeed, if the latter were situated around another star, they
would have not been detected using current technologies (Vitense et al., 2012).

In general, debris discs are qualitatively different from protoplanetary discs in
various and important ways. First, while protoplanetary dust is primordial and
considered as the ingredient for the formation of larger bodies, the dusty component of
debris discs is secondary, in the sense that it is the result of the fragmentation and
breakup of large ∼km-sized planetesimals (e.g., Backman & Paresce, 1993; Wyatt,
2008). Second, and unlike protoplanetary discs, debris discs are generally poor in gas,
with the majority containing only tenuous amounts of it (e.g., Hughes et al., 2018;
Wyatt, 2020). Another distinction between the two is the total amount of dust that
they harbour: protoplanetary discs are seen to have large amounts of ∼mm-sized dust,
with a total mass of ∼ 30 − 300M⊕, while debris discs generally contain only ≲ 1M⊕

of dust (e.g., Panić et al., 2013). This is illustrated by Figure 1.3, which shows that
the circumstellar dust masses derived from millimetre observations drop abruptly for
systems that are older than ∼ 10 Myr, i.e., by the time that the protoplanetary phase
is expected to have ended and transitioned to the debris phase. It is, however, worth
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noting that the distinction between these two phases has become less clear in recent
years (see Wyatt et al., 2015). This is because there are some protoplanetary discs
with ages much longer than 10 Myr (Scicluna et al., 2014), and a few debris discs
which are younger than 10 Myr (e.g., Carpenter et al., 2009b; Riviere-Marichalar et al.,
2013; Lovell et al., 2021). Additionally, there are a few debris discs – particularly,
around ∼ 10 − 40 Myr A stars – which contain significant amounts of gas (e.g., Kóspál
et al., 2013; Moór et al., 2017), somewhat comparable to those found in protoplanetary
discs. As such, it is possible that there is an intermediate stage, referred to as hybrid
or transitional discs, that bridges the connection between protoplanetary and debris
phases (see also Michel et al., 2021).

Since the first detection of a debris disc around Vega by Aumann et al. (1984),
significant advances in observational astronomy – from optical to radio wavelengths –
have enabled resolved imaging of debris discs. High-resolution imaging of debris discs
has revealed a rich variety of (sub-)structures: gaps or double-ringed structures, warps,
spirals, and eccentric rings – see e.g., Figures 2.2, 2.5, 2.6, and Section 2.3. Studying
such structures provides unique information on the various physical processes affecting
the evolution of debris discs, the nature of the planetesimals (e.g., composition and
sizes), and the connection of debris discs with planet formation (e.g., Krivov, 2010;
Hughes et al., 2018; Wyatt, 2018). For instance, much of our understanding of the Solar
System’s formation and evolutionary history has come from decoding the structure of
our asteroid and Kuiper belts (e.g., Heppenheimer, 1980; Malhotra, 1993; Ida et al.,
2000; Moro-Martín & Malhotra, 2002; Batygin et al., 2019).

1.2.5 Planetary System Evolution

After the formation of a planetary system, a diverse array of dynamical evolution
can ensue, reshaping its architecture. This is because planets and debris discs are
closely linked, and can have significant interactions which could affect both the orbital
evolution of planets and the morphology of debris discs1.

Evidence of planet–disc interactions can be found in the Solar System. For instance,
according to the Nice model – whose name comes after the French city where it has been
developed – the giant planets underwent major orbital evolution early in their lifetimes,
i.e., after the protoplanetary disc dissipated, giving rise to many of the present-day
architectural features of the Solar System (see Gomes et al., 2005; Morbidelli et al.,
2005; Tsiganis et al., 2005; Levison et al., 2008, from which the following is summarised).

1In a broader context, qualitative changes to the architecture of a planetary system can also be
caused by stellar flybys in stellar clusters or dynamical interactions with binaries (if any).
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Indeed, according to this model, the four giant planets were initially on circular orbits
in the region from ∼ 5.5 to ∼ 15 au, i.e., much more closely spaced and compact
than today, with Uranus orbiting exterior to Neptune. The giant planets were also
surrounded by a massive debris disc (∼ 30 − 50M⊕) of rocky and icy planetesimals –
the primordial Kuiper belt – which extended from Uranus’s initial orbit out to 30 − 35
au. As the giant planets interacted with the debris disc, Saturn, Neptune, and Uranus
gradually migrated outwards whilst Jupiter migrated inwards. After several hundreds
of millions of years, this migration caused Jupiter and Saturn to enter into an orbital
resonance (to be specific, 1 : 2 mean-motion resonance), which pumped their orbital
eccentricities. This destabilised the entire planetary system, causing a re-arrangement
of the giant planets. Indeed, Saturn moved away from the Sun to its present location,
and Uranus and Neptune exchanged their places which, as a result of gravitational
encounters with Saturn, were put onto much wider and elliptical orbits. As a result,
the ice giants started to cross the population of Kuiper belt objects along their orbits,
which they interacted with and scattered onto highly eccentric orbits all over the Solar
System. This process also led to the circularisation of the orbits of Uranus and Neptune
and – to a lesser extent– of Jupiter and Saturn, along with the depletion of around
∼ 99% of the primordial Kuiper belt, leaving behind the modern Kuiper belt together
with an orbital architecture of giant planets similar to that today. Additionally, as
Neptune’s orbit moved outwards, it dynamically excited the orbits of Kuiper belt
objects, trapping many of them (such as Pluto) into orbital resonances, giving rise
to the cold and hot populations of the Kuiper belt. During the course of planetary
migration, some of the planetesimals were also scattered into the inner parts of the
Solar System, producing a sudden influx of impact on the terrestrial planets and the
Moon, a period known as the “Late Heavy Bombardment”. This series of events can
also explain the formation of the Oort cloud, the existence of Jupiter and Neptune
trojans, along with the dynamical structure observed in the asteroid and Kuiper belts.
For instance, the Kirkwood gaps in the asteroid belt – which represent narrow regions
within which the number of asteroids dips significantly – are understood to be sculpted
by dynamical interactions between asteroids and Jupiter. Additionally, the location of
the edges of the asteroid and Kuiper belts are set by resonant interactions with Jupiter
and Neptune, respectively.

Outside of the Solar System, the diversity of exoplanetary systems – both in terms
of the known population of exoplanets and morphologies of debris discs – remains to be
explained. Nevertheless, it is natural to think that dynamical events, in particular in the
context of planet–disc interactions, may be common to all planetary systems. As such,

16



1.3 Aims and Outline of the Thesis

studying planet–disc interactions could provide unique insights into the formation and
dynamical history of planetary systems. A triumph of planet–disc interaction studies
in the context of exo-planetary systems is the discovery of the planet β Pic-b (Lagrange
et al., 2010) based on theoretical predictions stemming from the spatial structure
observed in the debris disc surrounding the star (Mouillet et al., 1997; Augereau et al.,
2001). The persistent challenge for astronomers and astrophysicists working in the
field of (exo-)planetary sciences, however, is that it is generally easier to detect dusty
debris discs than to detect planets. This is largely because the total cross sectional
area of debris discs is generally larger than that of a planet. Thus, detailed modelling
of planet–disc interactions and comparing the outcomes with observed systems is
essential for our overall understanding of the formation, evolution, and architecture of
planetary systems; and to even reveal the presence of planets that might otherwise not
be detected with current technologies. This forms a significant fraction of the work
presented in this dissertation.

1.3 Aims and Outline of the Thesis

The broad theme that this dissertation aims to contribute to is our quest to understand
the formation, architecture, and evolution of planetary systems. My research focuses
on developing models of the interactions between planets and debris discs, with
applications to the interpretation of imaged debris discs. More specific questions that
the dissertation aims to answer are:

1. What is the dynamical role of disc (self-)gravity in planet– debris disc interactions?

2. What are the observational signatures of long-term interactions between planets
and massive debris discs?

3. Can we infer the presence and evolution of planets in systems that might otherwise
remain undetected?

4. What are the insights that we can draw about the masses of debris discs based
on planet-disc interactions?

I address these questions using a synergistic approach involving celestial mechanics
theory, numerical simulations, and applications to observed planetary systems.

The outline of this dissertation is as follows. First, Chapters 2 and 3 provide a review
of the observational and theoretical material relevant to debris discs and modelling
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of planet–disc interactions. More specifically, Chapter 2 first reviews the different
methods for observing debris discs (Section 2.1), and discusses the various physical
processes governing their dynamics and evolution (Section 2.2). It then describes the
diversity of structures imaged (Section 2.3), and how they might be interpreted as a
result of planet–disc interactions (Section 2.4). In the subsequent sections, a summary
is presented about the incidence of debris discs and exoplanets around the same stars
(Section 2.5), followed by a review of disc masses (Section 2.6), including how they
are usually estimated and their implications in the context of planet–disc interactions.
Then, Chapter 3 provides an overview of the basics of celestial mechanics, starting
from the Keplerian problem (Section 3.1) and then moving on to perturbation theories
relevant for this dissertation (Section 3.2).

Chapter 4 focuses on theoretical and numerical aspects concerning the computation
of the long-term, secular effects of self-gravitating discs. This chapter begins by first
presenting the challenges involved in computing the gravitational potential of discs
using standard techniques of celestial mechanics (Section 4.1), and then provides an
overview of the two existing methods found in the literature that are used to alleviate
these problems: softened and unsoftened gravity (Section 4.2). It then presents the
results of a comparative analysis between these two methods, analysing the performance
of approaches using softened forms of gravity in reproducing the expected unsoftened
dynamics for various disc models (Sections 4.3 – 4.5). Then, the main findings of this
work are discussed (Section 4.6), including how they can be understood within the
context of a generalised Laplace–Lagrange theory for discs (which is formulated in
Appendix A), and their implications for numerical treatments of self-gravitating discs.
Finally, the chapter concludes with a summary of the key findings (Section 4.7).

The subsequent two chapters – i.e., Chapters 5 and 6 – examine the role of disc
gravity in secular planet–debris disc interactions. Both chapters focus on what is
arguably the simplest setup: a host star orbited by a single eccentric planet and a
massive, external debris disc. Chapter 5 first presents a simplified analytic model
that accounts for both the gravitational coupling between the disc and the planet, as
well as the disc self-gravity – with the limitation that it ignores the non-axisymmetric
component of the disc (self-)gravity (Section 5.2). This is achieved using the unsoftened
treatment of disc gravity studied in Chapter 4. The chapter then continues by describing
the essential features of planetesimal dynamics in the combined planet–disc potential
(Section 5.3), and proposes a mechanism based on secular resonances as the origin of
gapped structures observed in several debris discs. It then explores the characteristics
of such secular resonances over a broad region of parameter space (Section 5.4), and
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provides an exemplary application to a specific system (namely, HD 107146) with
the aim of identifying the planet–disc parameters that could explain the observations
(Section 5.5). In the subsequent sections, the main results obtained for the evolution of
the disc morphology using some of these parameters is presented (Section 5.6), followed
by a discussion of the results and their implications (Section 5.7), both from theoretical
and observational point of views. Finally, after assessing some of the model limitations
(Section 5.8), the chapter concludes with a summary of the key results (Section 5.9).

Chapter 6 expands the investigation in the previous chapter by incorporating the
full secular gravitational potential of the disc, i.e., both axi- and non-axisymmetric
components. This is achieved by the aid of a numerical tool referred to as the N -
ring model, which is developed here based on the results of Chapter 4 for softened
forms of disc gravity. The chapter begins by first presenting the details of the N -ring
model (Section 6.2), and then reports on the results of several performance tests,
including its ability to reproduce the analytical results of Chapter 5. Owing to the
more complex nature of the problem, the chapter then proceeds to describe the results
of N -ring simulations when all but the non-axisymmetric component of the disc self-
gravity is accounted for (Section 6.3). These results are discussed and analysed in
the subsequent section (Section 6.4), where quantitative explanations for the various
phenomena observed, such as the circularisation of the planetary orbit, is developed
using dynamical theory. Following this, the results obtained by accounting for all
gravitational perturbations between the planet and the disc are presented (Section
6.5), including a detailed discussion of the two main outcomes found in terms of the
system evolution. Finally, the chapter closes with an overall discussion and conclusion
(Section 6.6), where the limitations of the study and directions for future work are also
presented.

As an epilogue, Chapter 7 summarises the work presented in this dissertation and
discusses potential future directions of research.

Most of these Chapters also contain supplementary material, which are provided in
the form of Appendices at the back end of the dissertation. These may be skipped at
first reading. Additionally, animated versions of some of the figures in Chapters 5 and
6 have been made available online, as explicitly mentioned in the corresponding figure
captions.
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Chapter 2

Debris Discs: An Overview

Debris discs are ubiquitous around main-sequence stars, with current detection rates
of ∼ 20% in the solar neighbourhood (Montesinos et al., 2016; Sibthorpe et al., 2018).
They are optically thin, almost devoid of gas, and are composed of objects ranging
from micron-sized dust grains up to kilometre-sized planetesimals. Since the dust
grains are short-lived compared to the stellar age (e.g., Dominik & Decin, 2003),
their sustained presence requires a massive reservoir of large planetesimals continually
supplying fresh dust via mutual collisions (Backman & Paresce, 1993). Observed discs
typically contain 0.01 − 1M⊕ in millimetre/centrimetre-sized grains (Wyatt et al., 2003;
Holland et al., 2017), which, when extrapolated, yields masses of ∼ 1 − 100M⊕ for the
parent planetesimal population (e.g., Wyatt & Dent, 2002; Greaves et al., 2005; Krivov
& Wyatt, 2021). The spatial distribution of these planetesimals is probed indirectly
with observations at millimetre wavelengths, e.g., by ALMA. At such wavelengths,
observations trace the distribution of millimetre-sized dust that are largely insensitive
to radiation forces, thus serving as proxy for the distribution of parent planetesimals.

Recent high-resolution observations of debris discs by ALMA and direct imaging
have revealed a rich variety of radial and azimuthal structures, e.g., gaps or double-
ringed structures, warps, spirals, and eccentric rings (e.g., Hughes et al., 2018; Wyatt,
2018; Wyatt, 2020). Analogous to the studies of the asteroid and Kuiper belts (e.g.
Malhotra, 1993; Ida et al., 2000; Moro-Martín & Malhotra, 2002; Nesvorný et al.,
2010), investigating the structure of debris discs can provide unique insights into the
architecture and evolution of exoplanetary systems. For instance, the presence of a
giant planet around β Pictoris, dubbed as β-Pic b, was predicted based on the warp in
the debris disc (Mouillet et al., 1997), and such a planet was later discovered by direct
imaging (Lagrange et al., 2010). As such, modelling of disc morphology is often focused
on investigating the dynamical imprints of (invoked) massive perturbers, e.g. planets
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(e.g., Wyatt et al., 1999; Wyatt, 2005b; Lee & Chiang, 2016) or stellar companions
(e.g., Nesvold et al., 2017), through their interactions with the debris particles.

In this chapter, I first describe the different methods for observing debris discs
(Section 2.1), together with the various physical processes governing the dynamics and
evolution of the constituent dust grains and planetesimals (Section 2.2). I then move
on to review the diversity of imaged spatial structures (Section 2.3), the theoretical
studies which show that such structures might be explained by often yet-unseen planets
(Section 2.4), and then the occurrence of debris discs and exoplanets around the same
stars from an observational point of view (Section 2.5). Finally, I present a review of
disc masses (Section 2.6), including how they are estimated based on observations of
dust and their implications in the context of modelling planet–disc interactions.

2.1 Observational Methods

Debris discs are detected through observations of the stellar radiation which is either
scattered, or absorbed and re-emitted by the constituent smallest dust grains (typically,
≲ 1 mm in size). Here, I first review the different methods for observing debris discs
(Sections 2.1.1 and 2.1.2), and then discuss the importance of observations at multiple
wavelengths (Section 2.1.3).

2.1.1 Photometry and Spectral Energy Distributions

The earliest and most efficient method of detecting a debris disc has been through
infrared photometry by measuring the Spectral Energy Distributions (SEDs) of stars –
i.e., the stellar flux as a function of wavelength. Essentially, when and if circumstellar
dust is present, it would absorb the incident stellar light and then re-emit at longer
wavelengths that depend on the dust temperature T , or radial location r. For instance,
assuming that dust grains can be approximated as black body spheres, the peak
wavelength of the emission can be approximated by Wien’s displacement law, λpeak =
2800µm/T , where the temperature (in Kelvins) depends both on the dust location and
the star’s luminosity Lc via

T (r) = 278.3
(
Lc
L⊙

)1/4(
r

au

)−1/2

. (2.1)

As a result, the SED of the system would show excess emission flux in either the infrared
or sub-millimetre (corresponding to dust at several to tens of au) when compared to
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Figure 2.1. The Spectral Energy Distribution (SED) of a real star and a hypothetical
star. Panel a: The SED of the star Fomalhaut A (taken from Wyatt, 2020). The emission
at ∼ 0.1 − 10µm is dominated by the stellar photosphere, while the excess emission at
∼ 100µm is indicative of a dusty debris disc surrounding the star (see also Figure 2.2). Panel
b: Synthetic SED of a G2V star located at 10 pc with a debris disc (taken from Wyatt,
2008). Calculations assume different dust temperatures assuming blackbody dust located
at 1, 10, and 100 au from the star (see Equation (2.1)), as shown by different colours. The
solid, dashed, and dotted lines represent discs with different levels of fractional luminosities:
10−3, 10−5, and 10−7, respectively. The total emission spectrum is represented by the thick
lines, while the contribution of the disc alone is shown by the thin lines.

that expected from the photospheric stellar emission alone – this is usually referred to
as “infrared excess” in the literature (e.g., see reviews by Krivov, 2010; Wyatt, 2020).
The excess flux also depends on the amount of dust and as such is further characterized
by the fractional dust luminosity fIR, i.e., the ratio of the luminosity from the dust to
that of the star, with typical values ranging from 10−6 to 10−3 (Wyatt, 2020). Figure
2.1 shows an example of such an infrared excess as observed in the Fomalhaut system,
along with some synthetic SEDs for various values of T (r) and fIR.

Historically, the first ever detection of a debris disc around a main-sequence star,
namely that around Vega, was made through observations of such infrared excesses
by the Infrared Astronomical Satellite (IRAS) (Aumann et al., 1984). Since then,
over a thousand of debris discs have been detected by surveys done by e.g., IRAS
(Oudmaijer et al., 1992; Mannings & Barlow, 1998), the Infrared Space Observatory
(ISO) (Kessler et al., 1996; Habing et al., 2001; de Muizon, 2005), the Spitzer Space
Telescope (Werner et al., 2004; Meyer, 2006; Su et al., 2006; Carpenter et al., 2009a),
and the Herschel Space Observatory (Pilbratt et al., 2010; Eiroa et al., 2013; Matthews
et al., 2014a; Hughes et al., 2018). Detailed modelling of SEDs has allowed us to
infer and estimate various fundamental parameters of debris discs, such as their radial
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location, masses of the emitting dust, as well as the size distribution of the constituent
dust and their composition (e.g., Lisse et al., 2007; Lebreton et al., 2012; Olofsson
et al., 2012; Ballering et al., 2014; Kennedy & Wyatt, 2014; Pawellek et al., 2014).

Finally, although it is not in the remit of this dissertation to go into the details of
observational methods, it is worthwhile to note that fitting SEDs with a black body
spectrum is only a first order approximation. In reality, dust grains can have different
emission efficiency or albedos depending on their composition and size, and so the true
properties of the debris disc could differ from those inferred from the SEDs assuming
blackbody grains (e.g., Schneider et al., 2006; Booth et al., 2013; Pawellek et al., 2014).
At the same time, SED modelling does not always result in a unique solution due to
degeneracies between the disc geometry and optical properties of dust grains (e.g.,
Wyatt, 2008; Pawellek et al., 2014). One avenue for breaking such degeneracies is by
resolving discs spatially (e.g., Wyatt, 2008; Pawellek, 2016), which is discussed next.

2.1.2 Imaging

For debris discs that are close and bright enough to be spatially resolved, they can
be detected by direct imaging. This technique is possible not only for the thermal
emission of dust particles, but also for the starlight scattered off them (provided that
the stellar light is blocked by a coronagraph). Indeed, thanks to the advent of both
space- and ground-based instruments – including Spitzer, HST, Herschel, GPI, and
more recently ALMA – this technique has been successful across the electromagnetic
spectrum, from optical through mid- and far- IR to (sub-)millimetre wavelengths (e.g.,
Hughes et al., 2018). A spectacular example of such multi-wavelength imaging is shown
in Figure 2.2, which showcases the narrow eccentric debris disc around Fomalhaut A.

Historically, such imaging at optical wavelengths provided the first evidence that
the circumstellar dust around β Pictoris – first identified through infrared excess by
IRAS – is distributed in a disc and not a spherical shell as was thought previously
(Smith & Terrile, 1984). As of the time of writing, there are more than a hundred
debris discs which have been spatially resolved with a high signal-to-noise ratio, of
which a few dozen at multiple wavelengths (e.g., Hughes et al., 2018).

While limited spatial information can be derived from SED modelling, imaging
represents a better method for characterising debris disc features. For instance, it can
reveal the radial extent of debris discs together with the distribution of the constituent
dust particles. It can also reveal the level of dynamical excitation in the disc, for
instance, through characterising the scale height of nearly edge-on discs. With the
improvement of imaging techniques, it has also been possible to resolve the substructures
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Figure 2.2. Images of the eccentric debris disc around Fomalhaut A at different wavelengths
(taken from Hughes et al., 2018). Panel (a): in optical scattered light as seen by the Hubble
Space Telescope (Kalas et al., 2013); Panel (b): at 70 µm as seen by the Herschel space
telescope (Acke et al., 2012); Panel (c): the 1.3 mm continuum emission as seen by the
Atacama Large Millimeter Array (MacGregor et al., 2017).

of the dust revealing a large diversity of morphologies: e.g., gaps or double-ringed
structures, warps, spirals, and eccentric rings (Hughes et al., 2018; Wyatt, 2018; Wyatt,
2020). Such structures, which I will discuss in detail in Section 2.3, provide vital clues
to the underlying processes as well as planetary architecture shaping the disc.

2.1.3 The Importance of Multi-wavelength Observations

It is well known that observations at different wavelengths trace dust grains of different
sizes. Indeed, as a general rule of thumb, observations at a specific wavelength λ are
most sensitive to dust grains of sizes s that are comparable to the observing wavelength,
i.e. λ ∼ s (see e.g. Hughes et al., 2018). This can be understood as follows. First, the
size distribution of grains in the disc is dominated by small particles which in turn
dominate the emitting surface area or the total cross-sectional area of the disc (see
Section 2.2.2). Second, the emission efficiency of dust particles is generally greater
at wavelengths shorter than their physical sizes and is known to drop significantly at
longer wavelengths (e.g., Draine & Lee, 1984). Thus, the total disc brightness at a
given wavelength is mostly dominated by the thermal emission or scattered light of
particles with sizes approximately equal to the observing wavelength.

Since particles of different sizes are affected by different type of physics (see Section
2.2), debris discs could exhibit different structures depending on the wavelength at
which they are observed (Wyatt, 2006). This is particularly important as it implies
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that multi-wavelength observations of the same disc, by probing different grain sizes,
allows us to piece together a better understanding of the underlying physics that is
shaping the disc. For instance, observations at optical wavelengths (e.g. Figure 2.2(a))
can provide insights into the spatial distribution of small (i.e., ∼ µm-sized) dust grains
which are strongly affected by radiation forces and stellar winds (Burns et al., 1979).
On the other hand, observations at millimetre wavelengths trace larger dust grains
(∼ 0.1 − 10 mm) for which the effects of stellar radiation and winds are negligible (see
e.g. Figure 2.2(c)). Given this, such large grains are thought to be located in close
proximity to the dust-producing parent planetesimals of kilometre sizes. In other words,
observations at millimetre wavelengths indirectly probe the surface density distribution
of the large planetesimals within the debris disc (e.g., Wyatt, 2006; Wilner et al., 2011).
Note that bodies of centimetre size and above essentially cannot be observed at any
wavelength due to their small cross-section for any plausible size distribution (e.g.
Figure 2.4), rendering millimetre observations the only reliable way for probing the
spatial distribution of km-sized planetesimals. This also highlights another important
aspect of millimetre observations such as those with ALMA, in that they can provide
insights into the gravitational forces perturbing the planetesimal orbits and could, for
instance, pinpoint yet unseen planets in the system.

2.2 Physical Processes in Debris Discs

Observations of debris discs provide a unique tool to probe the formation, evolution,
and architecture of exoplanetary systems. For any accurate interpretation of debris
disc observations, however, a model that is based on an understanding of the physical
and dynamical processes shaping the distribution of dust and planetesimals in the
debris disc is necessary. Although it has been recently shown that some debris discs do
contain some amount of gas (Hughes et al., 2018; Wyatt, 2020), except for a couple of
debris discs, the gas is so tenuous that its dynamical effect is negligible. As a result, the
evolution of particles in debris discs is mainly affected by radiation forces, collisional
activity, and gravitational forces. These and other physical processes are the subject of
this section.

2.2.1 Stellar Gravity and Radiation Forces

Consider a particle of mass m in orbit around a central star of mass Mc such that
m ≪ Mc. The gravitational force Fg due to the star acts on all particles in proportion
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to their mass and distance from the star:

Fg = −GMcm

r3 r, (2.2)

where G is the gravitational constant, and r is the particle’s position vector such
that r = |r| is its distance from the star. In the absence of additional forces and
perturbations, particles would orbit the star on Keplerian orbits. The shape of the orbit
and the position of the particle along it can be uniquely defined by a set of parameters
known as the orbital elements (e.g., Murray & Dermott, 1999). These are as follows:
the semimajor axis a and the orbital eccentricity e, which together define the size and
shape of the orbit; the orbital inclination I and the longitude of ascending node Ω,
which together dictate the orbital plane defined relative to an arbitrary reference plane;
the longitude of pericentre ϖ which defines the orientation of the orbit within the
plane of the orbit (relative to an arbitrary reference direction); and the true anomaly
f , which defines the location of the body along its orbit. For the sake of completeness,
a brief review of the Kepler problem – including orbital elements and perturbations
beyond the two-body problem – is set out in Chapter 3.

The stellar gravity is the dominant force that acts on the largest bodies within
the debris disc, which remain on Keplerian orbits with fixed orbital elements in the
absence of other perturbing forces. The orbits of small dust grains, however, are also
perturbed by non-gravitational forces resulting from their interaction with the stellar
radiation field. This is because dust grains absorb and scatter the incident photons
from the star, removing energy from the radiation field, which they then re-radiate.

The resulting net force experienced by a dust grain in the star’s radiation field can
be written as (Burns et al., 1979):

Fr.f. = GMcβm

r3

[
r − r · v

c

r
r

− rv
c

]
, (2.3)

where v is the velocity vector of the particle, and c is the speed of light. In Equation
(2.3), the parameter β – the ratio of the force of stellar radiation pressure to that of
stellar gravity – depends on the particle’s size, density, and optical properties as well
as the star’s luminosity and mass; see below for details. Note that the radiation force
(Equation 2.3) can be split into two parts, which are usually treated separately: (i)
a velocity-independent radial part, which is known as radiation pressure; and (ii) a
velocity-dependent part, which is known as Poynting–Robertson drag (or P–R drag).
Both of these are discussed next.
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2.2.1.1 Radiation Pressure

The radiation pressure force is determined by the velocity-independent terms in
Equation (2.3), i.e., Frad = GMcβm

r3 r. Similar to stellar gravity, it is inversely proportional
to the square of a particle’s distance from the star, however, it points radially away
from the star. Thus, radiation pressure dampens the stellar gravity so that particles
experience an effective gravitational force of Feff = Fg(1 − β). That is, particles
experience the gravity of an “effective star” with a mass reduced by a factor of 1 − β.

It is important to note that, since both radiation pressure and stellar gravity forces
fall off as r−2, the parameter β is a distance-independent quantity. It is given by (Burns
et al., 1979; Gustafson, 1994):

β(D) ≡ |Frad|
|Fg|

=
(
σ

m

)(
Lc⟨Qpr⟩λ
4πcGMc

)
≈ 0.42

(
Lc
L⊙

)(
M⊙

Mc

)(
2.7gcm−3

ρ

)(
1µm
D

)
, (2.4)

where Lc is the star’s luminosity, σ is the particle’s cross-sectional area, ⟨Qpr⟩λ its
Mie scattering coefficient averaged over all wavelengths1, and the numerical estimate
assumes that particles are perfect absorbers (i.e., a black body) and are spherical of
diameter D and bulk density ρ.

Equation (2.4) shows that β ∝ 1/D, meaning that the smaller a particle, the more
effective radiation pressure is2. Thus, particles sharing the same orbital semimajor
axis but differing in sizes will have different orbital periods since, when β ≠ 0,
n = [GMc(1 − β)/a3]1/2. This also means that when dust grains are produced, for
instance, by the fragmentation of a large parent body with β ≈ 0, their orbits differ from
that of the parent body depending on their sizes. For a parent body which fragments
at a true anomaly f along its orbit defined by semimajor axis a and eccentricity e,
the daughter fragments will move in the same orbital plane as the parent body – i.e.,
I

′ = I and Ω′ = Ω – but on orbits with semimajor axis a′ , eccentricity e′ , and longitude
of pericentre ϖ′ given by (Burns et al., 1979; Wyatt et al., 1999):

a
′ = a(1 − β)(1 − e2)[1 − e2 − 2β(1 + e cos f)]−1, (2.5)
e

′ = (1 − β)−1
√
e2 + 2βe cos f + β2, (2.6)

ϖ
′ −ϖ = f − f

′ = arctan[β sin f/(β cos f + e)]. (2.7)
1The value of ⟨Qpr⟩λ ranges from 0 for perfect transmitters to 2 for perfect backscatterers. For

perfect absorbers (i.e., black bodies), ⟨Qpr⟩λ = 1.
2This is a good approximation for particles of ≳ µm sizes, below which β levels off and approaches

a finite asymptotic value (e.g., Gustafson, 1994, and Figure 3 therein.)
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Figure 2.3. The orbits of dust particles (denoted by thin lines) produced as a result of the
fragmentation of a large planetesimal P on a circular orbit (denoted by the thick line) around
the star S. The dust particles have different physical sizes and so radiation β (Equation (2.4)),
the values of which are shown in the figure. There are three types of orbits: (i) particles
with 0 < β < 0.5 are on bound eccentric orbits; (ii) those with 0.5 < β < 1 are on unbound
hyperbolic orbits; (iii) while those with β > 1 are on unbound, anomalous hyperbolic orbits –
see the text (Section 2.2.1.1) for details. Figure taken from Wyatt et al. (1999).

Note that the pericentric distances of daughter fragments, r′
p = a

′(1 − e
′), do not differ

from that of the parent body, rp = a(1 − e), since r′
p/rp = 1 + e(1 − cos f) + O(e2)

irrespective of β; see Equations (2.5) and (2.6).
Equations (2.5) – (2.7) indicate that there are three outcomes for the orbits of

dust particles depending on their physical size or β. For illustrative purposes, here I
follow Wyatt et al. (1999) and describe the possible outcomes for particles released by
a parent body on a circular orbit (e = 0); see also Figure 2.3. First, if 0 < β < 0.5,
dust particles are released into bound elliptic orbits, 0 < e

′
< 1, with semimajor axes

larger than that of the parent body (a′
> a). Note that particles for which β ≲ 0.1,

the effect of radiation pressure is negligible. Second, if 0.5 < β < 1, then dust particle
orbits are unbound and hyperbolic with e′

> 1 (or parabolic if β = 0.5) . Note that in
general, i.e., for parent bodies on eccentric orbits, the boundary between bound and
unbound orbits is defined by β = 0.5(1 − e2)/(1 + e cos f), see Equation (2.6). Third,
and finally, particles with β > 1 experience a repelling effective gravitational force and
so move on anomalous hyperbolic orbits which open outward.

Note that particles with β > 0.5 will be blown out of the system on timescales
comparable to the orbital period of the parent body. It is thus expected that debris
discs will not contain dust grains smaller than a characteristic size Dbl corresponding
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to β ≈ 0.5. This is known as the blowout size which is given by (Wyatt, 2008):

Dbl ≈ 0.84µm
(
Lc
L⊙

)(
Mc

M⊙

)−1(
ρ

2.7gcm−3

)−1

, (2.8)

see Equation (2.4). Finally, I remark that the minimum size of grains inferred from
observations is often larger than Dbl, see Pawellek & Krivov (2015) for further details.

2.2.1.2 Poynting–Robertson (P-R) Drag

The Poynting–Robertson (P-R) drag force is determined by the velocity-dependent
terms of the radiation force Fr.f., i.e., the second and third terms in Equation (2.3).
Given the dissipative nature of this force, particles subject to it lose orbital energy
and angular momentum. This causes particles to spiral in toward the star while at
the same time circularising their orbits. The induced migration and circularisation
rates depend on the particle size (or β) which, to lowest order in eccentricities, read as
(Burns et al., 1979):

daPR

dt
= −2α(β)

a
+ O(e2), dePR

dt
= −5α(β)

2a2 e+ O(e2), (2.9)

where α = 6.24 × 10−4(Mc/M⊙)β au2.yr−1 (Wyatt et al., 1999). Note that P-R
drag does not affect the particle’s orbital plane nor its longitude of pericentre, i.e.,
dIPR/dt = dΩPR/dt = dϖPR/dt = 0.

Equation (2.9) implies that P-R drag acts on relatively short time scales. For a
particle initially on a circular orbit at a distance r from the star, the time tPR taken
for it to spiral into the star is on the order of thousand of years (Wyatt, 2005a),

tPR = 400 yr β−1
(
Mc

M⊙

)−1(
r

au

)2

. (2.10)

Thus, P-R drag is another mechanism which could remove dust particles from the
system either through accretion by the central star or through sublimation close to it
(assuming they are not e.g. trapped by a planet or destroyed by collisional processes
as they spiral in; see e.g. Wyatt (2008), Wyatt (2020), and references therein).

Evidence of P-R drag is found in the solar system e.g., in the zodiacal cloud
around Earth’s orbit (Figure 1.7), which is composed of ≲ 1 mm dust created in the
asteroid belt and dragged in towards the Sun (Dermott et al., 1994, 2001). In the
case of exoplanetary systems, however, it has been argued that P-R drag is normally
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insignificant when modelling known debris discs (Wyatt, 2005a). This is because for
debris discs that are bright enough to be detected, the mean time of collisions between
small dust grains is shorter than their P-R drag lifetime; so much so that they are
processed through collisions (until they reach the blowout size, Equation 2.8) before
P-R drag becomes significant – see Figure 1 in Wyatt (2005a). It is worth noting
that since the balance of P-R drag and collisions is not perfect, some dust grains do
get dragged into the inner parts of a system and produce excess emission at mid- to
near-infrared wavelengths near the star (if not ejected or scattered by intervening
planets, e.g., Wyatt, 2005a; Kennedy & Piette, 2015; Rigley & Wyatt, 2020). With the
advent of new instruments over the last decade, such “exo-zodiacal dust” has now been
observed at small distances from several nearby stars (e.g. Absil et al., 2006; Kennedy
& Wyatt, 2013; Ertel et al., 2014, 2020)

2.2.2 Collisional Evolution

The discussion in Section 2.2.1 implies that as a result of radiation forces, small dust
grains are removed from the system in relatively short timescales compared to the ages
of debris discs (Dominik & Decin, 2003). Thus, dust grains in debris discs cannot be
primordial or relics from the protoplanetary disc phase, but rather must be continually
replenished. The accepted theoretical picture is that a “collisional cascade” initiated
by a reservoir of large planetesimals – which are leftover from the planet formation
process – continually supplies fresh dust (Backman & Paresce, 1993; Wyatt & Dent,
2002; Wyatt, 2008). Within this picture, km-sized planetesimals collide and produce
many smaller objects that then collide and break up into smaller objects, and so on –
until the blowout size (Equation 2.8) is reached.

For a collisional cascade to be ignited, the orbits of parent planetesimals must
be dynamically excited – or “stirred” – so that relative velocities are high enough
for collisions to be destructive. The stirring mechanism is not well constrained. For
instance, it is possible that debris discs are pre-stirred by processes acting during the
protoplanetary disc phase (Matthews et al., 2014a; Wyatt, 2008). Another possibility
is that debris discs could be self-stirred by the gravitational perturbations of Pluto-
sized (∼ 1000 km) planetesimals within the disc (Kenyon & Bromley, 2008; Kennedy
& Wyatt, 2010). Alternatively, the disc could be stirred through long-term secular
interactions with planets (or stellar companions) in the system – referred to as planet
stirring (Mustill & Wyatt, 2009).

The collisional evolution after the disc is stirred one way or another, however, has
been studied in detail. It is well known that the size distribution of particles resulting
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Figure 2.4. A schematic illustrating the size distribution of particles in a debris disc, as
plotted in the space of cross section per unit size decade and particle radius (taken from Krivov
& Wyatt, 2021). The red-green coloured line corresponds to the Dohnanyi size distribution
with a slope of Θ = 3.5 (Equation 2.11). For comparison, a typical size distribution obtained
from collisional simulations (using the ACE code, Krivov et al., 2006) is also shown (black
line). The red-filled area represents the range of dust sizes that can be observed.

from a collisional cascade can be well described by a power-law profile (e.g., Wyatt,
2008, and references therein),

n(D) ∝ D−Θ (2.11)

for Dmin ≤ D ≤ Dmax and n(D) = 0 otherwise, where the index Θ reads as Θ = 3.5
for a steady-state collisional cascade with particles of equal strengths and velocities
(Dohnanyi, 1969). At the small-size end, the distribution is typically cut off by the
blowout size (i.e., Dmin ≈ Dbl, Equation 2.8) where particles get removed from the
system by radiation forces; while, at the large end, by the size of the largest body
(typically, Dmax ∼ 1 − 100 km) that has experienced a destructive collision (Dominik &
Decin, 2003; Wyatt et al., 2007). Numerical simulations of collisional cascades support
this general behaviour, although with slight departures from a pure power-law; see
Figure 2.4 which is taken from a recent study by Krivov & Wyatt (2021).

Equation (2.11) implies that small dust particles dominate the total cross section
of the disc, whilst the largest planetesimals dominate the total disc mass – as long
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as 3 ≤ Θ ≤ 4. Indeed, this is supported by observations of several discs from which
values of Θ within the ≈ 3 − 4 range have been inferred (see Norfolk et al., 2021, and
references therein). It is also interesting to note that more complicated treatments of
collisional cascades than that presented by Dohnanyi (1969) predict Θ to be between 3
and 4 (e.g., O’Brien & Greenberg, 2005; Pan & Sari, 2005; Krivov et al., 2006; Thébault
& Augereau, 2007; Gáspár et al., 2012; Pan & Schlichting, 2012; Schüppler et al., 2015),
depending on the adopted assumptions e.g. about the material strength and velocity
dispersion of bodies, and the physics involved (see also Belyaev & Rafikov, 2011, for
non-power law behaviour).

Another implication of collisional evolution is that as mass is passed from the largest
planetesimals to smaller dust grains (which are then lost), the total disc mass gradually
depletes in time; usually on ∼ Gyr timescales (Dominik & Decin, 2003; Wyatt et al.,
2007). Thus, the initial mass of a debris disc Md(0) is usually much larger than its
present value Md(t). For instance, assuming a steady-state collisional cascade of a
pre-stirred disc, Md(t) can be written as (Dominik & Decin, 2003; Wyatt et al., 2007)

Md(t) = Md(0)
1 + t/τ0

, (2.12)

where τ0 is the collisional lifetime of the largest planetesimals in the disc at the initial
epoch. Equation (2.12) implies that Md ∝ t−1 at late times (see also Gáspár et al. (2013)
for a summary of the various decay slopes as predicted by more detailed modelling),
which is in general agreement with observations; see e.g. Figure 1.3. However, it is
important to note that estimating the total mass of a debris disc is difficult (Krivov
& Wyatt, 2021), because it requires extrapolating the mass of the observable dust
(≲ 1 mm) to the mass of the unobservable large planetesimals, let alone our limited
knowledge of optical and physical properties of the disc particles. Thus, a debris disc’s
total mass is a very uncertain parameter. A detailed discussion of this issue is provided
in Section 2.6.

2.2.3 Gravitational Interactions

Dust grains and planetesimals comprising debris discs are also influenced by the
gravitational perturbations induced by any massive objects in the system, apart from
the central star. Generally, such perturbations could result from ‘external’ massive
sources, i.e., planets and stellar companions, and/or ‘internal’ sources, i.e., the collective
gravity of the debris disc itself. Regardless of the perturbation origin, however, the
orbits of debris particles, together with the perturbers themselves (whether those are the
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planets residing in the system or the disc particles themselves), will be perturbed away
from their otherwise fixed Keplerian orbits in the absence of gravitational perturbations
and thus evolve in time. Indeed, particle orbits will experience variations in their orbital
parameters – such as orbital eccentricities, inclinations, and longitudes of pericentre
and ascending node – in ways that depend on the type of the perturbation. This will
in turn affect the spatial distribution of the debris particles.

Generally, gravitational perturbations can be categorised, both mathematically and
conceptually, into three distinct types (Murray & Dermott, 1999): (i) secular, long-
range interactions which act on timescales much longer than the typical orbital periods;
(ii) resonant, relatively short-range interactions which act on timescales comparable
to the involved orbital periods; and (iii) short-period interactions, which become
important during close encounters and scattering events. A detailed discussion of such
perturbations – both from a mathematical and physical point of view – is provided
in Chapter 3. The effects of each of these types of gravitational interactions, both
separately and in combination, have been the subject of multiple studies over the last
decades (e.g., see review by Krivov, 2010; Hughes et al., 2018; Wyatt, 2018), finding
that they can imprint various signatures in the spatial appearance of debris discs, such
as spiral arms, warps, radial gaps, etc. A detailed review of the imaged structures in
debris discs and studies of planet–disc interactions aiming to explain them is provided
in Sections 2.3 and 2.4, respectively.

2.2.4 Other Processes and Forces

In addition to the physical processes described in Sections 2.2.1 – 2.2.3, a number
of other processes and forces may influence the spatial distribution and evolution of
debris particles: for instance, sublimation, stellar wind forces, the Lorentz force, the
Yarkovsky effect, and gas drag. These processes, while of no direct relevance for the
debris discs studied and modelled in this dissertation, are discussed briefly below for
the sake of completion.

• Sublimation: Icy dust grains and planetesimals can sublimate, i.e. transit from
a solid state of matter to a gaseous state, in the vicinity of a star as a result of the
higher temperatures in that zone. The radius of the sublimation zone depends on the
physical properties of the particles (e.g., material, porosity, etc.) as well as the stellar
luminosity: as a general rule of thumb, though, it ranges from ∼ 1 to ∼ 10 stellar
radii. Thus, when particles move on orbits that bring them close to ∼ 0.01 − 0.1 au
from the central star, they sublimate and release a population of atomic and molecular
gas. This can happen as a result of dust grains migrating inwards towards the star
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under radiation forces or exo-comets being scattered into the inner parts of a planetary
system – as is the case in the Solar System (e.g., Kimura et al., 1997; Krivov et al.,
1998). Such sublimation processes assisted by radiation forces and/or scattering events
have been invoked in extra-solar settings as a viable scenario for e.g. explaining the
observed gaseous component of some debris discs (e.g., Beust et al., 1990; Wyatt,
2018, and references therein). Within such models, the debris disc gas is considered as
having a secondary origin, rather than primary (i.e., remnant from the protoplanetary
phase). More recently, it has also been shown that the sublimation of icy grains and the
subsequent release of gas could potentially explain the observed near infrared excesses
due to close-in, hot dust around various main-sequence stars (Pearce et al., 2020):
within this context, the released gas acts as a trap, holding dust grains that enter the
sublimation zone subsequently on stable orbits.

• Stellar wind forces: In the same way that stellar electromagnetic radiation gives
rise to radiation pressure forces, Fr.f. (see Section 2.2.1), stellar particulate radiation
gives rise to stellar wind forces, Fs.w. (Burns et al., 1979). This force, similar to radiation
pressure forces, can be decomposed into two components: stellar wind pressure and
stellar wind drag. Indeed, as a corpuscular analogue to Fr.f., the stellar wind force Fs.w.

has the same form as in Equation (2.3), but with c and β replaced by vs.w. and βs.w.,
respectively. Here, vs.w. is the stellar wind speed and βs.w. =

(
σ
m

)
Ṁcvs.w.CD/2

4πGMc
, where Ṁc

is the stellar mass loss rate, σ is the particle’s cross-sectional area, and CD – typically
taken to be equal to 2 – is a measure of the momentum transfer from wind particles to
a dust grain.

The effects of the stellar wind pressure is known to be negligible, since stellar winds
carry much less momentum and energy than stellar radiation. However, the effects of
stellar wind drag can be significant and non-negligible since vs.w. < c. For instance,
in the Solar System, with typical values of vs.w. ∼ 300 − 800km.s−1 and Ṁc = 2 ×
10−14M⊙yr−1 (Allen, 1973), the strength of the stellar wind drag is (βs.w./β)(c/vs.w.) ≈
30% of that of the P–R drag (Gustafson, 1994). For stars with stronger stellar winds
or late type stars, it is also possible for stellar wind drag to overcome P-R drag
(Reidemeister et al., 2011). Thus, in practice, when studying the evolution of dust
grains in debris discs, P–R and stellar wind drag forces are usually combined together
and an effective βeff. parameter is introduced.

• Lorentz force: Circumstellar dust grains can also be charged as a result of
interacting with the incident stellar light due to e.g. the emission of photo-electrons
or capture of ions and electrons (e.g., Horanyi, 1996). As a result, dust particles are
also subject to the Lorentz force induced by the magnetic field of the central star (or
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that of a planet). This introduces additional perturbations to the orbit of a given dust
particle – an effect well-studied within the context of the Solar System (e.g., Morfill &
Gruen, 1979; Consolmagno, 1980). Generally, the perturbations induced by the Lorentz
force could either trap dust grains at small distances from the star – giving rise to hot
exozodiacal dust (Rieke et al., 2016) – or contribute to the ejection of dust particles
out of the planetary system (Hamilton et al., 1996). These effects, however, become
prominent for relatively small dust grains which are typically of ≲ 0.1 − 1µm in size,
i.e., those which contribute only marginally to both the mass budget and cross sectional
area of a debris disc. This is so mainly because ≲ 1µm dust grains are relatively scant
in number since they are quickly removed from the system by radiation forces (e.g.,
recall that Dbl ∼ 1µm for a solar-type star; Equation (2.8)). As such, the Lorentz force
is usually ignored in the literature when studying debris discs3.

• Yarkovsky effect: The dynamics of large (∼ km) objects can also be influenced
by the Yarkovsky (Radzievskii, 1952; Peterson, 1976) and the YORP effects (Radzievskii,
1952; Paddack, 1969; O’Keefe, 1976). The Yarkovsky effect arises due to the anisotropic
thermal emission of photons from the surface of a rotating body: the photons impart
a recoil force on the body as they leave its surface, perturbing its orbit. The YORP
effect, on the other hand, results due to the torque due to the thermal emission from
irregularly shaped bodies: this can increase or decrease the body’s spin rate and can
affect the spin axis orientation. These effects have been well-studied within the context
of asteroids in the Solar System (e.g., Bottke et al., 2006, and references therein), and
have also found applications within the context of debris discs, especially around white
dwarfs (e.g., Veras et al., 2014).

• Gas drag: Particles constituting a debris disc may also be subject to gas drag,
which arises due to their relative velocity with respect to the gaseous component.
This is because the gas, unlike solids, is partially supported by its own pressure,
and thus orbits the star with a sub-Keplerian velocity. The effects of gas drag is
inversely proportional to the radius of planetesimals (Adachi et al., 1976), and so more
significant for smaller particles. It generally acts to dissipate orbital energy and angular
momentum, damping the orbital eccentricity and inclination of a particle while causing
its orbit to decay towards the star (e.g., Marzari & Scholl, 2000). Given that most of
the known debris discs are gas-poor, the effects of gas drag is usually ignored when
studying them. Nevertheless, it could be important for some of the discs which have
recently been found to contain a significant amount of gas (e.g. Hughes et al., 2018;

3An exception to this is for debris discs around young M-dwarfs (such as that around AU Mic, e.g.
Chiang & Fung, 2017), known to generate the strongest magnetic fields among main-sequence stars.
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Olofsson et al., 2022). For instance, Lin & Chiang (2019) showed that the drag force
exerted by second-generation gas in debris discs – e.g., released by volatile-rich solids
due to collisions – could force the orbits of small dust grains to apsidally align, giving
rise to “moth”-like debris disc morphologies in scattered light images (e.g. Figure
2.5(h)). It is also possible that the gas drag acting during the protoplanetary phase, in
combination with the perturbations due to a young planet, could shape the distribution
of solids and thus leave an imprint on the structure – or at least, the initial conditions
– of the descendant debris disc once the gas is dissipated (Zheng et al., 2017; Kennedy,
2020).

2.3 The Diversity of Debris Disc Structures

As already mentioned above, recent advances in imaging capabilities across multiple
wavelengths have revealed a rich variety of debris disc structures at unprecedented
detail including narrow and broad rings, gaps, warps, and spiral arms, to name a
few4. In this section, I provide a brief review of the diversity of spatially resolved
structures in debris discs which can be categorised into three types: radial, azimuthal,
and vertical. At the outset, however, it is important to note that some disc structures
could fall into more than one category, or be the result of a combination of structures
coupled with viewing angle effects (e.g. Lee & Chiang, 2016). Thus, the categorisation
is not unique per se. For reference, a gallery of images illustrating examples of the
different disc structures is presented in Figures 2.5 and 2.6.

2.3.1 Radial Structure

• Eccentric Rings: Debris discs seem to have a wide range of radial extents, with
some being very narrow (i.e., on the order of ∼ 10 au) and others being very broad (i.e.,
on the order of ∼ 100 au). A unifying theme to both, however, is that they seem to be
eccentric, in the sense that their centre is offset from the central star by some distance.
Indeed, measurements of debris rings’ eccentricities typically yield values ranging from
∼ 0.05 (which is the lower limit of what can be measured by existing instrumentation)
up to ∼ 0.2 (see e.g., Hughes et al., 2018; Kennedy, 2020, and references therein). This
feature seems quite common particularly in narrow rings, which often are found to be
eccentric (compared to broad rings). Canonical examples of narrow eccentric rings

4Catalogues of spatially resolved images of debris discs can be found online at
www.circumstellardisks.org and www.astro.uni-jena.de/index.php/theory/catalog-of-resolved-debris-
disks.
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Figure 2.5. Compilation of scattered light and/or thermal emission images of debris
discs around eight nearby stars (taken from Hughes et al., 2018). The collection of images
showcases the diversity of observed debris disc structures: radial, azimuthal, and vertical –
see the text for more details (Section 2.3).

are provided by Fomalhaut (Kalas et al., 2013, see also Figure 2.2), HR 4796A (Milli
et al., 2017b; Kennedy et al., 2018, see also Figure 2.5(a)), and HD 181327 (Schneider
et al., 2014); while HD 202628 on the other hand represents a good example of a broad
eccentric ring (Schneider et al., 2016, see also Figure 2.5(b)).

Owing to the stellar offset, such eccentric rings are also seen to exhibit asymmetries
in their surface brightness distribution, which peak either at the pericentre or apocentre
side depending on the observational wavelength (Wyatt et al., 1999; Pan & Wu, 2016;
Lynch & Lovell, 2021). The former case, known as pericentre glow, is observed at
short wavelengths as a result of the dust at pericentre being hotter and glowing more
brightly than the dust at apocentre (Wyatt et al., 1999); see e.g. panel b of Figure 2.2.
The latter case, on the other hand, which is referred to as apocentre glow, is observed
at long wavelengths, as they essentially trace the surface density distribution of the
dust which is expected to be larger at the apocentre than at the pericentre (Pan &
Wu, 2016); see e.g. Figure 2.2(c).

Finally, I point out that eccentric rings could also manifest themselves as having
various morphologies, e.g. swept-back wings and asymmetries (see Sections 2.3.2 and
2.3.3), depending on the observing angle (Lee & Chiang, 2016). For instance, an
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Figure 2.6. Compilation of ALMA images of the distribution of mm-sized dust in the
debris discs of four nearby stars exhibiting gapped, or double-belt, structures (adapted from
Marino (2021) and MacGregor et al. (2019)). The individual discs are: HD 107146 (Marino
et al., 2018a), HD 92945 (Marino et al., 2019), HD 206893 (Marino et al., 2020), and HD
15115 (MacGregor et al., 2019). The resolution beam sizes and radial scales are shown by
blue ellipses and lines, respectively, at the bottom of each panel.

eccentric ring seen nearly edge-on may appear to be shorter on one side compared to
the other (see Figure 2.5(f) and Section 2.3.2).
• Radial gaps: Another common radial structure observed in debris discs is the
presence of a double-belt structure, or a gap. In other words, the debris disc appears
to be separated into two distinct belts, separated by a certain region in which there is
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Figure 2.7. The radial profiles of the deprojected surface brightness of the gapped debris
discs around HD 107146 (blue), HD 92945 (orange), and HD 206893 (green), as derived from
ALMA observations (taken from Marino et al., 2020). The shaded regions represent the
associated 1σ uncertainties. Note the depletion centred around ≈ 70 au in all three discs.

a void, or at least a significant underdensity, of planetesimals; see e.g. Figure 2.5(c).
This is somewhat similar to the asteroid and Kuiper belts in our own Solar System,
which are separated by a ∼ 27 au wide radial gap. Such radial gaps seem to be
quite common in relatively wide (i.e., on the order of ∼ 100 au) debris discs, with
at least 4 out of 6 wide belts that have been observed with ALMA at high enough
resolution5 showing evidence of gaps. Namely, these are the debris discs surrounding
HD 107146 (Ricci et al., 2015; Marino et al., 2018a), HD 92945 (Marino et al., 2019),
HD 15115 (MacGregor et al., 2019), HD 206893 (Marino et al., 2020; Nederlander
et al., 2021), and potentially AU Mic (Daley et al., 2019). For reference, the images of
these four gapped debris discs as obtained by ALMA are displayed in Figure 2.6. Note
that perhaps somewhat coincidentally, the gaps in these four debris discs are centred
at around the same radial distance, ∼ 70 au (Marino et al., 2020). This can be seen
more clearly in Figure 2.7, which shows the deprojected surface brightness profiles of
these discs (with the exception of HD 15115 which is nearly-edge on).

5Here, what is meant by “high enough resolution” is that the disc is observed with at least 4 beams
across its width, and a signal-to-noise ratio of S/N ≳ 10 in terms of the deprojected radial profile; see
e.g. Marino et al. (2020).
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Radial gaps have also been detected in scattered light observations of at least 6
debris discs, including HD 92945 and HD 15115 (Golimowski et al., 2011; Schneider
et al., 2014) – which already exhibit gaps at millimetre observations – but also those
around HD 141569A (Perrot et al., 2016), HD 131835 (Feldt et al., 2017), HD 120326
(Bonnefoy et al., 2017), HD 141943 (Boccaletti et al., 2019), and potentially HD
38858 (Beichman et al., 2006). While these gaps may be indicative of depletion of
planetesimals in that region, it is also possible that they are the result of gas-dust
interactions which could be affecting the disc structure (e.g. Lyra & Kuchner, 2013),
particularly for HD 141569 and HD 131835, which are known to be gas-rich (Zuckerman
et al., 1995; Kral et al., 2019). Thus, the gaps observed by ALMA in the four debris
discs described above are more reliable (Figure 2.6), in the sense that in those cases
observations have constrained the level of gas to be minimal, and that the depletion in
the millimetre dust emission could be interpreted as depletion in the distribution of
large (∼ km-sized) planetesimals.

Finally, I remind the reader that the work presented in the second part of this
dissertation mainly focuses on explaining the origin of radial gaps. This said, more
detailed information on the systems imaged by ALMA – particularly, HD 107146, HD
92945, and HD 206893– is provided in the relevant chapters.
• Spirals: Another type of radial structure observed in debris discs are spiral features.
Indeed, spirals have been observed in various forms, ranging from tightly-wound
structures to large-scale one- or two-armed structures. A prototypical example is HD
141569A which, in optical imaging, shows that the radial distribution of dust is peaked
at ∼ 150 and ∼ 250 au as a result of a tightly wound spiral (Clampin et al., 2003); see
Figure 2.5(i). Additionally, the more diffuse emission from distances ranging over ∼ 300
to 1200 au forms an open spiral structure with one, or possibly two arms (Mouillet
et al., 2001; Konishi et al., 2016). Other discs characterised with spiral features are
those around TWA 7 (Olofsson et al., 2018), which shows evidence of an one-armed
spiral arm, and perhaps HD 92945 (Marino et al., 2019, see also the top right panel in
Figure 2.6). Finally, note that depending on the viewing geometry, the appearance
of spiral structures could be due to the projected view of a disc which is warped; see
Section 2.3.3. In Chapters 5 and 6, I will demonstrate that spiral arms – both as a
wound feature and an open one-armed one – could result from the secular interactions
between planets and massive debris discs.
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2.3.2 Azimuthal Structure

• Clumps: A common type of azimuthal structure observed in debris discs is a
variation of the disc brightness as a function of the azimuthal angle, with much of
the emission being concentrated in one or more clumps; see Figure 2.5(g). There are
several debris discs characterised with this feature: for instance, β Pic, which exhibits
a clump on one side of its debris disc as seen in millimetre observations (e.g. Dent
et al., 2014); and AU Mic, which showcases several clumps distributed over a range
of locations as seen in scattered light imaging (e.g. Krist et al., 2005). Other discs
potentially showcasing clumpy structure are those around Vega (Wilner et al., 2002)
and ϵ Eridani (Greaves et al., 2005), although follow-up observations have not yet
recovered them robustly (e.g. Hughes et al., 2012; Chavez-Dagostino et al., 2016; Booth
et al., 2017).
• Arcs: Another azimuthal structure observed in debris discs are arc-shaped features.
Arcs manifest as a morphology similar to a horseshoe, whereby the emission seems to
be organised in a crescent-shaped structure ranging over a limited span in terms of
azimuth on either side of the disc. Good examples of this structure are seen in the
debris discs around HD 53143 (Schneider et al., 2014, see panel d of Figure 2.5) and in
the extremely extended halo around the HR 4796A debris disc (Schneider et al., 2018).
Note that such arc-shaped structures may look like swept-back wings (or vice versa),
depending on the viewing geometry.
• Asymmetries: Debris discs are also found to display azimuthal asymmetries, in the
sense that they appear to be extended to significantly larger distances towards one
side of the star compared to the other. In its extreme limit, this is also known as the
“needle” structure. A prototypical example of such a structure is seen in HD 106906’s
debris disc (Kalas et al., 2015, see panel f of Figure 2.5), for which the asymmetries are
particularly pronounced. Note, however, that it is often difficult to discern whether
the two ansae of the disc are at different radii or the seemingly shorter side extends to
the same distance as the longer side but has a lower level of emission that it evades
detection. Additionally, such structures could also be the result of eccentric rings (see
panels a and b of Figure 2.5 and Section 2.3.1), particularly when found in nearly
edge-on configurations.

2.3.3 Vertical Structure

• Warps: Several debris discs have been observed to have vertical, warped structures.
A warp represents variations of the disc’s plane of symmetry as a function of radial
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distance from the central star. In other words, a warped disc is characterised by having
an inner part which is inclined with respect to its outer parts. Though such warps are
difficult to detect in debris discs which are not nearly edge-on with respect to the line
of sight, several warped debris discs have been imaged to date, such as those around β
Pic (Heap et al., 2000, see also Figure 2.5(e)), AU Mic (Wang et al., 2015), and HD
110058 (Kasper et al., 2015). Note that it is possible that many more discs which are
nearly face-on or at moderate inclinations are also warped. For instance, a warp has
been identified in the face-on TW Hydra protoplanetary disc by analysing the emission
spectrum, finding that a warp blocks the stellar light reaching the outer disc parts
(Roberge et al., 2005). However, this method is futile when it comes to debris discs,
which are optically thin (e.g. Hughes et al., 2018).
• Swept-back wings: Another vertical structure observed in debris discs is the
so-called swept-back wings feature, also referred to as the “moth”. Moths are a
manifestation of bowed disc midplanes, whereby the disc midplane is bent sharply
at the disc’s ansae (similar to an elbow) with some deflection angle either upward or
downward from the star. The best examples of this structure are provided by the
debris discs around HD 61005 (see panel h of Figure 2.5) and HD 32297, as evidenced
by both scattered light and millimetre observations (Schneider et al., 2014; MacGregor
et al., 2018).

2.4 Debris Discs as Signposts of Planets

The question on the origins of the observed diversity of debris disc structures is still
a fairly open one. Nevertheless, and primarily motivated by the studies of the Solar
System and its debris discs (e.g., Heppenheimer, 1980; Malhotra, 1993; Ida et al., 2000;
Moro-Martín & Malhotra, 2002, see also Section 1.2.5), the common consensus is that
the majority of the observed debris disc structures are of dynamical origin, in the
sense that they are sculpted by the various physical processes affecting the evolution
of the dust and planetesimals in debris discs (Section 2.2); particularly, planet–disc
interactions. As such, much effort has been put into understanding how planets sculpt
debris disc morphologies through their gravitational interactions, both in the presence
and absence of other physical processes such as collisions, radiation forces, etc (e.g.,
see reviews by Krivov, 2010; Hughes et al., 2018; Wyatt, 2018; Wyatt, 2020).

Of course, it is possible to argue that associating debris structures to gravitational
perturbations due to planets (or companions) is overstretched, in the sense that
perhaps observed debris structures are instead simply inherited from the distribution
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of planetesimals during the protoplanetary phase – which typically exhibit structures
very similar to those observed in debris discs (e.g. Figure 1.4 and Andrews (2020)) –
and thus no planet is required. While this hypothesis might be true for some of the
observed features such as the location of a debris ring and the size of its inner hole
(e.g. Michel et al., 2021; Najita et al., 2021), it might not easily explain the observed
non-axisymmetric features since they need to be maintained over long timescales, i.e.,
long after the evolution of the circumstellar disc from its protoplanetary to debris phase.
Consequently, debris disc structures are often considered as signposts and indicators of
planets which usually remain undetected as yet.

As mentioned in Section 2.2.3, there are essentially three ways in which planets
can dynamically interact with debris discs and, in turn, sculpt them: secular, resonant,
and short-period perturbations such as scattering. Here, I review some of the most
notable and recent works on planet–debris disc interactions, highlighting the structures
that are often associated with planets.

