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Abstract
The influence of stellar birth environment on protoplanetary disc dispersal

Andrew Winter

Protoplanetary discs (PPDs) are the progenitors of planets and represent the material available
for their formation. Recent surveys indicate that exoplanetary architectures are diverse and
the processes that govern the evolution of PPDs contribute significantly to the properties of
these architectures. Most studies of PPDs consider their secular evolution, disregarding the
influence of environment on the evolution and eventual dispersal of the disc. However, a
growing body of empirical studies have found evidence that they are in fact influenced by
their stellar neighbours. In this dissertation I focus primarily on two mechanisms by which
discs evolving in close proximity to other stars might be truncated and dispersed by their
neighbours. These are tidal truncation by star-disc encounters and external photoevaporation
due to irradiation by massive stars. I make the distinction between encounters that occur in
multiple systems and those that occur between individual stars (type I and type II encounters).
I model the specific case of HV and DO Tau, apparently isolated stellar systems connected
by an extended dust ‘bridge’, as a historic type I encounter within a quadruple system. I
then theoretically quantify the influence of type II tidal encounters on PPDs in the distant
and close regimes. Coupling recent developments in the theory of photoevaporating discs
with a viscous evolution model, I similarly quantify the dispersal timescale of PPDs due
to irradiation by massive stars. Comparing these mechanisms in local environments, I find
that external photoevaporation dominates over type II encounters as a dispersal mechanism
in local star forming regions. Applying photoevaporation models to the OB association
Cygnus OB2, I successfully reproduce the observed disc survival fractions, implying that
external photoevaporation is having a significant influence on PPDs in that region. Finally, I
link the dispersal timescales to star formation physics, illustrating that outside of the solar
neighbourhood a much larger fraction of stars may be exposed to environments that disperse
discs rapidly. Tentatively, this indicates that the sun may lie in a special region for planet
formation, where the number of stars for which PPDs remain mostly uninfluenced by stellar
neighbours is maximised.
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Chapter 1

Introduction

Charting exoplanet demographics is one of the most active fields in modern astronomy (Winn
and Fabrycky, 2015). At the time of writing, the number of discovered exoplanets numbers
nearly 4000, and the new Transiting Exoplanet Survey Satellite (TESS) mission has now
began to contribute to this sample (Gandolfi et al., 2018). TESS is expected to find 1000s
of new planets over its lifetime, including 10s of approximately Earth-mass planets (Ricker
et al., 2015). Among several recent discoveries, a system of 7 such planets found orbiting
around the cool M-dwarf, Trappist-1, has captured the imagination of both scientists and
a broader audience (Gillon et al., 2017). Additionally, high resolution spectroscopy can
now be used to probe the astmospheres of discovered exoplanets (Charbonneau et al., 2002;
Snellen et al., 2010; Brogi et al., 2012; Sedaghati et al., 2017; Nortmann et al., 2018). The
upcoming James Webb Space Telescope (JWST) will greatly improve such measurements
due to its high sensitivity and broad wavelength coverage, providing a wealth of data on
exoplanet properties using transit spectroscopy (Beichman et al., 2014; Bean et al., 2018).
Such exciting developments offer insights into the Earth’s formation within the context of the
broad range of observed exoplanet architectures, and promise to answer questions pertaining
to the frequency of life in the universe.

While discovering and characterising exoplanets is in itself of the utmost interest, un-
derstanding these observations requires studying their progenitors. Protoplanetary discs
(PPDs) comprise dust and gas that orbits a young star (≲ 3–10 Myr old – Haisch et al.,
2001b; Ribas et al., 2014), which is the material available for planets to form from during
these early stages of stellar evolution. Using the Atacama Large Millimeter/submillimeter
Array (ALMA), a large number of PPDs have now been spatially resolved. Of particular
interest have been the recent observations of rings or gaps in the circumstellar discs (ALMA
Partnership et al., 2015; Clarke et al., 2018; Pérez et al., 2018) that may be the result of
young planets clearing material along their orbits (Lin and Papaloizou, 1979; Baruteau and
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Papaloizou, 2013; Bae et al., 2017; Kanagawa et al., 2018; Fedele et al., 2018). Alternative
explanations are also possible, including (though not limited to): dust growth near snowlines
(Zhang et al., 2015; van der Marel et al., 2018), magnetically-induced zonal flows (Flock
et al., 2015) and self-induced dust traps due to backreaction on the gas (Gonzalez et al., 2017).
Possibly the strongest evidence for planet induced gaps is the recent discovery by Clarke
et al. (2018). They found gaps in ALMA observations of the PPD around CI Tau, which
is the first disc known to host a hot Jupiter (inferred from radial velocity measurements –
Johns-Krull et al., 2016; Biddle et al., 2018). In general, the aforementioned studies highlight
that the processes which govern the evolution of dust and gas in PPDs are highly relevant for
understanding the observed architectures and compositions of exoplanets.

Exoplanets and their progenitors are largely considered as secularly evolving systems,
with properties independent of their environment. However, there is a growing body of work
that indicates that this is not the case: the formation and evolution of planets is dependent on
the host star’s birth environment. Stars form in groups (Lada and Lada, 2003) and, depending
on the number and density of neighbouring stars, a PPD can suffer the influence of external
stellar feedback mechanisms. In particular, a disc can be depleted by tidal interaction with
other stars if their passage is sufficiently close (Clarke and Pringle, 1993; Ostriker, 1994; Hall
et al., 1996; Pfalzner et al., 2005b; Olczak et al., 2006; Breslau et al., 2014). Alternatively,
a PPD irradiated by far ultraviolet (FUV) and extreme ultraviolet (EUV) photons from
neighbouring massive stars can be heated sufficiently to lose mass at the outer edge in a
process called ‘external photoevaporation’ (Johnstone et al., 1998; Störzer and Hollenbach,
1999; Adams et al., 2004; Facchini et al., 2016; Haworth et al., 2018a). If an environment is
sufficiently dense or neighbours are massive enough then these mechanisms will disperse
the PPD, reducing the time and mass available for planet formation. How this influences
the resulting exoplanet population remains uncertain. Chemical signatures, for example the
meteoritic abundance of the daughter products of short-lived isotope 60Fe, which can only be
produced during nucleosynthesis and dispersed by supernova events, may indicate external
influences have been important for the formation of our own solar system (e.g. Cameron et al.,
1995; Williams and Gaidos, 2007, see also Adams 2010 and Busso 2018 for recent reviews).
Additionally, the distribution of stellar birth environments is a function of position and time
throughout the universe (e.g. Longmore et al., 2014; Adamo et al., 2015; Reina-Campos and
Kruijssen, 2017). Therefore, quantifying the influence of environment has consequences for
understanding planet formation outside of the solar neighbourhood.

In the remainder of this introduction I will outline the processes that govern PPD evolution.
In Section 1.1 I briefly review the formation and evolution of PPDs in general, followed
by a discussion of their dispersal in the case that they are not influenced by environment in
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Section 1.2. In Section 1.3 I discuss how feedback by stellar neighbours can lead to faster
disc dispersal, introducing the two dispersal mechanisms that will be the primary focus of
this work. Finally, I lay out the goals and structure of the remaining chapters in Section 1.4.

1.1 Formation and viscous evolution of PPDs

PPDs ubiquitously form around young stars due to the conservation of angular momentum
as the nascent stellar core undergoes gravitational collapse (Shu et al., 1987). Stars form
from overdensities in the interstellar medium (ISM); if a region has a sufficient density, it
will collapse into one or many cores. As such a core collapses, outflows in the form of
bipolar jets also carry material away, driven by radiation pressure from the central star and
the centrifugal acceleration of gas along magnetic field lines (Konigl, 1982; Pudritz and
Norman, 1983; Shu et al., 1994; Carrasco-González et al., 2010). This process continues
until the surrounding envelope is depleted, and a young star with a circumstellar disc remains.
The material orbiting the star at this stage is what is available for the eventual formation
of planetary systems. Throughout this work I frequently refer to the viscous evolution of
the PPD, which I will discuss in this section. For a more complete review of the processes
governing disc evolution, see Williams and Cieza (2011).

An important process in a PPD is the radial transport of angular momentum. This process
results in accretion onto the central star (such that the disc is depleted) and the spreading
of material (such that the disc expands), as shown in Figure 1.1a. Observed accretion rates
indicate that the timescale on which a disc viscously evolves is on the order of the disc
lifetime (Hartmann et al., 1998; Manara et al., 2016). Additionally, Tazzari et al. (2017) find
evidence for such spreading indicated by the fainter and more extended PPD population in
Lupus with respect to younger regions. However, the physical mechanism and rate of such
transport throughout the disc remains unclear. In general, for a thin disc undergoing Keplerian
rotation (i.e. with angular velocity Ω = ΩK =

√
Gm∗/r3) and where the hydrostatic vertical

structure is decoupled from the radial evolution of the surface density Σ(r, t) for radius, r, at
time, t, then we have:

∂Σ

∂ t
=

3
r

∂

∂ r

[
r1/2 ∂

∂ r

(
νr1/2

Σ

)]
, (1.1)

where ν(r) is the kinematic viscosity at r. Equation 1.1 is the result of conservation of mass
and angular momentum for a viscous fluid, where the physics of angular momentum transport
is contained within the ν parameter. I.e. the mechanism of viscous angular momentum
transport could be molecular or turbulent, so long as it acts locally (Balbus and Papaloizou,
1999). Further quantifying the behaviour of a PPD over time requires a definition of ν .
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In the limit of thin accretion discs, assuming that the viscosity is a power law in radius
ν ∝ rγ means that equation 1.1 conveniently has a similarity solution of the form (Lynden-Bell
and Pringle, 1974):

Σ ∝
1

3πν1Rγ
T− 5/2−γ

2−γ e
R2−γ

T . (1.2)

I have defined:
R ≡ r

R1
; ν1 = ν(R1); T ≡ 1+

t
τvisc.

, (1.3)

where R1 is the disc scale radius and τvisc. is the viscous timescale

τvisc. =
1

3(2− γ)2
R2

1
ν1

(1.4)

at R1. Hartmann et al. (1998) discuss the advantages of choosing γ = 1: this is equivalent
to a constant α-viscosity prescription (Shakura and Sunyaev, 1973) where the midplane
temperature Tmid within the disc is Tmid ∝ r−q where q = 1/2 (physically a range 1/2 ≤ q ≤
3/4 is reasonable – see Kenyon and Hartmann, 1987). The associated steady state surface
density profile is then Σ ∝ r−1. With this choice, we can write the surface density evolving in
isolation as a function of time and radius:

Σ =
M0

2πR2
1R

exp
(
−R

T

)
T−1.5 (1.5)

where M0 is the initial disc mass. We have obtained this result by following Shakura and
Sunyaev (1973) in parameterising the kinematic viscosity ν = αc2

s Ω−1 for the sound speed
cs and angular velocity Ω, and α is assumed to be a constant. For a vertically isothermal disc
with scale height H(r), we have H = cs/Ω and cs ∝ T 1/2

mid . Assuming a value of H/r at the
scale radius, H1/R1 = 0.05, this allows us to write:

α ≈ 5.4×10−3
(

τvisc.

1Myr

)−1( R1

40au

)3/2( m∗
1M⊙

)−1/2

(1.6)

for a stellar host of mass m∗. The value of H/r is a weak function of r; the exact value for
H1/R1 is here effectively absorbed into the value of α , which dictates the rate of angular
momentum transport (and therefore accretion onto the central star).

In the following work I will refer the above prescription where viscosity becomes an
important consideration for disc evolution. However, the choice of α and the physical
mechanism(s) that induce viscous torques within the disc remain a topic of debate. Angular
momentum transport due to molecular viscosity is too inefficient to explain observed mass
accretion rates (e.g. Spitzer, 1962; Pringle, 1981). Turbulence represents a viable alternative
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mechanism. In hot, ionised regions of a disc the magnetorotational instability (MRI – caused
by the Lorentz force induced by the differential rotation of a magnetised fluid) can drive such
turbulence (Velikhov, 1959; Chandrasekhar, 1960; Balbus and Hawley, 1991). However, in
cooler parts of the disc, magnetohydrodynamic (MHD) effects are expected to weaken or
suppress the turbulence induced by MRI (e.g. Bai and Stone, 2013, see also Turner et al.
2014 for a review). Some alternative candidates for inducing turbulence include self-gravity
(Gammie, 2001), Rossby waves (Lovelace et al., 1999) and the vertical shear instability
(Urpin and Brandenburg, 1998), among others. Nonetheless, laboratory experiments suggest
that hydrodynamic turbulence remains inefficient at transporting angular momentum in fluids
under Keplerian rotation (Ji et al., 2006), supporting the importance of magnetic fields in
this context (see Section 1.2.2).

While the viscous accretion onto the central star depletes a disc, it is not the ultimate
mechanism for disc dispersal. Under viscous evolution alone, with γ = 1 as above, the disc
mass evolves as M ∝ t−1/2. For typical disc masses and accretion rates, we would then expect
a PPD to be optically thick for ∼ 100 Myr, and spend a similar period of time in a transition
phase where the disc is optically thin. This is not supported by observations that indicate
discs are dispersed rapidly at late times; I review some physical processes that can induce
such rapid mass removal in isolated discs in Section 1.2.

1.2 Secular dispersal mechanisms

Observations indicate that PPDs generally persist around their stellar host for ∼ 3 Myr
(Haisch et al., 2001b; Ribas et al., 2014), although there is order of magnitude intrinsic
scatter in this figure (Armitage et al., 2003). The removal of gas from the disc sets a strict
timescale on which gas giants can form, and likely influences the chemical composition of
other planets (e.g. O’Brien et al., 2018). The low frequency of so-called ‘transition discs’
(making up ∼ 10% of all discs) that are optically thin in the infrared indicates that the
timescale on which a disc is finally dispersed is much shorter than its overall lifetime (i.e.
there are two timescales for disc depletion – Skrutskie et al., 1990; Kenyon and Hartmann,
1995; Duvert et al., 2000). Modelling infrared emission from PPDs suggests that discs are
commonly depleted rapidly from inside-out during the later stages of disc evolution (Ercolano
et al., 2011; Koepferl et al., 2013).

While the focus of this work is the influence of external mechanisms on disc dispersal,
understanding the importance of environment requires comparing them with the secular
dispersal of a PPD. Debate continues regarding the dominant process that disperses the
gaseous component, however in this section I will introduce some relevant physical processes
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(a) Viscous evolution only (b) Internal photoevaporation

Fig. 1.1 Surface density evolution for a disc subject to viscous evolution as presented by
Clarke et al. (2001). Each line represents a different time, increasing from top to bottom.
The top line is the initial state of the PPD, while the other lines are chosen to be at the later
stages of disc evolution. The total timescale shown is dependent on the PPD and host star
properties (e.g. viscous timescales and photoevaporative mass loss rate – under reasonable
assumptions ∼ 10 Myr). In figure 1.1a the disc evolves under viscous torques only, and is
not dispersed rapidly at late times. In figure 1.1b internal photoevaporation is considered. In
this case, winds launched close to the critical radius rg open up a gap in the disc. After this
gap has opened, short viscous timescales inwards of this radius leads to rapid clearing of the
inner part of the disc in ∼ 0.1 Myr.

for a PPD evolving in isolation. These mechanisms are internal photoevaporation, MHD
winds and giant planet formation. In general, these processes disperse the disc by creating an
inner hole and suppressing the flow of material onto the star to some extent. This scenario is
consistent with observations (Ercolano et al., 2011), and additionally they can all give rise
to the empirically supported rapid phase of dispersal at the end of the disc lifetime (Pollack
et al., 1996; Clarke et al., 2001; Armitage et al., 2013). Whether giant planet formation
occurs in a PPD (or whether a disc is rapidly dispersed by internal or external processes) will
also have an influence on the nature of the ultimate exoplanet architecture and chemistry.

1.2.1 Internal photoevaporation

One of the primary mechanisms responsible for disc depletion is photoevaporation. In this
context, photoevaporation is the depletion of a PPD due to irradiation by FUV photons
(with energies 6 eV< hν < 13.6 eV), EUV photons (13 eV< hν < 0.1 keV) and X-ray
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(0.1 keV< hν). ‘Internal’ refers to the role of the host star in irradiating the disc. Models
of photoevaporative winds have a long history, partly motivated to explain long-lived ultra
compact HII regions around massive stars that are replenished by the photoevaporating
disc material (Hollenbach et al., 1994). Ionising radiation from the central star heats (and
ionises) the surface layer of the disc such that outside some critical radius rg this ionised
layer becomes unbound. The sound speed equals the orbital velocity at:

rg =
Gm∗

c2
s

∼ 7
(

m∗
1M⊙

)
au, (1.7)

where the last approximation uses the temperature of photoionised gas (∼ 104 K, yielding
cs ∼ 10 km/s). Particles with velocities equal to the sound speed are unbound at radii
r > 2rg, while for r ≪ rg the ionised atmosphere is approximately in hydrostatic equilibrium.
Hollenbach et al. (1994) define a ‘weak stellar wind’ model, referring to stellar winds for
which the associated ram pressure is less than the pressure from the disc atmosphere at
the base of the ionised atmosphere at r ∼ rg. This regime is appropriate for stars of mass
m∗ ≲ 20M⊙. In this case photoevaporation is dominated by the diffuse EUV photons emitted
by recombination in the ionised atmosphere at r ∼ rg. The photoevaporative mass loss is:

Ṁwind,int. = 2mHv
∫

∞

rg

2πrn0(r)dr, (1.8)

where mH is the atomic mass of hydrogen, v ≈ cs ≈ 10 km/s is the velocity of the flow, and
n0(r) is the number density of hydrogen at the base of the ionised atmosphere. In its most
general form, the full self-consistent solution is achieved by solving the eigenvalue problem
arising from the contribution of diffuse ionising fluxes from recombination to give n0. In this
way, Hollenbach et al. (1994) find that for a disc with an outer radius rd > rg (and an inner
radius within rg), the photoevaporative mass loss rate is:

Ṁwind,int. ≈ 4.1×10−10
(

Φi

1041 s−1

)1/2( m∗
1M⊙

)1/2

,M⊙ yr−1, (1.9)

where Φi is the EUV photon count from the host star. Later hydrodynamical simulations
have been compared with the analytic models (Liffman, 2003; Font et al., 2004), modifying
the numerical value of rg and the resultant mass loss rate by a factor of a few. However, the
qualitative picture of internal photoevaporation remains similar.

Later models coupled the viscous evolution of the PPD to the influence of a photoevap-
orative wind driven by the central star (Clarke et al., 2001; Armitage et al., 2003; Ruden,
2004; Takeuchi et al., 2005; Jones et al., 2012; Rosotti et al., 2017). Assuming a reasonable
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ionising flux (photon counts of Φi ∼ 1041–1044 s−1 – Alexander et al., 2005), these models
find that photoevaporation initially has a negligible influence on disc evolution. However,
once a disc is sufficiently depleted, the accretion rate approaches the photoevaporative mass
loss rate and a gap opens up close to rg due to the thermal wind. This rapidly leads to the
accretion of material inside of this radius which has a short viscous timescale and is no longer
replenished by material from outer regions (inside-out clearing). The influence of internal
photoevaporation compared to solely viscous evolution is illustrated in figure 1.1 (taken from
Clarke et al., 2001). As the inner disc clears, it becomes optically thin to Lyman continuum
photons such that this mechanism can also explain the rapid clearing of outer parts of the
disc (Alexander et al., 2006a). The predicted lifetime and eventual rapid dispersal of the
PPD in this model is broadly consistent with observations (Alexander et al., 2006b).

I have so far neglected discussion regarding the type of radiation that dominates mass loss
in photoevaporating PPDs since the qualitative behaviour is similar. However, the studies that
I have discussed above consider the EUV photons as the dominant driver of photoevaporative
mass loss (e.g. Hollenbach et al., 1994). Subsequent studies considered X-ray (Ercolano
et al., 2008, 2009; Owen et al., 2010) and FUV (Gorti and Hollenbach, 2009; Gorti et al.,
2009, 2015) induced photoevaporation. Since X-rays and FUV photons penetrate a much
higher column density of neutral gas than EUV photons, they heat gas and drive winds at
larger radii, causing photoevaporation at tens of au from the central star. Similarly, since
higher mass loss rates (∼ 10−8 M⊙ yr−1) are expected when all X-rays and FUV photons
are considered, this implies higher masses for transition discs. This is not supported by
observations (Andrews and Williams, 2007; Cieza et al., 2008, 2010) and this loss rate may
therefore be an overestimate. Later studies have demonstrated that the photoevaporation
rate is dependent on the spectrum of emitted photon energies as well as the disc metallicity
(Ercolano and Clarke, 2010; Nakatani et al., 2018a,b). Ultimately, the relative importance of
photons of different energies is still under debate, and is likely to depend on the properties of
the disc and its host star.

1.2.2 Magnetohydrodynamic winds

Magnetic fields are believed to play an important role in angular momentum transport and
winds in accretion discs in a variety of astrophysical contexts. They represent a mechanism
by which free energy can flow throughout a disc due to differential rotation, and can cause
turbulent heating and outflows. Unravelling their evolution and influence is a hugely compli-
cated problem, involving chemistry, ionisation physics and non-ideal MHD effects. Balbus
(2011) presents a useful overview of the equations that describe the MHD fluid flows in the
context of PPDs, and I review the fundamental concepts here. The velocity vvvs of species s of
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density ρs obeys mass conservation such that:

∂ρs

∂ t
+∇∇∇ ·ρsvvvs = 0. (1.10)

For neutral particles (with subscripts dropped for convenience), the dynamical equation is

ρ
∂vvv
∂ t

+ρ (vvv ·∇∇∇)vvv =−∇∇∇P−ρ∇∇∇Φ− pppni − pppne, (1.11)

where P is the pressure of the neutral particles, Φ is the gravitational potential and pppni, pppne

are the momentum exchanges between neutral particles and ions or electrons respectively.
This momentum exchange is dependent on the density, cross section and relative velocities
of particles. For example:

pppni = ρρiγ (vvv− vvvi) (1.12)

where
γ ≡ ⟨wniσni⟩

mi +mn
(1.13)

is the drag coefficient, σni is the effective cross section for neutral-ion collisions, and wni

is the relative velocity between the two species. Typical values for ⟨wniσni⟩ and ⟨wneσne⟩
are calculated by Draine et al. (1983). In astrophysical contexts, γ ≈ 3× 1013 cm3 s−1 is
typical (the cross-section is inversely proportional to the relative particle velocity – see
also Osterbrock, 1961). Rewriting a version of equation 1.11 for ions and electrons, and
considering a weakly ionised gas where the density of charged species is low, then the
Lorentz force and the momentum exchange between species dominates. Ignoring the rest of
the terms, this yields:

JJJ
c
×BBB = pppin + pppen ≈ pppin (1.14)

where c is the speed of light, momentum exchange is conserved (i.e. pppin = −pppni). The
current density is

JJJ ≡ ene (vvvi − vvve) , (1.15)

where e is the proton charge and J is the current density. Substituting equation 1.14 into
equation 1.11, it is clear that collisional coupling means that the neutral particles are effec-
tively subject to the magnetic Lorentz force in the same manner as charged particles. In fact,
considering the equation of motion for electrons and invoking Ohm’s law and Faraday’s law,
it can be shown that equation 1.11 becomes:

ρ
∂vvv
∂ t

+ρ (vvv ·∇∇∇)vvv =−∇∇∇P−ρ∇∇∇Φ+
1

4π
(∇∇∇×BBB)×BBB. (1.16)
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Considering the force balance equation for electrons, the electric field EEE in the induction
equation ∂BBB/∂ t =−∇∇∇×EEE can be similarly decomposed. The contributions include magnetic
induction, electron collisions (Ohmic resistivity), the influence of a transverse magnetic field
(Hall effect) and neutral–ion collisions (ambipolar diffusion). The full induction equation is
therefore:

∂BBB
∂ t

= ∇∇∇×

 vvv×BBB︸ ︷︷ ︸
Induction

+
c(∇∇∇×BBB)×BBB

4πene︸ ︷︷ ︸
Hall effect

+
[(∇∇∇×BBB)×BBB]×BBB

4πγρρi︸ ︷︷ ︸
Ambipolar diffusion

−ηO∇∇∇×BBB︸ ︷︷ ︸
Ohmic

 , (1.17)

where (Spitzer, 1962; Krall and Trivelpiece, 1973; Jackson, 1975; Blaes and Balbus, 1994):

ηO =
c2

4πσcond
≈ 234

(
n
ne

)
T 1/2 cm2 s−1 (1.18)

is the resistivity for a given conductivity σcond at temperature T . Equations 1.10, 1.16 and
1.17 govern the evolution of a fluid under the influence of a magnetic field in a general sense.

Equation 1.17 highlights the complexity in understanding the evolution of astrophysical
fluids when considering magnetic fields, and the necessity for simplification. The relative
contributions of induction, the Hall effect, ambipolar diffusion and Ohmic resistivity are
considered in detail by Balbus and Terquem (2001, see Balbus 2011 or Armitage 2011 for a
review). Whether each is significant depends on the temperature, density, ionisation fraction
and magnetic field strength. In the limit of a weak magnetic field strength and high density,
equation 1.17 suggests that the contribution of the Hall effect and ambipolar diffusion is
small. If the resistivity ηO is also small, then applying mass conservation (equation 1.10),
then the induction equation 1.17 simplifies and it is straightforward to show that:

∂ΦB

∂ t
=

∂

∂ t

∫
S

BBB ·dAAA+
∮
C

BBB · vvv×dlll = 0 (1.19)

where ΦB is the magnetic flux through surface S , bounded by curve C (composed of
infinitessimal elements dAAA and dlll respectively). Equation 1.19 implies that the magnetic
flux through an arbitrary surface moving in the fluid is constant, which corresponds to the
‘freezing’ of the magnetic field into the fluid element (this is the ideal MHD limit). In this
case and under the assumption that

dΩ2

dr
< 0, (1.20)

(true for Keplerian discs) then a magnetic torque is present between annuli in a disc such
that angular momentum is transported outwards and the torque in turn grows; this is the
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magnetorotational instability (MRI – see Balbus and Hawley, 1998, for a review). The extent
to which MRI influences cool, dense PPDs remains an unanswered question, since it is
marginal whether the diffusive influence of non-ideal MHD effects dampen the growth of
the instability. A ‘dead zone’ where MRI is suppressed is expected in the midplane, while
MRI may be able to operate close to the central star (for radii r ≲ 0.1 au) and in the surface
layers where ionisation is sufficient (Gammie, 1996). However, depending on physical
assumptions including the dust properties within a PPD, it is possible that MRI mediated
angular momentum transport is insufficient to induce observed accretion rates; ambipolar
diffusion can suppress the instability in the rarefied and ionised upper layers of the PPD (Bai
and Stone, 2011; Mohanty et al., 2013; Dzyurkevich et al., 2013; Bai and Stone, 2013).

Magnetic fields can also induce accretion by MHD winds due to centrifugal acceleration
of gas along magnetic field lines. The theoretical description of winds driven by MHD effects
was put forward by Blandford and Payne (1982), who used the influence of magnetic fields
primarily to explain angular momentum loss in accretion discs around black holes, as well
as the drivers of extended radio jets observed around active galactic nuclei (see also Pudritz
and Norman, 1983). This prescription has since been extended to various physical limits,
geometries and scaling laws (e.g. Li et al., 1992; Contopoulos and Lovelace, 1994; Sauty and
Tsinganos, 1994), although the fundamental principles remain similar. Broadly, these studies
consider physical quantities that are conserved along the poloidal field lines. These constants
are derived from the continuity and induction equations, as well as the conservation of
specific angular momentum and energy. The centrifugal force and the gradient in the toroidal
magnetic field balance with the temperature gradient and gravity to dictate the acceleration
of gas along the field lines.

To quantify this process in PPDs, Bai and Stone (2013) used stratified shearing box
simulations to show that magnetic fields can launch winds from ∼ 2H above the midplane,
resulting in accretion rates that match observations (a conclusion that is supported by later
global simulations – e.g. Gressel et al., 2015). Bai et al. (2016) subsequently developed a
simplified 1D model (a generalisation of the earlier prescription of Weber and Davis, 1967)
for the wind kinematics based on the local simulations that include microphysics. The authors
highlight that magnetically driven winds are intrinsically dependent on the ionisation of
surface layer gas induced by FUV photons from the central star. Thus, the interplay between
photoevaporation and MHD effects is important for disc evolution and dispersal. Broadly,
increasing the penetration of FUV photons into the disc surface increases the mass loss in the
wind without altering the accretion rate, while increasing the poloidal magnetic field (which
is related to the toroidal component – Kudoh and Shibata, 1997) increases the ratio of the
accretion rate to the mass loss in the wind.
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While further investigation into MHD within PPDs is required, particularly in linking
theoretical predictions to observed disc properties, magnetic winds are expected to be a
significant driver of their evolution. MHD effects can give rise to the two timescale behaviour
characteristic of PPD evolution as in the case of photoevaporation if there is a transition
to magnetic wind dominated angular momentum loss over the course of the disc lifetime
(Armitage et al., 2013; Bai, 2016). In this paradigm, the timescale for disc dispersal would
crucially depend on the magnetic fields in the collapsing primordial gas and the subsequent
flux transport throughout the disc, which is in turn related to disc microphysics (Bai and
Stone, 2017). MHD winds have also been used to explain the high accretion rate onto HL Tau
without invoking a degree of turbulence that would be difficult to reconcile with the observed
dust settling (Hasegawa et al., 2017). Fang et al. (2018) used observations of forbidden lines
in PPDs to trace gas kinematics, which they find to be consistent with magnetic winds driven
from disc radii 0.1au ≲ r ≲ 10au. Future studies may clarify how MHD effects couple with
photoevaporation, and how observational signatures can distinguish their relative importance
and interplay (Pascucci et al., 2018).

1.2.3 Giant planet formation

The presence of giant planets significantly influences the architecture of planetary systems
and allows molecules (particularly volatiles) to be distributed to terrestrial planets in the
habitable zone (Chambers and Wetherill, 2001; Horner and Jones, 2012; Grazier, 2016;
Agnew et al., 2018). They also represent a significant portion of the total mass of the PPD
from which they form, and hence wherever they are found they must have contributed to
some degree to the dispersal of their progenitor. Since this work is concerned with the
evolution of planet progenitors, I restrict attention here to this latter point. I briefly review
the two main models for giant planet formation: core accretion and gravitational instability.
We will see that the latter only acts on massive (young) discs, and is therefore not a dispersal
mechanism per se; it is included here for completeness.

Core accretion

The growth of a giant planet by core accretion begins in the same manner as for terrestrial
planets (Safronov and Zvjagina, 1969; Goldreich and Ward, 1973; Pollack et al., 1996). In
this scenario, dust grains gradually coagulate into larger particles, and settle towards the
midplane as they reach centimetre sizes (see Testi et al., 2014, for a review of dust evolution
in PPDs). These particles then aggregate to form planetesimals of kilometre size scales. Early
models for the growth of these planetesimals assumed accretion is dominated by pair-wise
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collisions, a process that would require long timescales and low dynamical temperatures. In
fact, the velocities of planetesimals are sufficiently high to induce significant scattering and
orbital excitation such that growth rates are too low (Levison et al., 2010). Instead, pebble
(millimetre to centimetre) sized objects are accreted much more easily onto a planetesimal
since gas drag reduces the relative velocity as the pebble passes (Johansen and Lacerda,
2010; Ormel and Klahr, 2010). Since a large amount of mass has been found in pebbles in
PPDs (e.g. Testi et al., 2003), this mechanism offers an attractive solution to the problems
associated with pair-wise growth (e.g. Brauer et al., 2007; Zsom et al., 2010). Interaction
between the dust/pebbles and the gas can also lead to instabilities (such as the streaming
instability) that induce high concentrations solid material and promote rapid growth (e.g.
Youdin and Goodman, 2005; Chiang and Youdin, 2010; Dra̧żkowska and Dullemond, 2014;
Squire and Hopkins, 2018).

Once a planet core has reached a sufficient mass, the escape velocity at the surface will be
greater than the thermal energy of the surrounding gas and it can accrete an envelope around
the solid core. Further accretion is initially regulated by the pressure effects of the existing
envelope and the influence of perturbations. However, if a planet is born in proximity to a
sufficient reservoir of material then eventually the pressure gradient will be overcome by
gravity and the envelope will undergo collapse. In the case of giant planet formation, this
leads to increased surface gravity and more accretion, thereby initiating a phase of runaway
accretion where the planetary growth rate accelerates. This latter stage is rapid, and the total
timescale for Jupiter analogs in the core accretion scenario is expected to be on the order of
Myr (Lissauer, 1987), approximately coinciding with the timescale for disc evolution and
dispersal.

Gravitational instability

Stars form by the gravitational collapse of material onto a core, and this gravitational
instability (GI) has also been proposed as a viable scenario for the formation of giant planets
in a sufficiently massive PPD (Kuiper, 1951; Cameron, 1978; Boss, 1997). In this case,
planets quickly form on the orbital timescale τorb. = 2π/Ω (∼ 1000 yr for material close to
the edge of the disc) directly from the collapse of the gaseous disc. The heavy elements in the
core are then deposited as the cores accrete material (dust and/or planetesimals) over longer
timescales. The threshold at which material in a self-gravitating disc undergoes collapse is

Q =
csκ

πGΣ
< 1, (1.21)
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where κ is the local epicyclic frequency. The value of the Toomre (1964) Q in equation
1.21 is the ratio of pressure and rotation support against collapse versus the influence of
self-gravity (Safronov, 1960). For discs that are sufficiently cold (low cs) or massive (high Σ)
fragmentation and massive planet (or brown dwarf) formation proceeds rapidly. Otherwise,
planet formation can only proceed by the slower bottom-up core accretion process. As an
approximate guide, a PPD is likely to be GI either if it exhibits significant local density
fluctuations or has a mass M ≳ 0.1m∗ (Boss, 2002).

Finding observational evidence for PPDs undergoing collapse is challenging both because
the process is innately shortlived and because the spiral density waves induced in GI discs
can also be explained by massive planets/companions (e.g. Meru et al., 2017). Additionally,
GI induced density waves transport angular momentum outwards and mass inwards (Lynden-
Bell and Kalnajs, 1972; Durisen et al., 1986). In general this leads to depleted, extended
discs as for the viscous transport mechanisms discussed in Section 1.1, although whether an
α formulation is appropriate is dependent on the host mass–disc mass ratio (Forgan et al.,
2011). For massive discs thats are unstable, variable accretion is expected (e.g. Zhu et al.,
2009, 2010; Vorobyov and Basu, 2010), and GI has been suggested as the driver of bursts of
high accretion observed in many discs in events named after the first such case, FU Orionis
(Herbig, 1977; Stamatellos et al., 2011, 2012). This hypothesis is supported by the finding
that FU Orionis discs are generally very massive, with M ∼ 0.05–0.5M⊙ (Cieza et al., 2018).
In this case, gravitational stability limits the mass of a PPD at early times, and is a viable
mechanism for the formation of the most massive planets on short timescales. However, GI is
not a mechanism for disc dispersal since it operates exclusively on massive discs. Therefore,
if it is found to contribute significantly to the overall population of giant planets, then this
would indicate a reduced importance of giant planet formation as a dispersal mechanism with
respect to wind driven mass loss.