2.4.1 Secular Structures

Secular interactions are interactions that operate over both long timescales and dis-
tances, see Section 3.2.4.1 for details. The secular effects of planets on debris discs has
been studied in detail in the literature, finding that it can explain a large variety of
the observed structures in debris discs. The foundational work in this aspect has been
carried out by Wyatt et al. (1999), who investigated how a single or multiple planets
which are on eccentric and/or inclined orbits affect the evolution of debris particles.

For planets which are on nearly circular and coplanar orbits, it is well known that
the secular perturbations cause planetesimal orbits to become eccentric and precess
at rates that depend on their distance from the planet (Murray & Dermott, 1999, see
also Chapter 3). This causes planetesimals that are on initially circular orbits to start
crossing each other, “stirring” the disc and thus igniting a collisional cascade (Mustill &
Wyatt, 2009). During this process, a spiral pattern develops in the disc which starts off
at the disc edge closer to the planet and propagates radially throughout the disc with
time as it wraps around the star (Wyatt, 2005b). After enough time has elapsed, i.e.,
so that the spiral arm is very tightly wound, the disc then becomes eccentric, exhibiting
a large scale asymmetry as a result of the shifted centre of symmetry away from the
central star (Wyatt et al., 1999). This in turn gives rise to brightness asymmetries which
manifest as pericentre or apocentre glow, depending on the observational wavelength –
similar to those observed in many discs (Section 2.3.1).
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Building on the work of Wyatt et al. (1999), Lee & Chiang (2016) carried out
a detailed exploration of the morphologies that ensue from the secular interactions
between a single, eccentric planet and a coplanar, narrow ring of parent planetesimals.
Despite the simplicity of the model, Lee & Chiang (2016) found that as a result of
the secular interactions, coupled with radiation forces that act on the smaller dust
produced due to collisions, a surprisingly large variety of observed morphologies can be
reproduced. Indeed, depending on the viewing geometry, they find that e.g. eccentric
rings (Figure 2.5(a)), swept-back wings or moths (Figure 2.5(h)), and asymmetries or
needles (Figure 2.5(f)) are easily reproduced.

For planets that are on moderately inclined orbits, on the other hand, it has been
shown that planetesimal orbits evolve somewhat similarly to the case of eccentric
planets, but now the interaction leads to the appearance of a warp within the disc when
viewed edge-on (e.g. Mouillet et al., 1997; Augereau et al., 2001; Dawson et al., 2011;
Dong et al., 2020); similar to that in Figure 2.5(e). The warp is a transient feature
if induced by a single inclined planet, i.e., its location changes over long (secular)
timescales (e.g. Dawson et al., 2011), and may be more localised if induced by two (or
more) mutually inclined planets (e.g. Wyatt et al., 1999; Dong et al., 2020). Here, it
is important to note that the presence of the planet around β Pic was first predicted
based on the observed warp in its debris disc and its modelling via secular planet–disc
interactions (Mouillet et al., 1997; Augereau et al., 2001), and later discovered by direct
imaging (Lagrange et al., 2010); see also Section 2.5.2.

The role of planetary secular perturbations in sculpting debris discs has also been
studied in more extreme setups involving planets on highly eccentric and/or inclined
orbits (e.g. Beust et al., 2014; Faramaz et al., 2014; Pearce & Wyatt, 2014, 2015).
In such cases, it has been shown that the secular interaction can result not only in
elliptical discs, but also hollow bell-shaped structures enveloping the planet’s orbit as
well puffed-up discs that are orthogonal to the planetary orbit.

Finally, it is important to note that since secular interactions are long-range
interactions, planets – or stellar companions, for that matter – could sculpt debris discs
whether they are interior or exterior to a debris disc. For instance, Nesvold et al. (2017)
have shown that an external inclined companion could induce Kozai–Lidov oscillations
of debris particles, resulting in disc asymmetries and eccentric structures (see also
Shannon et al., 2014; Kaib et al., 2018).

To summarise, secular planet–disc interactions could explain a wide range of debris
features: spirals, offsets and brightness asymmetries, warps, moths, and needles.
Consequently, resolved images of such structures can be connected to the underlying
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planetary system, revealing valuable information e.g. on the mass and orbital elements
– i.e., semimajor axis, eccentricity, and inclination – of the planet(s) sculpting the disc.

2.4.2 Resonant Structures

Resonant interactions are interactions that operate over timescales that are gener-
ally shorter than secular interactions and are constrained to narrow radial ranges
corresponding to planetesimal orbital periods comparable to that of the perturbing
planet, see Section 3.2.4.2 for details. While seemingly narrower in scope compared to
secular interactions, resonant planet–disc interactions have been shown to be apt in
reproducing several of the observed debris structures: clumps, disc edges and gaps.

For instance, as a planet migrates inward or outward, it may resonantly interact
with planetesimals which were otherwise not affected by its perturbations. As a result,
in the course of the evolution, the planet may capture planetesimals inside or outside
its orbit into resonant orbits which may then remain trapped, following the resonance
as the planet migrates. It has been shown that this process results in the azimuthal
redistribution of a swarm of planetesimals which get trapped into certain longitudes
depending on the nature of the resonance, giving rise to clumpy structures (e.g., Wyatt,
2003; Reche et al., 2008, and references therein) – similar to those observed in various
debris discs (Figure 2.5(g)). Given that capture into resonance is a probabilistic
event depending on the planet’s orbital parameters and migration rate (e.g. Murray &
Dermott, 1999), clumpy structures can thus constrain not only the masses and orbital
parameters of the underlying planets, but also their past migration history (similar to
the studies of Neptune and the Kuiper belt, e.g. Moro-Martín & Malhotra (2002)).

Resonant planet–debris interactions have also been invoked to explain the edges
and the cleared inner regions of planetesimal belts (e.g. Quillen & Faber, 2006; Chiang
et al., 2009; Mustill & Wyatt, 2012); similar to those in panels a and b of Figure 2.5.
This follows from the destabilising nature of mean-motion resonances that occur in
the proximity of a planet (Section 3.2.4.2): since such resonances have finite width
over which they operate, there is a region surrounding a planetary orbit in which
the resonances overlap, driving planetesimals orbiting within that region to chaotic
motion and their eventual ejection from the system over relatively short timescales
(Wisdom, 1980). As such, instabilities of this type may be used to relate the imaged
radial position of debris rings’/discs’ inner edges to potential planets residing nearby,
i.e., either interior or exterior to the debris ring, allowing one to constrain the planet’s
mass and semimajor axis. Additionally, since the planet also imposes some eccentricity
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on the surviving planetesimals, the sharpness of the edges of debris rings may encode
further information about the planetary orbit, including its eccentricity.

For single or multiple planets which are embedded within the debris discs, on the
other hand, such destabilising resonant interactions may lead to the formation of a wide
gap within the debris disc, i.e., surrounding the planet(s) (e.g. Shannon et al., 2016;
Schüppler et al., 2016; Lazzoni et al., 2018; Morrison & Kratter, 2018) – similar to
those observed in many systems (e.g. Figure 2.6). Depending on the number of planets
and their orbital parameters, the resultant gap could be devoid of debris particles
either completely or partially. Note, however, that while this is one of the most widely
considered mechanisms to explain the origin of observed radial gap structures, there
are many other alternative mechanisms proposed in the literature (Pearce & Wyatt,
2015; Yelverton & Kennedy, 2018; Zheng et al., 2017). I will describe these in more
detail in Chapter 5, where I present a novel pathway to sculpting such gaps based on
secular interactions between a planet and an exterior but massive debris disc.

Finally, it has also been shown that resonant interactions may lead to the formation
of very narrow gaps in debris rings, with a dearth of planetesimals at specific mean-
motion resonances (Tabeshian & Wiegert, 2016); somewhat akin to the Kirkwood gaps
in the asteroid belt. Nevertheless, such substructures have not been observed yet.

2.4.3 Structures due to Scattering

Apart from secular and resonant interactions, planetesimals may also be subject to
e.g. scattering events as a result of close encounters with planets (Section 3.2.4.3).
While scattered particles typically have short dynamical lifetimes (e.g. Levison &
Duncan, 1997), they may also form long-lived scattered discs in the outer parts of plan-
etary systems which could, in turn, continually replenish the population of exocomets
(Muñoz-Gutiérrez et al., 2015; Wyatt et al., 2017) – similar to the trans-Neptunian
objects in the Solar System. Depending on the architecture of the planetary system,
exocomets could then be scattered into the inner parts, where they may disintegrate
and release detectable amounts of dust and even gas. This mechanism has been invoked
to explain the presence of dust – or exozodi – in the inner regions of exoplanetary
systems, which are coming into increasingly sharper view (e.g., see review by Kral
et al., 2017), and even to deliver cometary material including volatiles on to inner
planets via impacts (Marino et al., 2018b).

To summarise, modelling of planet–debris disc interactions shows that the majority,
if not all, of observed debris structures (Section 2.3) can be readily explained. Thus,
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detailed modelling of debris disc morphologies provides an indirect way of probing
and revealing the presence of planets, giving insights both in terms of their orbital
elements, as well as their evolutionary history. Before moving on though, note that
this is particularly important as often dynamically inferred exoplanets belong to a
parameter space which remains inaccessible to existing instrumentation and so, if
the interpretation is correct, they help in expanding our understanding of planetary
populations. For instance, if the radial gaps observed within several debris discs are
indeed sculpted by in-situ planets that have cleared their orbits of debris, as is often
predicted, then their potential detection in the future will represent the first time
ever that ice giants at such large separations (i.e., where the gap is centred, ∼ 70 au)
are discovered. Conversely, if the planet(s) are already identified, modelling of debris
morphologies provide an avenue to better constrain their parameters and evolutionary
history.

2.5 Incidence of Exoplanets and Debris Discs around
the Same Stars

In the previous section I discussed how debris disc structures could reveal the presence
and orbital parameters of often suspected – but as-yet undetected – planets in exoplan-
etary systems. However, some natural questions that arise are the following: do stars
with debris discs also have planets? And, conversely, do stars with planets also have
debris discs? Perhaps, considering the general similarity of debris discs to our own solar
system’s asteroid and Kuiper belts (e.g., Currie et al., 2015; Booth et al., 2017; Matrà
et al., 2019), the incidence of planets in debris disc-hosting systems may be construed
as plausible. Nevertheless, hard evidence is required to support this hypothesis.

The aim of this section is to briefly summarise what we know about the incidence
of debris discs and exoplanets around the same stars, beginning with the exoplanetary
system population considered as a whole and then proceeding to exemplary individual
systems in which planets and debris coexist.

2.5.1 Correlation between Debris Discs and Planets on a Pop-
ulation Level

As already mentioned, debris discs are ubiquitous around main-sequence stars, with
recent surveys detecting infrared dust excess around ∼ 20 − 30% of nearby stars with
spectral classes of A–K (e.g., Eiroa et al., 2013; Thureau et al., 2014; Montesinos et al.,
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2016; Sibthorpe et al., 2018). On the other hand, it is also known that exoplanets are
highly abundant around solar-type stars, with detection rates ranging from ∼ 1% for
directly imaged super-Jupiters at ∼ 10 − 100 au separations (e.g., Bowler & Nielsen,
2018, and references therein) to more than ∼ 50% for Doppler and Kepler planets of
any mass at distances of ∼ 1 au or less (e.g., Mayor et al., 2011; Winn, 2018, and
references therein). These figures, however, are surely a lower limit of the prevalence
of debris disc and/or exoplanet hosting stars due to limited sensitivity of current
instrumentation. For instance, current sensitivity limits are not sufficient, e.g., (i)
for a debris disc comparable to that of our solar system’s Kuiper belt to be detected
around a neighbouring star (Wyatt, 2008; Vitense et al., 2012), and (ii) for planets
with ≳ 10MJ to be detected at separations larger than ∼ 10 au.

With the expansion of the exoplanetary and debris disc albums over the last decades,
several observational efforts have been made in order to identify correlations between
the two. Historically, the first to consider this problem was Greaves et al. (2004), who
searched for thermal dust emission in the sub-millimetre around eight stars known
back then to harbour giant planets orbiting within a few au. They found that there
is no evidence of a correlation between the presence of massive close-in planets and
detectable debris discs (with dust masses down to ∼ 10−8M⊙). A qualitatively similar
conclusion was arrived at by Moro-Martín et al. (2007), this time based on the analysis
of higher sensitivity mid-IR Spitzer observations of nine F, G, and K stars with one or
more known radial-velocity planets.

On the other hand, by analysing a sample of the nearest 60 G-type stars, Wyatt
et al. (2012) found a tentative evidence for higher incidence of detectable debris discs
in close-in but low-mass planetary systems. Indeed, Wyatt et al. (2012) showed that
debris discs are more common around stars which harbour planets of masses less than
that of Saturn. This dependence of the correlation between planets and debris discs on
planet mass was also confirmed by Marshall et al. (2014) based on PACS observations
of 37 nearby exoplanetary systems.

However, it was later shown by Moro-Martín et al. (2015) that this correlation
is not significant for stars harbouring either low-mass or high-mass planets at close
separations. Their study, though, was based on small number statistics (with N = 22),
making it difficult to ascertain whether the lack of correlation was a genuine physical
effect. In light of this, the problem was recently revisited by Yelverton et al. (2020),
who considered a much larger sample than Moro-Martín et al. (2015) (with N = 138)
and confirmed, at high significance, that there is indeed no correlation between close-in
planets and debris discs. In other words, the current data – with all of its limitations
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due to detection constraints – indicates that debris discs are not more prevalent in
systems with close-in planets than in systems that are selected without regard as to
whether they have planets at several au or not.

Finally, while the works mentioned thus far have focused on systems hosting close-in
planets that are typically discovered by radial velocity6, Meshkat et al. (2017) have more
recently considered the case of giant planets at ∼ 10 − 100 au separations, i.e., those
probed by direct imaging. Meshkat et al. (2017) found that debris disc-hosting systems
are more likely to have large-separation giant planets than in those where no debris
disc is detected, at the 88% confidence level. Indeed, they report a frequency of ∼ 6%
for the occurrence of distant giant planets around stars with debris discs, compared
to ∼ 1% for stars without discs. However, it is important to note that this tentative
correlation is caveated with small number statistics – let alone potential selection biases
(e.g., Bowler, 2016) – and larger samples are needed for a firm confirmation.

In conclusion, it is clear that the existence (or lack thereof) of a correlation between
debris discs and planets cannot be generally ruled out at present, and further studies
with improved detection limits of both planets and debris discs are required (see, e.g.,
Yelverton et al., 2020, for a detailed discussion).

2.5.2 Exemplary Systems with both Debris Discs and Planets

As discussed above, most of the presently known systems with debris discs do not have
known companion(s) of planetary mass (or sub-stellar mass, for that matter). To date,
however, there are few tens of planetary systems in which both planets and debris
discs are detected7. Such systems are of particular importance as e.g. they provide an
ideal test bed for our understanding of planet-disc interactions, and for advancing our
theoretical frameworks. Here, I describe three systems which I have chosen with the
intention of covering as wide a variety of planetary system architectures as possible.

• Planets interior to the disc: One of the most notable exoplanetary systems is β
Pic, one of the first systems ever to have its debris disc detected and resolved (e.g.,
Smith & Terrile, 1984; Matrà et al., 2019, and references therein). Located at 19.3 pc
(Crifo et al., 1997) and with an age of ∼ 23 Myr (Nielsen et al., 2016), the A-type star
β Pic is known to host an extremely broad debris disc extending from ∼ 20 au out
to beyond 1000 au. The disc is seen edge-on, and multi-wavelength observations have

6While it is true that most of the known exoplanets have been discovered by Kepler – i.e., using
the transit method – they are usually too far away for a debris disc to be detected in those systems.

7A catalogue of systems in which both planets and debris discs are detected can be found online at
http://svo2.cab.inta-csic.es/vocats/debris2/.
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revealed various structures and asymmetries, with the warp at ∼ 80 au being the most
notable (Burrows et al., 1995; Kalas & Jewitt, 1995; Heap et al., 2000; Apai et al., 2015;
Millar-Blanchaer et al., 2015). Remarkably, the warp was used to predict the presence
of a giant planet dubbed as β Pic-b interior to the disc (at ∼ 9 au, Mouillet et al.,
1997; Augereau et al., 2001), and such a planet was later discovered by direct imaging
(Lagrange et al., 2010). After the discovery of the planet, it was also demonstrated that
β Pic-b could potentially also explain the x-shaped morphology observed in scattered
light, in addition to the clumpy structure imaged in both CO and mid-IR (Nesvold &
Kuchner, 2015b). Nevertheless, there remains some uncertainty in the interpretation of
the structures in the β Pic disc. For instance, the orbital plane of β Pic-b is misaligned
by ∼ 4◦ with the inner disc tilt, when it is expected for the mutual inclination to be
closer to zero (e.g., Dawson et al., 2011; Millar-Blanchaer et al., 2015). Additionally,
an additional giant planet of mass ∼ 9MJ , dubbed as β Pic-c, was recently discovered
to be orbiting the star at ∼ 2 − 3 au (Lagrange et al., 2019). At the time of writing,
it is not clear whether the scenario of warp production by β Pic-b alone would hold
in light of this discovery. Finally, and relatedly, the location of the inner disc edge is
thought to be too far from the giant planets for them to be responsible for truncating
the disc at the observed location (e.g., Millar-Blanchaer et al., 2015). Clearly, then,
there is a great deal yet to learn about this system, both from future observations of
the system and tailored modelling of planet–disc interactions.

• Planets in between two belts of debris: Another notable example is the HR
8799 system, one of the most well-known directly imaged systems. HR 8799, a
∼ 50 − 70 Myr A-type star located at 41.3 pc (Gaia Collaboration, 2018), is known to
host four directly imaged planets between ∼ 15 and 70 au, each with masses between
∼ 5 and 10MJ (Marois et al., 2008, 2010). The system also hosts a narrow ring of
warm debris interior to the planets, as well as a cold planetesimal belt exterior to the
planets which extends from ∼ 150 to 400 au8 (e.g., Sadakane & Nishida, 1986; Su et al.,
2009; Hughes et al., 2011; Patience et al., 2011; Matthews et al., 2014b; Booth et al.,
2016). Given these observations, the HR 8799 is often considered as a scaled-up sibling
to our own solar system, at least its outer portion. It is also notable that, somewhat
akin to the solar system, the inner and outer edges of the warm debris belt in HR
8799 seem to coincide with the 4:1 and 2:1 mean motion resonances with the innermost
planet (Marois et al., 2010). Additionally, and relatedly, there are indications, based on
planet formation arguments (e.g., Dodson-Robinson et al., 2009), that the planets in

8I note that a halo of small grains has also been detected outside the planetesimal belt, extending
out to ∼ 1000 au (e.g., Su et al., 2009; Matthews et al., 2014b).
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HR 8799 could have undergone significant migration to their current location (Marois
et al., 2010). Hence, much effort has been put into understanding the HR 8799 system,
as it could also be useful for transforming our knowledge of solar system formation
and evolution. Currently, however, one of the outstanding open issues related to
the external HR 8799 disc is its inner edge location, which cannot be explained by
dynamical interactions with the known planets, and hence has led to the postulation
of an additional planet between the outermost known planet and the cold disc (Booth
et al., 2016; Read et al., 2018).

• A planet exterior to a circumbinary disc: Another system which stands out is HD
106906 AB, a ∼ 15 Myr spectroscopic binary consisting of two F-type main-sequence
stars with similar masses and projected separation of ∼ 0.5 au (Lagrange et al., 2016;
Pecaut & Mamajek, 2016). Unlike most other systems, HD 106906 AB contains a planet
which is external rather than internal to its debris disc. Indeed, the ∼ 11MJ planet,
dubbed as HD 106906-b, orbits the central binary with a semimajor axis of ∼ 850 au
(Bailey et al., 2014), farther away from the debris disc. The debris disc – which is seen
almost edge-on to the line of sight – extends between ∼ 50 and a few hundreds of au
and is characterised with an asymmetric dust distribution that is more extreme toward
the planet’s location on the sky (e.g., Kalas et al., 2015; Lagrange et al., 2016; Wu et al.,
2016). Interestingly, previous work has shown that the perturbations by HD 106906-b
could potentially explain the observed features of the disc (Jílková & Portegies Zwart,
2015; Nesvold et al., 2017; Rodet et al., 2017). This said, however, it is worthwhile to
note that the orbital parameters of HD 106906-b have since been observationally refined
(Nguyen et al., 2021), finding that its orbit is of lower eccentricity (∼ 0.5) and larger
mutual inclination with respect to the disc (∼ 40◦) than previously thought (∼ 0.7 and
∼ 10◦, respectively). The effects of this remain to be examined, but nevertheless it
is interesting from a dynamical and theoretical point of view that such systems are
already observed.

2.6 Masses of Debris Discs

As already mentioned briefly in Sections 1.2.4 and 2.2.2, obtaining a reliable estimate
for the total masses of debris discs – which is arguably one of their most fundamental
characteristics – is not a straightforward exercise. This is mainly due to the fact that
observations can only probe the mass of the emitting dust grains (i.e., ≲mm-sized),
and not that of the larger dust-producing planetesimals which dominate the disc mass
(Section 2.1). In this section, I first review existing methods for estimating the total
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masses of debris discs (Section 2.6.1), providing a rough estimate for their allowed
range, and then discuss their implications within the context of modelling debris
discs and planet–disc interactions (Section 2.6.2). This discussion will facilitate not
only in justifying my choices for the values of disc masses that I later consider when
examining interactions between planets and debris discs (Chapters 5 and 6), but also
in highlighting the importance of my research findings.

2.6.1 Methods of Estimation and Outcomes

One of the major problems in the field of debris discs is that their masses are uncertain
and can vary by orders of magnitude depending on the estimation technique used and
the assumptions that go into them. For a recent discussion of this subject see Krivov
& Wyatt (2021), from which the following is summarised.

There are two methods in the literature for measuring the masses of debris discs.
The first and standard method is by extrapolating the measured masses of the dust to
the unobservable large planetesimals. This procedure requires knowledge of the size
distribution of bodies in the disc, from the smallest dust grains of size Dmin to the
largest planetesimals of size Dmax, as well as parameters that govern the collisional
evolution (e.g. planetesimal strengths). Within this context then, the total disc mass
Md can be calculated via (Krivov & Wyatt, 2021):

Md = Mdust

(
Dmax

Dmm

)4−Θ

, (2.13)

where Mdust is the total mass of the dust grains with diameters from Dmin up to
Dmm, the latter corresponding to the sizes of particles that are probed by (sub-)mm
observations, i.e., Dmm ∼ 1 mm.

The most basic assumption in the literature is to adopt the classical size distribution
of Dohnanyi (1969) valid for a constant strength of bodies, i.e., n(D) ∝ D−Θ with
Θ = 3.5 (Equation 2.11), which is a good approximation to more detailed models (e.g.
see Figure 2.4; as well as Krivov & Wyatt (2021) and references therein). Equation
(2.13) then implies that Md ∝ D1/2

max: that is, the total mass of a debris disc containing
up to, say, ∼ 100 km-sized bodies will be larger than the measured dust masses
by at least 4 orders of magnitude. As a rough estimate, taking the nominal values
of Mdust ∼ 10−3 − 10−1M⊕ from Figure 1.3, one then obtains Md ∼ 10 − 1000M⊕.
Exemplary values of disc masses resulting from this extrapolation method, as applied
to a sample of 20 debris discs observed by ALMA, is shown in Figure 2.8. Note that
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Figure 2.8. The estimated values of the total masses of a sample of 20 debris discs
observed by ALMA (taken from Krivov & Wyatt, 2021). The disc masses are calculated by
extrapolating the masses of observed dust grains up to the unobservable large planetesimals,
assuming ideal, Dohnanyi collisional cascade: that is, using Equation (2.13) with Θ = 3.5,
Dmin = 1 mm and an assumed value of Dmax = 200 km. The different coloured areas
correspond to the allowed (green), forbidden (red), and intermediary (yellow) ranges; see the
text (Section 2.6.1) for details.

this ‘back of envelope’ calculation yields values similar to those obtained with more
detailed collisional cascade models (Krivov & Wyatt, 2021).

It is, however, worth noting that this extrapolation procedure yields relatively
large values for the total masses of some bright debris discs, i.e. on the order of
∼ 103 − 104M⊕ (see e.g. Figure 2.8, as well as Table 1 in Krivov & Wyatt, 2021). Such
values are unrealistic and problematic (highlighted for reference in red in Figure 2.8),
as they clearly exceed the masses of solids available in the protoplanetary disc phase
(highlighted in yellow in Figure 2.8) – a problem referred to as the “debris disc mass
problem” in the literature (Krivov et al., 2018; Krivov & Wyatt, 2021). As a solution
to this conundrum, it has been suggested that uncertainties and various assumptions
entering in this extrapolation procedure would need to be revisited. For instance,
Krivov & Wyatt (2021) conclude that perhaps the easiest solution is that the largest
planetesimals in debris discs are on the order of ∼ km – rather than ∼ 100 km. Note,
however, that such planetesimals would be smaller than the largest objects observed in

54



2.6 Masses of Debris Discs

the Kuiper belt (e.g., Pluto’s size is ∼ 1000 km, see also Fraser et al., 2014) or those
produced in theoretical planetesimal formation models (e.g. Simon et al., 2016).

The second method for estimating the total mass of a given debris disc is by
measuring its mass-loss rate |Ṁd| at its current age t, and interpreting that within the
context of collisional cascade models. This procedure allows one to recover the initial
total disc mass, Md(0), that can collisionally sustain the observed amounts of dust
in a given debris disc (recall that dust grains are short-lived compared to the stellar
age; Section 2.2). This can be understood by considering the mass decay law given by
Equation (2.12), which, upon differentiation, reads as:

Md(0) = | ˙Md(t)|τ0(1 + t/τ0)2, (2.14)

where we recall that τ0 is the collisional lifetime of the largest planetesimals at the
initial epoch. Then, using the fact that the collisional cascade is fed by planetesimals
of a given size Dc for which the collisional lifetime is equal to the age of the system
(e.g. Wyatt & Dent, 2002; Krivov & Wyatt, 2021), i.e., t = τ0, one arrives at:

Md(0) = 4|Ṁd|t. (2.15)

Note that it is possible for the disc to contain a population of large planetesimals with
D > Dc that do not contribute to the collisional cascade within the age of the system:
thus, Equation (2.15) represents the lower limit on the initial total disc mass.

The rate |Ṁd| entering in Equation (2.15) can be inferred from observations of
dust in two distinct ways. The first relies on linking physical properties of the disc
(which are described below) to the observed mass of small grains and their collision
rate, assuming an idealized collisional cascade (Dohnanyi, 1969). Matrà et al. (2017)
showed that this allows one to analytically express the mass-loss rate |Ṁd| as a function
of the disc’s fractional luminosity, radial location, and radial width – which can be well
characterised through SED fitting and high-resolution imaging – as well as the stellar
mass and luminosity; see their equation (21). Alternatively, |Ṁd| can be inferred from
the debris disc’s vertical thickness at sub-mm wavelengths (Daley et al., 2019; Matrà
et al., 2019), if it happens to be nearly edge-on to the line of sight. This is because
the disc’s vertical thickness at such wavelengths is an indicator of the inclination
distribution of the large dust-producing planetesimals which, through equipartition of
energy (assuming equilibrium), can be related to the orbital eccentricities and thus the
relative velocities of colliding planetesimals. Based on this, it is then straightforward
to compute |Ṁd| through standard formulae for collisional rates (e.g. Wyatt, 2008).
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Application of this method typically yields values of ∼ 10M⊕ for the minimum total
mass of a debris disc (e.g. Wyatt & Dent, 2002; Daley et al., 2019; Matrà et al., 2019;
Krivov & Wyatt, 2021).

On the other end of the spectrum, however, a question that naturally arises is: how
massive is a debris disc allowed to be? To answer this question, one could consider
the total mass of dust grains that were present in the protoplanetary disc phase, from
which the planetesimals constituting a debris disc – and potentially planets – formed.
For simplicity, assuming a Sun-like star with a typical protoplanetary disc mass of
0.1M⊙ and dust-to-gas ratio of 100 : 1 (e.g. Williams & Cieza, 2011), the maximum
possible mass of a debris disc would be 0.001M⊙, or 300M⊕ – assuming planetesimals
were neither ejected from the system nor agglomerated into planets. Obviously, this
estimate can also differ by a factor of two or so, depending on the stellar mass (as more
massive stars are known to host more massive protoplanetary discs, see Figure 5 in
Williams & Cieza, 2011) and the assumed dust-to-gas ratio (which, for instance, in the
Solar System could be 60 : 1, see Lodders, 2003). Given this, values on the order of
∼ 102 − 103M⊕ might be a good estimate for the maximum masses of debris discs –
this range is highlighted in yellow in Figure 2.8.

To summarise, estimating the total masses of debris discs based on observations
of their constituent dust is a difficult and uncertain task. Depending on the adopted
method and the assumptions that go into it, debris discs could be as massive as
∼ 10M⊕, if not ∼ 104M⊕ (see also Wyatt & Dent, 2002; Krivov et al., 2018; Krivov
& Wyatt, 2021). The commonly accepted – or perhaps, plausible – maximum masses
of disc masses, however, is ≲ 100M⊕; which is also consistent with the theoretical
predictions of planetesimal formation models. For instance, it has been recently shown
by Carrera et al. (2017) that starting with an 0.1M⊙ protoplanetary disc around a
Sun-like star, a total of ∼ 80 − 150M⊕ of planetesimals can robustly form through
streaming instability, of which ∼ 60 − 130M⊕ populate the region beyond 100 au from
the star.

2.6.2 An Unexplored Alternative: Debris Disc Structures

A potential alternative method for accessing the total masses of debris discs is through
studying processes that depend only on the total disc mass, but not the finer details
which are often poorly constrained, such as the size distribution of planetesimals and
their maximum sizes. To this end, modelling of gravitational interactions between
planets and massive debris discs, and examining the observational consequences in
terms of the spatial structure of debris discs represents the best example. Such an
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approach would render the finer details about the physical properties of dust grains
and planetesimals irrelevant, allowing one to indirectly infer the dynamical mass of the
debris disc; of course, provided that the predicted debris disc structures reproduce the
observations. Nevertheless, this approach has not been well appreciated in the debris
disc literature, which is what I discuss next.

Indeed, motivated by the fact that debris discs could be relatively massive (∼
10 − 100M⊕), the need to account for their gravitational effects when modelling planet–
disc interactions has been previously cited in the literature – though rarely considered
in detail. Indeed, debris discs are often treated as a collection of massless particles
subject only to the gravity of external perturbers (e.g. planets and stellar companions);
see Section 2.4 and references therein. A literature review on the subject reveals
two approaches in handling the effects of debris disc gravity: (i) they are either not
included but acknowledged as a limitation (Wyatt, 2005b; Pearce et al., 2021); or (ii)
when accounted for, it is not done fully self-consistently, in the sense that only the
back-reaction of the disc on the planet is modelled, but not the gravitational effects of
the disc on itself (Beust et al., 2014; Pearce & Wyatt, 2015).

To the best of my knowledge, the only exceptions to this are the studies presented
by Nesvold et al. (2016), Zheng et al. (2017), and Jalali & Tremaine (2012). In Nesvold
et al. (2016), the authors numerically studied the evolution of massive debris discs
being perturbed by an inclined exterior perturber, accounting for the full gravitational
potential due to the disc. They found that the inclusion of the disc self-gravity can
suppress the Kozai-Lidov oscillations induced by the external body (somewhat akin
to massive protoplanetary discs in binary star systems; e.g., Batygin et al. (2011)).
On the other hand, with the help of numerical simulations, the authors in Zheng
et al. (2017) considered the evolution of a massive gaseous disc (i.e., a transitional
disc) in the presence of a single planet embedded within. They showed that, as the
gaseous disc is depleted, its waning gravitational potential could carve a gap around
the planetary orbit via sweeping secular resonances. They found that the resulting
gap in the gas-poor ‘debris’ disc is wider than that anticipated otherwise based on
considerations of overlapping first-order MMRs in massless discs. Last but not least,
Jalali & Tremaine (2012) analytically studied the evolution of debris discs influenced
only by their self-gravity (and, surely, the gravity of the host star), in the absence
of external perturbers. They showed that self-gravitating debris discs can support
large-scale ‘slow’ (m = 1, 2) modes, which, if and when excited (e.g., by stellar flybys),
could reproduce many of the observed debris discs features – challenging the common
practice of ascribing observed features to the presence of yet-unseen planets. Before
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moving on, it is worth noting that somewhat intriguingly, the oft-neglected role of
debris disc (self-)gravity pertains only to extra-solar settings: indeed, within the context
of the solar system, the gravitational role of the asteroid and Kuiper belts both on
their own dynamical evolution and the planets in the solar system has been studied
extensively (e.g. Heppenheimer, 1980; Ward, 1981; Ward & Hahn, 1998a,b; Nagasawa
& Ida, 2000; Nagasawa et al., 2001; Hahn, 2003, 2007, 2008; Sefilian & Touma, 2019).

One of the hurdles in accounting for the gravitational effects of debris discs (or
generally, astrophysical discs, for that matter) has been the computational and the-
oretical challenges involved. From a computational point of view, and in spite of
remarkable advances in the domain within the last decades, traditional direct N -body
simulations – such as MERCURY (Chambers, 1999) and REBOUND (Rein & Liu, 2012) –
remain very expensive and inefficient in terms of CPU time to allow for an extensive
exploration of the role of disc self-gravity in planet–disc interactions. This is mainly
because conventional N -body codes both require O(N2) computations per time step
and converge slowly especially when orbits have a close approach or intersect (leading
to a discontinuity in the force calculation). From a theoretical point of view, on the
other hand, most existing methods for computing the gravitational potential of discs
remain somewhat specialised and limited in scope for practical purposes. This is mainly
because such analytical calculations hold inherent assumptions about the disc struc-
ture and its time variability: for instance, an axisymmetric power-law surface density
distribution that does not change in time due to, say, external eccentric perturbers (e.g.
Heppenheimer, 1980; Ward, 1981; Batygin et al., 2011), or non-axisymmetric surface
density distribution but with pre-defined ansatz assumptions on the eccentricity and
apsidal angle distributions of the constituent disc particles (e.g. Silsbee & Rafikov,
2015a; Davydenkova & Rafikov, 2018; Sefilian & Touma, 2019; Teyssandier & Lai, 2019,
Davydenkova & Rafikov, in preparation.). Such limitations can be easily alleviated
by treating the disc as composed of N ≫ 1 massive rings (or wires) with prescribed
spacing – justified by the constancy of the semimajor axis in the secular regime, see e.g.
Section 3.2.4.1 – interacting gravitationally with each other. However, this requires
the use of softened forms of gravity – whereby the Newtonian point-mass is spatially
smoothed by the introduction of some form of softening parameter (e.g. Tremaine,
2001; Touma, 2002; Touma et al., 2009; Hahn, 2003; Batygin, 2012; Teyssandier &
Ogilvie, 2016) – and a physical justification for a specific form of softening often remain
unclear, making its introduction somewhat arbitrary or ad hoc.

These difficulties, coupled with the general consensus that the gravitational effects
of discs can be ignored as long as their masses are less than that of external perturbers
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(e.g. Wyatt, 2005b; Beust et al., 2014; Pearce & Wyatt, 2014) – which, in my opinion,
has not been rigorously addressed – seem to have left the problem untouched, without
a detailed investigation. This is, in essence, where my research comes in. Indeed, in
Chapters 4 – 6, I will first investigate different methods of computing the gravitational
potential of discs, and then employ my findings to study the gravitational role of
debris discs in planet–disc interactions, and demonstrate how observed structures –
specifically, radial gaps such as those in Figure 2.6 – could be used to e.g. indirectly
measure the total masses of debris discs. Before presenting my work, though, a brief
overview of the basics of celestial mechanics is presented in the upcoming chapter.
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Chapter 3

Basics of Celestial Mechanics

This dissertation is mainly concerned with the orbital evolution of planetary systems
harbouring both planets and many smaller debris particles. This is a generally complex
problem involving coupled gravitational interactions between N bodies, each with its
mass mi and position vector ri (i = 1..N), defined relative to some inertial reference
frame with origin O. Indeed, the equation of motion describing the evolution of each
body can be written as:

d2ri
dt2

= −G
j=N∑

j=1,j ̸=i
mj

ri − rj
|ri − rj|3

, (3.1)

where G is the gravitational constant.
Generally speaking, such N -body systems are not integrable and do not admit

exact analytic solutions; hence, are commonly investigated using N -body simulations.
Nevertheless, in cases where one of the bodies (e.g. the star) is much more massive than
the other bodies (e.g. planets and debris particles) – as is the case in many astrophysical
problems – the problem can be probed analytically using perturbation theories. The
starting point of such perturbation theories is the well-known integrable “Keplerian
problem”, which concerns the motion of two bodies under their mutual gravitational
attraction. The solution of the two-body problem allows to model perturbations
arising from additional bodies as small deviation from the Keplerian problem, yielding
approximate analytic solutions to N -body systems.

In this Chapter I provide a brief overview of the basics of celestial mechanics,
starting from the Keplerian problem and then moving on to perturbation theories
relevant for the work in this dissertation. To this end, I consider particles to be affected
by Newtonian gravity only, neglecting effects that could arise due to general relativity,
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tides, and non-sphericity of particles. For a complete theoretical treatment of the
subject, the reader is referred to the treatise by Plummer (1918) and the textbook
by Murray & Dermott (1999), from which the following is summarised. The reader
well familiar with the subject may safely skip to the next Chapter without any loss of
continuity.

3.1 The Two-Body Keplerian Problem

The two-body Keplerian problem serves as the starting point in developing perturbations
theories. Here I outline the main results of the Kepler problem starting with the planar
case, and then moving on to the spatial case.

3.1.1 The Planar Case

Consider a system composed of two point-mass particles. Without loss of generality,
let us assume that m1 > m2, so that m1 and m2 are referred to as the central and
secondary bodies, respectively. In this case, and after some straightforward algebra,
the equations of motion given by Equation (3.1) can be reduced to:

µ
d2r
dt2

= −Gµ(m1 +m2)
r3 r, (3.2)

where the vector r represents the relative position of the two bodies, i.e., r = r2 − r1,
in the frame centred at an arbitrary point O, and µ = m1m2/(m1 +m2) is the reduced
mass of the system. It is then straightforward to show that the vectorial quantity h,
which represents the total orbital angular momentum of the system, h ≡ µr × ṙ, is a
constant of the motion. This is a restatement of the fact that the gravitational force
is radial. Additionally, since h · r = 0, it follows that the motion of the two bodies
relative to one another is restricted to a plane defined by the vectors r and v = ṙ,
whose normal is parallel to h. Mathematically, this essentially reduces the two-body
problem to the problem of a single body of mass µ and position vector r subjected to
an external force given by the right hand side of Equation (3.2).

The solution of Equation (3.2) is well known to describe a conic section: i.e., an
ellipse, parabola, or hyperbola. Throughout this dissertation, we are mainly interested
in the elliptical solution, as it represents a bound periodic trajectory. In this case, and
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Figure 3.1. An ellipse representing the Keplerian orbit of a particle (m2, small circle)
around the central body (m1, large circle). The primary is located at the primary focus of
the ellipse, while the secondary focus is empty. This diagram also illustrates the geometrical
meanings of the various orbital elements defined in the text – see Section 3.1.1 for details.

in terms of polar coordinates (r, θ), the solution of Equation (3.2) reads as:

r = a(1 − e2)
1 + e cos f , (3.3)

where f ≡ θ − ϖ. Equation (3.3) describes the elliptical Keplerian orbit of the two
bodies relative to each other, and is characterised with its semimajor axis a, eccentricity
e, longitude of pericentre ϖ, and true anomaly f – the geometrical meanings of which
are provided next and illustrated in Figure 3.1.

The shape and size of a conic section describing the secondary’s orbit are determined
by two parameters: the orbital eccentricity e and semi-major axis a. The eccentricity is
a measure of the departure of the conic section’s shape from a circle: (i) circular orbits
have e = 0; (ii) elliptical orbits have 0 < e < 1, such that the more elongated the ellipse
is, the higher the value of e; (iii) parabolic orbits have e = 1; while (iv) hyperbolic
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orbits have e > 1. In this thesis, I will not deal with unbounded (parabolic and
hyperbolic) orbits, and as such I focus, hereafter, on the elliptical case. The semi-major
axis represents half the length of the major axis of the conic section, which is equivalent
to the average of the pericentre and apocentre distances, rp and ra, respectively. Here,
the pericentre and apocentre distances are defined as the distance between the primary
focus of the elliptical orbit – occupied by the central body about which the secondary
orbits (while the second focus remains empty) – and the point of closest and furthest
approach to it, respectively. Mathematically, these can be quantified as rp = a(1 − e)
and ra = a(1 + e), respectively. The orientation of the orbit, on the other hand, is
defined by the angle ϖ, known as the longitude of pericentre. This angle, defined
such that 0 ≤ ϖ ≤ 360◦, is a measure of the angle between the line connecting the
primary focus with the pericentre position and an arbitrarily chosen reference direction.
Finally, the position of the particle along its orbit is determined by the true anomaly,
f . This measures the instantaneous angle between the direction of the pericentre and
the particle’s position along its orbit around the central body. It is always in the range
0 ≤ f ≤ 360◦, so that f = 0◦ at the pericentre and f = 180◦ at the apocentre.

The knowledge of this set of orbital elements – i.e., a, e, ϖ, and f – completely
defines the instantaneous position r (Equation 3.3) and speed v of the orbiting body
along its elliptical trajectory, where the expression of the latter is given by:

v2 = G(m1 +m2)
(

2
r

− 1
a

)
. (3.4)

Indeed, as the particle orbits the star, its position and velocity along the elliptical
trajectory change in time in such a way that a, e, and ϖ remain constant (surely,
assuming no external perturbations), whilst f advances in time. Note, however, that
the true anomaly does not increase with time at a uniform rate: it evolves faster near
the pericentre than near the apocentre, where particles spend most of their time along
their orbits. This can be also seen by noting that the instantaneous speeds at the
pericentre and apocentre are given by:

vp = na

√
1 + e

1 − e
and va = na

√
1 − e

1 + e
, (3.5)

respectively, where n is the mean motion given by Equation (3.7).
For this reason, it is customary in celestial mechanics to replace the time variable

(or f) by a dimensionless variable M , known as the mean anomaly. This variable –
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and unlike the true anomaly – advances linearly in time such that

M = n(t− t0). (3.6)

Here, n is the mean motion or orbital frequency of the particle orbit given by

n =
√
G(m1 +m2)

a3 , (3.7)

so that T = 2π/n is the orbital period, and t0 is the time of pericentre passage. Note
that the mean motion does not depend on the shape of the trajectory, i.e., eccentricity,
but only on its size.

While the mean anomaly has no simple geometrical interpretation, it is related
to another geometrical angle, known as the eccentric anomaly, which is customarily
used in celestial mechanics. The eccentric anomaly E is the angle subtended at the
centre of the ellipse by the projection of the body’s instantaneous position on the circle
with radius a and tangent to the ellipse at its extremities. Mathematically, the mean
and eccentric anomalies are related through a transcendental equation known as the
‘Kepler equation’:

M = E − e sinE. (3.8)

Eccentric and true anomalies, on the other hand, are related by the following formulae:

tan f2 =
√

1 + e

1 − e
tan E2 , (3.9)

cos f = cosE − e

1 − e cosE , (3.10)

sin f =
√

1 − e2 sinE
1 − e cosE , (3.11)

which can be obtained using elementary geometrical relationships (see Figure 3.1).
Note that for circular orbits, the three anomalies become identical, i.e., M = E = f .

With these definitions at hand, one can also express the instantaneous position of
the particle as follows:

r = a(1 − e cosE). (3.12)

The definitions of M , E, and f and their relationships (i.e., Equations 3.8–3.11) will
prove useful particularly when a certain dynamical quantity needs to be orbit-averaged,
i.e., averaged over the orbital period of a body, as done primarily in Chapter 4.
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Before we move on to discuss orbits in three dimensional space, it is worthwhile to
recall that thus far we have considered the orbit of one particle relative to the other.
This is because mathematically, the choice of the central body is arbitrary. However, it
is equally valid to define the orbits of both particles relative to the system’s centre of
mass located at

rCM = m1r1 +m2r2

m1 +m2
. (3.13)

In this case, in the frame whose origin is at rCM, also known as the barycentric frame,
it is trivial to show that both the central and secondary bodies orbit on elliptical
trajectories around their common centre of mass with eccentricities e1 = e2 = e,
longitudes of pericentre ϖ2 = ϖ1 + 180◦, and semimajor axes given by

a1 = m2

m1 +m2
a and a2 = m1

m1 +m2
a. (3.14)

Note that since a1/a2 ∝ m2/m1, when the mass ratio tends to zero – as would happen
naturally say e.g., for a planetesimal and a star – the star’s orbit shrinks to the
barycentre position, and the orbit of the small body relative to the star becomes
equivalent to the small body’s orbit in the inertial reference frame.

3.1.2 The Spatial Case

Thus far, I described how the orbital elements a, e, ϖ, and f uniquely characterise
the orbit of a particle in two dimensional space. In general, however, the orbital plane
of an object may also be inclined with respect to the reference plane, intersecting it
in two points known as the nodes of the orbit. Therefore, two additional angles are
required to uniquely characterise the orbit of a particle in three dimensional space.

The first of these is the angle I, known as the orbital inclination, which is a measure
of the angle between the reference plane and the orbital plane. This angle is defined
such that one always has 0 ≤ I ≤ 180◦, with orbits of I < 90◦ referred to as prograde,
whilst those with I ≥ 90◦ referred to as retrograde. Next is the angle Ω, known as
the longitude of ascending node, which is a measure of the angle between a given
reference direction and one of the nodes of the orbit, known as the ascending node.
The latter is where the particle crosses the reference plane from negative to positive
in the orthogonal direction (i.e. z). The longitude of ascending node is always in the
range 0 ≤ Ω ≤ 360◦. Finally, when considering orbits in three dimensional space, it is
also customary to write the longitude of pericentre as the sum of two ‘dog-leg’ style
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3.1 The Two-Body Keplerian Problem

Figure 3.2. Visualisation of the Keplerian orbit of a particle about the central body in three
dimensional space. The reference frame (X,Y, Z) is centred at the orbit’s focus, occupied by
the central body. The definitions of the various angles highlighted in this diagram – namely,
I, Ω, and ω – are given in the text; see Section 3.1.2.

angles,
ϖ = ω + Ω, (3.15)

which lie in different planes. Here, the angle ω is known as the argument of pericentre,
which is a measure of the angle between the line connecting the focus of the orbit to its
ascending node and the pericentre direction in the orbital plane. This angle is always
in the range 0 ≤ ω ≤ 360◦. These three angles – namely, I, Ω, and ω – are illustrated
in Figure 3.2.

The set of the six orbital elements a, e, ϖ, I, Ω, and f completely define the
position and velocity of the orbiting body. Indeed, it is trivial to show that there
is one-to-one correspondence between the components of the position and velocity
vectors and the orbital elements. For instance, in an arbitrary reference frame (X, Y, Z)
centred on the central body (or the focus), with X being the reference direction and
(X, Y ) the reference plane (as represented in Figure 3.2), the position vector r of the
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orbiting body reads as:

r = r


cos Ω cos(ω + f) − sin Ω sin(ω + f) cos I
sin Ω cos(ω + f) + cos Ω sin(ω + f) cos I

sin(ω + f) sin I

 . (3.16)

A similar expression can be derived for the velocity vector v; see Murray & Dermott
(1999). Finally, it is worthwhile to note that when the orbital plane coincides with the
reference plane, i.e., I = 0, the ascending nodes are no longer defined, and thus the
angles ω and Ω too. However, their sum, i.e., ϖ = ω + Ω, remains well defined and all
expressions, e.g., Equation (3.16), become naturally dependent on ϖ only, and not ω
and Ω separately.

3.2 Dynamical Theory: beyond Keplerian Orbits

Thus far, we only considered the motion of two bodies and their Keplerian motion
around each other. Throughout this thesis, however, we are mainly concerned with
systems containing multiple bodies – namely, a planet and a debris disc composed
of N ≫ 1 planetesimals in orbit around a central star. Unfortunately, however, the
general N -body problem – unlike the Kepler problem – is not integrable and has no
simple analytical solution. As such, one of the main efforts of celestial mechanics in
the last centuries has been the development of perturbation theories. In essence, such
theories treat additional perturbations as small deviations from the integrable Kepler
problem, allowing one to derive approximate solutions describing the orbital evolution
of the N bodies involved. These deviations can be calculated by making use of the
so-called disturbing function, which is the subject of this section. Within this context,
the set of the six orbital elements defined in Chapter 3.1 still define the instantaneous
position and velocity vectors of the interacting bodies, but they are now thought of
as osculating elements; in the sense that, they define the orbit of a perturbed body if
the perturbing force were to disappear at that instant of time. Below, I review the
basic concepts of dynamical theory beyond Keplerian orbits, focusing on the definition,
analysis, and use of the disturbing function.

3.2.1 The Disturbing Function

For heuristic purposes, let us consider the motion of two point-mass bodies m1 and m2

orbiting around a central star of mass Mc. Let the position vectors of the two bodies
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relative to the central star be r1 and r2, respectively. It is then trivial to demonstrate
that the equations of motion can be written as (see Equation 3.1):

d2r1

dt2
+G(Mc +m1)

r1

r3
1

= Gm2

(
r2 − r1

|r2 − r1|3
− r2

r3
2

)
, (3.17)

d2r2

dt2
+G(Mc +m2)

r2

r3
2

= Gm1

(
r1 − r2

|r1 − r2|3
− r1

r3
1

)
. (3.18)

When either of the two bodies is absent, the right hand sides of Equations (3.17) and
(3.18) vanish, reducing the equations of motion to that of the Kepler problem (Equation
3.2). Thus, the right hand sides in the these equations represent the accelerations
of m1 and m2 arising due to their mutual gravitational interaction. These relative
accelerations can be obtained from the gradients of a perturbing potential known as
the disturbing function. This can be seen by noting that the equations of motion can
be written as:

d2r1

dt2
= ∇1(U1 +R1) and d2r2

dt2
= ∇2(U2 +R2), (3.19)

where
U1 = G(Mc +m1)

r1
and U2 = G(Mc +m2)

r2
(3.20)

are the standard two-body (or Kepler) part of the total potential, and

R1 = Gm2

|r2 − r1|
−Gm2

r1 · r2

r3
2

and R2 = Gm1

|r1 − r2|
−Gm1

r1 · r2

r3
1

(3.21)

are the disturbing functions representing the perturbations arising due to the other
secondary object. In Equations (3.21), the first terms are known as the direct terms,
while the second terms are known as the indirect terms. The latter arise due to the
choice of the coordinate system: if the origin was chosen to be the system’s centre of
mass, then the indirect terms would not have appeared. This is the most straightforward
definition of the disturbing function.

Finally, it is worthwhile to note that the definition of the disturbing function is
general, and not constrained to the three-body problem considered here. In other words,
it can be extended to account for any number of bodies, or even for perturbations
resulting from other sources and not just from the gravity of point-masses e.g. the
oblateness of the central mass. In this dissertation, we shall use the disturbing function
to describe the perturbations arising due to planets, in addition to the gravity of
radially extended massive debris discs.
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3.2.2 Expanding the Disturbing Function

By definition, the disturbing function holds all the information related to the strength
and effects of any perturbations beyond the Kepler problem. In order to analyse the
resulting perturbations analytically, however, it is more useful to express the disturbing
function in terms of the standard orbital elements (i.e., a, e, I, ϖ, Ω, and f) rather
than the position vectors of the interacting bodies. As such, much effort has been
put towards this end, resulting in the development of a multitude of analytical and
computer-assisted methods of expanding the disturbing function (e.g. Plummer, 1918;
Brouwer & Clemence, 1961; Murray & Dermott, 1999; Laskar & Boué, 2010; Mardling,
2013). Skipping over the details, the end result of such expansion techniques is that
the disturbing function takes on the following very general form:

R1,2 = Gm2,1
∑

j1,...,j6

S(a1, a2, e1, e2, I1, I2) cosφ. (3.22)

Here, the quantity φ is a permitted linear combination of the mean anomalies, longitudes
of pericentre, and longitudes of ascending node given by:

φ = j1M1 + j2M2 + j3ϖ1 + j4ϖ2 + j5Ω1 + j6Ω2, (3.23)

and jn (with n = 1, ..., 6) are integer numbers which obey the d’Alembert relation,

6∑
n=1

jn = 0, (3.24)

stemming from the rotational invariance of the disturbing function. Thus in essence,
the disturbing function is written as the sum over an infinite number of terms involving
the standard orbital elements. For completeness, I now briefly discuss the two classical
methods of expanding the disturbing function, each coming with its own strengths and
weaknesses.

3.2.2.1 Laplace-Lagrange Expansion

One of the classical ways of expanding the disturbing function is the so-called Laplace-
Lagrange theory. Historically, this method was first developed by Laplace and Lagrange
around the end of the 18th century to study the orbital evolution of the Solar System
planets. As such, this method relies on the smallness of the interacting bodies’
eccentricities and inclinations – i.e., e and I ≈ 0 – but holds for all semimajor axis
ratios. Without going into the details, the general outcome of this method is that the
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disturbing function now becomes expressed as an infinite series in powers of e and I,
with coefficients that encapsulate the ratio of the semimajor axes via the so-called
Laplace coefficients (their mathematical definition is given by Equation 4.2). This
is the approach adopted in this dissertation to e.g. analyse the perturbations of a
planetesimal due to a planet. This said, however, it must be noted that the full
Laplace-Lagrange expansion of the disturbing function no longer converges for values of
eccentricities larger than e ≳ 0.66: this is known as the Sundman criterion, which arises
due to the divergence of the series solution of Kepler’s equation (Equation 3.8) beyond
this eccentricity value. Finally, while the Laplace-Lagrange expansion does not place
any restrictions on the semimajor axis ratios, it becomes unreliable when there is any
orbital crossing between the interacting bodies. This is because when two orbits cross
at some longitude, r1 = r2 and the disturbing functions of either body – or equivalently,
the Laplace coefficients – diverge; see Equation (3.21). This well-known problem is
often alleviated in the literature by softening the point-mass Newtonian potential.
In Chapter 4, I apply this expansion method to arbitrarily softened potentials and
derive the disturbing function due to a massive disc to second order in eccentricities,
applicable to both particulate or gaseous discs.

3.2.2.2 Legendre Expansion

The second method for expanding the disturbing function is that based on Legendre
polynomials. This approach makes use of a Legendre expansion of the disturbing
function in the ratio of semimajor axis, a1/a2 ≪ 1, with no assumptions about the
eccentricities and inclinations; which is in contrast with the Laplace-Lagrange expansion.
As a result, within this framework, the disturbing function is written as an infinite
series in powers of the ratio a1/a2, with coefficients that include the eccentricities and
inclinations via the so-called Hansen coefficients. While this method has a better radius
of convergence in terms of e and I when compared to the Laplace-Lagrange expansion,
it converges slowly with respect to a1/a2. Consequently, the Legendre expansion is
better suited for describing the dynamical evolution of hierarchical systems where there
interacting bodies are well separated, but not for the purposes of this dissertation
concerning the dynamics of adjacent massive planetesimals constituting a debris disc.

Needless to say, both the Laplace-Lagrange and Legendre expansions reproduce
the very same expressions of the disturbing function upon Taylor expanding the
corresponding expressions about the unrestricted orbital parameters; that is, a1/a2 in
the Laplace-Lagrange expansion, and e and I in the Legendre expansion.
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3.2.3 Lagrange’s Planetary Equations

The expansion of the disturbing function as given by Equation (3.22) encapsulates
the dependence of the perturbing potential on the orbital elements. This can then be
employed to determine how the orbital elements of the perturbed body vary in time,
which is what one is often interested in. To this end, one can either use a Hamiltonian
approach1 or equivalently, and as is often done in celestial mechanics, Lagrange’s
planetary equations. The complete set of Lagrange’s planetary equations is given by2:

da

dt
= 2

na

∂R

∂λ
, (3.25)

de

dt
= −

√
1 − e2

na2e

[
∂R

∂ϖ
+ (1 −

√
1 − e2)∂R

∂λ

]
, (3.26)

dϖ

dt
=

√
1 − e2

na2e

∂R

∂e
+ tan(I/2)
na2

√
1 − e2

∂R

∂I
, (3.27)

dI

dt
= − tan(I/2)

na2
√

1 − e2

(
∂R

∂λ
+ ∂R

∂ϖ

)
− 1
na2

√
1 − e2 sin(I)

∂R

∂Ω , (3.28)

dΩ
dt

= 1
na2

√
1 − e2 sin(I)

∂R

∂I
, (3.29)

dλ

dt
= n− 2

na

∂R

∂a
+

√
1 − e2(1 −

√
1 − e2)

na2e

∂R

∂e
+ tan(I/2)
na2

√
1 − e2

∂R

∂I
. (3.30)

In Equations (3.25) – (3.30), λ = M + ϖ is known as the mean longitude and is
customarily introduced to ensure that the equations are well-behaved when I = 0
and/or e = 0 (akin to the definition of ϖ). Historically, these equations were first
developed for the restricted three-body problem — i.e., Mc ≫ m1 ≫ m2 so that the
orbit of m1 is not perturbed – and as such, they are normally expressed in terms
of a disturbing function with the dimensions of energy per unit mass. Finally, it is
important to note that Lagrange’s planetary equations are general, in the sense that
they can be employed with any disturbing function, and not only that which arises
from the (restricted) three-body problem.

1This can be easily achieved once the orbital elements are expressed in terms of canonical conjugate
variables, e.g., Delaunay or Poincare variables. Equipped with such variables, it is straightforward to
employ Hamilton’s equations of motion, noting that the disturbing function is the negative of the
true potential; see Equation (3.19).

2A derivation of Lagrange’s planetary equations can be found in e.g. Brouwer & Clemence (1961).
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3.2.4 Classification of Terms in the Disturbing Function

As discussed above, the disturbing function contains an infinite number of terms.
Thus, a first look at Equation (3.22) may suggest that this is a rather complicated
way for describing the orbital evolution of a given system, especially when using
analytical methods. However, this is reconciled by the fact that the different terms
in the disturbing function can be classified based on the frequencies associated with
the cosine terms in the expansion, and thus the timescales over which they cause
modulations of the orbital elements. This allows one to significantly limit the number
of terms to be considered for a given astrophysical problem. Indeed, the full disturbing
function describes different types of perturbations, which take one of three types:
secular, resonant, and short-period. Although throughout this dissertation we are
mainly interested in the secular terms, a brief discussion of all three types is necessary
to better highlight my findings and potential limitations. This is the subject of this
section.

3.2.4.1 Secular Perturbations

Secular terms in the disturbing function are defined as those which are independent of
the mean anomalies (or mean longitudes). They typically have periods much longer
than either orbital period, with typical timescales on the order of (Mc/m)T ; and
fractional amplitudes of order unity in eccentricities and inclinations, as measured
relative to resonant and short-period terms. Thus, secular terms describe the long-term
effects of perturbations and, generally, dominate the dynamical evolution of a system.

The main effect of secular perturbations is to redistribute angular momentum
amongst the interacting bodies, without causing any exchange of orbital energies. This
is a restatement of the fact that secular terms are independent of the interacting bodies’
mean anomalies, and so their semimajor axes – and hence, individual energies – are
conserved quantities; see Equation (3.25). In other words, the effects of secular pertur-
bations boil down to the modulation of a body’s orbital eccentricity and orientation
over long timescales, but not its semimajor axis.

A commonly used approximation to model secular perturbations is the so-called
Laplace–Lagrange perturbation theory, which essentially accounts for the secular terms
in the disturbing function (3.22) to only second order in eccentricities and inclinations.
Obviously, this approximation is only valid as long as the eccentricities and inclinations
remain low; however, it is useful to describe the general features of secular interactions.
Additionally, within this approximation, the evolution of e and ϖ is known to be
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Figure 3.3. Geometrical interpretation of a particle’s instantaneous eccentricity e and
longitude of pericentre ϖ subjected to secular perturbations; see Section 3.2.4.1 for details.

independent from the evolution of I and Ω; allowing one to study the planar and
vertical evolution separately. This is the approach I adopt throughout this dissertation
to model the secular perturbations due to both planets and massive discs, and so
mathematical details of the relevant disturbing functions, as well as the ensuing
dynamical effects, will be presented and explained when called for in the upcoming
chapters. Given this, here I only describe the generic solution obtained within the
context of Laplace–Lagrange theory.

Laplace–Lagrange theory finds that the secular evolution of a particle can be
decomposed into two time-varying components: the forced and free (or proper) elements.
For instance, the coupled evolution of the eccentricity e and longitude of pericentre ϖ
obey the following relationships:3

e cosϖ = eforced cosϖforced + efree cosϖfree, (3.31)
e sinϖ = eforced sinϖforced + efree sinϖfree. (3.32)

3The secular evolution of a particle’s inclination and longitude of ascending node can also be
described in a similar way; however, however, since I only consider coplanar setups in this thesis, I
omit particular details on the subject.
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Here, the free eccentricity efree is a constant determined by the particle’s initial
conditions, and the free longitude of pericentre ϖfree evolves linearly with time,

ϖfree = At+ β0, (3.33)

where A and β0 are constants; the former determined by the orbital parameters of the
massive bodies in the system and the latter by the initial conditions. On the other
hand, the forced eccentricity eforced and longitude of pericentre ϖforced are determined
solely by the orbital parameters of the interacting bodies and, depending on the forces
at play (e.g., frictional forces), may evolve in time. This decomposition into free and
forced components allows for a straightforward geometric interpretation of the particle’s
secular evolution: in a plane defined by e(cosϖ, sinϖ), the particle moves around a
circle of fixed radius efree at a constant rate A, and the centre of this circle is defined by
the forced elements which itself may evolve in time. The vectorial sum of the free and
forced elements then yields the instantaneous values of e and ϖ. This is illustrated in
Figure 3.3. Note that the particle can move in circles in the e(cosϖ, sinϖ) plane either
in clockwise or anti-clockwise direction: this is determined by the sign of A, which
can be positive e.g. for a planetesimal perturbed by a planet, and negative e.g. for a
planetesimal embedded in a self-gravitating disc. Further mathematical details on the
various parameters appearing in Equations (3.31) – (3.33) – which are system-specific –
will be given in subsequent chapters.