1.3 Environment and PPDs

I have so far limited discussion to processes which govern isolated disc evolution. However,
stars do not in general form in isolation and spend their first few Myr (during the time
they host PPDs) in gravitationally bound clusters or unbound associations (Lada and Lada,
2003; Kruijssen, 2012). In such regions of enhanced stellar density, it is possible that stellar
neighbours interact with a PPD, influencing its evolution. Indeed, the outer radii of discs in
the sample collected by de Juan Ovelar et al. (2012) are reduced at stellar surface densities
Σstars ≳ 103.5 stars/pc2. If these interactions reduce the time and mass available for planet
formation then exoplanet properties may be a function of the environment a star is born
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into. Quantifying the stellar feedback on discs is therefore important in understanding planet
formation in general. This is especially true since star formation conditions (and the resultant
stellar birth environments) in the solar neighbourhood are not representative of the vast
majority of star formation over the history of the universe. Therefore the considerations I
outline in this section, and will continue to address throughout this thesis, are necessary if we
want to generalise what we learn from local planet formation to the diverse range of observed
star forming regions.

In the remainder of this section, I will first introduce two mechanisms by which stellar
neighbours can influence disc evolution: tidal encounters (Section 1.3.1) and external photoe-
vaporation (Section 1.3.2). In Section 1.3.3 I will review some relevant issues pertaining to
the birth environment of the stellar hosts of PPDs.

1.3.1 Star-disc encounters

In regions of enhanced stellar density and multiplicity, one might expect some fraction of
stars to experience a close encounter with their neighbours. If this happens while a PPD
is present, then that disc is subject to the gravitational perturbations due to the passing star.
This possibility has been considered by numerous investigations that have aimed to assess
the degree to which encounters alter PPD evolution. Theoretical works have quantified
how the resonances induced throughout a disc drive angular momentum loss and truncation
(Goldreich and Tremaine, 1978; Lubow, 1981; Ostriker, 1994; Ogilvie, 2002). More recently,
simulations have been applied to investigate the phenomenon. This has included parameter
exploration of individual encounters using test particles (Clarke and Pringle, 1993; Hall
et al., 1996; Pfalzner et al., 2005a,b; Lestrade et al., 2011; Breslau et al., 2014), statistical
investigation of cluster dynamics combined with theoretical results (Olczak et al., 2006;
Vincke and Pfalzner, 2016), and hydrodynamical simulations of star cluster formation and
disc interactions (Boffin et al., 1998; Watkins et al., 1998a,b; Bate, 2012). Some studies have
even fully simulated the hydrodynamic evolution of PPDs evolving in a clustered environment
for timescales long enough to investigate the influence of encounters (Rosotti et al., 2014;
Bate, 2018), however it is not presently practicable to use such computationally expensive
simulations to perform parameter space exploration or even evolve a single simulation for
∼ 10 Myr.

In general the influence of stellar encounters can be divided into two types: encounters
within stellar multiple systems (including binaries) and encounters with neighbouring stars
that are unbound. For convenience, I will label these type I and type II tidal encounters
respectively. Type I can be interpreted as a process that contributes to global PPD initial
conditions, since they primarily influence discs at the beginning of their lifetime. Additionally,
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there remains limited evidence that stellar multiplicity is dependent on environment (Correia
et al., 2013, but see Duchêne and Kraus 2013 for a review). It follows that the influence
of type I encounters on PPDs is practically independent of environment on spatial scales
larger than the bound system. In contrast, type II encounters occur throughout the lifetime of
the PPD (and indeed the host star) and can therefore be considered a dispersal mechanism.
They are also clearly dependent on the environment a star is born into as the frequency of
encounters increases with the density of stars and their relative velocities. I will review
studies on disc evolution under the influence of each of these two encounter types below.

Type I: Encounters in stellar multiple systems

Around half of all stars are believed to form in stellar multiple systems (Raghavan et al.,
2010), implying that type I encounters should be frequent. This hypothesis is supported by
simulations of star formation and disc evolution presented by Bate (2018), which indicate
that early encounters do occur during the decay of higher order stellar multiplicity. However,
finding direct observational evidence of a PPD influenced by type I perturbations is chal-
lenging since they occur on short ∼ 1000 yr timescales, and only the strongest (prograde
and/or close) encounters leave clear signatures in the disc (e.g. Muñoz et al., 2015; Cuello
et al., 2019). In addition, since stellar multiplicity (and by extension the influence of type
I encounters) is nearly independent of environment, comparisons between different disc
samples are not helpful in quantifying their influence. However, some individual examples of
these encounters have been found in multiple systems. Observations by Cabrit et al. (2006)
of the extended structure around RW Aurigae have been successfully modelled as spiral
arms induced by a binary interaction (Dai et al., 2015). Recently, similar features have been
observed in the discs evolving in the triple systems AS 205 and HT Lup (Kurtovic et al.,
2018). We might further subdivide these type I encounters into those that occur regularly
within a bound multiple system that is stable or quasi-stable, and those single encounters that
occur during the chaotic decay of a higher order multiple. I will call these type Ia and Ib
respectively. Evidence of the first observed encounter in a presently unbound or marginally
bound system (indicating a type Ib or type II interaction) is presented in Chapter 2.

The decay of higher order systems is a chaotic process, thus it is difficult to make
general statements about the degree of tidal truncation experienced in such a scenario (a
type Ib encounter). Instead, the theoretical treatment of disc evolution in multiple systems is
restricted to the case of binary systems (type Ia). Papaloizou and Pringle (1977) calculated
the evolution of PPDs under the influence of a torque induced by a close binary companion
and found that the perturbations shorten the disc lifetime to a degree, dependent on the
viscous evolution of the disc. In this case, the maximum disc extent is always within the
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Roche lobe (see also Paczynski, 1977; Armitage et al., 1999). Daemgen et al. (2013) found
lower accretion rates for tighter binary separations in Chamaeleon I, implying reduced disc
masses. This indicates that binary interaction indeed shortens the PPD lifetime. Additionally,
comparisons to discs around binaries in the Orion Nebula Cluster (ONC – Daemgen et al.,
2012) led the authors to conclude that the effect of binaries on PPD evolution is independent
of environment. To fully quantify the influence of both binaries and chaotic higher order
systems, a robust statistical understanding of primordial stellar multiplicity and star formation
processes is required. Either further full hydrodynamic simulations of star formation in the
style of Bate (2018) or physically motivated N-body initial conditions including multiples
are likely to be necessary for this purpose.

Type II: Individual encounters

The influence of type II interactions is strongly dependent on the stellar environment, since
the density of stars and the dispersion of velocities dictate the timescale on which stars
encounter each other. Many studies have used N-body simulations to investigate how many
type II encounters occur in a stellar cluster for given initial conditions. For example, Olczak
et al. (2006) suggest that encounters have a significant influence on up to ∼ 15% of PPDs
in the core of the ONC. Other studies have investigated how sub-structure within a young
cluster can enhance local densities and therefore encounter rates (e.g. Craig and Krumholz,
2013). In an environment with fixed properties the frequency of type II encounters can also
be written analytically. I will refer to the differential encounter rate multiple times in the
following chapters and I review relevant equations here. Following Ostriker (1994, see also
Binney and Tremaine 1987), the differential encounter rate dE can be expressed in terms of
the impact parameter b. We consider a disc perturbed by a star with mass M2 with relative
velocity vvv∞ in the limit of large separation (and v∞ ≡ |vvv∞|). The region is assumed to have
some effective stellar density neff, a stellar initial mass function (IMF) ξ and the distribution
of v∞ of neighbours relative to a given star is g(v∞). Then the differential encounter rate can
be written:

dE = 2πbv∞neffg(v∞)ξ (M2)dbdv∞ dM2 (1.22)

The impact factor can in turn be related to the closest approach distance xmin:

b2 = x2
min

(
1+

2GMtot

v2
∞xmin

)
, (1.23)

where Mtot ≡ M1 +M2 is the total mass of the two stars (M1 is the mass of the host star).
For simplicity, we consider a cluster with a Maxwellian velocity distribution, with one



18 Introduction

dimensional velocity dispersion σv, which yields:

g(v∞) =
4πv2

∞

(4πσ2
v )

3/2 exp
(
− v2

∞

4σ2
v

)
. (1.24)

We define V 2 ≡ v2
∞/4σ2

v , then the differential encounter rate for a star of mass M1 is

dE = η(xmin,V 2, M2; M1)dxmin dV 2 dM2, (1.25)

where

η ≡ 2
√

πGMtotneff

σv

(
1+

4σ2
v xminV 2

GMtot

)
exp(−V 2)ξ (M2). (1.26)

In the case that we are considering a cluster comprised of stars with a single mass m̄∗, then
the IMF becomes a Dirac delta-function ξ (m∗) = δ (m∗− m̄∗).

A prescription for the influence of a given encounter is required to use equation 1.25 in
quantifying the influence of type II encounters. Such a prescription has been approached
analytically (Goldreich and Tremaine, 1979; Lubow, 1981; Ostriker et al., 1992; Ostriker,
1994) and using N-body simulations to model close encounters (Clarke and Pringle, 1993;
Hall et al., 1996; Pfalzner et al., 2005b,a; Breslau et al., 2014). The problem with the analytic
approach is that it is not possible to treat the closest (and most damaging) encounters with
a linearised theory, and so far no adequate comparisons have been made with simulations
(hydrodynamic or N-body – see Chapter 3). The computational approach suffers from a
large parameter space that is necessary for the range of encounters experienced by stars
evolving in clusters. While the numerical studies have yielded prescriptions for the truncation
radius and/or mass loss, this is usually achieved by fixing some combination of the trajectory
eccentricity, mass ratio of the stars and the disc orientation. In particular, studies that apply
these prescriptions often assume that the encounter is always prograde and parabolic (e.g.
Olczak et al., 2006; Pfalzner et al., 2006), which have the greatest tidal influence on a PPD
(e.g. Clarke and Pringle, 1993; Ostriker, 1994). These issues are addressed in Chapter 4.

1.3.2 External photoevaporation

Similarly to internal photoevaporation, external photoevaporation is a process by which PPDs
can become dispersed by high energy photons that heat the disc and drive thermal winds.
The difference is the source of these photons, with external photoevaporation referring to
heating sources that are neighbouring massive stars as opposed to the PPD host star. The
first evidence that external photoevaporation occurs were the observations of ‘proplyds’
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close to θ 1 Ori C in the ONC, exposed to an FUV flux FFUV ∼ 5 · 104 G0
1 (O’Dell et al.,

1993; O’Dell and Wen, 1994). These proplyds are cometary-like structures that are strongly
irradiated by an ionising source; the ionisation front in this context is what gives rise to their
characteristic shape (see Johnstone et al., 1998). More recently, proplyds have been found
at much more moderate FFUV ≲ 3000G0 (Kim et al., 2016). Additionally, the absence of a
proplyd only indicates that the ionisation front (the location outside which Lyman continuum
photons ionise the gas) is not visible, and does not imply mass loss is not being induced by
the incident photons. Haworth et al. (2017) found that photoevaporative winds are driven by
external irradiation in the extended (∼ 900 au) disc around IM Lup, exposed to FFUV ≲ 4G0

(Cleeves et al., 2016). Additionally, Guarcello et al. (2016) found that the fraction of stars
with surviving PPDs in the massive Cygnus OB2 association decreases with increasing FFUV

in the range 103 – 104 G0. Taken together, these observations strongly suggest that PPD
evolution is significantly altered by massive neighbouring stars.

Mass loss due to external photoevaporation proceeds in the form of a thermal wind driven
from the edge of the PPD, unlike in the case of internal photoevaporation where winds are
launched close to rg. In a sense this outside-in clearing might be expected to be inefficient at
dispersing the disc, since when the disc is depleted down to small radii the potential from the
central star is large and mass loss due to the thermal wind decreases. In the absence of viscous
torques, this negative feedback influence would effectively limit photoevaporative mass loss
at late times. However, disc viscosity speeds up PPD dispersal in two important ways. First
of all, disc material at the outer edge (where it can be more effectively photoevaporated) is
replenished by viscous expansion. Therefore, if the irradiating flux is sufficient, the outer
radius is set by a balance of viscous expansion and photoevaporative mass loss. Secondly,
external photoevaporation effectively cuts off the viscous redistribution of mass to the inner
parts of the disc where angular momentum transport is rapid. This has the same influence on
dispersal as internal photoevaporation, illustrated in figure 1.1, where the inner material is
rapidly accreted once the mass reservoir of the outer disc is depleted. Thus, in the absence of
a viscous disc evolution model, PPD dispersal timescales due to external photoevaporation
will be overestimated.

Johnstone et al. (1998) quantified the influence of extreme FUV and EUV flux on an
extended PPD (see also Störzer and Hollenbach, 1999). In the case of external photoevapo-
ration, X-ray photons have to penetrate a large column density of neutral gas and will only
dominate heating and dictate mass loss if they can dominate ionisation close to the disc edge.
Tielens and Hollenbach (1985) calculate that this happens when the distance to the ionising

11G0 ≡ 1.6×10−3 erg cm−2 s−1 is the Habing (1968) unit, the average FUV flux in the solar neighbourhood.
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source is:

d < 0.1

√
LX

1032 ergs−1 pc, (1.27)

where LX is the X-ray luminosity. In practice this is rarely the case (Lepp and McCray, 1983).
Past studies have therefore focused on the contribution of FUV and EUV photons. The nature
of the thermal wind depends on the energy of photons that predominantly drive it; I review
the two cases below.

Fig. 1.2 Schematic diagram of a PDR for gas exposed to a strong FUV flux, taken from
Tielens and Hollenbach (1985). At low visible extinction AV , gas is entirely dissociated
(atomic) with some singly ionised elements with ionisation energies below the Lyman limit.
The PDR region stretches to the transition between O/O2.

FUV dominated flow

For FUV dominated photoevaporation, the thermal pressure at the surface of the PPD is set by
the heating due to FUV photons, which dissociate molecules and create a photodissociation
region (PDR – see Tielens and Hollenbach, 1985; Hollenbach and Tielens, 1997). Figure 1.2
is a schematic diagram of a PDR from Tielens and Hollenbach (1985). At the surface of the
PDR, temperatures reach up to T ∼ 1000 K, but the gas remains largely neutral. At AV ∼ 5
ionised carbon transitions to atomic carbon and warm CO, while for AV ≳ 10 oxygen is also
in its molecular form. Many heating mechanisms raise the temperature of the gas throughout
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the PDR. Broadly, these are: photoelectric heating via the dust, collisions between dust/gas
and electronic (de-)excitation. Cooling is dictated by infrared atomic fine-structure lines and
by low energy molecular rotational lines.

The distinct regions through which an FUV driven flow from a supercritical (rd ≳ rg)
disc passes are indicated schematically in figure 1.3a from Johnstone et al. (1998). At the
base of the flow, pressure gradients drive winds at velocity v0 and the density (which is n0 at
the base). The FUV irradiated PDR is effectively a contact discontinuity, hence if the density
(velocity) of the flow inside and outside the ionisation front at radius rIF ≫ rd are nI (vI) and
nII (vII) respectively, we have:

nIvI = nIIvII (1.28)

and
nI
(
v2

I + c2
sI

)
= nII

(
v2

II + c2
sII

)
. (1.29)

Since vII ∼ csII and the ionised gas (r > rIF) has a sound speed csII > csI , we have:

vI ≈
c2

sI

2csII

<
csI

2
. (1.30)

For strong FUV flux, the pressure gradient in the PDR is sufficient to drive supersonic flows
from within the PDR. Then equation 1.30 implies that at some radius rs, the neutral wind
hits a shock front. Inside this radius, the velocity of the flow remains approximately constant
(pressure gradients are inefficient at accelerating transonic gas) and the density scales with
r−2 to conserve mass flux. Outside of this radius, the velocity of the PDR flow scales with
r−2 at constant density to once again conserve mass flux. At a radius rIF > rs the wind
meets an ionisation front, outside which the wind is exposed to Lyman continuum photons
that do not penetrate the PDR. In this case, causality implies that FUV flux dictates the
photoevaporative mass loss rate.

The mass loss rate Ṁ from the edge of the disc is dependent on the FUV field strength.
Regardless of the mechanism (EUV or FUV), we have:

Ṁwind,ext. = 4πF r2
dµmHn0v0 (1.31)

where rd is the outer radius of the disc, mH is the hydrogen mass, and F is the fraction of the
solid angle subtended by the disc edge. In the case of FUV driven winds, the value of v0 is
dependent on the temperature in the PDR, which is in turn dependent on the FUV flux FFUV.
However, for FFUV ≳ 104 G0 the temperature of the PDR (and therefore the mass loss rate)
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is relatively insensitive to FFUV, or equivalently the distance d to the FUV source (Tielens
and Hollenbach, 1985).

The mass loss rate Ṁwind,ext. is dependent on the density at the base of the flow n0 (which
is related to the disc mass), disc outer radius, the mass of the host star and the FUV field
strength. Much of the physics of the problem is contained within v0, the velocity at the base
of the flow. Johnstone et al. (1998) assumed reasonable values based on the PDR temperature
at in the limit of large FFUV ≳ 104 G0 and supercritical discs with rd > rg. However, to find
a more general solution, full PDR calculations must be coupled with the hydrodynamic
properties of the disc. This was the approach of Adams et al. (2004), who used the PDR
treatment by Kaufman et al. (1999) coupled with a solution to the steady-state momentum
and continuity equations to calculate the mass loss rates with rd < rg. In fact, that study
found that considerable thermal winds are driven down to rd ∼ 0.15rg. This treatment
was developed further by Facchini et al. (2016), who applied updated PDR calculations
by Bisbas et al. (2012). By also calculating the location of rg self-consistently they found
significantly different mass loss rates and greatly expanded the parameter space to more
moderate FFUV and larger radii. Additionally, they found that the growth of dust grains within
a PPD leads to much higher mass loss rates even down to FFUV ∼ 30G0 due to a smaller
FUV opacity (and therefore greater penetration of FUV photons into the gas). This suggests
that photoevaporation plays a much more important role in a wider range of environments
than was previously thought. Recently Haworth et al. (2018a) presented a full grid of mass
loss rates applying this method over a broad parameter space.

EUV dominated flow

Lyman continuum photons can dominate the flow in the limits of small and large distances
from an ionising source. If the number of incident EUV photons is sufficiently large, the
ionisation front lies close to the edge of the disc and the subsonic shell dominates the column
density (McCullough et al., 1995). In this case, the radius of the shock front rs lies close
to the edge of the disc, and in the limit rIF ≲ 2.5rd the radius of the shock front would be
rs < rd. Physically, this suppresses the shock; the wind is launched at a subsonic velocity and
mass loss is dictated by the EUV photons that drive supersonic winds outside rIF. Similarly,
if the FUV flux is low such that the PDR region is sufficiently thin, then the pressure gradient
is small and the associated flow remains subsonic, while the gas is approximately constant
density along the streamlines. Once again, the mass loss rate in this scenario is dictated by
the supersonic wind at the ionisation front. Hence, EUV dominates the flow in the close and
distant regimes. The exact range of distances is dependent on the stellar mass of that source,
but in general EUV driven mass loss is expected for distances d ≪ 0.1 pc from a massive star
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(a) FUV dominated flow (b) EUV dominated flow

Fig. 1.3 Schematic diagrams from Johnstone et al. (1998) showing the distinct regions passed
through by FUV dominated (figure 1.3a) and EUV dominated (figure 1.3b) photoevaporative
flows from the outer edge of an externally irradiated PPD in the supercritical regime.

(see Johnstone et al., 1998, and Chapter 5). In both the distant and close regimes the flow is
characterised by a neutral, subsonic wind from the edge of the disc, as shown in figure 1.3b.

1.3.3 Star formation environments

To understand the relative importance of the environment for disc evolution, not only must
the influence of neighbours on a PPD be quantified, but also the range of stellar birth
environments that physically exist. Scally and Clarke (2001) find that type II encounters are
likely to be less efficient at dispersing PPDs than external photoevaporation in the case of
the ONC. However, the literature presently lacks comparisons between type II encounters
and photoevaporation in a general sense. Fatuzzo and Adams (2008) assumed a canonical
density profile within stellar clusters and combined it with the observed distribution of
the total number cluster members Nc in the solar neighbourhood (assuming Nc < 105, and
using the cluster sample compiled by Lada and Lada, 2003) to estimate the influence of
photoevaporation over all stars. However, specific star formation environments were not
considered in that study; modelling individual young stellar populations is necessary to
compare with observations and test the theory (see Chapter 5). Additionally, the expected
environment distribution for PPDs has not yet been linked to star formation theory (see
Chapter 7).

Star formation is a broad topic spanning galactic down to stellar spatial scales. It is
governed by the evolution of self gravity, magnetic fields and turbulence in a primordial
giant molecular cloud (GMC – see reviews by Shu et al., 1987; McKee and Ostriker, 2007;
Krumholz, 2014). The physics of this process is largely tangential to the evolution of PPDs;
however, of interest here are the initial conditions of stars that result from the collapse of the
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primordial gas. In particular, the local stellar density is important in quantifying the influence
of tidal encounters, while the total mass of the cluster or association is indicative of the most
massive neighbouring stars (and corresponding FUV luminosity). Finally, the period during
which stars and gas coexist within a region (the embedded phase) is important since the gas
contributes to the gravitational potential (increasing the overall density) and causes extinction
(reducing the FUV flux). Ultimately, these properties are determined by the GMCs that are
the progenitors of clusters and associations.

It is now understood that the properties of GMCs are variable depending on the galactic
scale ISM properties (e.g. Longmore et al., 2014; Adamo et al., 2015; Reina-Campos and
Kruijssen, 2017). Recent studies have found that the density threshold required for star
formation to proceed is at least an order of magnitude higher in the central 250 pc in
galactocentric radius (the central molecular zone, CMZ) than in the solar neighbourhood
(Longmore et al., 2013; Ginsburg et al., 2018). Given that at higher densities, star-disc
encounters are more frequent and FUV fields are stronger, we would expect PPD lifetimes to
be reduced in the CMZ with respect to the Galactic disc. Indeed, preliminary studies into
the PPD population towards the CMZ indicate low disc survival fractions in young stellar
populations (Stolte et al., 2010, 2015). Below I will briefly review some considerations in
quantifying the environments of PPDs; I present a quantative approach in Chapter 7.

Density distribution

A density continuum well describes the distribution of primordial gas (Vazquez-Semadeni,
1994; Padoan and Nordlund, 2002; Hill et al., 2012) and stars (Bressert et al., 2010; Kruijssen,
2012). The distribution can be understood by considering a turbulent velocity field within a
GMC that is supersonic beyond some length scale. The turbulence on these length scales
can be understood as many independent interactions that operate to compress or rarify
the local gas density. This naturally gives rise to a lognormal density distribution that is
scale free above the minimum length-scale upon which turbulent velocities are supersonic
(Vazquez-Semadeni, 1994; Passot and Vázquez-Semadeni, 1998). This principle is borne out
by numerical simulations of turbulent star formation (Nordlund and Padoan, 1999; Klessen,
2000; Ostriker et al., 2001; Li and Nakamura, 2004). The overall distribution of gas density
is therefore quantifiable by understanding the mean density at the scale of interest. The
corresponding stellar density is then dependent on the star formation efficiency (SFE), which
is a function of the local gas overdensity (e.g. Krumholz and McKee, 2005; Kruijssen, 2012).
Thus, the stellar density distribution can be related to the average primordial gas density on a
given spatial scale.



1.3 Environment and PPDs 25

Cluster mass distribution

The word ‘cluster’ in this context requires discussion, since it strictly refers to a gravitationally
bound group of stars, while groups of stars that are unbound are referred to as ‘associations’.
However, since disc evolution occurs on relatively short timescales compared to the dynamical
evolution of a stellar population (∼ 100 Myr for typical open clusters), the distinction between
bound and unbound groups in this context is of secondary importance. I will therefore
generally refer to stellar clusters throughout this work, where this is understood to refer to
the initial group of stellar objects irrespective of their dynamical state.

As discussed above, stars form over a continuum of densities such that any definition of
a group of stars is to some extent arbitrary; however, there are physical limits on the sizes
and masses of observed GMCs and it follows that there are also limits on the minimum and
maximum number of local stellar members. Star formation physics governs the distribution
of the number of associated members Nc (or cluster mass Mc). Reina-Campos and Kruijssen
(2017) quantified the maximum Mc expected as a function of the galactic scale primordial gas
properties by considering the maximum length on which that gas is unstable to perturbations
(which is the Toomre, 1964, length). Recently, Trujillo-Gomez, Reina-Campos and Kruijssen
(in prep.) have quantified the bottom of the cluster formation hierarchy by considering
the limit at which high SFE leads to merging of lower mass stellar groups. Between these
upper and lower limits, the initial cluster mass function (ICMF) is determined by the (scale-
free) fractal collapse of molecular clouds, giving rise to a power law with an index β ≈ 2
(Elmegreen and Falgarone, 1996; Guszejnov et al., 2018). Thus, both the stellar density
distribution and the ICMF can be quantified to understand the environmental conditions
experienced by young stars and their PPDs.

Embedded phase

Since star formation across a cluster (or GMC) proceeds on a similar timescale to PPD
evolution, it is necessary to consider the epoch during which primordial gas coexists with the
stars, called the ‘embedded phase’. The primordial gas in young clusters could influence disc
evolution by increasing the gravitational potential (and stellar densities), causing extinction
of photons (reducing incident EUV or FUV flux), and ram pressure stripping or accretion.
The degree to which these mechanisms influence PPD populations is poorly constrained,
since numerically calculating the evolution in a full hydrodynamic simulation is expensive
(although see Bate, 2018).

The evolution of gas in a GMC during the star formation epoch remains a broad and
challenging problem. During the embedded phase, where gas coexists with massive stars,
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radiative feedback gives rise to HII regions that can expand and clear out large regions of gas.
Some numerical studies have found this expulsion mechanism is efficient, and gas is lost in
Myr timescales (e.g. Walch et al., 2012; Colín et al., 2013; Ali et al., 2018). Others have
found that accretion flows and high escape velocities can make the feedback less efficient
(Matzner, 2002; Dale et al., 2005; Dale and Bonnell, 2011). In the latter case, gas may persist
until a supernova injects it with sufficient momentum to drive expulsion (Pelupessy and
Portegies Zwart, 2012; Walch and Naab, 2015). Ultimately, the evolution of the embedded
phase is likely to be sensitive to the properties of the primordial GMC.

1.4 Dissertation overview

In the following chapters, I will discuss issues pertaining to the role of external influences in
the evolution of protoplanetary discs. I will begin in Chapter 2 by reviewing the evidence for
the first example of a historic (type Ib) encounter between HV Tau C and DO Tau, which I
suggest were initially part of a quadruple multiple system.

In Chapter 3, I build on the linearised theory of angular momentum loss in discs as a result
of distant tidal encounters, additionally comparing the theory to N-body and SPH simulation
results in two and three dimensions. I use these predictions to quantify the influence of many
distant type II encounters in clustered environments.

I develop a complete prescription for the influence of close encounters on PPD radius in
Chapter 4. This includes a parameter space exploration of the encounter eccentricity, ratio of
stellar masses and closest approach distance. Subsequently, I implement this prescription into
a Monte Carlo model and make further statistical arguments to draw conclusions regarding
the environmental conditions where tidal encounters are significant.

Type II encounters are compared with the influence of external photoevaporation in
Chapter 5. To achieve this, I quantify the destruction timescale of an externally irradiated,
viscously evolving PPD as a function of FUV flux. By using the observed properties of
young stellar clusters I calculate the density and flux throughout real regions. The timescales
for PPD depletion by tidal encounters and external photoevaporation can then be compared
across these regions.

Chapter 6 incorporates external photoevaporation into a full dynamical model for the
specific case of the massive Cygnus OB2 association. I use the viscous disc model with FUV
induced mass loss to calculate the evolution of the PPD population to reproduce the surviving
disc fractions found by (Guarcello et al., 2016). I apply my models to make predictions
regarding signatures of photoevaporation in the region.
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I illustrate how future studies may be able to relate the findings presented in the above
chapters to a more general distribution of stellar birth environments as a function of galactic-
scale star formation in Chapter 7. This provides context for the evidence I discuss throughout
this work for externally induced disc dispersal locally, since regions where dispersal mecha-
nisms are efficient are more frequent in certain spatial and temporal locations throughout
the universe. I draw conclusions about the importance of understanding externally induced
disc dispersal, and indicate how future studies may approach observationally testing and
quantifying planet formation processes in light of these findings.





Chapter 2

A historic type Ib encounter: HV and
DO Tau

This chapter is based on Winter et al. (2018a), for which I ran the simulations, performed the
analysis and wrote the majority of the text.

2.1 Introduction

In Chapter 1, I introduce the distinction between type I star-disc encounters that occur during
the evolution of multiple systems independently of the cluster environment, and type II
encounters between individual stars that are dependent on the local stellar density. All
previous studies that have found observational signatures of tidal disruption of a PPD have
done so in stellar multiple systems (type I encounters – Dai et al., 2015; Kurtovic et al.,
2018). A further distinction exists between encounters that occur frequently in a stable
multiple system or binary (type Ia) and during the decay of a multiple system (type Ib). The
latter is likely to be observed in a state where the stars are presently unbound, as for type II
encounters. This chapter concerns the first evidence of a type Ib encounter, an historic close
interaction between the apparently isolated systems HV and DO Tau.

The Taurus star forming region contains almost exclusively young stars of age ≲ 3 Myr
and is considered an archetype of low-mass star formation, with a low stellar density and
long dynamical timescale (Ballesteros-Paredes et al., 1999). Larson (1995) and Kraus and
Hillenbrand (2008) find evidence for hierarchical structure in Taurus on large scales, but not
on smaller scales (≲ 0.04 pc); these small distance scales may be associated with higher
order multiplicity. It is hypothesised that structure has been erased by dynamical interactions
in this regime. If this sub-structure in Taurus previously existed, then enhanced numbers of
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type Ib early close encounters could leave evidence in the form of truncated discs or tidal
tails (e.g. RW Aurigae, Cabrit et al., 2006; Dai et al., 2015). Conversely, the low stellar
density in Taurus means that type II tidal encounters are extremely rare.

Photometric observations of HV and DO Tau, which have a present day separation
of 90.8′′ (0.06 pc), by Howard et al. (2013) using the Photodetector Array Camera and
Spectrometer (PACS) of the Herschel Space Observatory were made at 70 µm, 100 µm and
160 µm (figure 2.1). The extended emission from each component, HV and DO, is directed
towards the other, with a common envelope or ‘bridge’ (i.e. emission connecting the two)
visible at 160 µm. While imaged at low resolution, the observed structure is reminiscent
of tidal tail structures found in simulations of close encounters between disc-hosting stars
(Clarke and Pringle, 1993; Muñoz et al., 2015; Cuello et al., 2019).

The following is an investigation of the hypothesis that DO Tau plus the 3 stars comprising
HV Tau were originally formed as a bound hierarchical multiple, such that the present
morphology of the system results from a close, disc mediated encounter and subsequent
ejection of DO Tau from the system (a type Ib encounter). We aim to replicate observations
using hydrodynamical modelling to understand the nature of such an interaction including
the disc geometry and stellar kinematics.

2.2 Observational constraints

2.2.1 Stellar components

HV Tau is a young triple system in Taurus. A tight, optically bright binary, HV-AB, has
projected separation 10 au (Simon et al., 1996), and shares common proper motion with a
third star HV Tau C at approximately 550 au separation (Duchêne et al., 2010). The tight
binary has an estimated age 2 Myr and a combined mass of ∼ 0.6M⊙ (White and Ghez, 2001).
The separation of AB could be larger than 10 au due to orbital eccentricity or deprojection,
as suggested by a comparatively long orbital period. A mass of 0.5−1M⊙ is inferred from
the CO maps of the edge on disc of HV Tau C (Duchêne et al., 2010). It is observed to be
exceptionally red, with a high accretion rate (Woitas and Leinert, 1998; Monin and Bouvier,
2000).

DO Tau is a G star located at a projected distance 1.26×104 au (90.8” at 140 pc) west
of HV Tau, which has position angle 95.3◦ relative to DO. Mass and age estimates range
between 0.3M⊙, 0.16 Myr (Hartigan et al., 1995) and 0.7M⊙, 0.6 Myr (Beckwith et al.,
1990). The whole system is depicted schematically with the components labelled in figure
2.2.



2.2 Observational constraints 31

2.2.2 Disc properties

Kwon et al. (2015) used CARMA observations and models to deduce properties of DO
Tau. Their models found an outer disc radius of ∼ 75 au and consistent values for mass
Mdisc ≈ 0.013M⊙, inclination ∼−33◦, and position angle ∼ 90◦, following the convention
as described by Piétu et al. (2007). There remains ambiguity as to which side of the disc
is closer to the observer as the quoted negative inclination angle can produce two rotation
senses with the same aspect ratio.

HV Tau A and B have no associated infrared excess and therefore do not host a substantial
disc, while C has an edge on disc of radius 50 au and mass ∼ 2× 10−3 M⊙ (Woitas and
Leinert, 1998; Stapelfeldt et al., 2003). Monin and Bouvier (2000) find that the observed disc
radius does not depend on wavelength. This suggests the disc has been truncated, as otherwise
the grain size-dependent radial drift of dust particles leads to a wavelength-dependent disc
extent. To the contrary they note that the ratio of disc size to projected separation between
C and close binary AB is Rdisc/xmin ≡ Rtidal ∼ 0.1, where Rdisc (= 50 au) is the outer disc
radius, and xmin is the closest approach distance. This makes truncation due to tertiary
interaction at the current separation is unlikely as a ratio of Rtidal ≈ 0.35 is required if the
masses of C and combined AB are equal (Armitage et al., 1999). It remains possible that
the orbit of AB is highly eccentric, and that the periastron distance is sufficiently small to
cause tidally induced truncation. Alternatively, an historic encounter may have left the disc
truncated.

In modelling the disc around HV Tau C, Duchêne et al. (2010) find an inclination θi ≈ 80◦

and PA of approximately 20◦, corresponding to an orientation such that the blue shifted side
of the disc is pointing east with the northern side closer to us. The coplanarity of the centre
of mass of AB and the disc of C is unlikely as the nearly edge on angle would lead to a
very large actual separation. Duchêne et al. (2010) also suggest that scattered light images
might imply a disc size greater than 50 au, and gas emission alone suggests a radius up to
100 au. A model with temperature profile T ∝ R−q is found to fit well with 0.4 < q < 0.6
and a temperature at 50 au of 15-30 K.

2.2.3 Herschel/PACS data

The Herschel/PACS survey observations of HV/DO Tau are discussed by Howard et al. (2013),
and we use that data to produce figure 2.1. At 160 µm the extended emission connects HV
and DO in a common envelope. Of particular interest is the ‘V-shaped’ emission close to HV
Tau and the tail to the North-East of DO Tau (see figure 2.2), seen clearly at 100 and 160 µm,
which we aim to reproduce as the result of a disc-disc interaction producing two tidal tails.
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Fig. 2.1 Herschel observations of HV/DO Tau (data presented by Howard et al., 2013). The
top two panels are the specific intensity in the 100 µm, and 160 µm overlaid with logarithmic
contours. Both stars appear to be associated with extended emission. The edge of the image
is close to DO Tau (east), which results in excess noise. The bottom panel is the inferred dust
temperature distribution assuming that the cloud is optically thin. The point spread function
(PSF) in the 100 µm observations results in incorrect temperature estimates in these regions.
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1.26x104 au

HV-AB (binary)

HV-C

550 au

'V-shaped' tail (HV) Common envelope

DO

Tidal tail (DO)

Fig. 2.2 Schematic diagram of the 160 µm dust emission structure visible in figure 2.1 with
positions of the stellar components overlaid. The diagram is simplified to highlight the
features which we aim to reproduce in our models. HV Tau is a system of three stars, the
tight binary HV-AB shown here as one point has a projected separation of ∼ 10 au. HV-C
has a PA of ∼ 45◦ with respect to HV-AB, and HV has a PA of 95.3◦ with respect to DO.

Numerous studies have shown that two tails, or a ‘bridge’ structure, can be produced as a
result of prograde or inclined encounters (Toomre and Toomre, 1972; Clarke and Pringle,
1993; Muñoz et al., 2015). Observed morphology is dependent on viewing angle and
interaction parameters. Angular momentum transfer between star and disc, and therefore
the quantity of circumstellar material ejected during an encounter, is a strong function of the
closest approach distance (see Chapter 3). As we will discuss in Section 2.2.4, a collision
between the discs is required to produce the observed emission.

2.2.4 Cloud temperature and mass

To compare the mass in the envelope of our model to that of the observations, we reproduce
the expected flux at 100 µm and 160 µm using the method outlined by Hildebrand (1983).
The specific intensity of radiation at frequency ν across the envelope can be written:

Iν =
(
1− e−τν

)
Bν(Tdust)

where Bν(Tdust) is the Planck disribution at a given dust temperature Tdust, and τν is the
optical depth of the dust. The latter can be rewritten τν = κνΣdust if we assume that κν is
spatially uniform.
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Fig. 2.3 Distribution of the dust temperature of each pixel in figure 2.1 as a function of
separation from HV Tau (red) and DO Tau (blue). The error bars are the 1σ range in
separation and temperature for a given bin of pixels. Close to the star the optical depth and
the PSF result in considerable errors in the determination of temperature.

We estimate the dust mass and temperature by assuming that Σdust is sufficiently small
such that the cloud is optically thin (1− e−τν ≈ κνΣdust). This approximation is useful away
from the stars (a posteriori we find Σdust ∼ 10−4 g cm−2 in this region), although it is likely to
break down locally to HV and DO Tau where Σdust is large. When we come to presenting our
models and final mass estimates (Section 2.3.2) we will produce an intensity map from the
simulation data for comparison with observations. For the two frequencies ν1 = c/100 µm,
ν2 = c/160 µm, we use the opacity of spherical dust grains with radius a following a power
law distribution n(a) ∝ a−3 between amin = 10 nm and amax = 1.023 cm as computed by
Tazzari et al. (2017).

We integrate the resulting surface brightness Iν over the normalised transmission spectra
for PACS Sν1,2 :

Iν1,2 =

∫
Iν(ν)Sν1,2(ν)dν∫

Sν1,2(ν)dν
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and hence
Iν1

Iν2

≈
∫

Bν(ν ;Tdust)κν(ν)Sν1(ν)dν∫
Bν(ν ;Tdust)κν(ν)Sν2(ν)dν

·
∫

Sν2(ν)dν∫
Sν1(ν)dν

.

We invert this expression to estimate the temperature at each pixel, as shown in the bottom
panel of figure 2.1. The point spread function (PSF) of the 100 µm observations combined
with the greater optical depth result in considerable errors close to the stars. However, we
find evidence for a temperature gradient within the cloud (figure 2.3).

Having obtained the temperature in each pixel we can determine the column density
of dust that is required to match the observed emission map. We find a dust mass of
∼ 1− 5× 10−4 M⊙, depending on assumed values of Tdust close to the stars (where the
temperature is uncertain). For a dust to gas ratio Σdust/Σgas = 10−2 this yields an estimate
of the total cloud mass of Mcloud ≳ 10−2 M⊙. This is greater than the total present day mass
of the disc around DO Tau, and suggests that a large fraction of the circumstellar material
has been ejected into the ISM (or possibly accreted onto the stellar components) during the
hypothesised past encounter. However, if the material originates in discs, the dust to gas
ratio could be enhanced (e.g. Ansdell et al., 2016) and our derived cloud mass would be an
overestimate.

Considering a distribution of grain sizes appropriate for the ISM lends support for
the hypothesis that the cloud material originated in PPDs. We apply opacities calculated
from an ISM dust grain distribution n(a) ∝ a−3.5, and a maximum grain size amax = 1 µm
(see Tazzari et al., 2017). This yields lower temperatures (∼ 10-20 K) throughout the cloud
and a dust mass of ≳ 5×10−3M⊙ (or a total cloud mass of ≳ 0.5M⊙). This large mass is
physically unlikely given the emission is associated with the stellar components of similar
mass. Further, we estimate the Jean’s mass:

MJ ≈ 2M⊙

(
cs

0.2km/s

)3
√

103 cm−3

nH

where nH is the number density of hydrogen, and the sound speed cs ≈ 0.5 km/s for a gas
with T = 15 K. If the total mass is 0.5 M⊙ and the volume is ∼ 104 ×2 ·103 ×2 ·103 au3

this yields MJ ∼ 0.5M⊙ ∼ Mcloud. The free-fall timescale in this case is tff ∼ 0.03 Myr, much
smaller than the stellar ages. Such a cloud could be interpreted as residual material from
an initial star forming core, however it is unclear whether such material could be supported
against gravitational collapse on this timescale. In addition, this interpretation offers no clear
mechanism for the formation of the apparently tidal morphology. We therefore focus on the
hypothesis that the material between the two systems originated in the dics around HV-C and
DO.
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2.2.5 Kinematics

The proper motions DO Tau and the (unresolved) binary AB in HV Tau are recorded in Gaia
DR2 (Gaia Collaboration et al., 2016, 2018; Lindegren et al., 2018). DO Tau has a velocity
in declination vδ ,DO = −21.340± 0.091 mas/yr and in right ascension vα,DO = 6.128±
0.126 mas/yr. HV Tau AB has vδ ,HV = −21.783± 0.171 mas/yr and in right ascension
vα,HV = 4.888± 0.126 mas/yr. This yields ∆vδ = vδ ,DO − vδ ,HV = 0.29± 0.17 km/s and
∆vα = vα,DO − vα,HV = 0.82± 0.24 km/s. If the velocity vector was anti-parallel to the
position vector (i.e. the systems were moving away from each other) we would expect ∆vδ ≳ 0
and ∆vα < 0. However, as mentioned the HV-A and -B are unresolved and multiplicity
introduces uncertainties into the centre of mass velocity of HV, for which an upper bound
is set by the relative velocity of the AB pair (∼ 1.5 km/s; Duchêne et al., 2010). Hence the
kinematic constraints are consistent with common proper motion of the two systems. Based
on the projected separation, the escape velocity is ∼ 0.4 km/s, and it is possible that HV
and DO Tau are marginally bound or unbound. The one dimensional velocity dispersion in
the Taurus region is estimated to be σv ∼ 2–4 km/s, although the value is uncertain due to
difficulty in establishing membership (Bertout and Genova, 2006; Rivera et al., 2015). The
relative proper motion components of HV and DO, which are both considerably less than
this, hint at a common origin.

No radial velocity measurement for either star is present in the Gaia DR2. DO Tau is
estimated to have a radial velocity of 16.04±0.17 km/s by Nguyen et al. (2012), however
no such estimate exists for HV Tau. Therefore constraints cannot presently be placed on the
geometry of the system using the radial velocity differential.

2.2.6 Summary of observational constraints

The following key criteria need to be considered in addressing the possibility of a previous
tidal encounter.

• For any given parameters of a proposed fly-by, the time of the interaction should not be
older than the age of the stars. Because our hypothesis requires that the stars are coeval,
this immediately implies considerable error in the claimed ages. However, 0.16 Myr
is the lowest age estimate for any of the stellar components, and so any interaction
timescale smaller than this is feasible. Longer timescales may also be reasonable if the
age of DO Tau is underestimated.

• Disc orientations should be approximately consistent with the observations, although
modelling the evolution of a violent encounter over a long period of time introduces
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considerable uncertainty in obtaining present day orientation. Broadly, the disc around
HV Tau C is edge on, with the plane of the disc aligned with the extended emission,
while the disc around DO Tau is face on.

• Solutions for the stellar kinematics should be consistent with the present size of the disc
around HV Tau C. I.e. the tight binary HV Tau AB should not orbit C post-interaction
such that Rtidal > 0.5, where Rtidal is here the ratio of observed disc size (∼ 50 au)
to the closest approach distance. The closest separation between HV Tau C and DO
should not be significantly less than twice the outer radius of the disc around DO Tau -
i.e. 150 au. Although it is possible that the viscous spreading of this disc may have an
impact on its present extent.

• When recovering a flux from the surface density distribution in a given model, the dust
to gas ratio required to reproduce the same flux as in the 100 µm and 160 µm and
initial total disc mass should be sensible, and consistent between wavelengths.

• The parameters of such an interaction should be capable of producing common enve-
lope surrounding both stars with the structure seen in figure 2.1. Although it may not
be possible to reproduce the structure precisely, especially if the binary HV-AB has a
significant effect, the aim of the modelling process is to show that the observations can
feasibly result from a disc-disc interaction.

2.3 Numerical method

The complexity of the HV/DO system is approached by dividing the problem into a kinematics
study of the stellar components, and hydrodynamical modelling of star-disc and disc-disc
interactions. For the hydrodynamics we apply a smoothed particle hydrodynamics (SPH)
treatment of the gas particles. Its computationally expensive nature means that we cannot
rely on Markov chain Monte Carlo (MCMC) or similar statistical techniques to constrain
the parameters which yield the observed structure. We explore a large number (∼ 500) of
low resolution models with 104 particles to find promising configurations for which ejected
material approximately traces the observed structure, allowing variation in disc orientations
and surface density profiles (see Section 2.3.3). We then rerun promising models with a
resolution of 106 particles and refining the disc properties and viewing angles to find a model
that yields extended structure closest to observations.
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2.3.1 Kinematic modelling

The first stage in obtaining a model is exploring the kinematic parameter space of a multiple
encounter of a three star system (DO, HV-C and HV-AB, the latter we will consider as
one star – see below) to find solutions which satisfy the dynamical conditions discussed in
Section 2.2. As in the case of the hydrodynamics, we cannot use an MCMC exploration of
the kinematic parameter space due to the chaotic nature of the three body problem. Instead,
we search for a (non-exhaustive) library of kinematic solutions for further hydrodynamical
modelling. We do this by uniformly varying parameters which describe the initial conditions
of the three bodies and checking for consistency with observations. Viable solutions are
initially bound, but we do not have further a priori constraints. We apply the following
parameterisation of the problem (sampling uniformly over each within the defined range) as
it allows us to minimise the size of the exploration space by choosing likely ranges, with the
caveat that drawing statistical conclusions from our kinematic library is problematic. We
simulate the trajectories of the three star particles by applying the N-body 4th order Hermite
integrator (Makino and Aarseth, 1992) in the GANDALF code (which is also used for the SPH
simulations described in Section 2.3.2, Hubber et al., 2018).

HV/DO

y: 

x: 

HV

HV centre 
of mass

DO

C

AB

Fig. 2.4 Schematic diagram illustrating the parameters used to define the initial conditions
for our 3-body simulations. The blue line traces the HV/DO trajectory, with coordinates
centred on the centre of mass of the HV system. The red line traces the HV-AB/C trajectory.
The circular markers represent the locations of the components of each orbit at the time of the
closest approach between DO Tau and the centre of mass of HV (blue circles). The positions
of HV-AB and -C are shown as red circles. The angles as discussed in the text are annotated.
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xHV/DO
min /au eHV/DO

0 xHV
min/au eHV

0 θ HV /◦ iHV /◦ ωHV /◦ ∆φ /◦

Range 0-2000 0-1 100-1500 0-1 0-360 0-360 0-180 0-360

Table 2.1 Parameter range searched for solutions to the present day arrangement of HV and
DO Tau.

Our parameterisation is illustrated in figure 2.4. We are helped by the small separation of
the binary AB, which we hereafter consider as a single star with the combined mass. With
this approximation all stellar components now have the same mass within uncertainties: we
assume 0.7M⊙. To parameterise the interaction of the three remaining stellar components,
we consider two distinct orbital equations of the form

x =
h2

µ

(
1

1+ ecos(φ −θ)

)
(2.1)

for HV and for HV/DO, where HV is the orbit of HV-C and HV-AB, while HV/DO is the
‘two-body’ system of DO and the centre of mass of HV. In equation 2.1, x is the separation
between bodies, φ is the phase, θ is the angle of the periastron in the plane (equivalent to
rotation in the z-axis), h is the specific angular momentum and µ = G(m1+m2). For HV/DO
we fix θ = 0◦. For HV, the orbit of C and AB is rotated in the y-axis by angle i and in
the x-axis by angle ω . Finally, we define ∆φ , the difference in phases as HV/DO reaches
periastron. This leaves 8 initial values fully parameterising the system: eHV/DO

0 , xHV/DO
min ,

eHV
0 , xHV

min, θ HV, iHV, ωHV, ∆φ .
The ranges for each parameter over which we search for successful kinematic solutions

are summarised in table 2.1. We focus on the solutions for which DO is initially bound to
HV (eHV/D0

0 < 1) as they offer the most likely scenarios for a close encounter between stellar
components. Further, highly hyperbolic encounters are physically unlikely. We apply one
further restriction that configurations for which the energy of the HV initial orbit exceeds the
energy of the DO trajectory are discounted. This is both because in this regime our orbital
parameterisation does not make physical sense, and because our investigation finds that
solutions for which the orbital energies are comparable are also relatively rare. We search
uniformly over the remaining parameter space for successful solutions.

Our criteria for a ‘successful’ kinematic solution are as follows. A lower limit of 50 au
is placed on all interactions as this is a conservative constraint, a distance below which
either disc would be significantly over-truncated. Additionally an upper limit on the closest
approach distance between HV Tau C and DO Tau is set at 300 au. This is motivated both by
the present day disc outer radii and the study of Muñoz et al. (2015) and our own findings
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that a close flyby is required to produce the observed extended structure in the tidal tails (see
Section 2.4). After encounter, DO must either be unbound from the whole system, or reach a
maximum separation > 1.2×104 au. HV Tau C and AB must remain bound. Acceptable
final maximum separation of the HV wide binary is between 400 and 1500 au, consistent
with observed projected separation of 550 au. We impose a minimum periastron distance of
125 au to prevent over-truncation of the disc around HV Tau C.

2.3.2 Hydrodynamics model

We use the SPH code GANDALF (Hubber et al., 2018) to simulate the discs. We adapt it
to include a locally isothermal equation of state as a function of radial separation from the
nearest star. Self-gravity is disregarded, the gravitational potential being dominated by the
stellar component.

We employ artificial viscosity parameters as prescribed by Morris and Monaghan (1997)
to minimise the effects of viscous diffusion in the tidal tails. However, inevitably at the
required integration times on the order of 0.1 Myr, the effect of numerically accelerated
viscous spreading and magnified inter-particle torques result in a loss of structure. This is
especially the case where there is considerable mass loss from the disc, as during the violent
interactions necessary to produce significant external structure.

2.3.3 Disc interaction initial conditions

Pfalzner et al. (2005b) showed that for discs in which there is significant mass transfer
one cannot analogously extrapolate the structure of tidal tails from star-disc interactions
(where one disc is excluded). Therefore both discs are required simultaneously for all models
where closest approach distance is of order the disc radius. For disc-disc simulations, the
work of Muñoz et al. (2015) offers initial constraints on the closest approach between HV
Tau C and DO Tau, where extremely close interactions with Rtidal ∼ 10.0 both result in the
near-destruction of the original discs and also in significant sapping of orbital energy and
stellar capture (although a large disc mass approximately 10% of the star mass is used in this
study). Conversely, encounters with a large closest approach distance such that Rtidal < 0.5
do not produce significant external structure (i.e. angular momentum transfer is insufficient
to unbind a large fraction of the disc mass).

Due to the uncertainty in the line of sight separation (and therefore the angle of orientation)
of the present day system, the appropriate disc orientations are not immediately clear. For
the initial conditions of the three star encounter, a snapshot is taken from an appropriate
kinematic model at a time before close encounter. To ensure that discs are dynamically
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settled prior to the encounter, this time is chosen to be five orbital periods at the radius
of the outer disc before the closest approach between any two stellar components. The
discs around HV Tau C and DO are added at an orientation that matches the present day
orientation if the two stellar systems are in the plane of the sky. The simulation is then
continued with SPH discs included to examine the hydrodynamic evolution of the multiple
star interaction. Subsequently, disc orientations in promising models are modified to better
match the extended structure.

The surface density profile of the discs is both important to the structure and quantity of
ejected material, and hard to constrain given that it may be significantly altered in a close
interaction. It is treated as a power law such that

Σ = Σ0

(
R
R0

)−p

where both ‘shallow’ (p = 0) and ‘steep’ (p = 1) surface density gradients are tested.
We define the gas temperature by distance R to the nearest star:

T = max

{
T0

(
R
R0

)−q

,15 K

}
,

with q = 0.6 and a temperature at 50 au of 20 K is adopted for HV Tau C, and the same
profile assumed for DO Tau. Variations in temperature only have a modest effect on the
observed structure as a result of star-disc interaction (Dai et al., 2015). Our choice of
temperature profile for the hydrodynamic simulations is based on those inferred by Duchêne
et al. (2010), although results in a lower temperature than we found in Section 2.2.4 through
the cloud. This discrepancy could be due to heating of the ejected material during the
disc-disc encounter, which we do not model here as there are considerable uncertainties in the
temperature estimates. The temperature in both the disc and the cloud are both empirically
derived and therefore represent reasonable choices.

Outer radii of the discs prior to interaction are not well constrained, due to uncertainty
in the extent of truncation by the initial fly-by. Further, the post-interaction relaxation of
the disc, including viscous spreading and possible further dynamical binary interactions in
the case of HV-C, is not well characterised. To eject sufficient material to produce observed
structure, initial tests suggest that Rout such that Rtidal ≡ Rdisc/xmin ≈ 0.8 is reasonable. This
is the initial estimate for a given kinematic model, and the outer radii are subsequently tuned
to fit observations. The inner radius is defined to be Rdisc/20. Choosing a conservative inner
radius is necessary given that a significant proportion of the discs pass though each other.
The smoothing lengths of the sink particles are chosen to be half of the inner radius of the
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xHV/DO
min eHV/DO xHV

min eHV θ HV iHV ωHV ∆φ

864 au 0.85 653 au 0.38 28◦ 158◦ 10◦ 94◦

Table 2.2 Kinematic parameters of the best-fit model. Parameters are defined in Section
2.3.1.

disc with the smallest extent. The final parameter required to define the disc interactions is
the relative masses of the two discs (i.e. how many SPH particles each contains), which we
allow to vary.

2.4 Modelling results

We will refer to the model presented below as the ‘best-fitting model’; this is in the sense
that it best matches observations of all the models studied. The size of the parameter space
involved and the computational expense of the simulations means that the number of models
examined is not exhaustive, and that usual statistical parameter space exploration techniques
were not practical.

2.4.1 Kinematic properties

The distribution of semi-major axes in the initial systems (aHV/DO
0 and aHV

0 ) are shown for
successful kinematic solutions is shown in figure 2.5. As discussed in Section 2.3.1, it is
not possible to draw statistical conclusions from this distribution. However, most solutions
exist for aHV/DO

0 ≳ 104 au, although the model which best reproduces the extended bridge
structure (Section 2.4.3) has aHV/DO

0 ≈ 5800 au. The parameters of this model are presented
in table 2.2. The orientation of the HV/DO angular momentum vector is approximately
anti-parallel that of HV-AB/C. This reversal of the orbits appears surprising. However, if the
forming stars were initially separated by ∼ 4 ·104 au (initial apastron) it is possible that local
velocity fields in the collapsing gas of the primordial system lead to non-aligned orbits.

The important dynamical properties of the chosen kinematic model are summarised
in table 2.3. By integrating backwards, all stellar components in this model are found to
remain bound on timescales > 1 Myr. Initially HV-AB/C has an orbit with a semi-major
axis aHV

0 ≈ 103 au, and eccentricity e0 ≈ 0.37. The encounter with DO removes angular
momentum from the HV system, and results in DO being marginal bound, with a large semi-
major axis aHV/DO

f ≈ 1.5× 104 au, sufficient to reach the observed present day projected
separation.
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Fig. 2.5 The distribution of the initial semi-major axes of the HV (aHV
0 ) and HV/DO (aHV/DO

0 )
trajectories for successful solutions of our kinematic parameter space exploration. The solid
lines (horizontal blue for aHV

0 and vertical red for aHV/DO
0 ) represent the median of the results.

The associated dashed lines indicate the associated 16th and 84th percentile values. The green
circle represents the location of our chosen ‘best-fit’ solution in reproducing the extended
emission between the stellar systems (see Section 2.4.3).

The closest encounter between each stellar component is also consistent with observations.
The single encounter between HV Tau C and DO Tau is the closest between any of the
components at 285 au, and is close enough to truncate discs to ∼ 100 au. No interaction
involving AB is close enough such that a ∼ 10 au binary would be disrupted and the closest
approach distance between HV Tau C and AB is the final periastron distance.

Finally, the time since the closest encounter to reach the projected present day separation
for our preferred system orientation is ∼ 0.1 Myr, which is consistent with even the lowest
estimate for the age of any of the stellar components.
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Fig. 2.6 Snapshots of our chosen model before and after the disc-disc interaction. The colour
scale represents the gas surface density normalised to give the correct flux scale in figure
2.7, and the orientation is the same as in that figure. Stellar components are marked with
green circles. The numbers in brackets are the magnitude of the proper motion and the radial
velocity in km/s respectively, with the direction of proper motion indicated by an arrow. HV
Tau AB is considered in our models to be a single sink particle, as discussed in the text.
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xmin/au a0/au e0 af/au ef

HV-C/DO 285 - - - -
HV-AB/DO 657 - - - -
HV-AB/C 445 1.05 ·103 0.37 859 0.48
HV/DO - 5.76 ·103 0.85 1.48 ·104 0.95

Table 2.3 Dynamical properties of the stellar components of the best-fitting model, where
xmin is the closest approach distance and a0, af, e0, ef are the initial and final semi-major axes
and eccentricities of the binaries respectively.

R0/au xmin/au Robs/au Mrel,0 Mobs/M⊙ p

HV-C 320 285 ∼ 50−100 0.33 ∼ 0.002 0
DO 355 285 ∼ 75 1.0 0.013 0

Table 2.4 Disc properties of the best-fit model. The quantities are as follows: R0 is the initial
outer radius of the disc, xmin is the closest encounter with any stellar component, Mrel,0 is
the initial relative mass of each disc, Mobs is the observed total disc mass, p is the power law
index for the surface density. The subscript 0 pertains to initial values in the model and ‘obs’
the observed (present-day) values.

2.4.2 Disc properties

The properties of the circumstellar discs found by tuning to best match the Herschel obser-
vations in figure 2.1 are shown in table 2.4, and the snapshots of the gas surface density
distribution during the encounter are shown in figure 2.6. The initial radii for HV Tau C and
DO Tau discs are 320 au and 355 au respectively, which means that the stellar components
penetrate the discs at the closest approach distance of 285 au. We find that both a smaller
mass and outer radius are required for the disc around HV-C with respect to DO. The present
day observed disc mass ratio is MHV−C

disc /MDO
disc ≈ 0.15, while our chosen model has an initial

mass ratio of 0.33. At the time of our chosen snapshot this ratio in the simulation becomes
∼ 0.13, with the disc around HV Tau C losing a greater fraction of the initial mass.

In our model the orientation is such that the disc around HV Tau C is approximately
edge on with the plane along the direction of the ‘V’-shaped emission, as suggested by
observations (see figure 2.6). The disc around DO Tau is also approximately face-on, and
thus the geometry of the system is compatible with the observed extended structure discussed
below. These disc orientations lead to a collision in which the discs collide approximately
perpendicular in a strongly penetrating encounter. This violent interaction induces significant
pressure gradients and justifies the need for hydrodynamic simulations.
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2.4.3 External structure

To reproduce the extended structure between HV and DO, we have introduced a moderate
temperature gradient with respect to the projected distance d from each stellar component:

Tdust = 35K
(

d
950au

)−0.32

with a maximum temperature of 35 K, which is consistent with the temperature profile found
in Section 2.2.4. The resulting surface brightness of the extended structure at 100 µm and
160 µm in our model is shown in figure 2.7. To obtain this flux distribution we have had to
assume a large initial total gas mass of Mtot,0 = 0.18M⊙ (with Σdust/Σgas = 10−2). This is
on the order of the mass we would expect if the interaction occurred at an early evolutionary
stage. Approximately 50% of the mass is accreted in our simulations at the time of the
snapshot, which leaves 0.09M⊙ total mass, of which ∼ 0.027M⊙ is retained in the disc
around DO Tau and 3.5×10−3 M⊙ in that of HV Tau C. The remaining mass occupies the
external structure. These disc masses are a factor ∼ 2 greater than the present day, and
indeed the mass of the total system is an overestimate due both observational and numerical
factors as follows. Firstly, we find resolution-dependent diffusion of SPH particles into the
ISM (away from what we consider the ‘bridge’ between HV and DO). As we increase the
resolution, for simulations run at a resolution lower than 106 particles, a smaller fraction
of SPH particles are lost to the ISM. Therefore we expect that increasing the resolution
further would decrease the required total initial mass of the system. Additionally, increasing
the initial radii of the discs has a similar effect of increasing the mass of the bridge while
preserving the observed structure; however this additionally enhances accretion rates and
therefore compounds resolution issues at late times. Alternatively, the dust-to-gas ratio in the
original discs may be enhanced (Ansdell et al., 2016), which would mean we overestimate
the gas mass.

We have chosen a snapshot at a separation between HV and DO of ∼ 5×103 au, half of
the observed present day separation. This is because, as discussed in Section 2.3.2, resolution
effects mean that the structure diffuses as the model is integrated in time. Integrating further
to the present day results in a numerical loss of structure due to low resolution in the region
between the stellar components. Contrary to the diffusive numerical effects described above,
this means that additional initial mass would be required to produce sufficient surface density
at the present day separation.

Overall, the main features seen in the 100 µm and 160 µm observations are well produced
in our model, namely the V-shaped emission close to HV Tau and the tidal tail close to DO
Tau. The broad envelope shape is less well reflected in our models, however these regions
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Fig. 2.7 Surface flux distribution of our chosen model (left) next to the observations (right)
at 100 µm (top) and 160 µm (bottom). All fluxes are truncated at the 3σ background noise
level in the respective wavelength observations. The model snapshots are at ∼ 4×104 years
after the disc-disc encounter between HV-C and DO. This is a shorter than the time required
to reach the present-day separation, and is chosen due to numerical limitations (see text for
details).
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Fig. 2.8 Simulated variation in surface density Σδvz =
∫

ρδvzdz of material, where ρδvz is
the mass density of particles with relative line of sight velocity δvz = vz −⟨vz⟩ with respect
mean line of sight velocity ⟨vz⟩. The blue contours are for SPH particles with 0 km/s
< δvz < 1 km/s , while the red contours are for −1 km/s < δvz < 0 km/s. Contours are
linearly spaced over a factor 5 in surface density in arbitrary units.

have a low resolution of SPH particles which can result in a loss of structure. Additionally,
uncertainties in the temperature profile discussed in Section 2.2.4, particularly at the outer
edge and centre of the envelope where we only have detections at 160 µm, mean that we
are unable to accurately map the surface density to an intensity distribution. However, the
agreement between our model and the observations is sufficient to suggest that a disc-disc
interaction ∼ 0.1 Myr ago is a viable mechanism by which the extended structure between
HV and DO Tau has been produced.

2.4.4 Gas velocity

In figure 2.8 we demonstrate that we expect to find some sub-structure in the line of sight gas
velocities. The standard deviation in line of sight velocity of the SPH particles vz for the best
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fit model is σvz ≈ 1.3 km/s. We divide the deviation from the mean gas velocity δvz = vz−⟨vz⟩
into two bins, red shifted (−1 km/s< δvz < 0 km/s) and blue shifted (0 km/s< δvz < 1 km/s).
The results in figure 2.8 illustrate both the large scale velocity structure of the whole system,
and the line of sight motion of the wide binary HV Tau C and AB.

Although, as previously discussed, the present day system is at approximately double
the separation of the snapshot, figure 2.8 is indicative of the velocity field we would expect
to obtain from observations if a past encounter produced the observed extended emission.
Future observations of the gas in the region can be compared with our results to establish the
likeliness of the scenario we suggest here.

2.5 Conclusions

We have used hydrodynamic modelling to support the conclusion that the three stars making
up HV Tau and the apparently unrelated star, DO Tau, had a past encounter ∼ 0.1 Myr ago.
While it is difficult to make hard conclusions regarding the dynamical history of the system
and subsequent disc evolution, our modelling suggests the following scenario:

• HV Tau A, B and C initially formed a quadruple system with DO Tau ≳ 0.1 Myr ago,
with a spatial scale of ∼ 5000 au (and an orbital period of ∼ 0.3 Myr).

• The highly eccentric orbit of DO Tau led to a close encounter with HV Tau C 0.1 Myr
ago. During this type Ib encounter, the disc around HV Tau C interacted strongly with
the disc around DO Tau, leading to rapid accretion and truncation of the discs. This
was likely the first encounter and therefore we expect the age of the original system to
be ≲ 0.4 Myr.

• After this encounter the DO Tau trajectory became either marginally bound or marginally
unbound to reach a separation > 104 au.

• The tidal tails of this event can be observed in the 160 µm dust emission to the present
day.

Our findings support the hypothesis that there previously existed sub-structure in Taurus
down to smaller spatial scales which has now been dynamically erased (Kraus and Hillen-
brand, 2008). Given the improbability of a close encounter producing tidal tails that can be
observed for timescales ∼ 1 Myr, there may have been many more type Ib interactions in the
region.





Chapter 3

Linearised theory of distant type II
star-disc encounters

Winter et al. (2018b) is the source text for this chapter. I performed the analytic calculations,
ran the simulations and I am the main contributor to the text.

3.1 Introduction

This chapter concerns the influence of distant type II encounters on the evolution of a
PPD. Distant encounters have a less damaging effect on the disc with respect to close
encounters, however they are also far more frequent during the evolution of a stellar cluster.
It is therefore important to understand the influence of such interactions to quantify their
relative significance. Historically, the theory of the tidal effects in this context has largely
been divided into the influence of dynamical interactions between an existing binary and a
perturbing star (e.g. Press and Teukolsky, 1977; Heggie and Hut, 1993; Heggie and Rasio,
1996), and between a perturber and a single star with surrounding PPD (e.g. Goldreich and
Tremaine, 1978; Lubow, 1981; Ostriker, 1994; Ogilvie, 2002). The implicit focus for a
particular study in each case has either been on angular momentum transfer to the perturbing
star (e.g. Press and Teukolsky, 1977) or to the unperturbed system (be it PPD or binary
– e.g. Lubow, 1981), or both (e.g. Ostriker, 1994), depending on whether the authors are
considering mechanisms for stellar capture, tightening of a binary or induced accretion.
In each case the relevant physical phenomena are similar, and require the contributions
of various resonances between the natural frequencies of the unperturbed system and the
trajectory of the perturber.
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The most relevant study to this chapter is that of Rosotti et al. (2014), who found evidence
that there is a significant range of encounter distances which, while not causing mass loss
from the disc, extract significant angular momentum from the outer disc and thus influence
the growth of disc size. In our exploration of this effect, the re-analysis of the numerical
data of Rosotti et al. (2014) revealed no detectable effect of the wider cluster environment
on disc size (Rosotti et al., 2018). It is nevertheless possible that effects that would not be
measurable over the duration of the simulation might prove to be important for real discs
in clusters of sufficiently high density. Given the interest in this possibility that has been
spurred by the Rosotti et al. (2014) study, we here subject the suggested effect to detailed
scrutiny.

The only detailed hydrodynamical study that has considered angular momentum transfer
in non-penetrating disc encounters is that of Muñoz et al. (2015), which concentrated on the
evolution of the stellar components during a disc-disc interaction. In that work the aim was
not a comparison with the theoretical predictions for angular momentum transfer. It differs
from this work in that both stellar components hosted a massive disc, which complicates
interpretation of angular momentum exchange, especially as many of the models involved
strong disc-disc interactions. Our goal here is a robust, general expression for encounter
induced angular momentum loss within the disc in the linear, low disc mass regime as a
function of orientation, stellar mass ratio and closest approach distance.

We adopt the following approach in addressing angular momentum transfer in non-
penetrating star-disc encounters. First, we develop the relevant linearised equations for a ring
of particles around a star undergoing a parabolic encounter. Our approach bears similarities
to that of Ostriker (1994) but we have re-derived relevant expressions for several reasons.
Most importantly, that study was concerned with the case of young massive discs which
might be relevant to the formation of binary stars by capture. We, by contrast, are concerned
with the progressive influence of multiple encounters throughout the pre-main sequence
period and therefore need to treat the case that the disc mass is small compared with the mass
of the stars. As we shall see, some of the expressions from Ostriker (1994) should clearly
not be applied to the case of low disc mass since they predict an infinite change in specific
energy and angular momentum in the test particle limit. Further, Ostriker does not present
explicit expressions for arbitrary stellar mass ratios and relative phase between pericentre
and the line of nodes of the disc and stellar orbits, nor for the dependence of the angular
momentum transfer on disc surface density profile.

We test the linearised expressions we derive by comparison with numerical integration
of the response of a ring of test particles to a parabolic perturber. We then use smoothed
particle hydrodynamic (SPH) simulations to reproduce this calculation for a disc including
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pressure and viscosity forces, which we compare to a disc reconstructed with an appropriate
surface density profile from the test particle ring results. We find excellent agreement
between the linearised expressions, the test particle calculations and the SPH simulation
results, thus validating the use of SPH to model star-disc encounters in the linear regime.
We will nevertheless find that the asymptotic fall-off of the angular momentum transfer with
pericentre radius implies that the cumulative effect of distant encounters is small.