The above description suggest that secular perturbations would simply cause the
eccentricities (and inclinations) of a perturbed body to vary sinusoidally with time,
while the longitudes of pericentres (and ascending nodes) precess on timescales of
∼ A−1. The strongest effects of secular perturbations, however, manifest at locations
where a secular resonance occurs. Secular resonances arise when there is an equality
amongst the slow frequencies of orbital precession of the interacting bodies4. For
instance, a secular apsidal resonance is said to occur when the apsidal precession rates
of two interacting bodies are equal, i.e., ϖ̇1 = ϖ̇2. At the radial locations where this
condition is satisfied, the eccentricity of a body can be driven to arbitrarily large values,
i.e., e → 1, as the forced eccentricity formally diverges5. I will make use of this fact

4Note that secular resonances are different from mean-motion resonances in which case the
commensurability occurs between the orbital periods T (rather than the rates at which ϖ and/or Ω
precess) – see Section 3.2.4.2.

5The divergence of the forced eccentricity is a result implicit to Laplace–Lagrange theory: in
reality, including higher order terms in the disturbing function would limit the amplitude of eforced
(e.g., Malhotra, 1998).
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in Chapters 5 and 6 to introduce a new mechanism for sculpting gaps, or depleted
regions, in debris discs.

Finally, we thus far discussed the mathematical concepts behind secular interactions
by making use of the disturbing function and ignoring the terms that are dependent
on the mean anomalies. However, what is the physical meaning of the secular approxi-
mation? An insight into this question can be best obtained based on Gauss’ averaging
principle. According to this principle, the secular approximation can be thought of as
smearing the mass of the perturbing object into a ring – or a wire — along its orbit.
This material ring has a linear density which is inversely proportional to the body’s
instantaneous velocity at each position along its orbit. As such, the ring’s density
is non-uniform for particles on non-circular orbits, which spend most (least) of their
time at the apocentre (pericentre). With this picture in mind, the perturbed body
can be thought of as moving under the gravitational force exerted by the perturbing
ring of material, and the resulting variations in its orbital elements can be obtained
using Gauss’ equations (rather than Lagrange’s planetary equations). Application of
this averaging principle reveals that the secular changes in the orbital elements of a
body perturbed by another that is modelled as a ring is identical to that obtained
by ignoring the terms in the disturbing function that depend on the mean anomalies.
This provides a more physical explanation of secular perturbations, and represents the
basic idea upon which Chapter 4 is based, specifically when it comes to computing the
orbit-averaged disturbing function due to astrophysical discs.

3.2.4.2 Resonant Perturbations

Resonant terms in the disturbing function, on the other hand, are those which have
a period of order the orbital periods T and explicitly depend on the mean anomalies
(or mean longitudes) – characteristics in contrast to the secular terms. Additionally,
they are characterised with fractional amplitudes on the order of m/Mc ≪ 1, which
are generally smaller than those of the secular terms. As a result, their effects are
often negligible, with the secular terms dominating the long-term dynamical evolution.
However, resonant terms become important – and even dominant – when the ratio
of the orbital periods of the interacting bodies is equal or close to the ratio of two
integers, so that the bodies exert periodic gravitational forces onto each other. When
this condition is satisfied, the two bodies are said to be in a mean-motion resonance
(MMR). Generally, a (p+ q) : p MMR occurs when

n2

n1
≈ p

p+ q
, (3.34)
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where p and q are positive integers, with p ̸= 0. Here, the integer q represents the order
of the resonance, giving a measure of its strength: generally, the higher the order, the
weaker the MMR is. This is because the amplitude terms S in the disturbing function
are such that S ∝ e|q| and e < 1, and so higher-order MMRs can be ignored.

Mean-motion resonances can have several effects on the dynamical evolution of
the bodies involved, as they mediate the exchange of both angular momentum and
energy. The dynamical effects mainly depend on the conjunction of the two bodies, i.e.,
their point of closest approach to one another. In certain circumstances, mean-motion
resonances can help the bodies to remain on stable orbits, shielding them e.g. from
scattering events. This happens when although the orbits of the two bodies do cross
each other, conjunctions occur at large enough separations that they never come close
to one another along their orbits. Examples of such shielding MMRs can be found in
the Solar System, with the 3 : 2 MMR between Pluto and Neptune, and the 1 : 1 MMR
– also known as co-orbital resonance – of the Trojan asteroids of Jupiter which share
the planet’s orbit but are situated ≈ 60◦ from it. In other cases, however, mean-motion
resonances may drive the system into dynamical instabilities. This happens when
repeated conjunctions at the same point in the orbits of the interacting bodies lead to
a significant exchange of angular momentum, gradually putting them onto unstable
orbits. A notable example of this can be seen in the Kirkwood gaps of the asteroid
belt, which demarcate the locations of MMRs with Jupiter.

Finally, I note that MMRs – unlike secular perturbations – are localised to a narrow
range of semimajor axis and have finite radial widths over which they operate. However,
when a planetesimal is orbiting very close to a planet, MMRs can become densely
packed to the extent that their individual widths overlap each other. In such cases, the
planet can drive planetesimals orbiting (or entering) in this region into chaotic motion,
ejecting them from the system over timescales ranging from ∼ 103 to 106 years. The
half-width of the chaotic zone (∆ap) surrounding the planetary orbit, as a first order
approximation, is given by (Wisdom, 1980; Duncan et al., 1989):

∆ap ≈ 1.3
(

mp

Mc +mp

)2/7

ap, (3.35)

where mp and ap are the planet’s mass and semimajor axis, respectively, and Mc is the
central star’s mass.
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3.2.4.3 Short-Period Perturbations

Finally, all other terms in the disturbing function that are neither secular nor resonant
are classified as short-period terms. Generally speaking, such terms can be safely
dropped from the disturbing function as the associated perturbations average out to
zero over orbital periods, and so the dynamical evolution will remain well-captured by
the secular and/or resonant terms – depending on the physical setup. However, this is
not justified in all cases; for instance, in the events of close encounters and scattering.

When two bodies orbiting a central body of mass Mc pass close to each other, their
gravitational influence onto each other can become large enough to be comparable to
the gravitational pull from the central star. Mathematically, this can be quantified by
the so-called Hill radius RH which, to lowest order in eccentricities, is given by:

RH = 1
2

(
m1 +m2

3Mc

)1/3

(a1 + a2), (3.36)

where, as before, mi and ai (i = 1, 2) are the masses and semimajor axes of the two
bodies, respectively. In such cases, the short-period terms in the disturbing function
may become dominant, causing significant changes to each individual body’s orbital
energy and angular momentum and, as a result, affecting all of the six orbital elements
associated with its orbit. This change happens over timescales much shorter than the
orbital periods that it can be considered as an instantaneous velocity ‘kick’. A series
of such velocity kicks could eventually lead to the chaotic diffusion of the scattered
particle’s orbit over timescales given by (Tremaine, 1993):

tdiff ∼ 0.01 1
np

(
ap
a

)1/2(
mp

Mc

)−2

, (3.37)

where quantities sub-scripted with ‘p’ refer to the planet (the scatterer). Eventually,
over long timescales, the particle’s eccentricity will increase until it reaches values
larger than unity and its orbit is unbound from the system. Such scattering events
between a planet and a massive enough swarm of planetesimals can also significantly
affect the orbit of the planet, which may migrate as it becomes more circular due to
exchange of orbital energy and angular momentum – as is postulated for e.g. Neptune
and its interactions with the primordial Kuiper belt.

78



Chapter 4

Potential Softening and
Eccentricity Dynamics in
Razor-thin, nearly Keplerian Discs

This chapter presents my own research work, where I investigate the various methods
found in the literature for the computation of the long-term, secular effects of astro-
physical discs. The work presented here has been published in Monthly Notices of the
Royal Astronomical Society as Sefilian & Rafikov (2019).

4.1 Introduction and Problem Statement

Astrophysical discs orbiting a central mass Mc are ubiquitous in a variety of contexts
– galactic, stellar, and planetary (Latter et al., 2017). In many instances, masses of
such discs Md are much less than the central object mass, Md ≪ Mc. Despite this
fact, gravity of such discs can still play an important dynamical role in the orbital
evolution of their constituent particles as well as the dynamics of external objects (e.g.
Goldreich & Tremaine, 1979; Heppenheimer, 1980; Ward, 1981; Kocsis & Tremaine,
2011; Kazandjian & Touma, 2013; Teyssandier et al., 2013; Meschiari, 2014; Silsbee
& Rafikov, 2015a; Petrovich et al., 2019; Sefilian & Touma, 2019). Consequently,
characterising the dynamical effects due to disc gravity is important.

Whenever Md ≪ Mc, particles perturbed by the disc gravity move on nearly
Keplerian orbits that evolve rather slowly. This justifies the use of the so-called secular
approximation which implies averaging of the fast-evolving dynamical variables over
the orbits of particles under consideration (Murray & Dermott, 1999, see also Chapter
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3). As already explained in Section 3.2.4.1, the orbit-averaging procedure – also known
as Gauss’ method – is equivalent to calculating the time-averaged potential due to
orbiting point masses by smearing them into massive elliptical “wires” (having shape of
their eccentric orbits) with non-uniform linear density proportional to the time spent
by an object at a particular phase of its orbit. Such orbit-averaged potential, also
known as secular disturbing function Rd, fully determines the secular dynamics of the
system.

For a test particle with semimajor axis ap, eccentricity ep, and apsidal angle ϖp

due to a co-planar point mass δmd orbiting with semimajor axis a, eccentricity ed, and
apsidal angle ϖd, upon smearing into elliptical rings, the secular disturbing function
takes the following form (Murray & Dermott, 1999):

δR = Gδmdap
a2

[
1
8b

(1)
3/2

(
ap
a

)
e2
p − 1

4b
(2)
3/2

(
ap
a

)
eped cos(ϖp −ϖd)

]
, (4.1)

which is valid for both a > ap and a < ap, as long as particle orbits do not cross. Here
b(m)
s (α) is the Laplace coefficient defined by

b(m)
s (α) = 2

π

π∫
0

cos(mθ)
[
1 + α2 − 2α cos θ

]−s

dθ, (4.2)

which obeys b(m)
s (α−1) = α2sb(m)

s (α). Explicit time independence of δR guarantees that
the semimajor axes of the secularly interacting objects stay fixed, as already explained
in Section 3.2.4.1.

When considering gravitational effects of a razor-thin continuous disc with smooth
distribution of surface density, a straightforward way to compute the secular disturbing
function would be to orbit-average the disc potential (obtained by direct integration
over its full surface) along the particle orbit. However, this procedure involves a triple
integration – namely, a two-dimensional integral over the disc surface followed by orbit
averaging – and is numerically challenging.

A more efficient approach lies in representing the disc as a collection of massive,
nested, confocal elliptical ‘wires’ (also referred to as ‘annuli’ or ‘rings’ in this chapter)
with fixed semimajor axes (e.g. Touma et al., 2009; Batygin, 2012). For reference,
a graphical representation of this approach is provided in Figure 4.1. Within this
approach then, given the additive nature of gravity, the disturbing function due to the
disc can be represented as a sum of individual contributions in the form of Equation
(4.1) produced by all wires. In the continuum limit, this amounts to integration of δR
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Figure 4.1. Graphical representation of a disc within the secular approximation. A nearly
Keplerian disc composed of N ≫ 1 particles is modelled as a collection of geometrically
spaced massive rings (or wires). This diagram has been adapted from Batygin (2018).

(Equation 4.1) over the radial extent of the disc:

Rd =
∫ aout

ain
δR, (4.3)

where ain and aout are the semimajor axes of the inner and outer disc edges, respectively.
In this case, provided that δR is known as a function of a, only a single integration
(over the semimajor axes of the rings) is needed, significantly accelerating calculations1.

Unfortunately, this straightforward procedure is ill-posed from the mathematical
point of view. Indeed, it is well known that the Laplace coefficients b(m)

3/2 featured in
Equation (4.1) diverge as b(m)

3/2 (α) → (1 − α)−2 when α → 1. This implies that the
radial integration in Equation (4.3) encounters a non-integrable singularity at a = ap.
As a result, for a co-planar particle orbiting inside a razor-thin disc, ain ≤ ap ≤ aout,
this direct way of computing Rd does not converge to a finite value.

This divergence, as well as the pressing need for having an efficient way of computing
Rd (via a one-dimensional integration over a only), have motivated the development of
alternative analytic approaches for calculating Rd. These approaches can be generally
grouped into two classes. Calculations of one kind are rooted in the derivation of the
potential of an axisymmetric disc with power law surface density profile presented in

1The Laplace coefficients entering in δR can be easily evaluated, without relying on integration
over θ in Equation (4.2), by expressing them through elliptic integrals, see Appendix C.3.
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Heppenheimer (1980), which does not suffer from the singularity of Laplace-Lagrange
secular theory. A number of subsequent studies used this approach (Ward, 1981) and
extended it to the case of eccentric discs, both apsidally aligned (Silsbee & Rafikov,
2015a; Davydenkova & Rafikov, 2018) and misaligned (Davydenkova & Rafikov, in
prep.). Higher order (in eccentricity) extensions of this approach have also been
developed (Sefilian & Touma, 2019). This framework for treating secular dynamics
has been extensively verified using direct orbit integrations under different conditions
(Silsbee & Rafikov, 2015a; Fontana & Marzari, 2016; Davydenkova & Rafikov, 2018).
In this chapter, I refer to this type of calculation as the unsoftened Heppenheimer’s
method.

Unfortunately, by construction Heppenheimer’s method is inapplicable in situations
where the disc eccentricity rapidly varies with semimajor axis, potentially resulting in
orbit crossings (Davydenkova & Rafikov, 2018). An alternative approach, which avoids
this problem, while at the same time alleviating the aforementioned singularity, is to use
softened gravity by spatially smoothing the Newtonian point-mass potential in various
ways – both analytically (e.g. Tremaine, 1998, 2001; Touma, 2002; Hahn, 2003; Touma
& Sridhar, 2012; Teyssandier & Ogilvie, 2016) and numerically (e.g. Touma et al.,
2009). In these models, the classical Laplace-Lagrange disturbing function (Equation
4.1) is modified by softening the interaction potential in some way to circumvent the
divergence of Rd as a → ap. In this method orbit crossing does not lead to problems
as long as the softening scale is finite. However, a physical justification for a specific
form of softening (absent in the Heppenheimer (1980) approach) often remains unclear,
making the introduction of softening rather arbitrary.

The primary goal of this chapter is to assess how well the different calculations
relying on potential softening reproduce secular dynamics driven by the gravity of
a razor-thin disc. The main metric I use in this exercise is the convergence of the
results of such calculations to the true secular evolution (represented by the unsoftened
Heppenheimer method) in the limit of vanishing softening, when the limit of Newtonian
gravity is recovered. Complementary to this, I develop a general framework for
computing the well-behaved secular disturbing function for a broad range of softened
gravitational potentials (Appendix A).

The rest of this chapter is organised as follows. First, I describe the general
analytical expressions governing the orbit-averaged potential due to a coplanar disc
of arbitrary structure and arbitrary softening prescription in Section 4.2. I then
provide a brief review of the different softened potentials examined in this work and
the unsoftened approach of Heppenheimer in Sections 4.2.1 and 4.2.2, respectively. I
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analyse the performance of softening formalisms in reproducing the correct secular
dynamics for various disc models in Sections 4.3, 4.4, and 4.5. Finally, I discuss and
briefly summarise my results in Sections 4.6 and 4.7, respectively. Technical details of
my calculations can be found in Appendices A–D.

4.2 Disturbing Function due to a Disc

Prior to providing the details of different softening prescriptions examined in this
chapter in Section 4.2.1, I briefly summarise some of their common features. The
ultimate goal of all these prescriptions is the calculation of the disturbing function
Rd due to gravity of a (generally eccentric) disc comprised of massive objects (stars,
planetesimals, ring particles) or fluid elements (in gaseous discs) moving on Keplerian
orbits.

Let us consider the disc to be razor-thin and coplanar. Mass distribution of such
a disc can be uniquely characterised by the mass density per unit semimajor axis
µd(a), eccentricity ed(a), and apsidal angle ϖd(a) of the trajectories of its constituent
elements, as functions of the semimajor axis a. In practice, it is often convenient to use
the surface density at periastron Σd(a) instead of µd(a); its relation to µd for arbitrary
profiles of ed and ϖd has been established in Statler (2001), Davydenkova & Rafikov
(2018) and Davydenkova & Rafikov (in preparation). Constancy of semimajor axis
in secular theory implies that µd(a) does not change in time. The same statement is
true for Σd(a) to lowest order in ed since µd(a) ≈ 2πaΣd(a) +O(ed) (Davydenkova &
Rafikov, 2018).

Close inspection of the various softening methods for computing secular disc
potential (Section 4.2.1) reveals that all of them arrive at the following general form of
the disturbing function for a test particle moving on an orbit with the semimajor axis
ap, eccentricity ep, and apsidal angle ϖp:

Rd = npa
2
p

[
1
2Ad(ap)e2

p + Bd(ap) · ep
]
. (4.4)

Here, np is the test particle mean motion (n2
p = GMc/a

3
p), and I have introduced

a two-component eccentricity vector for a test particle ep = ep(cosϖp, sinϖp), as is
customary in celestial mechanics.
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The coefficients Ad and Bd in Equation (4.4) are related to the disc mass (or surface
density) and eccentricity profiles in the following fashion:

Ad(ap) = 2G
npa3

p

×

 ap∫
ain

µd(a)ϕ22

(
a

ap

)
da+

aout∫
ap

µd(a)ap
a
ϕ11

(
ap
a

)
da

, (4.5)

Bd(ap) = G

npa3
p

×

 ap∫
ain

µd(a)ed(a)ϕ12

(
a

ap

)
da+

aout∫
ap

µd(a)ed(a)ap
a
ϕ12

(
ap
a

)
da

, (4.6)

where ed = ed(a)(cosϖd(a), sinϖd(a)) is the eccentricity vector for an annular disc
element2. Note that for discs which are apse-aligned, i.e., dϖd/da = 0 – as assumed
later in this chapter – one has Bd = Bd(cosϖd, sinϖd).

Functions ϕij(α), i, j = 1, 2, entering these expressions fully characterise the softened
ring-ring secular interaction, see Equation (4.11). They are unique for each potential
softening prescription, with explicit forms for the models that I explore in this chapter
specified in Table 4.1. This Table shows that coefficients ϕij appearing in the literature
are linear combinations of softened Laplace coefficients B(m)

s defined by

B(m)
s (α, ϵ) = 2

π

π∫
0

cos(mθ)
[
1 + α2 − 2α cos θ + ϵ2(α)

]−s

dθ. (4.7)

The softening parameter ϵ(α) appearing in this definition remains non-zero as α → 1,
thus preventing the divergence of the softened Laplace coefficients B(m)

s (α, ϵ) at α = 1
(unlike the classical b(m)

s (α)). The explicit form of ϵ(α) is different for every softening
method considered in this chapter, see Section 4.2.1 and Table 4.1. Appendix C
collates some useful relations for softened Laplace coefficients B(m)

s (α, ϵ), as well as
their approximate asymptotic behaviour and relationships to complete elliptic integrals.

The mathematical structure of Rd given by Equation (4.4) is similar to that of the
classical Laplace-Lagrange planetary theory (Murray & Dermott, 1999), see Equation
(4.1). Indeed, let us consider mass distribution of a point mass smeared along an
elliptical orbit, µd(a) → mplδ(a− apl) (where δ(z) is the Dirac delta-function), and set
softening to zero (so that B(m)

s (α, ϵ → 0) → b(m)
s (α)). Then one finds that Rd reduces

to the unsoftened, orbit-averaged potential δR due to a planet with mass mpl and
semimajor axis apl, with the unsoftened coefficients ϕij in the form (Murray & Dermott,

2I refer the reader to Heppenheimer (1980); Silsbee & Rafikov (2015a); Davydenkova & Rafikov
(2018) for the expressions of Ad and Bd computed using the unsoftened Heppenheimer method for
different disc models.
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1999):

ϕLL
11 (α) = ϕLL

22 (α) = 1
8αb

(1)
3/2(α), (4.8)

ϕLL
12 (α) = −1

4αb
(2)
3/2(α), (4.9)

see Equation (4.1).
Accordingly, it is intuitive to think of Equations (4.4)–(4.6) as the continuous

version of classical Laplace-Lagrange planetary theory, modified by the introduction of
non-zero softening parameter ϵ to avoid the mathematical divergence of the classical
disturbing function as a → ap.

I emphasise that the functional forms of ϕij are not simple replacements of b(m)
s

appearing in the unsoftened definition (4.8) - (4.9) by B(m)
s . This can be seen in Table

4.1, where I summarise some of the expressions for ϕij(α) proposed in the literature
and analysed in this paper (see Section 4.2.1). Nevertheless, examination of these
expressions shows that when ϵ2(α) → 0, the coefficients ϕij(α) do reduce to their
unsoftened versions ϕLL

ij (α) given by Equations (4.8) – (4.9).
In Appendix A, I show that the form of the disturbing function given by Equations

(4.4)–(4.6) is generic for a wide class of softening models (and not just the ones covered
in Section 4.2.1), for which the interaction potential between the two masses m1 and
m2 (mi ≪ Mc) located at r1 and r2, correspondingly, relative to the central mass, has
a form3

Φi(r1, r2) = −Gmj

[
(r1 − r2)2 + F(r1, r2)

]−1/2
, (4.10)

with i, j = 1, 2 and j ̸= i. Here F(r1, r2) represents an arbitrary softening function
introduced to cushion the singularity which arises otherwise at null interparticle
separations. Note that in general this potential may depend not only on the relative
distance between the two masses r1 − r2, but also on their distances to the dominant
central mass r1 and r2, respectively.

Explicit demonstration of the connection between the potential (4.10) and Rd

given by Equation (4.4) represents a stand-alone result of this chapter. In particular,
my calculations in Appendix A, which can be skipped at first reading, show that
the softening parameter ϵ featured in the definition (4.7) is related to F via ϵ2 =
[max(a1, a2)]−2F(a1, a2), where a1,2 are the semimajor axes of the interacting particles
(see Equation A.21). The most general expressions of ϕij entering the arbitrarily

3Note that the interparticle force resulting from such potential does not, in general, obey Newton’s
third law (as long as F(r1, r2) ̸= const).
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softened ring-ring disturbing function,

Ri = Gmj

a>

[
ϕ11(α) e2

1 + ϕ22(α) e2
2 + ϕ12(α) e1e2 cos(ϖ1 −ϖ2)

]
, (4.11)

(here i = 1, 2 and j ̸= i) is given by Equations (A.22)–(A.24) in terms of B(m)
s (α,F).

In the above expression, I have defined a> = max(a1, a2) and a< = min(a1, a2) such
that4 α = a</a>.

Note that in equations (4.5) and (4.6) I split integration over a in two parts: over
the part of the disc interior to ap, and exterior to it. I do this because for some softening
functions F the coefficients ϕij(α) do not obey certain symmetry properties when a/ap
is replaced with ap/a, see Equation (C.4). Moreover, in general ϕ11 and ϕ22 are not
necessarily identical as in classical Laplace-Lagrange theory (i.e., Equation 4.8); see
Table 4.1 and Appendix A for further details.

As to the physical meaning of Ad and Bd, I remind the reader that Ad represents
the precession rate of the free eccentricity vector of a test particle in the disc potential,
while Bd characterises the torque exerted on the particle orbit by the non-axisymmetric
component of the disc gravity. Corresponding forced eccentricity vector is ep,f =
−Bd/Ad. In particular, test-particles initiated on circular orbits experience eccentricity
oscillations of maximum amplitude emp = 2 |ep,f |.

Finally, note that since Ad(ap) and Bd(ap) uniquely determine Rd for different forms
of softening, comparison of their behaviour in the limit of ϵ → 0 with that found in
the unsoftened Heppenheimer (1980) approach (validated in Silsbee & Rafikov 2015a;
Fontana & Marzari 2016; Davydenkova & Rafikov 2018) is sufficient to assess the
validity of a particular softening model, see Section 4.3.

4.2.1 Summary of Existing Softening Models

Here I provide a brief description of the four different softening prescriptions that
have been previously proposed in the literature. Corresponding expressions for their
softening parameters ϵ2(α) and coefficients ϕij(α) are provided in Table 4.1.

4Here I clarify that the definitions of ϕ11(α) and ϕ22(α), even when different (see Table 4.1 and
Appendix A), are swapped upon interchanging a1 with a2 but keeping, by construction, α = a</a> < 1
– see Equations (A.22) and (A.23) for details.
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4.2.1.1 Formalism of Tremaine (1998) – Tr98

Tremaine (1998) suggested an expression for the secular disturbing function due to a
continuous disc, which uses modified Laplace coefficients in the form

B(m),Tr
s = 2

π

π∫
0

cos(mθ)
[
1 + α2 − 2α cos θ + β2

c

]−s

dθ. (4.12)

Here β2
c is the dimensionless softening parameter, treated as a constant, i.e., independent

of distance. The physical interpretation of this manoeuvre is that βc, inhibiting the
formal divergence of Rd as a → ap, can be viewed as the disc aspect ratio. Within this
prescription, it is intuitive to think of the eccentric ‘wires’ that comprise the disc as
having a distance-dependent radius b = βc max(a1, a2). In Tremaine (1998) coefficients
ϕij(α) were expressed as derivatives of B(m),Tr

1/2 with respect to α, see equations (26)
of Tremaine (1998). These expressions, along with their versions modified using the
recursive relations for Laplace coefficients (see Appendix C.1), can be found in Table
4.1.

4.2.1.2 Formalism of Touma (2002) – T02

Touma (2002) derived the orbit-averaged potential of a disc by assuming individual
particles comprising the disc to interact via Plummer potential with a fixed length
scale bc (Binney & Tremaine, 2008). Smearing particles into gravitating eccentric wires,
Touma (2002) (see also Touma & Sridhar, 2012) derived the expressions (equations
(6) of Touma (2002)) for ϕij(α) in the form of linear combinations of softened Laplace
coefficients B(m),T

s , similar to those of Tremaine (1998):

B(m),T
s = 2

π

π∫
0

cos(mθ)
[
1 + α2 − 2α cos θ + β2

]−s

dθ. (4.13)

However, in Touma (2002) the softening parameter ϵ2(α) = β2 is no longer a constant
but depends on the distance such that β = bc/max(a1, a2). Within this formalism, one
can think of a disc as comprised of nested annuli with a constant thickness bc.

4.2.1.3 Formalism of Hahn (2003) – H03

Hahn (2003) computed the orbit-averaged interaction between two eccentric wires by
accounting for their vertical thickness. The vertical extent h of a ring effectively softens
its gravitational potential over a dimensionless scale H ∼ h/a, which was assumed to
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be constant in that work (see also Ward, 1989). Hahn (2003) demonstrated that the
resultant ϕij(α) are functions of softened Laplace coefficients

B(m),H
s = 2

π

π∫
0

cos(mθ)
[
1 + α2 − 2α cos θ +H2(1 + α2)

]−s

dθ, (4.14)

with constant H ≪ 1. In other words, the softening parameter is given by ϵ2(α) =
H2(1 + α2) in that work. The explicit expressions for ϕij(α) in terms of B(m),H

s are
given by equations (17) of Hahn (2003).

4.2.1.4 Formalism of Teyssandier & Ogilvie (2016) – TO16

Teyssandier & Ogilvie (2016) modified the unsoftened expressions (4.8), (4.9) for ϕLL
ij (α)

by simply replacing the usual Laplace coefficients b(m)
s with softened versions defined

such that

B(m),TO
s = 2

π

π∫
0

cos(mθ)
[
1 + α2 − 2α cos θ + S2α

]−s

dθ. (4.15)

Thus, their softening parameter is ϵ2(α) = S2α, where S is a dimensionless constant.
According to the authors, this substitution approximates the process of vertical averag-
ing over the disc with constant aspect ratio S, and alleviates the classical singularity.
The corresponding expressions for ϕij(α) are given by equations (7)-(9) of Teyssandier
& Ogilvie (2016).

The aforementioned softening prescriptions have their softening parameters ϵ2(α)
controlled by different constants — βc, bc, H, and S. For this reason, in what follows –
with some abuse of notation – I will collectively refer to these constants as “softening
parameters” and denote them by ς.

4.2.2 The Unsoftened Heppenheimer Method

A different approach to computing the disturbing function of a razor-thin disc has been
developed by Heppenheimer (1980) without resorting to any form of softened gravity
(see also Ward, 1981). The essence of this method is in computing the potential by
direct integration over the disc surface before expanding the integral limits (which
involve instantaneous particle position r) in terms of small eccentricity of a test particle5.
This expansion is followed by time-averaging over the orbit of a test particle.

5Note that the order of these procedures is opposite to what is usual in the Laplace-Lagrange
treatment (e.g. Murray & Dermott, 1999). For further details, see e.g. Heppenheimer (1980).
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The outcome of this procedure is a set of expressions, akin to Equations (4.4)–(4.6),
which are convergent throughout the disc, in contrast to the classical Laplace-Lagrange
theory. Mathematically, this convergent behaviour is due to the fact that the emergent
expressions contain Laplace coefficients b(m)

1/2 (α) – and not b(m)
3/2 – which diverge only

weakly (logarithmically) as α → 1: b(m)
1/2 (α) ∝ log(1 − α). As a result, upon integrating

these expressions over the radial extent of the disc, one obtains a convergent and finite
result for Rd. Physically, convergent expression is only natural since the calculation
of the disc potential by direct two-dimensional integration over its surface is fully
convergent at every point in the disc. The Heppenheimer method simply allows one to
properly capture this property, unlike the standard Laplace-Lagrange procedure (when
applied to continuous discs).

In his pioneering calculation, Heppenheimer (1980) applied this method to axisym-
metric power-law discs to recover the orbit-averaged disc potential to second order
in eccentricities. This calculation has been subsequently extended to more general
disc structures (Silsbee & Rafikov, 2015a; Davydenkova & Rafikov, 2018) (hereafter,
SR15 and DR18, respectively), as well as to higher order in eccentricities (Sefilian &
Touma, 2019). This framework has been extensively verified for eccentric discs using
direct integrations of test particle orbits in actual disc potentials (e.g. SR15, Fontana
& Marzari, 2016, DR18), validating this approach.
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Table 4.1. The coefficients ϕij(α) (with i, j = 1, 2) of the secular disturbing function with softened gravity featured in Equations
(4.5) and (4.6), which govern the individual secular ring-ring interaction (Equation 4.11), adopted from the literature (listed in the
first column).

Formalism ϵ2(α) ϕ11(α) ϕ12(α) ϕ22(α)

Laplace-Lagrange – 1
8αb

(1)
3/2 −1

4αb
(2)
3/2 ϕ11

Tremaine (1998) β2
c

1
8

(
2α d

dα
+ α2 d2

dα2

)
B(0),Tr

1/2
1
4

(
2 − 2α d

dα
− α2 d2

dα2

)
B(1),Tr

1/2 ϕ11

= 1
8α

[
B(1),Tr

3/2 − 3αβ2
cB

(0),Tr
5/2

]
= −1

4α

[
B(2),Tr

3/2 − 3αβ2
cB

(1),Tr
5/2

]

Touma (2002) β2 = b2
c/a

2
> −5

8αB(1),T
3/2 + 3

16α
2B(0),T

5/2 + 3
8α(1 + α2)B(1),T

5/2
9
8αB(0),T

3/2 + 1
8αB(2),T

3/2 − 9
8α(1 + α2)B(0),T

5/2 −5
8αB(1),T

3/2 + 3
16α

2B(0),T
5/2 + 3

8α(1 + α2)B(1),T
5/2

−15
16α

2B(2),T
5/2 − 3

8αβ
2(αB(0),T

5/2 − B(1),T
5/2 ) +21

16α
2B(1),T

5/2 + 3
8α(1 + α2)B(2),T

5/2 + 3
16α

2B(3),T
5/2 −15

16α
2B(2),T

5/2 − 3
8β

2(B(0),T
5/2 − αB(1),T

5/2 )

Hahn (2003) H2(1 + α2) 1
8α

[
B(1),H

3/2 − 3αH2(2 +H2)B(0),H
5/2

]
−1

4α

[
B(2),H

3/2 − 3αH2(2 +H2)B(1),H
5/2

]
ϕ11

Teyssandier & Ogilvie (2016) S2α 1
8αB(1),TO

3/2 −1
4αB(2),TO

3/2 ϕ11

Note. The ratio of semimajor axes between any two disc rings is given by α = a</a>, where a> = max(a1, a2) and a< = min(a1, a2).
The softened interactions under consideration are those of Tremaine (1998), Touma (2002), Hahn (2003) and Teyssandier & Ogilvie
(2016) – see Section 4.2.1 for further details. For reference, the expressions of ϕLL

ij corresponding to the (unsoftened) Newtonian
ring-ring interaction (i.e., classical Laplace–Lagrange formalism) are also shown in the top row. The Laplace coefficients which are
softened by the introduction of a softening parameter ϵ2(α) are defined in Equation (4.7); see also Equations (4.15) – (4.13). Note that
the expressions of ϕij reported in Touma (2002) have been corrected in a subsequent paper of Touma & Sridhar (2012).
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4.3 Comparison: Power-Law Discs

My goal is to examine the performance of different softening prescriptions outlined in
Section 4.2.1 in comparison with the results obtained using the unsoftened Heppen-
heimer method (Section 4.2.2).

I start this exercise using a model of apse-aligned (i.e., dϖd/da = 0), truncated
power-law (hereafter PL) disc as a simple example. I characterise surface density and
eccentricity of such a disc by

Σd(a) = Σ0

(
a0

a

)p
, ed(a) = e0

(
a0

a

)q
(4.16)

for ain ≤ a ≤ aout, where Σ0 and e0 are the pericentric surface density and eccentricity
of the disc at some reference semimajor axis a0.

Plugging this ansatz into Equations (4.4) – (4.6), the secular disturbing function
Rd due to PL discs can be simplified to (Silsbee & Rafikov, 2015a)

Rd = K
[
ψ1e

2
p + ψ2eped(ap) cos(ϖp −ϖd)

]
, (4.17)

where K = πGΣ0a
p
0a

1−p
p and the dimensionless coefficients ψ1 and ψ2 are given by

ψ1 = 2
1∫

α1

α1−pϕ22(α)dα + 2
1∫

α2

αp−2ϕ11(α)dα, (4.18)

ψ2 = 2
1∫

α1

α1−p−qϕ12(α)dα + 2
1∫

α2

αp+q−2ϕ12(α)dα, (4.19)

with α1 = ain/ap and α2 = ap/aout.
The coefficients ψ1 and ψ2 are functions of the power-law indices (p and q), any

softening parameter involved (through ϕij), as well as the test particle semimajor axis
ap (through α1,2). They are related to Ad and Bd via

Ad(ap) = 2K
npa2

p

ψ1, Bd(ap) = K

npa2
p

ed(ap)ψ2. (4.20)

As shown in Appendix D, for certain ranges of power-law indices p and q, both ψ1

and ψ2 converge to values depending only on p and q and any softening parameter
used, provided that the test particle orbit is well separated from the disc boundaries
(i.e., in the limit α1,2 → 0). For p and q in these ranges (determined in Appendix D
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Figure 4.2. Behaviour of the axisymmetric (ψ1, Equation (4.18), top panels) and non-
axisymmetric (ψ2, Equation (4.19), bottom panels) components of the softened gravitational
potential due to an infinite power-law disc as a function of softening ς. The calculations
assume two different disc structures specified by the values of p and q shown by different line
types as explained in legend. For clarity, the results obtained by the softened formalisms of
Tremaine (1998), Touma (2002) and Hahn (2003) are collated in the left-hand panels and
those obtained by the softening method of Teyssandier & Ogilvie (2016) are shown in the
right-hand panels. The left-hand panels also show the ψ1 and ψ2 obtained by SR15 not
assuming any softening (black horizontal lines). See the text (Section 4.3.1) for details.

for each of the considered softened formalisms, similar to SR15), the coefficients ψ1

and ψ2 are determined by the local behaviour of Σd(a) and ed(a) in the vicinity of test
particle semimajor axis.

Given this, I first focus on infinitely extended (α1,2 → 0) PL discs with p and
q within these ranges (I defer discussion of secular dynamics near the disc edges to
Section 4.5). Then, ψ1 and ψ2 become independent of ap (i.e., functions of p, q, and ς

only), making them useful as simple metrics for judging the validity of different models
of softening.

4.3.1 Behaviour with respect to Variation of Softening

Figure 4.2 illustrates the behaviour of ψ1 and ψ2 predicted by each of the softening
formalisms described in Section 4.2.1 for an infinite PL disc, shown as a function of
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the corresponding “softening”6 ς for two different sets of p, q (indicated in panel B).
For reference, black horizontal lines show the values of ψ1 and ψ2 expected from the
calculations of SR15 using the unsoftened Heppenheimer approach7.

The left-hand panels of Figure 4.2 illustrate the behaviour of the softening models
of Tremaine (1998), Touma (2002), and Hahn (2003). They demonstrate that the
latter two formalisms predict ψ1 and ψ2 in quantitative agreement with the unsoftened
calculations of SR15: results of both Touma (2002) (blue) and Hahn (2003) (red)
converge to the SR15 results as their corresponding softening ς approaches zero; both
the amplitude and sign of ψ1 and ψ2 are reproduced. It is also evident that, depending
on disc model, ψ1 and ψ2 converge to values given by SR15 at different values of
softening. Nevertheless, I generally8 find that ς ≲ 10−3 guarantees the convergence
of ψ1 and ψ2 to within few per cent of the correct values for all p and q as long as
ain ≪ ap ≪ aout (see e.g. Figure 4.5).

The same panels also indicate that ψ1(ς) and ψ2(ς) predicted by the softened
formalism of Tremaine (1998) (in green), while converging to finite values as ς = βc → 0,
do not reproduce the SR15 results exactly in this limit. Indeed, one can see that even for
the smallest adopted value of βc = 10−3, the softening prescription of Tremaine (1998)
yields ψ1 and ψ2 different by tens of per cent from SR15. It is easy to demonstrate
that these quantitative differences do not vanish by further decreasing βc. For instance,
when p = 1, the coefficient ψ1 can be evaluated analytically as

ψTr98
1 = − 1

2
√
β2
c + 1

+
E
(

2/
√
β2
c + 4

)
π
√
β2
c + 4

= −1
2 + 1

2π + O(β2
c ) (4.21)

in agreement with Panel A (E(k) is the complete elliptic integral of a second kind). At
the same time, the unsoftened approach of SR15 predicts ψ1 = −1/2 for p = 1 disc.
Moreover, close inspection of Figures 4.2(A) and (B) shows that, in the limit of βc → 0,
the ψ1 and ψ2 curves computed using softening model of Tremaine (1998) are offset
vertically from the unsoftened calculations by 1/2π and −1/π, respectively, for any
(p, q) – see also Figure 4.5. I will analyse the reasons for this quantitative discrepancy
in Section 4.6.1.

6The softening length bc present in the formulation of Touma (2002) is scaled by the test particle
semimajor axis ap in all the figures where I present results for infinite PL discs. I do this to properly
collate the results computed by different softening formalisms in one figure.

7Equations (A37) and (A38) in Silsbee & Rafikov (2015a) provide analytic expressions for ψ1 and
ψ2, respectively, for infinite PL discs.

8For particles with orbits near sharp disc edges, I find that smaller values of ς is required to recover
the expected dynamics, see Section 4.5.
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Right-hand panels of Figure 4.2 show the behaviour of ψ1 (Panel C) and ψ2 (Panel
D) as a function of “softening”, ς = S, resulting from the approach of Teyssandier
& Ogilvie (2016). There are several features to note here. First, this model predicts
ψ1 > 0 for all values of softening S and disc models (i.e., p and q), implying prograde
free precession. This is in contrast with the other softening prescriptions, as well as
SR15, which correctly capture retrograde free precession for p = 1 and prograde for
p = −0.5 (see Panel A). Similarly, ψ2 is always negative, contrary to the expectations
(see Panel B). Second, in the limit of S → 0, both ψ1 and ψ2 attain values independent
of the disc model, which is clearly inconsistent with the dependence on (p, q) seen in
Figure 4.2(A) and (B). Thirdly, and most importantly, both ψ1 and ψ2 diverge as the
softening S → 0. Indeed, it suffices to employ the asymptotic expansion of the Laplace
coefficients B(m),TO

3/2 in the limit of α → 1 (Equation C.7) to demonstrate that both ψ1

and ψ2 (Equations 4.18 – 4.19) behave as

ψTO16
1 ≈ 1

2S + O(S), ψTO16
2 ≈ − 1

S
+ O(S) (4.22)

as S → 0 for all values of p and q. The behaviour shown in Figures 4.2(C) and (D)
agrees with these asymptotic expressions.

4.3.2 Details of Convergence of Different Softening Prescrip-
tions

Different softening prescriptions explored in this chapter are designed to modify the
behaviour of the integrand in Equations (4.5) and (4.6) primarily in the vicinity of the
test particle orbit, i.e., as a → ap or α → 1. For this reason, it is interesting to look in
more detail on how this modification actually allows each softening model to achieve
(or not) the expected results. This exercise also illustrates the contribution of different
parts of the disc to secular dynamics.

To this goal, I compute the values of ψ1 and ψ2 in an infinitely extended PL
disc, like in Section 4.3.1, but now with a narrow clean gap (in semimajor axis) just
around the test particle orbit, and explore the effect of varying the width of this gap
(Ward, 1981). The inner and outer edges of the gap, in which Σd(a) is set to zero,
are at ad,i = (1 − x)ap ≤ ap and ad,o = (1 − x)−1ap ≥ ap, respectively, with a single
parameter x controlling the gap width. As x → 0, the width of the gap goes to zero.
I compute secular coefficients in such a gapped disc denoted ψ̃1(x) and ψ̃2(x), by
appropriately changing the upper integration limits in Equations (4.18) and (4.19),
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Figure 4.3. Behaviour of the cumulative pre-factors ψ̃1(x) (panel A) and ψ̃2(x) (panel B)
of the disturbing function due to a power-law disc (p = 1, q = 0.5 and ain → 0, aout → ∞)
with softened gravity, shown as a function of x — relative separation between a given test
particle orbit and the nearest neighbouring disc rings. Formalisms of Hahn (2003), Touma
(2002), Tremaine (1998), and Teyssandier & Ogilvie (2016) are shown by different colours
as indicated in panel (A), for different values of softening (shown by different line types).
The purple lines represent results obtained by the unsoftened expressions of Davydenkova
& Rafikov (2018) (DR18) based on the Heppenheimer method (see Section 4.6.3). Insets
illustrate the behaviour as x → 0 for the three convergent softened formalisms — see the
text (Section 4.3.2) for more details.

i.e., from 1 to αm ≡ 1 − x. This eliminates gravitational effect of the disc annuli with
ad,i(x) < a < ad,o(x).

In Figure 4.3, I display the behaviour of ψ̃1(x) (Panel A) and ψ̃2(x) (Panel B) as a
function of x = 1 −

√
ad,i/ad,o for various values of softening ς to highlight the effects

of different softening prescriptions. The calculations assume a base PL disc model with
p = 1 and q = 0.5 (recall that ψ1 depends on p, while ψ2 depends on p+ q; Equations
4.18 and 4.19). There are several notable features in this figure.

First, when the gap is wider than the characteristic softening length ςap, i.e.,
ς ≲ x ≤ 1, the amplitudes of both ψ̃1(x) and ψ̃2(x) increase from zero at x = 1
(infinitely wide gap) to their maximum values reached at x ∼ ς. In all cases ψ1
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is positive, meaning prograde precession of a test particle orbit in a wide gap, in
agreement with the unsoftened results of Ward (1981) and Davydenkova & Rafikov
(2018) — secular effect of a collection of distant disc ‘wires’ conforms to expectations
of the classical Laplace–Lagrange theory (i.e., prograde precession).

In the range ς ≲ x ≪ 1, I find that ψ̃1(x) ∼ |ψ̃2(x)| ∼ x−1, irrespective of the
softening model used; their maximum values are always ∼ ς−1. This convergent
behaviour is easy to understand since for ς ≲ x the role of softening is negligible,
B(m)
s (α, ς) ≈ b(m)

s (α), and all ϕij effectively reduce to their classical counterparts ϕLL
ij

given by Equations (4.8) and (4.9), which can be easily verified using the expressions
listed in Table 4.1. The scaling of ψ̃1(x) and |ψ̃2(x)| with x is simply a result of
asymptotic behaviour of b(m)

3/2 (α) → (1 − α)−2 as α → 1, upon radial integration in
Equations (4.18) and (4.19).

Secondly, upon reaching their extrema at x ∼ ς, amplitudes of ψ̃1(x) and ψ̃2(x)
computed using softening prescriptions of Tr98, T02, and H03 start decreasing as x
decreases. In the range of semimajor axes corresponding to x ≲ ς , softening significantly
modifies the behaviour of B(m)

s (α, ς) away from the divergent behaviour of b(m)
s (α). The

modification is such that the softened interaction with the disc annuli ≲ ςap away from
the test particle orbit starts to dynamically counteract the contribution of the more
distant annuli (with x ≈ 1). As a result of this compensation, ψ̃1 and ψ̃2 cross zero
and change sign at some x = Cς2, where C ∼ 1 is a constant9.

At the same time, ψ̃TO16
1 and ψ̃TO16

2 calculated according to Teyssandier & Ogilvie
(2016) clearly show different behaviour. Instead of decreasing in amplitude as x ≲ ς,
they remain essentially constant, having reached their saturated values ∼ ς−1 at x ∼ ς .
This explains the lack of convergence with S obvious in Figure 4.2C, D, since the values
to which |ψ̃TO16

1 | and |ψ̃TO16
2 | converge keeps increasing as ς → 0. Moreover, both

coefficients also never change sign, always predicting prograde precession (ψ̃TO16
1 > 0).

The origin of this difference with other smoothing prescriptions will be addressed in
Section 4.6.2.

Upon further decrease of x below ς2, both ψ̃1 and ψ̃2 computed using models of
Tr98, T02 and H03 ultimately converge to their corresponding values obtained for a
continuous disc (i.e, for x = 0, see Figure 4.2) independent of the assumed value of ς.

I note that the opposite contributions to e.g. ψ1 produced by the distant (x ≳ ς,
positive) and nearby (i.e., with x ≲ ς, negative) disc annuli is not unique to softened

9For p = 1, ψ̃1 becomes analytic for the softened formalisms of both H03 and Tr98 allowing
me to quantify the value of C. Performing the integral over dα in Equation (4.18) - (4.19), I find
CT r98 = (π− 1)/2 and CH03 = π; in agreement with Figure 4.3. For other values of p and q, for which
ψ1 < 0 (c.f. Figure 4.5), I numerically find that C varies by at most a factor of ten.
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Figure 4.4. Same as Figure 4.3, but now for an axisymmetric power-law disc with p = −0.5.
Note that for this disc model softened ψ̃1(x) does not cross zero and converges to a positive
value as x → 0, in agreement with the results in Figure 4.2A.

gravity. Indeed, both Ward (1981) and Davydenkova & Rafikov (2018), using the
unsoftened Heppenheimer method, found that a particle orbit fully embedded in a
p = 1 disc has negative precession rate, whereas a particle orbiting fully in the gap
precesses in the positive sense (and at high rate if the gap is narrow). As the gap width
is reduced, a smooth transition between the two regimes must occur as the test particle
orbit starts crossing the gap edge (i.e., for x ≲ ep), with the disc annuli crossing the
particle orbit giving rise to a negative contribution to ψ̃1. Eventually, the shrinking of
the gap brings ψ̃1 to a finite negative value (for p = 1 disc) as x → 0. This sequence is
very similar to the behaviour I find with softened gravity for x ≲ ς.

In Figure 4.4, I show calculations for ψ̃1(x) similar to those in Figure 4.3(A) but for
a different disc model — axisymmetric PL disc with p = −0.5. In this case unsoftened
calculations (e.g., SR15) predict that disc gravity should drive prograde precession of a
test particle in a smooth disc. One can clearly see that many of the features present
in Figure 4.3 are reproduced for this model as well: discrepancy between the TO16
model and others, ψ̃1(x) ∼ x−1 scaling for ς ≲ x ≪ 1, decay of ψ̃1(x) for ς2 ≲ x ≲ ς,
and ultimate convergence to ψ1 in a disc with no gap. The only obvious difference is
the fact that ψ̃1 does not cross zero10 for this disc model with p = −0.5.

10This is the case for all power-law disc models with p < 0 or p > 3 for which the expected free
precession rate is positive, see Figure 4.5.
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To summarise, Figures 4.3 and 4.4 indicate that secular dynamics in softened
power-law discs is dictated by the delicate balance of the opposing contributions due
to nearby (i.e., with x ≲ ς) and distant disc annuli (i.e., with x ≳ ς), in qualitative
agreement with the unsoftened results of Ward (1981). These figures also demonstrate
that the softening prescription of TO16 yields inaccurate results due to its inability to
capture the dynamical effects of disc annuli adjacent to the test particle orbit (those
with x ≲ ς), see Section 4.6.2. I will discuss additional implications of these calculations
in Section 4.6.3.

4.3.3 Variation of Disc Model: p and q

I now examine the dependence of ψ1 and ψ2 on the specifics of the disc model reflected
in power-law indices p and q. Figures 4.5(A) and (B) illustrate the results based on
different softening prescriptions11 assuming a softening value of ς = 10−3 (for which
Figure 4.2(A) and (B) suggests good convergence of ψ1 and ψ2). For reference, black
open circles show the expected behaviour of ψ1 and ψ2 computed by Silsbee & Rafikov
(2015a) using the unsoftened Heppenheimer approach.

It is clear that the softened formalisms of both Touma (2002) and Hahn (2003)
perfectly reproduce the expected behaviour of the pre-factors ψ1 and ψ2 as a function
of p and q (i.e., for various PL disc models). On the other hand, the prescription
of Tremaine (1998) predicts a behaviour of ψ1 and ψ2 only in qualitative agreement
with the expected results: the computed values of secular coefficients deviate by tens
of per cent from that of SR15. For all values of p and q, the formalism of Tremaine
(1998) yields an additional positive contribution to ψ1 equal to 1/2π and a negative
contribution to ψ2 equal to −1/π (these offsets are highlighted in Figures 4.5(A) and
(B) by scale bars). Although these differences are not very significant, they lead to
(1) predicting a wrong sign for the test particle free-precession rate for p ≈ 0 or p ≈ 3
(for which SR15 yields ψ1 ≈ 0), and (2) a mismatch of tens of per cent between the
disc-driven forced eccentricity oscillations, emp /ed(a) = |ψ2/ψ1|, and the expectations
based on SR15. The latter point is illustrated in Figure 4.5(C).

4.4 Comparison: Non-Power-Law Discs

I now turn my attention to the performance of the different softening prescriptions
for more general discs. Namely, I focus on two apse-aligned, non-PL disc models

11I do not present results obtained by the method of Teyssandier & Ogilvie (2016).
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Figure 4.5. Dependence of the coefficients ψ1 (panel A) and ψ2 (panel B) on the power-law
disc model represented by the indices p and p+ q, respectively. Panel C shows the amplitude
emp of eccentricity oscillations (normalised by disc eccentricity ed) induced by disc gravity.
Results for softened formalisms of Hahn (2003) (in red), Touma (2002) (in blue) and Tremaine
(1998) (in green) are computed using softening ς = 10−3. Calculations assume infinitely
extended disc (i.e., no edge effects). For reference, open black circles show the profiles of
ψ1, ψ2 and emp as computed by SR15: curves for Hahn (2003) and Touma (2002) fall on top
of them, while those for Tremaine (1998) show constant offset in terms of both ψ1 and ψ2
(illustrated by scale bars in panels A and B) resulting in deviation between emp curves (panel
C).
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previously studied by Davydenkova & Rafikov (2018) (DR18) based on the unsoftened
Heppenheimer method. The dynamics in such non-PL discs, according to DR18,
differs from the PL discs in a very important way: the free-precession of test-particles
can naturally change from retrograde to prograde (and vice versa) within such discs.
Furthermore, an important feature of the models considered below is that Σd smoothly
goes to zero at finite radii in a manner that does not give rise to the edge effects; see
DR18 and Section 4.5.

4.4.1 Quartic Disc Model

I start by looking at the secular dynamics in the potential of a Quartic disc characterised
by the surface density

Σd(a) = Σ̃0
(aout − a)2(ain − a)2

(aout − ain)4 , (4.23)

and linear eccentricity profile in the form

ed(a) = ẽ0

(
1 + aout − a

aout − ain

)
(4.24)

for ain ≤ a ≤ aout (with ain = 0.1 AU, aout = 5 AU), where Σ̃0 = 1153 g cm−2 and
ẽ0 = 0.01 are normalization constants (one of the models in DR18).

Figure 4.6 summarises the salient features of secular dynamics in the potential of
such a disc adopting a softening value of ς = 10−3. It shows the excellent agreement
between the radial profiles of Ad, Bd and emp computed using the unsoftened calculations
of Davydenkova & Rafikov (2018) and those computed using softening prescriptions
of Touma (2002) and Hahn (2003). Similar to the case of PL discs, I find that the
softening prescription of Tremaine (1998) yields results that agree qualitatively with
the expected results but differ quantitatively. Deviations of Ad and Bd computed using
this model from Davydenkova & Rafikov (2018), in particular, modify the locations at
which Ad and Bd become zero. This explains the slight shift in the semimajor axes at
which emp = 2Bd/Ad goes through zero or diverges; see Figure 4.6.

The difference between the Tremaine (1998) and Touma (2002) calculations illus-
trated here could be relevant for understanding the quantitative differences between
the studies of Tremaine (2001) and Gulati et al. (2012) who analysed the slow (m = 1)
modes supported by softened Kuzmin discs with softening prescriptions b ∝ r and
b = const respectively.
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Figure 4.6. Performance of different softening formalisms (different colours) with softening
parameter ς = 10−3 in the potential of a Quartic disc, see Equation (4.23), with the
eccentricity profile (4.24). The disc extends from ain = 0.1 AU to aout = 5 AU. Shown as a
function of semimajor axis ap are the profiles of (A) the amplitude emp of the disc-induced
eccentricity oscillations, (B) the rate of disc-driven free precession Ad, and (C) the coefficient
Bd appearing in the non-axisymmetric part of the disturbing function (4.4). The black lines
represent the expected unsoftened results as computed by Davydenkova & Rafikov (2018).
Curves for Hahn (2003) and Touma (2002) fall on top of the unsoftened results, while the
softening method of Tremaine (1998) shows only qualitative agreement.
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4.4.2 Gaussian Rings

Next I investigate secular dynamics in the potential of another disc model from DR18
— a Gaussian ring with the surface density profile

Σd(a) = Σ̃0 exp
{

4 − [(a/ac) + (ac/a)]2
wc

}
(4.25)

centered around ac = 1.5 AU with width wc = 0.18 and surface density Σ̃0 = 100 g
cm−2 at ac. The eccentricity profile is still given by Equation (4.24).

In Figure 4.7, I plot the behaviour of the corresponding Ad, Bd and emp for the three
(convergent) softened formalisms with ς = 10−3, together with those of unsoftened
Heppenheimer method (DR18, in black). Once again, the results obtained using the
formalisms of Touma (2002) and Hahn (2003) fall on top of the expectations. However,
for this disc model the formalism of Tremaine (1998) reproduces the unsoftened
calculations of Davydenkova & Rafikov (2018) quite well: the relative deviations are
always less than 10 per cent. This improvement will be discussed further in Section
4.6.1.

4.5 Effects of Proximity to the Disc Edge

The disc models explored thus far were either infinitely extended (Section 4.3) or had
surface density smoothly petering out to zero at finite radii (Section 4.4). This allowed
me to not worry about the effects of sharp disc edges — discontinuous drops of the
surface density — on secular dynamics, which are known to be important (Silsbee &
Rafikov, 2015a; Davydenkova & Rafikov, 2018).

I now relax this assumption and examine the performance of different softening
models in the vicinity of a sharp edge of the disc, where surface density drops dis-
continuously from a finite value to zero at a finite semimajor axis a = aedge. To that
effect, I analyse the behaviour of secular coefficient Ad computed using the formalism
of Hahn (2003) for different values of softening (results for Bd are very similar) near
the disc edge12. Figure 4.8 shows the run of Ad near the inner edge ain of the disc for
test particles both inside (ap < ain) and within (ain < ap < aout) the disc as predicted
by the formalism of Hahn (2003). The calculation assumes circular PL disc with p = 1

12I verified that softening prescriptions of Touma (2002) and Tremaine (1998) give very similar
results in the limit ς → 0.
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Figure 4.7. Same as Figure 4.6, but now for a Gaussian disc with Σd(a) and ed(a) given
by Equations (4.25) and (4.24) respectively. Note that for this disc model the formalism of
Tremaine (1998) (green) shows quite good agreement with the unsoftened results, even at
the quantitative level. See the text (Section 4.4.2) for details.

and Σ0 = 100 g cm−2 extending between ain = 1 AU to aout = 10 AU, where I have set
a0 = aout (Equation 4.16).

The unsoftened calculations based on Heppenheimer (1980) invariably predict that
the free eccentricity precession rate Ad, as well as Bd, should diverge as the sharp edge
of the disc is approached (e.g. SR15, DR18). Tremaine (2001) also found precession
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Figure 4.8. The behaviour of the free precession rate Ad near the inner edge ain = 1 AU of
a circular power-law disc with surface density Σd(a) = 100 g cm−2 (10 AU/a) (Equation 4.16).
One can see that the expected divergent behaviour of Ad near the disc edge is reproduced by
the softening prescription of Hahn (2003) in the limit ς → 0. However, very near the sharp
edge of the disc ς has to be very small for quantitative accuracy to be attained. Similar
results can be obtained by the softened formalisms of both Touma (2002) and Tremaine
(1998).

rate to diverge near the edge of a Jacobs–Sellwood ring (Jacobs & Sellwood, 2001).
This is indeed the case as shown by the dashed curve computed using SR15.

The softened calculation using Hahn (2003) does largely reproduce this behaviour.
However, I find that very close to the ring edge (at |a− ain|/ain ∼ 10−3) the agreement
is achieved only for ς ≤ 10−4, which is considerably smaller than the values (ς ∼ 10−2)
required to reproduce the dynamics of particles far from the disc edges, ain ≪ ap ≪ aout,
see Figure 4.2. For instance, the softened calculation with ς = 10−2 predicts Ad different
from the SR15 results near the disc edge by more than an order of magnitude. Thus,
accurately capturing secular dynamics near the sharp edges of discs/rings requires
using very small values of softening13. This finding could be problematic, for instance,

13On the other hand, this condition is relaxed when the edge is not exactly sharp but rather has a
finite width ∆r over which the disc surface density smoothly peters out to zero; in this case ς only
needs to be ≲ ∆r/r.
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for numerical modelling of planetary rings, often found to have very sharp edges (Graps
et al., 1995; Tiscareno, 2013).

Note that in Figure 4.8 softened Ad passes through zero exactly at ain, showing two
sharp peaks of opposite signs just around this radius. Similar behaviour was found by
Davydenkova & Rafikov (2018) for zero-thickness discs with Σd dropping sharply but
continuously near the edge, demonstrating that variation of the sharpness of the edge
is akin to softening gravity. In the case of truly zero-thickness disc and no softening
(e.g., SR15) the segment of Ad curve connecting the two peaks turns into a vertical
line at ain.

Similar divergent behaviour of Ad (and Bd) arises also at the outer edge of the
disc considered in Figure 4.8 and, in general, at any radius within a disc where Σd(a)
exhibits a discontinuity.

Finally, I note that the dynamics of particles orbiting outside the disc (where
Σd(a) = 0) is successfully reproduced by the classical Laplace-Lagrange theory without
adopting any softening prescription (e.g., see Petrovich et al., 2019). Indeed, outside
the radial extent of the disc semimajor axis overlap (i.e., ap = a) is naturally excluded
thus avoiding the classical singularity. Outside the disc the unsoftened calculations
based on the Heppenheimer method (e.g., SR15 and DR18) reduce to the classical
Laplace–Lagrange theory exactly.

4.6 Discussion

Results of previous sections reveal a diversity of outcomes when different softening
models are applied. Two models – those of Touma (2002) and Hahn (2003) – successfully
reproduce the unsoftened calculations based on the Heppenheimer method in the limit
of zero softening. In the same limit, the formalism of Tremaine (1998) yields convergent
results which are, however, different from the unsoftened calculations – typically by
tens of per cent. Finally, the softening method of Teyssandier & Ogilvie (2016) does not
lead to convergent results in the limit of vanishing softening parameter. Interestingly,
the two successful models – i.e., those of Touma (2002) and Hahn (2003) – have been
derived using rather different underlying assumptions (see Sections 4.2.1.2 and 4.2.1.3),
producing different mathematical expressions for ϕij (see Table 4.1), and yet their
results are consistent with the unsoftened calculations in the limit of ς → 0.

To understand this variation of outcomes, I developed a general framework for
computing the secular coefficients ϕij (thus fully determining the softened secular model
via Equations (4.4)–(4.6)) given an arbitrary softened two-point interaction potential
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in the form given by Equation (4.10). This procedure involves orbit-averaging the
softened potential along the particle trajectories; its details are presented in Appendix
A. There is also an alternative approach, sketched in Appendix A.4, which assumes
the disc to be a continuous entity from the start. Both of them arrive at the same
expressions for Rd.

Using these results, I show in Appendix B that the expressions for ϕij found by
Touma (2002) and Hahn (2003) can be recovered exactly using this general framework
if I set F(r1, r2) = b2

c and F(r1, r2) = H2(r2
1 + r2

2), respectively, in the expression
given by Equation (4.10) for the two-point potential. This approach also allows one
to address some of the questions raised above, which I do in Sections 4.6.1 and 4.6.2
below.

4.6.1 On the Softening Prescription of Tremaine (1998)

Results of Sections 4.3 and 4.4 indicate that the softening prescription of Tremaine (1998)
– unlike that of Touma (2002) and Hahn (2003) – leads to quantitative differences when
compared to the unsoftened calculations. I now demonstrate where these differences
come from.