The rest of this chapter is organised into the following sections. Section 3.2 reviews
the relevant equations and our modelling techniques. Our numerical results are laid out in
Section 3.3, and these are discussed in the context of a stellar cluster in Section 3.4. Our
conclusions are summarised in Section 3.5.

3.2 Theory and method

3.2.1 Linearised equations

To compare theoretical angular momentum transport in discs to our models, we modify the
relevant equations derived by Ostriker (1994). These results are a first order approximation
for the change in the magnitude of angular momentum in a PPD with original angular
momentum vector Lzêeez during an encounter for which the minimal separation between stellar
components |xxx(t)|min = xmin occurs at t = 0. In this case, for ∆L ≪ L, it is easy to show that

∆L
L

=
|LLL|t→+∞ −|LLL|t→−∞

|LLL|t→−∞

=
∆Lz

Lz
+O(∆L2

⊥/L2
z ) (3.1)

where L⊥ is the change of angular momentum perpendicular to eeez. Hence the linearised
equations are concerned with the change parallel to the original angular momentum vector of
the disc.

The way that Ostriker (1994) calculates this is by first decomposing fff ext, the external
force exerted by the star per fluid element in the disc, into spherical harmonics. Angular
momentum change per unit time per fluid element is the êeez projection of the cross product
of fff ext with the position vector of the fluid element relative to the central star. The angular
momentum change of the fluid element is then obtained by integrating the torque over
time. For a fluid element that remained on a circular orbit throughout the interaction,
the total angular momentum change associated with the interaction would be zero, as
discussed by Heggie and Rasio (1996) in the context of perturbations to a non-eccentric
binary. Angular momentum transfer is associated with the torque acting on the fluid element’s
perturbed trajectory. This is evaluated by considering the temporal Fourier decomposition
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of the element’s perturbations and the interaction between each Fourier component and the
corresponding Fourier component of the external force. For each fluid element, disturbances
are excited at frequencies which correspond to resonances with the forcing frequency of
the perturbing star (Goldreich and Tremaine, 1978). For a central potential Φ0, the natural
frequencies within the disc are the circular, epicyclic and vertical angular frequencies, which,
at radius r0 in an unperturbed disc, are:

Ω
2
0 ≡

1
r0

∂Φ0

∂ r0
; κ

2
0 ≡ 1

r3
0

∂
(
r4

0Ω2
0
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respectively. For a disc of negligible mass, this means that

Ω
2
0 = κ

2
0 = χ

2
0 =

GM1

r3
0

where M1 is the mass of the disc hosting star. These frequencies are associated with corotation,
Lindblad and vertical resonances respectively. For a given azimuthal wavenumber m, the
equations

mΩ0 −ω = 0; mΩ0 −ω =±κ0 ; mΩ0 −ω =±χ0

can be solved for a corresponding radius r0 (we henceforth drop the subscript) at each forcing
frequency ω . The positive and negative Lindblad or vertical frequencies correspond to inner
and outer resonances respectively. Angular momentum transfer within the disc is associated
exclusively with radii in resonance with the forcing frequency ω . However, fff ext is Fourier
decomposed such that every location in the disc is always in resonance with some component
of the forcing potential since it has a continuum spectrum.

The evaluation of the angular momentum transfer from these resonances is discussed
more fully in Appendix A.1. Ostriker (1994) found an inner vertical resonance (IVR) term
dominates at large radii, which does not in fact contribute to angular momentum transfer to
first order (see Appendix A.1 and Lubow, 1981). This means that the dominant resonances
are the inner Lindblad resonances (ILRs), resulting in a steeper asymptotic power law of
xmin/r than if the IVR contributed to first order. Additionally, the focus of Ostriker (1994)
was the regime of high (order unity) disc to star mass ratio and hence was developed to
address this limit. This formulation is clearly not to be used in the limit of low disc mass since
it predicts an infinite change in specific energy and angular momentum in the test particle
limit (cf. equation 2.48 in Ostriker, 1994). Instead, our calculation leads to an expression,
equation A.4, equivalent to the test particle result quoted (but not employed) in equation 2.50
of that study.
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For all values of xmin/r there are just two dominant contributions to angular momentum
loss in the disc. They are the m = 2 ILR for close encounters (xmin/r ≲ 6 for equal mass
stellar components) or the m = 1 ILR for larger xmin/r, where the latter corresponds to the
limit of small forcing frequency ω = 0, as discussed in Appendix A.1. These contributions
are evaluated in equations A.6 and A.4 respectively.

3.2.2 Ring of test particles

To assess the effect of a stellar encounter at a single radius within a disc, we apply a test
particle calculation. We use the general Bulirsch-Stoer algorithm of the MERCURY orbital
integrator for solar-system dynamics (Chambers, 1999).

We set up a ring of 200 test particles at r = 1 au from a central star with mass M1 = 1M⊙.
A second star of mass M2 is placed on a parabolic trajectory at a time 200 test particle orbits
prior to the closest approach, and integrated for the same time after that approach. The
system is further defined by two angles: the angle between the direction of pericentre and the
line of intersection of the disc and the orbital plane, α , and the angle between the angular
momentum vector of the disc and that of the orbit, β . The system is scale-free in that the only
pertinent quantities are the ratio of the closest approach to test particle ring radius xmin/r and
the mass ratio between the stellar components M2/M1.

The specific angular momentum for each particle is then compared to the corresponding
particle in a ring which remains unperturbed over the same period, and the average angular
momentum loss over all the particles represents the total loss for the ring. During encounters
for which xmin/r ≲ 2, some particles become unbound from the initial star. For an unbound
particle (i.e. one with a post-encounter eccentricity e > 1) we remove the angular momentum
of that particle from the disc. This choice does not influence the majority of results, especially
in the distant regime of interest. If we chose to ignore unbound particles and average only
over those remaining, then at xmin/r = 2 this only changes the recorded angular momentum
loss by ∼ 10% for prograde encounters, and less when β ̸= 0◦ for which encounters are less
destructive.

3.2.3 Hydrodynamic modelling

Numerical method

We use the SPH code GANDALF (Hubber et al., 2018) to simulate a star-disc interaction
including hydrodynamic forces. The encounters under consideration are non-penetrative,
and therefore we do not expect strong shocks. For this reason we apply the α-viscosity
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formulation of Monaghan (1997) to model the viscous redistribution of angular momentum
throughout the disc with a lower value of αAV = 0.1 so that viscous evolution is slow.
Particles are integrated using the leapfrog kick-drift-kick integration method with a cubic
spline kernel. We do not include the self gravity of the SPH particles, or the gravitational
effects of the discs on the stars. However, any accreted particles contribute to the mass of the
associated sink particle. The smoothing length for both sink particles is defined to be half the
inner radius of the disc, Rin/2.

To investigate the influence of the finite height of the disc, we compare our 3D calculations
with equivalent 2D SPH calculations for prograde and retrograde (co-planar) encounters. The
resolution at 3D is fixed at 106 particles. To reproduce the calculations in 2D, the variable
smoothing length hi for particles at the same radius ri in the disc needs to be equivalent:

hi = η

(
m3D

ρi

)1/3

= η

(
m2Di

Σ2D(ri)

)1/2

,

where m3D is the (constant) mass of each particle in 3D, and m2Di is the position dependent
mass of the equivalent particle in 2D. The surface density in 2D Σ2D for a given particle at
radius ri must also be equal to the surface density in 3D such that

Σ2D(r) = Σ3D(r) = Σ(r)

for a prescribed surface density profile Σ. Hence, the mass mi of a particle at a given radius
ri is

m2Di =
{√

2πΣ(ri)H(ri)m3D

}2/3

where H(r) is the scale height of the disc, which is defined in Section 3.2.3, along with our
chosen surface density profile. For our physical parameters we find a corresponding 2D
resolution of ∼ 105 particles to compare with the 3D version with 106 particles.

Initial conditions

We choose disc parameters consistent with those of Rosotti et al. (2014), in which hydrody-
namic disc evolution is studied in a stellar cluster of 100 stars, so that a comparison can be
drawn with their results. These conditions are described as follows.

The surface density follows a truncated power law

Σ(r) = Σ0

(
r
r0

)−p

(3.2)
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for p = 3/2, where r0 and Σ0 are the scale radius and surface density scale respectively, and
are such that the total mass of the disc is 0.05M⊙, although as discussed in Section 3.2.3, this
does not modify the overall gravitational potential. Rosotti et al. (2014) choose a range of
disc radii, but here we choose the model referred to as R10 in that study. This model has an
outer disc radius Rout = 10 au and inner radius of Rin = 2 au around a star of mass 1M⊙.

We choose a locally isothermal equation of state, such that the temperature is

T (r) = max

[
T0

(
r
r0

)−q

, 20K

]

where q = 3/2. The height of the disc H = cs/Ω, where cs is the sound speed and Ω is the
Keplerian frequency, is chosen so that H/r is 0.05 at the inner radius. This implies that
T0 = 20 K for r0 = 14 au.

The disc is evolved for ∼ 12 orbits at the (viscously evolving) outer radius before and
after the stars reach the closest approach distance. This is sufficient for the disc to ‘relax’ prior
to the closest approach but short enough so that the viscous evolution has not significantly
altered the surface density profile. As has been found in previous studies (e.g Hall et al.,
1996) we find that angular momentum transfer occurs when the phase of the perturbing star
is close to pericentre, and for all our SPH results this corresponds to a time span which is
≲ [Ω(Rout)]

−1, the orbital period at the outer edge of the disc.

3.3 Numerical results

3.3.1 Perturbed ring

The sum of the contributions to ∆L/L from the numerical integrations in equations A.6
(m = 2 ILR, exponential term) and A.4 (m = 1 ω = 0 ILR, power law contribution) and
the results for a ring of test particles are plotted in figure 3.1 for various orientations. For
nearly all regions of the parameter space these results are within order unity of the theoretical
counterparts; certainly this is the case for all results for which |∆L/L| > 10−5. There is
some deviation in the results for which the trajectory is highly inclined, in particular for
the β ≈ 60◦,120◦ results. This is likely to be because the linear estimate for ∆L/L is made
assuming the change in angular momentum is dominated by the change in the initial direction
of LLL, which is ∆Lz (see Appendix A.1), whereas this is not strictly true for encounters with
a periastron close to perpendicular to the disc plane. However, the regions of parameter
space for which the results deviate significantly are those for which angular momentum
loss is negligible. This is still true when the mass ratio between the perturbing and central
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star M2/M1 is increased, as shown in figure 3.2. For this reason we do not investigate the
deviation further in this study.

In the limit of large closest approach distances xmin, the angular momentum loss for a
ring at radius r scales as (xmin/r)−5, which corresponds to the contribution of the m = 1,
ω = 0 ILR, as approximated by equation A.4. At closer periastron distances, the exponential
component from the exact resonances in equation A.6 dominate for prograde and inclined
trajectories.

The eccentricity perturbations induced by the tidal disruption are shown in figure 3.3. As
angular momentum is proportional to

√
1− e2, then ∆L ∝ ∆e2 for ∆e ≪ 1 as the particles are

initially on a circular (e= 0) orbit. Indeed, the change in eccentricity scales with (xmin/r)−5/2

in the limit of distant encounters, which is in agreement with the results of Heggie and Rasio
(1996) for an initially non-eccentric binary. A quantitative comparison with the results of
Ostriker (1994) is made in the following Section 3.3.2.

The ratio of the mass of the perturbing star M2 to that of the host star M1 also influences
the angular momentum loss. From equation A.4 we expect the asymptotic dependence
xmin ≫ r to be ∆L/L ∝ M2/M1 for M2 ≫ M1. In the close encounter regime however, the
exponential component (equation A.6) dominates out to greater xmin/r. This is shown in
figure 3.2 for both test particle and theoretical calculations with M2/M1 = 10. The loss at
xmin/r ∼ 6 is found to be more than two order of magnitudes larger in this case than for
M2/M1 = 1.

3.3.2 Perturbed disc

Ring integration results

To draw useful conclusions regarding cluster dynamics, we present angle-averaged results.
The angle averaging is simply the integral over the solid angles such that〈

∆Lr

Lr

〉
=

1
4π

∫ 2π

0
dα

∫
π

0
dβ sinβ

∆Lr

Lr
(α,β )

evaluated at any given xmin/r.
We also present, for comparison with Ostriker (1994), the results applied to a synthetic

disc that is composed of a suitably weighted ensemble of particle rings which correspond to
the same surface density profiles. The fractional change of angular momentum is

∆Ld

Ld

∣∣∣∣
xmin

=

∫ Rout
Rin

dr rΣ(r)⟨∆Lr (xmin/r)⟩∫ Rout
Rin

dr rΣ(r)Lr(r)
(3.3)
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Fig. 3.1 Change of angular momentum for a ring around a central star due to a parabolic
encounter between stars of equal mass. The results on the left are for α = 0◦ and various
β values, while those on the right are for β = 30◦ and varying α . In the top panels are
the results of evaluating equations A.4 (dotted lines) and A.6 (dashed lines) for the linear
approximation of the fractional angular momentum change, with the solid line showing the
sum of the two components. In the bottom plots, the dashed lines are the theoretical results,
while the solid lines are the results for a ring of test particles.
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Fig. 3.2 Fractional angular momentum loss for a massless ring around a central star of mass
M1 when perturbed by a star of mass M2 such that M2/M1 = 10. Results are shown for
α = 0◦ and varying β . In the left panel, the evaluation of equations A.4 and A.6 are shown
in dotted and dashed lines respectively, while the sum is shown as a solid line. In the right
panel the solid lines are for a ring of test particles, with the dashed lines being the theoretical
counterparts.

for a disc with an arbitrary surface density profile Σ. For a low mass disc composed of test
particles, orbits are Keplerian such that Lr ∝ r1/2.

The angle averaged results for a ring of particles, and discs as described in equation 3.3
applied to power law surface densities (equation 3.2) are presented in figure 3.4 for various
values of p, truncated at a given outer radius Rout. Practically, because we do not have
numerical test particle results for xmin/r → ∞, contributions have to be truncated for small
radial extents r within the disc, and we choose Rout/Rin = 5. The inner disc contributions
would be negligible, and the results in figure 3.4 are dominated by the surface density at the
outer radius due to the strong dependence on xmin/r.

Our results agree with those of Ostriker (1994, see figure 5 therein) in the exponential ILR
regime described by equation A.6, as expected. The asymptotic slope differs slightly however,
as in that study the vertical resonance was considered dominant, such that ∆Ld ∝ (xmin/r)−4.5.
By contrast, we find a power law index of −5 as predicted in equation A.4. Quantitatively
our results are an order of magnitude lower at xmin/Rout = 5 and a factor ∼ 30 lower at
xmin/Rout = 10. However, since ∆L/L is small in this region, these differences are not of
practical significance.
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Fig. 3.3 Change in eccentricity ∆e of a ring of initially non-eccentric test particles at radius
r induced by a parabolic stellar encounter with closest approach xmin in which both stellar
components have equal mass. The shaded region around each line indicates the standard
deviation of the induced particle eccentricities around each result.

SPH disc results

In our comparisons between the hydrodynamic results and the particle ring ensemble (figure
3.5) the fractional angular momentum in both cases is plotted as a function of the ratio of
xmin to the disc half-mass radius R1/2. This radius is defined at the time of pericentre for an
equivalent disc evolving viscously in isolation, although in practice there is little difference
between this and the initial value of R1/2. We make this choice of radius here for direct
comparison with the results of Rosotti et al. (2014), and because it is not in general possible
to clearly define an outer radius for a viscously evolving disc. The calculations become
noise dominated for |∆L/L|≲ 10−3. We see good agreement for xmin/R1/2 ≳ 4, and results
within a factor of order unity for closer encounters. For our chosen definition of radius (the
half-mass radius R1/2) with outer radius to inner disc radius ratio Rout/Rin = 5 and p = 3/2,
we have Rout ≈ 1.91R1/2, which puts the closest encounters at xmin/Rout ≈ 1.57.

The non-zero height of the disc in the 3D case has not significantly altered the results
in comparison to the 2D case shown in figure 3.6. The majority of results are dominated
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Fig. 3.4 Angle averaged angular momentum transfer due to an equal mass perturber for discs
constructed from test particle rings with surface densities following various powerlaws ∝ r−p

and Rout/Rin = 5. The p = 1.75 and p = 1 results are comparable to the results in figure 5 of
Ostriker (1994). The dashed line represents the theoretical angular momentum loss for a ring
with radius Rout, and this is compared with the ring of test particle case (solid black line).

by the exponential component, with the exception of the almost retrograde encounters
β = 150◦, 180◦ where the m = 1, ω = 0 ILR dominates for all xmin/r. In figure 3.6 we have
compared the SPH results with the equivalent disc reconstructed out of rings using the results
in Section 3.3.2 which do not include viscous and pressure forces. For this comparison we
used both the analytic surface density profile and one taken directly from an unperturbed
SPH disc at the time of closest approach, but find no significant difference between them.
The case shown in figure 3.6 is for the analytic surface density profile. The resolution and
convergence of these results is demonstrated in Appendix A.2 for which no difference is
found using 106 particles in 2D above the noise limit. The minor differences compared to the
N-body results only play a significant role in strong interactions, where xmin/R1/2 ≲ 5 for
a prograde encounter (and angular momentum transfer is non-linear). As these differences
are not numerical in origin, they are indicative of hydrodynamical effects not present in the
N-body calculations.
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Fig. 3.5 Angular momentum transfer for a disc of half mass radius R1/2 around a star of mass
1M⊙, perturbed by a star of equal mass for various closest approach distances xmin. The
angular momentum vectors between the disc and perturber are offset by various angles β ,
while α = 0◦. The left panel is for a disc of test particles, reconstructed from annuli results
for analytic power law surface density distribution with p = 1.5. On the right is the same
result for a 3D SPH simulation, with triangle markers representing data points. The region
below the empirical noise limit is highlighted in red.

In summary, we have found good agreement across all of our results. The linear calcu-
lations detailed in Appendix A.1 match well with our integration of rings of test particles,
and these results in turn agree with full hydrodynamical simulations for interactions such
that |∆L/L|> 10−3. Unfortunately the noise limit of the SPH simulations leaves us unable
to test the power law dependence of the angular momentum transfer on xmin/r for distant
encounters (xmin/r ≳ 6). However these encounters are of little physical significance given
their negligible effect on the disc. We conclude that our results for the tidal influence of a
gravitationally focused encounter are robust.

3.4 Discussion

We show the angle averaged results for the fractional angular momentum change per en-
counter as a function of xmin and M2/M1 in figure 3.7. The black contour represents the
point at which the fractional angular momentum loss per encounter is 0.1 and which we use
as the demarcation between linear and non-linear encounters (corresponding to a reduction
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Fig. 3.6 The solid lines (square markers) show the angular momentum transfer for a disc
of SPH particles due to a perturber as in figure 3.5 in two dimensions, hence with prograde
and retrograde trajectories only. The same results are shown for the 3D case (dashed lines,
triangle markers) and for a disc reconstructed from rings of test particles using the results of
the MERCURY code calculations (dotted lines). The region in which the SPH calculations
become noisy is shaded.

of the outer disc radius of around 20%). The value of xmin for which ∆Lr/Lr = 0.1 we
denote xlin, which is a function of the mass ratio M2/M1. For closer encounters (i.e. for
xmin < xlin) fractional angular momentum loss is of order unity. Figure 3.7 illustrates that,
while more massive perturbers enter the non-linear regime at larger radius, the decline in
angular momentum loss in the linear regime is steep for all perturber masses and relates to
the exponential decline (equation A.6).

We illustrate the minor role of encounters in the linear regime by considering the inte-
grated effect of encounters in a stellar population. As discussed in Chapter 1 (see equation
1.25 and 1.26) the differential encounter rate scales as

dE (xmin) ∝
(
GMtot +4σ

2
v xmin

)
dxmin (3.4)
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Fig. 3.7 Theoretical angle-averaged parameter space exploration for the fractional angular
momentum loss induced for a ring of particles, surrounding a star of mass M1, by a parabolic
encounter with a star of mass M2. The contour follows the line at which ∆Lr/Lr = 0.1, where
the linearised equations A.4 and A.6 evaluated here are no longer appropriate.

for a one dimensional velocity dispersion σv, and total mass Mtot. We can therefore compute,
in a given time τ , the expected fractional change in angular momentum from encounters in a
unit interval of xmin by combining equation 3.4 with the angle averaged change in angular
momentum per encounter ⟨∆Lr/Lr⟩:

∂ (∆Lr/Lr)

∂xmin
=
∫

τ

0

〈
∆Lr

Lr

〉
∂E (xmin)

∂xmin
dt. (3.5)

We have assumed in equation 3.4 that encounters are uncorrelated and make no attempt to
include the physical properties of a cluster, such as internal sub-structure (e.g. Craig and
Krumholz, 2013), since here we are only interested in the influence of distant encounters
relative to close ones, not the absolute effect of encounters on disc evolution.

In figure 3.8 we depict ∂ (∆Lr/Lr)/∂xmin (equation 3.5) over a time interval such that
the expected number of encounters with xmin < xlin over this time is unity. We see that the
angular momentum change due to the cumulative effect of encounters decreases rapidly with
xmin. Moreover, integration of ∂ (∆Lr/Lr)/∂xmin over xmin outwards of xlin shows that the
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Fig. 3.8 Estimated differential total angular momentum loss for a ring of particles at Rout =
100 au from the host star. Results are shown over a time period such that expected number
of encounters such that xmin < xlin ≈ 2.4Rout for each star is unity (see text for details). The
value of xlin is indicated by the vertical red line. This limit can be generalised for arbitrary
mass ratio M2/M1 by applying the appropriate angular momentum loss threshold, as shown
by the black contour in figure 3.7. The two most extreme cases for a cluster are shown: the
solid line is the limit in which the stellar velocity dispersion is small, and the dashed line is
in the limit of an energetic cluster (equation 3.4).

total fractional angular momentum loss due to encounters in the linear regime over this time
interval is 1.7% in the limit of a cold cluster (σv → 0), and 4% when the encounter rate
(equation 3.4) is dominated by high velocity encounters. Since the time interval has been
chosen so that each star is expected to have experienced one encounter inward of xlin over
this period, and since such encounters within xlin cause an angular momentum reduction of
order unity, it follows that the additional effect of encounters outside xlin is negligible by
comparison. This time period is dependent on the local physical conditions in the cluster,
and may be greater or less than the age of a given stellar population. Although figure
3.8 illustrates the situation for equal mass encounters, the exponential fall-off in angular
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momentum transfer in the linear regime at all masses (figure 3.7) means that this minor role
for encounters in the linear regime persists for all M2/M1.

Finally, figure 3.7 shows the region of parameter space for which encounters are at all
important, from which a ‘close-regime’ (i.e. a spatial region in which significant angular
momentum loss from the disc occurs) can be defined for an arbitrary pair of stellar masses.
This spatial scale is approximately proportional to (M2/M1)

1/3, consistent with the empirical
findings of Breslau et al. (2014) for coplanar, prograde encounters. To obtain a general
prescription for the effect of close encounters, a full study of the parameter space in this
regime is required. Further complication arises since the encounters at large separations for
large M2 are frequently hyperbolic, particularly in hot, high density environments. These
issues are addressed in Chapter 4.

3.5 Conclusions

We have presented a robust analysis of the angular momentum loss for PPDs during a gravi-
tationally focused encounter. Good agreement is found between the theoretical prescription
adapted from Ostriker (1994), the test particle case explored through N-body simulations,
and hydrodynamic simulations for regions of parameter space for which ∆L is greater than
the numerical noise limit.

The angular momentum transfer between disc and perturbing star is dominated by two
resonances for non-retrograde encounters; the m = 2 ILR at small xmin/r (≲ 6 for M1 = M2)
and the m = 1, ω = 0 ILR for a secular perturbation at larger encounter distances. For close
to retrograde encounters, 150◦ ≲ β ≲ 210◦ the m = 2 ILR contribution is negligible, and
hence transfer is dominated everywhere by the m = 1 ILR.

We contextualise these results by plotting the angle averaged fractional change in angular
momentum per encounter in figure 3.7 as a function of perturber mass and closest approach
distance. Figure 3.7 demonstrates the steep fall off in efficiency of angular momentum transfer
in the linear regime for all perturber masses. We show that the total angular momentum loss
is always dominated by encounters in the non-linear regime (close encounters at separations
less than the black contour shown in figure 3.7) and that the angular momentum transfer
instead associated with the linear regime is a small fraction (< 4%) of this value.

In the context of PPD evolution within a stellar cluster, this allows us to conclude that
the influence of distant encounters on the disc is negligible, where ‘distant’ is here defined
to be any encounter for which the fractional angular momentum loss at the outer edge is
|∆L/L| < 0.1. If a cluster is composed of single mass stars this conclusion is equivalent
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to the statement that encounters with xmin/Rout > 2.4 can be ignored, despite the increased
probability of such an encounter occurring.

Our theoretical prescription can also be applied to find the upper limit of the closest
approach distance at which a disc is significantly truncated for a given mass ratio M2/M1.
Influential encounters in the large M2 regime can occur at comparatively large xmin/Rout and
are therefore more likely to be considerably hyperbolic. We will consider the influence of
hyperbolic non-linear encounters and their role in stellar clusters in the following chapter.



Chapter 4

Tidally truncated PPD radii in clusters

This chapter is based on Winter et al. (2018c), which I have divided between this and Chapter
5. I have performed all the simulations and analysis presented here and written the majority
of the text.

4.1 Introduction

Having illustrated in Chapter 3 that the influence of frequent distant type II encounters has a
negligible influence on a PPD with respect to a single close encounter, this chapter addresses
the latter regime. This involves numerically quantifying the influence of all encounters on
the outer radius of a disc in a given stellar cluster environment. We perform numerical
simulations to establish a more general prescription for the tidal truncation radius than is
currently available in the literature. Subsequently, we apply this prescription with theoretical
stellar encounter rates to quantify disc outer radius evolution assuming this is driven by type
II tidal interactions.

Previous works have made parameterisations of the truncation radius due to star-disc
encounter, for example Breslau et al. (2014) find an empirical relation for the truncation
radius of a disc of test particles for a range of perturber to host mass ratios M2/M1. However,
as with the previous investigation of Hall et al. (1996), this calculation was not performed
over an exhaustive range of disc orientations such that angle averaged results could be
obtained. Nor were hyperbolic trajectories considered. Clearly a prescription for the former
is necessary to apply to general encounters in a cluster. It also turns out that many encounters
that occur in a cluster with a realistic distribution of stellar masses are highly hyperbolic (e.g.
Vincke and Pfalzner, 2016), therefore an evaluation of the influence of hyperbolic encounters
on a disc is also required.
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Bhandare et al. (2016) attempted to expand on the Breslau et al. (2014) study by angle
averaging over disc truncation radii. However the fitted prescription for the post-encounter
disc radius is not scale-free since it would imply that the ratio of post-encounter radius to
pericentre distance depends on the absolute value of the latter. Hence, while we expand on
the parameter space by considering different eccentricity encounters, here we use a fresh
approach for finding the mass dependence for angle-averaged tidal truncation radii.

For disc evolution we consider the case both of a solar mass star, and smaller stars at the
hydrogen burning limit. We take a canonical initial outer disc radius of 100 au and apply
statistical arguments to follow the radius evolution over 3 Myr of evolution for a range of
cluster densities and velocity dispersions. Observational evidence suggests discs around
brown dwarves are more compact than around solar mass stars (Alves de Oliveira et al., 2013;
Testi et al., 2016; Tazzari et al., 2017; Tripathi et al., 2017). We aim to establish whether
close encounters are a plausible mechanism for this difference.

4.2 Numerical method

We follow the same numerical method as discussed in Chapter 3 to evaluate the effect of a
stellar encounter on a ring of test particles around a host star, which we review briefly here.
The general Bulirsch-Stoer algorithm of the MERCURY orbital integrator for solar-system
dynamics is used (Chambers, 1999).

We have modelled each ring with N = 200 particles, being a compromise between
computational expense and accuracy (this choice is discussed in Appendix B.1). A ring of N
particles is then fixed at some distance r from a central star of mass M1. A second star of
mass M2 is placed on a trajectory at a time 50 test particle orbits prior to the closest approach,
and integrated for the same time after that approach. Although for different r this does not
physically correspond to the same phase difference the results are found to be insensitive to
the initial location of the perturber.

We define two angles of orientation: the angle between the direction of pericentre and
the line of intersection of the disc and the orbital plane, α , and the angle between the angular
momentum vector of the disc and that of the orbit, β (as in Chapter 3). We angle-average
all our results (Section 4.4), therefore the precise definition of the disc orientation is not
important.
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4.3 Outer radius definition

To establish the outer disc radius after an encounter R′
out, previous studies have based

definitions of this radius on some limit on the surface density of a disc (e.g. Breslau et al.,
2014). We define R′

out by the post-encounter circularisation radius of particles that remain
bound after the encounter (i.e. considering the test particle to be a fluid element, for which
pressure forces would damp eccentricity over time). Assuming Keplerian motion, angular
momentum for a particle is L ∝ r1/2, therefore the fractional change in radius for a particle i:

∆ri

r
=

(
∆Li

L

)2

+
2∆Li

L

We average the circularisation radii for all particles in the ring that remain bound and
define the disc outer radius to be the maximum value of r′ for all the rings in the disc.
Rings where < 90% of the particles remain bound after the encounter are excluded in the
determination of the new disc outer radius. Otherwise, the trajectories of a small number
of particles introduce significant noise into the outer radius determination. The new outer
radius of the disc is thus defined:

R′
out = max

{
r+∆r : r < Rout and N′/N > 0.9

}
and the change in outer radius is ∆Rout = Rout −R′

out. In the case of close, coplanar, prograde
and parabolic encounters, this definition yields the same truncation radius as in the literature
R′

out ≈ 0.28(M2/M1)
1/3xmin (e.g. Hall et al., 1996; Breslau et al., 2014).

4.4 Angle-averaged model

To make our results applicable to general encounters, we produce a set of equations to define
the post-encounter outer radius R′

out as a function of the encounter parameters: the closest
approach distance xmin, the eccentricity epert and the ratio of the perturbing to host mass
M2/M1. The orientation of the disc with respect to the orbit of the perturbing star is also
important for the truncation radius; to simplify the models we consider the angle-averaged
results. These are given by〈

∆Rout

Rout

〉
=

1
4π

∫ 2π

0
dα

∫
π

0
dβ sinβ

∆Rout

Rout
(α,β )
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where α and β parameterise the disc orientation as described in Section 4.2. The angle-
averaging is in fact the sum over trapezia using the outer radius results at intervals of 30◦ so
that calculations over the required range of angles are computationally practicable.

We now consider the nature of the fitting formulae that we apply to the numerical
results for disc truncation radii. It turns out that an appropriate general form for a model is
complicated by the non-trivial dependence on M2/M1, epert and xmin/Rout for the contribution
to the fractional change in angular momentum ∆L/L from various resonances. The dominant
resonance in a given region of parameter space defines how the truncation radius scales
locally with these variables. Creating a complete fitting function for each resonance would be
both numerically challenging and of limited use for application to cluster models. Fortunately,
considering the angle-averaged results, most regions of parameter space for which encounters
are expected to be important can be modelled simplistically such that the the resulting fitting
formula is an accurate description of the numerical results to within ∼ 10%.

We identify three distinct regions in xmin/Rout space. It is more convenient to work in
reciprocal space; we denote Rout/xmin ≡ Rx, with the associated post-encounter fractional
radius R′

out/xmin ≡ R′
x. In Chapter 3 we show that the distant encounters have a negligible

influence on the disc, and we are therefore free to assume that for Rx smaller than some limit,
R′

x ≈ Rx (the ‘distant regime’).
The ‘close regime’ is the opposite limit for which Rx is large. Here R′

x is independent
of Rx, constant for fixed M2/M1, epert (i.e. the final disc radius is independent of the disc’s
initial outer radius). The angular momentum loss increases with M2/M1 and decreases with
increasing epert for close encounters, and the opposite for R′

x. Empirically, the dependence of
this truncation radius on epert decreases as M2/M1 increases.

At this stage, we identify a useful quantity to generalise results for unit mass ratio to
arbitrary M2/M1. In Chapter 3 we indicate the limiting distance for a closest approach above
which linearised equations are applicable: 1/Rx > X∗

M2/M1
, which is a function of the ratio of

the perturbing to host masses. This is defined by the value of Rx for which ∆L/L = 0.1 at the
outer edge of the disc. This is approximately

X∗
M2/M1

≈ 2.4(M2/M1)
1/3, (4.1)

consistent with the findings of Vincke and Pfalzner (2016). Equation 4.1 is plotted against the
theoretical value obtained directly from the linearised equations in figure 4.1. This quantity
defines the ratio of xmin to Rout within which encounters are significant and therefore provides
an approximate mapping between results for the M2/M1 = 1 case and a general perturbing
mass ratio. We define

f ≡ X∗
1 /X∗

M2/M1
≈ (M2/M1)

−1/3 (4.2)
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such that an encounter with closest approach xmin in the case that M2/M1 ̸= 1 is approximately
dynamically equivalent to an encounter with closest approach f xmin in the case that M2 = M1.

10-1 100 101 102

M2/M1

1.0

2.0

3.0

5.0

10.0

20.0
X

∗ M
2
/M

1

Fig. 4.1 The lower limit of the fractional closest approach distance 1/Rx for which the
linearised equations apply, defined to be where ∆L/L = 0.1 at the outer edge of the disc.
The dashed line is the approximate value from equation 4.1, while the solid line is the value
obtained directly from the linearised equations (Chapter 3).

With these definitions, we define the functional form of the model in the close-regime to
be

R′
xclose

≡ φ1epert
f φ2 · f

(
M2

M1

)φ3

(4.3)

where φi are fitting constants, φ1,2 > 0. The quantity φ1 represents the limiting value of
Rx for unit mass ratio and a parabolic orbit, and therefore for a parabolic orbit of arbitrary
mass ratio we would expect R′

x = f φ1 according to the argument set out above. However,
we have included an additional correction factor dependent on M2/M1. This is because our
unmodified scale factor f is based on the mass dependence of the m = 2 ILR, which is not
the dominant resonance excited in the disc for extremely close encounters. While this in
some respects makes our definition of f redundant, we expect this correction factor to be
small (|φ3| ≪ 1), and f is still meaningful in relating the scaling of our composite solutions.
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Parameter φ1 φ2 φ3 ψ1 ψ2 ψ3

Value 0.629 0.112 0.133 0.301 0.936 0.320

Table 4.1 Values for the fitting parameters for our general model for post-encounter disc
radius.

Our model is simplified by making assumptions about how the dependence on eccentricity is
related to the mass ratio, scaling φ2 by f .