The form of the softened Laplace coefficient B(m),Tr
s defined by Equation (4.12)

suggests an interaction potential (Equation 4.10) with F(r1, r2) = β2
cmax(r2

1, r
2
2) for

the softening model of Tremaine (1998). In Appendix B, I show that propagating this
form of F(r1, r2) through my general framework results in the following expressions
for the coefficients ϕij:

ϕ11 = ϕ22 = α

8

[
B(1),Tr

3/2 − 3αβ2
cB

(0),Tr
5/2 − δ(α− 1)β2

cB
(0),Tr
3/2

]
, (4.26)

ϕ12 = −α

4

[
B(2),Tr

3/2 − 3αβ2
cB

(1),Tr
5/2 − δ(α− 1)β2

cB
(1),Tr
3/2

]
. (4.27)

These expressions are different from the entries in Table 4.1 for Tremaine (1998)
in a single but very important way – the presence of terms involving Dirac delta-
function. Such terms arise because the form of F(r1, r2) adopted in Tremaine (1998)
is not sufficiently smooth – its first derivative is discontinuous at r1 = r2, while the
calculation of ϕij involves second-order derivatives of F ; see Equations (A.25)-(A.27),
as well as Equation (A.28). Such singular terms do not arise in other types of softening
prescriptions examined in this chapter since they all use infinitely differentiable versions
of F(r1, r2). Thus, these terms should not be interpreted as representing some kind
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of ‘self-interaction’ within the disc: they merely reflect the mathematical smoothness
properties of F used in Tremaine (1998).

Presence of these terms in Equations (4.26) and (4.27) introduces corrections to
coefficients Ad and Bd (Equations 4.5 and 4.6) in apse-aligned discs in the form:

δAd(ap) = − πG

2npap
β2
cΣd(ap)B(0),Tr

3/2

∣∣∣∣∣
α=1

, (4.28)

δBd(ap) = + πG

2npap
β2
cΣd(ap)ed(ap)B(1),Tr

3/2

∣∣∣∣∣
α=1

. (4.29)

Accounting for these corrections, I confirmed that the correct (unsoftened) behaviour of
the coefficients of Rd can be reproduced for the non-PL discs – Quartic and Gaussian
models, see Section 4.4. Note that δAd(ap) and δBd(ap) are proportional to the local
disc surface density Σd(ap) and B(m),Tr

3/2 (α = 1) ∼ β−2
c , see Equation (C.7). This likely

explains the improved agreement between the calculations of Tremaine (1998) and
Davydenkova & Rafikov (2018) for Gaussian rings (see Figure 4.7), which feature mass
concentration in a narrow range of radii (in contrast to the Quartic model, see Figure
4.6).

For PL discs the terms proportional to Dirac delta-function in Equations (4.26)
and (4.27) give rise to the following modifications of the coefficients ψ1 and ψ2 defined
by Equations (4.18) and (4.19):

δψ1 = −1
4β

2
cB

(0),Tr
3/2

∣∣∣∣∣
α=1

= − 1
2π +O(β2

c ), (4.30)

δψ2 = 1
2β

2
cB

(1),Tr
3/2

∣∣∣∣∣
α=1

= 1
π

+O(β2
c ), (4.31)

see Equation (4.20). These corrections exactly match the offsets seen in Figure 4.5
between the calculations of Tremaine (1998) and the unsoftened calculations, thus
explaining the origin of these uniform shifts. I also confirm this explanation in Figure
4.9, where I show the convergence of the modified Tremaine (1998) coefficients to the
correct unsoftened values as softening is varied for two values of p and q.

To summarise, Equations (4.26) and (4.27) should replace the expressions given by
Equation (26) of Tremaine (1998) in applications to continuous discs. However, when
considering the interaction of two individual annuli with different semimajor axes (like
in the classical Laplace–Lagrange theory), one has α ̸= 1 and terms in Equations (4.26)
and (4.27) containing Dirac delta-function naturally vanish, reducing ψ1 and ψ2 back
to the expressions quoted in Tremaine (1998).

107



Potential Softening and Eccentricity Dynamics in Razor-thin, nearly
Keplerian Discs

4.6.2 On the Softening Prescription of Teyssandier & Ogilvie
(2016)

I now turn my attention to the model of Teyssandier & Ogilvie (2016) trying to
understand its distinct (divergent) behaviour. From the expression for B(m),TO

s in
Equation (4.15), one infers that this model features softening parameter in the form
of ϵ2(α) = S2α. To soften secular interaction, Teyssandier & Ogilvie (2016) directly
substituted b

(m)
3/2 in the classical expressions (4.8) and (4.9) for ϕLL

ij with B(m),TO
3/2 , see

Section 4.2.1.4. This simple swap of Laplace coefficients has not been justified rigorously.
On the other hand, in Appendix B I show that softening parameter in the form

ϵ2(α) = ς2α corresponds to softening function F(r1, r2) = ς2r1r2 in the two-point
potential (Equation 4.10), see Equation (A.21). Propagating such a form of F(r1, r2)
through the general framework in Appendix A, I find the following expressions for the
coefficients ϕij with ς = S (Appendix B):

ϕ11 = ϕ22 = α

8

[
B(1),TO

3/2 + 1
2S

2B(0),TO
3/2 − 3

4S
2(2 + 2α2 + S2α)B(0),TO

5/2

]
, (4.32)

ϕ12 = −α

4

[
B(2),TO

3/2 + 1
2S

2B(1),TO
3/2 − 3

4S
2(2 + 2α2 + S2α)B(1),TO

5/2

]
. (4.33)

Approach of Teyssandier & Ogilvie (2016) accounts for only the first terms in
Equations (4.32) and (4.33), with coefficients which are O(S0), see Table 4.1. However,
as I show below, the correct behaviour of ϕij as S → 0 is guaranteed only when all the
terms present in the above expressions are taken into account.

To demonstrate this, in Figure 4.9 I repeat the same convergence study as in Section
4.3.1 but with the modified ϕij given by Equations (4.32) and (4.33). One can see that
the correct implementation of the softening ϵ2(α) = S2α proposed by Teyssandier &
Ogilvie (2016) leads to the recovery of the expected test particle dynamics in infinite
PL discs; this is very different from the divergent behaviour obvious in Figures 4.2(C)
and (D). Similar to Hahn (2003) and Touma (2002), both ψ1 and ψ2 smoothly converge
to their expected unsoftened values in the limit of S → 0 for various PL disc models
(i.e., p and q). Further tests using other disc models, looking at the edge effects, etc.
reinforce this conclusion.

This discussion strongly suggests that for any adopted form of softening, the
expansion of the secular disturbing function must be performed following a certain
rigorous procedure14 as done, for instance, in Appendix A. In other words, a direct

14An analogous method is to modify the literal expansion of the disturbing function (see Chapter 6
in Murray & Dermott, 1999) to account for softened interactions (e.g., Tremaine, 1998; Hahn, 2003;
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Figure 4.9. Similar to Figure 4.2, but now using the expressions for ϕij given by Equations
(4.26)–(4.27) and Equations (4.32)–(4.33) obtained by propagating F(r1, r2) = ς2max(r2
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of Tremaine (1998) and F(r1, r2) = ς2r1r2 of Teyssandier & Ogilvie (2016), respectively,
through the general framework outlined in Appendix A. Shown as a function of softening ς
are ψ1 (panel A) and ψ2 (panel B) for two PL disc models specified by p and q indicated in
panel A. Black lines represent the expectations based on Silsbee & Rafikov (2015a), to which
the new expressions for ψ1 and ψ2 successfully converge as ς → 0.

replacement of the classical Laplace coefficients b(m)
3/2 in Equation (4.1) with their

Lee et al., 2019). This could be done by replacing b(m)
1/2 with B(m)

1/2 in Equation (7.1) of Murray &
Dermott (1999) before applying the derivatives with respect to α. I note that this procedure could
apply for all F(r1, r2) with continuous first derivatives satisfying D1 +D2 = −1; see Appendix A.
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softened analogues is, evidently, not sufficient for obtaining a well-behaved softened
version of Laplace-Lagrange theory for coplanar discs.

4.6.3 Implications for Numerical Applications

In numerical studies of secular dynamics, self-gravitating discs are often treated as
a collection of N eccentric annuli (rings), with prescribed spacing (justified by the
constancy of the semimajor axis), interacting gravitationally with each other (e.g.,
Touma et al., 2009; Batygin, 2012). This representation approximates a continuous
particulate or fluid disc in the limit of N → ∞ (see e.g. Figure 4.1).

Computational cost associated with the evaluation of mutual ring-ring interactions
in this setup, going as O(N2), imposes limitations on the number of rings that can
be used in practice. This is typically not a problem for the unsoftened calculations,
which converge to the expected full disc result even with a relatively coarse radial
sampling of the integral contribution to e.g. the free precession rate. Indeed, purple
curves in Figures 4.3 and 4.4 demonstrate this by showing the unsoftened ψ̃1(x) and
ψ̃2(x) computed without accounting15 for the contributions from ad,i < ap < ad,o (see
Section 4.3.2) to the integral terms in the unsoftened expressions of Davydenkova &
Rafikov (2018). These curves converge to the correct full disc result without exhibiting
large variations in ψ̃1(x) and ψ̃2(x), typical for softened cases.

On the contrary, the results for the softened gravity presented in Section 4.3.2 do
elicit concern about the number of rings N that is needed to accurately capture the
eccentricity dynamics of continuous razor-thin discs. Indeed, Figures 4.3 and 4.4 reveal
that the expected secular dynamics can be recovered using various softened gravity
prescriptions only when one properly accounts for the gravitational effects of all disc
annuli, including those very close to the orbit of particle under consideration. Indeed,
I demonstrated that to reproduce both the magnitude and the sign of e.g. the free
precession rate, the distance ∆a separating a given test particle orbit from nearest
neighbouring inner and outer disc rings should be quite small, ∆a/ap ≲ 0.1ς2. Only
then does the delicate cancellation of large (in magnitude) contributions produced
by different parts of the disc recovers the expected (unsoftened) result. Thus, the
separation between the modelled disc rings has to be substantially lower than the
softening length itself (ςap), meaning that N has to be very large, N ≳ 10ς−2. This
could easily make numerical studies of the secular eccentricity dynamics in discs very
challenging.

15Note that, technically, in the unsoftened case this mathematical procedure is not equivalent to
introducing an actual physical gap in the disc, as the latter would result in additional boundary terms.

110



4.6 Discussion

I further confirmed this expectation by studying the convergence of disc-driven
free precession rate in numerically discretised softened discs to the precession rate Ad
computed exactly for continuous softened discs (Equations 4.5 and 4.18). To this end,
I represented a given disc model as a collection of N logarithmically spaced rings, and
measured the agreement between the radial profiles of theoretical and numerical results
for Ad (or ψ1 for PL discs) by using the following global metric16

M(f) =

√√√√∫ aout
ain

[ftheor(a) − fnum(a)]2da∫ aout
ain

f 2
theor(a)da . (4.34)

Here fnum(ai) is the value of the metric basis (e.g. precession rate Ad) evaluated at the
position ai of ith ring by summing up the contributions of all other rings in the disc,
while ftheor(ai) is the analogous quantity computed in the limit of a continuous disc,
i.e., as N → ∞ (it is given by the non-discretised version of Equation (4.5) if f = Ad,
or Equation (4.18) if f = ψ1). Repeating this calculation for various combinations
of (N, ς), I can determine the smallest number of rings N(ς) that ensures the desired
convergence to within, e.g., ∼ 10 per cent (i.e., M(f) ∼ 0.1), for a given value of
softening ς.

Figure 4.10 depicts a sample of the results obtained using the softening methods
of Hahn (2003), Tremaine (1998) and (rectified) Teyssandier & Ogilvie (2016) (see
Section 4.6.2) for various axisymmetric disc models as indicated in the legend17. Figure
4.10 shows that as ς → 0, the number of rings scales as N ∼ Cς−χ with18 C ∼ 10 and
χ ≈ (1.8−1.9). The only notable exception is the Gaussian ring, for which convergence
is faster (i.e., N ∝ ς−1.5), probably because of mass concentration in a narrow range of
radii.

I note that the proportionality constant C in the N(ς) relation is not perfectly
defined in the sense that it depends on the (i) desired accuracy (roughly inversely
proportional to M(f)), (ii) adopted metric of accuracy (mild dependence), and (iii)
softening prescription used — Figure 4.10 shows that discretised calculations using
softening model of Hahn (2003) require substantially lower (by ∼ 2) number of annuli
than those using the models of Teyssandier & Ogilvie (2016) and Tremaine (1998).
Nevertheless, these results further reinforce the requirement of large number of rings,

16For PL discs, I neglect rings within 10% of disc edges when computing M(ψ1).
17I exclude the softening method of Touma (2002) from this analysis as it introduces additional

complexity due to the nature of softening parameter; ϵ2 = b2/max(a2
1, a

2
2), see Section 4.2.1.2.

18For example, the curve computed using the (corrected) model of Teyssandier & Ogilvie (2016)
has C = 10.9 and χ = 1.91, while the one for Quartic disc has C = 7.2 and χ = 1.75.
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Figure 4.10. Scaling of number of softened annuli (rings) N with softening parameter ς
to ensure convergence of disc-driven free precession Ad (or ψ1) in discretised discs to the
expected results in continuous softened discs (Equations 4.5 and 4.18). Calculations assume
axisymmetric disc models extending from ain = 0.1 to aout = 5 AU: two PL discs (specified
by p), a Quartic disc (same as Figure 4.6) and a Gaussian ring (same as Figure 4.7). I have
used the softening methods of Hahn (2003), Tremaine (1998) and (corrected) Teyssandier &
Ogilvie (2016), as specified in the panel. Convergence is measured using the metric M(f)
defined by Equation (4.34). One can see that, when ς ≲ 0.1, N ∼ Cς−χ, with C ∼ 10
and 1.5 ≲ χ ≲ 2. Similar results can be obtained for eccentric discs, and other softening
prescriptions. See the text (Section 4.6.3) for details.

with N ∼ ς−2, to capture the expected secular eccentricity dynamics in nearly Keplerian
discs.

Qualitatively similar results were stated in Hahn (2003) who showed that the secular
effects of a continuous disc can be recovered only when the disc rings are sufficiently
numerous that their radial separation is below the softening length. Although, inter-
estingly, Hahn (2003) and Lee et al. (2019) claimed good convergence of the precession
rate to the expected value already for N ∼ O(ς−1) (however, note that Lee et al. (2019)
also included effects of gas pressure in their calculations, in addition to disc gravity). In
my case, the condition on the separation between disc rings motivated by Figures 4.3
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and 4.4 (i.e., ∆a/ap ≲ 0.1ς2), along with the results presented in Figure 4.10, indicate
that accurate representation of eccentricity dynamics in a cold, razor-thin disc requires
a very large number of rings N whenever small values of the softening parameter are
used.

As I have shown in Section 4.5, very small values of softening ς ≲ 10−3 are, in
fact, necessary to accurately capture eccentricity dynamics near the sharp edges of
thin discs. This suggests that N has to be prohibitively large when softened gravity is
applied e.g. to study the dynamics of planetary rings (Goldreich & Tremaine, 1979;
Chiang & Goldreich, 2000; Pan & Wu, 2016), which are known to have sharp edges.

4.6.4 Further Generalizations and Extensions

All calculations presented in this chapter are based on the expansion of the secular
disturbing function Rd due to a coplanar disc — softened and unsoftened — to second
order in eccentricities. This approximation may yield inaccurate results when the
disc or particle eccentricities are high, e.g., in the vicinity of secular resonances where
Ad(ap) = 0 (e.g. Davydenkova & Rafikov, 2018), see Figures 4.6 and 4.7. Such situations
may necessitate a higher order extension of the disc potential.

Such an exercise was pursued recently by Sefilian & Touma (2019) who presented
a calculation of Rd to fourth order in eccentricities based on the unsoftened method
of Heppenheimer (1980). The general framework for calculating Rd with arbitrary
softening prescriptions presented in Appendix A can also be extended to higher order
in eccentricities in similar way19; see e.g. Touma & Sridhar (2012). I expect that
conclusions similar to those drawn from my analysis in Sections 4.3–4.5 will also apply
to the higher order expansions.

Additionally, although I only analysed coplanar configurations in this chapter,
the general framework presented in Appendix A may be extended to account for
non-coplanar configurations and study the inclination dynamics.

4.7 Summary

In this chapter, I investigated the applicability of softened gravity for computing the
orbit-averaged potential of razor-thin eccentric discs. I compared the disc-driven secular
dynamics of coplanar test-particles computed using softening prescriptions available in

19Another way to calculate the softened disturbing function for arbitrarily high eccentricities is to
numerically compute the ring-ring interaction potential as was done by Touma et al. (2009); see also
Sefilian & Touma (2019).
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the literature with the calculations based on the unsoftened method of Heppenheimer
(1980). My findings can be summarised as follows:

• I confirmed that the softening methods of both Touma (2002) and Hahn (2003)
correctly reproduce the eccentricity dynamics of razor-thin discs in the limit of
vanishing softening parameter ς for all disc models.

• The softening prescription proposed in Tremaine (1998) yields convergent results
as ς → 0. However, quantitative differences of up to ∼ 20 − 30 per cent from the
unsoftened calculations are observed. I demonstrated that these differences arise
because of the insufficient smoothness of the interparticle interaction assumed in
Tremaine (1998).

• The softening formalism suggested in Teyssandier & Ogilvie (2016) does not
result in convergent results in the limit of zero softening.

• Very small values of the (dimensionless) softening parameter are required for
correctly reproducing the secular eccentricity dynamics near sharp edges of
discs/rings.

• I developed a general analytical framework for computing the secular disturbing
function between two coplanar rings with arbitrary interaction potential of rather
general form (Equation 4.10). This framework accurately reproduces the orbit-
averaged potential of razor-thin discs as ς → 0 for a wide class of softened gravity
models.

• Using this general framework, I demonstrated that an accurate implementation
of the softened potentials suggested in both Tremaine (1998) and Teyssandier &
Ogilvie (2016) leads to the recovery of the expected dynamical behaviour in the
limit of small softening.

• My results suggest that the numerical treatments of the secular eccentricity
dynamics in softened, nearly Keplerian discs must obey important constraints.
Namely, a fine numerical sampling (i.e., large number N of discrete annuli
representing the disc, with N ∼ Cς−χ where C ∼ O(10) and 1.5 ≲ χ ≲ 2 is
required to ensure that the correct secular behaviour is properly captured by
such calculations when ς is small. This finding has important ramifications for
numerical treatments of astrophysical discs, especially planetary rings with sharp
edges.
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4.7 Summary

In the future, my results for the disc-driven eccentricity dynamics may be extended
to higher order in eccentricity, as well as generalised for treating inclination dynamics.

Finally, I close this chapter by pointing out that the results reported here will be
useful for my work presented in the forthcoming two chapters (i.e., Chapters 5 and 6),
where I investigate the secular interactions between planets and self-gravitating debris
discs.
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Chapter 5

Planet–Debris Disc Interactions I:
A Simplified Model

5.1 Introduction

As already discussed in Chapter 2, spatially resolved images of debris discs frequently
reveal complex morphologies such as gaps, spirals, and warps. Most existing models
for explaining such morphologies focus on the role of massive perturbers (i.e., planets,
stellar companions), ignoring the gravitational effects of the disc itself. Nonetheless, this
assumption may not always be justified, especially in view of observations suggesting
that debris discs could contain tens of Earth masses in large planetesimals (Wyatt &
Dent, 2002; Greaves et al., 2005; Krivov & Wyatt, 2021, see also Section 2.6).

In this and the following chapter, I investigate the long-term, secular interaction
between an eccentric planet and an external, massive debris disc. The primary aim of
this chapter is to present a novel pathway to sculpting gaps, i.e., depleted regions, in
broad debris discs. Prior to describing my work, however, it is useful to take a step
back and briefly describe the existing mechanisms for sculpting gaps in debris discs,
which would also help to put my research into context. The work presented in this
chapter has been published in The Astrophysical Journal as Sefilian et al. (2021).

5.1.1 Existing Mechanisms and This Work

As already mentioned in Section 2.3.1, at least four debris discs are known to exhibit
double-belt structures that are separated by depleted gaps in their dust distribu-
tion as traced by ALMA: HD 107146 (Ricci et al., 2015; Marino et al., 2018a), HD
92945 (Marino et al., 2019), HD 15115 (MacGregor et al., 2019), and HD 206893 (Marino
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et al., 2020; Nederlander et al., 2021). These systems (except HD 206893) have no
known companions or planets to date, and the discs are gas-poor. In this chapter,
I mainly focus on the nearly face-on disc of HD 107146, a nearby ∼ 80 − 200 Myr
old G2V star (Williams et al., 2004). This disc, extending from ∼30 au to ∼150
au, features a circular ∼40 au wide gap centred at around 70 − 80 au in which the
continuum emission drops by ∼ 50% (Ricci et al., 2015; Marino et al., 2018a); see
Figures 2.6 and 2.7.

Various mechanisms have been explored for explaining the origin of gaps in debris
discs. In analogy with the asteroid and Kuiper belts, the most popular scenario involves
the presence of single or multiple planets orbiting within the depleted region, which
are either stationary or migrating (e.g., Schüppler et al., 2016; Shannon et al., 2016;
Zheng et al., 2017; Morrison & Kratter, 2018; Friebe et al., 2022). For instance, it has
been suggested that multiple stationary planets or a single but migrating planet of
few tens of Earth masses on a near-circular orbit at ∼ 70 − 80 au could reproduce HD
107146’s gap (e.g., see Ricci et al., 2015; Marino et al., 2018a).

Other scenarios involving planets interior to the disc, rather than embedded within,
have also been considered. For instance, Tabeshian & Wiegert (2016) showed that
a low-eccentricity planet can carve a gap at its external 2:1 mean motion resonance.
On the other hand, Pearce & Wyatt (2015) demonstrated that HD 107146–like discs
could be produced as a result of secular interactions and scattering events between a
massive (∼ 10 − 100M⊕) planetesimal disc and an initially high-eccentricity (∼ 0.5)
planet of comparable mass to the disc. In the course of evolution, the planetary orbit
is then circularised due to scattering events. However, Pearce & Wyatt (2015) consider
only the back reaction of the disc on the planet (and vice versa) in their simulations,
neglecting the disc self-gravity.

Finally, Yelverton & Kennedy (2018) considered a scenario whereby two coplanar
planets carve a gap through their secular resonances within an external debris disc,
which was assumed to be massless. In their model, the secular resonances occur at
sites where the precession rates of the planets (i.e., system’s eigenfrequencies) match
that of the planetesimals in the disc (due to planetary perturbations). They find that
at and around one of the two resonant sites, planetesimal eccentricities are excited,
triggering a depletion in the disc surface density of the kind seen in HD 107146.

The model proposed by Yelverton & Kennedy (2018) requires (at least) two planets
to ensure that their orbits are precessing due to planet-planet interactions, a condition
necessary for establishing secular resonances. However, another mechanism that may
drive planetary precession is the secular perturbation due to the disc, which was ignored
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by Yelverton & Kennedy (2018). This motivates my investigation into whether gaps
could be carved in self-gravitating debris discs via secular resonances when perturbed
by single rather than multiple inner planets. A related scenario was studied by Zheng
et al. (2017), who showed that a single planet embedded within a decaying gaseous disc
(i.e., transitional disc) could carve a wide gap around its orbit via sweeping secular
resonances assisted by the waning disc gravity.

In this chapter, I propose that double-ringed structures – akin to that of HD 107146 –
could be explained as the aftermath of secular resonances in systems hosting a single
eccentric planet and an external self-gravitating debris disc. The mechanism I invoke
here is different from those of Pearce & Wyatt (2015) and Yelverton & Kennedy (2018).
My mechanism is realised through a secular resonance between the apsidal precession
rate of planetesimals due to both the disc and planet, and that of the planet due to
disc gravity (see, Yelverton & Kennedy, 2018). Additionally, my mechanism does not
require scattering events between the planet and disc particles (see, Pearce & Wyatt,
2015). As I show below, this mechanism is robust over a wide range of parameters;
particularly when the disc is less massive than the planet.

The rest of this chapter is organised as follows. In Section 5.2, I first describe my
model system and then present the equations governing the secular evolution of the
system. In Section 5.3, I describe the essential features of planetesimal dynamics in
the combined planet–disc potential. I then characterise the features of the secular
resonances over a wide range of parameter space in Section 5.4. In Section 5.5 I
apply these considerations to HD 107146, and identify the planet–disc parameters that
could reproduce the observed gap. In Section 5.6, using some of these parameters, I
investigate the evolution of planet–disc systems and present my main results. I discuss
my results along with their observational and theoretical implications in Section 5.7,
where I also consider the application of my results to other systems; namely, HD
92945 and HD 206893. Finally, I critically asses the limitations of my model in Section
5.8, and summarise my findings in Section 5.9.

5.2 Analytical Model

I now describe a simple model to analyse the long-term dynamical evolution of plan-
etesimals embedded within a massive debris disc in a single-planet system. In my
notation, a planetesimal orbit is characterised by its semimajor axis a, eccentricity e,
and longitude of pericentre ϖ. Orbital elements subscripted with ‘p’ and ‘d’ refer to
the planet and the disc, respectively.
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Figure 5.1. A sketch of the initial setup of the model system considered in Chapter 5. A
central star of mass Mc is orbited by a planet of mass mp and an external debris disc of mass
Md (Md,mp ≪ Mc). The planetary orbit (dashed green line), characterised by its semimajor
axis ap, is slightly eccentric (ep ≤ 0.1) such that it does not cross the disc along its orbit.
The disc, extending from ain to aout ≫ ain, is razor-thin and axisymmetric characterised by a
surface density profile given by Equation (5.1). The entire star-planet-disc system is coplanar.

5.2.1 Model System

My model system consists of a broad debris disc of mass Md orbiting the host star
Mc exterior to, and coplanar with, a planet of mass mp (Md,mp ≪ Mc). I assume
that the planet is initially on a low-eccentricity orbit (ep ≤ 0.1) and that it does not
intersect the disc along its orbit. I consider the debris disc to be razor-thin and initially
axisymmetric. Figure 5.1 illustrates a sketch of the model system’s initial configuration.
The disc surface density is characterised by a truncated power-law profile given by

Σd(a) = Σ0

(
aout

a

)p
(5.1)

for ain ≤ a ≤ aout, and Σd(a) = 0 elsewhere. Here, ain and aout are the semimajor axes
of the inner and outer disc edges, respectively. Defining δ ≡ aout/ain > 1, the total
mass Md of such a disc can be written as

Md = 2π
2 − p

Σ0a
2
out

(
1 − δp−2

)
, (5.2)

which allows me to express Σd in terms of Md. This setup is very similar to that
explored in Rafikov (2013) and Silsbee & Rafikov (2015b) in the context of planetesimal
dynamics in circumbinary protoplanetary discs.

In this chapter, unless otherwise stated, I adopt a fiducial disc model with p = 1,
ain = 30 au, and aout = 150 au (i.e., δ = 5). This choice of p corresponds to a disc with
a constant amount of mass per unit semimajor axis.
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5.2.2 Secular Gravitational Effects

I am primarily interested in the long-term dynamics of large (i.e., ∼kilometre-sized)
planetesimals. Since the latter are effectively insensitive to radiative non-gravitational
forces (Section 2.2), I focus purely on gravitational effects1 accounting for perturbations
due to both (1) the debris disc and (2) the planet. For simplicity, however, the non-
axisymmetric component of the disc gravity is ignored in this chapter, although, as
we will see later (Section 5.6), the disc naturally develops non-axisymmetry (this
limitation will be relaxed in Chapter 6). I perform calculations within the framework of
secular (orbit-averaged) perturbation theory to second order in eccentricities (Murray
& Dermott, 1999, see also Chapter 3).

5.2.2.1 Effects of the Disc and Planet on Planetesimals

The secular dynamics of planetesimals is described by the disturbing function R, which
consists of contributions due to the planet Rp and due to the disc Rd. An analytic
expression for the disturbing function Rd due to an axisymmetric disc with surface
density of the form given by Equation (5.1) has been previously derived in Silsbee &
Rafikov (2015a); see also Chapter 4 and the references therein. Combining Rd with
the contribution Rp due to the planet (e.g. Murray & Dermott, 1999, Equation (7.7)),
the total disturbing function R = Rd +Rp to second order in eccentricities reads as:

R = na2
[1
2Ae

2 +Bpe cos (ϖ −ϖp)
]
, (5.3)

where n =
√
GMc/a3 is the planetesimal mean motion, and the meaning of different

constants is explained below.
In Equation (5.3), A = Ad +Ap is the precession rate of the free eccentricity vector

of a planetesimal. It has contributions from both the gravity of the disc (Ad) and the
planet (Ap). The contribution of the planet is (Murray & Dermott, 1999)

Ap = 1
4n

mp

Mc

ap
a
b

(1)
3/2(ap/a), (5.4)

≈ 35.5 × 10−2 Myr−1 mp

0.6MJ

a2
p,20 a

−7/2
70 M

−1/2
c,1.09,

1Note that while non-gravitational thermal effects such as Yarkovsky and YORP may also influence
the evolution of ∼km-sized planetesimals (Section 2.2.4), these can be neglected for the purposes
of my study. This is because (i) the Yarkovsky effect induces e.g. a semimajor axis drift of only
≲ 10−5 − 10−6 au/Myr for large planetesimals at ∼ 10 − 100 au (e.g., Vokrouhlický et al., 2015;
Xu et al., 2020, and references therein), while (ii) the YORP effect modifies the rotation rates and
obliquities of bodies, which I do not model here.
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where ap,20 ≡ ap/(20 au), a70 ≡ a/(70 au), Mc,1.09 ≡ Mc/(1.09M⊙), b(m)
s (α) is the

Laplace coefficient given by Equation (4.2), and the numerical estimate in Equation
(5.4) assumes ap/a ≪ 1 so that b(1)

3/2(α) ≈ 3α. The contribution of the disc to the free
precession is (Silsbee & Rafikov, 2015a, see also Equation (4.20))

Ad = 2πGΣd(a)
na

ψ1 = (2 − p)nMd

Mc

(
a

aout

)2−p
ψ1

1 − δp−2 (5.5)

≈ −14.4 × 10−2 Myr−1 Md

20M⊕
a

−1/2
70

M
−1/2
c,1.09

aout,150

ψ1

−0.5 ,

where aout,150 ≡ aout/(150 au), and the numerical estimate is for p = 1 and δ ≫ 1 such
that ψ1 ≈ −0.5 (e.g. Figure 4.5).

In general, the coefficient ψ1 in Equation (5.5) depends on the power-law index p
as well as the planetesimal semimajor axis with respect to the disc edges (Chapter 4,
see also Equation (A33) in Silsbee & Rafikov (2015a)). As the sharp edges of the disc
are approached, ψ1 formally diverges (see Figure 4.8). However, when the planetesimal
is well separated from the edges (i.e., ain ≪ a ≪ aout), ψ1 is effectively a constant
of order unity (depending on p, see Figure 4.5), which can be well approximated by
Equation (A37) in Silsbee & Rafikov (2015a). It is very important to note that the
disc and the planet drive planetesimal precession in opposite directions, Ap > 0 and
Ad < 0, with Ap(a) falling off more rapidly with a than |Ad(a)|.

The term Bp in Equation (5.3) represents the excitation of planetesimal eccentricity
due to the non-axisymmetric component of the planetary potential. It is given by
(Murray & Dermott, 1999)

Bp = −1
4n

mp

Mc

ap
a
b

(2)
3/2(ap/a)ep. (5.6)

Note that the analogous term due to the disc is absent in Equation (5.3), since I have
neglected the non-axisymmetric component of the disc self-gravity.

5.2.2.2 Effect of the Disc on Planet

Next I consider the effect of the disc on the planet. Since the disc is taken to be
axisymmetric, it simply causes the planetary apsidal angle to advance linearly in time
such that ϖp(t) = Ad,pt + ϖp(0), i.e., ϖ̇p = Ad,p, without exchanging its angular
momentum with the planet. In this chapter, without loss of generality, I set ϖp(0) = 0.
In Appendix E, I show that the planetary precession rate Ad,p due to the disc with
surface density of the form given by Equation (5.1) can be written as (see also, Petrovich

122



5.2 Analytical Model

et al., 2019):

Ad,p = 3
4np

2 − p

p+ 1
Md

Mc

(
ap
aout

)3 δp+1 − 1
1 − δp−2ϕ

c
1 (5.7)

≈ 19.4 × 10−2 Myr−1 Md

20M⊕

a
3/2
p,20

aout,150 a2
in,30

M
−1/2
c,1.09,

where np =
√
GMc/a3

p is the planetary mean motion, ain,30 ≡ ain/(30 au), and the
numerical estimate is for p = 1 and ap = 20 au such that ϕc1 ≈ 1.8. Here ϕc1 =
ϕc1(ap/ain, p, δ) is a factor of order unity accounting for contributions of the disc annuli
close to the planet (Equation E.7). I show its behaviour as a function of ap/ain and for
various disc models (i.e., p, δ) in Figure E.1. For ap/ain ≪ 1, one has ϕc1 ≈ 1 regardless
of (p, δ).

5.2.2.3 Combined Planet–Disc Effects

The fact that the planet is precessing renders the forcing term in R (Equation 5.3)
time-dependent. This time dependence could be eliminated upon transferring to a
frame precessing with the planetary orbit, i.e., by subtracting ΦAd,p from Equation
(5.3) where Φ = na2

(
1 −

√
1 − e2

)
≈ na2e2/2 is the action conjugate to the angle

∆ϖ ≡ ϖ −ϖp. As a result, I obtain the following expression:

R = na2
[1
2 (A− Ad,p) e2 +Bpe cos ∆ϖ

]
. (5.8)

This completes my development of the disturbing function.
It is worthwhile to note that for the particular set of parameters in equations (5.4),

(5.5), and (5.7), the planetesimal free precession rate A at a = 70 au is comparable
to that of the planetary orbit, Ad,p. In Figure 5.2 I show the radial behaviour of
A = Ad + Ap, together with the curve for Ad,p. The fact that A(a) = Ad,p at certain
semimajor axes has very important implications for planetesimal dynamics; see Section
5.3.

5.2.3 Evolution Equations and Their Solution

The secular evolution of a planetesimal orbit in the combined potential of the planet
and the disc can be determined by Lagrange’s planetary equations (Murray & Dermott,
1999, see also Section 3.2.3). Introducing the eccentricity vector e = (K,H) =
e(cos ∆ϖ, sin ∆ϖ), convenient for describing the dynamics in the frame corotating
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Figure 5.2. Planetesimal free precession rate A = Ad + Ap due to both the planet and
the disc as a function of semimajor axis (red curve). Dotted and dashed curves represent
Ap(a) and Ad(a), respectively. The blue line represents the rate of planetary precession Ad,p
due to the disc. Calculations assume a 20M⊕ disc with p = 1 extending from ain = 30 au
to aout = 150 au, and a 0.6MJ planet at ap = 20 au around a 1.09M⊙ star (Model A, Table
5.1). Note that A(a) = Ad,p at two locations: at 70 au and at ≃ ain.

with the planet (e.g. Heppenheimer, 1980), I find that:

dK

dt
≈ −1

na2
∂R

∂H
= −(A− Ad,p)H,

dH

dt
≈ 1

na2
∂R

∂K
= (A− Ad,p)K +Bp. (5.9)

Note that in the case of a massless disc (Ad,p = 0, A = Ap), one recovers the evolution
equations due to a non-precessing perturbing planet (e.g. Murray & Dermott, 1999).

The system of equations (5.9) admits a general solution given by the superposition
of the ‘free’ and ‘forced’ eccentricity vectors, e(t) = efree(t) + eforced(t) (Murray &
Dermott, 1999, see also Section 3.2.4.1). In particular, when planetesimals are initiated
on circular orbits, K(0) = H(0) = 0, one has efree = eforced and the evolution of

124



5.3 Planetesimal Eccentricity Behaviour and Secular Resonances

planetesimal orbits is described by:

e(t) = 2
∣∣∣∣∣eforced sin

(
A− Ad,p

2 t
) ∣∣∣∣∣, (5.10)

tan ∆ϖ(t) = tan
(
A− Ad,p

2 t− π

2

)
, (5.11)

where ∆ϖ stays in the range [−π, π], and the forced eccentricity is given by

eforced(a) = −Bp(a)
A(a) − Ad,p

= −Bp(a)
Ad(a) + Ap(a) − Ad,p

. (5.12)

Equations (5.10)–(5.12) represent the key solutions needed for my work. I remark that
this framework has been previously verified against direct orbit integrations of test
particles in discs (e.g., Chapter 4; Silsbee & Rafikov, 2015a; Fontana & Marzari, 2016;
Davydenkova & Rafikov, 2018).

For illustrative purposes, in Figure 5.3 I show the radial profiles of instantaneous
eccentricities (left panels) and longitudes of pericentre (relative to the planet, right
panels) of planetesimals computed using Equations (5.10) and (5.11) (i.e., for e(0) = 0)
at different times, as indicated in each panel. The calculations assume the same
disc–planet parameters as in Figure 5.2, and I have taken ep = 0.05 – the parameters
of the fiducial disc–planet model (Model A, Table 5.1) that I consider in detail later in
this chapter (Section 5.6). Furthermore, here I have sampled secular evolution using
N = 5000 planetesimals with semimajor axes distributed logarithmically between ain

and aout, i.e., with a ratio of spacing β = (aout/ain)1/N ≈ 1.0003, each of which is
represented by a blue dot in Figure 5.3. I note that, as is typical for secular evolution,
the eccentricity oscillation at a given semimajor axis is bounded between the initial
value of 0 and em(a) = 2|eforced(a)| (the red lines in left panels of Figure 5.3). Moreover,
as expected, the period of each eccentricity oscillation in the frame corotating with the
planet is given by τsec = 2π/(A− Ad,p).

5.3 Planetesimal Eccentricity Behaviour and Secu-
lar Resonances

I now describe the essential features of planetesimal dynamics in the combined disc–
planet potential2. In general, planetesimal orbits evolve differently depending on their

2For a detailed summary of the dynamics in an analogous setup (in application to planetesimal
dynamics in circumbinary protoplanetary discs), see Rafikov (2013) and Silsbee & Rafikov (2015b).
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Figure 5.3. Snapshots of the planetesimal eccentricities e (left panels) and apsidal angles
∆ϖ (right panels, measured relative to that of the precessing planet) as a function of
semimajor axis a after t = 1, 10, 30, 50, 80, and 100 Myr of evolution (top to bottom). The
time is also indicated relative to τ ≈ 135 Myr, Equation (5.15). The planetesimals were
initiated on circular orbits in the fiducial disc–planet model (Model A, Table 5.1). The
maximum of eccentricity oscillations em = 2|eforced| (Equation 5.12) is shown by the red lines.
For reference, the solid black lines show the maximum planetesimal eccentricities driven by
the planet in the absence of the disc (em,p, Equation 5.13). The dashed vertical lines show
the secular resonance location (ares = 70 au), where eccentricities diverge in the course of
evolution. One can clearly see that at the resonance ∆ϖ = −π/2 at all times. Note also
the resonance near the disc inner edge. An animated version of this figure has been made
available online.
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free precession rate A(a) relative to that of the planet Ad,p, i.e., for A(a) > Ad,p or
A(a) < Ad,p – see Equations (5.10) and (5.11).

For the particular set of parameters in Figures 5.2 and 5.3, I find that the regime
A(a) > Ad,p is realised at small separations from the planet, where the precession rate
of planetesimals is dominated by the planet so that A ≈ Ap (except near ain where Ad
diverges due to disc edge effects; see e.g. Chapter 4 and Silsbee & Rafikov (2015a)); see
also Equations (5.4) and (5.5). In this planet-dominated regime, planetesimal orbits
precess in the same direction as the planet (i.e., prograde, see Equation 5.11 and right
panels of Figure 5.3), and one has eforced > 0 (Equation 5.12). Thus, as planetesimal
orbits evolve, the apsidal angles ∆ϖ remain constrained within [−π/2, π/2] at all
times. Moreover, planetesimals attain their maximum eccentricity when their orbits
are aligned with that of the planet, i.e., when ∆ϖ = 0; see Equation (5.10) and Figure
5.3. Assuming Ap ≳ Ad,p, the maximum planetesimal eccentricity in this regime is
em,p ≈ |2eforced,p| with (e.g. Murray & Dermott, 1999)

eforced,p = −Bp

Ap
=
b

(2)
3/2(ap/a)
b

(1)
3/2(ap/a)

ep ≈ 5
4
ap
a
ep, (5.13)

≈ 1.8 × 10−2ap,20

a70

ep
0.05 ,

see Equation (5.12), where I have used the approximations b(1)
3/2(α) ≈ 3α and b(2)

3/2(α) ≈
(15/4)α2 valid for small α. This is the limit of a massless disc, a configuration most
often adopted in studies of debris discs (see e.g. Sections 2.4 and 2.6). In the course of
evolution, planetesimals in this regime will form an eccentric structure largely aligned
with the planetary orbit (e.g. Wyatt et al., 1999).

In the opposite disc-dominated limit, far from the planet (and for a ≈ ain, which I
discuss later), Figure 5.2 shows that the precession rate of planetesimals is dominated
by the disc so that A ≈ −|Ad| ≲ Ad,p. In this regime, planetesimal orbits undergo
retrograde free precession (see Equation 5.11 and the right panels of Figure 5.3), and
one has eforced < 0. Thus, the apsidal angles ∆ϖ are confined within the range ±[π/2, π]
at all times. Moreover, planetesimals attain their maximum eccentricity when their
orbits are anti-aligned with the planetary orbit, i.e., when |∆ϖ| = π; see Equation
(5.10). Assuming Ad,p → 0 for simplicity, the maximum eccentricity in this regime is
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em,d ≈ |2eforced,d| with

|eforced,d| =
∣∣∣∣∣Bp

Ad

∣∣∣∣∣ ≈ 15ep
16|(2 − p)ψ1|

mp

Md

(
ap
a

)3 (aout

a

)2−p
, (5.14)

≈ 4.7 × 10−3mp

Md

ep
0.05

a3
p,20aout,150

a4
70

,

where the numerical estimate assumes p = 1 and ain ≪ a ≪ aout so that ψ1 ≈ −0.5.
Equation (5.14) shows that planetesimal eccentricities in the disc-dominated regime
decline more rapidly with a than in the planet-dominated regime, and their magnitude
is suppressed – an effect pointed out in Rafikov (2013). In the course of evolution,
planetesimals in this regime will form an eccentric structure anti-aligned with the
planetary orbit.

5.3.1 Main Secular Resonance

More importantly, one can clearly see that the transition between planet- and disc-
dominated regimes occurs via a secular eccentricity resonance where A(a) = Ad,p; see
Figure 5.2 (see also Rafikov, 2013; Silsbee & Rafikov, 2015b). This resonance emerges
because the relative precession between the planetesimal orbits and the planetary orbit
vanishes, while the torque exerted by the non-axisymmetric component of the planet
is nonzero. At and around the locations of secular resonances, a = ares, planetesimal
eccentricities are forced to arbitrarily large values (in linear approximation); see the
left panels of Figure 5.3. This is because the denominator in Equation (5.12) becomes
small, introducing a singularity into the secular solution3 (Rafikov, 2013). By taking a
limit A(ares) → Ad,p in Equation (5.12), I find that the growth of eccentricity at the
resonance occurs linearly in time, e(t) = t/τ , with a characteristic timescale given by

τ = 1
|Bp(ares)|

≈ 158 Myr0.6MJ

mp

0.05
ep

a
9/2
res,70

a3
p,20

M
1/2
c,1.09, (5.15)

where the approximation is valid for ap ≪ ares. Equation (5.15) also explains why the
eccentricities at the resonance near the disc inner edge are pumped up more quickly
than at the resonance at 70 au, see the left panels of Figure 5.3.

Moreover, one can see from the right panels of Figure 5.3 that at the resonance, ∆ϖ
remains fixed at −π/2 as expected from Equation (5.11); see the right panels of Figure

3Including higher-order terms (in eccentricities) of the disturbing function of Equation (5.8) imposes
a finite upper limit on the amplitude of eforced at secular resonance (Malhotra, 1998; Ward & Hahn,
1998a).
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Figure 5.4. Forced eccentricities of planetesimals as a function of their semimajor axis
a, computed for different values of Md/mp (with fixed mp = 0.6MJ). The calculations
assume all other system parameters are the same as in Figures 5.2 and 5.3. All of these
curves scale linearly with the planetary eccentricity ep, which I have taken to be 0.05 in
this calculation. For reference, the black dashed line shows forced eccentricity in the case
of a massless disc eforced,p (Equation 5.13), and the dotted line illustrates the asymptotic
behaviour of eccentricity given by eforced,d (Equation 5.14). Note the occurrence of two secular
resonances for 10−3 ≤ Md/mp ≤ 1, with one of them being near the inner disc edge. See the
text (Section 5.3) for details.

5.3. In Section 5.4.1 I will show that such secular resonances are generic: they occur
for a large range of disc-to-planet mass ratios, 10−4 ≲Md/mp ≲ 2, for all ap ≲ ain.

To further illustrate the analysis above, Figure 5.4 shows the radial profiles of
planetesimal forced eccentricities computed for different values of disc mass. The
calculations are done for the same planetary parameters as in Figures 5.2 and 5.3. The
most pronounced feature in Figure 5.4 is the occurrence of a secular resonance within
the disc (apart from the one very close to ain, see below) for 10−3 ≤ Md/mp ≤ 1, where
eforced diverges. At the same time, eforced asymptotically approaches eforced,p inward of
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the resonance, i.e., where A ≳ Ad,p, whereas eforced → eforced,d external to it, i.e., where
A ≲ Ad,p (which is, of course, possible only if ain ≲ ares ≲ aout). At the highest disc
mass, Md/mp = 2, there are no secular resonances as the disc dominates planetesimal
precession throughout the whole disc.

I note that in the region where the dynamics is dominated by the disc, eforced(a)
does not follow the simple power-law profile ∝ a−4 given by Equation (5.14). By and
large, this is because the disc edge effects neglected in computing Equation (5.14)
render ψ1 = ψ1(a) in a nontrivial manner, even when ain ≲ a ≲ aout (Silsbee & Rafikov,
2015a). For instance, it is evident in Figure 5.2 that Ad(a) behaves more like a constant
for ain ≪ a ≪ aout rather than as Ad ∝ a−1/2 (Equation 5.5), implying that |ψ1| ∝ a1/2

for the employed disc model. This will be important in Section 5.4.1. As a matter of
fact, ψ1 becomes independent of semimajor axis only in discs of infinite radial extent
(Chapter 4; Silsbee & Rafikov, 2015a), whereas the radial range of the disc that I have
adopted is finite with δ = aout/ain = 5 (Section 5.2.1).

5.3.2 Secular Resonance at ain

Finally, I clarify that the origin of the resonance at ≈ ain (apart from the one at ≳ ain)
lies in the fact that Ad ∝ −|ψ1| diverges as the sharp edges of a razor-thin disc are
approached; see the black dashed lines in Figure 5.2. This makes |Ad(a)| ∼ Ap(a) as
a → ain, even for a modest value of disc mass. However, it is also known that discs
with Σd dropping continuously near the edges rather than discontinuously, or discs
with small but nonzero thickness, should exhibit finite Ad near the edges (Chapter
4; Davydenkova & Rafikov, 2018); different from my disc model. Thus, in such more
realistic discs, only a single resonance – rather than two – will occur, as we shall
see later in Chapter 6. For now, this is portrayed in Figure 5.4 for Md/mp = 1 by
artificially stipulating ψ1(a) = −0.5, i.e. by ignoring the edge effects (Chapter 4; Silsbee
& Rafikov, 2015a).

5.3.3 Secular Resonances and Gaps in Debris Discs

To summarise, the analysis presented in this section elucidates that the disc gravity can
have a considerable impact on the secular evolution of planetesimals. In the remainder
of this chapter, I exploit the feasibility of the discussed secular resonance as the basis
of a mechanism for sculpting depleted regions, i.e., gaps, in debris discs.

The emergence of a gap could be understood as follows. Planetesimals on eccentric
orbits spend most of their time near their apocentre, farther away from their orbital
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semimajor axes. Thus, provided that a secular resonance occurs within the disc, I
expect the surface density of planetesimals to be depleted around the resonance location
where planetesimal eccentricities grow without bound. This reasoning, in essence, is
similar to that presented by Yelverton & Kennedy (2018) where the authors show that
two planets could carve a gap in an external massless debris disc through their secular
resonances. Additionally, given that generally planetesimals in the inner disc parts
tend to apsidally align with the planet while those in the outer parts tend to anti-align,
I expect the depleted region to have a non-axisymmetric shape. This effect has been
previously pointed out by Pearce & Wyatt (2015) in the context of secular interaction
between a debris disc and an interior, precessing planet.

5.4 Characterisation of Secular Resonances

I now investigate how the characteristics of the secular resonances – i.e., their locations,
their associated timescales for exciting eccentricities, and their widths – depend on
the properties of the disc and the planet. This will guide me in putting constraints on
the possible disc–planet parameters that could reproduce the structure of an observed
debris disc featuring a gap, as will be done in Section 5.5 for HD 107146.

5.4.1 Location of Secular Resonances

As mentioned in Section 5.3, secular resonances occur at semimajor axes a = ares where
the apsidal precession rates of both the planet and planetesimals are commensurate,

Ad(ares) + Ap(ares) = ϖ̇p ≡ Ad,p. (5.16)

Using Equations (5.4), (5.5), and (5.7), I can express the resonance condition of
Equation (5.16) in terms of the disc-to-planet mass ratio Md/mp and the relevant
semimajor axes, i.e., ares, ap, and aout, scaled by ain:

C1ψ1
Md

mp

(
ares

ain

)2−p
+ 1

4
ap
ares

b
(1)
3/2

(
ap
ares

)
= 3

4C2ϕ
c
1
Md

mp

(
ap
ain

)3 ( ap
ares

)−3/2
. (5.17)

Here C1 = (2 − p)/(δ2−p − 1) and C2 = C1(1 − δ−p−1)/(p + 1) are constants that
depend on the disc model. It follows from Equation (5.17) that the locations of secular
resonances can be computed relative to the disc inner edge as functions of ap/ain and
Md/mp. This is illustrated in Figure 5.5, where I plot the contours of Md/mp in the
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Figure 5.5. Location of secular resonances relative to the disc inner edge ares/ain as
functions of ap/ain and Md/mp. Calculations assume a power-law disc model with p = 1 and
δ ≡ aout/ain = 5. The solid white line represents the contour for Md/mp = 1 obtained by
ignoring disc edge effects, i.e., ψ1 = −0.5. The dashed white line shows the scaling of ares
with ap for fixed Md/mp, Equation (5.18). See the text (Section 5.4.1) for details.

(ap/ain, ares/ain) plane computed using my fiducial disc model, i.e., p = 1 and δ = 5
(Section 5.2.1).

Figure 5.5 shows that for any given planet, two or no secular resonances occur
within the disc provided that 10−4 ≲Md/mp ≲ 2. Additionally, one can see that for
any ap/ain, one of the resonances always occurs in the vicinity of the disc inner edge as
described in Section 5.3.2, i.e., ares,1 ≃ ain, and its location varies weakly with Md/mp.
On the other hand, the second resonance occurs at semimajor axis ares,2 ≳ ares,1 whose
location changes significantly with varying Md/mp. Indeed, with increasing Md/mp (at
fixed ap/ain), this resonance is pushed inwards from ≃ aout toward the inner resonance
at ≃ ain until both resonances “merge,” i.e., the distance between them approaches
zero. Figure 5.4 provides a complementary view of this behaviour. Looking at Figure
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5.5 once can also see that, for planets closer to the disc, larger Md/mp is necessary to
maintain the resonance at a given semimajor axis.

I remind that the existence of the inner resonance is mainly due to the disc edge
effects. That is, the divergence of Ad(a) ∝ −|ψ1(a)| as a → ain allows the resonance
condition of Equation (5.16) to be satisfied around ≈ ain, even for relatively small
values of Md (Section 5.3). This explains why for a given ap/ain, the resonance at ares,1

is constrained to be very close to ≃ ain irrespective of Md/mp. In the absence of edge
effects, this inner resonance will not exist, resulting in a single resonance for fixed
system parameters rather than two. This is illustrated in Figure 5.5 for Md/mp = 1 by
setting ψ1(a) = −0.5 (solid white line).

The behaviour of the resonance locations can be explained analytically. Consider
the approximate form of the resonance condition, Equation (5.16), in the limit of
ap/ain → 0 so that Ad,p is negligible and one can use the asymptotic limit of b(1)

3/2, and
the two terms on the left-hand side of Equation (5.17) balance each other (recall that
ψ1 < 0). It is then easy to demonstrate that for a resonance to occur at ain ≲ ares ≲ aout,
the disc mass must be given by

Md

mp

≈ 3δ2−p

4|(2 − p)ψ1(ares)|

(
ap
ain

)2 (ares

ain

)p−4
, (5.18)

≈ 0.15 a2
p,20 a

−3.5
res,70,

where the numerical estimate is obtained for the adopted fiducial disc model (p = 1,
δ = 5), for which |ψ1(a)| ∝ a1/2 when ain ≪ a ≪ aout, see Section 5.3.4 Fixing
Md/mp in Equation (5.18) then approximates the slopes of the contours in Figure 5.5
reasonably well – see the white dashed line. As expected, the numerical results deviate
from the scaling in Equation (5.18) both as ares → ain or aout, where ψ1 diverges, and
as ap → ain, since Ad,p becomes non-negligible.

5.4.2 Timescale for Eccentricity Excitation

I now consider how the eccentricity excitation timescale varies as a function of model
parameters. To this end, I make use of the definition of τ given by Equation (5.15),
which quantifies the time it takes for initially circular orbits to reach e = 1 at the
resonance. I note that τ is a strong function of the resonance location, and it explicitly
depends on the parameters of the planet but not the disc. This is because the

4In an infinitely extending disc, i.e., as δ → ∞, ψ1 becomes independent of semimajor axis, e.g.,
ψ1(a) = −0.5 for p = 1. In this case, Equation (5.18) would read as Md/mp ≈ 0.26 a2

p,20 a
−3
res,70.
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Figure 5.6. Contour plot of the timescale τ for exciting planetesimal eccentricities by
the secular resonance (Equation 5.15), in the space of ap/ain and ares/ain. The calculations
assume a planet with mp = 100M⊕ and ep = 0.1 around a solar-mass star. The white dashed
line shows the scaling of ares with ap for a fixed value of τ . See the text (Section 5.4.2) for
details.

disc, assumed to be axisymmetric in my model (Section 5.2), does not contribute to
eccentricity excitation.

In Figure 5.6 I plot the contours of τ in the (ap/ain, ares/ain) plane for a particular
choice of planetary mass and eccentricity, mp = 100M⊕ and ep = 0.1, assuming a
solar-mass star. It is evident that the timescales are shorter when the planet and the
resonance location are closer together, i.e., in the lower-right corner of parameter space
where ares/ap → 1. Note that for the adopted planetary parameters, over a broad
range of parameter space, the timescales range from ∼ 10 Myr to a few gigayears; this
is comparable to the ages of observed debris discs. Moreover, the slopes of the contours
in Figure 5.6 can be explained by setting τ to a constant in Equation (5.15): this yields
the scaling ares ∝ a2/3

p illustrated by the white dashed line in Figure 5.6.
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Finally, Equation (5.15) shows that τ is inversely proportional to both the planetary
mass and eccentricity. Thus, more massive or eccentric planets exert larger torque and
excite planetesimal eccentricities more quickly, shortening the timescale τ when ap/ain

and ares/ain are kept fixed. This means that in Figure 5.6 the contours of τ will be
shifted to the left (right) when the product of mp and ep is increased (decreased).

5.4.3 Resonance Width

I now quantify the range of semimajor axes w over which resonances act to significantly
excite planetesimal eccentricities. To this end, I follow5 Yelverton & Kennedy (2018)
and calculate the distance over which the forced planetesimal eccentricities eforced(a)
exceed a constant threshold value ẽ. That is, I define w as the difference (in absolute
values) between the two values of semimajor axis ai (i = 1, 2) satisfying

ẽ = |eforced(ai)| =
∣∣∣∣∣ −Bp(ai)
A(ai) − Ad,p

∣∣∣∣∣ (5.19)

in the vicinity of a given resonance. Here, I clarify that this definition serves as a proxy
for the significance of a given resonance, and it does not necessarily correspond to the
actual widths of gaps that I expect to observe.6

In Equation (5.19), the planetary and disc masses appear only through their ratio
Md/mp, and the two relevant semimajor axes – ai and ap – could be expressed relative
to ain; see Equations (5.4) – (5.7). Furthermore, the ratio Md/mp could be related to
ap/ain and ares/ain by using the condition for secular resonance; see Equations (5.16)
and (5.17). Thus, I can compute the resonance width w relative to ain as functions
of ap/ain and ares/ain only, once ẽ and ep are specified (recall that Bp ∝ ep, Equation
(5.6)).

The threshold eccentricity ẽ in Equation (5.19) represents an ad hoc parameter,
necessitating a physical justification for a particular choice of its value. To this end,
I note that the presence of a physical gap within the disc is subject to the condition
that planetesimal eccentricities are larger around the resonances than elsewhere. Away
from the resonances, the forced planetesimal eccentricity is maximised near the disc
inner edge where, approximately, eforced(ain) → eforced,p(ain), which cannot exceed ep;
see Equation (5.13) and Figure 5.4. Based on this reasoning, I adopt ẽ = ep in what
follows, unless stated otherwise.

5For an alternative method, see Levison & Agnor (2003).
6This is not least because the actual widths of gaps depend non-trivially on the spatial distribution

of planetesimals, i.e., the profiles (and gradients) of both e(a) and ϖ(a) (Statler, 2001).
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In Figure 5.7 I plot the contours of w/ain in the (ap/ain, ares/ain) plane for the
fiducial disc model with p = 1 and δ = 5 (see Section 5.2.1), assuming ẽ = ep. Looking
at Figure 5.7, one can see that increasing the planetary semimajor axis for a fixed
ain tends to generally broaden the width of a given resonance. This is, though, less
obvious in the range 1.1 ≲ ares/ain ≲ 1.5, as the width there is a weaker function
of ap/ain. Second (and relatedly), I find that for a given planetary semimajor axis,
resonances occurring closer to the disc inner edge generally have larger widths compared
to resonances farther away; see also Figure 5.4. The exception to this is if ares/ain ≃ 1,
where the values of w/ain are comparatively smaller, particularly in the lower-left
corner of Figure 5.7.

To understand this behaviour, I remind the reader that for a given ap/ain, my
disc model with sharp edges has two resonance sites: one always at ares,1 ≃ ain and
another farther away at ares,1 ≲ ares,2 ≲ aout; see Section 5.4.1. In terms of Figure 5.7,
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this means that for a given ap/ain (and Md/mp, see Figure 5.5), if the resonances are
well separated from each other, i.e., ares,1 ≪ ares,2, the inner resonance will be much
narrower than the other. This behaviour could be understood for instance by looking
at the curves in Figure 5.4 for Md/mp = 10−3, 10−2, or 10−1, which show that the inner
resonance width is insignificant.

On the other hand, for fixed (ap/ain,Md/mp), if the resonances are close to each
other such that ares,2/ain ≲ 1.5 and ares,1 ≃ ain (see Figure 5.5), the resonances “merge”
together yielding relatively large values of w/ain. What I mean by “merging” here
is that eforced(a) in-between the resonances stays larger than ẽ, and my definition of
w does not disentangle the two resonances.7 This could be understood, for instance,
by looking at the curve for Md/mp = 1 in Figure 5.4. These considerations explain
why the contours of constant w/ain in Figure 5.7 behave differently for ares/ain ≲ 1.5
compared to ares/ain ≳ 1.5.

To better understand the behaviour of w/ain, in Appendix F I derive an analytic
expression for the resonance widths showing that, to a good approximation,

w

ain
≈ 2
ain

∣∣∣∣∣Bp(a)/ẽ
dA/da

∣∣∣∣∣
ares

∝ ep
ẽ

ap
ain

(
ares

ain

)−1/2
, (5.20)

where the scaling holds for p = 1 in the limits of ap/ain → 0 and ain ≪ ares ≪ aout.
First, Equation (5.20) shows that the width is inversely proportional to the gradient of
A at ares. This explains why resonances in proximity of the disc edges are relatively
narrow: in the limit of ares → ain, aout, one has A → Ad, which diverges due to edge
effects (Figure 5.2), and dA/da is very large. Second, Equation (5.20) indicates that
the resonance width is directly proportional to Bp ∝ ep; this makes intuitive sense
since ep controls the amplitude of planetesimal eccentricities (Equation 5.12). It follows
that more eccentric planets tend to produce wider resonances, provided that ẽ can
be chosen independently from ep (though this is not clear a priori). Third, and more
importantly, the scaling of Equation (5.20) adequately explains the slopes of the w/ain

contours: setting w/ain to a constant in Equation (5.20) yields the scaling ares ∝ a2
p,

which is obvious in Figure 5.7 (see the white dashed line). Indeed, by fitting the
numerical results in Figure 5.7 with the functional form of Equation (5.20), I find that
the following expression

w ≈ 15.3 au ap,20 a
−1/2
res,70 a

1/2
in,30 (ep/ẽ) (5.21)

7Adopting larger ẽ at fixed ep could modify this behaviour. However, it is not clear a priori what
value must be assigned to ẽ, not least because eforced(a) ∝ ep could stay well above unity in-between
the resonances in linear Laplace–Lagrange theory.
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provides an acceptable approximation of the resonance widths for my fiducial disc
model (Section 5.2.1).

5.5 Example: Application to HD 107146

For a given debris disc exhibiting a depletion in its surface density, I can hypothesise
that this depletion is due to eccentricity excitation by secular resonances mediated by
the gravity of the disc and an unseen planet. I can then employ the characteristics of the
secular resonances analysed in Section 5.4 to constrain the disc–planet parameters that
could configure the secular resonances appropriately and produce a depletion similar to
the observations. In this section, as an exemplary case, I apply these considerations to
the HD 107146 disc and identify the “allowed” parameter space subject to observational
constraints. The detailed investigation of the dynamical evolution in models chosen
from the allowed parameter space is carried out in the next section (i.e., Section 5.6).

5.5.1 Constraints from Gap Location

As noted in Section 5.1.1, ALMA observations show that the HD 107146 disc, spanning
from ain ∼ 30 au to aout ∼ 150 au, features a gap centred at ag ∼ 70 − 80 au (Ricci
et al., 2015; Marino et al., 2018a). Thus, I must choose the disc–planet parameters
such that a secular resonance occurs within the depleted region. Here I opt to fix
the resonance location at ares = 70 au. The analysis in Section 5.4.1 then allows me
to uniquely determine the ratio Md/mp as a function of ap/ain, see also Equation
(5.18). In other words, for a given disc mass, I can deduce the planetary mass and
semimajor axis that configure the resonance location appropriately (or vice versa).
This is displayed by the black solid lines in Figure 5.8 for various values of disc mass
(in units of M⊕).

However, the disc mass cannot be arbitrarily large and must be constrained. To
this end, I note that observations of HD 107146 have detected around 0.25M⊕ of dust
at millimetre wavelengths (Ricci et al., 2015; Marino et al., 2018a). By extrapolating
this up to planetesimals of ∼ 100 km in diameter, the estimated total disc mass is
Md ∼ 100 − 300M⊕ (assuming a size distribution with an exponent of −3.5; Ricci et al.
(2015); Marino et al. (2018a)). Here I choose to take 100M⊕ as the upper limit of
the disc mass. Based on this, I exclude regions in the (ap,mp) parameter space that
require more massive discs – see the grey shaded area in the upper part of Figure 5.8.
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Figure 5.8. Combinations of the planet (mp) and disc masses (Md) as a function of planet
semimajor axis ap that are expected to produce a gap in an HD 107146–like disc at 70 au.
The curves of constant Md are shown by the black contours. The grey region is ruled out,
as the disc would be too massive. The green region shows the excluded region where the
eccentricity excitation timescales are much longer than the stellar age. The blue region
is ruled out, as the resulting resonance width would be much narrower than the observed
gap. A planet close to the disc inner edge is ruled out (yellow region) by considerations of
overlapping mean motion resonances. The red region is ruled out by direct imaging. The
remaining white area represents the region where the disc–planet parameters meet all of the
above conditions. The lettered points represent the model parameters discussed in Sections
5.6.1 and 5.6.2.1, and are listed in Table 5.1 for reference. See the text (Section 5.5) for
details.

5.5.2 Constraints from Stellar Age and Disc Asymmetry

I can further constrain the parameter space by considering the age of HD 107146,
which is estimated to be tage ∼ 80 − 200 Myr (Williams et al., 2004). Specifically,
I require the timescale for eccentricity excitation at the resonance τ to be less than
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around the age of the system, i.e., τ ≲ tage. From Section 5.4.2, however, I know that τ
depends not only on the planet’s mass and semimajor axis but also on its eccentricity;
see Equation (5.15). To this end, I note that ALMA observations have found that the
HD 107146 disc is roughly axisymmetric, with a 2σ upper limit of ∼ 0.03 for the global
disc eccentricity (Marino et al., 2018a). This suggests that the invoked planet must be
of relatively low eccentricity. Thus, in what follows, I limit myself to ep ≤ 0.1.

The green curves in Figure 5.8 show contours along which the excitation timescale
τ is 20, 200, and 2000 Myr (dashed, solid, and dotted lines, respectively) at ares = 70
au. The calculations assume ep = 0.1 – the maximum value of ep that I consider in my
subsequent calculations – and use the stellar mass of HD 107146, namely Mc = 1.09M⊙

(Watson et al., 2011). I first note that by definition, τ ∝ 1/ep (Equation (5.15)); thus,
for less eccentric planets the contours shown in Figure 5.8 will correspond to longer
timescales. Second, recall that τ is a measure of the time within which initially circular
planetesimal orbits become radial, e → 1 (Section 5.4.2). Thus, even if τ ≳ tage for
a given planet (such that e(tage) ≲ 1), one might still expect sufficient eccentricity
excitation for depletion to be apparent at the resonance within the stellar lifetime.
Given these considerations and the uncertainty on the age of the system, I exclude
the region in (ap,mp) parameter space corresponding to τ > 200 (0.1/ep) Myr. This is
illustrated by the green shaded region in Figure 5.8.

5.5.3 Constraints from Gap Width

As noted in Section 5.1.1, the gap width in the HD 107146 disc is estimated to be
wobs ≈ 40 au (Marino et al., 2018a). Given this, the planet’s semimajor axis could, in
principle, be constrained by using the analysis of resonance widths w in Section 5.4.3
(recall that w ∝ ap, Equation 5.21). However, I remind the reader that the resonance
widths as defined in Section 5.4.3 do not necessarily correspond to the physical width
of gaps that I expect to form. Nevertheless, I could still use the definition of w to
rule out the range of planetary semimajor axes for which the resonance widths would
be negligible, i.e, w/wobs ≪ 1. Here I consider resonance widths to be negligible if
w/wobs ≤ 0.1 (this choice is somewhat arbitrary). The blue solid line in Figure 5.8
corresponds to w/wobs = 0.1; planetary semimajor axes to the left of this line are ruled
out (blue shaded region).
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5.5.4 Considerations of Mean-motion Resonances

Finally, I note that the planet cannot be arbitrarily close to the disc. This is because
the planetary orbit is surrounded by an annular “chaotic zone” wherein particles will be
quickly ejected from the system due to overlapping first-order mean motion resonances
(MMRs); see Section 3.2.4.2. Moreover, the secular approximation of Section 5.2 would
break down within this zone (e.g. Murray & Dermott, 1999). The half-width ∆ap of
the chaotic zone on either side of the planetary orbit depends on the planet’s mass
(Wisdom, 1980; Duncan et al., 1989) such that, to lowest order8, it is given by Equation
(3.35). I thereby can rule out the region in the (ap,mp) parameter space wherein the
planet’s chaotic zone would lie within the disc, i.e., ap+∆ap > ain. This is illustrated by
the yellow shaded region near the right boundary of Figure 5.8. Planetary parameters
lying along the yellow solid line correspond to ap + ∆ap = ain; thus, they could be
responsible for setting the inner disc edge (e.g. Quillen, 2006) at ain = 30 au (orange
line).

∗ ∗ ∗

I have now identified the “allowed” range of disc–planet parameters that can produce
an HD 107146–like disc structure. This is represented by the white (unshaded) region
in Figure 5.8, and roughly defined by ap in the range ∼ 5 − 27 au, mp between ∼ 0.1
and 25MJ , and 3 ≲Md/M⊕ ≲ 100. Note that the allowed combinations of mp and ap

are consistent with the limits placed by direct imaging of HD 107146 (Apai et al.,
2008); see the dashed red curve in Figure 5.8. For reference, the combinations of mp,
ap and Md that I consider later in this chapter are labelled as Models A, B, and C in
Figure 5.8; see also Table 5.1. Note that each of these configurations correspond to
τ ≈ 135 × (0.05/ep)Myr, and model A represents the fiducial configuration considered
next in Section 5.6.1.

I remark that in the above discussion, I have implicitly ignored the occurrence of
an inner secular resonance at ≃ ain; apart from the one already fixed at ares = 70 au
in Figure 5.8; see Section 5.4.1. This can be justified on the grounds that the inner
resonance is of very narrow width except if the two resonances are close to each other,
which is not the case here (Section 5.4.3). As a result, and as I will show next, the
inner resonance is irrelevant and does not have any observable effect.

8Strictly speaking, Equation (3.35) is valid for circular orbits in the absence of collisions. The
chaotic zone is known to broaden with both increasing eccentricity (Mustill & Wyatt, 2012) and due
to collisional effects (Nesvold & Kuchner, 2015a). For simplicity, I have ignored these effects.
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Table 5.1. Parameters of the Disc–Planet Systems Considered in Section 5.6.

Model Md(M⊕) mp(MJ) ap(au) Md/mp ep ϖp(0) τsec(Myr)

A 20 0.6 20 1.05 × 10−1 0.05 0 33
A-Loep ... ... ... ... 0.025 ... ...
A-Hiep ... ... .... ... 0.1 ... ...

B 95 15.8 7 1.89 × 10−2 0.05 ... 56
C 6 0.2 26.93 9.44 × 10−2 ... ... 26

Note. The combinations of Md, mp, and ap (Columns 2–4) chosen from the allowed region
in Figure 5.8. Column 5 presents the disc-to-planet mass ratio. Columns 6–7 present the
planet’s eccentricity and initial apsidal angle, whose precession period is given in Column 8.
(a) Model A is the fiducial configuration adopted in this chapter. (b) Each of the considered
models have τ ≈ 135 × (0.05/ep) Myr.

Finally, I point out that Equations (5.15), (5.18), and (5.21), combined with
Equation (3.35), can be applied to generate an approximate version of Figure 5.8 for
any other observed debris disc with a gap.

5.6 Evolution of the Disc Morphology

In the previous section, I identified the combinations of the “allowed” disc–planet
parameters that could reproduce the observed depletion in the HD 107146 disc; see
Figure 5.8. I now investigate the dynamical evolution of disc–planet systems using
some of these parameters. My specific aims here are two-fold: to illustrate how
secular resonances sculpt depleted regions, and to analyse more fully the disc and gap
morphology in the course of secular evolution.

5.6.1 A Fiducial Configuration

I begin by presenting results showing the evolution of the disc surface density in the
fiducial configuration, i.e., model A (see Table 5.1). I remind the reader that model A
is the configuration that was considered in Section 5.3, where I discussed the temporal
evolution of planetesimal eccentricities and apsidal angles as a function of semimajor
axis – see Figure 5.3. To this end, I convert the orbital element distributions of
planetesimals shown in Figure 5.3 – which, I remind, were determined analytically
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using Equations (5.10) and (5.11) – into surface density distributions. Technical details
about this procedure can be found in Appendix G, and may be skipped by the reader
at first reading. However, to avoid confusion, I remark that the results presented in this
and in subsequent sections are obtained by the analytical model described in Section
5.2 and not by direct N -body simulations, which is beyond the scope of this chapter.

The resulting maps of the (normalised) disc surface density Σ at times corresponding
to those in Figure 5.3 are shown in Figure 5.9. For reference, in this figure I also
show the planet’s orbit and its pericentre position, which precesses with a period of
τsec ≡ 2π/Ad,p ≈ 33 Myr (Equation (5.7)). To facilitate the interpretation of my results,
in Figure 5.10 I also show the profiles of the azimuthally averaged disc surface density
⟨Σ⟩ as a function of radial distance r at the same times as in Figure 5.9. Below I
provide a detailed description of the different evolutionary stages that I identified.

Stage 1 (0 ≤ t ≲ τsec): At early times, the disc quickly evolves away from its initial
axisymmetric state by developing a trailing spiral structure (see Figures 5.9(a), (b)).
This spiral structure initially starts off at the inner disc edge and propagates radially
outwards with time as it wraps around the star; see also the animated version of Figure
5.9. For instance, by 1 Myr at least two windings are noticeable (Figure 5.9(a)), with
the outermost prominent spiral arm occurring at ∼ 40 au. This arm moves out to ∼ 60
au by 10 Myr (Figure 5.9(b)). A complementary view of this behaviour is provided by
Figures 5.10(a),(b).

I note that the outermost portion of the spiral is associated with planetesimal orbits
that have attained their maximum eccentricity, i.e., have completed half a precession
period – see Figure 5.3. Interior to this, the spirals become difficult to discern, since
planetesimals in this region have completed more than one precession period and their
orbits are phase-mixed; i.e., ∆ϖ(a) spans the range [−π/2, π/2] – see Figures 5.3(a),
(b). As a result, the surface density distribution interior to the outermost spiral looks
roughly axisymmetric; see, e.g., panel (b) of Figure 5.9. I also find that the spiral
propagates outwards at a slower rate as it extends to larger radii; see panels (a)–(c) of
Figure 5.9 and its animated version. This follows from the fact that the planetesimal
precession rate is a decreasing function of the semimajor axis; see Figure 5.2.

I remark that the behaviour described thus far shows some parallels with the
findings of Wyatt (2005b), who showed that an eccentric planet launches a spiral wave
that propagates throughout a massless disc. The main difference is that, in my setup,
the spiral wave extends out to only about a radius of 70 au and not to the outer disc
edge (as would happen in a massless disc); see Figure 5.9. This is to be expected, since
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Figure 5.9. Series of two-dimensional snapshots showing the evolution of the (normalised)
disc surface density Σ in the fiducial model (Model A, Table 5.1), as derived from the
analytically computed dynamical state of planetesimals shown in Figure 5.3. The snapshots
correspond to the same moments of time t as in Figure 5.3, and are indicated in each panel
for reference. The time is also indicated relative to τ ≈ 135 Myr, Equation (5.15). All panels
have 400 × 400 pixels and share the same surface density scale (and normalization constant)
as shown in the colour bar. In each panel, the stellar position is marked by the yellow star,
while the planet’s orbit and its pericentre position are shown by the white solid line and green
circle, respectively. To enhance the resolution of the images, the orbit of each planetesimal
(N = 5000 in number) has been populated with 104 particles with the same orbital elements
but with randomly distributed mean anomalies (see Appendix G). Note the launching of
a trailing spiral wave at the inner disc edge ain at early times (panel (a)), its subsequent
wrapping around the star (panel (b)), and the formation of a crescent-shaped gap around the
secular resonance at ares = 70 au (panels (c)–(f)). One can also see a wound spiral pattern
beyond the gap at late times (panels (d)–(f)). It is also clear that no gap forms around the
secular resonance at ∼ ain. See the text (Section 5.6.1) for more details. An animated version
of this figure has been made available online.

in my model, planetesimal dynamics is dominated by the planet only within ≈ 70 au,
beyond which the disc gravity becomes important – see Figure 5.2 and Section 5.3.
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Stage 2 (t ∼ τsec): By the time the planet has nearly completed its first precession
cycle, the disc develops a clear depletion in its surface density, which effectively splits
the disc into an internal and an external part (Figures 5.9(c), 5.10(c)). The depletion
occurs around the location of the secular resonance, i.e., at ares = 70 au, where the
system was designed to emplace one – see Section 5.5. The appearance of the gap is
evidently correlated with the excitation of planetesimal eccentricities at and around
ares, where e = t/τ ≈ 0.22 by 30 Myr (Figure 5.3(c)).

An interesting feature of the gap is that it is of a crescent shape, which points
in the direction of the planet’s pericentre (Figure 5.9(c)). In other words, the gap is
asymmetric in the azimuthal direction such that it is wider and deeper toward the
planetary pericentre. This asymmetry is associated with the inner and outer disc
components being offset relative to the star in opposite directions (Figure 5.9(c)).
Indeed, the inner part forms an eccentric structure that is apsidally aligned with the
planet while the outer part is anti-aligned (see also Section 5.3) – the latter though
is difficult to discern in Figure 5.9 due to the smaller eccentricities in the outer parts
(Figure 5.3). Nevertheless, by simply looking at the azimuthally averaged density
profile, one can see that the gap has a radial width of ∼ 20 au (measured relative to
the initial density profile, Figure 5.10(c)). Looking at Figure 5.10(c), it is also clear
that this region is not depleted fully but only partially – by about a factor of two
relative to the initial density distribution.

Finally, I note that the gap is surrounded by narrow overdense regions, with the
one just exterior to the gap being sharper than that interior to it (see Figures 5.9(c),
5.10(c)). These over-densities correspond to the apocentric positions of planetesimals
with semimajor axes in the depleted region. The contrast between the sharpness of the
over-densities is mainly due to the apsidal angles of planetesimals at a ≲ ares being
more phase-mixed than at a ≳ ares (Figure 5.3(c)). This also justifies why these sharp
over-densities are transients: they taper with time as planetesimal orbits around the
resonance are perturbed further (see panels (d)–(f) in Figures 5.3, 5.9, and 5.10).

Stage 3 (τsec ≲ t ≲ τ): Further into the evolution, the structure of the gap
practically remains invariant without being significantly affected by the continued
growth of eccentricity around ares = 70 au (see panels (d)–(f) in Figures 5.3 and 5.9).
Indeed, the gap maintains its crescent shape along with its alignment with the planet
as it co-precesses with the planet’s apsidal line.

At the same time, since the inner component of the disc precesses much faster than
the outer component (Figure 5.2), the degree of offset between them varies as the
system evolves. This causes the gap width wg to fluctuate in time, see, e.g., Figures
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Figure 5.10. The azimuthally averaged surface density of the disc ⟨Σ⟩ as a function of
radial distance r from the star (solid blue lines). Each panel corresponds to a snapshot of
the fiducial configuration (Model A, Table 5.1) shown in Figure 5.9. The time t of each
snapshot is marked in each panel, which is also shown relative to τ ≈ 135 Myr for reference.
The results are obtained by splitting the disc into 200 annular bins (Appendix G), and are
all normalised with respect to the initial analytic surface density Σd(a) (Equation 5.1 with
p = 1) at the inner disc edge, a = ain. For reference, the normalised profile of the initial
Σd(a) is shown in each panel with the solid black lines. At early times (panels (a), (b)),
the overall shape of ⟨Σ⟩ is similar to the initial profile, but with some peak features around
∼ 40 au at 1 Myr and ∼ 60 au at 10 Myr, respectively. At all times after 30 Myr (panels
(c)–(f)), a clear depletion in the surface density is evident around the location of the secular
resonance (ares = 70 au, dashed vertical lines). One can see that the width and the depth of
the depletion are effectively constant in time (panels (c)–(f)). Note also the peak structure in
the density just exterior to the depletion in panels (c)–(f). See the text (Section 5.6.1) for
more details. An animated version of this figure has been made available online.

5.10(d)–(f), with a time-averaged value of wg ≈ 18.13 ± 1.04 au. Looking at Figures
5.10(d)–(f), it is also clear that the gap depth remains roughly constant such that, in a
time-averaged sense, about 50% ± 3% of the initial density is depleted at the resonance.

Note that, at this stage, i.e., at t ≳ τsec, at least one secular period has elapsed
for planetesimals interior to the depletion, causing them to settle into a lopsided,
precessing coherent structure (Figures 5.9(d)–(f)). It is also noticeable that this
structure reveals little or no evidence for surface density asymmetry between its
apocentre and pericentre directions, as would have otherwise been the case if the disc
were massless (i.e., pericentre or apocentre glow; see Wyatt et al., 1999; Wyatt, 2005b;
Pan et al., 2016). This can be understood by noting that in this region, although
planetesimal dynamics is dominated by the planet, the disc gravity renders the forced
eccentricity to be more of a constant with semimajor axis rather than scaling as 1/a
(see Figures 5.2 and 5.3). This hinders the occurrence of a pericentre or apocentre glow
(for a more detailed discussion, see Section 2.4 in Wyatt (2005b)).
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On the other hand, planetesimal orbits exterior to the depletion have not yet had
the time to be randomly populated in phase (Figure 5.3). Hence, a spiral pattern
develops in this region as planetesimals undergo eccentricity oscillations. The spirals
appear to wrap almost entirely around the star, and these are more noticeable closer
to the depletion than to the outer disc edge (Figures 5.9(d)–(f)). This can also be seen
in Figures 5.10(d)–(f) as a series of narrow peaks in the radial profile of ⟨Σ⟩. This
behaviour can be understood by noting that planetesimals closer to the outer disc edge
have smaller eccentricities (e.g., Figure 5.3) and that their orbits are quickly phase-
mixed as a result of their rapid orbital precession due to disc edge effects, particularly
at a ≳ 130 au (e.g., Figure 5.2, Section 5.2.2). Relatedly, if I were to evolve the system
for a longer period of time, planetesimals exterior to the depletion would become
phase-mixed, and the spiral structure would fade away. I note that, depending on the
resolution of the observations, the spirals in this region may or may not be visible.

Before moving on, I note that already by 1 Myr into the evolution, planetesimal
eccentricities around the inner secular resonance (i.e., ares ≈ ain) are excited to ≈ 1;
see, e.g., Figure 5.3(a). Evidently, however, this occurs over such a narrow radial range
that it does not lead to the emergence of a gap (see Figures 5.9 and 5.10), in agreement
with my expectations from Section 5.4.3. This also justifies my assertion in Section 5.5
to ignore the occurrence of an inner secular resonance for the purposes of Figure 5.8.

5.6.2 Parameter Variation

I now analyse the variation of the disc morphology associated with varying the disc–
planet parameters relative to the fiducial values (Model A). Below is a detailed account
of what I learned, supplemented by an appropriate figure, when called for.

5.6.2.1 Variation of the Planetary Semimajor Axis ap

I first consider the effects of varying the planetary semimajor axis ap which, I remind
the reader, all else being kept the same, is equivalent to changing the ratio Md/mp

(Sections 5.4.1 and 5.5). For ease of comparison, I choose the combinations of ap, mp,
and Md from Figure 5.8 such that they yield the same eccentricity excitation timescale
at the secular resonance τ as in model A. The parameters of the chosen models, which
I label as B and C, are listed in Table 5.1 and are marked on Figure 5.8. Note that
the planet in Model C could be responsible for truncating the disc at ain = 30 au; see
Section 5.5.4.
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Figure 5.11. Summary of results for Model B (small ap, left column) and Model C (large ap,
right column), see Table 5.1. The results are shown after 100 Myr of evolution, corresponding
to t/τ ≈ 0.74 for both models. Rows (a) and (b) show the planetesimal eccentricities and
apsidal angles (relative to that of the planet) as a function of semimajor axis, respectively,
which are determined analytically using Equations (5.10) and (5.11). The corresponding
snapshots of the disc surface density and radial profiles of the azimuthally averaged surface
density are shown in the rows (c) and (d), respectively – see Appendix G for details. All
other notations are the same as in Figures 5.3, 5.9, and 5.10. One can see that wider gaps
are carved around the secular resonance at ares = 70 au when the planet is closer to the disc
inner edge than to the star. It is also evident that the resultant gaps are asymmetric and of
approximately the same depth in both models. See the text (Section 5.6.2.1) for more details.

Generally, I find that the evolution of the disc morphology in each of models B and
C proceeds in a similar manner as in the fiducial model (i.e., stages 1–3 in Section 5.6.1).
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Indeed, I observe the same qualitative behaviour: the launching of a spiral arm at ain

and its outward propagation in time, the sculpting of a crescent-shaped gap around
ares = 70 au by ∼ τsec, the development of a spiral pattern exterior to the depletion at
t ≳ τsec and its subsequent potential disappearance at late times (depending on the
period of secular precession at a ≳ ares).

Figure 5.11 summarises the snapshots of models B and C at 100 Myr (i.e., t/τ ≈ 0.74)
into their evolution. A comparison of the results shown in this figure with those of
Model A (Figures 5.9(f), 5.10(f)) indicate that the only obvious difference is in terms
of the radial width of the gaps wg. Indeed, the gap is radially narrower when the
planet is closer to the star than to the inner disc edge: for ap = 7 au (i.e., Model B),
on time-average, wg ≈ 11.32 ± 0.05 au, while for ap = 26.93 au (i.e., Model C), I find
that wg ≈ 20 ± 2 au. Note that this dependence is in qualitative agreement with my
expectation from Section 5.4.3 regarding the resonance widths; see Equation (5.20).
Finally, I note that the gap depth is not affected by variations in planetary semimajor
axis: on average, about a half of the initial density is depleted around the secular
resonance regardless of ap.

5.6.2.2 Variation of the Planetary Eccentricity ep

The models presented thus far assumed the same planetary eccentricity of ep = 0.05.
To examine its effect on the disc morphology, I considered the evolution in otherwise
identical setups but differing in the value of ep by a factor of two from model A. These
are referred to as models A-Loep (with ep = 0.025) and A-Hiep (with ep = 0.1) in
Table 5.1.

Once again, I found that the evolution of the disc morphology qualitatively follows
the same stages outlined in Section 5.6.1, but on a shorter timescale when the planet
is more eccentric (recall that τ ∝ 1/ep, Equation (5.15)). Additionally, I identified
subtle differences in the structure of the spiral arms with increasing ep. First, the spiral
initially launched at ain by the planet became more open for larger ep – in agreement
with the results of Wyatt (2005b). Second, and relatedly, the spirals beyond the gap
became more prominent with increasing ep due to the higher forced eccentricities in
that region.

More importantly, however, I found that more eccentric planets give rise to wider
gaps – in qualitative agreement with my expectations from Section 5.4.3; see Equation
(5.20). Indeed, on time-average, I find that wg ≈ 12.8 ± 0.2 au when ep = 0.025, and
wg ≈ 24.6 ± 2.8 au when ep = 0.10. This can be seen in Figure 5.12, where I summarise
the results for models A-Loep and A-Hiep. Note that, for ease of comparison, the
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Figure 5.12. Similar to Figure 5.11, but for models A-Loep (left panels) and A-Hiep (right
panels); see Table 5.1. Models A-Loep and A-Hiep are identical to the fiducial model A,
except that they are initiated with planets with eccentricities that are lower and higher by a
factor of two than in model A (i.e., ep of 0.025 and 0.10), respectively. For ease of comparison,
results for each model are shown at different times (as indicated in the top panels) such that
they both correspond to t/τ ≈ 0.74. One can see that increasing ep leads to a wider gap
around the secular resonance at ares = 70 au, without significantly affecting the asymmetric
shape of the gap and its depth. See the text (Section 5.6.2.2) for more details.

results are shown at different times such that t/τ(ep) ≈ 0.74 for both models – the
results must be compared with those of model A at 100 Myr (Figures 5.9 and 5.10).
Looking at Figure 5.12, it is also evident that variations in ep do not significantly affect
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the fractional depth of the gap. Note also that, while planets with lower ep reduce the
offset of the inner disc component, the gap retains its non-axisymmetric feature. This
is largely related to the fact that, for narrower gaps, a smaller offset suffices for the
inner component to occupy about the same fraction of the gap.

5.6.2.3 Variations with Disc and Planet Masses

I now discuss the effects of varying the disc and planet masses while keeping other
parameters unchanged. To begin with, I first remind the reader that this requires
varying both Md and mp simultaneously, i.e., while keeping Md/mp constant, to ensure
that the secular resonance location where a gap is expected to form remains the same
(i.e., ares = 70 au); see Sections 5.4.1 and 5.5.1. In Figure 5.8, this is equivalent to
moving vertically up or down relative to any of the simulation setups I have considered
thus far.

As we know from Section 5.2, the secular precession rates scale linearly with
masses (Equations (5.4) – (5.7)), whereas the forced eccentricities depend only on
the ratio Md/mp (Equation (5.12)). Thus, varying the disc and planet masses (while
Md/mp = const) should only change the secular evolution timescale, but not the details
of the secular dynamics. This simply is a restatement of the fact that scaling both
Md and mp does not affect the relative strength of perturbations due to the disc and
the planet. Consequently, if one increases both the disc and planet masses in any of
my simulations, then the very same dynamical end-states – hence, disc morphology –
will be achieved within shorter timescales, and vice versa. Note that, in principle, this
scaling rule applies as long as Md,mp ≪ Mc, since otherwise the Laplace–Lagrange
description in Section 5.2 becomes unreliable (Murray & Dermott, 1999). However,
looking at Figure 5.8, one can see that this limitation is not a concern in my case since
the most massive “allowed” planet has mp ∼ 10−2Mc.

5.6.2.4 Variations with the Mass distribution in the Disc

My calculations so far have assumed a disc with density profile Σd ∝ 1/a, i.e., with
a power-law index of p = 1 in Equation (5.1). I now discuss how my results would
change for different values of p, when all else is kept the same. Since the slope of the
surface density p effectively controls the precession rate of both the planetesimals and
the planet (Equations (5.5) and (5.7)), it is natural to expect that the location of
the secular resonance will shift as the mass distribution in the disc is varied; see also
Equation (5.17). I found that this is indeed the case, and I further confirmed that it
does not qualitatively affect the three evolutionary stages presented in Section 5.6.1.
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I generally find that when ain ≪ ares ≪ aout, the resonance location shifts at most
by only about 10 percent as p is varied between 0.5 and 1.5. However, the direction
in which the resonance shifts in a given setup is rather subtle to characterise for the
following reasons. First, larger values of p lead to larger Ad,p (and vice versa) as
now more mass will be concentrated in the inner disc parts than in the outer regions,
causing the planet to precess at a faster rate. Second – and relatedly – the disc-induced
precession rate of planetesimals Ad at a ≫ ain decreases in absolute magnitude, since it
is proportional to the local surface density of the disc (Equation (5.5)).9 To summarise,
varying p has opposite effects on Ad,p and |Ad|, and it is the detailed balance between
these two effects that determines whether the resonance shifts outwards or inwards in
a given setup; see Equation (5.16). For the parameters of HD 107146 in Figure 5.8,
I find that the resonance shifts inwards from its nominal location, i.e., ares = 70 au,
when a larger value for p is adopted (and vice versa). Thus if I were to generate a
version of Figure 5.8 with, e.g., p = 1.5 rather than p = 1, the values of Md required to
reinstate the resonance at ares = 70 au would be a factor of ∼ 1.1 lower.

5.7 Discussion

The results of previous sections show that the secular interaction between a low-
eccentricity planet and an external, coplanar debris disc can lead to the formation of a
gap in the disc. This occurs through the excitation of planetesimal eccentricities at
around one of the two secular resonances arising due to the combined gravitational
influence of the disc10 and the planet. The novelty of this mechanism is that it requires
the presence of only a single planet interior to a less-massive disc, and is also robust,
in the sense that it operates over a wide range of parameters.

As an example, I applied my model to the HD 107146 disc and investigated the
general features of the disc and gap morphology in the course of secular evolution.
In the following, I first discuss (in a general context) how the results of my model
compare with the observed features in HD 107146 (Section 5.7.1). I next discuss the
application of my model to other systems which are known to harbour double-ringed
debris discs (Section 5.7.2). I also discuss the potential applicability of my model to
planetary systems composed of two (or more) planets (Section 5.7.3). Finally, I discuss

9I remind the reader that Ad(a) depends also on p through the coefficient ψ1; however, the latter
changes by less than a factor of two within the range 0.5 ≤ p ≤ 1.5 (e.g. Figure 4.5; Silsbee & Rafikov,
2015a).

10Recall that in this chapter I ignore the non-axisymmetric component of the disc gravity. See
Section 5.8.2 for further discussion of this point.
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the implications of my results for determining the masses of debris discs (Section 5.7.4),
and for their dynamical modelling in general (Section 5.7.5).

5.7.1 Comparison with the Observed Structure in HD 107146

By applying my model to HD 107146, I have shown that a gap can be readily sculpted
at the observed location, i.e., around 70 au (Marino et al., 2018a), for a wide range
of planet–disc parameters; see, e.g., Figure 5.8 and Section 5.6. Additionally, my
results show that the produced gaps invariably have a fractional depth of about 0.5
(Section 5.6), which is consistent with that observed in HD 107146 (Marino et al.,
2018a). While these results are encouraging, there are some issues with my model that
need to be highlighted when it comes to comparing with the observational data of HD
107146 (Marino et al., 2018a).

First, as already mentioned in Section 5.5.2, ALMA observations of HD 107146 in-
dicate that its disc is axisymmetric and characterised by a circular gap (Marino et al.,
2018a); see e.g. Figure 2.6. My model, however, produces gaps that are asymmetric in
the azimuthal direction (Section 5.6), with the disc surface density being depleted to a
greater extent and over a wider region in the direction of planet’s pericentre. I further
found that the gap asymmetry cannot be mitigated, as one might naively expect, by
adopting lower values for the planetary eccentricity – see Section 5.6.2.2.

Second, as already stated in Section 5.5.3, the observed gap in HD 107146 is ∼ 40
au wide. This is larger by about a factor of two compared to the gap in my fiducial
configuration (Section 5.6.1). In principle, my model can yield such wide gaps with
a combination of high-eccentricity and large semimajor axis for the planetary orbit;
see Sections 5.6.2.1 and 5.6.2.2. However, this would also impose more notable non-
axisymmetric structure on the disc, which, given the discussion above, is problematic
for HD 107146. Thus the conclusion is that, within the model adopted in this chapter,
it is difficult to sculpt a gap as wide and as axisymmetric as that in HD 107146 without
invoking additional processes.

Third, observations of HD 107146 indicate that the surface brightness of the
outer and inner rings are comparable (Marino et al., 2018a); see Figure 2.7. Since
submillimetre dust emission at a distance r scales as T (r) ∝ r−1/2 (assuming blackbody
emission in the Rayleigh-Jeans limit), this observation suggests an increasing surface
density with radius, which may seem unnatural in the context of protoplanetary discs.
As a result, this has been taken as evidence for collisional depletion of planetesimals
in the inner disc regions (Ricci et al., 2015; Yelverton & Kennedy, 2018). Thus, if
my collisionless model were applied to any physically realistic profile (i.e., with p > 0,
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Equation (5.1)), it is unlikely that I would reproduce the observed brightness peaks.
However, it is possible that a shallower density slope than p = 1 could generate
comparable brightness peaks at times t ∼ τsec, when my model produces an overdensity
just exterior to the depletion (see Stage 2 in Section 5.6.1).

The above discussion suggests that although my mechanism acting alone can
produce a structure qualitatively similar to that observed in HD 107146, it does not
provide a quantitative interpretation of the observations. However, I re-emphasise that
my aim in this chapter was not to provide a complete description of the HD 107146 disc,
but rather to provide a proof-of-concept for my mechanism and its feasibility. I also
stress that the limitations of my simple model need to be assessed before making any
definitive conclusions (see Section 5.8 for a detailed discussion). Nevertheless, my
results serve as a starting point to guide future, more comprehensive studies that aim
to match the observations of the HD 107146 disc, or any other disc with an observed
gap.

5.7.2 Application to Other Systems

Given the potential ubiquity of gaps in debris discs (e.g. Kennedy & Wyatt, 2014;
Marino et al., 2020, see also Section 2.3.1), it is also possible that future surveys will
reveal a sample of discs with asymmetric gaps. Two potential candidates for such
systems are HD 92945 (Marino et al., 2019) and HD 206893 (Marino et al., 2020;
Nederlander et al., 2021), which I discuss below.

5.7.2.1 HD 92945

I first consider the system HD 92945 (Golimowski et al., 2011), which is often viewed
as a sibling to HD 107146 in many ways. Both systems not only have stars with similar
masses and ages (1M⊙ and 100 − 300 Myr, Plavchan et al. (2009)), but also their discs
show some similarities in terms of their radial structure. Indeed, ALMA observations
of Marino et al. (2019) show that the HD 92945 disc, extending from ∼ 50 to 140 au,
is double-peaked with a gap centred at about ∼ 73 au, roughly coincident with that in
HD 107146; see Figure 2.7. However, and in contrast to HD 107146, the gap in HD
92945 appears to be asymmetric and is relatively narrow with an estimated width of
20+10

−8 au (Marino et al., 2019).
These features speak in favour of my model, so I could use my results in Section

5.4 to determine the properties of the planet and disc such that the gap is sculpted
by secular resonances. Figure 5.13 summarises the results of my analysis (following a
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Figure 5.13. Similar to Figure 5.8, but for an HD 92945–like disc. The white region
represents the disc–planet parameters that place a secular resonance at 73 au such that it
acts on a time-scale less than the stellar age (i.e., ≤ 300 Myr) and is wide enough to have an
observable effect. All other notations and exclusion criteria are similar to those in Figure 5.8,
except that here I have also excluded planet masses that exceed one-tenth of the central star
mass, i.e., mp ≥ Mc/10 (olive shaded region in the top part of the parameter space). See the
text (Section 5.7.2.1) for details.

similar reasoning as for HD 107146 in Section 5.5). I find that a companion with a
semimajor axis ap in the range ∼ 3 − 50 au and mass mp between ∼ 10−2 and 102MJ

can produce a wide enough gap at the observed location within the stellar age, provided
that 1 ≲ Md/M⊕ ≲ 100 – see the white region in Figure 5.13. These limits are in
agreement with (i) direct imaging constraints explored by Biller et al. (2013) – see
red curve in Figure 5.13, and (ii) disc mass estimates of ∼ 100 − 200M⊕ derived from
collisional models in Marino et al. (2019).
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Finally, I note that since the inner disc edge in HD 92945 is located at ∼ 50 au, i.e.,
farther out than in HD 107146, it is possible for the planet to be on a more distant orbit
than in HD 107146 (Figure 5.13). However, I confirmed that this is only necessary if
the true gap width is toward the upper end of its estimated range (recall that increasing
ap/ain in my model leads to wider gaps). For instance, I find that invoking a planet
similar to that in Model A (but with a disc of mass Md ≈ 16.4M⊕) produces a ∼ 16
au wide gap, which is comparable to that observed. Future observations of this system
could help to put better constraints on the disc mass and planetary properties.

5.7.2.2 HD 206893

I next consider HD 206893, a 50 − 700 Myr old F5V star, which hosts a debris disc
(Marino et al., 2020; Nederlander et al., 2021) as well as one brown dwarf companion,
HD 206893 B, detected using direct imaging (Milli et al., 2017a). ALMA observations
of Marino et al. (2020) show that this disc, extending from ∼ 30 to 180 au, features an
asymmetric ∼ 27 au wide gap centred at ∼ 75 au (see also Figure 2.7). Given that HD
206893 B orbits interior to the disc with ap ∼ 11 au (Delorme et al., 2017), this system
is ideally suited to test whether my model can reproduce the observed gap.

To assess this, I adopt the minimum possible mass of HD 206893 B (∼ 12MJ ,
Delorme et al., 2017) and calculate, using Equation (5.16), the disc mass that would
place a secular resonance at the observed gap location, i.e., ares = 75 au. Assuming
a surface density profile with p = 1 (Equation (5.1)), I find that the required disc
mass is Md ≈ 170M⊕; see also Equation (5.18). This is roughly consistent with the
disc mass estimates of Marino et al. (2020) based on collisional models. Moreover, I
also confirmed that the gap width wg obtained from my model agrees well with that
observed: adopting the best-fitting eccentricity of HD 206893 B, ep ∼ 0.15 (Marino
et al., 2020), I find that wg ≈ 26 au after ∼ 20 Myr of evolution. If future observations
with better resolution confirm that the gap in the HD 206893 disc is indeed wider
toward the companion’s pericentre position, this will then provide a strong support to
my model.

Finally, I note that recent analyses of HD 206893 have indicated that it is likely
that this system harbours a second inner companion at ∼ 2 au (Grandjean et al.,
2019; Marino et al., 2020). While in this and subsequent chapters I only consider
single-planet systems, my model may easily be extended to two-planet systems (or
more). In this case, depending on the strength of perturbations from the companion(s),
my results both in general (e.g., Section 5.2) and for HD 206893 may or may not be
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affected significantly. Although such an analysis is beyond the scope of this thesis, I
briefly discuss this caveat next.

5.7.3 Potential Application to Multi-planet Systems

Throughout this chapter, I only considered what is arguably the least complex planetary
system architecture: a single planet orbiting interior to a massive disc. This was partly
motivated by the desire to demonstrate that, for all its simplicity, the model can
produce debris disc morphologies (in particular, gaps) which would otherwise may
not be possible with massless disc models. This said, however, the model presented
in Section 5.2 may easily be extended to systems composed of two (or more) planets
orbiting interior to the disc. The presence of additional planet(s) may or may not
affect my results, depending on the perturbation strength of the additional planet(s).

In a two-planet system, for instance, it is straightforward to expect that my results
would remain roughly the same if the perturbations due to the additional planet are
negligible, e.g., if it is much less massive and closer to the central object than its
counterpart. The extreme, of course, is a system where the additional companion
overshadows the gravitational effects of the disc – even if the latter is relatively massive,
say, with Md ∼ 100M⊕. Such a case would be reminiscent of the setup in Yelverton
& Kennedy (2018), where the authors show that two planets carve a crescent-shaped
gap – similar to that I find in my study (Section 5.6) – centred around one of the two
secular resonances they establish within an external, massless disc. The transition
between these two extreme cases remains an interesting scenario to explore. In this
case it may be possible to carve either two or a single but broader gap in the disc,
depending on the properties of the secular resonances of the “two planets + massive
disc” system, which, in principle, can feature up to four resonances (where two of them
will be near ain due to disc edge effects; see Section 5.3.2). A detailed investigation of
the potential effects of an additional planet on my results is beyond the scope of this
dissertation and is best deferred to a future study. Nevertheless, I acknowledge that it
could be important for the location (if not number) of secular resonances and thus is
crucial for constraining the disc–planet parameters based on imaged gap structures.

5.7.4 Implications for Disc Mass Estimates

My results may be used to infer the presence of a yet-undetected planet in any system
harbouring a double-ringed debris disc. The inferences are, of course, degenerate
with the assumed system parameters but, more importantly, they are subject to the
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condition that there be sufficient mass in the disc (Sections 5.4 and 5.5). Thus, the
detection of planets with the inferred properties will not only provide strong support
to my model, but also – and more importantly – provide a unique way to indirectly
measure the total mass of the debris disc Md (see, e.g., Section 5.7.2.2). This is
particularly appealing, considering the fact that Md cannot be accessed using other
techniques – not least without invoking theoretical collisional models to extrapolate
observed dust masses to the unobservable larger planetesimals that carry most of
the disc mass (for a detailed discussion, see Section 2.6 and Krivov & Wyatt, 2021).
This represents a promising avenue to consider in the future, in particular with the
advent of new generation instruments such as JWST, which could detect planets with
mp ≲ 10MJ at ap ∼ 10 au separations. Conversely, the results of Section 5.4 may be
used to investigate whether or not the debris disc of a known planet-hosting system
should have a gap. Future observations of such systems, e.g., with ALMA looking for
evidence – or lack thereof – of a gap could help in constraining the total disc mass.

5.7.5 The Importance of Disc Self-gravity in Dynamical Mod-
elling of Debris Discs

The study presented in this chapter has further consequences beyond an explanation
of gap formation in debris discs. Particularly, my findings strongly emphasise the need
to account for the (self-)gravitational effects of discs in studies of planet–debris disc
interactions. As I showed in this chapter, the end-state of secular interactions between
a single planet and a disc having only a modest amount of mass can be radically
different from the naive expectations based on a massless disc. Indeed, if it were not
for the disc gravity in my model, secular resonances would have not been established
and so no gap would have formed in the disc – at least not without invoking two or
more planets (e.g., as done by Yelverton & Kennedy, 2018), or a single but precessing
planet (Pearce & Wyatt, 2015).

This also highlights an important caveat related to the dynamical modelling of
debris discs in general. While studies treating debris discs as a collection of massless
particles seem to successfully reproduce a large variety of observed disc features by
invoking unseen planets (e.g., see Chapter 2.4 and reviews by Krivov, 2010; Wyatt,
2018), their inferences about the underlying planetary system architecture may be
compromised. The inclusion of disc gravity would – at least – impose modifications on
the masses and orbital properties, if not numbers, of invoked planets. Thus, caution
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must be exercised in the interpretation of observed disc structures when the disc mass
is ignored.

Recently, Dong et al. (2020) raised a similar point when it comes to ascribing
observed morphologies of discs (assumed to be massless) to single planets in situations
where the potential presence of a second planet is ignored. I urge a similar analysis
to be performed by considering a natural hypothesis of having nonzero disc mass in
contrast to the potential presence of additional planets. Although this is beyond the
scope of my dissertation, the formalism outlined in Section 5.2 could provide a useful
starting point for such an analysis. To summarise, the inclusion of disc self-gravity
in studies of planet–disc interactions should be considered in dynamical modelling of
debris discs.

5.8 Limitations of the Model

I now discuss some of my model assumptions and limitations. This will also serve as a
motivation for the study presented in the forthcoming chapter (i.e., Chapter 6).

5.8.1 Treating Planetesimals as Test Particles

Throughout this chapter, I treated planetesimals as massless test particles, and analysed
their secular evolution under the influence of gravity from both the planet and the
debris disc. To this end, I modelled the debris disc as being passive: that is, as a
rigid slab that provides fixed axisymmetric gravitational potential (see Equation (5.3)
and Section 5.2; disc non-axisymmetry is discussed next in Section 5.8.2). Thus, at
first glance, it appears that instead of the planetesimals contributing to the collective
potential of the disc, they are enslaved by the fixed disc potential given in Equation
(5.3). In reality, though, these two approaches are subtly similar. This is because the
orbit-averaged disturbing function for a planetesimal of mass mj due to all other N
massive planetesimals in a disc – in the continuum limit (i.e. N → ∞,mj ∼ N−1) –
is equivalent to that in Equation (5.3). This can be verified by a somewhat tedious
but straightforward calculation, as done in Chapter 4, which requires softening the
gravitational interaction between massive planetesimals, integrating radially over all
planetesimals, and taking the limit of zero softening – see e.g. Figure 4.10, Section
4.6.3, and Hahn (2003).

To further justify this equivalence, I simulated the secular dynamics of disc–planet
systems by modeling the disc as a swarm of N massive planetesimals, each represented
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as a ring11, that interact via softened gravity (see e.g. Chapter 4, Hahn 2003; Touma
et al. 2009; Batygin 2012). I found that simulations carried out with a negligible
softening parameter accurately reproduce the analytical solutions presented in Section
5.2.3 (which is, of course, possible only when the non-axisymmetric perturbations due
to simulated disc particles are neglected, i.e., as in Section 5.2). Quantitative results
showing this equivalence are provided later in Section 6.2.3.2 of Chapter 6, where the
softened “N -ring” model is introduced.

5.8.2 Non-axisymmetric Component of Disc Gravity

A major limitation of the work presented in this chapter is that I only accounted
for the axisymmetric contribution of the disc gravity, ignoring its non-axisymmetric
component (Section 5.2). That is to say, my model does not account for the non-
axisymmetric perturbations that disc particles can exert both among themselves and
onto the planet (see Section 5.8.1), even though I found that the disc naturally develops
non-axisymmetry (Sections 5.6.1 and 5.6.2). This omission allowed me to elucidate the
key effects of disc gravity (semi-)analytically. This comes, however, at the expense of
reduced coupling within the system that inhibits the exchange of angular momentum
between the disc and planet. Thus, the theory outlined in this chapter serves as a first
step toward a comprehensive understanding of the role played by disc gravity and its
observational implications.

Previous studies of gravitating disc–planet systems (which include the full gravita-
tional effects of disc particles) have shown that an eccentric planet could launch a long,
one-armed, spiral density wave at a secular resonance in the disc (Ward & Hahn, 1998a;
Hahn, 2003, 2008). Such spiral waves propagate away from the resonance location as
trailing waves with pattern speed equal to the planetary precession rate. These waves
also transfer angular momentum from the disc to the planet in a way that damps the
planet’s eccentricity, without affecting its semimajor axis12 (Goldreich & Tremaine,
1980; Ward & Hahn, 1998a; Tremaine, 1998; Ward & Hahn, 2000). My idealised model
is not designed to capture the full richness of such dynamical phenomena. Thus, a
more sophisticated analysis is crucial, and this will be the subject of the forthcoming
chapter (i.e., Chapter 6).

11Recall that orbit-averaging is equivalent to smearing particles into massive rings along their orbits,
where the line-density of each ring is inversely proportional to the orbital velocity of each particle
(Murray & Dermott, 1999).

12This process is referred to in the literature as “resonant friction” (Tremaine, 1998) or “secular
resonant damping” (Ward & Hahn, 2000).

160



5.9 Summary

5.8.3 Secular Approximation

I limited the expansion of the secular disturbing function to second order in eccentricities
(e.g., see Sections 5.2 and 6.2). Hence, my results are only approximate at high
eccentricities, e.g., in the vicinity of the secular resonances, where it is necessary to
include higher-order terms in the disturbing function (e.g., see Section 4.6.4; Sefilian &
Touma, 2019). Such an exercise would, primarily, limit the eccentricity amplitude at
the resonance (Malhotra, 1998). Nevertheless, it seems unlikely that this would affect
the gap formation. For instance, from Figures 5.9 and 5.10, one can see that the gap is
already well-developed when eccentricities at the resonance are still rather modest, i.e.,
e ∼ 0.2. Higher-order terms, however, could give rise to mild quantitative differences
in terms of the dynamical timescales, e.g., period of eccentricity oscillations.

I also ignored MMRs between the planet and the planetesimals. Previously,
Tabeshian & Wiegert (2016) found in simulations of synthetic debris discs that gaps
can be carved at the 2:1 MMR with an internal low-e planet (ep ≲ 0.1; see also Regály
et al., 2018). In my simulated systems, this can occur around ≃ ain. However, as the
authors explain, MMR gaps will be blurred or even washed out by high-eccentricity
planetesimal orbits farther out in the disc. In my case, this could be easily achieved by
planetesimals in the vicinity of the secular resonance.

5.9 Summary

In this chapter, I explored the secular interaction between an eccentric planet and an
external self-gravitating debris disc, using a simplified analytic model. The model is
simplified in the sense that it only accounts for the axisymmetric component of the
disc (self)-gravity, ignoring its non-axisymmetric contribution. Despite this limitation,
however, this is the first time (to the best of my knowledge) that the effects of disc
gravity have been considered analytically in such detail in the context of debris discs.
I employed the analytic model to assess the possibility of forming gaps in debris discs
through excitation of planetesimal eccentricities by the secular apsidal resonances of
the system. I summarise my key results below.

(i) When the debris disc is less massive than the planet, 10−4 ≲ Md/mp ≲ 1, the
combined gravity of the disc and the planet can mediate the establishment of
two secular apsidal resonances in the disc.

(ii) I mapped out the behaviour of the characteristics of the secular resonances –
i.e. locations, time-scales, and widths – as a function of the disc and planet
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parameters. In particular, I found that one of the secular resonances can lead to
the formation of an observable gap over a broad region of parameter space.

(iii) As an example, I applied my results to HD 107146 and HD 92945, and showed
how the properties of a yet-undetected planet, together with the mass of the
debris disc, can be constrained to produce a gap at the observed location. In the
case of HD 206893, I find that the directly imaged companion can sculpt the
observed gap if the debris disc is ≈ 170M⊕ in mass.

(iv) By investigating the secular evolution in such systems, I identified three distinct
evolutionary stages that occur on timescales measured relative to the planetary
precession period. I find that the gap forms by the time the planet has completed
approximately one precessional cycle, on a timescale of tens of megayears.

(v) Independent of the system parameters, the gap carved around the secular reso-
nance is asymmetric: it is both wider and deeper in the direction of the planetary
pericentre. Additionally, its fractional depth is always about 0.5. The gap width,
however, increases with increasing planetary semimajor axis and/or eccentricity.

(vi) More generally, my results suggest that the gravitational potential of debris discs
can have a notable effect on the secular evolution of debris particles. I advocate
the inclusion of disc gravity in studies of planet–debris disc interactions.

The mechanism presented here represents what is arguably the simplest pathway
to forming gaps in debris discs, akin to those observed in HD 107146, HD 92945, and
HD 206893. It may indeed obviate the need for invoking more complicated scenarios,
e.g. multiple planets interior to or within the disc.

Finally, I remark that the work presented in this chapter should be envisaged as a
first step toward an in-depth exploration of the effects of disc gravity in planet–debris
disc interactions. In the forthcoming chapter, I will extend my current calculations
using numerical techniques to properly account for the full gravitational effects of the
disc.
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Chapter 6

Planet–Debris Disc Interactions II:
Development of a Self-consistent
Model

6.1 Introduction

The previous chapter investigated the secular interaction between an eccentric planet
and a massive, external debris disc using a simple analytical model. The model
accounted for both the gravitational coupling between the disc and the planet, as well
as the disc self-gravity – with the limitation that it ignored the non-axisymmetric
component of the disc (self)-gravity. This omission allowed me to elucidate the basic
effects of disc gravity and present a novel pathway to sculpting gaps in debris discs.
However, the assumption of an axisymmetric disc potential is too simplistic since,
as we already saw, the disc can naturally develop some degree of non-axisymmetry.
Such a disc would have a non-axisymmetric component of its gravitational potential,
affecting the evolution of both the constituent planetesimals and the planet. Thus, a
more complete treatment of the disc (self-)gravity is warranted to uncover its complete
spectrum of effects in secular planet–debris disc interactions.

This chapter provides a natural but important extension of Chapter 5 by incor-
porating the full gravitational effects of the disc, both axi- and non-axisymmetric
contributions. I accomplish this goal by working within the context of the continuum
version of the classical Laplace-Lagrange theory (Murray & Dermott, 1999) using the
softening prescription of Hahn (2003): i.e., by modelling the disc as a collection of N
softened, massive rings interacting both with each other and with the planet (Chapter
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4). Owing to the more complex nature of this problem, I approach it in two steps. First,
in addition to the disc’s axisymmetric potential, I account for its non-axisymmetric
gravitational component acting on the planet, i.e., without considering its effects on
the disc particles – a case I refer to as ‘nominal’ simulations. I then move on to account
for the full gravitational field of the disc, including its non-axisymmetric perturbations
both on the planet and the disc itself – a case I refer to as ‘full’ simulations. The
results of such full simulations are preliminary, in the sense that I plan on expanding on
them in the near future, and thus should be regarded as a work in progress. For ease
of comparison with the results of Chapter 5, I perform such N -ring simulations using
the same planet–disc parameters identified there as capable of reproducing the gap
observed in the HD 107146 disc (Figure 5.8). As we shall see, this approach will prove
useful in building up a more systematic understanding of the effects of disc gravity in
planet–debris disc interactions, both generally and specifically for gapped debris discs.

The structure of this chapter is as follows. First in Section 6.2, I introduce the
framework describing the continuum version of the classical Laplace–Lagrange theory
– hereafter, the N -ring model – that will be used to simulate the secular evolution
of planet–debris disc systems. After performing some tests of the N -ring model, I
present the main results obtained within the set of ‘nominal’ simulations in Section
6.3. Then in Section 6.4, I analyse the results of a suite of nominal N -ring simulations
and provide quantitative explanations for the differences identified when compared
to the expectations based on the simplified model of Chapter 5. Section 6.5 then
presents and discusses some of my key preliminary results obtained within the set of
full N -ring simulations, describing the two qualitatively different outcomes observed. I
discuss the overall results of this study along with their theoretical and observational
implications in Section 6.6, where I also critically assess the limitations of my model,
discuss planned future work, and summarise the key results presented in this chapter.

6.2 Laplace-Lagrange secular theory: continuum
version

Laplace–Lagrange theory represents one of the best-known results of celestial mechanics
for studying the secular evolution of planetary systems. However, as already discussed
in Section 4.1, this framework is ill-posed from a mathematical point of view when
applied to self-gravitating, massive discs. Nevertheless, the results presented in Chapter
4 suggest that the continuum version of the classical Laplace–Lagrange theory, when
modified by the introduction of a small but non-zero softening parameter, can well
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reproduce the expected results arising from unsoftened calculations of the orbit-averaged
disc potential, e.g. as done by Heppenheimer (1980). In this section, I present the
equations describing the continuum version of the classical Laplace–Lagrange theory,
or the N -ring model, based on the softening prescription of Hahn (2003) (Chapter 4).
However, prior to this, it is necessary to define a number of basic parameters of the
model.

6.2.1 Parameters of the Model

The general setup of the planet–disc system that I consider in this chapter is the same
as in Chapter 5: a central star of mass Mc that is orbited by a planet of mass mp and
an external, coplanar debris disc of mass Md, such that mp,Md ≪ Mc – see Figure 5.1.
Similar to Chapter 5, I also assume the planetary orbit – which is characterised by
its semimajor axis ap, eccentricity ep, and longitude of pericentre ϖp – to be initially
slightly eccentric (i.e., ep ≲ 0.1) so that it does not cross the disc along its orbit.
Additionally and once again, I consider the debris disc to be initially axisymmetric
with a surface density profile that is described by the truncated power-law given by
Equation (5.1).

Unlike Chapter 5, however, in which the debris disc was modelled as a continuous
entity providing a fixed gravitational potential (Section 5.8.1), I now adopt a discretised
description in which the orbits of disc particles slowly flex over time due to perturbations
arising from the gravity of both the disc and the planet. In other words, I model
the debris disc as a series of N ≫ 1 nested massive rings (see e.g. Figure 4.1),
each of which interacts with the other disc rings as well as the planet, and in the
process affect the gravitational potential generated by the entire disc. This allows
for a self-consistent representation of the disc’s (self-)gravity. Note that qualitatively
speaking, replacing particle orbits by massive rings is equivalent to orbit-averaging the
gravitational potential generated by the particles (Murray & Dermott, 1999, see also
Chapter 3), and thus each ring will be characterised by a non-uniform linear density
that is inversely proportional to the orbital velocity of a particle at a particular phase
of its orbit; see Chapters 3 and 4. Note that throughout this chapter, I shall use the
words “planetesimals”, “disc rings”, and “debris particles” interchangeably.

Conceptually each of the disc rings may be thought of as a swarm of planetesimals,
all sharing the same semimajor axis aj, eccentricity ej, and longitude of pericentre
ϖj (with j = 1, ..., N). Thus, I also assume that the orbital eccentricity of each ring
is small throughout the disc, so that the velocity dispersion of neighbouring rings is
small when compared to the Keplerian velocity at a given semimajor axis. Accordingly,
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I define the aspect ratio H of the disc as a small parameter and assume that it is
constant throughout the entire range of the disc:

H = hj
aj

= const ≪ 1, (6.1)

with hj ∝ aj being a measure of the vertical and radial half-thickness of the j-th disc
ring (Hahn, 2003). Here, it is important to note that the parameter H is one of the
fundamental parameters entering in the N -ring model, as it represents the magnitude
of the gravitational softening parameter; see Chapter 4 and Hahn (2003).

To complete the discretised description of the debris disc, one further needs to
assign the semimajor axes and masses of the disc rings. To this end, the semimajor
axes of the disc rings are taken to be constant in time and distributed logarithmically
between the inner and outer disc edges, ain and aout, respectively, such that the ratio of
spacing between any two adjacent rings is constant, i.e., aj+1/aj = (aout/ain)1/N . The
first of these assumptions is justified by the fact that I am primarily interested in the
secular evolution of the system, and thus the semimajor axes are conserved (Murray &
Dermott, 1999). As to the masses of the disc rings mj , they are assigned such that the
debris disc’s surface density follows the profile given by Equation (5.1), and thus the
total disc mass Md = ∑N

j=1 mj is given by Equation (5.2). For reference, a geometrical
representation of the debris disc is shown in Figure 4.1. Note that this setup is very
similar to that explored in Hahn (2003) in the context of secular interactions between
Neptune and the primordial, massive Kuiper belt.

In this chapter, unless otherwise stated, I adopt a fiducial disc model with ain = 30
au and aout = 150 au (i.e., δ ≡ aout/ain = 5), and a surface density power-law index
of p = 1 (Equation 5.1). The reasoning for these choices is to make contact with
the analytic work presented in Chapter 5. However, it is important to note that
the N -ring model described in this chapter is applicable to arbitrary surface density
profiles, whether power-law or otherwise. Additionally, I model the disc as composed
of N = 5000 rings with an aspect ratio of H = 0.1, while the planet is modelled as an
unsoftened thin ring, i.e., having H = 0. These choices are motivated by the results of
Chapter 4, namely Sections 4.5 and 4.6.3, and will be further justified and discussed
later in Section 6.2.3.3.

6.2.2 The N-ring Model: Governing Equations

With the preliminary specifications of the setup now in place, I move on to describe
the equations governing the secular evolution of the planet–disc system.
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6.2.2.1 The Disturbing Function

Consider the eccentricity dynamics of a ring labeled by index j = 1, ..., N embedded
within a broad disc. According to Chapter 4, the secular disturbing function Rj that
governs the evolution of the ring j is determined by the contribution of all other
perturbing rings k ̸= j such that, to second order in eccentricities, one has:

Rj = nja
2
j

[
1
2Ajje

2
j +

N∑
k=0,k ̸=j

Ajkejek cos(ϖj −ϖk)
]
, (6.2)

where nj =
√
G(Mc +mj)/a3

j is the mean motion of the perturbed j-th ring, and the
meanings of different constants is explained below. To arrive at Equation (6.2), I have
used the definition of the mass density per unit semimajor axis appearing in Equations
(4.4) – (4.6) of Chapter 4 – namely, µd(a) = 2πaΣd(a) – and replaced the integrals
appearing in those equations by a summation over discrete semimajor axes. Note that
in Equation (6.2), the disc is broken up into N rings indexed as j = 1, ..., N , with j

running from the inner to the outer disc edge, and I have introduced one additional
ring indexed as j = 0 to represent the planet. Thus, the entire planet-disc system is
modelled as composed of N + 1 rings. The introduction of the planet in Equation (6.2)
is justified by the fact that the mathematical structure of the disturbing function due
to a disc (see e.g. Section 4.2 and Equation 4.4) is the same as the disturbing function
due to a planet when the softening is set to zero (see e.g. Chapter 4 and Equation 5.3).

The coefficients Ajj and Ajk appearing in Equation (6.2) are the discretised ana-
logues of Ad and Bd defined in Chapter 4 (Equations (4.5) and (4.6)), and thus their
expressions take the following forms:

Ajj = 1
4nj

N∑
k=0,k ̸=j

mk

Mc +mj

f(αjk, H), (6.3)

Ajk = 1
4nj

mk

Mc +mj

g(αjk, H), j ̸= k, (6.4)

for the softening prescription of Hahn (2003). In Equations (6.3) and (6.4), αjk is
defined such that αjk ≡ ak/aj, and the functions f(α,H) and g(α,H) which fully
characterise the ring-ring interactions are given by:

f(α,H) = 8ϕ11 = 8ϕ22 = αB(1),H
3/2 − 3α2H2(2 +H2)B(0),H

5/2 , (6.5)

g(α,H) = 4ϕ12 = −αB(2),H
3/2 + 3α2H2(2 +H2)B(1),H

5/2 , (6.6)
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where B(m),H
s are the softened Laplace coefficients corresponding to the softening

formalism of Hahn (2003) – see Equation (4.14) – and the expressions of the functions
ϕij(α,H) (with i, j = 1, 2) are borrowed from Table 4.1.

Note that unlike the expressions of the disturbing function developed in standard
textbooks (e.g. Brouwer & Clemence, 1961; Murray & Dermott, 1999), the disturbing
function given by Equation (6.2) is valid for cases where the perturbed ring is interior
to or exterior to the perturbing ring, i.e., αjk > 1 or αjk < 1, respectively, and there is
no need for two distinct expressions. This follows from the fact that the coefficients
ϕij resulting from the softening prescription of Hahn (2003) are symmetric when α is
replaced with α−1; see Chapter 4 and Equation (6.11). Nevertheless, it is trivial to
show that the disturbing function (6.2) reduces to the classical expressions in Murray &
Dermott (1999) (e.g. their equations 7.6 and 7.7) upon setting the softening parameter
equal to zero for all considered rings, H = 0.