The functional form of the ‘intermediate region’ (between the region of negligible
truncation and tidal truncation to a fixed fraction of the closest approach) is extremely
complex. However, we find a much simplified linear prescription for the new outer radius to
be acceptable:

R′
xinter.

≡ (1−ψ1e−ψ2
pert )Rx + f ψ1ψ3e−ψ2

pert (4.4)

where ψi > 0 are fitting constants, and ψ1 < 1. Our full model for the post-encounter radius
is then

R′
x = min

{
Rx,R′

xinter.
,R′

xclose

}
(4.5)

fully defined by the six fitting parameters φi=1,2,3,ψi=1,2,3.

4.5 Post-encounter disc radius

Our model, the form of which is described by equations 4.2 through 4.5, is fitted with the
parameters summarised in table 4.1. Figure 4.2 shows the results in the M2/M1 = 1 case.
The model agrees with the simulation results within 10% except in the limit of large epert and
Rout/xmin (penetrating, hyperbolic encounters). Encounters in this region of parameter space
are both unlikely and expected to yield capture scenarios and complete PPD destruction.
Nonetheless, caution should be used when applying our results for arbitrary masses and
eccentricities. Due to the divergence from the model in the highly hyperbolic limit, we
exclude the epert = 40 results during our fitting procedure.

To obtain the final fitting parameter φ3, we choose the value which best fits the simulation
results for M2/M1 = 10, shown in figure 4.3. The form of the fitting function ensures that
R′

out is less dependent on epert for large M2/M1. This assumption proves partially true. In
fact, the relationship between these parameters is more complex, and in the M2/M1 = 10
case we find that R′

out/xmin does not vary monotonically with epert. Our prescription is only
out by more than 20% in the extremely hyperbolic case epert = 40, and for all the rest of the
results the model is accurate within 10%.
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Fig. 4.2 The angle-averaged post-encounter radius R′
out of a disc with initial radius Rout as a

fraction of the closest approach distance of an encounter xmin where stellar components are
of equal mass M2/M1 = 1. Simulation data points are shown as squares. The model, which
is fitted to the data points where the perturber eccentricity epert ≤ 20, is shown by the dashed
lines (see the text for details). The residuals are shown in the bottom panel.
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We further test our model for M2/M1 = 100, where the dependence of the truncation
radius on epert is more complex and difficult to model accurately than at lower mass ratios.
Despite this, the majority of our numerical results remain within ∼ 20% of the model
predictions. Since penetrating hyperbolic encounters with a mass ratio M2/M1 ∼ 100 occur
with low probability (given the form of the IMF and typical velocity dispersions in clusters),
we do not address a more sophisticated treatment of this region of parameter space here.

A comparison between the simulation results and the model is shown for M2/M1 = 0.5
in figure 4.4. No further adjustment to the model parameters is applied in this case. Results
are once again within 10% of the model for epert < 10, and the discrepancies largely occur
in regions which are both unlikely (highly hyperbolic and close encounters) and prone to
inducing binaries or disc destruction.

Additionally, we investigate the effect of varying the particle number threshold for N′/N,
and find that reducing it only influences the results for low probability (i.e. highly hyperbolic,
penetrating) encounters. Our model remains in agreement with the simulation results within
10% in the regions of parameter space that are of interest.

4.6 Encounter rate

To generate appropriate cluster models, we must first establish the encounter rate for varying
environments. The usual approach is to ask some variation on the question ‘what is the
probability that a disc experiences an encounter closer than some separation xmin?’ (e.g.
Binney and Tremaine, 1987; Ostriker, 1994, and discussion in Chapter 1). However, this
question crucially depends on the effective number density of the stellar population neff which
is dependent both on sub-structure evolution and spatial location within the cluster (Craig and
Krumholz, 2013). Instead of trying to model the global evolution of a stellar population with
a spatially dependent number density distribution, we consider local conditions for simplicity.
On the issue of sub-structure, Craig and Krumholz (2013) found that for a modest fractal
dimension, D, the overall number of close encounters during the lifetime of the cluster can
become enhanced by a factor of a few, even though the sub-structure is eliminated over a
crossing time. Therefore this should be considered if we want an accurate estimate of the
degree to which stellar encounters are important.

From Craig and Krumholz (2013) the effective number density is linked to the fractal
dimension by

neff = nc ·2(3−D)(g−1)
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Fig. 4.3 As in figure 4.2 except the ratio of the perturber to host stellar mass is M2/M1 = 10.
The model values (dashed lines) are fitted only to the simulation data of the M2/M1 = 1 case
except in the asymptotic limit Rout/xmin ≫ 1, where an additional mass dependent parameter
is fitted (φ3 – see text for details).
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Fig. 4.4 Angle-averaged outer radius of a disc due to an encounter with a star with varying
closest approach distance xmin and trajectory eccentricity epert. Model (dashed lines) and
simulation results (squares) for the case where M2/M1 = 0.5.



4.6 Encounter rate 79

100 101 102 103 104

X (au)

0.0

0.2

0.4

0.6

0.8

1.0

P
(x

m
in
<
X

)

nc = 5. 0× 104 pc−3

nc = 104 pc−3

nc = 5. 0× 103 pc−3

nc = 103 pc−3

nc = 5. 0× 102 pc−3

nc = 102 pc−3

Fig. 4.5 The probability of a star having an encounter for which xmin < X in different stellar
densities after 3 Myr. The cluster is assumed to have uniform density and be composed of
stars with mass 1M⊙, with one dimensional velocity dispersion σv = 4 km/s.

where g is the number of fractal generations and nc is the local stellar number density where
there is no sub-structure (D = 3). The number of fractal generations is estimated to be

g =
ln(2Nc)

ln(8)
+1+ s2(D)

where Nc is the number of stars in the cluster and s2(D) is only non-zero for D < 2, in which
case it is 1. We assume that the value of D decays over a crossing time, τcross, such that:

D(t) = 3+(D0 −3)e−t/τcross,

at a time, t, since the star formation time. Apart from D0, nc, σv and ξ , one further parameter
needs to be assumed to link τcross, nc and g. We choose to fix the total number of stars in the
cluster Nc. Given this, the crossing time is

τcross =
2
σv

(
4πNc

3nc

)1/3

.
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The full theoretical encounter rate is defined in the Chapter 1 (equation 1.25), and is
dependent on the IMF, the stellar number density nc , the velocity dispersion σv and sub-
structure as defined above. With the definition of η given in equation 1.26, the differential
encounter rate (equation 1.25) is:

dE = η(xmin,V 2, M2; M1)dxmin dV 2 dM2

where V 2 ≡ v2
∞/4σ2

v for relative velocity v∞ between two stars at infinite separation (see
Chapter 1 for discussion). In the most general form we aim to estimate the probability that
an encounter occurs in a small region of parameter space: its closest approach in a spatial
range δxmin around xmin, a perturbing mass range δM2 around M2, a range of dimensionless
square relative velocity at infinity δV 2 and a time range δ t. For convenience, we label such a
box A, its volume δA = δxmin δV 2 δM2 δ t and a coordinate in parameter space a. Assuming
that encounters are uncorrelated, they can be modelled as a Poisson process and thus the
probability that an encounter will occur in A is approximately

P(a ∈ A)≈ 1− exp(−η δA) (4.6)

where η is evaluated at some point in A. In the limit δA → 0 the term in the exponent can be
integrated such that the probability of an encounter in any given range can be calculated.

Given this general encounter rate, we identify six distinct cluster models to investigate.
For the most simplifying conditions, a cluster is composed of equal mass stars without any
sub-structure. Two additional models are required to examine the effect of a realistic IMF
and time-dependent sub-structure. In each case a ‘high-density’ and ‘low-density’ model give
a sense of the dependence of disc evolution on nc. Practically, the theoretical encounter rates
give an immediate intuition for what high- and low-density regions are of interest. Equation
4.6 is evaluated as an integral over 3 Myr for a cluster comprised of solar mass stars and
without sub-structure in figure 4.5. We choose a high-density model with nc = 5×104 pc−3

for which a significant fraction undergo an encounter such that xmin ≲ 100 au.
For a ‘low-density’ model we choose nc = 104 pc−3. This is not low-density in that

it is higher than typical densities suggested by local observations, although theoretically
making statistical predictions on such properties is strongly dependent on the galactic scale
formation environment (see Chapter 7 and Kruijssen, 2012). Bressert et al. (2010) found
that the stellar surface density distribution in the local 500 pc varies up to ∼ 103 pc−2,
with a peak (by population) at ∼ 22 pc−2. However, we choose this as the low density
case because the majority of stars in a region with nc = 104 pc−3 have closest encounters
such that 100 au < xmin < 103 au. Therefore this represents an intermediate environment,
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approximately the lowest density where we expect a population of PPDs to undergo any
significant tidal truncation.

We additionally need to define a 1D velocity dispersion σv. In many cases, interpreting
real cluster properties is not straightforward. For example, many clusters appear to be
super-virial, and it is possible that this is because velocity dispersions are overestimated due
to binaries (Gieles et al., 2010). Incompleteness and uncertainties in establishing cluster
membership also contribute to uncertainties in local stellar densities. For more detailed
discussion see Stolte et al. (2010). For a review of the properties of young massive clusters
see Portegies Zwart et al. (2010). A velocity dispersion of ∼ 1− 5 km/s is usual in most
clusters (e.g. Hillenbrand and Hartmann, 1998; Clark et al., 2005; Rochau et al., 2010;
Clarkson et al., 2012), although in some environments a larger σv is observed, for example
in OB associations (e.g. Cygnus OB2, see discussion in Chapter 6 and Wright et al., 2016).
In our models we initially assume σv = 4 km/s, then examine the effect of varying this value.

For the cluster models including a range of stellar masses, we apply a Kroupa et al. (1993)
IMF:

ξ (m) ∝


m−1.3 for0.08M⊙ ≤ m < 0.5M⊙

m−2.2 for0.5M⊙ ≤ m < 1.0M⊙

m−2.7 for1.0M⊙ ≤ m < 100M⊙

0 else

(4.7)

such that ξ is normalised and continuous. In models for a single stellar mass, all stars are
assumed to have m = 1M⊙. All the cluster models are summarised in table 4.2. These models
are not intended to be a realistic representation of an overall cluster. During the dynamic
evolution of a real cluster the stellar density and mass distribution is likely to be spatially
(and temporally) variable. These models are instead intended to reproduce local conditions
and apply to a disc which has spent its life in a fixed stellar environment.

4.7 Numerical method

We adopt a Monte Carlo approach in quantifying the stochastic evolution of the outer radius
of a disc embedded in a stellar cluster. For each model in table 4.2, 103 disc evolutions are
calculated. In the case that an IMF is included (Models E and F), the mass of the host star is
drawn from the distribution defined by ξ in equation 4.7.

For each disc, the parameter space (over time, mass of perturbing star and spatial separa-
tion) is divided into grid cells, each of size δA as defined in Section 4.6. Each grid cell is
assigned a random number u ∈ [0,1). If u < P(a ∈ A), as defined in equation 4.6, then an
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Model nc (pc−3) D0 σv (km/s) Nc IMF

A 104 3.0 4.0 - -
B 5×104 3.0 4.0 - -
C 104 2.0 4.0 103 -
D 5×104 2.0 4.0 103 -
E 104 3.0 4.0 - ξ

F 5×104 3.0 4.0 - ξ

Table 4.2 Summary of cluster model parameters. In cases where the fractal dimension
D0 = 3.0 (no sub-structure) the number of stars in the cluster is irrelevant. Where the IMF is
not listed all stars are assumed to be of solar mass.

encounter is logged. The point in parameter space is then drawn at random (uniformly) from
within the grid cell A.

Some consideration as to the maximum size of each grid cell δA is required. The size of
a partition for each variable ai should be limited such that δai ≪ η/ |∇aiη | (i.e. η does not
vary greatly across a grid cell). For the time dimension the size of δ t is important only in
cases where sub-structure is included, when it is necessary that δ t ≪ τcross, the crossing time
of the cluster. Finally, the probability of two encounters occurring in the same grid cell A
should be small. We define a maximum probability that two events occur in the same cell as
1%, this means that P(a ∈ A)< 0.1. From equation 4.6, this gives

δA <
− ln(0.9)

η

These conditions effectively define a maximum size for the grid cells, and we vary the cell
partitions depending on the model parameters.

In this manner a series of encounters are assigned to a set of points {a} in parameter
space. The encounters are then applied to the disc under consideration in chronological
order, such that the disc response is appropriate for each sequential encounter. The initial
outer radius is defined to be 100 au regardless of host mass, and the outer radius of the disc
responds to subsequent encounters as described in Section 4.5.
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Fig. 4.6 Median (solid lines) and mean (dashed lines) outer disc radius evolution for each
cluster model. The black lines are results for all discs, the green lines are for discs which did
not have any encounters such that xmin/Rout < 2. The parameters for each of the models are
shown in table 4.2.
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Model A B C D E F

No close enc. 32% 0.8% 11% 0% 40% 1.4%
Table 4.3 The fraction of discs, out of a sample of 103, which did not undergo a close
encounter (xmin/Rout < 2) over 3 Myr in each model.

4.8 Cluster evolution results

4.8.1 Uniform density cluster

The outer radius evolution results for all the models are shown in figure 4.6, where the
uniform density clusters composed of 1M⊙ stars are top left and top right, which are the
low- and high-density cases respectively. To interpret these results, we have categorised
the discs according to the closest encounter distance of the disc in question. The threshold
xmin/Rout < 2 is commonly taken as a criterion for significant disc truncation (e.g. Hall et al.,
1996). We show in green the subset of discs that are only influenced by encounters such that
xmin/Rout > 2. The results including all discs are shown in black.

Clearly Model A yields no significant truncation, with the mean and median radii being
little affected by encounters even when stars undergoing close encounters are included.
The truncation extent is much greater in the high-density Model B, producing significantly
reduced disc radii (∼ 50 au). More distant encounters still have little effect on the disc
evolution, in agreement with the results of Chapter 3. Further, the fractions of discs that do
not experience a close encounter are shown in table 4.3; we find that for such a high density
cluster very few discs have only distant encounters over 3 Myr.

4.8.2 Structured cluster

For a cluster with sub-structure we expect to see a rapid evolution of disc outer radii at early
times due to the effective stellar density enhancement (and therefore the cluster encounter
rate), which is reduced over a crossing time τcross, as the cluster relaxes. This is confirmed
in figure 4.6. In the cases that the cluster initially has sub-structure (Models C and D),
Rout initially drops more rapidly. As the cluster ages however, the rate of change dRout/dt
decreases so that after 3 Myr the average outer radii do not differ greatly from the unstructured
case.

The extent of the difference between structured and unstructured models is dependent on
the crossing time τcross, and therefore the number of local cluster members Nc for a given
local stellar density. As we have fixed Nc = 103 in both of our sub-structured models, the
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cluster relaxes faster in the higher density Model D as opposed to the lower density Model C
(see Section 4.6). It is possible to increase the length of time for which the number density is
enhanced by structure, but this pushes into regions of parameter space which are physically
unlikely, requiring dense and large stellar populations. Similarly, a smaller τcross would
reduce the time-scale over which density is enhanced.

4.8.3 Cluster with stellar mass distribution

A realistic IMF is implemented in Models E and F, which are shown in the right and left
bottom panels of figure 4.6 respectively. The evolution of the disc radii for the global
population is not significantly altered from Models A and B, without an IMF implementation.
Some slight truncation for discs that only underwent distant encounters is observed in Model
F due to the influence of high mass perturbers such that M2/M1 ≫ 1. However, the fraction
of discs that escape close encounters in this high density environment remains low at 1.4%.

While the overall statistical properties of the disc radii in the cluster similar regardless of
whether we consider an IMF, doing so means that we can draw comparisons between discs
around stars of different mass within a given environment. We discuss the mass dependence
of the truncation radii below.

4.9 Mass dependent truncation

Given that a larger ratio M2/M1 yields greater angular momentum transfer, we expect the
final outer radius of a disc to positively correlate with host mass M1. In figure 4.7 we divide
the samples for Model E and F into two even subsets by a mass threshold (0.23M⊙) and plot
the cumulative fraction of the outer radius distribution. Differences between the high- and
low-mass sets are clear, and yield two-tail KS test p-values ≪ 0.05 for our samples of 1000
stars in both Models E and F, and they are still ≲ 0.05 when the same analysis is considered
for a random subset of 100 stars. In the case that tidal truncation is the dominant truncation
mechanism within a cluster, in principle it might be possible to find differences between the
outer radius distributions in real observations. However, putting constraints on disc radii to
within ∼ 10% for such a large sample of discs is challenging.

4.10 Probability averaging

To produce a more thorough exploration of the effect of changing σv and nc, and given that
final disc radii are largely determined by the ‘strongest’ encounter, the average outer radius
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Fig. 4.7 Cumulative fraction of the outer radius distribution Rout of discs evolving in a cluster
wherein stellar masses are drawn from the IMF ξ in equation 4.7 for Model E (left) and F
(right). Samples of 1000 stars are divided into two approximately even samples by the host
mass M1 using the limit 0.23M⊙.

for a given stellar mass can be approximated by direct calculation in the following way. We
choose two comparison masses, M∗ = 0.08M⊙ and 1M⊙, and for each M∗ sort the regions
of encounter parameter space {Ai}M∗ by the truncation radius of a 100 au disc, giving us a
corresponding set of outer radii {Rout,i}M∗ , ordered from smallest to largest. The cumulative
probability Ci over this set is:

Ci+1 =Ci +P(a ∈ Ai+1) · (1−Ci),

where C0 = 0. Each Ci is the probability that a stronger encounter than Ai+1 has occurred
over the relevant time period. Hence, the probability that Ai is the strongest encounter
is P(a ∈ Ai) · (1−Ci−1). Then for a given host mass M∗, the mean outer radius can be
approximated

R̄out(M∗) = ∑
i=1

Rout(Ai;M∗)P(a ∈ Ai;M∗) · (1−Ci−1)

where Rout(Ai;M∗) is the post-encounter outer radius of a 100 au disc hosted by a star of
mass M∗ due to an encounter in the parameter range Ai.

Applying this in varying cluster conditions yields the results in figure 4.8. These results
are particularly interesting in the context of the outer radius dependence on the velocity
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Fig. 4.8 Top: mean outer radius of a disc hosted by a star of mass 0.08M⊙ as a function of
cluster properties, velocity dispersion σv and number density nc. Middle: Mean outer radius
for a disc around a 1M⊙ star. Bottom: Ratio between the average disc outer radius of a disc
hosted by a 1M⊙ and 0.08M⊙ star.
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dispersion within the cluster. Although overall encounter rates increase monotonically
with σv, the likelihood of an encounter being hyperbolic also increases. In the case where
M2/M1 ≲ 1 the final outer radius of the disc is highly dependent on the eccentricity of the
encounter. Therefore, particularly in the case of a relatively high mass star, tidal truncation
is enhanced when the velocity dispersion within the cluster is small, even though there
are fewer close encounters. Hence, a prescription for the dependence of truncation extent
on eccentricity is an important addition to the theory of star-disc encounters. The most
significant tidal truncation for all stellar masses occurs in regions with σv ≲ 1 km/s and
nc ≳ 2×104 pc−3.

4.11 Conclusions

In this chapter, we have presented a full investigation of PPD radius distributions driven by
tidal encounters in local environments with varying stellar density and velocity dispersion.
Our main conclusions are as follows:

• The expected (mean) outer disc radius R̄out (from an initial outer radius of 100 au)
in a given environment is dependent on the local stellar number density nc, velocity
dispersion σv and host mass M1. The value of R̄out is minimised for large nc, small σv

and small host mass M1.

• No environments for nc < 104 pc−3 yield R̄out < 80 au within 3 Myr regardless of σv

and M1. In most cases R̄out is larger than this, almost unchanged from the initial value.
At higher local number densities nc ∼ 5×104 pc−3 tidal encounters can significantly
truncate PPDs below 100 au. A fiducial density threshold above which tidal truncation
becomes significant in PPD evolution is therefore nc > 104 pc−3.

• The differential effect of host mass M1 on the outer radius distribution is a rather
weak effect. Unlike the degree of absolute truncation, the difference in outer radii
between low- and high-mass host stars is maximised for large σv (and large nc).
Even in the extreme case of nc = 5× 104 pc−3 and σv = 5 km/s the difference in
R̄out between a brown dwarf and solar mass star is only ∼ 25%. A large sample of
well-constrained PPD radii in such an environment would be required to detect any
statistically significant differences between high- and low-mass stellar populations.

• Sub-structure can enhance encounter rates and therefore reduce disc radii within
a stellar population in the short term. This is simply the statement that enhanced
stellar densities result in increased truncation, and the canonical stellar density limit
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of 104 pc−3 should be seen as a threshold on the effective local stellar density (i.e.
incorporating the role of sub-structure) in the context of observed environments.

The relevance of these conclusions depends on whether there exist any environments
in which star-disc encounters are the dominant truncation mechanism within a cluster. A
comparison with photoevaporation rates in the densest cluster environments is presented in
the following chapter.





Chapter 5

Type II encounters vs. external
photoevaporation in star forming regions

The remainder of Winter et al. (2018c) not already included in the previous chapter is the
source material for the following study. I compiled the observed samples, performed the
analysis and wrote the majority of the paper. The viscous evolution code applied here was
initially designed by Prof. Cathie Clarke, and the PPD mass loss rates induced by FUV
photons are taken from Facchini et al. (2016).

5.1 Introduction

This chapter is a comparative study of the roles of type II tidal truncation and photoevapora-
tion in setting the distribution of PPD radii in clustered stellar environments. This is achieved
through first compiling a census of well studied star forming regions and depicting them
in the plane of ultraviolet field strength versus stellar density. These two quantities are the
main parameters that determine the importance of photoevaporative effects and dynamical
truncation. This work bears closest similarity to that of Adams et al. (2006), who focused
on the early stages of dynamical cluster evolution on young planetary systems. In that work
both close encounters and FUV flux were considered. However, the intention was more on
quantifying the dynamical evolution of young clusters, and less on estimating the resulting
disc properties. In this chapter I will instead take observed environments as ‘snapshots’ in
which I quantify the influence of PPD truncation mechanisms. Adams et al. (2006) only
considered small clusters of 100−1000 members, which are unlikely to host massive stars
(with the greatest FUV luminosities). The mass function for young clusters is not steep below
∼ 105 −106 M⊙ (Schechter, 1976; Gieles et al., 2006; Bastian, 2008; Portegies Zwart et al.,
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2010) so that many stars spend their early phases in much more populated environments.
Fatuzzo and Adams (2008) also investigated the influence of FUV fields over the observed
local distribution of cluster masses. However, that study did not make a comparison between
photoevaporation and encounters, nor did it quantify the density and field strengths in specific
young clusters. The latter is a necessary step in targeting regions for observations of PPDs
to test models for disc depletion. This chapter addresses the properties of observed clusters
in the higher mass limit, and additionally contributes to the quantification of the role of
photoevaporation in disc dispersal.

The externally photoevaporating disc evolution calculations presented in this chapter
differ from previous works in that they consider a wider range of ultraviolet field fluxes (cf.
Clarke, 2007; Anderson et al., 2013) and take into account the influence of viscous torques
(cf. Johnstone et al., 1998; Adams et al., 2004). They bear closest resemblance to those of
the study of photoevaporation of discs in very low mass stars by Haworth et al. (2018b). Here
however our focus is on the ∼ 1M⊙ stellar regime and in particular we focus on disc radius
distributions to compare with the results of dynamical truncation presented in Chapter 4.
Comparisons between the two truncation mechanisms are drawn in Section 5.4. Concluding
remarks are made in Section 5.5.

5.2 Cluster environments

Our first stage in producing comparisons between truncation mechanisms is to assess the
conditions within observed local star forming regions. We aim to produce a distribution of
the far ultraviolet (FUV) flux for real stellar cluster members (Fatuzzo and Adams, 2008),
and the corresponding local stellar number densities such that an estimation of the outer
radius evolution can be made. To that end, we discuss the FUV luminosity as a function of
stellar mass, and modelling assumptions below.

5.2.1 Properties of stellar clusters

We adopt the following approach in modelling real clusters, which are chosen such that there
exist consistent measurements of the stellar surface density. To construct a cluster we fit the
stellar positions with the Elson et al. (1987) surface density profile:

Σ(dc) = Σ0

(
1+

d2
c

a2

)− γ

2

(5.1)
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Cluster ρ0 (M⊙ pc−3) rcore (pc) reff (pc) rt (pc) γ Mclust (M⊙) m−σ
max (M⊙) mobs

max (M⊙)

NGC 3603 1.05 ·105 0.15 0.7 3.41 2.00 1.3 ·104 67 -
Trumpler 14 1.25 ·105 0.14 0.5 1.92 2.00 104 58

ONC 1.03 ·104 0.2 2.0 20.18 2.00 4.5 ·103 37 ∼ 37
Arches 1.30 ·105 0.2 0.4 - 3.27 2.00 ·104 87 -

Quintuplet 523 1.0 2.0 - 3.27 104 58 -
Wd 1a 9.52 ·104 0.28 0.86 - 4.00 3.2 ·104 114 -

Cygnus OB2 21.9 3.9 5.1 - 5.80 1.7 ·104 78 ∼ 100
Serpens A 743 0.16 - 0.25 4.00 17 - 5.1
Serpens B 495 0.14 - 0.21 4.00 6.8 - 5.1b

σ Ori 542 0.17 0.41 3.00 1.30 146 5.1 17
λ Ori 106 0.33 2.96 14.00 1.80 214 6.4 26.8

NGC 2024 2.16 ·103 0.16 0.24 0.90 4.01 132 4.8 15−25

Table 5.1 Table of cluster and association properties used to generate a model cluster environments. Above the line are those for
which properties are taken directly from Portegies Zwart et al. (2010). Below the line properties are found in independent sources (see
Appendix C.1).

aAlthough numbers are recorded in Portegies Zwart et al. (2010), the reported values for rcore, reff and γ are inconsistent. I therefore use reff from Mengel and
Tacconi-Garman (2007), and fit an appropriate core radius.

bThis is the maximum mass found throughout Serpens, placed at the centre of Serpens A. Therefore this represents the truncation value of the IMF, not the
maximum mass in Serpens B.
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as a function of the projected distance dc from the apparent cluster centre, where a is a scale
parameter such that rcore is the distance at which the surface density drops to half of its
central value:

rcore = a
√

(22/γ −1)

The associated volume density profile is

ρ(rc) = ρ0

(
1+

r2
c

a2

)− (γ+1)
2

(5.2)

where

ρ0 =
∫

∞

0
yΣ(y)dy

/∫
∞

0
2z2
(

1+
z2

a2

)− (γ+1)
2

dz.

Where it is not defined in the literature, the value of γ is obtained by fitting to rcore and the
effective or half-light radius reff:

∫ reff

0
y
(

1+
y2

a2

)−γ/2

dy =
Mclust

4πΣ0
.

In cases where γ ≤ 2, we introduce a truncation radius rt such as to give reff consistent with
observations: ∫ rt

0
y
(

1+
y2

a

)−γ/2

dy = 2
∫ reff

0
y
(

1+
y2

a

)−γ/2

dy.

Hence we obtain a volume density profile ρ as a function of radius within the cluster rc.
Introducing a truncation radius means that the 2D profile deviates only slightly from the
fitted profile for large rc when truncating the 3D profile.

To obtain a number density at radius rc the mass density is divided by the average stellar
mass obtained from the IMF (equation 4.7; although a slightly different IMF is used in the
case of Cygnus OB2, see Appendix C.1.1). However, as the FUV flux is sensitive to the
mass of the most massive star in the cluster, the IMF must be truncated above the chosen
mmax. Maschberger and Clarke (2008) find that mmax is consistent with random drawing
for clusters with a given number of stellar components Nclust. We therefore draw the mmax

distribution from the IMF, equation 4.7, the results of which are shown in figure 5.1. Our
stellar atmosphere models are limited to stellar masses < 100M⊙ (Section 5.2.2), which
is therefore our upper limit on mmax. A posteriori, evidence suggests photoevaporation
dominates over tidal truncation. To confirm this result as unambiguously as possible, we
seek to underestimate the influence of the FUV flux on a PPD population where there exists
uncertainty in the correct prescription. For this reason, where there is no observational data for
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Fig. 5.1 The mass of the most massive cluster member mmax as a function of the number
of members of that cluster Nclust. The solid line is the median m1/2 and the dashed line is
the mean m̄max. The dotted lines represent the 1-σ range, which is shaded. The horizontal
red line at 100M⊙ is the greatest mass for which our stellar atmosphere models apply, and
therefore an effective upper limit on the mmax.

the most massive star in a cluster, we choose the value for mmax one standard deviation below
the median (which we denote m−σ

max) to give an underestimate of the photoevaporation rate. For
example, in the case of the ONC, the most massive star is a component of a binary, θ 1 Orionis
C, with mass ∼ 37M⊙ (Kraus et al., 2009) which is our adopted mmax = mobs

max = 37M⊙.
In the case of NGC 3603 the observed maximum stellar mass is poorly constrained, and
therefore we adopt the conservative estimate mmax = m−σ

max = 67M⊙. The adopted properties
for clusters are summarised in table 5.1. The first six regions come directly from Portegies
Zwart et al. (2010). Other specific environments, for which data is obtained from other
sources, are discussed in Appendix C.1.
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Fig. 5.2 Stellar luminosity as a function of mass based on the models of Schaller et al. (1992)
and Castelli and Kurucz (2004), which can be compared with the results of Armitage (2000).
The red line indicates the total luminosity, while the black dashed and solid lines represent
the FUV and EUV luminosities respectively.

5.2.2 UV luminosity and stellar mass

To calculate the UV flux for a star of a given mass we follow Armitage (2000) for stars with
a mass in the range 1−100M⊙. The total luminosities and effective temperatures Teff are
taken from the stellar model grids of Schaller et al. (1992), using the results for Z = 0.02
and the output closest to the time 1 Myr. These are combined with the stellar atmosphere
models by Castelli and Kurucz (2004) to give the wavelength dependent luminosity (updated
from the models applied by Armitage, 2000).

FUV photons have energies in the range 6 eV< hν < 13.6 eV, while photons with
energies higher than 13.6 eV are considered extreme ultraviolet (EUV). The results shown
in figure 5.2, which are in agreement with those of Armitage (2000), despite our use of the
more recent atmosphere models.
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Fig. 5.3 Contours follow the local number density and FUV flux within each cluster. All
clusters are divided into radial bins and the mean flux and number density in that bin are
represented by the square markers, except in the case of a contour for Cygnus OB2 marked
by triangles which are the results when sub-structure is considered. The shaded regions
represent the standard deviation (±1σ ) of the flux in each radial bin. The numbers in brackets
represent the assumed maximum stellar mass in solar masses for each cluster. The solid
black line follows FFUV = 103(nc/pc−3)1/2 G0.
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5.2.3 Local environment distribution

In figure 5.3 the results of our cluster modelling are shown. The contours follow the density
profile of the cluster, where stars are binned by radius. This yields a mapping between
number density and FUV flux (assuming each cluster model is spherically symmetric). In
some cases we do not directly model the environment (Lupus, Serpens, and NGC 1977 - see
Appendix C.1 for details). Additionally, the Cygnus OB2 contour altered to match the density
and flux distribution found by Guarcello et al. (2016) are shown with triangular markers in
figure 5.3.

We find that for relatively massive clusters, Mclust ≳ 103 M⊙, there is comparatively little
dispersion in FUV flux for a given local number density. The relationship

FFUV = 1000
(

nc

pc−3

)1/2

G0 (5.3)

is shown as a solid black line in figure 5.3. It describes the contours for the massive clusters
within a factor ∼ 3, irrespective of mmax, although we do not investigate cases for which
mmax > 100M⊙ here. Since the contribution to local FUV flux peaks sharply for stars at
∼ 40–60M⊙ (with FUV luminosities ∼ 1039 erg s−1 – see Fatuzzo and Adams, 2008), the
relative contribution to the local number density of stars which dominate FFUV is only ≲ 10−3.
The gradient of the individual cluster contours in nc −FFUV space is therefore dependent on
the radial profile of the stellar density. In regions where nc falls steeply with radius, the flux
increases less rapidly with nc. This is expected given the reduced distance of the stars at a
low nc from the centre of the cluster for steep density profiles.

The fact that most clusters follow this relationship is a different realisation of the results
of Armitage (2000), in which the total FUV flux contribution as a function of stellar mass
(convolved with relative number of stars at that mass), becomes much shallower above
m ≳ 40M⊙. In the case of EUV flux, which also has a truncating influence on PPDs, this
is not true since the luminosity dependence on stellar mass remains steep up to ∼ 100M⊙.
We discuss the consequences of figure 5.3 in the context of PPD dispersal in Section 5.4.
Appendix C.2 contains some discussion about the assumptions made in producing the
contours for specific clusters for which there were modelling complications.

5.3 Photoevaporation

We consider the evolution of the outer radius evolution of a disc that spends 3 Myr in
environments of a given FFUV. Modelling disc evolution in this way requires knowledge of
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Fig. 5.4 Number of EUV photons Φi emitted from a star as a function of stellar mass, based
on the stellar atmosphere models by Castelli and Kurucz (2004).

mass loss rates over a range of disc radii and FFUV values. The mass of the host star and disc
also influences the photoevaporation rates, but this is addressed in detail by Haworth et al.
(2018b) and in Chapter 7. Here we consider a 0.1M⊙ disc around 1M⊙ star. Mass loss rates
are greater for lower mass stars, therefore the loss rates quoted here represent a lower limit
for the majority of a given stellar population.

5.3.1 EUV vs. FUV induced mass loss

The mechanisms for EUV and FUV induced mass loss in PPDs are discussed qualitatively
in Chapter 1. While we focus on the mass loss rates induced by FUV photons, some
quantification of the ionising influence of the EUV photons is helpful. For regions FUV
photons dominate mass loss, we use the results of Facchini et al. (2016) to obtain expressions
for the mass loss rate as a function of Rout for a range of FFUV values 30G0 <FFUV < 3000G0.
Outflows in the thin PDR limit are driven predominantly by the EUV photons. In this regime
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Johnstone et al. (1998) find an expression for the mass loss:

ṀEUV = 5.8×10−9
(

x
1pc

)−1( frΦi

1049 s−1

)1/2( Rout

100au

)3/2

M⊙ yr−1 (5.4)

where Φi is the EUV photon luminosity of the ionizing source (shown as a function of stellar
mass in figure 5.4), x is the distance to the same source, and fr is the fraction of EUV photons
that are not attenuated by the ISM, which we assume hereafter to be unity.
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Fig. 5.5 Ratio of the initial mass loss rates in a 0.1M⊙ disc with Rout = 100 au around a 1M⊙
induced by FUV versus EUV radiation. The region in which EUV photons induce greater
mass loss (ṀFUV/ṀEUV < 1) is shaded red. The cases for radiating sources of mass 20M⊙,
40M⊙ and 100M⊙ are shown.