Finally, I remind the reader of the physical meanings of the coefficients Ajj and
Ajk, highlighting their relation to the definitions used in Chapter 5. The coefficient
Ajj given by Equation (6.3) represents the precession rate of the free eccentricity
vector of the j-th ring due to all other rings in the system. Thus, Ajj with j = 0 is
the free precession of the planet due to the disc, i.e., Ad,p given by Equation (5.7) in
Chapter 5, whereas Ajj with 1 ≤ j ≤ N is the free precession rate of the j-th disc
particle due to the axisymmetric components of both the disc and planet gravity, i.e.,
the sum of Ad and Ap given by Equations (5.5) and (5.4) in Chapter 5, respectively.
Similarly, the coefficient Ajk given by Equation (6.4) represents the non-axisymmetric
perturbations of the j-th ring due to the perturbing ring indexed k. Thus, Ajk with
k = 0 represents the non-axisymmetric perturbations exerted by the planet on the
j-th disc ring, i.e. Bp given by Equation (5.6) in Chapter 5. On the other hand, the
coefficient Ajk evaluated at j = 0 represents the non-axisymmetric perturbations that
the k-th disc ring exerts on the planet, and when evaluated at j ̸= 0, it represents the
non-axisymmetric perturbations that the disc rings exert amongst themselves. These
two contributions to the secular dynamics of the system were neglected in Chapter 5,
and thus the model presented here allows for a more self-consistent treatment of the
problem.

6.2.2.2 Evolution Equations and Their Solution

With the expression of the disturbing function in place (Equation 6.2), the time variation
of the rings’ orbital elements can be determined by the aid of Lagrange’s planetary

168



6.2 Laplace-Lagrange secular theory: continuum version

equations which, to leading order in eccentricities, read as (Murray & Dermott, 1999):

dkj
dt

≈ − 1
nja2

j

∂Rj

∂hj
= −

N∑
k=0

Ajkhk,

dhj
dt

≈ 1
nja2

j

∂Rj

∂kj
=

N∑
k=0

Ajkkk. (6.7)

Here, and as is customary in planetary dynamics, I have expressed the eccentricity
vector in terms of polar coordinates so that e ≡ (k, h) with

k = e cosϖ, and h = e sinϖ. (6.8)

The system of equations (6.7) can be written in a more compact form when expressed
in terms of the complex Poincaré variable, ζ ≡ e exp(iϖ) = k + ih, so that:

dζj
dt

= i
N∑
k=0

Ajkζk. (6.9)

Equation (6.9) represents the key equation needed for the work presented in this
chapter, allowing me to probe the secular evolution of the N -rings system.

Here, I remark that the coefficients Ajj and Ajk (Equations 6.3 and 6.4) can be
regarded as the time-independent entries of an (N + 1) × (N + 1) square matrix
A (Murray & Dermott, 1999), which fully encapsulates the mutual gravitational
interactions among the N + 1 rings in the system. Thus, the equations of motion
given by Equation (6.9) constitute an eigen-system which can be solved using standard
methods, i.e., akin to the problem of N coupled harmonic oscillators (see Chapter 7 of
Murray & Dermott, 1999). Indeed, the time evolution of ζj can be written in closed
form as follows (Murray & Dermott, 1999):

ζj(t) =
N∑
k=0

TkEjk exp[i(gkt+ δk)], (6.10)

where gk and Ejk represent the eigenvalues and eigenvectors of the matrix A, respec-
tively, while δk and Tk are constants of integration determining the phases and relative
amplitudes of the eigenvectors, respectively. A handy recipe for determining these
constants is given in Murray & Dermott (1999). Despite the analytic nature of the
solution, however, this method can become cumbersome and inefficient for the large
number of rings, N ∼ O(103), that must be considered for accurate representation of
the secular dynamics (see Section 4.6.3). Thus, one can alternatively integrate the equa-
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tions of motion in Equation (6.9) numerically e.g. with a conventional Runge–Kutta
ODE solver (Press et al., 2002). This is the approach I opted for in this chapter.

6.2.2.3 Numerical Implementation

Based on the description of the N -ring model above, I developed a code to solve the
resultant equations of motion. First, the code calculates the matrix A for a given set of
rings. Note that the entries of this matrix depend only on the masses of the rings mj,
as well as their semimajor axes aj and aspect ratio H = hj/aj (with j = 0, ..., N) – see
Equations (6.1), (6.3), and (6.4). The latter two parameters appear in the definition
of the Laplace coefficients B(m),H

s , which can be rapidly evaluated by making use of
their relationship to elliptic integrals outlined in Appendix C.3, that is, without relying
on numerical integration of Equation (4.14). Additionally, note that B(m),H

s obeys the
relationship given in Equation (C.4) which relates the Laplace coefficients of arguments
α and α−1, and thus one also has:

f(α−1, H) = αf(α,H),
g(α−1, H) = αg(α,H), (6.11)

further reducing the number of evaluations required to populate the matrix A. Once
the matrix A is computed, the code then takes as input the initial eccentricities and
apsidal angles of the rings, ej(0) and ϖj(0), and integrates the equations of motion
(6.9) using a six-stage, fifth-order, Runge-Kutta method (e.g. Press et al., 2002) with a
variable time step for efficient computation. The times steps are chosen in such a way
that they ensure a maximum relative error of 10−8 per time step. Finally, to check
that my code behaves as expected, I devised and carried out several tests: these are
presented next in Section 6.2.3.

In the coming sections, I will report on simulations carried out using this N -ring
code at three levels of approximation: (1) a ‘simplified’ case, whereby the disc rings’
non-axisymmetric perturbations both amongst themselves and onto the planet are
turned off, i.e., Ajk = 0 for all but k = 0 (where by definition j ̸= k, Equation 6.4);
(2) a ‘nominal’ case, whereby the disc’s non-axisymmetric potential does operate on
the planet but not on the disc particles themselves, i.e., Ajk = 0 for all but j = 0 and
k = 0; and finally (3) a ‘full’ case, whereby all perturbations are accounted for.
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6.2.3 Tests of the N-ring Model

In this section, I describe the tests that I carried out in order to ensure the proper
operation of the N -ring model outlined above. More specifically, I show that the
N -ring model (i) conserves the total angular momentum of the system to second
order in eccentricities, i.e. to the same level of precision as the disturbing function
(Equation 6.2); (ii) reproduces the analytical results of Chapter 5, if and when the
non-axisymmetric gravitational potential of the disc is neglected; (iii) is not significantly
sensitive to the assumed number of rings N and softening parameter H, as long as the
conditions specified in Section 4.6.3 are satisfied; and (iv) reproduces the evolution of
planetary systems not comprising any discs, provided the softening parameter is set
to zero. The reader not interested in the details of these tests may skip to the next
section without loss of continuity.

6.2.3.1 Conservation of Angular Momentum

I first demonstrate analytically that the N -ring model conserves the total angular
momentum of the system, L, which can be written as (Murray & Dermott, 1999),

L =
N∑
j=0

Lj =
N∑
j=0

mjnja
2
j

√
1 − e2

j , (6.12)

where the sum runs over all rings in the system, i.e., those representing the disc and
the planet. Retaining terms up to second order in eccentricities in Equation (6.12)
– that is, to the same degree of precision to which the secular disturbing function is
expanded (Equation 6.2) – L can be written as L ≈ L0 − Le, where

L0 =
N∑
j=0

mjnja
2
j , and Le =

N∑
j=0

1
2mjnja

2
je

2
j . (6.13)

Here, L0 is the system’s total circular angular momentum which, by virtue of orbital
averaging, is a constant of motion. This is simply because secular perturbations do
not alter the individual orbital energies, or semimajor axes, of interacting bodies (e.g.
Chapter 3, see also Murray & Dermott, 1999). The term Le, on the other hand, is
the system’s total angular momentum deficit (AMD) which, physically, quantifies the
amount of angular momentum that needs to be injected into the system to circularize
the orbits of all interacting bodies.

While the individual AMD of each ring is not a conserved quantity and can evolve
significantly over secular timescales, the system’s total AMD, Le, is conserved. This can
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be demonstrated as follows. First, by making use of the relationship 1
2
de2

j

dt
= kj

dkj

dt
+hj dhj

dt

and Equation (6.9), I can express the time derivative of Le as follows:

dLe
dt

=
N∑
j=0

N∑
k=0,k ̸=j

mjnja
2
jAjk(hjkk − hkkj), (6.14)

=
N∑
j=0

N∑
k=0,k ̸=j

1
4

mjmk

Mc +mj

n2
ja

2
jg(αjk, H)(hjkk − hkkj).

I next write dLe/dt ≡ S1 − S2, with S1 and S2 being the terms that involve summing
over the hjkk and hkkj terms in the second line of Equation (6.14), respectively. Since
j and k are dummy indices, I interchange them in the expression of S1, and upon using
the relationships (nk/nj)2 = α−3

jk (Mc +mk)/(Mc +mj) and g(αkj, H) = αjkg(αjk, H),
it can be shown after some straightforward algebra that S1 = S2. This provides an
analytic proof that the system’s angular momentum deficit, and thus the total angular
momentum, is conserved within the N -ring model to second order in eccentricities, i.e.,
dL/dt = dLe/dt = 0.

Given this result, one can thus use the conservation of the total angular momentum
as a reliable diagnostic for the quality of the numerical scheme employed to evolve
the N -rings system (Equation 6.9). To this end, I analysed all of the nominal N -ring
simulations presented in this Chapter (see Table H.1), finding that the total AMD is
conserved in all runs to within a fractional error of |∆Le/Le| ∼ 10−9 − 10−8. Note that
this is the case at all times as long as no ring attains an eccentricity comparable to
or larger than 1 at and around the secular resonance in the course of the evolution1.
Finally out of curiosity, I also repeated some of the simulations by modelling the planet
as a thick softened ring, rather than razor-thin unsoftened one, finding that it makes
no difference in terms of preserving the system’s total angular momentum.

6.2.3.2 Tests Against Known Analytic Solutions

I now demonstrate that the N -ring model can successfully reproduce the analytical
results derived in Chapter 5 for the time evolution of the planetesimal eccentricities
and apsidal angles – namely, Equations (5.10) and (5.11).

At the outset, I remind that Equations (5.10) and (5.11) were derived under the
assumption that the disc contributes to the secular evolution of the system – both
the planet and planetesimals – through its axisymmetric component of (self)-gravity

1I remind that eccentricities larger than unity are not physical and simply result from adopting a
second-order Laplace-Lagrange theory; see e.g. Malhotra (1998); Murray & Dermott (1999).
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only, i.e., ignoring the non-axisymmetric component of the disc gravity. Thus, for
a meaningful comparison between the numerical results of the N -ring model and
the analytical results in Chapter 5, I switched off the terms in the matrix A which
represent the non-axisymmetric perturbations due to the disc rings, i.e., by setting
Aj,k ̸=0 = 0 (Equation 6.4), and followed the evolution of the N -rings system. To this
end, I adapted the parameters of the fiducial planet–disc system (Model A, Tables 5.1
and H.1), modelling the disc as a collection of N = 5000 softened rings with H = 0.1,
each initiated with e(0) = 10−5 and w(0) = −π/2. The planet’s potential was left
unsoftened. This allows me to directly compare the numerical results with Equations
(5.10) and (5.11) stemming from the analytical theory in Chapter 5, and thus directly
verifying the accuracy of the N -ring model.

The results of this exercise are illustrated in Figure 6.1, where I plot the time
evolution of the eccentricities e (left panels) and apsidal angles ∆ϖ (right panels) of
planetesimals orbiting at semimajor axes of 50, 70, 90, 110, and 130 au (from top to
bottom). Note that the apsidal angles are measured relative to that of the precessing
planet, i.e., ∆ϖ = ϖ − ϖp. Looking at Figure 6.1, one can see that the agreement
between the evolution computed by the N -ring model (shown in blue) and the analytical
results of Chapter 5 (shown in red) is very good at all semimajor axes. Indeed, the
curves of e(t) and ∆ϖ(t) resulting from the N -ring model follow closely the theoretical
predictions of Equations (5.10) and (5.11), with agreement to within several percent in
both the amplitudes of eccentricity variations as well as the periods associated with
the oscillations of e(t) and ∆ϖ(t). Generally, the deviations are negligible throughout
almost the entire disc, ain ≲ a ≲ aout, with differences being about 2 − 3% when
compared to the analytical results, see e.g. Figures 6.1(a)–(d). However, the deviations
become more pronounced and are about ≈ 10% for planetesimals near the outer edge
of the disc, a ≈ aout, see e.g. Figure 6.1(e). Nevertheless, these deviations are of no
practical importance for the purposes of the study presented here, as they are unlikely
to have significant effect e.g. on the spatial appearance of the disc due to the already
low eccentricities in the outer parts.

Having said that, note that the origin of such deviations can be well explained
within the context of the study presented in Chapter 4. There it was shown that the
number of disc rings required to accurately capture the secular effects of a continuous
disc scales as N ∼ CH−2 when considering particles far from the disc edges, with the
constant of proportionality C being roughly inversely proportional to the desired level
of accuracy; see Section 4.6.3 and Figure 4.10. The deviations observed in Figures
6.1(a)–(d) are consistent with those findings. Indeed, according to Figure 4.10, N ≈ 500
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Figure 6.1. Verification of the numerical results obtained for the planetesimal orbital
evolution within the softened N -ring model (Section 6.2) using the unsoftened analytical
results developed in Chapter 5 (Equations 5.10 and 5.11). The planetesimals were initiated
on circular orbits (e(0) = 10−5) in the fiducial planet–disc model (Model A; Table 5.1). The
N -ring calculations assumed 5000 disc rings, each with a softening parameter of H = 0.1,
while leaving the planet’s potential unsoftened. The time evolution of the planetesimal
eccentricity e (left panels) and apsidal angle ∆ϖ (right panels, measured relative to that
of the precessing planet) is shown for different values of planetesimal semimajor axes, as
indicated to the right of each panel. One can see a very good agreement between the numerical
results of the N -ring model and the theoretical results of Chapter 5 at all semimajor axes.
See the text (Section 6.2.3.2) for more details.
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6.2 Laplace-Lagrange secular theory: continuum version

rings are required to ensure accuracy to within 10% for a softening of H = 0.1 (see dark
blue line in Figure 4.10), and thus a discrepancy of ∼ 1% is expected for N = 5000
rings as in Figure 6.1. Similarly, the relatively larger discrepancy observed in Figure
6.1(e) is consistent with the findings in Section 4.5, where I showed that very small
values of softening (i.e., H ≲ 0.001) are required to accurately capture the secular
effects near the edges of a disc. Thus, in principle, large deviations should also have
been seen near the inner edge of the disc, e.g. at a = 50 au in Figure 6.1: however,
this is not the case here, since the planet dominates the dynamics in the inner parts of
the disc (see e.g. Section 5.3), rendering departures to within several percent in terms
of the disc induced precession of planetesimal orbits irrelevant. Nevertheless, as can
be seen in Figure 6.4, this causes the system to not establish an additional secular
resonance near the inner edge of the disc, i.e, at ≈ ain (apart from the one at 70 au, or
more generally ≳ ain), as already anticipated from Chapter 5 – see e.g. Section 5.3.2.

To summarise, the general conclusion one can draw from the comparisons displayed
in Figure 6.1 is that the N -ring model described in Section 6.2 can reproduce the
analytical results developed in Chapter 5 to within an acceptable degree of accuracy.
This conclusion will be further supported in Section 6.4, where I analyse the outcomes
of N -ring simulations of 67 planet–disc models (Table H.1) and compare them with
the expectations stemming from Chapter 5, e.g. in terms of the expected planetary
precession rate, the location of the secular resonance, and the associated timescale for
exciting planetesimal eccentricities.

6.2.3.3 Sensitivity to input parameters N and H

Apart from physical parameters describing the initial state of a system, such as the
masses and orbital elements of the interacting bodies, the N -ring model employs two
other key numerical parameters as inputs: namely, the number of disc rings N and
their aspect ratio H. I thus checked how the results of the simulations performed in
this Chapter (see Table H.1) would be affected if they were ran with values of N and
H differing from their fiducial values (i.e., N = 5000 and H = 0.1, Section 6.2.1),
with all else being kept the same. To this end, I followed the evolution of the fiducial
planet–disc model (Model A, see Tables 5.1 and H.1) by running two sets of simulations
which I describe below.

In the first set of simulations, I varied the number of rings representing the disc
while holding their aspect ratio constant at H = 0.1. I generally found that varying
N within the range 500 ≤ N ≤ 10000 does not qualitatively affect the evolution
of the planet–disc system. Nevertheless, with a closer look, I found that there are
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some quantitative differences towards the smallest end of N with, for instance, the
resonance location shifting inwards at most by only a few percent (≲ 2%) compared
to the nominal location. No significant differences were observed, on the other hand,
for N ≳ 2000, indicating that the solutions obtained with the fiducial value of N can
be considered as converged for the adopted value of H. I also checked that this is
true regardless of whether the disc’s non-axisymmetric gravity is included or not. In
retrospect, this behaviour is consistent with the analysis presented in Chapter 4 about
the e.g. convergence of the disc-induced secular effects in discretised softened discs to
the expected results in continuous discs – see Section 4.6.3 and Figure 4.10.

In the second set of simulations, I varied the aspect ratio of the disc rings within
the range 0.05 ≤ H ≤ 0.2, while holding the number of rings constant at N = 5000.
In this case, I found no significant qualitative changes in the evolution of the system.
However, some quantitative differences were observed in the evolution of planetesimal
orbits in the outer parts of the disc, i.e., away from the secular resonance, in terms of
their eccentricity oscillations and precession periods. Running several test simulations
with and without accounting for the non-axisymmetric component of the disc gravity,
I learned that the differences largely arise due to the non-axisymmetric component of
the disc self-gravity. In retrospect, this can be expected from the results of Chapter 4.
Indeed, looking at Figure 4.2(A), one can see that the axisymmetric component of the
softened gravitational potential (with the prescription of Hahn (2003)) matches the
expected un-softened results for all values of H ≲ 0.2. However, as can be seen from
Figure 4.2(B), this is not the case for the non-axisymmetric component, which fully
converges only for H ≲ 0.01.

In summary, while the results of the N -ring model could be sensitive to the adopted
number of disc rings and their aspect ratio, they do not vary strongly provided that
H ≲ 0.1 and N ≳ 2000, justifying my specific fiducial choice of their values (i.e.,
H = 0.1 and N = 5000; Section 6.2.1). Note that, in principle, I could have adopted
a softening value of H ≲ 0.01; however, this would have necessitated a much larger
value of N than that adopted, making the N -ring model computationally expensive
and slow to operate. Finally, it is important to note that the requirements discussed
here strictly apply to the softening prescription of Hahn (2003) and discs with initial
surface density slope of p = 1, and thus might differ for other values of p and softening
prescriptions – see e.g. Figures 4.2 and 4.10.
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6.2.3.4 Solar System Dynamics: Jupiter and Saturn

Finally, as already mentioned in Section 6.2, the softened N -ring model represents the
continuum version of the classical Laplace–Lagrange theory (Murray & Dermott, 1999).
Thus, as a natural check, I also tested the ability of my code to accurately reproduce
the secular evolution of systems harbouring planets, but not discs. To this end, I
adopted the example of Murray & Dermott (1999) on the evolution of Jupiter and
Saturn in the Solar System (see their Section 7.3), and found that my code reproduces
the system’s evolution to the same level of accuracy reported in Murray & Dermott
(1999) (e.g. their figure 7.1), provided the softening parameter is set to zero, H = 0,
and the mean motion is defined as nj =

√
GMc/a3

j . I also checked that the N -ring
model can reproduce the evolution of test-particles perturbed by Jupiter and Saturn
(Section 7.5 in Murray & Dermott, 1999) by modelling the test-particles as unsoftened,
massless rings, finding that my code accurately reproduces e.g. the forced eccentricities
of the test-particles as a function of semimajor axis (e.g. figure 7.5 in Murray &
Dermott, 1999). However, I found that stringent conservation of the system’s angular
momentum requires defining the mean-motion as nj =

√
G(Mc +mj)/a3

j , rather than
nj =

√
GMc/a3

j as done in Murray & Dermott (1999) – in agreement with previous
results on the same subject (Hahn, 2003).

6.3 Results: Nominal N-ring Simulations

Having outlined the details of the softened N -ring model, I now begin my investigation
of the secular evolution of planet–debris disc systems. I start with the case I refer to
as ‘nominal’ simulations: that is, with the non-axisymmetric component of the disc
rings operating only on the planet, but not onto themselves (Section 6.2.2.3). My
specific aim here is to analyse the dynamical effects of introducing this component on
the evolution of the planet–disc system with an eye on its potential consequences on
the gap-forming mechanism presented in Chapter 5.

To this end, I ran a set of 67 nominal N -ring simulations using the planet and disc
parameters identified in Chapter 5 as capable of reproducing the observed depletion in
the HD 107146 disc (Section 5.5). To allow for some generality, however, I chose the
combinations of the planet and disc masses, as well as the planetary semimajor axes,
from both within and outside the allowed (i.e., unshaded) portion of the parameter
space portrayed in Figure 5.8. The parameters of the chosen models together with the
simulation times are listed in Table H.1. In all simulations, the ring representing the
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planet was initiated with ϖp(0) = 0, while the N = 5000 disc rings were initiated with
e(0) = 10−4 and ϖ(0) = −π/2; see Section 6.2.1 and Appendix H for more details.

Despite the broad range of adopted planet–disc parameters, I found that the
evolution of all systems followed the same qualitative behaviour. Thus, to facilitate the
interpretation of the simulations results and how they compare with those of Chapter
5, here I present the results obtained for Model A – which, I remind, was the fiducial
configuration considered in Chapter 5 – focusing first on the orbital evolution of the
planet and the planetesimals (Section 6.3.1), and then on the evolution of the disc
morphology (Section 6.3.2).

6.3.1 Evolution of Planetesimal and Planetary Orbits

The nominal N -ring simulations differ from the analytical calculations of Chapter 5
by the introduction of the non-axisymmetric torque that the debris disc exerts on
the planetary orbit. For this reason, I start by presenting results showing the orbital
evolution of the planet. This will also aid in interpreting many of the dynamical
features of the planetesimal evolution described later in Section 6.3.1.2.

6.3.1.1 Planetary Evolution

Figure 6.2 summarises the evolution of the planetary orbit throughout the simulation of
Model A: the behaviour of its eccentricity ep and apsidal angle ϖp as a function of time
are shown in the left and right panels, respectively; see the blue curves therein. For
ease of comparison with the results of Chapter 5, I have also plotted the corresponding
results when the disc’s non-axisymmetric gravity is switched off (i.e., by performing a
‘simplified’ N -ring simulation); see the red curves in Figure 6.2.

A striking feature in Figure 6.2(A) is the behaviour of the planetary eccentricity
which, instead of remaining constant in time as in Chapter 5, undergoes a long-term
decline. Indeed, one can see that in the course of the evolution, the planetary orbit
circularises significantly, with its eccentricity decreasing from the initial value of 0.05
to ≈ 0.013 by the time that the simulation is stopped at t = τ ≈ 332 Myr, i.e., by a
factor of ≈ 4. Second, it is also notable that this long-term decline is accompanied
with additional small amplitude oscillatory behaviour; see the inset in Figure 6.2(A).
Third, and more importantly, the decay of the planetary eccentricity seems to follow
an exponential behaviour rather closely at all times (note that Figure 6.2(a) is a
semi-log plot). Indeed, I find that the eccentricity decline can be perfectly fitted by
the exponential model ep(t) ∝ exp(−Dt/2), with D ≈ 7.7 × 10−3Myr−1. Here, it is
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Figure 6.2. The evolution of the planetary eccentricity ep (panel A) and longitude of
pericentre ϖp (panel B) throughout the nominal N -ring simulation of Model A (Table H.1).
For reference, the results obtained within the simplified simulation of the same planet–disc
system are shown in red dashed lines in each panel. One can see that in the nominal
simulations, the planetary eccentricity does not remain constant, but rather decays over
time exponentially. The decay is also accompanied by small-amplitude oscillations (see the
inset in panel A). It is also evident that the planet precesses at a slower rate in the nominal
simulation compared to the simplified one. See the text (Section 6.3.1.1) for more details.

worthwhile to note that for this particular simulation, the maximum fractional change
in the system’s total angular momentum deficit is on the order of |∆Le/Le| ∼ 10−8; see
Section 6.2.3.1. Thus, the decline of planetary eccentricity reported in Figure 6.2(A) is
a real effect, and not due to e.g. diffusion of numerical errors within the simulation.
As a matter of fact, and as we shall see later in Section 6.4.2, the circularisation of the
planetary orbit is a generic phenomenon that occurs as a result of a process known as
“resonant friction” or “secular resonant damping” in the literature (Tremaine, 1998;
Ward & Hahn, 1998a, 2000). This will be studied in details in Section 6.4.2.

Looking now at the right panel of Figure 6.2, one can see that the planetary orbit
precesses at a constant rate in a prograde manner, as already expected from Chapter
5. What is interesting to note, however, is that the rate at which the planet completes
its precession cycle is different from the predictions of Chapter 5. Indeed, instead of
precessing at the rate of ϖ̇p = Ad,p as given by Equation (5.7) (see the dashed red lines),
it now seems to precess at a slower rate such that ϖ̇p ≈ 0.58Ad,p. Thus, when compared
with Chapter 5, the precession period is extended from Tsec ≡ 2π/ϖ̇p ≈ 33 Myr to ≈ 57
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Myr. This indicates that the axisymmetric and non-axisymmetric components of the
disc gravity drive planetary precession in opposite senses, with the former inducing a
prograde precession and the latter inducing a retrograde precession. I will characterise
this behaviour in more detail later in Section 6.4.1.

In summary, Figure 6.2 shows that the planetary orbit not only precesses under the
action of the disc gravity, but also circularises over time. As we shall see, this will have
important consequences for the evolution of planetesimal orbits and the subsequent
development of a gap within the debris disc.

6.3.1.2 Planetesimal Evolution

Having described the evolution of the planetary orbit, I now present results showing
the evolution of the debris particles. Figure 6.3 shows snapshots of the disc rings’
eccentricities e and longitudes of pericentre ∆ϖ (relative to that of the planet) as a
function of their semimajor axes at different times, as indicated in each panel. The
times t were chosen such that they correspond roughly to the same ratios of t/τ as in
Figure 5.3 of Chapter 5, which, I remind, measures the time into the evolution relative
to the time it takes for the eccentricity at the resonance to grow to unity. For reference,
an animated version of Figure 6.3 is made available online. There are several notable
features in this figure, which I discuss below.

To begin with, and as expected from Chapter 5, the evolution of the disc rings in
the inner and outer parts of the disc proceeds differently. Indeed, looking closely at
Figure 6.3, one can see that at semimajor axes of a ≲ 70 au, the eccentricities of the
disc rings are maximised when they are aligned with the planetary orbit, i.e., ∆ϖ = 0,
while at semimajor axes of a ≳ 70 au, their eccentricities are maximised when the rings
are anti-aligned, i.e., ∆ϖ = π. This is to be expected since in the reported simulation,
the disc’s non-axisymmetric gravity acts only on the planet and thus does not modify
the free precession rates of the disc particles when compared to Chapter 5 (e.g., see
compare Figures 6.4 and 5.2). Consequently, the dynamics of disc particles remains
planet- and disc-dominated at small and large distances from the planet, respectively
(Section 5.3). This can also be seen by looking at Figure 6.4, where I show the radial
profile of the free precession rate of the disc particles, together with that of the planet,
as extracted from the diagonal of the matrix A (i.e., Ajj as given by Equation 6.3)
corresponding to the simulated system (i.e., Model A). Looking at Figure 6.4, it is
evident that A ≈ Ap at a ≲ 70 au, and A ≈ −|Ad| at a ≳ 70 au. Additionally, the
results of Figure 6.3 clearly show that the transition between the two regimes occurs
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Figure 6.3. Snapshots of the planetesimal eccentricities e (left panels) and apsidal angles
∆ϖ (right panels, measured relative to that of the precessing planet) as a function of
semimajor axis a. The snapshots are taken at t = 2.5, 24.5, 73.25, 122, 195.25, and 244 Myr
(top to bottom) into the evolution of Model A (Table H.1) in its nominal N -ring simulation.
The time is also indicated relative to τ ≈ 332 Myr, which represents the time at which e → 1
at the site of the secular resonance. For reference, the secular resonance location (ares ≈ 75
au) is shown by the dashed vertical lines. The solid black lines in the left panels show the
maximum planetesimal eccentricities driven by the planet in the absence of the disc em,p (see
e.g. Equation 6.15). Note that the curve of em,p(a) decreases over time and for reference, its
initial value is shown by small-dashed grey lines (Equation 5.13). An animation of this figure
is available online. See the text (Section 6.3.1.2) for more details.

via a secular resonance, where the eccentricity of the disc ring grows in time until it
reaches unity, e(ares) → 1; as already expected from Chapter 5.
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Figure 6.4. Planetesimal free precession rate A = Ad +Ap due to both the planet and the
disc as a function of semimajor axis (red curve). Calculations are done using the softened
N -ring model described in Section 6.2 for the fiducial planet–disc model with N = 5000 and
H = 0.1 (Model A, Table H.1). The dotted and dashed black curves represent Ap(a) and
Ad(a), respectively. The solid and dashed blue lines represent the free and total precession
rate of the planet due to the disc, Ad,p and ϖ̇p, respectively. This figure must be understood
as the softened analogue of Figure 5.2 of Chapter 5: for ease of comparison, the curve
representing the unsoftened version of Ad(a) is shown in dashed grey line and labelled as
AH=0
d (a). Note that A(a) = Ad,p at 70 au, and A(a) = ϖ̇p at ≈ 75 au. See the text (Section

6.3.1) for details.

This said, however, there are notable differences in terms of the orbital evolution of
the disc particles between the results shown here and those of Chapter 5, both away
from and at the resonance location; e.g. see and compare Figures 6.3 and 5.3. First,
looking at the right column of Figure 6.3, one can see that soon after the evolution
starts, the apsidal angles ∆ϖ of the disc rings, both in the inner and outer disc parts,
span the entire range [−π, π] over time. This is in contrast with the results of Chapter
5, where I found that ∆ϖ remain confined at all times within the ranges [−π/2, π/2]
and ±[π/2, π] in the inner and outer parts, respectively. Nevertheless, with a closer
look at Figure 6.3, one can see that this expectation does actually hold true for the
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majority of disc rings as long as not much time has elapsed from the beginning of the
simulation, i.e., t/τ ≲ 0.1 or so, after which more and more disc rings populate the
entire [−π, π] range at all semimajor axes; see e.g. Figures 6.3(a),(b) and Figure 6.5.

Second, looking at the left column of Figure 6.3, it is evident that the maximum
amplitude of the eccentricity oscillations of all disc rings does not remain constant in
time, but rather undergoes a slow decline – see also the animated version of this figure.
Indeed, one can see that the maximum eccentricities decline by about a factor of 2 at
all semimajor axes, although it is a bit difficult to discern this effect in the outer parts
of the disc due to the small eccentricities in that region. Additionally, I find that this
decline occurs roughly over the same timescale at all semimajor axes, and that it is
not accompanied with a change in the periods of the associated oscillations. This can
be seen more clearly in Figure 6.5, where I plot the time evolution of the eccentricities
and apsidal angles of disc rings at five different semimajor axes. This figure can also
be compared with Figure 6.1, which depicts the orbital evolution of the disc rings in
the negligence of the disc’s non-axisymmetric gravity perturbations.

Apart from the features discussed above, the results depicted in Figure 6.3 indicate
that while a secular resonance is established within the disc as expected from Chapter 5,
its location is slightly different than anticipated. Indeed, one can see that the resonance
occurs at ≈ 75 au rather than at 70 au – see the dashed vertical lines in Figure 6.3
– where the eccentricity grows to unity over time. Note also that at the resonance,
the apsidal angle remains fixed at −π/2 throughout the simulation, in line with the
results of Chapter 5. Additionally and interestingly, Figure 6.3 shows that the growth
of the eccentricity at the resonance does not occur linearly in time, as was expected in
Chapter 5. Instead, it displays a linear growth phase at early times, i.e. t/τ ≲ 0.1, and
then smoothly becomes slower, resembling more of a quadratic curve: this can be seen
more clearly in Figure 6.5(b). The change in the growth rate is significant, in the sense
that it extends the time needed for the eccentricity at the resonance to grow to unity
by a factor of ≈ 2.5 relative to the expectations from Chapter 5: namely, from τ ≈ 135
Myr to τ ≈ 332 Myr (e.g., see Figure 6.5(b) and the animated version of Figure 6.3)

Finally, note that the simulation results show no evidence of a secular resonance at
≈ ain (apart from the one at ≈ 75 au), which was found in Chapter 5. This is because
the free precession rate Ad(a) of the disc rings resulting from the disc gravity converges
to a finite value as the edges of the disc are approached, i.e., a → ain, aout, rather
than diverging as in Chapter 5; see Figure 6.4. As already explained in Chapters 4
and 5, this is a direct consequence of modelling the disc with a small but non-zero
thickness (or softening parameter), as done in this chapter (Section 6.2). This also
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Figure 6.5. The time evolution of the planetesimal eccentricities e (left panels) and apsidal
angles ∆ϖ (right panels, relative to the planet) at five different semimajor axis, as extracted
from the nominal N -ring simulation shown in Figure 6.3 (blue curves). The values of the
probed semimajor axes are indicated on the right side of the figure. The envelope of the
eccentricity oscillations shown in black curves are obtained using Equation (I.3) of Appendix
I (see also Section 6.3.1.3). Note that at the resonance ∆ϖ ≈ −π/2 at all times (panel b).
It is also evident that the eccentricities at the resonance grow following a quadratic curve,
which is well reproduced by Equation (6.16) (dashed black curve in panel b). This figure can
be compared to Figure 6.1, which portrays the results of the same planet–disc model (Model
A, Table H.1) in the simplified simulations. See the text (Sections 6.3.1.2 and 6.3.1.3) for
more details.
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explains as to why the apsidal angles ∆ϖ(a) in the right-hand panels of Figure 6.3
have a positive slope within the range of 130 au ≲ a ≲ aout: the convergence of Ad(a)
to a finite value as a → aout renders the total free precession rate A(a) ≈ Ad(a) in that
region an increasing function of semimajor axis (rather than decreasing as in Chapter
5); see e.g. Figure 6.4.

6.3.1.3 The Coupling between the Planet and Planetesimals

Before moving on to present results showing the evolution of the disc morphology, let
us pause here and try to understand the physics behind the behaviour of planetesimal
evolution (Figure 6.3). Obviously, planetesimal dynamics is affected only indirectly
by the introduction of the disc’s non-axisymmetric torque on the planet, and thus the
behaviour of planetesimal dynamics in Figure 6.3 should, in principle, be understood
as a result of the coupling between the planet and the planetesimals.

Let us for a moment ignore the decay of planet’s eccentricity, and focus on the
consequences of its precessional behaviour which, according to Figure 6.2, is slowed
down to a rate below Ad,p, i.e., ϖ̇p ≲ Ad,p. For reference, the value of ϖ̇p as extracted
from the simulation of Model A is overplotted in Figure 6.4, see the blue dashed line
therein. Looking at this figure, one can see that while A(a) = Ad,p at a = 70 au as
expected from Chapter 5, one has A(a) = ϖ̇p at around a ≈ 75 au, which coincides
with the exact location of the secular resonance; see Figure 6.3. This suggests that the
shift in the resonance location could be the consequence of the slower precession rate
of the planetary orbit. I will further test and confirm this hypothesis in Section 6.4.3.

Now, let us consider the effects of the decaying planetary eccentricity on the
planetesimal dynamics. As can be expected, this effect renders the secular gravitational
potential of the planet time-dependent, even when evaluated in a frame co-rotating
with the planet: this is because in the notation of Chapter 5 (see Section 5.2.2.3),
the term Bp ∝ ep will now be a function of time, complicating the dynamics. To
gain additional insights, in Appendix I I derive a full time-dependent solution for
the planetesimal eccentricities e(t) and apsidal angles ∆ϖ(t) in the presence of a
circularising planet in a frame co-precessing with the planet; see Equations (I.3)–(I.6).
The main takeaway from this calculation is that the decay of ep renders the forced
component of the planetesimal eccentricity a time-dependent function:

eforced,decay(a, t) = eforced(a) × exp(−Dt/2), (6.15)
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where eforced(a) is given by Equation (5.12) and must now be understood as evaluated
at ep(0), while the free eccentricity – which, I remind, is set by the initial conditions
(e.g. Section 3.2.4.1) – remains the same as in Chapter 5. As a result, and unlike
in Chapter 5, the eccentricity does not oscillate between its initial value of 0 and
em = 2|eforced(a)|. Instead, the eccentricity now oscillates with a decreasing amplitude
while at the same the minimum attained in the course of oscillations increases over
time; as can be seen in Figures 6.3 6.5. Eventually, as t → ∞ and eforced,decay(a) → 0
(Equation 6.15), eccentricities converge to the free eccentricity. This behaviour is well
captured by Equation (I.3) of Appendix I which shows that the minimum and maximum
eccentricity during the oscillations change in time following ∝ 1 − exp(−Dt/2) and
∝ 1 + exp(−Dt/2), respectively – see the black curves in the left panels of Figure
6.5. For reference, the black lines in Figure 6.3 show the maximum eccentricity em,p
predicted by Equation (I.3) upon neglecting Ad and ϖ̇p, which is valid for the inner
disc parts where the dynamics is planet-dominated. One can see a very good agreement
between the simulations results and the curve of em,p (see also the animated version of
Figure 6.3). Equation (I.3) also explains the behaviour of eccentricity growth at the
resonance: taking the limit of A = Ad + Ap → ϖ̇p in Equation (I.3), one finds that

e(t) = 2|Bp(0)|
D

[
1 − exp(−Dt/2)

]
≈ |Bp(0)|t

(
1 − 1

4Dt
)
, (6.16)

where the approximation assumes that Dt ≈ 0, and all quantities are evaluated at the
resonance location ares. For reference, Equation (6.16) as evaluated at the values of D
and ares extracted from the simulation of Model A is plotted in Figure 6.5(b): one can
see the perfect agreement between the numerical results and Equation (6.16).

Finally, note that this analysis also clarifies as to why the disc particles evolve
to populate the entire range of ∆ϖ = [−π, π] (e.g. see the left panels of Figures 6.3
and 6.3). Without loss of generality, let us consider the disc particles in the inner
disc parts: with their orbits being initially circular, their eccentricities start at the
origin of the e(cos ∆ϖ, sin ∆ϖ) plane and precess counter-clockwise in a circle (since
A(a) ≈ Ap > 0) around the forced eccentricity vector (see e.g. Figure 3.3 and Section
3.2.4.1). Given that eforced > 0 in this case, the circle would initially be restricted to the
plane containing the positive x-axis; meaning that ∆ϖ can only acquire values between
−π/2 and +π/2. As time progresses and the forced eccentricity decays, however, the
centre of the circle slowly shifts towards the origin of the e(cos ∆ϖ, sin ∆ϖ) plane,
causing the circle to cross through all quadrants of the plane and so allowing ∆ϖ to be
within the entire range of [−π, π]. This ‘thought experiment’ also explains as to why
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the minimum of the eccentricity oscillations grows to values larger than 0. A similar
argument can be applied to the outer disc parts, explaining the results shown in the
left-hand panels of Figure 6.3.

6.3.2 Evolution of the Disc Morphology

In the previous section, I described the orbital evolution of the planetesimal and
planetary orbits in the fiducial configuration (i.e., Model A, Table H.1). I now move
on to present results showing the evolution of the disc surface density. To this end,
I convert the orbital element distributions of planetesimals shown in Figure 6.3 into
surface density distributions following the same technique adopted in Chapter 5; see
Appendix G. The resulting two-dimensional maps of the (normalised) disc surface
density, Σ, as well the radial profiles of the azimuthally averaged surface density,
⟨Σ(r)⟩, are shown in Figures 6.6 and 6.7, respectively. For reference, in Figure 6.6
I also show the planetary orbit and its pericentre position which, for the considered
model, precesses with a period of τsec ≈ 57 Myr (Figure 6.2). The six snapshots shown
in both Figures 6.6 and 6.7 correspond to the same times as in Figure 6.3, and their
animated versions covering the entire simulation – i.e., from t = 0 to t = τ ≈ 332 Myr
– are made available online. These figures can be compared to Figures 5.9 and 5.10 of
Section 5.6.1 (Chapter 5).

A quick look at Figures 6.6 and 6.7 reveals that by and large, the disc morphology
evolves following the same three stages identified in Chapter 5 (see Section 5.6.1),
although with subtle differences mainly in terms of the gap’s morphology at late times,
i.e., as t → τ . For completeness, however, I briefly describe these three stages below,
pointing out the differences in the disc morphology when compared to the description
provided in Chapter 5.

Stage 1 (0 ≤ t ≲ τsec): At early times, and similar to Chapter 5, the planet
launches a trailing spiral wave at the inner edge of the disc ain which propagates
outwards with time while wrapping 360◦ around the star; see panels (a) and (b) in
Figures 6.6 and 6.7. Once again, the speed at which the spiral moves through the
disc gets slower as it extends to larger radii due to the fact that A(a) is a decreasing
function of semimajor axis (Figure 6.4). Compared to Section 5.6.1, however, the main
difference is that the spiral extends out to about a radius of ≈ 80 au rather than ≈ 70
au; e.g., see and compare Figures 6.6(b) and 5.9(b), as well as Figures 6.7(b) and
5.10(b). At the same time, the planet’s eccentricity decreases from its initial value of
ep(0) = 0.05 to ≈ 0.04, i.e., by about ≈ 20% (Figure 6.2). This, however, does not
affect the spatial appearance of the disc: for instance, and similar to Chapter 5, the
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Figure 6.6. Series of two-dimensional snapshots showing the evolution of the (normalised)
disc surface density Σ in Model A (Table H.1). The results shown are obtained by making
use of the dynamical state of planetesimals in the nominal N -ring simulations of Figure 6.3
(see Appendix G for the details of the procedure). The snapshots correspond to the same
moments of time t as in Figure 6.3, and are indicated in each panel for reference. The time is
also indicated relative to τ ≈ 332 Myr. All panels have 400 × 400 pixels and share the same
surface density scale (and normalisation constant) as shown in the colour bar. The stellar
position is marked by the yellow star in each panel. The planet’s orbit and its pericentre
position are shown by the white solid line and green circle, respectively. Note the launching
of a spiral arm at the inner disc edge at early times (panel a), its outward propagation in time
(panel b), and the eventual sculpting of a gap centred around the secular resonance, ares ≈ 75
au (panels c–f). An animation of this figure is available online. See the text (Section 6.3.2)
for more details.

surface density distribution in the inner parts of the disc looks roughly axisymmetric.
This is because the spirals in the this region become so tightly wound together as
planetesimal orbits become phase-mixed over time, i.e., ∆ϖ(a) spans the range [−π, π] –
although with a higher concentration within [−π/2, π/2], the same range as in Chapter
5 (see panels a and b in Figure 6.3).
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Figure 6.7. The azimuthally averaged surface density of the disc ⟨Σ⟩ as a function of
radial distance r from the central star (solid blue lines). Each panel corresponds to each
of the snapshots of Model A (Table H.1) shown in Figure 6.6. The results are obtained by
splitting the disc into 200 annular bins (Appendix G), and are normalised with respect to the
initial disc surface density Σd(a) (Equation 5.1, with p = 1) evaluated at the inner disc edge,
a = ain. The solid black lines show the normalised profile of the initial Σd(a), for reference.
Note the appearance of a clear depletion in the surface density around the location of the
secular resonance (ares ≈ 75 au, vertical dashed lines). See the text (Section 6.3.2) for more
details. An animation of this figure is available online.

Stage 2 (t ∼ τsec): By the time the planet has completed approximately one
precession cycle, a gap forms around the location of the secular resonance – similar to
Chapter 5; see Figures 6.6(c), 6.7(c) and their animated versions. Now, however, the
gap is centred around ≈ 75 au (rather than ≈ 70 au), which represents the location of
the secular resonance (Figure 6.3). At this stage, the features of the gap are similar
to that in Chapter 5, in that it is crescent-shaped pointing in the direction of the
planet’s pericentre. Within the gap, in an azimuthally averaged sense, about a half
of the initial surface density is depleted. The width of the gap, however, is slightly
narrower than that in Section 5.6.1, with a value of ∼ 15 au (compared to ∼ 20 au);
e.g. compare Figures 6.7(c) and 5.10(c). The shape of the gap can be understood using
the same reasoning in Chapter 5: by this time, the planetesimals interior to the gap
have formed a coherent eccentric structure that is apsidally aligned with the planet
and offset relative to the star to roughly the same degree as in Section 5.6.1. This is
because despite the decay of the planetary eccentricity, the maximum amplitudes of
eccentricity oscillations in the inner disc parts are still comparable to those in Section
5.6.1; see Figure 6.3(c).

Stage 3 (τsec ≲ t ≲ τ): At times where at least one secular period has elapsed for
particles at the resonance (i.e., t ≳ τsec), the gap continues to precess while maintaining
its alignment and coherence with the planetary longitude of pericentre; see panels
(d)–(f) in Figures 6.6 and 6.7. As this happens, and similar to Chapter 5, the gap’s
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depth and width practically remain invariant: indeed, in a time- and azimuthally
averaged sense, I find that wg ≈ 15.45 ± 0.21 au and dg ≈ 51 ± 2% (relative to the
initial density at ares). Additionally, and as in Chapter 5, the disc part exterior to the
gap develops a spiral pattern, first near the gap and then at larger radii as the system
evolves further: this can be explained by the same arguments provided in Section 5.6.1 –
see Stage 3 therein – despite the fact that now the apsidal angles ∆ϖ(a) span the entire
range of [−π, π] (Figure 6.3). What is interesting to note, however, is that further into
the evolution, i.e., as t → τ , the gap starts to slowly evolve away from its crescent
‘arc’ shape and develops more of an axisymmetric or circular structure, in the sense
that the depletion becomes visible 360◦ around the star – see e.g. Figure 6.6(f) and its
animated version. This is in stark contrast with the results of Chapter 5; e.g. see and
compare Figures 6.6(d)–(f) and Figures 5.9(d)–(f). The transition from asymmetry
to symmetry is not perfect though, in the sense that one can still discern that the
gap is both wider and deeper toward the planetary pericentre, but only to a relatively
small degree. This behaviour can be understood by noting that by the time t → τ , the
planetary eccentricity undergoes a significant decay (relative to its initial value, see
Figure 6.2(A)) and in turn forces the planetesimal eccentricities throughout the entire
disc to decrease (e.g., Figures 6.3 and 6.5). This also causes the planetesimal orbits
to be phase-mixed as described in Section 6.3.1.3, with ∆ϖ(a) spanning the entire
range [−π, π] (see Figure 6.3). As a result, the disc parts both interior and exterior to
the gap – which have already settled into a lopsided, precessing coherent structure –
become less offset relative to the star, individually, and thus in combination, decrease
the asymmetry of the gap in between. This is easier to see in the region interior to
the gap, where the eccentricities are naturally larger than in the outer parts. Here,
it is also noteworthy to mention that the effect of the circularising planet on the gap
asymmetry cannot be reproduced by a planet of constant but smaller eccentricity, e.g.
as in Model A-Loep of Chapter 5; see Section 5.6.2.2 and Figure 5.12.

Before concluding this section, I remark that the results on the secular evolution
of the planet and disc particles described in this section are general, in the sense that
the same qualitative behaviour – both in terms of orbital evolution and disc morphology
– is reproduced in all simulated planet–disc systems (Table H.1). Quantitatively speak-
ing however, the results differ from one system to another depending on the parameters
adopted, but the same scaling rules identified in Chapter 5 do generally apply (see
Section 5.6.2). For instance, varying both the planet and disc masses simultaneously,
i.e., so that Md/mp = const (to ensure the resonance location does not change), will
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only affect the secular evolution timescale, but not the details of the ensuing dynamics
– see also Section 5.6.2.3. Increasing the planet’s initial eccentricity will (i) shorten
the evolution timescale; (ii) render the spirals more open and prominent; (iii) increase
the width of the resulting gap; and vice versa – see also Section 5.6.2.2. Last but
not least, increasing (decreasing) the planet’s semimajor axis causes (i) the gap to be
wider (narrower), see Section 5.6.2.1; (ii) its orbit to circularise more rapidly (slowly);
and (iii) the shift in the resonance location – relative to that expected from Chapter
5 – to become larger (smaller). Finally, and as in Chapter 5, varying the planet–disc
parameters does not significantly affect the gap depths. The scalings concerning the
new effects uncovered by the simulations carried out for the purposes of this section is
explored in details in the next section.

6.4 Analysis and Predictions

As pointed out in the previous section, there are several qualitative and quantitative
differences between the results of this chapter and those described in Chapter 5 in terms
of the evolution of the planet and the disc. In this section, I aim to characterise these
differences in greater detail in order to better understand the underlying physics
governing the secular planet–disc interaction. Wherever possible, I also provide
quantitative explanations for the observed differences using dynamical theory.

To this end, I ran a second set of simulations using the N -ring model described
in Section 6.2, but this time by setting the terms representing the non-axisymmetric
perturbations due to the disc rings equal to zero. Such ‘simplified’ N -ring simulations
(Section 6.2.2.3) are expected to accurately reproduce the analytical results of Chapter
5; see Section 6.2.3.2. I performed such simulations for all the 67 planet–disc models
considered in this work (Table H.1), and compared the results with those obtained
within the nominal set of simulations. As we shall see, this approach allows me not
only to gain insights into how the various components of the disc potential affect the
system’s evolution, but also to make some analytical progress towards characterising
the resultant effects. Below is a brief account of what I learned, supplemented by an
appropriate figure, when called for.

6.4.1 Precession Rate of the Planetary Orbit

Numerical results of the previous section show that in the same planet–disc model (i.e.,
Model A, Table H.1), the planetary orbit precesses at a slower rate than that expected
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based on the analytical results of Chapter 5; see Figure 6.2(B). Here, I investigate this
behaviour in more detail, and provide an explanation for the observed differences. To
do so, for each of the two sets of simulations, i.e., nominal and simplified, I extract
the time evolution of the planet’s longitude of pericentre ϖp(t) after each simulation
ends, and measure the rate ϖ̇p at which it advances from the slope of the numerical
data2. Additionally, since it is expected that the precession rates will scale linearly with
masses (e.g. Section 5.6.2.3), I normalise the extracted slopes by the theoretical values
of Ad,p (Equation 5.7) corresponding to each system’s model parameters (Table H.1).
This essentially should render the results dependent only on the planetary semimajor
axis, except if there is a dependency on a parameter not accounted for (e.g. disc and
planet eccentricities).

Figure 6.8 shows the results obtained by applying the above procedure to each of
the two sets of 67 simulations. There are several notable features in Figure 6.8. First, it
shows that in the absence of the disc’s non-axisymmetric effects on the planet (shown
in red filled circles), the planetary orbit precesses at the expected rate of Ad,p regardless
of the system parameters (Section 5.2.2.2): indeed, one can see that ϖ̇p/Ad,p ≈ 1 in all
considered planet–disc models. This also further confirms the validity of the N -ring
model, in addition to the tests presented in Section 6.2.3. Second, looking at Figure 6.8,
one can see that when the disc’s non-axisymmetric effects on the planet are included
(shown in blue filled circles), a planet orbiting at a given semimajor axis precesses at
a rate that is generally smaller than that anticipated in Chapter 5, i.e., ϖ̇p/Ad,p ≲ 1,
as already pointed out in Section 6.3.1.1. It is also clear that the differences between
the two sets of simulations become more pronounced for planets orbiting closer to
the disc inner edge than to the star. Indeed, increasing the planetary semimajor axis
from ap/ain ≈ 0.1 to ap/ain ≈ 1, the differences grow from a factor of roughly 1 to a
factor of ≈ 5, respectively. Another important feature in Figure 6.8 is that similar
to the simplified simulations, the nominal simulations reveal little or no evidence of
scatter in the results at any given value of ap, despite the different initial conditions –
see Table H.1. This indicates that while the disc’s non-axisymmetric effects do affect
the planetary precession rates, they do so in a way that is independent of the disc
eccentricity (which naturally is imposed by the planet’s eccentricity, Section 6.3).

The behaviour of the planetary precession rates in the nominal N -ring simulations
can be explained as follows. According to Chapter 5, the planetary orbit precesses at
a rate given by ϖ̇p = Ad,p (Equation 5.7): however, strictly speaking, this is the free

2For all simulations, the curves of ϖp(t) were well fitted with a straight line obtained by the
least-squares method, with a correlation coefficient of ≈ 1.
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Figure 6.8. The planetary apsidal precession rates ϖ̇p relative to the theoretical free
precession rate Ad,p (Equation 5.7) as a function of planetary semimajor axis ap, as measured
from N -ring simulations. Calculations are based on 67 different planet–disc models (Table
H.1), each evolved numerically using the N -ring model within two sets of simulations:
simplified (red circles) and nominal (blue circles). One can see that the inclusion of the disc’s
non-axisymmetric torque on the planet reduces the rate at which the planetary orbit precesses
compared to the expectation when that torque is ignored. The reduction is clearly dependent
on the planetary semimajor axis, and is well represented by Equation (6.17) which, for
reference, is shown in black solid line. Note that the N -ring simulations accurately reproduce
the theoretical expectations of Chapter 5, i.e., ϖ̇p/Ad,p = 1, when the disc’s non-axisymmetric
torque on the planet is ignored. See the text (Section 6.4.1) for more details.

precession rate, i.e., the rate at which the planet precesses if the disc potential were
axisymmetric – which is what was assumed in Chapter 5. In reality however, there is
also a contribution to the planet’s precession rate due to the disc eccentricity, which
manifests itself as a non-axisymmetric contribution to the disc potential. This is the
forced precession rate, corresponding to the term i

∑N
k ̸=0 A0kζk in Equation (6.9) with

j = 0. Thus, it is the combination of the free and forced contributions that dictates
the planetary precession rate.
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To quantify the effects of the above-mentioned physical mechanism and confirm its
validity, in Appendix J I derive an analytical expression for ϖ̇p/Ad,p, accounting for
both the free and forced precession rates induced by the disc. I find that within a set
of reasonable assumptions, the planetary precession rate can be written as follows:

ϖ̇P

Ad,p
= 1 + 1

2
ϕ2

ϕ1

b
(2)
3/2(ap/ain)
b

(1)
3/2(ap/ain)

, (6.17)

≈ 1 − 13
16

(
ap
ain

)2
.

Here, the terms ϕ1 and ϕ2 govern the strengths of the axisymmetric and non-axisymmetric
effects of the disc on the planet, respectively (Equations (E.5) – (E.8)), and the approx-
imation is obtained for the fiducial disc model (p = 1, δ = 5) in the limit of ap/ain → 0,
assuming a disc eccentricity profile scaling as that forced by the planet (Equation 5.13),
i.e., ed(a) ∝ 1/a – see Appendix J for details and justification. First, Equation (6.17)
shows that the precession rate is directly proportional to the coefficient ϕ2, which is
a proxy to the strength of the disc’s non-axisymmetric torque. This explains why
ϖ̇p/Ad,p = 1 in the simplified simulations (and in Chapter 5) which have ϕ2 = 0 by
construction. Second, given that ϕ2 < 0 (Equation E.6), one can see from Equation
(6.17) that the disc non-axisymmetry causes the planet to precess at a slower rate than
when ignored. Note that the contribution depends only on the semimajor axis of the
planet relative to the disc inner edge, ap/ain, explaining why there is no scatter in terms
of ϖ̇p/Ad,p at a given ap/ain in Figure 6.8. Third, and more importantly, Equation
(6.17) approximates the numerical solutions of the nominal N -ring simulations very
well, even for relatively large values of ap – see the black line in Figure 6.8.

6.4.2 Decay of Planetary Eccentricity and Resonant Friction

As noted in Section 6.3, the planetary eccentricity evolves significantly in the nominal
N -ring simulations, undergoing a long-term exponential decline with additional small
amplitude oscillatory behaviour in the meantime (Figure 6.2). This behaviour is in
contrast to the case studied in Chapter 5, where the planet’s eccentricity remains con-
stant throughout the evolution. I now present an in-depth analysis of this phenomenon,
providing evidence that it ensues from the so-called process of ‘resonant friction’ or
‘secular resonant damping’ (Tremaine, 1998; Ward & Hahn, 1998a, 2000).

Resonant friction is a secular process that results from the gravitational coupling
of a planet and disc particles at and around the site of a secular apsidal resonance (see
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Tremaine, 1998; Ward & Hahn, 1998a, 2000, for a detailed discussion). The excitation
of planetesimal eccentricities at ares gives rise to a strong torque that acts on the planet
in a way that the system’s angular momentum is rapidly redistributed between the
planet and the disc, without affecting the system’s angular momentum budget. Indeed,
the torque exerted by the disc on the planet acts to transport angular momentum from
the disc particles (mainly around ares) to the planet, in a way that damps the planet’s
eccentricity3. The rate at which resonant friction damps the planetary eccentricity is
given by (e.g., see equation 20 in Tremaine, 1998):

1
e2
p

de2
p

dt
= −π2

4 np
mp

Mc

Σd(a)a2

Mc

n(a)
|dA/d log a|

(
ap
a

)3 [
b

(2)
3/2

(
ap
a

)]2 ∣∣∣∣∣
a=ares

, (6.18)

≡ −D < 0,

where as before A(a) = Ad(a)+Ap(a). For a detailed derivation of Equation (6.18), the
reader is referred to Tremaine (1998) and Ward & Hahn (1998a, 2000). Note that one
has D → 0 and thus dep/dt = 0 when (i) there is no secular resonance within the disc,
e.g. if the disc is considered to be massless; (ii) either the planet and/or the disc do not
exert non-axisymmetric torques on each other, e.g. if either’s potential is taken to be
axisymmetric. It is also important to note that Equation (6.18) is derived by neglecting
the terms representing the non-axisymmetric perturbations that planetesimals exert
amongst themselves (see Tremaine, 1998; Ward & Hahn, 1998a, 2000) – similar to the
setup of my nominal N -ring simulations. The solution of Equation (6.18) is a simple
exponential function of time, so that ep(t) decays

ep(t) = ep(0) exp (−Dt/2) , (6.19)

with a characteristic half-life of τD ≡ 2 log 2/D.
In order to ascertain that the decay of planetary eccentricities observed in my

simulations is indeed due to resonant friction, I performed the following exercise. At
the end of each simulation, I extracted the evolution of ep(t) from each of the 67 nominal
N -ring simulations (Table H.1) up until the time when planetesimals at the secular
resonance attained an eccentricity of unity, or lower if they did not have sufficient time
to achieve that throughout the simulation time, i.e., e(t) ≲ 1; see Table H.1. Then, I
fitted the numerical results with the functional form of Equation (6.19), while keeping

3Formally, this process is somewhat akin to the interactions of planets and discs at co-orbital
Lindblad resonances, which also act to damp the planet’s eccentricity (e.g. Goldreich & Sari, 2003).
This is because apsidal resonances are a special type of Lindblad resonances, but with pattern speed
equal to the apsidal precession rate of the planet – rather than its mean motion.
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Figure 6.9. The rates of exponential decay of planetary eccentricities per unit mass of
the planet D/mp as a function of its semimajor axis ap. The blue filled circles represent the
numerical data extracted from N -ring simulations of 67 different planet–disc models (Table
H.1). The black line represents the theoretical expectation (Equation 6.18), evaluated at the
system parameters of interest. The dashed black line shows the scaling of D/mp with ap
(Equation 6.20). The grey dashed lines mark the planetary semimajor axes for which the
expected resonance widths are w = 3, 5, and 10 au (based on Chapter 5, see Equation 5.21).
See the text (Section 6.4.2) for details.

both ep(0) and D as free parameters. In each case, the fitting procedure yielded an
output ep(0) agreeing with the input value for the simulations to within a difference
of less than 1%. The results obtained for the decay rate are shown in Figure 6.9,
where the fitted values of D are plotted per unit mass of the planet as a function of
its semimajor axis. For ease of comparison, Figure 6.9 also shows in black solid curve
the results of evaluating Equation (6.18) at the system parameters of interest (Table
H.1), i.e., the combinations of Md/mp and ap/ain which according to Chapter 5 place
a secular resonance at ares = 70 au.

Looking at Figure 6.9, one can see that the simulation results agree very well with
the theoretical expectations for all considered values of ap. The agreement is perfect
at all values of ap/ain ≲ 0.5, beyond which the numerical results tend to be smaller
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than the theoretical expectations by at most a factor of ≈ 2. The reason for this slight
discrepancy as ap → ain is likely due to the fact that the derivation of Equation (6.18)
assumes that as t → ∞ and e(ares) → 1, all of the resonant friction arises from the
coupling of the planet with the planetesimals located exactly at the secular resonance;
see e.g. Tremaine (1998). In other words, it neglects the contribution of planetesimals
around ares which could also attain relatively large eccentricities (Figure 6.3). This
explanation is further supported by the fact that the resonance widths – as defined
in Section 5.4.3 – increase proportionally with ap (Equation 5.20), and so the effects
of planetesimals around the resonance become more pronounced as ap/ain → 1. For
reference, the values of ap for which the expected resonance widths are w = 3, 5, and
10 au are highlighted in Figure 6.9. In summary, the results presented in Figure 6.9
provide strong evidence that the decay of ep(t) in the nominal N -ring simulations
results from resonant friction.

Before moving on, it is also worth discussing the implications of the results portrayed
in Figure 6.9. First, Figure 6.9 shows that for a fixed ap, the decay rate scales linearly
with mp so that D/mp = const. To understand this behaviour, it is important to
recall that simulations for a fixed value of ap have different masses mp and Md but
the same ratio Md/mp (to ensure the location of the resonance remains the same, see
Chapter 5). Thus, similar to the case for precessional timescales (see Section 5.6.2.3
for detailed discussion), the larger (smaller) the masses are the shorter (longer) the
secular timescales are, including the decay rate. Second, it is clear that D/mp grows
with increasing ap such that D/mp ∝ a11/2

p (see the dashed black curve), meaning that
the decay is faster for planets situated closer to the disc than to the central star. This
makes intuitive sense since the torque exerted by the disc on the planet will be stronger
when the planet and the resonance location are closer together, i.e., when ap/ares → 1.