The ratio of the FUV to EUV loss rates are shown in figure 5.5. For the range of FFUV

values for which I have mass loss rates, the FUV dominates down to FFUV ∼ 100. There
exists a second region close to the star (≲ 0.1 pc, FFUV ≳ 105 G0) in which the EUV again
dominates, although our models do not cover this regime. This can be understood in that
the EUV mass loss rate varies inversely with distance (equation 5.4) while the FUV mass
loss rate plateaus at high FFUV ≳ 104 G0 and then falls more steeply with declining FFUV for
FFUV ≲ 103 G0. These FFUV thresholds are lower than those found, for example, by Störzer
and Hollenbach (1999) because the region where FUV is dominant is dependent on disc
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radius, and our 100 au initial condition is larger than the disc radius considered in that study.
In addition, the FUV induced mass loss rates found by Facchini et al. (2016) made a number
of improvements to the theory discussed in Chapter 1. While we hereafter focus on the radius
evolution of PPDs due to FUV radiation only, this is effectively a lower limit on the rate of
photoevaporation for regions where EUV photons may dominate. This is sufficient for our
purposes of comparing photoevaporation to tidal truncation in different regions.

5.3.2 Viscous disc evolution model

To calculate the disc evolution we follow the viscous model outlined in Chapter 1 and
the numerical approach of Clarke (2007, see also Anderson et al. 2013), incorporating
photoevaporative mass loss from the outer edge. In brief, the viscous evolution is modelled
with a parameterised viscosity that scales linearly with radius (corresponding to constant
Shakura and Sunyaev α and a temperature scaling as R−1/2) and the evolution is defined
over a one-dimensional grid equispaced in R1/2. A zero torque inner boundary condition is
applied. The cell that is deemed to be the instantaneous outer edge cell is subject to both
viscous outflow from the inwardly lying cell and a sink term for mass leaving in the wind. If
the resultant of these leads to mass accumulation in the edge cell, the edge cell is advanced
outwards. In the case that the edge cell is subject to net mass loss, a threshold criterion
determines whether the outer cell moves inwards. Provided the threshold value is sufficiently
low, the evolution is insensitive to its exact implementation.

We apply this disc evolution calculation to a solar mass star, as this is the mass for
which the largest datasets of PPD radii will be available, and they can be compared to the
corresponding calculations in Section 4.10. To obtain an upper limit on the photoevaporation
timescale we choose the maximum initial disc mass that is compatible with gravitational
stability (∼ 0.1M⊙ – see Chapter 1). The viscous α-parameter is chosen so that the initial
accretion rate onto the star is 7×10−8 M⊙ yr−1, consistent with the upper end of the accretion
rate distribution for solar mass stars (Manara et al., 2016).

5.3.3 PPD destruction timescale

We apply our treatment of the disc radius evolution to a 0.1M⊙ disc around a 1M⊙ host
star in figure 5.6. The disc shrinks throughout its evolution for FFUV ∼ 3000G0 but initially
expands outwards for FFUV ≲ 300G0 until the mass loss rate (which increases with Rout)
balances the viscous expansion. The PPD then eventually shrinks once the disc has been
significantly drained by both photoevaporation and accretion. As discussed in Chapter 1,
photoevaporation accelerates disc destruction even when the disc is very compact because it
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Fig. 5.6 Outer radius (top) and mass (bottom) evolution of a 0.1M⊙ PPD around a 1M⊙ star
for FFUV = 30 (solid), 300 (dashed) and 3000G0 (dotted). We have marked our definition of
the photoevaporation induced disc destruction timescale τphot.(FFUV) as a vertical red line in
each case.
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prevents the disc from viscously re-expanding by removing the material at the outer edge,
thereby suppressing the evolution timescale.

The timescale τphot. over which the FUV flux destroys a PPD is defined to be the time
at which the disc is depleted such that Rout < 10 au or the mass falls below 10−6 M⊙ (in
practice the disc lifetime is usually dictated by the latter). Such a definition is appropriate
both because it represents a reasonable lower bound of the detectability of PPDs and because
the disc does not persist long at low masses/radii as shown in figure 5.6. The value τphot. is
shown as a contour in figure 5.7, varying between 3−10 Myr for 3000G0 > FFUV > 30G0.

Our definition of τphot. is conservative (i.e. the timescale over which photoevaporation
completely destroys the disc). This is because our aim is to compare regions of dominance of
the two truncation mechanisms (tidal encounters and photoevaporation) that act in different
ways upon a disc population. Encounters are stochastic, and therefore cause a distribution of
outer radii. In contrast, assuming all discs have the same initial conditions, the effect of FUV
flux has a consistent effect on all discs in the same environment. Therefore, to estimate the
timescale over which tidal encounters are irrelevant to the evolution of the PPD population
as a whole, we choose τphot. to be the period over which the disc is completely dispersed.
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Fig. 5.7 The evolution of the outer radius of a 0.1M⊙ PPD around a 1M⊙ star in different
(constant) FUV flux environments. The contour follows the time at which the disc is
considered to be ‘destroyed’, where Rout < 10 au or Mdisc < 10−6 M⊙.
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5.4 Type II tidal truncation vs. photoevaporation

In figure 5.8 we have marked the flux limit for which a 0.1M⊙ PPD around a 1M⊙ star
survives for 3 Myr. We have also indicated the lower number density limit required to see
significant tidal truncation in a disc population over the same period (∼ 104 pc−3 – see
Chapter 4). As discussed in Section 4.10 this limit is moderately dependent on the local
velocity dispersion, and some fraction of a population with nc < 104 pc−3 will experience
type I or serendipitous type II encounters.

We find that in all regions where significant tidal truncation occurs within 3 Myr (τtidal ≲

3 Myr) also correspond to regions in which the FUV flux is sufficient to destroy the disc over
this timescale (τphot. < 3 Myr). I.e. no clusters or associations which contain environments
occupying the bottom right of figure 5.8 exist in the sample we present here. There is no
evidence supporting tidal truncation as a dominant mechanism influencing PPD evolution in
real clusters. However, some caveats and possibilities are due discussion:

• The cluster sample we have presented is not complete. It is possible that there exist
clusters with a low mmax and enhanced stellar densities in which tidal encounters are
important for disc evolution. Given that there is little variation in the flux-density
profiles of the most massive clusters (figure 5.8), this likely can only be the case in
clusters with Mclust ≪ 103 M⊙. We have found no such examples.

• In present cluster environments past sub-structure might have enhanced number densi-
ties, and thus the encounter rate. However, figure 5.8 indicates number densities must
be increased by more than two orders of magnitude to make tidal truncation. Equally,
an enhancement in number density also increase the local FUV flux to some degree.
Sub-structure is also short-lived and exists during the highly embedded phase of star
formation which is less well quantified than the (few Myr old) environments shown
in figures 5.3 and 5.8. We emphasise that type I dynamical interactions taking place
within small dense multiple systems would be considered as providing disc initial
conditions, and not a mechanism for dispersal.

• Extinction within young clusters can reduce the effective FFUV experienced by PPDs.
Based on figure 5.8 the FUV flux would have to be reduced by a factor ≳ 50 to leave
regions in a regime of tidally induced truncation. Cardelli et al. (1989) parameterise
extinction as a function of wavelength, and in the FUV it is estimated at AFUV/AV ≈ 2.7.
The column density of hydrogen, NH , required for 1 magnitude extinction is NH/AV ≈
1.8×1021 cm−2 mag−1 (Predehl and Schmitt, 1995). For a factor 50 reduction in FUV
flux, this corresponds to ∼ 10 magnitudes, or AV ≈ 3.6m and NH ≈ 6.5×1021 cm−2. If
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Fig. 5.8 Cluster contours in nc −FFUV space as in figure 5.3 are shown here in grey. The
horizontal blue line shows the minimum FFUV such that the 0.1M⊙ disc around a 1M⊙
star will be completely destroyed by photoevaporation within 3 Myr. The vertical red line
delineates the approximate regimes in which the number density is sufficient to produce
significant tidal truncation for a 100 au disc within 3 Myr. The solid black line follows
FFUV = 103(nc/pc−3)1/2 G0, with dashed lines showing 1 dex around this value. The number
in brackets next to the cluster name represents the assumed maximum mass in the cluster
mmax, which may be observed or predicted (see text for details).
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the gas distribution is uniform over 2 pc this requires a volume density nH ∼ 103 cm−3,
which is high for a GMC (Solomon et al., 1987). Such extinction is observed, for
example toward Cygnus OB2 where AV ∼ 4m−7m is found, although this is likely due
to foreground as well as internal gas (Wright et al., 2010; Guarcello et al., 2012). The
influence of primordial gas is further discussed in Chapters 6 and 7.

• For the region in the top right of figure 5.8 (where both τphot. ≲ 3 and τtidal ≲ 3 Myr)
type II encounters are still unlikely to shape the outer radius distribution for three
reasons. Firstly, the definition of τphot. is such that the discs are completely destroyed
by external photoevaporation, while τtidal is the timescale on which a PPD population
might experience only mild tidally induced truncation. Secondly, the regions where
both occur are spatially small, only existing in the very core ∼ 0.1 pc of massive
clusters and containing a small fraction of the overall stellar population. Thirdly, in
these core regions with FFUV ≳ 105 G0 the EUV will play the dominant role in mass
loss, shortening the disc lifetime even for the extremely massive PPDs (0.1M⊙) studied
here.

• Finally, the analysis in Chapter 4 of the effect of tidal truncation is based on the angle-
averaged approach to individual encounters. In reality an additional scatter in outer
radii of PPDs is expected (greater than that obtained using the Monte Carlo approach
discussed in Section 4.7). The fraction of discs that experience close encounters
however, will remain unchanged. As our focus has been the effect of truncation
mechanisms on a whole population of discs, this scatter will not alter our conclusions.
Additionally, because of the choice of τphot. as discussed in Section 5.3.3, and the order
of magnitude limit on nc so that R̄out is only mildly truncated by encounters (see figure
4.8), the complete destruction of discs by photoevaporation renders the dispersion in
encounter orientation irrelevant.

Ultimately, none of the environments studied in this chapter are even particularly close
to the region in which tidal encounters to play a significant role. This does not preclude
individual PPDs, or even small fractions of the PPD populations, from experiencing trun-
cating encounters, particularly if they are type I. However as a physical mechanism for
disc truncation and dispersal, photoevaporation is found to be far more efficient in real
environments.
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5.5 Conclusions

During this chapter we have quantified the influence of photoevaporation of a massive PPD
and mapped out the density and FUV flux distribution in local star forming regions. This has
allowed us to compare the influence of type II encounters and external photoevaporation on
disc evolution. Our main findings from this comparison are as follows:

• In all the cluster environments discussed, regions for which the local number density
is sufficient to yield significant truncation in a population of PPDs (nc ≳ 104 pc−3)
are also exposed to a strong FUV flux which causes complete destruction of even a
massive disc within 3 Myr (FFUV ≳ 3000G0). We find no environments in which type
II tidal truncation shapes the distribution of outer radii.

• For massive clusters, the dispersion of FUV flux for a given local number density nc is
relatively small (≲ 1 dex). In particular, for Mclust ≳ 103 M⊙ the FUV flux follows:

FFUV = 1000
(

nc

pc−3

)1/2

G0

(equation 5.3). Deviation from this relationship can occur due to very steep or shallow
density profiles with radius within the cluster, or the presence of sub-structure.

• In the less massive cluster regime Mclust ≪ 103, where the high-mass end of the IMF
is not well sampled, the FUV flux is not defined by local number density. There exist
examples of low-mass clusters for which the FUV flux is much less than the number
density would suggest according to equation 5.3. However, even in these cases, the
stellar densities are insufficient to induce significant tidal truncation of PPDs within
3 Myr.

In summary, type II star-disc interactions are a secondary truncation mechanism compared
to external photoevaporation. As greater samples of PPD properties are measured with ALMA,
more complete disc radius and mass distributions as a function of distance from massive
stars and local number density will become available to test these conclusions.





Chapter 6

External photoevaporation of PPDs in
Cygnus OB2

This chapter is based on Winter et al. (2019); I performed the simulations and analysis, the
viscous disc evolution code was based on the original by Prof. Cathie Clarke. I am the main
contributor to the text.

6.1 Introduction

Chapter 5 demonstrates the importance of external photoevaporation for dispersing PPDs in
many local environments. In this chapter we consider some signatures that might be found
by observing disc populations in the regions that experience strong FUV flux. The properties
of young massive stellar clusters/associations and the giant molecular clouds (GMCs) from
which they form are diverse, and the link between them is not well characterised (see
Longmore et al., 2014, for a review). During formation, the early cluster may undergo
cold collapse (Tobin et al., 2009; Kuznetsova et al., 2018), or after the expulsion of gas
the stellar population may become supervirial (Goodwin, 2009; Pfalzner and Kaczmarek,
2013), dependent on the density and velocity dispersion of the primordial GMC. This in
turn influences the evolution of mass segregation (e.g. Bonnell and Davies, 1998) and sub-
structure (e.g Goodwin and Whitworth, 2004) within the cluster. Because the environment of
a star has an influence on the associated PPD, the dynamical history of a cluster is closely
linked with the properties of its disc population.

While many authors have attempted to account for the local environment in considering
PPD evolution (e.g. Scally and Clarke, 2001; Cleeves et al., 2016; Guarcello et al., 2016),
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none have inverted this method and used observed disc populations to put constraints on the
dynamical history of a star forming environment. This work is partly motivated by this goal.

Cygnus OB2 (Cyg OB2) is a young massive OB association in the Cygnus X region, and
has been used as an empirical test of feedback mechanisms on PPD evolution. It contains
many massive stars up to ∼ 100M⊙ (e.g. Massey and Thompson, 1991; Wright et al., 2015)
which contribute to strong FUV radiation fields. Guarcello et al. (2016) analysed the disc
fraction within Cygnus OB2 as a function of FUV flux, and found that surviving discs were
less common at small projected separations from massive stars. Other authors, such as Wright
et al. (2016), have made observations which indicate a complex dynamical sub-structure
within the association. Collating this evidence, we here aim to apply N-body simulations
and those combining viscous disc evolution and photoevaporation to replicate observations
of Cyg OB2. We will reproduce the present day stellar kinematics and a dynamical history
consistent with the observed disc fraction distribution. In this way we can shed light on both
the history and the likely future of the PPD population and the stellar components.

In the remainder of this chapter we first review the observational constraints on the
properties of Cyg OB2 in Section 6.2. We describe our numerical method and models in
Section 6.3. In Section 6.4 we compare our models with the observational data. We draw
conclusions in Section 6.5.

6.2 Properties of Cygnus OB2

6.2.1 Stellar population

Cyg OB2 is a young association at a distance ∼ 1.33 kpc from the sun (Kiminki et al.,
2015). The majority of members formed 3−5 Myr ago (Wright et al., 2010), although some
stars have ages as young as ∼ 2 Myr (Hanson, 2003) and as old as ∼ 7 Myr (Drew et al.,
2008). Estimates of the total stellar mass of Cyg OB2 have varied between 2–10×104 M⊙
(Knödlseder, 2000; Hanson, 2003; Drew et al., 2008; Wright et al., 2010), although Wright
et al. (2015) find a slightly lower mass of ∼ 1.6× 104 M⊙ within a radius of 13 pc of the
apparent centre. This includes a population of ∼ 169 OB stars, the most massive of which is
∼ 100M⊙ with an age of ∼ 2 Myr. Cyg OB2 does not exhibit evidence of mass segregation,
whereby the most massive stars occupy regions with the greatest gravitational potential
(Wright et al., 2014a).

The initial mass function (IMF) at the high mass end is not agreed upon in the literature,
with many authors arriving at different conclusions (Massey and Thompson, 1991; Massey
et al., 1995; Knödlseder, 2000; Kiminki et al., 2007; Wright et al., 2010; Comerón and
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Pasquali, 2012). Wright et al. (2015) take into account massive stars which have evolved
to their end state. In this way they find that the observed stellar masses follow an IMF
ζ (m) ∝ m−2.39±0.19 at high masses, which is approximately consistent with the ‘universal’
IMF of Kroupa (2001) (or indeed a Salpeter, 1955, IMF). However, inferring the high mass
IMF is problematic since the occurance of supernovae in Cyg OB2 remains a point of debate
(see Butt et al. 2003 and discussion in Wright et al. 2015).

Wright et al. (2016) describe the spatial density distribution in Cyg OB2 with an Elson,
Fall and Freeman profile (EFF profile hereafter – Elson et al., 1987):

ρ = ρ0

(
1+

r2

a2
stars

)− γ+1
2

(6.1)

where astars = 7.5 pc and γ = 5.8. Normalising for the total mass of the cluster this makes the
central mass density ρ0 ≈ 22M⊙ pc−3. However, this profile was derived for a small central
region of ∼ 8 pc×8 pc, which does not enclose the estimated core radius. Hence, when we
consider the distribution of the stellar mass in our models (see Section 6.4.3) we will focus
on reproducing the mass enclosed within a projected radius of 13 pc (Wright et al., 2015).

6.2.2 Velocity dispersion

Wright et al. (2016) presented a high-precision proper motion study of the X-ray sources
in Cyg OB2. They found that the region is gravitationally unbound and exhibits an
anisotropic velocity dispersion with proper motion components σα = 13.0+0.8

−0.7 km s−1

and σδ = 9.1+0.5
−0.5 km s−1. The radial velocity dispersion has also been measured to be

σr ∼ 10 km s−1, although systematic overestimates due to the binary fraction introduce
uncertainties (Kiminki et al., 2007, 2008).

Interestingly Wright et al. (2016) found little evidence for expansion (or contraction) in
the velocity field when considering the large scale variations of the proper motion distribution.
This finding is independent of the definition of the centre of the association, and was argued
by dividing proper motions into radial and azimuthal components. The ratio of kinetic
energy between the radial and azimuthal directions was found to be approximately 60 : 40.
In the radial (projected) velocities, no bias is found towards or away from the centre. In the
azimuthal direction there is some preference for motions in the direction of negative PA, with
a ratio in kinetic energy of 66 : 34. Because Cyg OB2 is not bound, this is interpreted by
Wright et al. (2016) as a remnant of the angular momentum of the primordial GMC.
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6.2.3 Sub-structure

Interpretation of the internal sub-structure in Cyg OB2 is not straightforward. Knödlseder
(2000) concluded that it is a spherically symmetric region with a diameter of ∼ 2◦ (46 pc).
Since then, a number of authors have suggested a more complex morphology:

• Bica et al. (2003) suggested that Cyg OB2 is home to two open clusters which can be
seen towards the centre. However, Guarcello et al. (2013) note that the two apparent
clusters are divided by a bright nebula. This makes it unclear if the two are physically
separate or merely appear so due to the higher extinction in the intervening region.

• Wright et al. (2010) found evidence of populations within Cyg OB2 with distinct
ages, 3.5+0.8

−1.0 Myr and 5.25+1.5
−1.0 Myr for central and northwestern regions respec-

tively. Ostensibly, this suggests multiple star forming events. However, the ages
in physically separated regions exhibited a wide spread such that they are almost
consistent with being coeval. Further the authors acknowledge a number of sources
of uncertainty, including variability in pre-MS stars (Herbst et al., 1994); binarity
(Preibisch and Zinnecker, 1999); variable accretion (Baraffe et al., 2009); or non-
uniform extinction (Guarcello et al., 2012).

• A large number of A stars were identified south of the apparent centre by Drew
et al. (2008). This population appears distinct spatially and non-coeval with the OB
population (although the estimated ages ∼ 5–7 Myr are nearly consistent with coevality
within uncertainties). As the authors note, it is also possible that these stars are actually
behind Cyg OB2 along the line-of-sight and wrongly associated due to projection
(Schneider et al., 2006).

• Guarcello et al. (2013) used a critical side length criterion in the minimum spanning
tree of the disc-bearing population to suggest that Cyg OB2 has a clumpy sub-structure.
However, as stated by the authors, the definitions of these clumps are dependent on
the definition of the critical side length. Additionally, the non-uniform extinction due
to foreground gas complicates this argument as in the case of the two open clusters
identified by Bica et al. (2003).

• Perhaps the best evidence for underlying structure in Cyg OB2 has been the proper
motion study of Wright et al. (2016). On small scales they found evidence for kinematic
sub-structure, which is the correlation of proper motion vectors with position. Applying
a Moran’s I statistic (Moran, 1950) they found correlation with a significance of 9.7σ

and 12.5σ in RA and Dec velocity components respectively.
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6.2.4 PPD population

Guarcello et al. (2016) studied the correlation between the fraction of surviving PPDs as
a function of the local FUV and EUV intensity. They use a sample of 7924 X-ray sources
(Wright et al., 2014b), for which the presence (absence) of a PPD is inferred by the presence
(absence) of an infrared excess in the photometric data compiled from numerous surveys (see
Guarcello et al., 2013). Subsequently they estimate the local flux as a function of projected
separation from each O star (see Guarcello et al., 2007). The disc fractions as a function
of FFUV are divided into 6 bins between ∼ 103 G0 and ∼ 5× 104 G0. Over this space the
disc fraction drops monotonically from ∼ 40% to 18% with FUV intensity (see figure 3 in
Guarcello et al., 2016). These observations are discussed in the context of modelling in
Section 6.4.2.

6.2.5 Observational summary & modelling challenges

Cyg OB2 is a well studied young association, and as such a large number of physical
characteristics serve as constraints and measures for the success of any modelling attempts.
Some such metrics are as follows:

• Wright et al. (2016) find that the velocity dispersion in Cyg OB2 is anisotropic. This
suggests that the stars share the systematic large-scale velocity field of the primordial
GMC. We will find that such observations cannot be reproduced by simple models
without underlying sub-structure.

• Cyg OB2 presently has a central mass of ∼ 1.6×104 M⊙ within 13 pc of the centre.
Any dynamical model should match this central density after evolving for the age of
the association (∼ 3−5 Myr).

• Although Cyg OB2 is gravitationally unbound with a large velocity dispersion, there
is no bias (inwards or outwards) in the radial component of kinetic energy. This
apparently suggests a lack of recent rapid expansion, despite the high velocities. When
we consider our final N-body model, we will explore what expansion metric we would
‘observe’ (Section 6.4.3).

• Statistical measures of the proper motion distribution suggest kinematic sub-structure
which is probably indicative of stars travelling together as small virialised groups
(Wright et al., 2016).

• The disc fraction as a function of (projected) FUV field strength (Guarcello et al.,
2016) provides a constraint on the length of time for which external photoevaporation
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has been an efficient mechanism in Cyg OB2. This allows us to put constraints on the
gas expulsion timescale. We perform these calculations to constrain the appropriate
N-body model in Section 6.4.2, then revisit the PPD properties obtained from our final
model in Section 6.4.4.

All these metrics except the last are considered for our model in Section 6.4.3.

6.3 Numerical Method

The goal of our models is to reproduce the observed dynamical properties of the stellar
population and the observed fractions of surviving discs. The latter is achieved by tracking
the FUV flux experienced by PPDs evolving within a given N-body model. In this section
we discuss the modelling procedure applied to both the stellar dynamics (Section 6.3.1) and
the disc evolution (Section 6.3.2).

6.3.1 Kinematic modelling

The dynamical evolution of the stellar population is calculated using NBODY6++GPU (Wang
et al., 2015). This is an MPI/GPU accelerated version of NBODY6 (Spurzem, 1999; Aarseth,
2003), and has built-in routines to deal with the evolution of a stellar cluster within a (gas)
potential. As the stellar components of Cyg OB2 are presently highly supervirial, the latter
feature is necessary for an initially virialised state.

Gas potential

The complex nature of Cyg OB2 means that some simplifying assumptions are required for
dynamical modelling. We first assume that the cluster was initially in virial equilibrium due
to the contribution to the gravitational potential of the gas in the primordial association. This
is achieved by invoking a Plummer potential (for numerical convenience) corresponding to a
gas density profile:

ρgas =
3Mgas

4πagas

(
1+

r2

a2
gas

)−5/2

where Mgas is the total gas mass, r is the radial distance from the centre of the association,
and agas is the scale parameter. During initial tests, we have varied agas (and the stellar
scale parameter astars), and although it has a mild effect on the kinematic properties of our
models, the exact value (within order unity) is not crucially important. This is particularly
true in the stochastically defined initial conditions of sub-structured models (see Section
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6.3.1 below), where kinematics are more dependent on the specific realisation. Physically we
expect agas ≳ astar, and we fix astar = 7 pc (as there is no clear evidence of past expansion)
and agas = 10 pc.

For a Plummer density profile the specific gravitational potential is:

φ(r) =−GMgas

agas

(
1+

r2

a2
gas

)−1/2

. (6.2)

The total potential in a given cluster make up of N stars of mass mi initially at distance ri

from the centre and ri j from a star of mass m j is:

Utot =
N

∑
i

mi

(
φ(ri)+

N

∑
j ̸=i

Gm j

2ri j

)
. (6.3)

Then using equations 6.2 and 6.3 we require that initially

Qvir,0 ≡
∑

N
i miv2

i
2Utot

= 0.5

where vi is the magnitude of the initial velocity of the ith star. The total gas mass is chosen to
maintain initial virial equilibrium for a cluster with a given velocity dispersion.

Our prescription of gas removal introduces an expulsion timescale τexp over which time
the potential is removed. The gas mass is reduced linearly such that Ṁgas = Mgas,0/τexp. We
vary τexp to investigate how this affects the disc population due to extinction (see Section
6.4.2). We fix the time at which gas expulsion is initiated to be τdelay = 1 Myr, consistent
with the age of the most massive stars in Cyg OB2 (∼ 2 Myr) if the cluster age is 3 Myr (the
period for which we evolve the whole system). We further define τgas ≡ τdelay + τexp. For a
discussion of the influence of gas expulsion on the dynamical state of a young cluster, see
Baumgardt and Kroupa (2007).

Clearly, while computationally necessary here, a Plummer potential is not a realistic
reflection of the physical conditions of the primordial gas distribution during the embedded
phase. Initially, gas density distributions would trace the stellar density (since the stars form
from the gas). Subsequently, we would expect gas expulsion to occur as expanding bubbles
from the most massive stars in the region (e.g. Dale and Bonnell, 2011; Dale et al., 2014;
Ali et al., 2018). We therefore expect intra-clump or -filament potential to reduce faster than
inter-clump potential. The influence of a geometrically complex potential on the evolution of
the stellar population is certainly of interest for accurately reproducing observed kinematics
and spatial distributions. However, we assume that the Plummer potential imposed here is



116 External photoevaporation of PPDs in Cygnus OB2

x (p
c)

10
5

0
5

10y (pc)

10
5

0
5

10

z (p
c)

10

5

0

5

10

(a) FRAC

x (p
c)

10
5

0
5

10y (pc)

10
5

0
5

10

z (p
c)

10

5

0

5

10

(b) FILA

Fig. 6.1 Example of an initial spatial distribution of stars in FRAC and FILA models (figures
6.1a and 6.1b respectively). In the FRAC model, stellar positions are distributed with a
‘clumpy’ morphology, whereas the FILA model exhibits extended filaments. A subset of
5000 stars within a cube of side length 10 pc are shown, where the coordinate system is
defined by the gas potential (see text for details). Both models have a stellar mass of 104 M⊙
and the same half mass as an EFF profile with astars = 7 pc, γ = 5.8; the FILA model also
follows the same radial density profile (equation 6.1 with the aforementioned parameters).
The scatter points are coloured by the largest scale subgroup with which they are associated
and scaled linearly by the mass of the star.

sufficient for reproducing the global distribution of stellar positions and velocities. This is
justified since we are primarily interested in preventing the rapid escape of the high velocity
stars from the central regions of Cyg OB2. This is achieved by our spherically symmetric
potential.

Stellar initial conditions

We define three different types of stellar initial condition, which we label uniform (UNIF),
fractal (FRAC), and filamentary (FILA). A uniform cluster exhibits no underlying sub-structure,
while fractal and filamentary clusters have enhanced local number densities, and stellar
positions are correlated with velocities. While the surface density of FRAC model is ‘clumpy’,
and individual clumps can be spatially isolated, a FILA model is defined such that the (radially
binned) surface density follows an EFF profile. A filamentary model captures the morphology
seen in both observations and simulations of star forming regions (e.g. Bonnell et al., 2008;
Molinari et al., 2010; André et al., 2014), however we include both FRAC and FILA models
in this work to compare their properties by the metrics of interest. We discuss the generation
of each set of initial conditions below.
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The simplest initial conditions are UNIF models for which stellar positions are simply
drawn from an EFF profile (equation 6.1, Elson et al., 1987). We fix γ = 5.8, consistent with
the present day value, and fix astars = 7 pc. The magnitude of the velocities are then chosen
from a Maxwell-Boltzmann distribution

f (v) ∝ v2 exp(−v2) (6.4)

with a random direction, then normalised as discussed in Section 6.3.1. Drawing from this
distribution will produce a significant number of unbound stars (particularly at the high
velocity dispersions we require – see Section 6.4.3). It is possible that this distribution is
truncated at large velocities, and indeed star formation models suggest stars might have a
smaller velocity dispersion than the primordial gas (Offner et al., 2009, see Section 6.4.3).

A FRAC model is generated using the recipe fully described by Goodwin and Whitworth
(2004) which we briefly review here (see also Scally and Clarke, 2002; Craig and Krumholz,
2013). First we define a cube with side length 2 (in arbitrary units) centred at the origin.
We then divide it up into (2P0)

3 sub-cubes, where P0 is an integer (initially chosen to be
unity) which dictates the number of the largest scale sub-clusters. The centre of each of these
represent the potential positions for the first generation of stars, g = 1. All positions are
offset by a vector with magnitude uniformly drawn between 0 and 2−(g+1)/P0, and random
(isotropically drawn) direction. ‘Parent’ positions rrrg have 8 possible sites for ‘child’ positions
rrrg+1 which are placed with a probability 2D0−3, where D0 ≤ 3 is the fractal dimension (which
we fix at 2.5). Only existing children can parent future generations. We repeat this process
until the number of positions greatly exceeds the number of stars in the model, at which point
the members are randomly allocated to positions. The side length of the original cube is then
redefined such that the initial half-mass radius matches that of an equivalent UNIF model
with parameters astars = 7 pc, γ = 5.8.

The velocities for each generation of stars g = 1 is chosen in the same way as for the
UNIF model. Velocities for subsequent generations vvvg+1 are correlated to the velocity of the
parent star vvvg:

vvvg+1 = vvvg +δvvvg+1

where δvvvg is a velocity with a random direction and magnitude δvg. The latter is drawn from
the modified Maxwell-Boltzmann distribution

f (δv) ∝ δv2 exp
(
−2g

δv2)
such that child stars have velocities correlated to their parents.
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A FILA model is a hybrid between FRAC and UNIF. To construct the initial conditions
we first produce a FRAC model and then force the stellar positions into an EFF profile. This
is achieved by dividing the radial positions into bins, with the jth bin containing Nc, j stars
approximately at radius rc, j, and rescaling the size of each bin (∆rc, j) from inside out to
produce the appropriate number density with respect to imposed EFF profile:

Nc, j

4πr2
c, j∆rc, j

=
ρ(rc, j)

⟨mstar⟩

where ⟨mstar⟩ is the average stellar mass and ρ(r) is defined in equation 6.1.
The results of this process are filament-like structures, as shown in figure 6.1, in which

FRAC and FILA models are compared. In a FRAC model the density profile has hard edges and
a clump-like sub-structure (as in figure 6.1a), while in the FILA model stellar density drops
off smoothly with radius and produces filament-like sub-structure (as in figure 6.1b). This is
because the initial clumps from which the stellar density is composed become ‘stretched’
radially when we impose the EFF profile, to produce several elongated distributions of stars.
Both types of model demonstrate spatial and kinematic asymmetry with respect to the gas
potential.

We draw stellar masses from a Kroupa (2001) IMF:

ξ (m) ∝


m−1.3 for0.08M⊙ ≤ m < 0.5M⊙

m−2.3 for0.5M⊙ ≤ m < 1.0M⊙

m−2.4 for1.0M⊙ ≤ m < 100M⊙

0 else

(6.5)

where at high mass end > 1M⊙ we use the observed mass function in Cyg OB2 (Wright
et al., 2015). In our models stars are not primordially mass segregated.

Reproducing observations requires estimating an appropriate field of view, which is in
turn dependent on the definition of the cluster centre. Observationally some discrepancy
exists in this definition between different works, although authors generally agree within a
few pc (see Wright et al., 2016, for a discussion). For our purposes an approximate estimate
of this centre is sufficient since we find that all the metrics we consider are only weakly
dependent on our choice. For UNIF models, the cluster centre remains the centre of mass of
the original set up. For FILA and FRAC models, where considerable anistropy exists in the
stellar kinematic distribution, it is necessary to estimate the centre of mass for each snapshot
in time. We choose an efficient (approximate) algorithm, in which we find the point which
maximises the mass within a given projected radius (chosen to be Rcent = 10 pc) by sampling
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recursively over a grid of points. Providing the grid is sufficiently highly resolved, the centre
we obtain is insensitive to the exact value of Rcent and number of iterations. All subsequent
results should be understood in this context.

6.3.2 Disc evolution model

In this section we discuss the prescription we apply to calculate PPD evolution. Each disc is
exposed to an FUV flux resulting from tracking the contributions from the stellar components
within a given N-body model.

FUV flux and mass loss rate

As in the Chapter 5 we will consider mass loss in discs induced by FUV photons only. EUV
photons dominate mass loss when external photoevaporation is already inducing very rapid
or slow dispersal. Since we are interested on survival rates on a timescale of Myr, we are
free to consider only the FUV induced contribution. We calculate the FUV flux experienced
by each star in the same way as in Chapter 5, although in this context we also track the
flux experienced by a given star over the course of our N-body simulations. For the FUV
induced mass loss rates Ṁwind we use the recent grid of models calculated by Haworth et al.
(2018a). The grid covers a wide range of parameter space in outer disc radius (1 – 400 au),
disc masses (∼ 10−8 – 0.1M⊙), FUV field strengths (10 – 104 G0) and stellar masses (0.05 –
1.9M⊙). These mass loss rates are interpolated linearly and applied to a viscously evolving
disc to establish the expected disc properties in a given cluster environment.

Disc model and initial conditions

To calculate the state of PPDs evolving within the cluster we must take into account viscous
expansion as well as the photoevaporative mass loss. The theoretical framework of this
approach is discussed in Chapter 1 and the numerical method is outlined in Chapter 5 (see
also Clarke, 2007). Under this model, we can write the accretion rate at the inner edge of the
disc initially

Ṁacc,0 =
3α Mdisc,0H2

1 Ω1

2R2
1

(6.6)

where Mdisc,0 is the initial disc mass, H1 and Ω1 are the scale height and Keplerian frequency
at the disc scale radius R1 (see Hartmann et al., 1998). We truncate discs outside the initial
outer radius Rdisc,0 = 2.5R1, such that the integral of equation 1.5 over the disc area yields
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Fig. 6.2 Assumed initial viscous accretion rate (equation 6.6) as a function of stellar mass
for Mdisc,0 = 0.1mstar and a range of Shakura and Sunyaev α-viscosity parameters. The
initial disc conditions are described in Section 6.3.2. The range of stellar masses we consider
(0.5–2 M⊙) is discussed in Section 6.4.2.

92% of Mdisc,0. We take the scale radius to be

R1 = 40
(

mstar

1M⊙

)1/2

au. (6.7)

Unless otherwise stated we will assume that Mdisc,0 is uniformly distributed between 0.01 –
0.1mstar (Andrews et al., 2013); then equation 6.7 means that the distribution of initial surface
densities at R1 remains independent of stellar host mass. The scale height H is proportional to
the radius throughout the disc, and we choose H1/R1 = 0.05. The maximum initial accretion
rate (equation 6.6) as a function of stellar mass is indicated in figure 6.2. The associated
viscous timescale is τvisc ≈ 0.5 Myr for a solar mass star with α = 10−2, R1 = 40 au (see
equation 1.6). Combining equation 1.6 with equation 6.7 we have τvisc ∝ m1/4

star .
During this chapter we will explore the effect of altering disc initial conditions on their

final properties, however we always consider a distribution of initial disc masses. Allowing a
range of initial disc masses accounts for the observed range of stellar ages (since internal
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processes deplete the disc over time) and variable disc initial conditions. Additionally, for a
given FUV flux environment some fraction of discs survive, and the findings of Guarcello
et al. (2016) indicate that this survival fraction reduces monotonically with increasing FFUV.
We find that, depending on initial disc properties, dynamical mixing between regions of
different FUV flux and the range of FFUV within a single bin alone are insufficient to produce
the observed survival fractions (i.e. observed survival fractions between FFUV bins do not
jump rapidly from ∼ 0% to ∼ 100% at a certain threshold). The chosen initial conditions and
the variation between discs are therefore important in reproducing observations. Whether
this dispersion is inherited from a tight correlation between stellar mass and PPD initial
conditions is explored by considering host mass independent disc initial conditions in Section
6.4.4.

6.4 Results and discussion

6.4.1 Modelling approach

We aim to produce an N-body model, including initial gas potential, with a self-consistent
treatment for the photoevaporation of the PPD population. We simplify the modelling
procedure by the following approach:

1. First we estimate the gas expulsion timescale τgas ≡ τdelay + τexp by considering the
observed surviving disc fractions as a function of FUV field strength (Section 6.4.2).
The presence of primordial gas influences the models in two ways: it imposes a
gravitational potential on the stellar population, and suppresses photoevaporation by
extincting FUV photons. Using the latter effect we can calibrate the period of efficient
exposure to the observed survival rate of PPDs. There exists a degeneracy in this
calculation with the assumed disc viscosity, and we explore the influence of varying
both parameters (see Section 6.4.2).

2. Having established the rate of gas expulsion, we apply the appropriate time-dependent
potential to establish the dynamical evolution of the stellar population consistent with
kinematic and spatial data. In Section 6.4.3 we deduce the initial conditions required
to reproduce the observed anistropic velocity dispersion. In Section 6.4.3 we vary the
initial stellar mass required to reproduce the observed central density (within 13 pc of
the apparent centre).

3. Finally, we combine our findings into a ‘best-fitting’ model, and explore the evolution
of PPDs over time in Section 6.4.4. This allows us both to test whether external
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photoevaporation is a viable mechanism for disc depletion in Cyg OB2 and to make
predictions regarding the disc properties for future observations.

6.4.2 Disc fractions and gas expulsion

We first estimate the influence of the timescale for gas expulsion on the PPD population
survival fractions. A number of physical effects must be taken into account when considering
the statistical distribution of disc fractions. Most obviously, projection effects can lead to
a distribution of physical distances between stars for every apparent (projected) separation,
and therefore a range of FFUV. Binarity and the initial PPD properties will also influence the
total disc fraction. However, to first order, the steepness of the drop-off of the disc fraction
with FFUV indicates the length of time for which external photoevaporation has been an
efficient mechanism for disc destruction in a given environment. Initial tests suggest that a
massive gas mass (≳ 106M⊙) is required to maintain virial equilibrium in the primordial Cyg
OB2. Due to extinction of FUV photons, this gas mass is sufficient to dramatically reduce
photoevaporation efficiency.

The current PPD population therefore allows us to constrain when the gas component
of Cyg OB2 was expelled. The relatively short period of expulsion (≲ 2 Myr) means that
we are free to consider the influence of FUV photons on disc evolution from the time τgas at
which gas is completely removed. Practically this means that we can apply a simplified UNIF
model with the present day mass and ‘switch on’ photoevaporation at different times. We
then compare the disc fractions as a function of FUV flux after 3 Myr of evolution, and thus
estimate the gas expulsion timescale. The FUV flux in those bins is calculated in the same
way as in Guarcello et al. (2016), using the projected distance between stars – this we call
‘projected’ FFUV (as opposed to ‘real’ FFUV, as experienced by a given disc). As an estimate
of the influence of dynamical mixing between projected FUV flux bins, we start with a stellar
velocity dispersion 17 km/s and hold the stars in virial equilibrium with an external potential.

The rate at which irradiated discs are destroyed is also dependent on the α-viscosity
parameter (Section 6.3.2). The chosen α dictates the rate at which a disc viscously expands
into a region where photoevaporation rates are high, as well as dictating mass loss through
accretion. This adds a degeneracy to our approach which, given uncertainties in α , introduces
similar uncertainties in τgas. We investigate this degeneracy by calculating surviving PPD
fractions for a number of different values for τgas (1, 2, 2.5 and 2.75 Myr) and α (5×10−3,
10−2, 2×10−2).

We calculate disc evolution for a subset of discs with host stars in the mass range 0.5
– 2 M⊙. Stars less massive than this are not present in the sample used by Guarcello et al.
(2016), while the disc mass loss rates calculated by Haworth et al. (2018a) do not apply
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Fig. 6.3 Disc fractions versus projected FUV flux in a virialised cluster evolved for 3 Myr
when external photevaporation is ‘switched on’ after a period τgas. Results are shown
for a range of Shakura and Sunyaev α-viscosity values. The black crosses represent the
observational values found by Guarcello et al. (2016). These results are used to calibrate
the timescale for gas expulsion and the corresponding disc viscosity required to reproduce
the observed disc fractions. We find that τgas = 2.5 Myr with α = 10−2 matches observed
disc fraction. This value for α is effectively an upper limit since we assume that extinction
efficiently shuts off photoevaporation before all gas is expelled.
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for higher mass stars. A disc is considered destroyed if it has a mass < 10−5 M⊙, which
is estimated by Guarcello et al. (2013) as a limit below which SEDs are more difficult to
interpret. In fact discs of such low mass (∼ 10−5 M⊙) are destroyed quickly in regions of
strong FUV fields, so our results are insensitive to the exact value of this threshold.

The results of this preliminary modelling procedure compared with the observational
findings of Guarcello et al. (2016) are summarised in figure 6.3. We expect disc fractions at
lower FFUV are overestimated as we do not consider other disc dispersal processes (such as
internal photoevaporation, see Section 6.4.4). We therefore focus on matching disc fractions
in regions of higher FFUV. We find that τgas = 2.5 Myr and α = 10−2 give a good fit to the
data for projected FFUV ≳ 3000G0. Since we have assumed 100% extinction of FUV photons
before gas is completely expelled, this α is an upper limit. As discussed above, reducing the
expulsion timescale to τgas = 1 Myr while decreasing the viscosity such that α = 5×10−3

also yields the correct disc fractions. However, if gas ejection was initiated at the time of
formation of the most massive stars (∼ 2 Myr) this would suggest instantaneous expulsion,
which is not physical. In this case early supernovae may be responsible for driving gas mass
loss (see discussion in Section 6.2.1). However, for short τgas Cyg OB2 must have had a
extremely large initial stellar mass to maintain the present day central density (≫ 105 M⊙, see
Section 6.4.3 and figure 6.7), which is neither supported by observations nor computationally
practicable for the range of models we wish to explore.

While the simplified model presented in this section is not an accurate representation of
the dynamical conditions in the region, it represents a first-order approximation on which we
can base our choice of kinematic parameters in Section 6.4.3. We will again consider the
disc fractions for a more realistic model in Section 6.4.4.

6.4.3 Stellar population properties

In this section we consider the initial conditions for our N-body models of the stellar
population of Cyg OB2. We proceed by first aiming to reproduce the observed velocity
dispersion in the region by varying the initial velocity distribution and sub-structure (Section
6.4.3). Subsequently, we match the observed central density by varying the initial stellar
mass (Section 6.4.3).

Velocity dispersion, anisotropy and sub-structure

The first observable quantity we aim to reproduce is the central velocity dispersion and its
anisotropy (⟨v2⟩1/2 ≈ 17 km/s, and the proper motion dispersions σα,δ ≳ σr the line of sight
component – see Wright et al., 2016). This is because it is not strongly sensitive to the initial
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Fig. 6.4 The components of the velocity dispersion (σα , σδ and σr, where σr is the line
of sight component) in our model using the Wright et al. (2016) field of view after 3 Myr
of evolution versus the initial three-dimensional velocity dispersion over the entire cluster,
⟨v2

0⟩1/2. The initial conditions are not sub-structured (UNIF) and have initial parameters agas =
10 pc, astars = 7 pc, τexp = 1.5 Myr and two different stellar masses Mstars = 1.6 · 104 M⊙,
4 ·104 M⊙ (black and green lines respectively). The horizontal red line represents the mean
observed 1D velocity dispersion ⟨v2⟩1/2/

√
3 ≈ 10 km s−1. The radial (line of sight) velocity

dispersion σr > σα,δ due to projection effects and velocity sorting. Observationally we
require a model such that the 1D velocity dispersion components are of the same order (in
fact observations indicate σα,δ ≳ σr). This is not reproduced by the UNIF model.
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Fig. 6.5 The components of the velocity dispersion (σα,δ ,r) as in figure 6.4 but for a fixed
stellar mass Mstars = 1.6 ·104 M⊙. Instead of the UNIF model in figure 6.4, the black lines
represent the case for a FILA cluster model and the green lines are for a FRAC cluster model,
both with P0 = 1 and D0 = 2.5. In this case the large scale sub-structure gives rise to much
greater stochastic variations in the relative 1D velocity dispersions, and is consistent with
observations.

stellar mass of the cluster. We demonstrate this by considering UNIF cluster models (where
cluster conditions are relatively non-stochastic) for a range of initial 3D velocity dispersions
and stellar masses; we plot the results in figure 6.4. As the potential is dominated by the gas
in the cluster, and the stellar component is itself highly supervirial, the final central velocity
dispersion is insensitive the total stellar mass.

Figure 6.4 demonstrates that UNIF models fail to reproduce the observed velocity dis-
persion. This is because in a non-sub-structured model we find suppressed proper motion
velocity dispersions σα,δ with respect to the radial component σr, since stars with high
velocities in the plane of the sky preferentially leave the central field of view over time
(velocity sorting). To remedy this, we need to incorporate sub-structure into our model.
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Fig. 6.6 The same as in figure 6.5 but with smaller scale sub-structure (P0 = 2). In this
case the scale of sub-structure is insufficient to result in proper motion velocity dispersions
comparable to the radial dispersion (we have σα,δ < σr).

To demonstrate the influence of sub-structure on the components of the velocity dispersion
within a finite field of view, we run FILA and FRAC models with large scale sub-structure (P0 =

1), and rotate a snapshot at 3 Myr such that the radial velocity dispersion is approximately
minimised. The results of this process are shown in figure 6.5, where the decomposed velocity
components are again compared with the initial three-dimensional velocity dispersion. The
anisotropies in the velocity dispersion are reproduced in both FILA and FRAC cluster models.

The degree of anisotropy in the velocity dispersion is dependent on the scale of sub-
structure. Figure 6.6 shows the results for initially smaller filaments/clumps (using P0 = 2).
While there still exist stochastic fluctuations in the components of the velocity dispersion,
the degree of anisotropy is not sufficient to yield proper motion velocity dispersions greater
than the radial component. This suggests that the initial region consisted of large clumps or
filaments of mass ∼ 104 M⊙.

We estimate that the required initial velocity dispersion in Cyg OB2 is ⟨v2
0⟩1/2 ∼ 50 km/s,

although the stochasticity of the sub-structured models makes precise estimates impractical.
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In future models we will assume this is the initial three-dimensional velocity dispersion.
Other required parameters, such as the initial stellar mass, are chosen to be consistent with
this property.

Central mass

We wish to alter the initial stellar mass such that the central density at the end of the simulation
is consistent with observations. A cluster model with a central mass of 1.6×104 M⊙ after
3 Myr of evolution is required, where ⟨v2

0⟩1/2 = 50 km/s as discussed in Section 6.4.3. To
find the appropriate initial mass we run UNIF, FRAC and FILA models at stellar masses
Mstars = 2×104 M⊙, 4×104 M⊙ and 8×104 M⊙. The results are shown in figure 6.7. We
find that Mstars = 8×104 M⊙ (figure 6.7c) is sufficient to yield the required central mass after
3 Myr of evolution.

Neither the initial mass nor the sub-structure has a significant effect on the fraction of the
stellar mass which remains within a 13 pc projected radius (approximately a quarter in each
case). As in the case of our velocity investigation, this is because the stellar contribution to
the potential energy is much smaller than the total kinetic energy.

The central mass in all of our models undergoes a similar temporal evolution. In figure
6.7 we see an initial rapid mass loss as stars with the highest energies escape the potential.
This is because we do not truncate the velocity dispersion such that escapers are initially
forbidden; it is not clear whether this is physically realistic, and the effect of choosing such
initial conditions is discussed in Section 6.4.3 in the context of primordial gas mass. However,
since stars which escape the central regions are not considered in our PPD models and the
gravitational potential is dominated by the gas component, whether these early escapers are
initially included in the model is of secondary importance. After this initial decline in mass,
some high energy stars remain bound, and therefore return to the central regions, causing a
modest oscillation in the mass. This is again a consequence of using a Boltzmann velocity
distribution without truncating the high velocity end. The magnitude of this oscillation is
more variable for sub-structured regions where velocities (and therefore kinetic energies) are
correlated. Gas expulsion (starting at τdelay = 1 Myr and continuing over τexp = 1.5 Myr)
results in a decrease in gravitational potential, and as the number of stars with energies
sufficient to escape increases, the central mass decreases.

Summary of best fitting model

By considering gas expulsion, stellar mass, velocity dispersion and initial sub-structure,
we have found a model for the evolution of Cyg OB2, summarised by the parameters in
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Fig. 6.7 Evolution of the stellar mass within a projected distance of 13 pc from the centre
of the cluster. We show the results for UNIF, FRAC and FILA cluster models (solid, dotted
and dashed respectively) over 3 Myr. All models have initial parameters agas = 10 pc,
astars = 7 pc, τdelay = 1.5 Myr, τexp = 1.5 Myr and varying stellar mass. The horizontal red
line indicates the observed central mass ∼ 1.6×104 M⊙ (Wright et al., 2015). We find that
an initial mass of ∼ 8×104 M⊙ reproduces the observed central density.
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Fig. 6.8 Velocity field of a subset of 800 stars in the central region of our chosen model
(summarised by the parameters in Table 6.1) after 3 Myr of evolution. In figure 6.8a velocity
vectors are colour coded by their direction to illustrate the underlying sub-structure; a
correlation can be seen between position and velocity vectors. In figure 6.8b only the radial
components in the plane of the sky are shown, coloured blue for stars moving outwards
from the centre and red for infalling stars. There is no clear bias between infalling and
outgoing velocities – see text for details. Similarly, Wright et al. (2016) found correlations
between position and velocity vectors, and that Cyg OB2 shows no sign of expansion from
the apparent centre.

Table 6.1, which fits observations of the stellar population. We refer to this as our ‘best-fit’
model, however it is the result of our deduction process, not the optimisation of a statistical
metric or parameter space exploration. In our models we find gas expulsion was completed
∼ 0.5 Myr ago (for a PPD viscous timescale of 0.5 Myr), the initial velocity dispersion was
∼ 50 km/s and the initial cluster mass was ∼ 8×104 M⊙. We further suggest that the largest
scales of initial coherent clumps within the primordial Cyg OB2 had a mass of ∼ 104 M⊙.
No significant dynamical differences can be found between FRAC and FILA type models at
the present time, and we hereafter use a FILA model in our analysis of the disc population
(Section 6.4.4).

The gas mass required for initial virial equilibrium is Mgas ∼ 8 · 106 M⊙ (with a scale
parameter agas = 10 pc). This would make the primordial GMC massive compared to known
Milky Way molecular clouds, although the census is not complete (see Longmore et al., 2014,
for a review). It is also possible that the initial velocity dispersion is overestimated due to the
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Type Mstars astars γ P0 D0 Mgas,0 agas τdelay τexp

FILA 8 ·104 M⊙ 7 pc 5.8 1 2.5 7.9 ·106 M⊙ 10 pc 1 Myr 1.5 Myr

Table 6.1 Parameters of the ‘best-fit’ model, used to reproduce the properties of the observed
stellar population of Cyg OB2.

truncation of equation 6.4 at high velocities (simulations suggest stars have a subvirial initial
velocity dispersion with respect to the primordial gas – see Offner et al., 2009; Kruijssen,
2012). While this would not influence the central velocity dispersion (high velocity stars
leave the centre in any case) it would reduce the number of escapers early on in the cluster
evolution and therefore the required initial stellar mass. It would also reduce the gas mass
necessary for virial equilibrium as Mgas ∝ ⟨v2⟩ if Mgas ≫ Mstars (equation 6.3). If our gas
mass estimate is accurate then this makes the star formation efficiency ∼ 1%, although this
is probably a lower limit (an upper limit on Mgas).

Sub-structure and expansion observables

Alternate kinematic constraints not considered in the previous analysis include the measures
of sub-structure and the absence of expansion signatures in the stellar kinematics (Wright
et al., 2016). We find that determining these metrics is problematic for a given cluster model.
This is because the values obtained differ stochastically depending on initial conditions,
the time of ‘observation’ and the subset of stars used in taking a measurement. To obtain
an accurate probability of finding the observed values for these metrics, a large number of
models would need to be tested, which would be computationally expensive. However, for
our chosen model the velocity field is illustrated in figure 6.8. We find that the correlation
between positions and proper motions is clear (figure 6.8a), while figure 6.8b does not show
clear evidence of expansion. However, the stellar components are in fact expanding globally
since they are unbound.

To illustrate this point more fully, we define the expansion parameter:

E =
T+

T−+T+
(6.8)

where T+/− is defined as the total kinetic energy of stars directed in the postive/negative
projected radial direction (in the plane of the sky). Thus, E → 1 or 0 if the velocity dispersion
indicates rapid expansion or contraction respectively. A value of E ≈ 0.5 would usually
be taken as evidence that a stellar population is not expanding. In Figure 6.9 we show the
cumulative distribution of the measured expansion parameter for random subsets of 800
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Fig. 6.9 The cumulative fraction of the number of ensembles (each defined to be a subset of
800 stars in the Wright et al. 2016 field of view) with expansion parameter E (equation 6.8)
in our chosen model. A value of E ≈ 0.5, which was found by Wright et al. (2016) for Cyg
OB2, would observationally be taken as an indication that no expansion is occuring.

stars in the Wright et al. (2016) field of view (the central 8 pc × 8 pc). We find that a
wide range of values for E is possible at any given time. Depending on the time at which
the velocities are observed and the chosen subsample, our model is found to be consistent
with an observed value E ≈ 0.5. This is because the E distribution varies considerably
and non-monotonically in time even for a single model. However, at any given time the
stellar population is expanding (filaments are moving away from each other). Alternative
geometrical signatures may be more successful at gauging such expansion. Due to the
stochasticity and wide range of possible E values for our model, we conclude that E alone is
not a sufficient metric to draw conclusions on the expansion of a sub-structured association.
For further discussion on the kinematic indicators of expansion in OB associations, see
Baumgardt and Kroupa (2007) and Ward and Kruijssen (2018).

In the remainder of this work we will first revisit the disc population in our model,
checking that the population is consistent with the known disc fractions in the region.
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Subsequently, we will explore predictions for the disc mass and radius distribution relevant
for future observations in the region.

6.4.4 Disc properties

In what follows we will consider a FILA model with the properties described in Table 6.1.
We fix the α-viscosity of the disc population with the value α = 10−2 (Section 6.4.2). As
in Section 6.4.2 all discs are assumed to have an initial mass that is uniformly distributed
between 1 – 10% of their host star mass (see Section 6.3.2), and scale radius as in equation
6.7. We consider the same range of stellar masses 0.5 – 2 M⊙ and calculate the evolution of
a subset of 5000 discs.

Disc fractions in best-fit model
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Fig. 6.10 Model of the disc population in a model described by the parameters in Table 6.1.
In figure 6.10a we show the disc fraction as a function of FUV flux, calculated by projected
distance to massive stars, at varying times. These fractions are in good agreement with the
observed disc fractions, indicated by black crosses. In figure 6.10b we show the physical
distribution of the disc population after 3 Myr, colour coded by the projected FUV flux as
in figure 6.10a. Star markers represent the positions of stars with a mass > 10M⊙. Empty
circles represent a disc with a mass < 10−5 M⊙, while filled circles are ‘surviving’ discs with
a greater mass (c.f. fig. 3 in Guarcello et al., 2016).

The disc fraction distribution in our best-fit model after ∼ 3 Myr is summarised by figure
6.10, in which we show the surviving disc fraction as a function of projected FUV flux (figure
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6.10a) with the spatial distribution and projected FFUV in figure 6.10b. We find that after
3 Myr the number of surviving discs is slightly overestimated in our model, particularly at
the lower FUV fluxes. There are two reasons why we expect this to be the case. Firstly,
extinction in the FUV may decrease before gas is fully removed from the cluster. If gas is
expelled due to the flux from massive stars, then the central, highly irradiated environments
would become less dense and allow efficient photoevaporation at earlier times. Additionally,
clumpy gas distributions may have a similar effect in reducing extinction during this period.
Secondly, internal photoevaporation due to the stellar host depletes the gas content even when
a PPD evolves in isolation. This speeds up destruction timescales, particularly in regions of
lower FFUV, where the mass loss rates induced by internal and external photoevaporation
become comparable.

The influence of the above considerations is uncertain and we therefore do not attempt
to model them here. Our model does however reproduce the correct disc fractions within
a reasonable period of time, particularly at FFUV ≳ 3000G0. We conclude that the observa-
tions of Guarcello et al. (2016) can be explained by external photoevaporation of the PPD
population in Cyg OB2.

Disc mass and FUV flux environment

To make predictions about the disc population in Cyg OB2 for comparison with future
observations we consider PPD mass as a function of FUV flux (figure 6.11). We find that,
if used in isolation, the local flux experienced by a given star is a poor predictor of the disc
mass. Correlation with real or projected FUV flux only becomes clear when the host mass,
to which the final PPD mass is closely correlated (as demonstrated by the colour gradient
in figure 6.11 and discussed in Section 6.4.4), is also taken into account. In particular, we
expect that low mass stars (< 1M⊙) in the centre of Cyg OB2 host exclusively low mass
discs (≲ 10−3 M⊙, if any).

Without taking into account stellar mass, can we find differences in disc properties
between PPDs in apparently high versus low FUV flux environments? To answer this,
we must consider the sensitivity limit for future observations. Considering ALMA band
6 sensitivity, reasonable integration times (∼ 30 minutes) for a survey sample suggest
flux densities down to Fν(850 µm) ∼ 40 µJy can be detected. At the distance of Cyg
OB2 this means that dust masses can be established down to a few M⊕ (Andrews and
Williams, 2005). The corresponding total disc masses are Mdisc ∼ 10−3 M⊙ if the gas to
dust ratio is Σgas/Σdust = 102. Given that the PPDs are likely to be gas depleted by external
photoevaporation, the latter assumption is probably not accurate for many discs (Ansdell
et al., 2016), and this complicates the interpretation of observations. Nonetheless, we show
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Fig. 6.11 PPD mass after 3 Myr in our chosen model (described by the parameters in Table
6.1) as a function of real and projected FUV flux (figures 6.11a and 6.11b respectively).
Points are colour coded by the mass of the host star. Initial disc masses are drawn from
a uniform distribution between 1% and 10% of the host mass. In the context of figure
6.10, discs with masses < 10−5 M⊙ are considered ‘destroyed’. We find that FFUV is a poor
indicator of disc mass.
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Fig. 6.12 Cumulative fraction of disc mass after 3 Myr in our chosen model. Solid lines
are for the entire disc population, while the dashed lines include only discs which have
Mdisc > 10−3 M⊙. The disc population is divided up by projected (observed) FUV flux; the
red lines are for stars experiencing an apparent FFUV between 3–5×103 G0, while the blue
lines correspond to stars with FFUV > 8×103. A large sample of all discs would be required
to detect differences between the masses in the two FUV flux bins.

the cumulative PPD mass fraction after 3 Myr for two FUV flux bins in figure 6.12. While
disc masses are indeed suppressed at higher projected FUV flux, considering the sensitivity
limit of ALMA makes finding differences between the two populations impractical. A sample
of several 100s of PPDs would be required to find a difference between the total population
in high and low FUV flux environments (including non-detections). We find that similar
sample sizes would be required to find differences in disc outer radius distributions in the
two environments.

Stellar mass independent disc initial conditions

In obtaining the results in Section 6.4.4 we have already assumed that the initial disc mass is
dependent on the stellar mass of the host. We wish to confirm our results are not sensitive
to this assumption. We therefore recalculate the PPD evolution in our model under the
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Fig. 6.13 As in figure 6.10a but for a distribution of initial disc masses independent of the
stellar host mass (see text for details). This demonstrates that reproducing the observed disc
fractions is not sensitive to the choice of PPD initial conditions.

assumption that the initial disc mass is uncorrelated to the stellar mass. To this end we draw
the initial disc masses from a log-normal distribution:

Mdisc,0/M⊙ = eµ+σX

where the random variable X ∼ N (0,1) is drawn from a standard normal distribution,
uncorrelated with mstar. The values of µ =−3.25 and σ = 0.7 are chosen such that the mean
and dispersion of Mdisc,0 match those chosen for the stellar mass dependent initial conditions.
The scale radius R1 is again defined according to equation 6.7. This distribution of initial
conditions recovers similar disc fractions as a function of projected FFUV (figure 6.13). The
resulting disc mass distribution is shown in figure 6.14. Our findings do not differ greatly
from those in figure 6.11, except for a predictable weaker correlation between final disc mass
and host mass.
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Fig. 6.14 As in figure 6.11b but for a distribution of initial disc masses independent of the
stellar host mass (see text for details).

Disc mass dependence on host mass

The relationship between final disc mass and stellar mass is considered in figure 6.15a (figure
6.15b) for disc masses initially correlated (uncorrelated) with the host star mass. We obtain
power law indices (Mdisc ∝ mβ

star) β = 3.93±0.11 and 2.75±0.12 respectively. In both cases
this is a substantially more superlinear relationship than in local PPD populations that have
not been significantly photoevaporated (1 < β < 1.9 Andrews et al., 2013; Pascucci et al.,
2016). Physically this is because Ṁwind is strongly dependent on stellar mass such that discs
around low mass stars are depleted much faster (due to a shallower potential) than those
around high mass stars for a fixed flux and disc radius (Haworth et al., 2018a). In regions
where a disc population has undergone significant photoevaporation we then expect lower
mass stars to host lower mass PPDs. Even if it proves impossible to obtain sufficiently large
samples of mm-based mass determinations in Cyg OB2 to conduct the comparison made
in figure 6.12, an alternative way to test the role of external photoevaporation would be to
examine any evidence for steep disc mass–stellar mass relationship. Indeed, Ansdell et al.
(2017) find a steepening of the relationship with age across different regions that could be
due to external photoevaporation. To the contrary, Eisner et al. (2018) find a shallow disc
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Fig. 6.15 PPD mass distribution after 3 Myr of evolution in our chosen model (see text
and Table 6.1 for details). In figures 6.15a and 6.15b initial disc masses are dependent on
and independent of stellar host mass respectively. The black line follows (Mdisc/M⊙) =
4.5 ·10−4 (mstar/M⊙)

3.9 in figure 6.15a, and (Mdisc/M⊙) = 2.3 ·10−4 (mstar/M⊙)
2.8 in figure

6.15b. The points are colour coded by the largest scale fractal sub-group to which they
belong.

mass–host mass relationship in the strongly irradiated discs of the ONC; this could be the
result of the youth or complex formation history of the stellar population (Beccari et al.,
2017; Kroupa et al., 2018). Disentangling these effects requires a detailed modelling of those
regions, such as that presented in this chapter.

To estimate whether detecting large β values is possible in Cyg OB2, we extract a subset
of 20 discs from our model, choosing them such that they lie in a region of projected FUV
flux 3000G0 < FFUV < 8000G0. A lower limit of 3000G0 is appropriate since below this
figures 6.10a and 6.13 suggest that alternative processes to external photoevaporation have a
comparable influence on disc evolution. We also select stellar masses to be approximately
uniformly distributed between 0.5 – 2M⊙. We assume uncertainty of 30% in Mdisc, with
Mdisc < 10−3 M⊙ constituting a non-detection, and a 10% uncertainty in Mstar. We then
attempt to fit a power law using the LINMIX package (Kelly, 2007) for a number of different
PPD subsets. An illustrative example of such an exploration is shown in figure 6.16. In all
cases we find that the fit effectively discounts power law relations with β ≤ 1.9. Values of
β ≤ 1.9 are similarly discounted in the model with stellar host mass independent disc initial
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Fig. 6.16 A subset of 20 discs of those shown in figure 6.15a (after 3 Myr of evolution),
chosen to be approximately uniformly distributed over a range of stellar masses 0.5−2M⊙.
All discs are also selected such that they are in an environment where the projected flux has
an instaneous value 3000G0 < FFUV < 8000G0. Discs with Mdisc < 10−3 M⊙ are considered
upper limits (non-detections). The red lines are a subset of samples from the posterior
distribution obtained from Markov chain Monte Carlo modelling (using the LINMIX package
- Kelly, 2007). The black line is a model with β = 1.9 selected from the posterior distribution
such that the true β is greater than this value with 2σ confidence.

conditions. Our findings suggest that, if a sample is carefully selected, evidence of external
photoevaporation should be detectable in future observations of Cyg OB2.

One might ask whether it is possible to find signatures of underlying sub-structure within
a population of PPDs. Given that the dynamical history is linked to the irradiation by FUV
photons, it may be possible to detect distinct groups in the mass distribution of a disc sample.
As discussed previously, in an externally photoevaporated population, disc properties are
more strongly correlated with host mass than FUV flux. Therefore considering disc properties
as a function of host mass is the best chance of finding distinct groups within a sample. This
possibility is explored in figure 6.15, where the largest scale fractal membership is indicated
for each PPD. We find that the mass distribution does not demonstrate a clear segregation
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Fig. 6.17 As in figure 6.15 but for disc outer radius distributions. In figure 6.17a initial disc
masses are drawn from a distribution which scales linearly with stellar host mass, while in
figure 6.17b the initial PPD mass is not correlated to host mass. Points are coloured by the
largest scale fractal membership. We find that the outer radii are largely independent of disc
initial conditions and are correlated with stellar host mass. A host mass dependent preference
for certain outer radii is found, most obviously at outer radii between 30–60 au and host
masses 0.5–1M⊙. These radii are set by the balance between viscous expansion and FUV
induced mass loss, and correspond to the region of parameter space where mass loss rate
increases rapidly with outer radius (see, for example, figure A3 in Haworth et al., 2018a).

between groups. The subgroups are in themselves massive (∼ 104 M⊙) and the high mass
end of the IMF is therefore well sampled in each filament. It is possible that for smaller scale
sub-structure (with filaments of mass < 103 M⊙, see Chapter 5) a less well sampled IMF
might mean that different filaments have quite different local FFUV. In this case we should
expect to see a distinct PPD mass and outer radius distributions between filaments.

Disc radii

An alternative observable property, the outer disc radius Rout, may prove to be a better probe
of sub-structure in future observations. This is because, while Mdisc is depleted over the
entire lifetime of the disc, the outer radius in regions of strong FUV flux is likely to be set by
a balance between photoevaporative mass loss and viscous expansion on short timescales.
We have so far neglected discussion of disc radius simply because disc radii resolved down to
∼ 10s au are likely to be challenging in a region such as Cyg OB2; the highest resolution of
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ALMA is ∼ 0.02′′, corresponding to ∼ 30 au at 1.33 kpc distance. However, because it may be
possible to resolve disc radii to sufficient accuracies in closer young stellar environments, we
illustrate the distribution of disc radii in figure 6.17. There are some indications of different
radius distributions between different fractal associations, but no clear segregation between
them. The majority of discs have Rdisc < 60 au which would require < 0.05′′ resolution
at the distance of Cyg OB2. Further, outer disc radius measurements can be subject to
large uncertainties and dust radius estimates are likely to underestimate the gas extent (e.g.
Birnstiel et al., 2010; Guilloteau et al., 2011; de Gregorio-Monsalvo et al., 2013). This
discrepancy may be less problematic in regions where disc radii are externally suppressed
(for example close stellar encounters may result in wavelength independent PPD outer radius
measurements, as in the case of the disc around HV Tau C – Monin and Bouvier, 2000,
and Chapter 2). This assumption requires further study into gas-dust physics in externally
photoevaporating discs (see Cleeves et al. 2016 for discussion of gas and dust evolution in an
FUV irradiated PPD). Overall we see the same trend as in disc masses that the outer radius is
correlated with host mass. This is again because Ṁwind decreases with mstar, such that the
radius at which viscous expansion is in equilibrium with FUV induced mass loss is more
extended for more massive host stars.

6.5 Conclusions

Using N-body simulations and viscous disc evolution models we have successfully repro-
duced the properties of Cygnus OB2, including the stellar kinematics and the surviving PPD
fractions as a function of projected FUV flux. Our modelling supports the following scenario:

• If the viscous evolution of PPDs is well described by a Shakura and Sunyaev α-
parameter α = 10−2 (τvisc ≈ 0.5 Myr for a solar mass star), then expulsion of the
primordial gas content in the region must have concluded ∼ 0.5 Myr ago. Approxi-
mately 0.5 Myr of exposure to strong FUV fields is required to reproduce the current
disc survival rates as a function of (projected) flux. This value of α will be an upper
limit if FUV extinction due to the primordial gas was not efficient (because of a clumpy
spatial distribution, for example).

• The initial three-dimensional stellar velocity dispersion must have been ∼ 50 km/s to
be consistent with the present day central velocity dispersion. This is large with respect
to observed stellar populations, even for OB associations (e.g. Ward and Kruijssen
2018 and references therein). However, velocity gradients ∼ 10 kms−1pc−1 are found
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across giant molecular clouds, particularly in the case of cloud-cloud collision (Wu
et al., 2015; Bisbas et al., 2018; Pols et al., 2018).