All of the dependencies discussed above can be understood by considering the
approximate form of the decay rate given by Equation (6.18). Indeed, inserting
the condition for secular resonance, i.e. Equation (5.16) or (6.23), with p = 1 into
the expression of D in Equation (6.18), and taking the limits of ap/ain → 0 and
ain ≪ ares ≪ aout so that one can use the asymptotic behaviours of b(m)

3/2 and dA/da

(Equations F.4), it is straightforward to arrive at the following scaling relationship:

D ≈ 2.5 × 10−2 Myr−1
(
mp

1MJ

)(
Mc

1.09M⊙

)−1/2 (
ap

20 au

)11/2 ( ares

70 au

)−15/2
, (6.20)

where the numerical coefficient is obtained for the fiducial disc model (i.e., p = 1, δ ≡
aout/ain = 5). Using Equation (6.20), one can also estimate the half life τD of the
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eccentricity decay so that,

τD = 2 log 2
D

≈ 55 Myr
(
mp

1MJ

)−1
(

Mc

1.09M⊙

)1/2 (
ap

20 au

)−11/2 ( ares

70 au

)15/2
. (6.21)

Equations (6.20) and (6.21) – which can alternatively be expressed in term of Md using
Equation (5.18) – provide useful formulae for approximating a priori the decay rate of
ep in a given planet–disc system, without running any simulation.

Finally, I note that in principle, the very same torques that cause the planetary
eccentricity to decay could also lead to the migration of the planet, which was not
allowed for within my model. Indeed, according to Ward & Hahn (1998a), the rate at
which the planetary semimajor axis varies is given by (see their equation 38):

1
ap

dap
dt

= 2ep
dep
dt

ϖ̇p

np
. (6.22)

It is clear, however, that the planetary semimajor axis would essentially be unaffected
during the decay of the eccentricity, since ϖ̇p ≪ np. This is not surprising since, by
definition, resonant friction is a secular process.

6.4.3 Location of Secular Resonance

Results of Section 6.3 show that for the same planet–disc model (i.e. Model A), the
secular resonance occurs at a larger semimajor axis in the nominal N -ring simulations
than that expected from Chapter 5 – namely, ≈ 75 au compared to 70 au. This is a
generic behaviour across all of my simulations, and thus requires an explanation. In
this section, I interpret this difference as a result of the slower planetary precession
rate in the simulations due to the non-axisymmetric component of the disc gravity
(Section 6.4.1).

As already mentioned in Chapter 5, secular apsidal resonances occur at semimajor
axes a = ares where the precession rate of planetesimal free eccentricity due to both
the disc and planet gravity is commensurate with the apsidal precession rate of the
planet due to the disc:

Ad(ares) + Ap(ares) = ϖ̇p, (6.23)

see Equation (5.16). In the previous chapter, given that the disc’s potential was taken
to be axisymmetric, ϖ̇p represented the free precession rate of the planet, i.e., ϖ̇p = Ad,p

– see Section 5.2.2.2. In the nominal N -ring simulations presented here, however, this
is no longer true since the non-axisymmetric component of disc’s gravity causes the
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Figure 6.10. The location of the secular resonance ares as a function of planetary semimajor
axis ap, as measured from N -ring simulations. Simulations are done for 67 different planet–
disc models (Table H.1) within two sets: simplified (red circles) and nominal (blue circles).
One can see that when the disc’s non-axisymmetric torque on the planet is accounted for,
ares shifts to larger values than those expected when ignored – namely, ares = 70 au (dashed
black line). The numerical data extracted from nominal N -ring simulations follow closely the
black solid curve, which represents the expected resonance location upon accounting for the
reduced planetary precession rate due to the disc’s non-axisymmetric torque on the planet.
See the text (Section 6.4.3) for more details.

planet to precess at a slower rate so that ϖ̇p ≲ Ad,p; see Section 6.4.1 and Equation
(6.17). In terms of the resonance condition, this means that for a given planet–disc
system, the right hand side of Equation (6.23) will be systematically smaller than in
Chapter 5, while the left hand side will remain the same as it is determined by the
axisymmetric components of both the planet and disc gravity. It then follows that for
a given planet–disc system, the resonance location should be expected to be pushed
outwards to a larger semimajor axis in the nominal N -ring simulations than that in
Chapter 5 (or the simplified N -ring simulations). This could also be understood, for
instance, by looking at the curves for A(a), Ad,p, and ϖ̇p in Figure 6.4.
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To test this explanation, I computed the theoretical locations of the secular resonance
that would be expected upon setting ϖ̇p in Equation (6.23) equal to the analytical
expression given by Equation (6.17) – rather than equal to Ad,p – and compared
them with the numerical results of ares extracted from the suite of 67 nominal N -
ring simulations. For a meaningful comparison, the theoretical calculations assumed
the combinations of Md/mp and ap/ain that would guarantee a secular resonance at
ares = 70 au if ϖ̇p were equal to Ad,p (Section 5.4.1), which are the same as those
adopted in the numerical simulations (Table H.1). The results obtained are shown in
Figure 6.8, which illustrates how the resonance location varies with planetary semimajor
axis both stemming from the theoretical calculations (black curve) and the nominal
N -ring simulations (blue filled circles). One can clearly see that accounting for the
disc’s non-axisymmetric gravity in the condition of secular resonance provides a very
good description of the behaviour observed in the nominal N -ring simulations. Note
that the fact that the theoretical expectation underestimates the simulation results is
not surprising given that the theoretical values of ϖ̇p/Ad,p overestimate their numerical
counterparts (Figure 6.8). As another check, I also analysed the set of simplified N -ring
simulations, in which case ϖ̇p = Ad,p (see Figure 6.8), and found that the expected
value of ares = 70 au is recovered in every simulation; see the red filled circles in Figure
6.10. In summary, the results shown in Figure 6.10 confirm the explanation for the
shift in resonance locations being due to the non-axisymmetric component of the disc
gravity.

Before moving on, however, there are other features in Figure 6.10 worth noting.
First, looking at Figures 6.10, one can see that the resonance location is not shifted
significantly for ap ≲ 20 au, or at least not as strongly as ϖ̇p/Ad,p does in the same
region; see Figure 6.8. This follows from the fact that for ap/ain ≪ 1, one has
ϖ̇p → Ad,p and Ad,p ∝ a3/2

p → 0 (see Figure 6.8 and Equation 5.7), so that the planet’s
precession rate does not contribute much to the resonance condition (Equation 6.23)
– with or without the corrections to the planetary precession due to the disc’s non-
axisymmetric torque on the planet. Second, and relatedly, Figure 6.10 shows that
the effects of the reduced planetary precession rate become prominent for ap → ain,
and the resonance locations shift considerably relative to the predictions based on
Chapter 5: for instance, by as much as ≈ 30% for ap/ain ≈ 1. Obviously, this shift
results from the fact that for ap → ain one has ϖ̇p → 0 (Figure 6.8), and thus affects
the resonance condition considerably when compared to Chapter 5 which, in the same
limit, had ϖ̇p = Ad,p → ∞ (e.g., see Equation 5.7 and Appendix E). In other words,
the numerical results suggest that when the disc’s non-axisymmetric gravity is included,
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Figure 6.11. The disc-to-planet mass ratio Md/mp required, as a function of planetary
semimajor axis ap/ain, to place a secular resonance within the disc at ares. Calculations
are done for the fiducial disc model (p = 1, δ = aout/ain = 5, ain = 30 au) by solving the
resonance condition given by Equation (6.23) under two assumptions: once within the context
of simplified simulations (i.e., A(a) = Ad,p, red curves), and once within the context of
nominal simulations (i.e., A(a) = ϖ̇p, blue curves). The results obtained for three different
values of ares are shown by different line types, as indicated in the legend. One can see that
for planets orbiting close to the disc, Md/mp is larger in the setting of nominal simulations
than that of simplified ones. Note also that the scaling of Md/mp with ap/ain in the nominal
case is well captured by the black curve representing Equation (5.18), even in the limit of
ap → ain. See the text (Section 6.4.3) for more details.

one can safely neglect the planetary precession rate in the resonance conditions for all
values of ap/ain, i.e., Ad(ares) +Ap(ares) ≈ 0 – an assumption valid only for ap/ain → 0
in Chapter 5.

The above observation thus implies that Equation (5.18) as derived in Chapter 5 –
i.e., by neglecting the contribution of ϖ̇p = Ad,p – provides a better explanation for the
behaviour of the resonance locations in the nominal N -ring simulations than in the
simplified ones. This is so even at large values of ap/ain, where previously Equation
(5.18) overestimated the resonance location for a given Md/mp and ap/ain due to Ad,p
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diverging (Figure 5.5 and Section 5.4.1). For instance, evaluating Equation (5.18)
at the parameters of Model A, one obtains ares ≈ 77 au (not so dissimilar from the
result in Figure 6.10), rather than ares = 70 au. Conversely, this discussion indicates
that for the N -ring simulations to establish a secular resonance at some ares, the ratio
Md/mp for a given ap/ain must be larger than that expected from Chapter 5 (e.g.
Figure 5.5). This is confirmed in Figure 6.11, where I compare the curves of Md/mp

as a function of ap/ain for three different values of ares/ain resulting from solving the
resonance condition, i.e., Equation (6.23), for the fiducial disc model (p = 1, δ = 5) by
first equating ϖ̇p to Ad,p given by Equation (5.7) and then to the expression given by
Equation (6.17). One can see that the ratio Md/mp must be corrected by increasing
its value by at most a factor of ≈ 2 − 3 for reasonable large values of ap/ain.

6.4.4 Timescale for Excitation of Planetesimal Eccentricities

Results of Section 6.3 show that for the same planet–disc model (i.e., Model A), the
excitation of eccentricity at the location of secular resonance ares takes a longer time in
the nominal N -ring simulation than that expected from Chapter 5 – namely, τ ≈ 332
Myr instead of ≈ 135 Myr. In this section, I conduct a more quantitative analysis of
this behaviour by analysing the complete suite of 67 planet-disc models within the
nominal set of N -ring simulations (Table H.1). For ease of discussion, in this section
I use τn.axi and τaxi to refer to the time it takes for e(ares) → 1 in the presence and
absence of the disc’s non-axisymmetric torque on the planet, respectively.

As already mentioned in Section 6.3.1.3, the delay in the time at which e(ares)
attains a value of unity is caused by the fact that the planetary eccentricity decays in
the course of the evolution, and in turn affects the rate at which e(ares) grows; see e.g.
Figure 6.5(b) and Equation (6.16). Given this, one can then invert Equation (6.16) to
solve for the time τn.axi at which e(τn.axi) = 1, finding that

τn.axi = log
[(

1 − D

2|Bp(0)|

)− 2
D
]
, (6.24)

≈ 1
|Bp(0)|

(
1 + D

4|Bp(0)|

)
,

where all quantities are evaluated at the secular resonance, a = ares, and the approxi-
mation in the second line assumes D ≪ |Bp(0)|. Looking at Equation (6.24), one can
see that for a given planet–disc system, and depending on the strength of resonant
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Figure 6.12. The timescale τ for planetesimal eccentricity excitation at the secular
resonance as a function of planetary semimajor axis ap, as measured from N -ring simulations.
Simulations are done for 67 different planet–disc models (Table H.1) within two sets: (i)
simplified, which are shown in red circles; and (ii) nominal, which are shown using various
black symbols explained in the legend. Note that the timescales τ are scaled by the planet’s
mass mp and initial eccentricity ep(0). One can see that when the disc’s non-axisymmetric
torque on the planet is accounted for, τ ≡ τn.axi is larger than those expected when ignored,
τ = τaxi (dashed black line, Equation 5.15). The numerical data extracted from nominal
N -ring simulations follow closely the solid curves of different colours (see the legend), which
represent the expected timescale upon accounting for the fact that the planet’s eccentricity
decays due to the disc’s non-axisymmetric torque on the planet (Equation 6.24). See the
text (Section 6.4.4) for more details.

friction (i.e., D), the value of τn.axi should be expected to be equal to or larger than
τaxi of Chapter 5 which, I remind, is given by τaxi = 1/|Bp(0)| – see Equation (5.15).

To test and confirm this explanation, I computed the theoretical values of τn.axi

using Equation (6.24) for various values of ep(0) and compared them with the numerical
values of τn.axi that I extracted from the suite of 67 nominal N -ring simulations (Table
H.1). For a meaningful comparison, in the theoretical calculations I adopted the
numerical values of D and ares as extracted from the simulations and shown in Figures
6.9 and 6.10, respectively, rather than using their corresponding theoretical predictions
(i.e. Equations 6.18 and 6.17). This is because while the theoretical predictions do
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explain the behaviour of D and ares as a function of ap, they do not provide a perfect
quantitative description; see Sections 6.4.2 and 6.4.3.

The results of this exercise are summarised in Figure 6.12, which shows both the
theoretical and numerical values of τn.axi as a function of planetary semimajor axis ap
for four different values of ep(0), as indicated in the legend. Note that the results are
normalised by the planet’s mass and initial eccentricity motivated by the fact that
according to Chapter 5, τaxi ∝ [mpep(0)]−1 (Equation 5.15). For reference, Figure 6.12
also shows the normalised values of τaxi as extracted from the simplified simulations
(see the red circles): as expected, they all lie perfectly along the black dashed curve
representing Equation (5.15), irrespective of mp and ep(0). More importantly, looking
at Figure 6.12, one can clearly see that Equation (6.24) (shown in various solid lines;
see the legend) provides a very good description of the numerical values of τn.axi (shown
in various black symbols; see the legend) for all considered values of ep(0) and ap,
confirming that resonant friction on the planet is indeed responsible for the delay in
exciting the planetesimal eccentricities at the resonance.

Indeed, looking at Figure 6.12 one can see that the values of τn.axi – regardless of
ep(0) – converge to the curve of τaxi at small values of ap. This is because resonant
friction on the planet in that region is so weak that ep(t) remains roughly constant, and
τn.axi → τaxi; see also Equation (6.24). In the opposite limit, however, i.e., as ap → ain

and the effects of resonant friction on the planet become significant, the values of τn.axi

diverge away from the curve of τaxi, attaining values larger than τaxi by as much as a
factor of ∼ 5. This factor depends on the specific value of ep(0), with initially more
eccentric planets leading to relatively smaller shifts in τn.axi than nearly circular planets.
This makes intuitive sense since the decay rate of ep does not depend on ep(0) (Section
6.4.2) and by and large, Bp ∝ ep controls the amplitude of planetesimal eccentricities
(see e.g. Equations 6.16 and I.3).

This concludes my analysis of the simplified N -ring simulations.

6.5 Results: Full N-ring Simulations

The results presented thus far in this chapter have been obtained by running ‘nominal’
N -ring simulations, i.e., accounting for all gravitational effects associated with the
planet and the debris disc, with the exception of the non-axisymmetric component
of the disc self-gravity (see Section 6.3). This simplification allowed me to explore
and develop a comprehensive understanding of the key dynamical effects due to the
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non-axisymmetric torque exerted by the disc upon the planet (e.g., Section 6.4), in
addition to those already explored in Chapter 5. However, it is important to emphasise
that the ‘nominal’ N -ring simulations do not capture the full richness of the dynamical
phenomena that may ensue from the secular interactions between planets and massive
debris discs. By and large, this is because the negligence of the non-axisymmetric
gravitational perturbations amongst the disc rings inhibits their exchange of angular
momentum within the disc.

In this section, I report on simulation results obtained with the N -ring model, but
this time by accounting for the full gravitational effects of the disc, both on the planet
and the disc itself – simulations referred to as ‘full’ N -ring simulations (Section 6.2).
At the outset, however, I would like to emphasise that the results presented here are
preliminary, in the sense that I plan on extending them in the near future, and thus
this section should be viewed as a work in progress.

As a basis for the investigation, I simulated the evolution of the same 67 planet–disc
models considered thus far in this chapter; see Table H.1. Before diving into the
details in the subsequent sections, here I state the main results briefly. Examining the
complete set of the full N -ring simulations, I found that there are two qualitatively
distinct simulation outcomes. The fundamental difference between these outcomes
lies in the way both the planetary and planetesimals orbits evolve in time, leading to
different evolutionary stages for the disc surface density and thus observed morphology.
The key parameter dictating which outcome occurred was set by the semimajor axis
of the planetary orbit ap relative to the disc’s inner edge ain: indeed, one outcome –
hereafter, ‘Outcome I’ – occurred for relatively large planetary semimajor axes, that
is, for ap/ain → 1, and a second outcome – hereafter, ‘Outcome II’ – occurred for
smaller planetary semimajor axes, that is, for ap/ain → 0. Outcome I resulted in the
circularisation of the planetary orbit and a disc structure characterised by a gap at the
secular resonance (somewhat similar to the case in the nominal N -ring simulations). In
addition to this, however, the disc region beyond the gap developed a long, one-armed
spiral density wave. Outcome II, on the other hand, resulted in a constant planetary
eccentricity and the disc maintained a roughly coherent structure. In addition to these
two outcomes, I also identify an intermediary stage, whereby the system behaves akin
to Outcome I in certain aspects, but akin to Outcome II in others. I describe these
two outcomes together with the intermediary stage in detail below.
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6.5.1 Outcome I: ‘Gap + Spiral Wave’

I begin by describing the evolution of planet–disc systems whereby the planet orbits
relatively close to the disc, i.e., ap ≲ ain (see also Table H.1). For clarity, however, I
remind that the planetary orbit does not cross the disc. As already mentioned above, I
refer to the results of simulations with such configurations as Outcome I.

6.5.1.1 The Planet

In Outcome I, the planetary orbit evolves by and large in a similar manner as in the
nominal N -ring simulations of Section 6.3. Indeed, the planet’s eccentricity decays in
time due to resonant friction, while at the same its longitude of pericentre precesses in
a prograde fashion at a constant rate. The precession rate ϖ̇p remains by and large
unaffected when compared to the nominal simulations. This makes intuitive sense,
since ϖ̇p is dictated by the non-axisymmetric component of the disc gravity on the
planet (Section 6.4.1). The decay of the planetary eccentricity, however, proceeds
somewhat differently. Indeed, instead of ep(t) decaying according to the exponential
behaviour discussed in Section 6.4.2 at all times, it undergoes a milder decline at early
times and only thereafter follows the exponential profile given by Equation (6.19). This
milder decline lasts for t ∼ 2 τsec, that is, for the first ∼ 2 precession cycles of the
planetary orbit. After this time, i.e., at t ≳ 2 τsec, ep(t) behaves according to Equation
(6.19) but with a decay rate D which is smaller by about a factor of ∼ 2 − 3 than that
in the nominal simulations (e.g. Figure 6.9). Last but not least, the exponential decay
is accompanied with small-amplitude oscillations in time, similar to the case in the
nominal simulations.

The behaviour described above can be seen by looking at Figure 6.13, where I plot
the time evolution of the planetary orbit in Model A (ap = 20 au, Table H.1) – which, I
remind, is the fiducial configuration adopted both in Chapter 5 and in Section 6.3. Note
that the results in Figure 6.13 are shown up until t = τ ≈ 424 Myr, where I remind
that τ is the time at which the planetesimal eccentricities at the resonance location
become equal to unity. For reference, panels (A) and (B) of Figure 6.13 also show in
red lines the behaviour of ep(t) and ϖp(t) as extracted from the nominal simulation of
Model A, respectively.

6.5.1.2 The Planetesimals

In Outcome I, debris particles interior to the secular resonance location, i.e., those
with a ≲ ares, evolve following the same stages as in the nominal simulations. Thus,
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Figure 6.13. The evolution of the planetary eccentricity ep (panel A) and longitude of
pericentre ϖp (panel B) as a function of time in the full N -ring simulation of Model A
(ap = 20 au, see Table H.1). The vertical black line in panel (A) marks the period of the
planetary precession, τsec ≈ 54 Myr. For reference, the results obtained from the nominal
simulation of Model A are shown by red lines in each panel. Note that ep decays at a slower
rate in the full N -ring simulation compared to the nominal simulation. Additionally, the decay
does not follow an exponential behaviour until at least ∼ 2τsec have elapsed. It is also evident
that the planetary precession rate is roughly the same in both types of simulations. The
results shown here serve as an example of the general behaviour observed in all simulations
resulting in Outcome I. See the text (Section 6.5.1) for more details.

for the sake of conciseness, I do not reiterate the description here and refer the reader
to Section 6.3.1.2. This said, however, the evolution of planetesimals at and beyond
ares display various qualitative and quantitative differences when compared to the
nominal simulations. This can be seen by looking at rows (a) and (b) in Figure 6.14,
where I show the evolution of planetesimal eccentricities and apsidal angles in Model
A, respectively4. The snapshot times were chosen such that they roughly correspond
to 1/2, 1, 2, and 5 times the planetary precession period, τsec ≈ 54 Myr. Note the
vertical dashed lines therein at a ≈ 74.11 au, which denote the exact location where
the resonance condition (Equation 6.23) is satisfied for this particular model.

Looking at rows (a) and (b) of Figure 6.14, one can see that by the time that the
planet completes one precession cycle, t ∼ τsec, the eccentricities at the resonance do
not grow as much as in the nominal simulations (see e.g. the first two columns of

4Animated versions of rows (a) and (b) of Figure 6.14 which runs from t = 0 to t = τ ≈ 424 Myr
are made available online.
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Figure 6.14. Summary of the results obtained by running a full N -ring simulation for
Model A (ap = 20 au, Table H.1), as an example of the general behaviour observed in all
simulations resulting in Outcome I (Section 6.5.1). Four snapshots of the simulation are
shown. The time t is given at the top of each column, which for reference is also indicated
relative to τ ≈ 424 Myr (Equations 5.15, 6.21). Note that the chosen times correspond to
1/2, 1, 2 and 5 periods of planetary precession, τsec = 2π/ϖ̇p ≈ 54 Myr. Rows (a) and (b)
show the planetesimal eccentricities and apsidal angles (relative to that of the planet) as a
function of semimajor axis, respectively. Rows (c) and (d) show the corresponding snapshots
of the disc surface density and radial profiles of the azimuthally averaged surface density – see
Appendix G for details. The dashed vertical lines in rows (a), (b), and (d) show the secular
resonance location, ares ≈ 74.11 au. The black solid line in row (a) represents the maximum
planetesimal eccentricities em,p driven by the circularising planet in the absence of the disc:
it is calculated using Equation (6.15) but with the numerical results of ep(t) in Figure 6.13,
and its initial value (i.e., with ep = ep(0), Equation 5.13) is shown by small-dashed grey lines
for reference. Animated versions of each of the four rows in this figure are made available
online. See the text (Section 6.5.1) for details.

Figure 6.14). Instead, what happens is that the eccentricities first grow in the outer
parts of the disc (and not at ares as in the nominal simulations), where they attain
amplitudes larger than em,p, i.e., the maximum eccentricity driven by the planet alone;
see e.g. Equation (5.12). As this happens, the apsidal angles ∆ϖ(a) in this region
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wrap twice all around the star, from [−π, π]. This happens such that the resulting
inner winding is narrower than the outer one, in the sense that the former spans the
semimajor axis range of ≈ 75 − 90 au while the latter spans ≈ 90 − 150 au.

By the time that the planet completes its second precession cycle, t ∼ 2 τsec,
∆ϖ(ares) becomes fixed at −π (and not −π/2 as in the nominal simulations), and
e(ares) starts to grow significantly from thereon (see e.g. the third column of Figure
6.14). Here, it is interesting to note that this happens by roughly the same time
that the planet’s eccentricity starts to follow the exponential behaviour of Equation
(6.19); see Figure 6.13. It is also evident that during the same interval of time, i.e.,
τsec ≲ t ≲ 2τsec the behaviour of ∆ϖ(a) remains unchanged in the outer disc parts,
showing little or no evidence of precession relative to the planetary orbit. This is also
the case at later times, i.e., 2 τsec ≲ t ≲ τ , when the only noticeable evolution is in
terms of the eccentricities: e(ares) continues its growth to unity as t → τ and, at the
same time, the eccentricities in the outer disc parts shift down roughly uniformly at all
a, but remain larger than em,p – see also the animated versions of rows (a) and (b) of
Figure 6.14.

Before moving on, it is worthwhile to mention that the planetesimal evolution
illustrated by Figure 6.14 is general, in the sense that it applies to all other simulations
with ap ≲ ain that result in Outcome I. The main difference that arises by varying
the value of ap is that for ap → ain, rather than having two windings of ∆ϖ(a) in the
range ares ≲ a ≲ aout, there can happen only one. This is mainly due to the fact as
ap → ain, the location of the resonance moves out significantly (see e.g. Figure 6.10
and Section 6.4.3), and thus only the innermost winding evident in Figure 6.14 would
be established.

6.5.1.3 The Disc Morphology

Given the behaviour of the planetesimal orbital elements, the physical debris structure
in Outcome I features a gap centred around the resonance location in addition to a
long, one-armed spiral pattern beyond it. This can be seen by looking at rows (c)
and (d) of Figure 6.14, where I show snapshots of the disc surface density and its
azimuthally averaged radial profile corresponding to Model A, respectively5. Looking
at this figure, it is also evident that the gap develops fully by t ∼ 2 τsec – see e.g. the
third column in Figure 6.14. This essentially means that the timeframe of ‘Stage 1’
as introduced in Section 6.3 is now extended from t ∼ τsec to t ∼ 2 τsec, which makes

5Animated versions of rows (c) and (d) of Figure 6.14 showing the evolution over a period of
t = τ ≈ 424 Myr are made available online.
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Figure 6.15. The time evolution of the relative difference between θ∗
sp, which measures

the angular position where the disc surface density peaks at a given radial distance, and the
planetary longitude of pericentre ϖp in the full N -ring simulation of Model A (Figure 6.14).
Calculations are done at four different radii located beyond the resonance, ares ≈ 74.11 au –
see the legend. One can see that θ∗

sp − ϖ̇p ≈ const in time at all radii, suggesting that the
spiral’s pattern speed is equal to the planetary precession rate ϖ̇p. See the text (Section
6.5.1.3) for more details.

sense given the behaviour of e(ares) discussed above in Section 6.5.1.2. Note also that
during Stage 1, i.e., 0 ≤ t ≲ 2 τsec, the spiral arm launched by the planet at ain extends
out to about the outer edge of the disc as it wraps around the star, and not only to
ares as in the nominal simulations – see the first two columns of Figure 6.14. Once the
gap is developed by t ∼ 2 τsec, however, the spiral arm in the outer disc parts would
more or less stop wrapping onto itself, while the region interior to the gap settles into
a coherent, almost axisymmetric structure (as in the nominal simulations) – see e.g.
the third and fourth columns of Figure 6.14.

Here, it is worthwhile to note that the gap in Outcome I no longer appears
axisymmetric as in the nominal simulations, despite e.g. the randomisation of ∆ϖ at
a ≲ ares. Instead, looking at Figure 6.14(c), (d), one can see that the depletion around
the secular resonance location is of non-axisymmetric shape, and seemingly wider and
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deeper towards the planetary apocentre (and not the pericentre). However, it remains
difficult to say how the combination of the secular resonance and the underdensities
caused by the spirals beyond that affect the appearance of the overall depletion. From
an azimuthally averaged sense, however, Figure 6.14(d) shows that the gap width is
≈ 15 au at late times, which is comparable to the value found in the nominal simulation
of the same planet–disc system (Section 6.3.2). Additionally, the gap depth does not
seem to be affected by the underdensities induced by the spirals: indeed, Figure 6.14(d)
shows that the surface density at the secular resonance is depleted by about ≈ 50%
relative to the initial density – similar to the nominal simulations.

Finally, I point out that the spiral pattern beyond the gap remains (by and large)
stationary relative to the planet as it co-rotates with the latter’s apsidal line – see e.g.
Figure 6.14(c) and its animated version. To further illustrate this point, however, in
Figure 6.15 I plot the time evolution of the angle θ∗

sp measuring the angular position
of where the disc density peaks at a given radial distance in Model A (Figure 6.14).
Looking at this figure, one can see that at each of the different radii considered – namely,
r = 85, 100, 115, and 130 au – the relative difference between θ∗

sp and ϖ̇p converges
to a roughly constant value over time. This convergence happens after at least ∼ τsec

has passed (see the shaded region in Figure 6.15), which, I remind, corresponds to
one secular period at the resonance location. Note that Figure 6.15 also shows that
the relative angle θ∗

sp − ϖ̇p actually drifts ever so slightly at times t ≳ τsec; however,
this does not lead to substantial differential precession between the different radii. In
conclusion, Figure 6.15 shows that to a good approximation, the pattern speed of the
spiral wave evident in Figure 6.14 – and more generally, in Outcome I – is given by the
planetary precession rate, ϖ̇p.

6.5.2 Outcome II: ‘Coherent Disc’

The previous outcome occurred if the planet’s orbit was relatively close to the disc,
i.e., 0.4 ≲ ap/ain ≲ 1. If instead the planet’s semimajor axis is below some critical
value relative to the inner disc edge, the evolution of both the planet and the debris
particles show significant qualitative differences from the previous regime. The value
of this critical semimajor axis was around acp ≈ 12 au in my simulations (Table H.1) –
although note that this is defined loosely (more on this later in Section 6.5.3). I refer
to the results of simulations below this critical planetary semimajor axis as Outcome
II.
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Figure 6.16. The evolution of the planetary orbit in the ‘full’ N -ring simulation of Model
B (ap = 7 au, Table H.1), as an example of the general behaviour observed in all simulations
resulting in Outcome II (Section 6.5.2). Panels (A) and (B) show the evolution of the planet’s
eccentricity ep and longitude of pericentre ϖp, respectively. Note that the planet’s eccentricity
remains constant in time. The red line in panel (B) represents the slope of ϖp(t) extracted
from the nominal simulation of Model B (Section 6.3). See the text (Section 6.5.2) for details.

6.5.2.1 The Planet

In Outcome II, the planetary orbit remains of constant eccentricity as it precesses
under the action of the disc gravity, showing no signs of circularisation associated
with resonant friction. This is illustrated in Figure 6.16, where I plot the evolution of
the planetary orbit over a period of 400 Myr in Model B (ap = 7 au; see Table H.1) –
which, I remind, is one of the models also considered in Chapter 5. Note that once
again the precession rate of the planetary orbit is similar to that predicted in Section
6.4.1: indeed, Equation (6.17) well approximates the period of τsec = 2π/ϖ̇p ≈ 59 Myr
measured in the simulation. For reference, the red line in Figure 6.16(B) shows the
slope of ϖp(t) as measured from the ‘nominal’ simulation of Model B (Section 6.3).

6.5.2.2 The Planetesimals

Similarly, the planetesimal orbits show a new and somewhat peculiar evolutionary
behaviour. The main striking feature is that at and around the location where the
resonance condition is satisfied, planetesimal eccentricities do not show any sign of
growth to values of unity over time, contradicting expectations. Instead, planetesimal
eccentricities are suppressed, remaining slightly lower than what would be expected
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even in the limit of a massless disc, i.e., e ≲ em,p (Equation 5.13). This can be seen by
looking at rows (a) and (b) in Figure 6.17, where I show the evolution of planetesimal
eccentricities and apsidal angles in Model B, respectively, at three different times6.
Note the vertical dashed lines therein at a ≈ 70.8 au, which denote the exact location
where the resonance condition (Equation 6.23) is satisfied for this particular model.

Moreover, while debris particles in the inner disc parts evolve by and large in line
with the expectations from Chapter 5 – which, I remind, treated ep as constant by
construction – particles in the outer disc parts reveal a distinct behaviour; see e.g.
rows (a) and (b) of Figure 6.17. Indeed, by the time that the planet completes one
precession cycle, t ∼ τsec, particles in the outer disc parts become nearly apse-aligned
with the planet, co-precessing with the planet’s apsidal line to within a small dispersion
around ∆ϖ(a) = 0 at all times t ≳ τsec. As this happens, planetesimal eccentricities
become ‘trapped’ to small-amplitude oscillations in time, with an average magnitude
which is lower than em,p by a factor of a few and roughly independent of a. Note that
interestingly, the oscillations of both e and ∆ϖ are negligible at the exact location
where the resonance condition is satisfied, i.e., at a ≈ 70.8 au – see the animated
versions of rows (a) and (b) of Figure 6.17. Additionally, planetesimal eccentricities
show a peculiar ‘spiky’ behaviour at about ≈ 65 au, with their values being pumped
up to slightly larger values than the neighbouring planetesimals – see row (a) of Figure
6.17 as well as its animated version. The maximum eccentricity at this location does
not grow any further than that shown in Figure 6.17, even if one integrates the system
up to 2 Gyr.

6.5.2.3 The Disc Morphology

Given this behaviour, the debris disc no longer manifests a gap at the expected
resonance location, but rather evolves into a coherent structure with some subtle
substructure. This is illustrated in the third and fourth rows of Figure 6.17, where I
show three different snapshots of the disc surface density and its azimuthally averaged
radial profile corresponding to Model B, respectively7. Looking at this figure, one can
see that by the time that the spiral arm launched by the planet at ain propagates
outwards to ≈ 70 au (i.e., t ∼ τsec, akin to ‘Stage 1’ in Sections 5.6.1 and 6.3.2), the
surface density settles into and maintains a roughly coherent axisymmetric distribution.
Indeed, the only discernible substructure at late times, i.e., t ≫ τsec, is the presence of a

6Animated versions of rows (a) and (b) of Figure 6.17 showing the evolution over a period of 400
Myr are made available online.

7Animated versions of rows (c) and (d) of Figure 6.17 showing the evolution over a period of 400
Myr are made available online.
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Figure 6.17. Similar to Figure 6.14, but now for Model B (ap = 7 au, Table H.1) to
illustrate the general behaviour observed in full N -ring simulations resulting in Outcome
II (Section 6.5.2). One can see that planetesimal eccentricities do not show any sign of
significant growth at the location where the secular resonance condition (Equation 6.23) is
satisfied (a = 70.80 au; dashed vertical lines in rows (a), (b), and (d)). Note also the ‘spiky’
behaviour in the eccentricities at around 65 au. Around that region, the surface density
manifests a very narrow (∼ 1 au) region within which it is depleted by less than a few percent
relative to the initial density. This is easier to see in the azimuthally averaged density profile
at late times, e.g., at t = 300 Myr. Animated versions of each of the four rows in this figure
are made available online. See the text (Section 6.5.2) for more details.

narrow, ∼ 1 au, axisymmetric band at about 65 au (interior to the expected resonance
location) where the surface density is only marginally lower than the initial density,
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by less than about 5%; see row (d) of Figure 6.17. I also tested that this behaviour is
maintained up to 2 Gyr e.g. for Model B, though for practical purposes, the animated
versions of Figure 6.17 show the evolution only to 400 Myr.

Here, it is important to stress that the origins of the underdense band in Figure
6.17 should not be confounded with that of the gap in Outcome I – or Chapter 5 for
that matter. This is because counter to intuition, the secular resonance – despite its
condition being met – does not seem to ‘act’ in Outcome II, at least not to excite
planetesimal eccentricities to values of unity (Figure 6.17). Instead, the origin of the
underdense band is a direct consequence of the fact that both the inner and outer disc
parts are offset in the same direction relative to the star in different magnitudes, and
the transition between them occurs via the ‘spiky’ e-behavior at around 65 au. It is
for these reasons that I refer to the axisymmetric ‘depletion’ at 65 au in Figure 6.17 as
an “underdense band” and not a gap – although for practical purposes, i.e., from an
observational point of view, they are practically the same.

Before moving on, I also wish to clarify that qualitatively similar behaviour was
recovered with an initially more eccentric planet, say by a factor of 10 than in Model
B (i.e., ep(0) = 0.50). Indeed, increasing the planetary eccentricity did not help in
exciting the planetesimal eccentricities to values larger than em,p (Equation 5.13) at
the location where the resonance condition is satisfied8. Instead, such an exercise only
contributed to (i) enhancing the level of apocentre glow in the inner disc parts, as one
would already expect based on models of massless discs (e.g. Wyatt et al., 1999; Pan &
Wu, 2016, see also Chapter 2); and (ii) causing the underdense band to become ever so
slightly broader (i.e., less than a few au) and non-axisymmetric.

6.5.3 Intermediate Outcome

Before closing this section, it is worthwhile to mention that the transition between
the two outcomes, i.e. Outcome I and II, appears to not be sudden at some critical
value for the planetary semimajor axis, but rather gradual. In other words, it seems
that there is an intermediate stage, whereby by increasing the planetary semimajor
axis from slightly less to slightly more than acp ≈ 12 au (which, admittedly, is defined
rather loosely), the planet and the disc start to behave similar to Outcome I in certain
aspects and similar to Outcome II in others. For purposes of clarity, I differentiate this
outcome from the two previous ones by referring to it as the “intermediate” outcome.

8This also provides another confirmation that the observed behaviour in Outcome II does not
follow from the fact that the simulations were stopped earlier than supposed (recall that in principle
τ ∝ 1/ep, e.g. Chapter 5).
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Figure 6.18. Summary of the results obtained by running a full N -ring simulation for
model number 40 (ap = 12.8 au, Table H.1), as an example of the general behaviour observed
in simulations resulting in an intermediary stage between Outcomes I and II (Section 6.5.3).
Panels (a) and (b) show the dynamical state of the planetesimals in terms of eccentricity
and apsidal angles, respectively, at t = 200 Myr. The corresponding snapshots of the disc
surface density and its azimuthally averaged radial profile are shown in panels (c) and (d),
respectively. Panels (e) and (f), on the other hand, show the time evolution of the planetary
eccentricity and apsidal angle, respectively, over a period of 200 Myr. The red line in panel
(f) shows the slope of ϖp(t) extracted from the nominal simulation of the same planet–disc
model. The dashed vertical lines in panels (a), (b), and (d) mark the location of the secular
resonance (ares ≈ 71.3 au). See the text (Section 6.5.3) for details.
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Analysing the outcomes of various simulations of systems whereby the planetary
semimajor axis is varied within the range 10 to 15 au (see Table H.1), I have made the
following observations. First, for planets with ap/ain ∼ 0.4, planetesimal eccentricities
at the exact location of the resonance do start to be pumped up to relatively large
values – i.e., e(ares) → 1, as in Outcome I. Note that this seems to happen for only a few
particles at ares, and not even slightly away from that location. At the same time, the
‘spiky’ e-behaviour described in Outcome II does still appear at a ≲ ares. Additionally,
planetesimal eccentricities in the outer disc parts behave more as in Outcome I, rather
than oscillating within a narrow range as in Outcome II. Second, as this happens, the
planetary eccentricity no longer remains constant in time as in Outcome II, but rather
declines. However, the decline is not as significant as in Outcome I: instead, ep drops
only marginally, by about less than a few percent relative to its initial value. Once again,
and similar to Outcomes I and II, the planetary precession rate is well-reproduced by
Equation (6.17). Third, and finally, the outer parts of the disc develop a spiral wave
with 2 windings that co-precess with the planet, similar to Outcome I. This happens
even though unlike in Outcome I, the planetesimal apsidal angles ∆ϖ(a) do not cover
the entire range of [−π, π], but rather remain constrained to a narrow range around
∆ϖ = 0, somewhat akin to Outcome II.

The features mentioned above can be seen by looking at Figure 6.18, which sum-
marises the snapshots of the simulation labelled as ‘40’ in Table H.1 in which the
planet’s semimajor axis is ap = 12.8 au, comparable to acp. This figure shows the
dynamical state of the planetesimal orbits and the disc surface density at 200 Myr
into the system’s evolution, together with the evolution of the planetary orbit over
a period of 200 Myr. Note that the initial planetary eccentricity was chosen to be
relatively large (Table H.1), namely ep(0) = 0.3, to help bring out the appearance of a
spiral beyond the gap. Looking at this figure, one can see that many of the features
appearing in Outcomes I and II, separately, manifest themselves in this simulation in
some modified combination as discussed above.

This completes my description of the outcomes found in my ‘full’ N -ring simula-
tions (Table H.1). Finally, I close this section by noting that the results presented here
are preliminary in that I do not have a theoretically satisfying understanding of the
physics underlying many of the features described throughout this section. As such, I
refrain myself from commenting any further on the results presented here. This said,
however, I plan on further investigation in the near future.
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6.6 Discussion and Summary

In this chapter, I investigated the secular interactions between a single eccentric planet
and an external, self-gravitating debris disc. In doing so, I have gone further than
the simplified analytic model of Chapter 5, having accounted for the full secular
gravitational potential of the disc, i.e., including both its axi- and non-axisymmetric
components.

This was achieved by the N -ring model outlined in Section 6.2, which allows one
to simulate the secular evolution of gravitating disc-planet systems using the Lagrange
planetary equations (Equation 6.9). The model treats the disc as a collection of
geometrically spaced massive rings, interacting both with each other and the planet
via softened gravity. To this end, I adopted the softening prescription of Hahn (2003)
(see also Chapter 4), which could be thought of as arising due to the disc’s aspect ratio
that is a consequence of the inherent velocity dispersion of the constituent particles.
Note that the N -ring model employed in this chapter is not novel per se: indeed, it
has been used previously in a series of papers to study the secular evolution of the
primordial Kuiper belt as well as planetary rings e.g. around Saturn (Hahn, 2003,
2007, 2008). However, to the best of my knowledge, this is the first time that it has
been applied to examine the secular evolution of gravitating debris-planet systems.

Results of previous sections show that introducing the non-axisymmetric component
of disc gravity into the simplified scenario considered in Chapter 5 leads to a rich
phenomenology. Namely, I found that there are two distinct outcomes in terms of
the planet–debris disc evolution, depending on the planetary semimajor axis. One
outcome, referred to as Outcome I, occurred for planets orbiting closer to the disc
than to the star, namely, when 0.4 ≲ ap/ain ≲ 1 (Section 6.5.1). In this case, the
disc developed a clear depletion in its surface density at the location of the secular
resonance, in addition to a long, one-armed spiral density wave beyond that region.
At the same time, the planetary orbit circularised due to resonant friction (more on
this later) as it precessed under the action of the disc gravity. The features of the
gap, such as its depth and width, are somewhat similar to those seen in Chapter 5,
being asymmetric and depleted partially (by about a factor of two relative to the
initial density profile). As to the spiral, I found that its pattern speed is to a good
approximation equal to the planetary precession rate. The second outcome, referred to
as Outcome II, occurred for planets situated closer to the central star than to the disc,
namely, when ap ≲ 0.4ain (Section 6.5.2). In this case, the evolution was strikingly
different than that in the previous regime. Namely, the disc remained coherent and
did not develop any potentially observable structure. This happened as a result of
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suppressed planetesimal eccentricities at and beyond the location where the resonance
condition was met. Additionally, in this regime, the planet’s eccentricity remained
constant as its longitude of pericentre precessed. It was also shown that the transition
between Outcomes I and II is gradual with variations in planetary semimajor axis, and
that there exists an intermediate stage between the two (Section 6.5.3). Based on the
simulations performed in this chapter with ain = 30 au (see Table H.1), I found that
the critical value of ap at which the transition from Outcome II to I occurs is acp ∼ 12
au.

The inhibition of eccentricity excitation at the site where the resonance condition
is met in Outcome II is rather interesting and counter-intuitive. At the moment of
writing, however, I do not have a satisfying explanation as to why this happens, but
plan on further investigation in the near future. At this stage, however, it is clear
that this behaviour is somehow related to the disc’s non-axisymmetric component of
self-gravity, since when the latter is switched off – as in the nominal N -ring simulations
described in Sections 6.3 and 6.4 – the expected behaviour at the secular resonance
(i.e., e(ares) → 1) is recovered for all values of ap; see Section 6.3. This leads me to
speculate that perhaps it is the relative strength of the planet’s non-axisymmetric
potential with that of the disc that dictates – partly or completely – which outcome
occurs for a given system. To assess the validity of this line of thought, I performed
the following exercise. I simulated the evolution of both models A and B – which, I
remind, exemplify Outcomes I and II, respectively (Sections 6.5.1 and 6.5.2) – but this
time by modifying by hand the magnitude of the Ajk terms in Equation (6.9) that
represent the non-axisymmetric perturbations amongst the disc rings (i.e., for all but
j = 0 and k = 0). Doing so, I found that the evolution of Model A leads to Outcome
II (and not I) if the terms Aj ̸=0,k ̸=0 are scaled up by a factor of ∼ 5. Conversely, when
the terms Aj ̸=0,k ̸=0 were scaled down by a factor of ∼ 5, Model B resulted in Outcome
I (and not II).

Further support to this line of thought can be sought as follows. Consider the ratio
of the non-axisymmetric gravity experienced by planetesimals due to the planet Bp(a)
(Equation 5.6) to that due to the disc, which I denote by Bd(a). For simplicity, let
us further assume that the disc is apse-aligned and characterised by an eccentricity
profile forced by the planet alone, ed(a) ∝ 1/a (Equation 5.13). Then, one can neglect
the evolution of the disc rings and calculate the ratio Bp(a)/Bd(a) using only the
non-diagonal terms of the matrix A (Equation 6.4). Doing such a calculation for the
planet–disc parameters considered in this chapter, I found that the disc and the planet
cancel each other’s non-axisymmetric perturbations at the exact location where the
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resonance condition is met for ap ≈ 17 au – which, surprisingly, is comparable to the
critical value of acp ∼ 12 au reported in Section 6.5. Below and above this value of ap, the
cancellation occurs at a semimajor axis smaller and larger than the resonance location,
respectively. This suggests that perhaps Outcome II is related to the fact that the disc’s
non-axisymmetric perturbations ‘inhibit’ planetesimal excitation at the resonance as it
dominates or, perhaps, cancels the net non-axisymmetric perturbations around that
region. A more detailed calculation of Bd(a) is necessary to make a definitive statement.
If true, however, this suggests the presence of planet- and disc-dominated regimes
in terms of the planetesimal eccentricity excitation, similar to the case of precession
rates discussed in detail in Section 5.3. Interestingly, such a classification has been
made before for planetesimal dynamics in stellar binaries by Silsbee & Rafikov (2015a).
Finally and admittedly, the discussion presented here does not constitute a definite
explanation for the transition between Outcomes I and II, but rather a suggestive one
which deserves further investigation.

Apart from being of academic interest, a full understanding of the causes behind
the outcomes found in the full N -ring simulations is also essential for refining my
predictions in Chapter 5 for the combinations of planet and disc parameters that could
explain the observed structures in HD 107146, HD 92945, and HD 206893. For now,
however, it is obvious that the introduction of the disc non-axisymmetric potential
imposes additional constraints to the parameter space identified as ‘allowed’ in Figures
5.8 and 5.13 for HD 107146 and HD 92945, respectively. The most obvious constraint
follows from the emergence of Outcome II: since in this case the disc does not develop
a gap, the parameter spaces in Figures 5.8 and 5.13 corresponding to ap ≲ acp ∼ 0.4ain

should be ruled out. Additionally, based on the nominal simulations results presented
in Section 6.3, the values of mp and Md in the remaining portion of the parameter
space should be modified as well. First, as we saw, the disc non-axisymmetric torque on
the planet shifts the location of the secular resonance to a value larger than ares = 70
au (Section 6.4.3). To correct for this shift, the ratio Md/mp should be larger than
that in Chapter 5 by a factor of ∼ 2 − 3; see Figure 6.11. This could be done, for
instance, by keeping Md unchanged and adopting values of mp smaller by ∼ 2 − 3 than
those in Figures 5.8 and 5.13. Doing so, however, would extend the timescales τ (since
τ ∝ 1/mp , Equation 5.15), in addition to the delay in e(ares) hitting unity due to the
effects of the disc’s non-axisymmetric gravity; see e.g. Section 6.4.4 and Figure 6.12.
However, it is unlikely that this would affect the parameter space in Figures 5.8 and
5.13 any further, since the gap in Outcome I is already well developed by t ∼ 2 τsec,
which is generally much smaller than τ ; see e.g. Section 6.5.1. Given this, it is perhaps
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better to use τsec as a metric9, rather than τ . I plan on further investigating the points
raised here in the near future.

Here, it is also worth pointing out that the HD 92945 disc appears to feature an
asymmetric gap, with potential spiral features (Marino et al., 2019) – somewhat akin
to the disc morphology of Outcome I. It would be interesting to investigate in the
future whether my model can reproduce the ALMA images of that disc (Figure 2.6).
Additionally, another potential application of my model would be to the disc of HD
141569 (Perrot et al., 2016), which also features a ‘gap+spiral’ structure (see Section
2.3.1) as in Outcome I. The applicability of my model, however, is less clear in this
case, mainly because of the presence of gas in the system (Zuckerman et al., 1995).
Finally, I have also checked that the statements made in Section 5.7.2.2 of Chapter 5
regarding HD 206893 are not affected by the introduction of the disc non-axisymmetric
potential. Namely, if the HD 206893 disc is indeed ≈ 170M⊕, then the brown dwarf
observed in that system can sculpt a gap in the disc. This happens such that the brown
dwarf–debris disc system evolve according to the intermediate outcome described in
Section 6.5.3.

Another important finding in this chapter, as already pointed out above, is that sec-
ular planet–debris disc interactions can lead to the damping of the planet’s eccentricity,
without affecting its orbital semimajor axis. As shown in Sections 6.3 and 6.5, this
process of resonant friction ensues from the gravitational coupling of the planet and the
disc at a distance via apsidal secular resonances (Tremaine, 1998), without the need
for the planet to be crossing the disc along its orbit. This is distinct from other widely
cited circularising processes in the literature – namely, scattering of planetesimals
(e.g. Pearce & Wyatt, 2015) and dynamical friction (e.g. Takeda, 1988; Kominami &
Ida, 2002; Eriksson et al., 2018) – and should be considered as a viable process to
circularise planetary orbits. By running a suite of nominal N -ring simulations, i.e., by
ignoring the non-axisymmetric component of the disc self-gravity, I also showed that
the simulation results agree very well with the theoretical expectations as derived by
Tremaine (1998) within the same limit. To the best of my knowledge, this constitutes
the first ever numerical verification of the theoretical results of Tremaine (1998). In
the future, it would be interesting to derive analytical expressions for the decay rate
of the planetary eccentricity by accounting for the full secular gravitational potential
of the disc. Such an exercise would also lend more predictive power to the evolution
observed in Outcome I (Section 6.5.1), both in terms of predicting the decay rate of ep

9In retrospect, this comment also applies to the results of Chapter 5.
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and the timescale associated with the excitation of planetesimal eccentricities at the
resonance (similar to the analysis of the nominal simulations in Section 6.3).

Here, it is also worthwhile to point out that a previous study of planet–debris
disc interactions might have stumbled upon evidence of resonant friction, without a
rigorous identification of the process. In particular, in N -body simulations of planets
and debris discs – where only the back reaction of the disc was accounted for and not
the disc self-gravity – Pearce & Wyatt (2015) found that the planet is often circularised
without undergoing any migration. According to their figure 5, this decay follows an
exponential behaviour, especially at late times (see Stage 3 in their figure). Pearce &
Wyatt (2015) interpreted this phenomenon as resulting from planetesimal scattering.
While this might indeed be the case at early times when their planet is highly eccentric
(ep ∼ 0.5) and thus crosses the disc when at its apocentre, it is very much likely that
the decay following the shrinking of the planetary apocentre to values smaller than
the inner disc edge results from resonant friction. This speculation could be tested
by comparing the simulation data of Pearce & Wyatt (2015) with the decay rate of
Equation (6.18). If true, however, this implies the presence of a secular resonance in
the disc in Pearce & Wyatt (2015), without which resonant friction does not occur
(Section 6.4.2). This is indeed the case in Pearce & Wyatt (2015), but their resonance
condition is Ap(a) = ϖ̇p, i.e., Equation (6.23) with Ad(a) = 0 – see e.g. their figure 2.
This also complements the explanation provided in Pearce & Wyatt (2015) regarding
the appearance of a gap within the disc in their simulations.

The occurrence of resonant friction in interactions between planets and discs also
highlights an important caveat related to the dynamical modelling of debris discs
in general. My results show that resonant friction is robust over a broad range of
planet–disc parameters provided that ap/ain ≳ 0.4 (Outcome I; Section 6.5.1), and is
also effective, in the sense that the ensuing eccentricity-damping timescale τD can be
less than around the typical ages of observed debris discs – see e.g. Equation (6.21)
and Figure 6.9. In the extreme limit, this leads to the counter-intuitive possibility for a
planetary system to be comprised of a planet with an eccentricity which is incompatible
– based on massless disc models – with the radial substructure of its debris disc. This is
an interesting possibility which should be considered when interpreting observed disc
structures. For instance, the incompatibility of a planet’s current eccentricity with
the disc structure that it supposedly sculpted could be used to reveal the dynamical
past of the planet itself, e.g. the initial eccentricity along with the details of its decay.
This could also be useful to indirectly measure the total mass of gapped debris discs.
This is because the decay rate depends on the planet’s mass (Equation 6.20), which –
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provided the gap location is constrained – can be directly related to the disc mass (e.g.
Equation 5.18).

This said, however, a word of caution is necessary at this stage: my simulation
results are valid only to second order in eccentricities e (Section 6.2; see also Chapter
5). Thus, one concern is that the strength of resonant friction would in reality be
limited when e(ares) → 1 and the effects of higher-order terms in the secular disturbing
function become non-negligible (Section 5.8.3). This deserves further investigation in
the future. Nevertheless, such details are unlikely to negate the main message here: a
planet could sculpt an observable radial structure (e.g. a gap and/or spiral pattern) in
an external debris disc, and yet have its orbital eccentricity reduced below the initial
value.

Finally, I close this chapter by noting that the flexibility of the N -ring code could
also be exploited to model a range of debris disc scenarios in the future: e.g., discs
with planets on inclined orbits, discs in multi-planet systems, or even discs perturbed
by migrating planets.
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Chapter 7

Conclusion

This chapter concludes the dissertation by first summarising the key research findings
(Section 7.1), and then proposing directions of possible future work (Section 7.2).

7.1 Summary

In this dissertation, I have presented a theoretical investigation into the dynamical
role of disc (self-)gravity in the long-term, secular interactions between planets and
debris discs. This work would have been less relevant if not for the development
of new observatories such as ALMA in the last decade, which have allowed for the
high-resolution imaging of debris discs and the unprecedented characterisation of their
substructures, such as gaps and spiral arms. Analogous to the studies of the asteroid
and Kuiper belts in our own solar system, investigating the structure of debris discs can
provide unique insights into the architecture and dynamical history of exo-planetary
systems. For any accurate interpretation of debris disc observations, however, a model
that is based on an understanding of the various processes affecting the debris disc’s
evolution, and thus its structure, is necessary – with planet–disc interactions being one
of them. This rationale – coupled with the possibility that debris discs could be as
massive as tens (if not hundreds) of Earth masses – provided much of the motivation
for the investigation undertaken in this dissertation.

7.1.1 Softened Potentials of Astrophysical Discs

One of the key challenges of celestial mechanics and dynamical astronomy is the
characterisation of the long-term, secular dynamical effects of self-gravitating discs,
both on the constituents of the disc as well as external objects (e.g. a planet). By and
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large, this follows from the fact that the classical Laplace–Lagrange theory for planetary
orbits is mathematically ill-posed if and when applied to continuum discs. Thus, before
diving into the problem of secular interactions between planets and self-gravitating
debris discs, I first conducted a comparative study of the methods existing in the
literature for the computation of the orbit-averaged gravitational potential due to a
flat disc. This was the subject of Chapter 4. The main aim of this chapter was to
investigate the questions of how well and under what conditions can the methods relying
on potential softening – i.e., spatially smoothing the Newtonian point-mass potential –
reproduce the expected secular dynamics driven by the unsoftened disc potential. To
answer these questions, I focused on the four different softening prescriptions that
have been previously proposed in the literature – namely, those in Tremaine (1998),
Touma (2002), Hahn (2003), and Teyssandier & Ogilvie (2016) – and compared the
resultant dynamical behaviour with that obtained based on the unsoftened method of
Heppenheimer (1980).

Analysing the secular dynamics in several disc models with different surface density
and eccentricity profiles, I arrived at the following conclusions. First, the softening
prescriptions of both Touma (2002) and Hahn (2003) correctly reproduce the unsoftened
calculations when taken in the limit of zero softening. In the same limit, on the other
hand, it was found that the results ensuing from the softening prescription of Tremaine
(1998) converge to the unsoftened calculations only approximately, with quantitative
differences being on the order of ∼ 20 − 30 per cent. As to the softening prescription
of Teyssandier & Ogilvie (2016), it was found that it leads to the divergence of the
disc potential, and thus does not reproduce the expected results.

To understand this variation of outcomes, I developed a generalised Laplace–
Lagrange theory for flat discs which is applicable for a wide variety of softening
prescriptions. This framework in itself represents a standalone result of Chapter 4.
The main takeaway from this calculation is the following: for any form of softening, the
development of the disc’s orbit-averaged potential must be performed rigorously. More
specifically, a direct replacement of the Laplace coefficients appearing in the classical
Laplace–Lagrange theory is not sufficient for obtaining a well-behaved disturbing
function for self-gravitating discs. To further validate this point, I showed that an
accurate implementation of the softening prescriptions suggested in Tremaine (1998)
and Teyssandier & Ogilvie (2016) does lead to the recovery of the expected dynamical
behaviour in the limit of zero softening.

Finally, I examined the implications of potential softening for numerical treatments
of self-gravitating discs, i.e., when discs are treated as a series of N ≫ 1 massive rings
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interacting with each other via softened forms of gravity. I found that such discretised
treatments of discs must obey important constraints. Namely, a fine numerical sampling
is required to ensure that the disc’s secular potential is captured properly. Indeed, for
a given value of the softening parameter ς ≪ 1, the minimum number of modelled
rings should be N ∼ ς−χ, with χ ranging from ∼ 1.5 to 2 depending on the adopted
distribution of surface density. Thus, a relatively large number of disc rings is required
to ensure that the correct secular behaviour is captured by such N -ring calculations,
particularly when ς is small. This finding among others provides the bedrock upon
which the numerical tool developed later in Chapter 6 is built.

7.1.2 Eccentric Planet–Debris Disc Interactions

In the second part of the dissertation, I examined the secular interaction between an
eccentric planet and an external, self-gravitating debris disc – with both lying in the
same plane. The aim of this part of the dissertation was to try and answer the four
related questions posed in the Introduction (Section 1.3), which I reproduce here:

1. What is the dynamical role of disc (self-)gravity in planet– debris disc interactions?

2. What are the observational signatures of long-term interactions between planets
and massive debris discs?

3. Can we infer the presence and evolution of planets in systems that might otherwise
remain undetected?

4. What are the insights that we can draw about the masses of debris discs based
on planet-disc interactions?

In order to explore these questions, I approached the problem of planet–debris disc
interactions in a progression of complexity. In Chapter 5, I first approached the problem
using a simplified analytical model based on the unsoftened treatment of disc gravity
discussed in Chapter 4. The model was simplified in the sense that it only accounted
for the axisymmetric components of both the disc self-gravity and its back reaction on
the planet, ignoring the corresponding non-axisymmetric components. I found that
even when the debris disc is less massive than the planet, the system may feature
secular apsidal resonances within the disc – contrary to what may be naively expected.
The result of this is that there are two dynamical regimes for the planetesimals: (1)
a planet-dominated regime in the inner disc parts, where planetesimals by and large
evolve as if the disc were massless; and (2) a disc-dominated regime in outer disc parts,
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where the disc affects the dynamics significantly. The secular resonance – which causes
planetesimal eccentricities to be significantly excited – occurs at the transition between
these two regimes.

Based on this outcome, I proposed that gaps in debris discs, such as those around
HD 107146 and HD 92945, could be produced by the interactions of the debris disc
with a yet-undetected planet interior to it (and not within the gap itself). I also
characterised the dependence of the properties of the secular resonances – i.e., locations,
timescales, and widths – on the planet and disc parameters, finding that the mechanism
is robust over a broad region of parameter space. As exemplary cases, I applied my
results to HD 107146 and HD 92945, and demonstrated how my results can be used to
set constraints on the planet–disc parameters that could explain the observations. By
investigating the secular evolution of planet–debris disc systems using some of these
parameters, I showed that the proposed mechanism readily produces O(10) au wide
non-axisymmetric gaps. I also showed that this happens over timescales comparable to
the period of planetary precession cycle (driven by the disc gravity); which, typically,
is on the order of tens of megayears. Finally, I demonstrated that my results may be
used to set constraints on the total masses of gapped debris discs. As an example,
based on the properties of the observed gap in the HD 206893 disc and the directly
imaged companion interior to it, I inferred a value of ≈ 170M⊕ for the total disc mass
– assuming the gap is sculpted by the mechanism proposed here.

In Chapter 6, I continued and expanded on the investigation initiated in the previous
chapter by accounting for the full secular gravitational potential of the debris disc,
i.e., both axi- and non-axisymmetric components. This was achieved by the aid of a
numerical tool – the “N -ring model” – which I developed here based on the results
of Chapter 4 concerning the softening prescription of Hahn (2003). The model treats
the disc as a series of gravitating rings, each with prescribed spacing (justified by the
secular approximation), that interact both with each other and the planet via softened
gravity. To build a comprehensive understanding of the dynamical role of the disc’s
non-axisymmetric perturbations, I tackled the problem in two steps: first by allowing
for the non-axisymmetric torque on the planet but not on the disc particles themselves
(Section 6.3), and then accounting for the full disc (self-)gravity (Section 6.5). This
allowed for the development of approximate quantitative explanations for several (but
not all) dynamical effects seen in my simulations with the full disc (self-)gravity.

The main result of Chapter 6 was that the secular evolution of the planet and
the debris particles followed one of two regimes, depending on the orbital semimajor
axis of the planet relative to the disc’s inner edge. For planets orbiting closer to
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the disc than to the star, the disc developed two features at late times: (i) a gap at
the location of the secular resonance; and (ii) a long, one-armed spiral density wave
beyond that region. It was also shown that the pattern speed of the spiral wave is
equal to the precession rate of the planetary orbit. In this regime, the planetary orbit
circularised over time due to a process known as resonant friction, which does not
require the planet to cross the disc along its orbit. The details of this process have been
elucidated using a simplified model of the planet–disc coupling in Section 6.3. In the
other regime, which occurred for planets orbiting closer to the star than to the disc, the
disc maintained a coherent structure, i.e., without developing any discernible structure,
and the planetary orbit only precessed, i.e., without any changes in its eccentricity. I
also found that the transition between these two regimes occurs via an intermediary
stage, with the evolution of the planet–disc system showing parallels with either of the
two regimes. Finally, the theoretical and observational implications of these results
were discussed, both in the specific context of Chapter 5 and the general contexts of
dynamical modelling and interpretation of debris discs.

In summary, if there is one takeaway from the work presented here, it is this: the
gravitational potential of debris discs can have a notable effect on the secular evolution
of both its constituent debris particles and planets orbiting it, and this even if the
disc is less massive than the planet. The inclusion of disc self-gravity in studies of
planet–debris disc interactions should be considered as it may impose modifications on
the orbital parameters and masses, if not numbers, of planets invoked to reproduce
observations.

7.2 Future Work

The investigation undertaken in this dissertation has uncovered some important –
and previously neglected – aspects of interactions between planets and debris discs.
However, I humbly admit that this work brings to light but a small aspect of the
problem. Indeed, there are multitude of ways in which the work presented here can
and should be extended. Below, I outline some potentially fruitful avenues to this end,
apart from those already discussed at the end of Chapter 6, i.e., Section 6.6.

7.2.1 Collisional Depletion of Planetesimals

Throughout this dissertation, I modelled the debris disc as an ensemble of collisionless
planetesimals. In practice, however, collisions are inevitable and can themselves affect
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the disc evolution. Indeed, once the disc is sufficiently stirred, planetesimals collide and
break up into smaller fragments, initiating a collisional cascade (Section 2.2). In this
process, colliding planetesimals are gradually ground to dust until they are removed
from the system by radiation effects. This causes the total disc mass to collisionally
deplete over time (e.g. Equation 2.12), attenuating the gravitational role of the disc.
This begs the question: how would the coupled dynamical and collisional evolution of
debris particles affect the disc morphology?

Admittedly, this is a wide-open and challenging avenue of research, as it would
require e.g. adapting existing collisional models – which can already handle pertur-
bations due to planets – to account for the effects of disc gravity (e.g., the SMACK
code of Nesvold et al. (2013), or the ACE code of Krivov et al. (2005); Sende & Löhne
(2019)). However, a small step towards addressing the question above can be taken by
introducing some modifications into the N -ring model employed in this dissertation.
For instance, one can use the semi-analytical collisional model of Wyatt et al. (2010)
to compute the collisional rate of a given particle in the disc (based on the dynamical
state of the disc), and thus estimate how much mass is lost by a given particle at a
given time (see e.g. their equations (33) and (34)). This approach could easily be
integrated into my N -ring model (e.g., by updating the coefficients of the matrix A at
every time step of the simulation, Section 6.2).

Speaking strictly within the context of Chapters 5 and 6, I expect collisions to
preferentially deplete the disc surface density around the secular resonance (where
e → 1 and relative velocities are high) – in addition to the dynamical depletion due to
the resonance. This may enhance the gap depths arising from my collisionless model.
Collisional evolution may also contribute to widening the gaps resulting from my
model. This can be understood as follows: as the total disc mass is depleted over time,
the system’s precession frequencies get altered, affecting the location of the secular
resonances in a time-dependent way1 (see also e.g., Heppenheimer, 1980; Ward, 1981;
Nagasawa & Ida, 2000). If one naively assumes that the depletion is uniform across the
disc (e.g., all disc rings lose mass at the same rate), the results of Figure 5.5 would then
suggest that the resonance would sweep through the disc outwards as Md decreases,
potentially producing a wider gap than in my model. This is because planetesimal
eccentricities could now be excited over a larger range in semimajor axis. Of course,
this possibility is subject to the adiabaticity condition that the disc mass decays on a
timescale that is longer than the secular dynamical timescales. If true, however, this

1I note that this could also happen if the planet migrates, either inwards or outwards, due to some
physical process not considered here.
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could be important, e.g., for the HD 107146 disc, for which my collisionless model
produces gaps that are narrower than observed. Additionally, the shape of the resulting
gap would provide information on the initial and final disc masses, along with the
history of mass loss. I plan on exploring these avenues in future work.

7.2.2 Extension to Mutually Inclined Planets and Debris Discs

Another assumption of the work presented here is the coplanarity of the planetary
systems. Such an assumption is expected to be valid for the vast majority of well
studied multi-planetary systems (e.g. those discovered by the Kepler spacecraft, Winn
& Fabrycky (2015)), including the solar system, which are statistically consistent with
having low mutual inclinations (i.e., ≲ 5◦). Given this, it is perhaps natural to assume
that the debris discs are also coplanar in such systems (e.g. due to dissipation within
the primordial gaseous disc). However, to date, there are several systems known to
harbour mutually inclined planets (e.g. Mills & Fabrycky, 2017; Xuan & Wyatt, 2020),
and several others which are comprised of debris discs revealing vertical structures such
as warps (see e.g. Section 2.3.3). The most notable example, to my mind, is the β Pic
system. As discussed in Chapter 2, this system is comprised of two nearly coplanar
planets (Lagrange et al., 2010; Nowak et al., 2020) orbiting interior to a warped debris
disc (e.g. Heap et al., 2000, see also Figure 2.5(e)). Given this, it would be interesting
to relax the coplanarity assumption inherent in the N -ring model of Chapter 6, and
study the evolution of mutually inclined planet–debris disc systems in a future work
– even if composed of a single planet for a start (see Section 5.7.3 for a discussion
concerning multi-planet systems). This could be readily achieved by generalising the
techniques developed in Chapter 4 (namely, Appendix A) for the calculation of the
disturbing function due to softened discs to cases where the rings are mutually inclined
(see also, Hahn 2003).

Generally speaking, I believe that a small but nonzero relative inclination (e.g.,
≲ 5◦) between the planet and disc particles would not affect my results for eccentricity
dynamics described in Chapters 5 and 6 (see also, Pearce & Wyatt, 2014). This is
because within the context of Laplace–Lagrange theory, the evolution of eccentricities
e and inclinations I are decoupled from each other when e, I ≪ 1, and thus the
eccentricity and inclination degrees of freedom may be treated in isolation (Murray
& Dermott, 1999). This said, however, it is possible for planetesimal inclinations –
similar to eccentricities – to be excited significantly at inclination resonances (e.g.,
Hahn, 2003, 2007), where the precession rates of both planet’s and planetesimal’s
longitudes of ascending node are commensurate. In principle, this could happen when
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the planet is initially inclined with respect to a razor-thin disc, or when the planet lies
in the mid-plane of a puffed-up disc that is populated by planetesimals with nonzero
inclination dispersion.

The occurrence of such a secular inclination resonance could affect the disc morphol-
ogy in various ways. Firstly, if the disc is face-on, similar to HD 107146, and the planet
is both eccentric and inclined, it would be possible for a single planet to carve two or a
single but broader gap in the disc (if massive enough), depending on the locations of
the eccentricity and inclination resonances. If the planet is circular but inclined, on
the other hand, a face-on disc could still feature a gap due to the inclination resonance,
provided that planetesimal inclinations are excited significantly at and around the
site of the resonance. If true, this would be particularly appealing, given the fact
that identifying vertical structures in nearly face-on debris discs is difficult (Hughes
et al., 2018). Secondly, if the disc is nearly edge-on, the secular inclination resonance
could sculpt a warp within the disc akin to that observed in β Pic. This could also be
accompanied with a resonant friction in terms of the planetary inclination (e.g. Ward
& Hahn, 2003; Hahn, 2007) – similar to the eccentricity case identified in Chapter 6.
Exploring these avenues in a future work would be helpful to not only characterise the
observational signatures resulting from planet–debris disc interactions, but also to be
able to link such signatures to the total masses of debris discs.

7.2.3 Stirring in Debris Discs

Throughout this dissertation, I only focused on the dynamical evolution of debris discs
which are less massive than the planets. This was motivated by the fact that such
systems readily establish a secular resonance within the disc, leading to the formation
of a gap such as those observed in HD 107146, HD 92945, and HD 206893. However,
a natural question that arises is the following: how would planetesimals comprising
a disc which is comparable to or more massive than the planet evolve? As I discuss
below, such a situation may have important consequences for stirring of debris discs.

Results of Chapters 5 and 6 show that planetesimal dynamics in the outer parts
of the disc is dominated by the disc’s gravity, rather than that of the planet. The
transition from planet- to disc-dominated regimes occurs at the site of the secular
resonance. Given this, one can imagine a scenario whereby the secular resonance is
designed to occur somewhere in between the planetary orbit and the disc’s inner edge
(but not within the disc), and so planetesimal dynamics would be disc-dominated
throughout the whole disc. According to Equation (5.18), the disc-to-planet mass ratio
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required for this to occur would be

Md

mp

≳ 3
(

ap
20 au

)2

. (7.1)

Provided that this condition is satisfied, i.e., ap ≲ ares ≲ ain, planetesimals throughout
the whole disc could evolve similar to those at large distances in Outcome II of Chapter
6. In other words, planetesimal eccentricities would be trapped to small-amplitude
oscillations in time, with an average value which is (roughly) independent of semimajor
axis (e.g. panel a of Figure 6.17). At the same time, planetesimals would remain
roughly apse-aligned with respect to each other (and the planet, see e.g. panel b of
Figure 6.17). This dynamical behaviour would translate into relative velocities of
planetesimals throughout the whole disc that are lower than what would be expected
from massless disc models (e.g. Mustill & Wyatt, 2009). In the extreme limit, this
could lead to the counter-intuitive result that a relatively massive disc orbiting a single
planet would produce less dust than if the disc were modelled as massless, as if the
disc were gravitationally rigid to planetary perturbations. This hypothesis deserves
further investigation, as it could at least impose modifications on the masses and orbital
parameters of planets invoked to reproduce observed levels of stirring. Conversely, if
the planets are detected, the results of such a study would be helpful in constraining
the total masses of debris discs.

This said, however, it is important to note that the above hypothesis would not
necessarily hold true if (i) the secular resonance occurs at ares ≳ ain (and not at
ares ≲ ain), and (ii) planetesimals throughout the whole disc evolve as in the outer
disc parts of Outcome I of Chapter 6. Instead, when these two conditions are met,
the evolution could lead to the possibility of sculpting a long-lived spiral pattern that
extends from the inner to the outer edge of the disc (see e.g. Figures 6.14(a),(b)),
without an observable gap (see also Hahn, 2003, 2008). This is because according to
Chapter 5, the width of a secular resonance occurring at ≈ ain would be very narrow.
Interestingly, this would in principle also shorten the timescale at which the planet’s
eccentricity damps since τD ∝ a15/2

res (Equation 6.21). If this occurs, then it would be
natural to expect a (nearly) circular planet to be orbited by a disc characterised by
a long-lived spiral density wave, a possibility which is otherwise counter-intuitive if
the disc were massless. I plan on exploring these avenues in future work, once a more
complete (semi-)analytic understanding of the role of the non-axisymmetric component
of disc self-gravity is developed (see the detailed discussion in Section 6.6).

∗ ∗ ∗
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Conclusion

I leave the reader with a quote by Carl Sagan (1997): “There is much that science
doesn’t understand, many mysteries still to be resolved. In a Universe tens of billions of
light years across and some ten or fifteen billion years old, this may be the case forever.”
In the vastness of space and the immensity of time, it is my joy to have contributed
– even if ever so slightly – to the field of planetary science and I look forward to the
surprises that the Universe holds in store.

∗ ∗ ∗
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Appendix A

Calculation of the Secular
Ring–Ring Interaction

In this Appendix, I present a calculation of the secular disturbing function due to two
coplanar rings interacting with each other via softened gravity in the form given by
Equation (4.10). I do not assume any specific form for the softening function F , apart
from requiring it to be a function of the instantaneous positions of interacting particles
with respect to the centre of the system (i.e., r1 and r2). I first write the ring–ring
interaction function as1

Ψ =
[
(r1 − r2)2 + F(r1, r2)

]−1/2

,

=
[
r2

1 + r2
2 − 2r1r2 cos(f1 − f2 +ϖ1 −ϖ2) + F(r1, r2)

]−1/2

, (A.1)

where F(r1, r2) is an arbitrary softening function introduced to cushion the singularity
which arises otherwise at null inter-particle separations. In the above expression,
fi is the true anomaly of the ith ring, ϖi is its longitude of pericentre and ri is its
instantaneous position, i = 1, 2. My goal is to obtain the orbit-averaged expansion of
Ψ to second order in eccentricities ei valid for arbitrary F(r1, r2).

1Note that I do not deal with the indirect part of the potential – which is left unsoftened – as it
contains only periodic terms and does not affect the secular dynamics (Murray & Dermott, 1999).
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Calculation of the Secular Ring–Ring Interaction

A.1 Expansion of the Interaction Function Ψ around
Small Eccentricities

Following the classical techniques of celestial mechanics (see, Plummer, 1918, Ch. XVI),
I start by expanding Ψ around circular orbits. Using Taylor expansion I write

Ψ = exp
{

log
(
r1

a1

)
D1 + log

(
r2

a2

)
D2 + (f1 −M1)D3 + (f2 −M2)D4

}
Ψ0,

≡ TΨ0 (A.2)

with

Ψ0 =
[
a2

1 + a2
2 − 2a1a2 cos θ + F(a1, a2)

]−1/2

, (A.3)

where θ = M1 −M2 +ϖ1 −ϖ2, Mi represents the mean anomaly of the ith ring char-
acterized with semimajor axis ai, and the linear operators Dk are given by (Plummer,
1918)

D1 = a1
∂

∂a1
≡ a1∂1 , D2 = a2

∂

∂a2
≡ a2∂2 , and D3 = −D4 = ∂

∂θ
.

(A.4)
Note that this expansion, as well as subsequent steps, is completely symmetric with
respect to interchanging the particle indices.

Next, in order to calculate the action of the operator T defined by Equation (A.2)
on the disturbing function of circular softened rings Ψ0 (Equation A.3), I make use of
the elliptical expansions of r/a and f −M ,

(a−1r)D = 1 − e cosM ·D + 1
2e

2[1 − cos(2M)] ·D

+1
4e

2[1 + cos(2M)] ·D(D − 1) + O(e3), (A.5)

exp{(f −M)D} = 1 + 2e sinM ·D + 5
4e

2 sin(2M) ·D

+e2[1 − cos(2M)] ·D2 + O(e3) (A.6)

to multiply individual terms appearing in T, keep the ones up to second order in
eccentricities, and drop all terms which do not contain the difference of mean anomalies,
k(M1−M2), as they are evidently periodic and vanish upon orbit-averaging. Performing
this procedure and dropping an irrelevant constant term, one can demonstrate that Ψ
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A.2 Computation of the Action of Relevant Operators

reduces to

Ψ = TΨ0 ≡ AΨ0 e
2
1 + BΨ0 e

2
2 + CΨ0 e1e2 cos(ϖ1 −ϖ2), (A.7)

where the operators A, B and C acting on Ψ0 are defined as

A ≡ D2
3 + 1

4D1(D1 + 1), B ≡ D2
4 + 1

4D2(D2 + 1), (A.8)

C ≡ cos θ
(

2D3D4 + 1
2D1D2

)
− sin θ(D2D3 −D1D4). (A.9)

Note that in arriving at Equations (A.7) – (A.9), I have used the fact that cos(M1 −
M2) = cos θ cos(ϖ1 −ϖ2) and sin(M1 −M2) = sin θ cos(ϖ1 −ϖ2) in the secular regime
(see, e.g., Plummer, 1918).

A.2 Computation of the Action of Relevant Oper-
ators

Equipped with the expression (A.7) for Ψ, I proceed to compute the action of operator
T on Ψ0 prior to orbit-averaging the resultant expression. With this in mind, I compute
the action of several operators appearing in the definitions of A, B and C on Ψ0 and
list them below:

D2
3 Ψ0 = D2

4 Ψ0 = 3a2
1a

2
2 sin2 θ Ψ5

0 − a1a2 cos θ Ψ3
0, (A.10)

D1D2 Ψ0 = a1a2

(
cos θ − 1

2∂1∂2F
)

Ψ3
0

+ 3
(
a2

2 − a1a2 cos θ + a2

2 ∂2F
)(

a2
1 − a1a2 cos θ + a1

2 ∂1F
)

Ψ5
0, (A.11)

D2D3 Ψ0 = −a1a2 sin θ Ψ3
0 + 3a1a2 sin θ

(
a2

2 − a1a2 cos θ + a2

2 ∂2F
)

Ψ5
0, (A.12)

D1D4 Ψ0 = a1a2 sin θ Ψ3
0 − 3a1a2 sin θ

(
a2

1 − a1a2 cos θ + a1

2 ∂1F
)

Ψ5
0, (A.13)

D1 Ψ3
0 = −3

(
a2

1 − a1a2 cos θ + a1

2 ∂1F
)

Ψ5
0, (A.14)

D2 Ψ3
0 = −3

(
a2

2 − a1a2 cos θ + a2

2 ∂2F
)

Ψ5
0, (A.15)
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Calculation of the Secular Ring–Ring Interaction

where, for conciseness, I have written F instead of F(a1, a2). Here, it is worthwhile to
mention that, as far as the expansion technique is concerned, the terms ∂iF (with i =
1, 2) appearing in the above expressions are the only difference brought upon by
softening the Newtonian point-mass interaction (Equation A.1).

Another set of operators useful in computing TΨ0 is the following:

D1(D1 + 1) Ψ0 = −D1D2 Ψ0 + 1
2D1

[(
2F − a1∂1F − a2∂2F

)
Ψ3

0

]
, (A.16)

D2(D2 + 1) Ψ0 = −D1D2 Ψ0 + 1
2D2

[(
2F − a1∂1F − a2∂2F

)
Ψ3

0

]
, (A.17)

which can be obtained by making use of the identity (D1 + D2 + 1)Ψ0 = 1
2(2F −

a1∂1F − a2∂2F)Ψ3
0. Here, I note that for all softening functions F for which 2F −

a1∂1F −a2∂2F = 0, one finds D1 +D2 = −1. Consequently, in such cases, the operators
D1(D1 + 1) and D2(D2 + 1) become identical rendering AΨ0 = BΨ0 (since D2

3 = D2
4,

see Equations (A.8) and (A.10)). As a result, the resultant orbit-averaged disturbing
function (Equation (A.7)) is symmetric in e1 and e2, similar to the case of classical
Laplace–Lagrange theory (Murray & Dermott, 1999). This is not true in general, for
instance, when F(r1, r2) = const ̸= 0.

A.3 Orbit-averaging the Interaction Function Ψ
Expressions (A.10)-(A.17) allow the computation of Ψ = TΨ0, which needs to be
time-averaged in order to recover the secular disturbing function. For the sake of
conciseness, here I do not show the cumbersome collated expression for TΨ0 and
proceed to the final step of orbit-averaging, which will conclude my derivation. In
short, my goal is to compute

⟨Ψ⟩ = ⟨TΨ0⟩ = 1
2π

2π∫
0

TΨ0 dθ, (A.18)

which essentially reduces to computing the individual terms ⟨AΨ0⟩, ⟨BΨ0⟩ and ⟨CΨ0⟩.
At the outset, it is important to note that each of the terms appearing in TΨ0

(through AΨ0, BΨ0 and CΨ0, or the operators they entail) are proportional to
cos(mθ)Ψ2s

0 . By making use of α = a</a>, where a< = min(a1, a2) and a> =
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A.3 Orbit-averaging the Interaction Function Ψ

max(a1, a2), this combination can be reduced to

cos(mθ)Ψ2s
0 = a−2s

> cos(mθ)
[
1 + α2 − 2α cos θ + a−2

> F(a1, a2)
]−s

. (A.19)

For that reason, calculation of the orbit-averaged Ψ (by integrating over dθ) yields
integrals of the form

B(m)
s (α) ≡ 2

π

π∫
0

cos(mθ)
[
1 + α2 − 2α cos θ + ϵ2(α)

]−s
dθ, (A.20)

which is the generalization of the classical Laplace coefficients b(m)
s (recovered when

F(a1, a2) = 0, see Equation 4.2) with the dimensionless softening parameter

ϵ2(α) ≡ a−2
> F(a1, a2), (A.21)

see Equation (4.7).
Employing this notation, I now present the simplified expressions of ⟨AΨ0⟩, ⟨BΨ0⟩,

and ⟨CΨ0⟩ obtained as a result of orbit-averaging:

a> ⟨AΨ0⟩(α) ≡ ϕ11(α)

= α

2

{
− 5

4B(1)
3/2 + 3

8αB(0)
5/2 + 3

4(1 + α2)B(1)
5/2 − 15

8 αB(2)
5/2 + 3

8T2B(1)
5/2 − 3

16T5B(0)
5/2

+1
8

(
T3 + α−1T4

)
B(0)

3/2 − 3
8T1

(
a1

a2
B(0)

5/2 − B(1)
5/2 + 1

2T7B(0)
5/2

)}
, (A.22)

a> ⟨BΨ0⟩(α) ≡ ϕ22(α)

= α

2

{
− 5

4B(1)
3/2 + 3

8αB(0)
5/2 + 3

4(1 + α2)B(1)
5/2 − 15

8 αB(2)
5/2 + 3

8T2B(1)
5/2 − 3

16T5B(0)
5/2

+1
8

(
T3 + α−1T6

)
B(0)

3/2 − 3
8T1

(
a2

a1
B(0)

5/2 − B(1)
5/2 + 1

2T8B(0)
5/2

)}
, (A.23)

a> ⟨CΨ0⟩(α) ≡ ϕ12(α)

= α

2

{
9
4B(0)

3/2 + 1
4B(2)

3/2 + 3
8αB(3)

5/2 + 21
8 αB(1)

5/2 + 3
4(1 + α2)B(2)

5/2 − 9
4(1 + α2)B(0)

5/2

−1
4T3B(1)

3/2 − 9
8T2B(0)

5/2 + 3
8T5B(1)

5/2 + 3
8T2B(2)

5/2

}
. (A.24)
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In Equations (A.22)–(A.24), I have defined the dimensionless functions Ti(α) such that

T1 = a−2
>

(
2F − a1∂1F − a2∂2F

)
, T2 = α

(
∂1F
a2

+ ∂2F
a1

)
, T3 = ∂1∂2F , (A.25)

T4 = a1

a2
>

∂1[2F − a1∂1F − a2∂2F ], T5 = α

(
2∂1F
a1

+ 2∂2F
a2

+ ∂1F
a1

∂2F
a2

)
, (A.26)

T6 = a2

a2
>

∂2[2F − a1∂1F − a2∂2F ], T7 = a−1
2 ∂1F , T8 = a−1

1 ∂2F , (A.27)

where, as before, F ≡ F(a1, a2), α = a</a> and ∂i ≡ ∂/∂ai. Note that the expressions
for ϕ11 and ϕ22 swap definitions upon replacing a1 by a2, whilst keeping α < 1 by
construction. This can be understood by first noting that functions Ti with i = 1, 2, 3,
and 5 are invariant under a1 ⇋ a2 while, at the same time, T4 and T7 (appearing in
the second line of Equation (A.22)) translate to T6 and T8 (appearing in the second
line of Equation (A.23)); and vice versa.

These identities, when combined, yield the desired expression of ⟨Ψ⟩ = ⟨TΨ0⟩; see
Equations (A.7)–(A.9). Subsequently, the softened ring-ring disturbing function in
the form given by Equation (4.11) is recovered, with the coefficients ϕij defined by
Equations (A.22) – (A.24). This completes my calculation of the secular ring–ring
interaction between two softened coplanar rings, up to second order in eccentricity and
valid for arbitrary softening functions F(r1, r2).

Note that in the absence of softening (i.e., F(r1, r2) = 0), we have Ti = 0 for all
i (i.e., i = 1..8), and the classical expressions for ϕLL

11 , ϕLL
22 and ϕLL

12 — i.e., Equations
(4.8)–(4.9) — are recovered. Finally, it is worthwhile to note that the expansion
technique exploited here can be used to recover the orbit-averaged disturbing function
valid to arbitrary order in eccentricities, as well as inclinations.

A.4 Alternative Calculation: Secular Disc–Particle
Interaction

Calculations presented above describe the orbit-averaged coupling between two indi-
vidual disc annuli, which subsequently need to be integrated over the semimajor axes
of the disc elements to represent the effect of a continuous disc. In principle, one can
also arrive at the expressions (4.4) by assuming a continuous mass distribution in the
disc from the start and performing a calculation similar to that in Davydenkova &
Rafikov (2018). Namely, one would need to compute Rd = ⟨G

∫
S Σ(rd)Φ(rd, rp)dS⟩,

where Φ is the interaction potential given by Equation (4.10), angle brackets indicate
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averaging over the orbit of the test particle given by rp, and integration is carried out
over the full surface of the disc S with rd denoting the location of a disc element. To
obtain the expression for Rd accurate to second order in eccentricities, one would need
to expand Φ(rd, rp) to second order in particle and disc eccentricities by, e.g., writing
rp = ap(1 − ep cosEp), where Ep is the eccentric anomaly of the particle orbit. This
expansion should explicitly account for the dependence of F on rd and rp. Averaging
the resulting expressions over Ep, one would arrive at the proper expression for Rd in
the form given by Equation (4.4).

In particular, after a lengthy but straightforward calculation, this method gives the
following expression for the disc-driven precession rate:

Ad = πG

2npa2
p

∫ aΣ(a)da
a>

×1
4
[
3apF ′ (F ′ + 4ap) − 2 (2F ′ + apF ′′)

(
a2
p + a2 + F

)
− 12apF

] apB(0)
5/2(α)
a4
>

+ αB(1)
3/2(α) − (F ′ − apF ′′)

apαB(1)
5/2(α)
a2
>

, (A.28)

where prime denotes differentiation with respect to ap (e.g., F ′ = ∂F/∂ap), a> =
max(ap, a), α = min(ap, a)/max(ap, a), and integration is done over the semimajor
axis a of the disc elements. Calculation of the non-axisymmetric part of Rd resulting
from non-zero disc eccentricity (i.e., Bd) is somewhat more tedious but can nevertheless
be done similar to Davydenkova & Rafikov (2018).
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Appendix B

Specific Cases of F(r1, r2)

As already mentioned in Appendix A, the functions ϕij(α) with i, j = 1, 2 (Equations
(A.22)–(A.24)) entering in the ring–ring secular disturbing function (Equation 4.11)
reduce to the classical Laplace–Lagrange expressions for ϕLL

11 , ϕLL
22 , and ϕLL

12 (Equations
(4.8)–(4.9)) in the absence of softening, i.e., F(r1, r2) = 0.

In addition to this, however, the general framework developed in Appendix A
allows one to recover the expressions of ϕij arrived at by Touma (2002) and Hahn
(2003) upon specifying certain functional forms of F(r1, r2). Indeed, Touma (2002)
performed the same calculations as those presented in Appendix A for the case of
Plummer potential – F(r1, r2) = b2

c – to second order in eccentricities, and later to
fourth order in eccentricities (Touma & Sridhar, 2012). Furthermore, I find that the
results obtained by Hahn (2003) can be recovered from my general framework by
setting F(r1, r2) = H2(r2

1 + r2
2). For reference, the functional forms of Ti for these

forms of F(r1, r2), along with their softening parameters ϵ2(α), are summarized in
Table B.1, which can be used to show that Equations (A.22)–(A.24) reduce to those
in Table 4.1 after some algebra with the aid of the recursive relationships for B(m)

s

presented in Appendix C.
As to the formalism of Teyssandier & Ogilvie (2016), by using their softening pre-

scription of F(r1, r2) = S2r1r2, I find that my general framework yields ϕij expressions
different from those reported by Teyssandier & Ogilvie (2016). To demonstrate this, I
first note that in this case one has T1 = T4 = T6 = 0 (Table B.1), which renders the
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expressions of ϕ11 and ϕ22 identical such that

ϕ11 = ϕ22 = α

8

{
− 5B(1),TO

3/2 + 3
2αB(0),TO

5/2 + 3(1 + α2 + S2α)B(1),TO
5/2

− 15
2 αB(2),TO

5/2 − 3
4S

2(S2α + 2α2 + 2)B(0),TO
5/2 + 1

2S
2B(0),TO

3/2

}
. (B.1)

The above expression can be simplified further using the recursive relationships listed
in Appendix C.1. Indeed, Equation (C.2) with m = 1 and s = 5/2 and Equation (C.1)
with m = 1 and s = 3/2 read as

3(1 + α2 + S2α)B(1),TO
5/2 = −3α

2 B(2),TO
5/2 + 15

2 αB(0),TO
5/2 , (B.2)

−6B(1),TO
3/2 = 9α

(
B(2),TO

5/2 − B(0),TO
5/2

)
, (B.3)

respectively. Inserting the above two identities in Equation (B.1) one then arrives at
Equation (4.32). Similarly, the expression of ϕ12 (Equation A.24) can be simplified with
the aid of Equation (C.3) (with m = 0, s = 3/2), Equation (C.2) (with m = 2, s = 5/2),
and Equation (C.1) (with m = 2, s = 3/2) resulting in Equation (4.33) after some
straightforward algebra. As discussed in Section 4.6.2, the terms in Equations (4.32)
and (4.33) which are explicitly proportional to S2 are absent in the original formulation
of Teyssandier & Ogilvie (2016); see Table 4.1.

Similarly, for the formalism of Tremaine (1998), propagating their functional form
of F(r1, r2) = β2

cmax(r2
1, r

2
2) through my general framework, I arrive at expressions for

ϕij(α) differing from those reported in Tremaine (1998) in a very special way: I find ϕij
to contain additional terms proportional to T3(α) ∼ δ(α− 1), where δ(x) is the Dirac
delta-function. Such terms are absent in the original formulation of Tremaine (1998);
see Tables 4.1 and B.1. Emergence of these terms can be easily demonstrated by first
noting that in this case ϕ11 = ϕ22 (as T1 = T4 = T6 = 0), employing the recursive
relationships for Laplace coefficients (in a similar order as done above for Teyssandier
& Ogilvie (2016)) to simplify the general expressions of ϕ11(= ϕ22) and ϕ12, and finally
arriving at Equations (4.26) and (4.27). The ramifications of this finding is discussed
in Section 4.6.1.
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Table B.1. The functional forms of the coefficients Ti(α) given by Equations (A.25)–(A.27) appearing in the orbit-averaged disturbing
function due to two coplanar (arbitrarily) softened rings (Equations A.22–A.24) such that α ≡ a</a> ≤ 1.

Method F(r1, r2) ϵ2(α) T1(α) T2(α) T3(α) T4(α) T5(α) T6(α) T7(α) T8(α)

Hahn (2003) H2(r2
1 + r2

2) H2(1 + α2) 0 2H2(1 + α2) 0 0 4αH2(2 +H2) 0 2H2 a1
a2

2H2 a2
a1

Touma (2002) b2
c β2 = (bc/a>)2 2β2 0 0 0 0 0 0 0

Tremaine (1998) β2
cmax(r2

1, r2
2) β2

c 0 2β2
c −2β2

c δ(α− 1) 0 4αβ2
c 0 2β2

c

α
Θ(a1 − a2) 2β2

c

α
Θ(a2 − a1)

Teyssandier & Ogilvie (2016) S2r1r2 S2α 0 2αS2 S2 0 S2(S2α + 2α2 + 2) 0 S2 S2

Note. The first column lists the softening prescriptions analysed in this work (see Section 4.2.1), while the second column shows the
specific forms of the softening function F(r1, r2) in Equation (A.1). For reference, the corresponding expressions for the dimensionless
softening parameters ϵ2(α) = a−2

> F(a1, a2) (Equation A.21) entering in the definition of softened Laplace coefficients (Equation A.20)
are also shown. Note that Θ(x) represents the Heaviside step function and δ(x) = dΘ(x)/dx stands for Dirac delta-function.
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Appendix C

Generalized Laplace Coefficients

In Appendix A, I demonstrated that softening the Newtonian point-mass potential by
an arbitrary function F(r1, r2) modifies the definition of the classical Laplace coefficients
– as shown by Equations (4.7) and (A.20) – by the introduction of a softening parameter
ϵ2(α) = a−2

> F(a1, a2) (Equation A.21), 0 ≤ α = a</a> ≤ 1. In this Appendix, I
present (i) some useful recursive relationships amongst different generalized Laplace
coefficients B(m)

s (α), (ii) along with their asymptotic behaviour in the limits of α → 0
and α → 1, (iii) as well as their relationship to complete elliptic integrals.

C.1 Recursive Relations

Generalizing the results for the usual (unsoftened) Laplace coefficients b(m)
s (e.g.,

Plummer, 1918, p. 159), the following relationships can be easily obtained for the
generalized Laplace coefficients defined by Equations (4.7) and (A.20):

mB(m)
s = sαB(m−1)

s+1 − sαB(m+1)
s+1 , (C.1)

m(1 + α2 + ϵ2)B(m)
s = α(m+ 1 − s)B(m+1)

s + α(m+ s− 1)B(m−1)
s , (C.2)

(m+ s)B(m)
s = s(1 + α2 + ϵ2)B(m)

s+1 − 2sαB(m+1)
s+1 . (C.3)

The difference with the classical recursive relations for b(m)
s amounts to substituting

the combination 1 + α2 appearing in the case of ordinary Laplace coefficients with
1 + α2 + ϵ2(α).

Another useful expression relating the generalized Laplace coefficients of arguments
α and α−1 is

B(m)
s (α−1) = α2sB(m)

s (α). (C.4)
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Generalized Laplace Coefficients

Note that the above relationship is valid only as long as the softening parameter
satisfies α2ϵ2(1/α) = ϵ2(α). For instance, this condition is violated when the softening
parameter ϵ has no dependence on α (e.g., that of Tremaine (1998), see Table 4.1).

C.2 Asymptotic Behaviour

Here I derive approximate expressions for B(m)
s in the asymptotic limits; for α → 0 and

α → 1.
Case 1: In the limit of α ≈ 0, one can factor out the term 1 + α2 + ϵ2(α) from the
integrand of B(m)

s to expand the denominator around γ−1 ≈ 0, where γ = (2α)−1[1 +
α2 + ϵ2(α)]. This allows one to approximate B(m)

s as

B(m)
s (α) ≈ 2

π(2αγ)s
π∫

0

cos(mθ) ×
[
1 + s

γ
cos θ + s(s+ 1)

2γ2 cos2 θ + s(s+ 1)(s+ 2)
6γ3 cos3 θ

]
dθ.

(C.5)

Using the orthogonality of the cosine functions, it is straightforward to show that

B(m)
s ≈ αmFm

(2αγ)s+m as α → 0, where Fm =


2 if m = 0
2s if m = 1
s(s+ 1) if m = 2
1
3s(s+ 1)(s+ 2) if m = 3

(C.6)

Case 2: In the opposite limit of x = 1 − α ≈ 0, the dominant contribution to B(m)
s

comes from θ ≪ 1 (Goldreich & Tremaine, 1980). Thus one can set cos(mθ) → 1
in the numerator, approximate cos θ ≈ 1 − θ2/2 in the denominator and extend the
integration limit to infinity. Furthermore, setting α = 1 (i.e. x = 0) everywhere except
when it appears in the combination 1 − α, the generalized Laplace coefficient can be
approximated as

B(m)
s ≈ 2

π

∞∫
0

dθ[
x2 + θ2 + ϵ2

α=1

]s = 2
π

(x2 + ϵ2
α=1)−1 if s = 3/2

(2/3)(x2 + ϵ2
α=1)−2 if s = 5/2

(C.7)

where ϵ2
α=1 is the softening parameter evaluated at α = 1.
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C.3 Relationship to Elliptic Integrals

C.3 Relationship to Elliptic Integrals

Here I express the generalized Laplace coefficients B(m)
s in terms of complete ellip-

tic integrals. These expressions can be used for rapid numerical evaluation of the
generalized Laplace coefficients without relying on numerical integration of Equation
(A.20) (or Equation (4.7)). Let us write, as before, 2αγ = 1 + α2 + ϵ2(α) and de-
fine χ =

√
2/(γ + 1) such that, for any general softening parameter ϵ2(α), we have

0 ≤ χ ≤ 1 and γ ≥ 1. Now let us express B(m)
s in terms of γ to write

B(m)
s = 21−s

παs

π∫
0

cos(mθ)
(γ − cos θ)sdθ. (C.8)

Introducing complete elliptic integrals K(χ) =
∫ π/2

0 (1 − χ2 sin2 ϕ)−1/2
dϕ and E(χ) =∫ π/2

0 (1 − χ2 sin2 ϕ)1/2
dϕ, it is then easy to demonstrate that, for relevant values of s

and m (see Appendix A), B(m)
s can be written as follows:

B(0)
3/2 = 2E(χ)

πα(γ − 1)
√

2α(γ + 1)
, (C.9)

B(1)
3/2 =

2
[

− (γ − 1)K(χ) + γE(χ)
]

πα(γ − 1)
√

2α(γ + 1)
, (C.10)

B(2)
3/2 =

2
[

− 4γ(γ − 1)K(χ) + (4γ2 − 3)E(χ)
]

πα(γ − 1)
√

2α(γ + 1)
, (C.11)

B(3)
3/2 = 2

3

[
− (γ − 1)(32γ2 − 5)K(χ) + γ(32γ2 − 29)E(χ)

]
πα(γ − 1)

√
2α(γ + 1)

, (C.12)

B(0)
5/2 =

4
[

− (γ − 1)K(χ) + 4γE(χ)
]

3π(2α)5/2(γ + 1)3/2(γ − 1)2 , (C.13)

B(1)
5/2 =

4
[

− γ(γ − 1)K(χ) + (γ2 + 3)E(χ)
]

3π(2α)5/2(γ + 1)3/2(γ − 1)2 , (C.14)

B(2)
5/2 =

4
[
(γ − 1)(4γ2 − 5)K(χ) − 4γ(γ2 − 2)E(χ)

]
3π(2α)5/2(γ + 1)3/2(γ − 1)2 , (C.15)
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B(3)
5/2 =

4
[
γ(γ − 1)(32γ2 − 33)K(χ) − (32γ4 − 57γ2 + 21)E(χ)

]
3π(2α)5/2(γ + 1)3/2(γ − 1)2 . (C.16)

The expressions given above permit for an efficient numerical evaluation of arbitrarily
softened Laplace coefficients as functions of α, since effective algorithms for computing
K and E already exist in the literature (e.g., Press et al., 2002).
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Appendix D

Convergence Criterion for the
Pre-factors of Power-Law Discs

Astrophysical discs often extend over a few orders of magnitude in radius so that
aout/ain ≫ 1. In such situations, far from the disc edges, one can take the limit of both
α1 = ain/ap and α2 = ap/aout going to zero, provided that the gravitational potential
of a power-law disc is insensitive to the locations of the disc boundaries (see Equations
4.18 and 4.19). Then the pre-factors ψ1 and ψ2 of the disturbing function converge to
values depending only on the power-law indices p and p+ q respectively, as well as on
the adopted softening prescription.

The conditions on the values of p and q which guarantee this convergence can be
determined by expanding the coefficients ϕij(α), which appear in the integrands of
each of ψ1 and ψ2, in the limit of α ≈ 0. Using the Taylor expansions of softened
Laplace coefficients B(m)

s , we determined that both ψ1 and ψ2 calculated using the
softening methods of Hahn (2003) and Tremaine (1998) (as well as its rectified version)
are convergent as long as −1 < p < 4 and −2 < p+ q < 5, respectively, for all values of
softening (i.e, H and βc, respectively). This follows from the fact that for both Hahn
(2003) and Tremaine (1998) we have ϕ11 = ϕ22 ∼ α2 and ϕ12 ∼ α3 to lowest order in α.
These ranges of p and p+ q are in line with the findings of Silsbee & Rafikov (2015a).

As to the (rectified) softening model of Teyssandier & Ogilvie (2016), a similar
exercise yields that ϕ11 = ϕ22 ≈ −1

4S
2α+ 3

8(1+ 3
2S

4)α2 and ϕ12 ≈ 3
2S

2α2− 15
16(1+5S4)α3

which, in the limit of S → 0, translate to the same ranges for ψ1 and ψ2 convergence
as Silsbee & Rafikov (2015a). However, when S is relatively large, it is trivial to show
that ψ1 and ψ2 are convergent over limited ranges of 0 < p < 3 and −1 < p+ q < 4,
respectively. A similar analysis for the softening method of Touma (2002) reveals
that the ranges for ψ1 and ψ2 convergence are in line with the findings of Silsbee &
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Rafikov (2015a) when the corresponding softening parameter bc → 0. However, when
bc is non-zero, the ranges are narrowed down to −1 < p < 2 and −2 < p + q < 3
respectively.
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Appendix E

Disturbing Function of Planet due
to Disc Gravity

To calculate the secular disturbing function Rd,p of a planet due to an external disc, I
use Equations (4.4), (4.5), and (4.6) from Chapter 4 for the case of unsoftened gravity.
Strictly speaking, these equations represent the continuum version of the classical
Laplace-Lagrange theory (e.g., Murray & Dermott, 1999), and are valid for arbitrary
profiles of disc surface density Σd(a), eccentricity ed(a), and apsidal angle ϖd(a); see
Chapter 4.

For the purposes of Chapter 5, I consider the disc to be apse-aligned (i.e., dϖd/da =
0) and have surface density Σd(a) given by Equation (5.1). For completeness, and use
in Chapter 6, I also adopt a power-law scaling for the disc eccentricity given by

ed(a) = e0

(
aout

a

)q
(E.1)

for ain ≤ a ≤ aout. Plugging these ansatzes into Equations (4.4)–(4.6) of Chapter 4, it
can be shown, after some algebra, that Rd,p is given by:

Rd,p = npa
2
p

[1
2Ad,pe

2
p +Bd,pep cos (ϖp −ϖd)

]
, (E.2)

with

Ad,p(ap) = 2πGΣd(ain)
npap

ain

ap
ϕ1, (E.3)

Bd,p(ap) = π
GΣd(ain)
npap

ain

ap
ed(ain)ϕ2. (E.4)
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Here Ad,p represents the free precession rate of the planetary orbit in the disc potential,
while Bd,p represents the torque exerted on the planet by the non-axisymmetric
component of the disc gravity (which I have neglected in Chapter 5; see Section
5.8.2). The effects of the latter is explored in Chapter 6. Note that the coefficients Ad,p
and Bd,p can be easily expressed in terms of the total disc mass Md using Equation
(5.2).

The coefficients ϕ1 and ϕ2 appearing in Equations (E.3) and (E.4), respectively, are
given by:

ϕ1 = 1
4

(
ap
ain

)1−p
ap/ain∫

ap/aout

αp−1b
(1)
3/2(α)dα,

= 3
4

(
ap
ain

)2 1 − δ−1−p

p+ 1 ϕc1, (E.5)

ϕ2 = −1
2

(
ap
ain

)1−p−q
ap/ain∫

ap/aout

αp+q−1b
(2)
3/2(α)dα,

= −15
8

(
ap
ain

)3 1 − δ−2−p−q

p+ q + 2 ϕc2, (E.6)

where δ ≡ aout/ain as in Chapter 5.
Here, the second lines in both Equations (E.5) and (E.6) are obtained by performing

the integrals appearing in the definitions of ϕ1 and ϕ2 assuming α → 0; that is,
b

(1)
3/2(α) ≈ 3α and b

(2)
3/2(α) ≈ (15/4)α2 which are valid to the lowest order in α. Thus,

the coefficients ϕc1 and ϕc2 in Equations (E.5) and (E.6) represent correction factors
accounting for the contribution of disc annuli close to the planet, i.e., higher-order
terms in b

(m)
3/2 (α). It is straightforward to show that

ϕc1 = 1
3

p+ 1
1 − δ−p−1

ain

ap

δ∫
1

u−p−1b
(1)
3/2

(1
u

ap
ain

)
du, (E.7)

ϕc2 = 4
15

p+ q + 2
1 − δ−p−q−2

(
ain

ap

)2 δ∫
1

u−p−q−1b
(2)
3/2

(1
u

ap
ain

)
du. (E.8)

Figure E.1 shows the behavior of ϕc1 and ϕc2 as a function of ap/ain, computed for
different values of p, q, and δ. For clarity, I have plotted the curves of ϕc1 and ϕc2 in
separate panels. It can be seen that ϕci (i = 1, 2) mainly depend on ap/ain, showing
weak dependence on the disc model. Indeed, regardless of (p, q, δ), I find that ϕci → 1
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Figure E.1. The behavior of the correction factors ϕc1 (panel A, Equation (E.7)) and ϕc2
(panel B, Equation (E.8)) as a function of ap/ain. The calculations assume different disc
models specified by the values of p, q, and δ ≡ aout/ain as explained in the legend. Both ϕc1
and ϕc2 approach unity as ap/ain → 0, and they diverge as ap/ain → 1.

for ap/ain → 0, while in the limit ap/ain → 1, I find that ϕci diverge. This divergence
follows from the fact that b(m)

3/2 (α) → (1 − α)−2 when α → 1.
Finally, I note that inserting Equations (5.2) and (E.5) into Equation (E.3) results

in the expression for Ad,p given by Equation (5.7). A similar expression was found by
Petrovich et al. (2019) (see also Ward, 1981; Rafikov, 2013).
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Appendix F

Analytic Expression for Resonance
Widths

The width w of a given resonance at a = ares can be approximated by using the fact
that

A
(
ares + w

2

)
− A

(
ares − w

2

)
≈ w × dA

da

∣∣∣∣∣
ares

. (F.1)

Additionally, Equation (5.19) allows one to write

A (ares ± w/2) ≈ Ad,p ∓ ẽ−1Bp(ares) × sgn [dA/da]ares
, (F.2)

where sgn(x) = x/|x| is the sign function introduced to account for the fact that
resonances occurring at ≃ ain have dA/da > 0, while those farther away have dA/da < 0;
see Figure 5.2. Substituting Equation (F.2) into Equation (F.1), I thus arrive at

w

ain
≈ 2
ain

∣∣∣∣∣Bp(a)ẽ−1

dA/da

∣∣∣∣∣
ares

. (F.3)

The above expression can be further simplified by considering the approximate forms
of Ap and Ad in the limits of ap/ares → 0 and ain ≪ ares ≪ aout, respectively. In this
case, I can approximate the derivative of A = Ap + Ad in the following fashion

dAp
da

∣∣∣∣∣
ap≪a

= −7
2a Ap,

dAd
da

∣∣∣∣∣
ψ1=const

= 1 − 2p
2a Ad, (F.4)
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and expression (F.3) reduces to

w

ain
≈ 4ares

ain

∣∣∣∣∣ Bp(ares)ẽ−1

7Ap(ares) + (2p− 1)Ad(ares)

∣∣∣∣∣ . (F.5)

Inserting the condition for secular resonances, i.e., Equation (5.16) or Equation (5.18),
into the above expression for p = 1, and taking the limits ap/ain → 0 (so one can
use the asymptotic behavior of b(m)

s (α)) and ain ≪ ares ≪ aout, I arrive at the scaling
relationship given by Equation (5.20).
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Appendix G

Constructing Maps of Disc Surface
Density

Here, I provide some technical details about how I convert the eccentricity–apsidal
angle distribution of planetesimals into maps of disc surface density in Chapters 5.

I first begin by assigning a mass mi to each considered planetesimal in a given
annulus of the disc (which, for instance, in Chapter 5 are N = 5000 in number; see
Section 5.2.3). Given that in my calculations in Chapters 5 and 6 the planetesimals
are initiated on circular orbits, the planetesimal masses can be determined from
their initial semimajor axis distribution – which remains constant in the secular
approximation (Murray & Dermott, 1999, see also Chapter 3). This can be done by
using the relationship dm(a) = 2πaΣd(a)da (Statler, 2001; Davydenkova & Rafikov,
2018) relating the mass distribution per unit semimajor axis to the density distribution
(which, e.g., in Chapters 5 and 6 is given by Equation 5.1 with p = 1; see Section
5.2.1). The self-consistency of this initial mass assignment to planetesimals – which are
essentially treated as massless particles in the analytical model described in Chapter 5
(see, e.g., Section 5.2) – is discussed in Section 5.8.1. Note that for the softened N -ring
simulations presented later in Chapter 6, the assignment of masses mi to the disc rings
is already well justified; see Section 6.2 for details.

At a given time of the evolution, I then populate every planetesimal’s orbit with
Nnp new particles (taken to be, e.g., Nnp = 104 in Chapter 5: each with mass mi/Nnp,
orbital elements similar to the parent planetesimal, but with randomly distributed
mean anomalies l between 0 and 2π. This procedure is motivated by the orbit-averaging
principle (Murray & Dermott, 1999). I also note that this procedure effectively increases
the number of evolved planetesimals (from N to N ×Nnp), enhancing the quality of the
resultant maps of disc surface density. Next, I numerically solve for each new particle’s
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eccentric anomaly ϵ using Kepler’s equation (Murray & Dermott, 1999),

l = ϵ− e sin ϵ, (G.1)

and compute the heliocentric position (X, Y ) of each particle along its orbit via (Sridhar
& Touma, 1999; Binney & Tremaine, 2008):

X
Y

 = a

cosϖ − sinϖ
sinϖ cosϖ

 ·

 cos ϵ− e√
1 − e2 sin ϵ

 . (G.2)

Finally, I bin the positions of all N ×Nnp particles in the Cartesian system centred
at the host star (e.g., with a resolution of 400 × 400 pixels in Chapter 5), compute
the total mass per bin, and divide by its area to arrive at the disc surface density
distribution, Σ, at a given time. Note that this also allows me to trivially obtain the
azimuthally averaged surface density profile ⟨Σ⟩ as a function of radial distance r,
where r =

√
X2 + Y 2 = a(1 − e cos ϵ), by splitting the disc into annular bins.
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Appendix H

Parameters of N-ring Simulations

The results and analysis presented in Chapter 6 are based on the outcomes of a set of
67 simulations carried out using the softened N -ring model described in Section 6.2.
The set of parameters describing the disc–planet systems considered is summarised in
Table H.1. In each simulation, except otherwise stated, (i) the central star’s mass was
taken to be Mc = 1.09M⊙; (ii) the planet’s initial apsidal angle was set to ϖp(0) = 0;
(iii) the planetesimals’ initial eccentricities and apsidal angles were set to e(0) = 10−4

and ϖ(0) = −π/2, respectively; (iv) the disc was modelled as a collection of N = 5000
softened rings, each with a softening parameter of H = 0.1; (v) the ring representing
the planet was left unsoftened; and (vi) integrations were stopped after 200 Myr.

Table H.1. Parameters of the disc–planet systems considered in Chapter 6. The combi-
nations of Md, mp, and ap are chosen from the parameter space portrayed in Figure 5.8,
both from within and outside the allowed region. Outcomes 1 and 0 signify whether the
planetesimal eccentricities achieved a minimum value of 1 at the resonance (i.e., e(ares) ≥ 1)
or were in the process of doing so, respectively, by the time the simulation was stopped.
Note that this only applies to the ‘nominal’ N -ring simulations and not to the ‘full’ N -ring
simulations; see Section 6.2.2.3.

Simulation Md(M⊕) mp(MJ) ap(au) ep(0) Outcome Notes
1 10 0.31 25.96 0.05 0
2 ... ... ... 0.10 1
3 20 0.59 25.38 0.05 0
4 ... ... ... 0.10 1
5 50 1.40 24.46 0.05 1
6 ... ... ... 0.10 1

Continued on next page
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Table H.1 – Continued from previous page
Simulation Md(M⊕) mp(MJ) ap(au) ep(0) Outcome Notes

7 100 2.74 23.63 0.05 1
8 ... ... ... 0.10 1
9 10 0.43 15 0.05 0
10 ... ... ... 0.10 0
11 ... ... ... 0.30 1 Stopped at 150 Myr
12 20 0.86 ... 0.05 0
13 ... ... ... 0.10 1
14 ... ... ... 0.30 1 Stopped at 150 Myr
15 50 2.15 ... 0.05 1
16 ... ... ... 0.10 1
17 ... ... ... 0.30 1 Stopped at 150 Myr
18 100 4.30 ... 0.05 1
19 ... ... ... 0.10 1
20 ... ... ... 0.30 1 Stopped at 150 Myr
21 10 0.3 20 0.05 0
22 ... ... ... 0.10 0
23 ... ... ... 0.30 1 Stopped at 100 Myr
24 20 0.6 ... 0.05 1 Model A of Chapter 5

Stopped at 500 Myr.
25 ... ... ... 0.10 1
26 ... ... ... 0.30 1 Stopped at 100 Myr
27 50 1.5 ... 0.05 1
28 ... ... ... 0.10 1
29 ... ... ... 0.30 1 Stopped at 100 Myr
30 100 3 ... 0.05 1
31 ... ... ... 0.10 1 Stopped at 150 Myr
32 ... ... ... 0.30 1 Stopped at 100 Myr
33 30 1.68 12.8 0.05 0
34 ... ... ... 0.10 1 Stopped at 150 Myr

Continued on next page
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Table H.1 – Continued from previous page
Simulation Md(M⊕) mp(MJ) ap(au) ep(0) Outcome Notes

35 ... ... ... 0.20 1 Stopped at 150 Myr
36 ... ... ... 0.30 1 Stopped at 150 Myr
37 100 5.59 ... 0.05 1
38 ... ... ... 0.10 1
39 ... ... ... 0.20 1
40 ... ... ... 0.30 1
41 21 0.81 16.1 0.05 0
42 ... ... ... 0.10 1 Stopped at 150 Myr
43 ... ... ... 0.20 1 Stopped at 150 Myr
44 ... ... ... 0.30 1 Stopped at 150 Myr
45 70 2.72 ... 0.05 1
46 ... ... ... 0.10 1
47 ... ... ... 0.20 1
48 ... ... ... 0.30 1
49 10.5 0.29 22.04 0.05 0
50 ... ... ... 0.10 0 Stopped at 150 Myr
51 ... ... ... 0.20 1 Stopped at 150 Myr
52 ... ... ... 0.30 1 Stopped at 150 Myr
53 35 0.97 ... 0.05 1
54 ... ... ... 0.10 1
55 ... ... ... 0.20 1
56 ... ... ... 0.30 1
57 121.2 12 9.26 ... 1 Stopped at 100 Myr
58 50.5 5 ... ... 1 Stopped at 100 Myr
59 10 0.99 ... ... 1 Stopped at 300 Myr
60 64.3 12 6.59 ... 1
61 20 3.73 ... ... 1
62 10 1.87 ... ... 1 Stopped at 400 Myr
63 50 25.1 3.94 ... 1 Stopped at 300 Myr

Continued on next page
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Table H.1 – Continued from previous page
Simulation Md(M⊕) mp(MJ) ap(au) ep(0) Outcome Notes

64 24 12 ... ... 1 Stopped at 300 Myr
65 10 5.02 ... ... 1 Stopped at 500 Myr
66 95 15.8 7 0.05 1 Model B of Chapter 5

Stopped at 400 Myr
67 6 0.2 26.93 ... 0 Model C of Chapter 5

Stopped at 600 Myr
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Appendix I

Planetesimal Evolution in the Case
of a Circularising Planet

In this Appendix, I derive explicit expressions describing the secular evolution of
planetesimals orbiting in the combined potential of the debris disc and the precessing
planet, accounting for the effects of the exponential decay of the planetary eccentricity
(i.e., resonant friction, Section 6.4.2) in an ad hoc manner.

Unfortunately, a rigorous analytical expression cannot be derived for the generic
evolution studied in Chapter 6. Thus, here I make some simplifying assumptions to
try and capture the important features of the system’s secular evolution. To this
end, I make use of the expression of the disturbing function given by Equation (5.8) –
which, I remind, was derived for the case of an axisymmetric disc potential (Chapter
5) – and introduce two modifications to account for the effects resulting from the
non-axisymmetric torque of the disc on the planet (but not on itself). First, I replace
the planetary precession rate Ad,p by ϖ̇p, which we saw is a constant depending on the
planetary semimajor axis such that ϖ̇p/Ad,p ≤ 1; see Section 6.4.1. This replacement
essentially guarantees that we are still working in a frame co-precessing with the
planetary orbit, an assumption inherent in the derivation of Equation (5.8). Second, I
multiply the non-axisymmetric component of the planetary potential Bp, which recall
is ∝ ep (Equation 5.6), by an exponential factor of exp(−Dt/2). This modification
essentially models the decay of the planetary eccentricity resulting due to the resonant
friction; see Section 6.4.2.

Implementing the above two modifications into Equation (5.8), the disturbing
function governing the evolution of planetesimals now reads as:

R = na2
[1
2 (A− ϖ̇p) e2 +Bp(0) exp(−Dt/2)e cos ∆ϖ

]
, (I.1)
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where Bp(0) must be understood as being evaluated using the planet’s initial eccentricity,
ep(0), and as before, A = Ad + Ap (Equations 5.4 and 5.5). Then the evolution of
the planetesimal eccentricity vector e = (K,H) = e(cosϖ, sinϖ) is governed by (see
Section 5.2.3):

dK

dt
≈ −1

na2
∂R

∂H
= −(A− ϖ̇p)H,

dH

dt
≈ 1

na2
∂R

∂K
= (A− ϖ̇p)K +Bp(0) exp(−Dt/2). (I.2)

Note that when the non-axisymmetric torque of the disc on the planet is ignored, one
has ϖ̇p → Ad,p, D = 0, and constant ep, so that the system of equations (I.2) reduce
to those in Chapter 5 – namely, Equations (5.9).

Equations (I.2) can be solved using standard methods. Indeed, assuming planetes-
imals are initiated on circular orbits, i.e., K(0) = H(0) = 0, their eccentricities and
longitudes of pericentre evolve as follows:

e(t) =

√√√√ 4B2
p(0)

4(A− ϖ̇P )2 +D2

[
exp(−Dt) − 2 exp(−Dt/2) cos[(A− ϖ̇P )t] + 1

]
,

(I.3)

tan ∆ϖ(t) =
−2(A− ϖ̇p) sin[(A− ϖ̇p)t] +D

{
exp(−Dt/2) − cos[(A− ϖ̇p)t]

}
−2(A− ϖ̇p)

{
cos[(A− ϖ̇p)t] − exp(−Dt/2)

}
+D sin[(A− ϖ̇p)t]

. (I.4)

While seemingly complicated, Equations (I.3) and (I.4) can directly explain several
important features of the planetesimal dynamics described in Section 6.3.1 when taken
in the limit of D ≈ 0, in which case one arrives at the following:

e(t) ≈
∣∣∣∣∣ 2Bp(0)
A− ϖ̇p

(
1 − 1

4Dt
)

sin
(
A− ϖ̇p

2 t

)∣∣∣∣∣+ O(D2), (I.5)

tan ∆ϖ(t) ≈ tan
(
A− ϖ̇p

2 t− π

2

)
+ O(D). (I.6)

This completes my derivation of the general solution describing the evolution of
planetesimal orbits in the case of a circularising planet.
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Appendix J

Analytic Expression for Planetary
Precession Rates due to Eccentric
Discs

In this Appendix, I provide the derivation of Equation (6.17) given in Chapter 6 for the
apsidal precession rate of the planet due to the gravity of the debris disc, accounting
for both the axi- and non-axisymmetric components.

To this end, I revert to the notation of Chapter 5 and assume that the disc is a
continuous entity – rather than composed of N softened rings as in Chapter 6. I further
assume that the disc is composed of apse-aligned orbits (i.e., dϖd/da = const) and
characterised by power-law profiles for the surface density Σd(a) ∝ a−p and eccentricity
ed(a) ∝ a−q distributions (Equations 5.1 and E.1). Within this set of assumptions
(which I justify below), one can then use the unsoftened disturbing function Rd,p given
by Equation (E.2) of Appendix E to determine the time evolution of the planetary
apsidal line as follows:

ϖ̇p = 1
npa2

pep

∂Rp

∂ep
= Ad,p + Bd,p

ep
cos ∆ϖ. (J.1)

where ∆ϖ ≡ ϖp − ϖd, and the terms Ad,p and Bd,p are given by Equations (E.3)
and (E.4), respectively. Note that the use of the unsoftened disturbing function Rd,p

(Equation E.2) is justified by the fact that softening the disc potential is not required
when studying the dynamics of particles orbiting outside the disc, i.e., where Σd(a) = 0;
see Section 4.5. Then, substituting Equations (E.3) and (E.4) into Equation (J.1), one
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finds that
ϖ̇p = Ad,p

[
1 + 1

2
ed(ain)
ep

ϕ2

ϕ1
cos ∆ϖ

]
, (J.2)

where the coefficients ϕ1 and ϕ2 are given by Equations (E.5) and (E.6), respectively,
and ed(ain) is the disc eccentricity at the inner disc edge. The above expression can
be further simplified by making two assumptions: first, that the disc and the planet
remain apse-aligned throughout their evolution, i.e., ∆ϖ(t) = 0; and second, that the
disc eccentricity follows the profile forced by the planet in the limit of a massless disc,
i.e., ed(a) = |eforced,p| = Bp/Ap ∝ 1/a (Equation 5.14). Inserting these assumptions
into Equation (J.2), one then easily arrives at the first line of Equation (6.17). Finally,
taking the limit of ap/ain → 0 – so one can use the asymptotic behaviour of the Laplace
coefficients b(m)

s (α) and approximate ϕc1 ≈ ϕc2 ≈ 1 (see Figure E.1) – and setting p = 1,
δ ≡ aout/ain = 5, and q = 1, one arrives at the second line of Equation (6.17).

Having completed the derivation of the expression of ϖ̇p/Ad,p as given by Equation
(6.17), let us now justify the assumptions that went into it. At the outset, however, it
is important to note that the gravitational forces exerted by the disc on the planet is
dominated by the disc rings (or particles) that are in close proximity to the planet;
simply because of the radial dependence of gravity. In other words, the dynamical
state of the disc’s outer parts does not significantly affect the gravitational potential
exerted by the disc at the location of the planet. Thus, for the purposes of this
Appendix, one can approximate the whole disc structure by that of the inner parts,
i.e., the region spanning over ain ≤ a ≲ ares. Planetesimal orbits in this region tend to
precess faster than the planet (e.g., Sections 5.3 and 6.3.1); however, they attain their
maximum eccentricity when apse aligned with the planet, and it is at this point that
the non-axisymmetric component of the disc gravity becomes important. This justifies
the assumption of ∆ϖ(t) ≈ 0. Additionally, as the dynamics of planetesimals orbiting
at ain ≲ a ≲ ares is dominated by the planet’s gravity, their eccentricities oscillate
between the initial values of 0 and em,p = |2eforced,p|, and so on average ed(a) ≈ |eforced,p|,
which I assume to be constant in time. While this is not entirely accurate, in the
sense that the planetary eccentricity actually decays in time due to resonant friction
(see Sections 6.3.1 and 6.4.2), I find that the maximum planetesimal eccentricities
scale down together with the planetary eccentricity (see Equation 6.15) so that the
ratio e(t)/ep(t) – which is what appears in Equation (J.2) – can be approximated as a
constant. This justifies the adopted assumption about the ed(a) profile.
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