• Anisotropy in the present day velocity dispersion requires the presence of primordial
subtructure. We find that Cyg OB2 must have been comprised of large scale filaments
(or fractal clumps), with a mass ∼ 104 M⊙.

• In such a model, a gas content of ∼ 8×106 M⊙ is required to maintain initial virial
equilibrium. This is massive compared to the known distribution of molecular cloud
masses in the Milky Way (Longmore et al., 2014).

• The total stellar mass required to sustain a sufficient central mass after 3 Myr is
∼ 8×104 M⊙. This suggests a star formation efficiency of ∼ 1%.

• The apparent lack of expansion measured by Wright et al. (2016) need not be inter-
preted as evidence of no physical expansion of the stellar population. We find that our
(expanding) model is equally consistent with an expansion parameter E ≈ 0.5. Such
a measurement can only be interpreted probabilistically for an association with large
scale sub-structure.

The primary caveat of these conclusions is that the gas expulsion timescale derived by
disc fractions is degenerate with α . Our choice (α = 10−2, although this is in turn dependent
on choice of scale radius R1 – see equation 1.6) yields a good fit to the disc fractions and also
allows us to reproduce kinematic observations with gas expulsion timescale τgas = 2.5 Myr.
In future, observations of PPD populations in regions with a strong FUV flux but with more
modest velocity dispersions (and primordial gas density) might offer further constraints for
α .

Finally, we make predictions for future observations of the disc mass and radius distribu-
tion in Cyg OB2. We find that samples of PPDs in highly FUV irradiated environment have
significantly reduced masses and outer radii than in regions of more modest flux. However,
taking into account sensitivity limits, statistically observing these differences requires sample
sizes of ≳ 100s of discs in both high and low FUV flux bins. This is similarly true for
disc outer radii, and makes probing the difference between disc property distributions as a
function of FUV environment directly impractical at present.

In Cygnus OB2 we expect a strong correlation between stellar mass and disc mass
(Mdisc ∝ mβ

star, with β > 2) which is because, for a disc with given radius and in a given
FUV environment, the mass loss rate is higher in the shallower potential of low mass stars.
This effect should be clear in a sufficiently large sample of sufficiently irradiated discs in
any environment. Taking into account the finite sensitivity of ALMA, we demonstrate that it
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would be sufficient to target around 20 stars of known mass in Cygnus OB2 to demonstrate a
value of β that is steeper than the canonical value ∼ 1 – 1.9 which is seen in non-irradiated
disc samples. We conclude that, pending empirical confirmation, discs around low mass stars
born in environments of strong FUV flux are likely to have a significantly depleted mass
budget for planet formation. Indeed, unless dust within PPDs can rapidly grow to size scales
where it is immune to photoevaporative stripping (e.g. Youdin and Goodman, 2005), planet
formation may be completely suppressed for such host stars (Haworth et al., 2018b).



Chapter 7

Future prospects and context: links to
galactic-scale environment

In this chapter, by way of conclusion, I perform an illustrative exercise in summarising some
physical arguments that can be used to link the previous chapters to the broader context of
star formation. New work in this chapter was led by myself and Dr. Diederik Kruijssen, and
forms the basis of a paper that has yet to be submitted for publication. I have performed the
theoretical analysis and I am the sole contributor to the text in the form presented here. I
thank Dr. Sebastian Trujillo-Gomez for kindly sharing his results quantifying the minimum
young stellar cluster mass prior to publication.

7.1 Introduction

In the previous chapters we have demonstrated how a PPD responds to the external influence
of neighbouring stars in dense environments, and we have quantified the nature of some local
environments to indicate dispersal rates in real young star forming regions. A natural next
stage of this work is to understand the degree to which the mechanisms we have considered
may influence discs born in other galactic environments. Clearly this goal is ambitious
and many uncertainties regarding the dispersal of PPDs in diverse environments require
further scrutiny (for example, the influence of metallicity – Ercolano and Clarke, 2010).
However, we illustrate in this chapter the first stages in such an enterprise: characterising the
distribution of stellar birth environments in a general sense.

The broad goal of this chapter is establishing probability density functions (PDFs) for
stellar birth environment in stellar density–FUV flux space (ρ∗–F; we drop the subscript
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for flux since we consider exclusively FUV photons). To this end, we apply the following
method:

1. In Section 7.2 we evaluate the stellar density PDF, which is related to the degree of
tidal truncation (Chapter 3 and 4) and the local FUV field strength in massive stellar
clusters (Chapter 5). This involves estimating the primordial gas density distribu-
tion (Section 7.2.1), and then factoring in the local star formation efficiency (SFE;
Section 7.2.2).

2. The FUV flux experienced by a star is dependent on the most massive neighbour, the
expected value of which varies with the cluster mass. In Section 7.3 we quantify the
initial cluster mass function (ICMF; Section 7.3.1) and relate this mass to the expected
FUV luminosity of the most massive member (Section 7.3.2).

3. In Section 7.4 we use the ICMF to calculate how the distribution of stellar birth
environments deviates from the relationship between ρ∗ and F found in Chapter 5.
This allows us to calculate the two-dimensional PDF for stellar birth environments in
Section 7.4.4.

Having established this PDF, we are able to estimate the corresponding distribution of
externally induced PPD dispersal timescales using the findings of the previous chapters. In
this way we illustrate the importance of the themes presented in this work in the broader
context of star formation over time and space. Overall conclusions and suggestions for future
work are made in Section 7.7.

7.2 Stellar density distribution

Our aim in this section is to relate the distribution of primordial gas to the PDF of stellar
densities. We define the gas overdensity, x ≡ ρg/ρ0, where ρg is the local and ρ0 is the
large-scale mean gas density. However, it will be convenient to express the final PDF in
units of stellar density rather than gas density, since the former is the relevant quantity for
evaluating the influence of tidal encounters. We define y ≡ ρ∗/ρ0 = xε(x), for a given star
formation efficiency (SFE), ε; y is the stellar overdensity with respect to the average gas
density ρ0. Hence, the stellar density PDF is:

∂ p
∂y

=
∂ p
∂x

(
ε + x

∂ε

∂x

)−1

. (7.1)



7.2 Stellar density distribution 147

However, we are in fact interested in the fraction of stars per infinitesimal region of overden-
sity space dy, which is ∂ p/∂x weighted by stellar density:

∂F∗
∂y

= y
∂ p
∂y

=
∂ p
∂x

(
x−1 +

∂ lnε

∂x

)−1

≈ x
∂ p
∂x

, (7.2)

where the last approximation can be made since lnε changes slowly with x (and for large
x, ε = εcore is constant – see Section 7.2.2). We now quantify ∂ p/∂x and ε to evaluate
equation 7.2.

7.2.1 ISM properties

Here we relate the ISM properties to the galactic scale observable quantities in the galactic
disc (the mean surface density Σ0 and angular speed Ω). We discuss the parameters appropri-
ate for the solar neighbourhood and the central regions of the Milky Way, which we will use
as illustrative comparisons throughout this chapter.

Gas density distribution

On sufficiently large scales, the PDF of the gas overdensity, x, with respect to the mean gas
density in an isothermal, supersonically turbulent region is scale-free and follows a lognormal
distribution (e.g. Vazquez-Semadeni, 1994; Padoan and Nordlund, 2002; Hill et al., 2012). It
can be written:

∂ p
∂x

=
1√

2πσ2
ρ x

exp

{
−(lnx− lnx)2

2σ2
ρ

}
, (7.3)

where the logarithmic mean is
lnx =−σ

2
ρ/2 (7.4)

The logarithmic standard deviation of the density is related to the velocity of the turbulence,
which can be expressed in terms of the one-dimensional Mach number M :

σ
2
ρ ≈ ln

(
1+3b2M 2) , (7.5)

where simulations indicate b ≈ 0.5 (Padoan et al., 1997; Federrath et al., 2010). Hence,
estimating M for a region defines the overdensity PDF, equation 7.3, and combined with the
average density ρ0 this defines the gas density distribution.
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Throughout the course of this work, we will frequently refer to the properties of gas
in the solar neighbourhood and in the CMZ, which we will use as regions for illustrative
comparisons. We consider the values of M and ρ0 in the galactic disc and the CMZ below.

Properties of the galactic disc

To estimate the conditions in the solar neighbourhood, we follow Krumholz and McKee (2005)
in assuming the galactic disc can be modelled as a gas disc in hydrostatic equilibrium. Then
we can write an expression for the Toomre (1964) Q parameter in terms of the mean surface
density Σ0 and angular velocity Ω of the galactic-scale primordial gas:

Q ≡ κσv

πGΣ0
≈

√
2Ωσv

πGΣ0
(7.6)

where the epicyclic frequency κ ≈
√

2Ω for a galaxy with a flat rotation curve, and σv is the
one-dimensional velocity dispersion. Using equation 7.6, the mid-plane density for a disc in
hydrostatic equilibrium and with scale height h0 is:

ρ0 =
Σ0

2h0
=

πGlPΣ2
0

2σ2
v

=
lPΩ2

πGQ2 , (7.7)

where lP ≈ 3 is a correction factor for the stellar contribution to the gravitational potential.
Considering typical sound speeds in star forming clouds (∼ 0.3 km/s), the corresponding
Mach number is approximately:

M ≈ 0.028Ql1/8
P̄

(
Ω

Myr−1

)−1
Σ0

M⊙ pc−2 (7.8)

where:
lP̄ ≈ 10−8 fGMC (7.9)

is the ratio of the mean pressure in a GMC to the mid-plane pressure, and fGMC is the fraction
of the ISM mass in GMCs. The value of lP̄ increases with the fraction of dissociated/ionised
gas, since this increases the mass surrounding a GMC without contributing to the star forming
material. The approximation in equation 7.9 is made assuming that the majority of molecular
gas is in GMCs and uses a simple interpolation between the completely molecular and
completely atomic limits (see discussion in Appendix B of Krumholz and McKee, 2005).
Empirically, the fraction of molecular gas fGMC is related to the mean surface density (Wong
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and Blitz, 2002; Rosolowsky and Blitz, 2005):

fGMC ≈
{

1+250
(

Σ0

M⊙ pc−2

)−2
}−1

. (7.10)

The angular velocity and the mean surface density are empirically related by the expression:

Ω = 6.1×10−3
(

Σ0

M⊙ pc−2

)0.49

Myr−1, (7.11)

with a scatter of ∼ 0.5 dex. Finally, a range of values 0.5 < Q < 6 are observed (Kennicutt,
1989; Martin and Kennicutt, 2001). For the solar neighbourhood we will choose a canonical
value of Q = 1.5 and Σ0 = 12M⊙ pc−2 in line with Kruijssen (2012).

Properties of the central molecular zone

The central molecular zone (CMZ) in the Milky Way occupies the central ∼ 250 pc in
galactocentric radius, and exhibits gas properties which vary significantly from those of the
disc (see Molinari et al., 2014, for a review). The mean volume density of gas clouds is
ρ0 ∼ 250 M⊙ pc−3, with a corresponding surface density Σ0 ∼ 1000 M⊙ pc−2 (Guesten and
Henkel, 1983). Henshaw et al. (2016) find a 1D Mach number M ≈ 16, and we follow
Kruijssen et al. (2014) in adopting the same Toomre parameter as in the disc, Q = 1.5.
Molinari et al. (2011) find an angular speed for the molecular ring at a radius ∼ 80 pc of
Ω ∼ 1 Myr−1.

7.2.2 Star formation efficiency

We now calculate the SFE ε = ε(x), a function of the local gas overdensity, with the view to
rewrite equation 7.3 in terms of the stellar overdensity.

Specific star formation rate per free-fall time

Assuming star formation proceeds on a free-fall time τff, the SFE ε can be related to the
specific star formation rate per free fall time, ζff. There remains debate on the exact value
of ζff (e.g. Elmegreen, 2002; Krumholz and McKee, 2005; Elmegreen, 2007; Padoan and
Nordlund, 2011; Hirota et al., 2018). While in some regions the value has been found to be
up to a factor ∼ 5 higher (Evans et al., 2009; Hirota et al., 2018), ζff ≈ 0.012 is found across
a wide dynamic range, and we will use this fiducial value in this work.
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Star formation timescale

The SFE at a given density is dependent on the time for which star formation is allowed to
proceed, as a multiple of the free-fall timescale. The free-fall timescale at local density ρg is

τff =

√
3π

32Gρg
(7.12)

and the associated SFE is
εfb =

ζff

τff
τfb, (7.13)

where τfb is the feedback timescale, the time it takes to halt star formation. The feedback
timescale can be written as the sum of the time until the first supernova τsn ∼ 3 Myr and the
subsequent time until pressure equilibrium with the surrounding ISM is reached. We refer
readers interested in the full derivation of τfb to Kruijssen (2012) and simply quote the result
of such a calculation here:

τfb =
τsn

2

1+

√
1+

2π2G2τffQ2Σ2
0

Φfbζffτ
2
snΩ2x

 . (7.14)

where Φfb is a constant which represents the rate at which feedback injects energy into the
ISM per unit mass. Its exact value is uncertain (Silk, 1997; Mac Low and Ferrara, 1999;
Efstathiou, 2000; Abadi et al., 2003; Dib et al., 2006), and we use an order of magnitude
estimate Φfb ≈ 3.2×1032 erg s−1 M−1

⊙ (see Appendix B in Kruijssen, 2012, and references
therein).

Where star formation timescales are long, we wish to limit our consideration to stars
which host a disc, i.e. with ages ≲ 10 Myr. In the case where the overdensity x → 0, we have
large τfb ∝ x−3/4 and εfb ∝ x−1/4. We therefore limit our definition of SFE to those stars
formed within τinc of the onset of star formation; for such stars the ‘incomplete’ SFE is:

εinc =
ζff

τff
τinc, (7.15)

where τinc = 10 Myr.
In general, we can write the SFE as the minimum of the feedback limited, incomplete

and core accretion limited efficiencies:

ε = min{εfb,εinc,εcore} , (7.16)
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where the latter limit is obtained by factoring in mass-loss through outflows during core
accretion. We choose εcore = 0.5, consistent with the range 0.25 < εcore < 0.7 found by
Matzner and McKee (2000).

Caveats for SFE

While the SFE given by equations 7.12–7.16 is convenient since it is a function of x only for a
given environment, some discussion is necessary on the shortcomings of such a prescription.
When we consider FUV flux throughout a star forming region we will be motivated to define
the maximum star mass within the local environment, dependent on the cluster mass Mc

(see Section 7.3.2). Ideally, τsn would also be a function of Mc, such that ε = ε(x,Mc).
However, when we define the overall PDF in ρ∗–F space this would considerably complicate
our prescription. It would require a mapping from the gas overdensity distribution to both
ρ∗ and F , while the PDF for the latter is already a function of the former. This problem is
mitigated somewhat for two reasons. Firstly, we impose a maximum SFE, such that ε = εcore

will be independent of τsn beyond a certain value. For such dense environments the physical
SFE will vary on the order unity, and our approximation is reasonable for establishing
order of magnitude PDFs for stellar environment. Secondly, the innate dispersion of ε

will in a practical sense be accounted for when we consider the empirical scatter of stellar
environments in density–FUV flux space (Section 7.4.4). Hence, while our prescription for ε

may not be accurate for all regions of parameter space, physical variations are a second order
effect for the problem considered here.

7.3 Cluster properties

The mass of the most massive stellar neighbour (and local FUV flux), is consistent with with
random drawing from the IMF, and is therefore a function of cluster mass. Throughout this
chapter, we consider a Kroupa (2001) IMF:

∂F∗
∂m∗

= ξ∗(m∗) ∝


m−1.3
∗ for0.08M⊙ ≤ m∗ < 0.5M⊙

m−2.3
∗ for0.5M⊙ ≤ m∗ < 100M⊙

0 else

, (7.17)

such that ξ∗(m) is normalised and continuous. We choose an upper limit of 100M⊙ because
this is the upper limit of the stellar atmosphere models we adopt in Section 7.3.2. This is not a
problem since the clusters with mass Mc < 103 M⊙ practically always have mmax ≪ 100M⊙
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(and for clusters of mass ≳ 103 M⊙, FUV field strength is no longer strongly variable with
maximum stellar mass – Chapter 5). In the remainder of this section we will define the
distribution of cluster masses, and the associated FUV luminosity of the most massive
members.

7.3.1 Cluster mass spectrum

To estimate the deviation of the FUV flux experienced by stars from the relationship found in
Chapter 5, we must estimate the initial cluster mass function (ICMF) in a given region. We
follow Trujillo-Gomez, Reina-Campos and Kruijssen (in prep., hereafter TRK) in assuming
that the ICMF follows a Schechter (1976) function, additionally truncated from below by a
minimum mass:

ξc ≡
dFc

dMc
∝ φ

−β exp
(
− φ

φmax

)
exp
(
−φmin

φ

)
(7.18)

where β = 2 due to hierarchical collapse of molecular clouds (Elmegreen and Falgarone,
1996). We have introduced:

φ ≡ Mc

Mcrit
(7.19)

the ratio of the cluster mass to the critical mass, Mcrit = 103 M⊙, which we use in our
parameterisation of FUV luminosity in Section 7.3.2. The ICMF is truncated at a maximum
φmax and minimum φmin, which we discuss below.

Maximum cluster mass

We follow Reina-Campos and Kruijssen (2017) in calculating the maximum cluster mass
φmax, by considering the most massive molecular cloud that can survive disruption by
feedback. The ISM is stable to perturbations with a wavelength longer than the Toomre
(1964) length,

λT =
4π2GΣ0

κ2 =
2π2GΣ0

Ω2 , (7.20)

where κ ≈
√

2Ω is the epicyclic frequency, and this is therefore the largest scale on which
collapse can take place. The corresponding Toomre mass is:

MT =
πΣ0λ 2

T
4

=
π5G2Σ3

0
Ω4 . (7.21)
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Considering the galactic plane as an infinite sheet, the 2D free fall time (collapse within the
plane) of a region with radius λT/2 (Burkert and Hartmann, 2004):

τff,2D =

√
λT

2πGΣ0
=

√
π

Ω
. (7.22)

If the feedback timescale τfb < τff,2D then the collapsing region will be destroyed by this
feedback before the conclusion of collapse. Since MT ∝ τ4

ff,2D in the absence of feedback,
the maximum mass of the GMC is given by:

MMC,max = fcoll.MT (7.23)

where

fcoll. = min
{

1,
⟨τfb⟩
τff,2D

}4

(7.24)

is the fraction of mass which survives collapse. We have introduced the feedback time across
the entire region, which is evaluated using equation 7.35:

⟨τfb⟩ ≈ τfb(x = 1). (7.25)

To convert this into a maximum cluster mass, Reina-Campos and Kruijssen (2017) multiply
this by the SFE and the cluster formation efficiency. However, we are not interested here in
whether a cluster is bound, and hence we only consider the SFE. We have:

φmax =
εeff fcoll.MT

Mcrit
, (7.26)

where we have defined an effective SFE in the high mass GMC limit. In line with Reina-
Campos and Kruijssen (2017), we choose an effective SFE εeff = 0.1.

Minimum cluster mass

The minimum expected mass for a stellar cluster is more nuanced in this context, and depends
on the definition we adopt for a ‘cluster’. As we have already discussed, in the context of
this work we are not interested in whether a group of stars is initially ‘bound’ in the sense
that we aim to establish the conditions that a star experiences early in its evolution. However,
we are interested in the bottom of the hierarchy for early mergers within molecular clouds,
since this defines the lowest number of neighbours in a cluster. We follow TRK in deriving
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this minimum mass by considering a molecular cloud mass dependent SFE:

ε̃(MGMC) =
ζff

τ̃ff
τ̃fb. (7.27)

We will find that ε̃ decreases with increasing MGMC (in the limit of small MGMC), such that
above a certain cloud mass:

ε̃ ≳ εth ≈ 0.2, (7.28)

where the threshold SFE εth is given by the efficiency required to produce a bound cluster
after instaneous gas expulsion (Baumgardt and Kroupa, 2007). For cloud masses below
this limit Mth, the SFE is high enough to result in the hierarchical merging of single objects
(which can be considered to be associated within our context), and hence we have:

φmin =
εthMth

Mcrit
. (7.29)

We are now left with the problem of solving the equations for SFE with respect to the galactic
scale primordial gas properties.

In the numerical derivation of φmin we consider the SFE across an entire molecular cloud,
ε̃ , as opposed to the local SFE considered in Section 7.2.2, ε , which is dependent on x and
consistent with the calculation of Kruijssen (2012). The primary difference is that in the
former case, we can estimate the supernova timescale τ̃sn based on the local stellar mass (but
not the influence of density), while in the latter we can assess the influence of local density
on feedback efficiency (but not the variation in supernova timescale). Ideally we would
consider the SFE as a function of both cloud mass and local density, however as discussed
in Section 7.2.2 this would greatly complicate our prescription. Instead, we are content to
consider ε̃ for the purposes of assessing the minimum cluster mass, noting that these two
different prescriptions are physically compatible; ε̃ being SFE on a molecular cloud scale,
and ε being SFE on a local (stellar) scale.

We refer the reader interested in the derivation of the feedback timescale to TRK, and
briefly review the fundamental concepts here. The SFE is calculated by considering the
average cloud density ρGMC, which can be approximated:

ρGMC =
3
4

(
πΣ3

0 f 3
Σ

MGMC

)1/2

, (7.30)

where we define fΣ ≡ ΣGMC/Σ0, the ratio between the MC surface density and the mean
gas surface density. Following Krumholz and McKee (2005) and Kruijssen (2015), for a
virial parameter αvir = 1.3 (an appropriate value for GMCs confined by the pressure of the
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surrounding medium – Bertoldi and McKee, 1992) this ratio is:

fΣ = 3.92
(

10−8 fGMC

2

)1/2

. (7.31)

In the solar neighbourhood this yields ΣGMC ≈ 90M⊙ pc−2 (consistent with the findings of
Bolatto et al., 2008). We also estimate the timescale for a supernova to occur by considering
the progenitor formation timescale, such that we have:

τ̃sn = τsn +∆τsn, (7.32)

where we have defined ∆τsn as the time it takes for a stellar cluster to reach a sufficient
mass to form an OB star. This mass is calculated by TRK to be MOB ≈ 139M⊙, and the
corresponding timescale:

∆τsn =
MOBτ̃ff

MGMCζff
. (7.33)

Finally, we can define the MC mass dependent free fall timescale:

τ̃ff =

√
1

8G

(
πMGMC

f 3
Σ

Σ3
0

)1/4

. (7.34)

With these adjustments, an alternate version of equation 7.14 is:

τ̃fb ≈
τ̃sn

2

1+

√√√√1+
8π1/4ρ0M5/4

GMC

15
√

2GΦfbτ̃2
sn( fΣΣ0)7/4

 . (7.35)

We can solve the system of equations 7.27 to 7.35 for Mth such that

ε̃|Mth = εth, (7.36)

to give φmin. From the above formulation there is no physical reason why we cannot have
φmin > φmax. In this case, the bottom of the hierarchy exceeds the maximum mass that can
be produced in such an environment, and the former is therefore set by the latter. This
results in a narrow distribution of cluster masses, and φmin = φmax (set by the maximum
possible mass), such that our ICMF continues to be physically valid. For numerical reasons,
it will also be convenient to set limits on the allowed values for φmin and φmax. We define
φmax,min = φmin,min = 10−2 (i.e. Mc > 10M⊙), φmin,max = 100 and φmax,max = 106. These
are chosen to be extreme values, and our results are not sensitive to these choices since the
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mean FUV flux experienced by PPDs in high mass (φ ≫ 1) and low mass (φ ≪ 1) clusters
converge to respective limits (see Section 7.4).

10−3 10−2 10−1 100 101 102 103 104

φ ≡Mc/Mcrit

10−2

10−1

100

φ
×
∂
F c
/
∂

lo
g
φ

Solar Nbhd.

CMZ

Fig. 7.1 The ICMF (equation 7.18) in terms of φ ≡ Mc/Mcrit, weighted by the stellar mass
of the cluster, indicating the fraction of stars born in a cluster of a given mass. The lower
limit φmin is given by the bottom of the single-object merger hierarchy calculated by TRK.
The maximum cluster mass φmax is the stellar component of a MC with mass given by the
feedback limited fraction of the Toomre mass (Reina-Campos and Kruijssen, 2017). The
blue line is for the solar neighbourhood, while the red line relates to the CMZ.

Derived initial cluster mass function

The theoretical ICMFs of the solar neighbourhood and CMZ are shown in figure 7.1, weighted
by mass to illustrate the fraction of stars initially found in a region of a given mass. Our
upper mass estimates are somewhat larger than those of Reina-Campos and Kruijssen (2017)
since we are not interested in the cluster formation efficiency. We find that clusters in the
CMZ have initial masses below φmax ≈ 620, while the solar neighbourhood has φmax ≈ 126.
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7.3.2 Maximum FUV luminosity of cluster members

We follow the method presented in Chapter 5 for obtaining the FUV and EUV luminosity of
the most massive star in a given cluster. During this chapter, we will regularly refer to this
FUV luminosity L, and it will be useful to have an analytic approximation for this parameter.
This luminosity is shown in figure 7.2 for a given stellar cluster mass Mc. We find that for
the critical cluster mass Mcrit = 103 M⊙, we have Lcrit ≈ 8.3×1038 erg s−1. The results in
figure 7.2 again justify our choice for Mcrit, since above this limit Lmax,1/2 varies only weakly
with Mc. An analytic estimate for the median luminosity follows the form:

Γ(φ)≡
Lmax,1/2(φ)

Lcrit
≈
{

1− e−(α1φ)α2
}

ln(1+φ) . (7.37)

Equation 7.37 actually has three fitting parameters: α1 = 8.0, α2 = 2.55, and Mcrit = 103 M⊙
(the latter of which defines φ ). The analytic approximation in equation 7.37 is shown as
the dotted line in figure 7.2. We further define the logarithmic deviation in the maximum
luminosity:

σL ≈ 8

(3+ logφ)2 (7.38)

indicated by the dotted line in the bottom panel of figure 7.2 (compared to the direct
calculation shown as a solid line).

We emphasise that equation 7.37 does not have a physical basis. It is chosen as a func-
tional form that permits an intuition for the physical quantities and simplify our calculations
in the following sections. It is appropriate in the range of cluster masses discussed here under
the assumption that the maximum star mass in a region is ≲ 100M⊙.

7.4 FUV flux distribution

To build a distribution of FUV flux F as a function of local density, we are motivated to
first find limits on the expected (mean) flux F0(x,φ). These limits are high mass environ-
ments, where F0 is well approximated by the relationship between flux and density found in
Chapter 5, and the low cluster mass limit where F0 is dominated by the contribution of the
background FUV field rather than neighbouring stars. We address these limits as follows.

7.4.1 High mass clusters

The upper limit for FUV flux at a given stellar density ρ∗ is defined by the limit of a high
mass stellar environment wherein the local region has a well-sampled IMF. In this regime we
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Fig. 7.2 Top: The median luminosity L1/2 of the most massive star in a cluster with stellar
mass Mc with the IMF described by equation 4.7. The dotted line follows the analytic
approximation, equation 7.37. The vertical dashed line is at the critical mass Mcrit ≈ 103 M⊙
beyond which the local FUV flux is well determined by equation 7.39. The associated critical
luminosity Lcrit ≈ 8.4×1038 erg s−1 cm−2 is shown as a horizontal dashed line. The shaded
region represents the logarithmic standard deviation in L1/2. Bottom: The solid line is the
value logarithmic standard deviation σL of the luminosity, with equation 7.38 indicated by
the dotted line.

base the expected flux at fixed local stellar density ρ∗ = ε(x)ρg on our findings in Chapter 5.
Empirically, the mean FUV flux in high mass environments is

FHM
0 ≈ 1300

(
ρ∗

M⊙ pc−3

)1/2

G0. (7.39)

We will assume that as the mass of the local environment increases, the flux distribution
converges to this average.
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7.4.2 Flux in the field

To define the full PDF of FUV flux for a given density, it will be further necessary to define
a minimum value for which the FUV exposure is set by the field strength across the entire
region. Below a certain density ρf, the FUV flux experienced by a given star is set by the
global distribution of stars throughout the region, rather than the contribution of individual
neighbouring stars. This happens when the distance between stars approaches the distances
between clusters, which is on the order of the Jeans length:(⟨m∗⟩

ρf

)1/3

∼ λJ =

√
π

Gρ0
cs (7.40)

where cs is the sound speed and

⟨m∗⟩=
∫

m∗ξ∗(m∗)dm∗ ≈ 0.5M⊙ (7.41)

is the average stellar mass (established from the IMF, equation 7.17). Estimating cs ∼
0.3 km/s as before, we can rewrite equation 7.40:

xf ∼ 9.4×10−4
(

ρ0

M⊙ pc−3

)1/2

, (7.42)

where xf ≡ ρf/ρ0. For x < xf we consider the contributions of the entire stellar population to
the flux, not just neighbouring stars.

While we have described such cases as ‘the field’, this delineation between clusters and
field stars is not physical. Whether stars in an environment of density ρ∗ are attributed to a
cluster is not of interest here, we simply argue that in such low densities, the flux contribution
of the local environment approaches the flux contribution from the global environment.
Therefore we have a minimum flux

F f
0 = FHM

0 (εeffρf), (7.43)

where εeff = 0.1 is the effective SFE across the entire region and FHM
0 is defined in equa-

tion 7.39. I.e. the mean flux is independent of the local density for x < xf. Using the
parameters for the solar neighbourhood Σ0 = 12M⊙ pc−2 and Q = 1.5, we find F f

0 ∼ 1.1G0.
This is a reasonable estimate of the FUV flux found in the solar neighbourhood (Habing,
1968).



160 Future prospects and context: links to galactic-scale environment

7.4.3 Low mass clusters

Low mass environments do not have a well sampled IMF, but may still represent regions of
high density. For this reason, we model deviations from the flux–density relationship:

ψ0 ≈

1− e−Γ +ψ f
0 ψ f

0 < 1

ψ f
0 ψ f

0 ≥ 1
(7.44)

where we define the ratio of the average local flux to the high mass limit ψ0 ≡ F0/FHM
0 , with

ψ f
0 = F f

0/FHM
0 . Two limits of equation 7.44 need to be addressed. In the limit where x is

small, we have ψ f
0 ≥ 1, then it follows that ψ0 = ψ f

0. In this case the stellar PDF for ψ0 is:

∂F∗
∂ψ0

∣∣∣∣ψ f
0≥1

= δ (ψ0 −ψ
f
0) (7.45)

where δ is a Dirac delta function (for fixed x). In the upper and lower limits (ψ0 ≥ 1+ψ f
0,

ψ0 ≤ ψ f
0 respectively), no corresponding Γ exists, and we have:

∂F∗
∂ψ0

∣∣∣∣ψ0≥1+ψ f
0

= 0
∂F∗
∂ψ0

∣∣∣∣ψ0<ψ f
0

= 0 (7.46)

Between these two limits, we can evaluate Γ for a given value ψ0 and write the PDF:

∂F∗
∂ψ0

=
∂F∗
∂φ

∂φ

∂ψ0
=

∂F∗
∂φ

∂Γ

∂ψ0

∂φ

∂Γ
. (7.47)

To evaluate the PDF with respect to φ , we consider the (normalised) ICMF defined in
Section 7.3.1:

∂F∗
∂φ

∝ φξc(φ) (7.48)

We have multiplied the ICMF by a factor φ since the number of stars within a cluster scales
with cluster mass. Hence the PDF for FUV flux, equation 7.47, can be expressed analytically
at a fixed overdensity x.

We are additionally interested in the influence of extinction of FUV photons due to the
primordial gas present in the nascent cluster. The calculation of an equivalent normalised
mean flux ψext

0 including extinction requires further assumptions regarding the initial distribu-
tion of stars and gas. These are reviewed in Appendix D.1 where we calculate the quantities
relevant in producing an upper limit on the influence of primordial gas extinction.
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7.4.4 Dispersion from mean FUV flux

Equation 7.47 defines a PDF for the mean flux distribution for fixed density, but in deriving
it we have assumed that all clusters of a fixed mass exhibit the same flux distribution. This
is clearly not the case, as the most massive star and the internal density profile can yield
variations in the flux experienced by the stellar population. To model these variations, we
consider deviations from the average flux ratio ψ0 which we assume follow a lognormal
distribution:

∂F∗
∂δψ

=
1√

2πσ2
Fδψ

exp
{
−(lnδψ)2

2σ2
F

}
(7.49)

where δψ ≡ ψ/ψ0 and ψ = F/FHM
0 . The logarithmic flux dispersion σF is the contribution

of the dispersion σ f
F in flux arising from varying spatial separations from ionising sources,

and the dispersion σL in the luminosity of the most massive cluster member. The former
dominates the dispersion in the limit where FUV flux is determined by the field value, and in
the limit of massive clusters where σL is small. In the intermediate regime, the dispersion is
dominated by σL. Hence we estimate

σF ≈ σ
f
F +σL(φ) ·W1(ψ0) ·W2(ψ0) (7.50)

where we estimate σ f
F = 0.5 (approximated from the results presented in Chapter 5). The

two weighting functions are defined:

W1 = max
{

erf
(

lnψ0 − lnψ
f
0

)
,0
}

(7.51)

and
W2 = max

{
erf
[
ln
(

1+ψ
f
0

)
− lnψ0

]
,0
}
, (7.52)

such that equation 7.50 is a continuous function and satisfies our requirements.
Since ψ is the product of ψ0 and δψ , we can evaluate its PDF using equations 7.47

and 7.49:
∂F∗
∂ψ

=
∫

dψ0
∂F∗
∂ψ0

∂F∗
∂δψ

1
ψ0

. (7.53)

Hence we have a PDF for the FUV flux experienced by a stellar population at a fixed
overdensity x.

In Section 7.5.2 we will consider how extinction due to primordial gas alters the flux PDF.
In this case, the prescription above cannot be applied since we marginalise over the PDF
for φ in the calculation of the PDF for the extincted flux ψext

0 (Appendix D.1). To simplify,
we assume σF = σ f

F as a first order estimate in this case. While this underestimates the
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dispersion in flux for intermediate φ values, we perform these calculations to give a sense
of the severity of FUV extinction for the most extreme regions. For these regions, the flux
dispersion is σF ∼ σ f

F anyway. As discussed in Appendix D.1, more detailed estimates of
the true influence of extinction are required, and we leave this for future work.

7.5 Stellar density–FUV flux distribution

7.5.1 No extinction

To illustrate the consequences of the formulation we have presented in this section, we now
apply our results to the solar neighbourhood and the CMZ with parameters indicated in
Section 7.2.1. The PDF for stars in terms of the local stellar density and FUV flux is given
by:

∂ 2F∗
∂ρ∗∂F

=
∂F∗
∂ρ∗

· ∂F∗
∂F

. (7.54)

The results of this calculation are shown in figure 7.3 in the case of no interstellar extinction.
We have indicated contours of equal dispersal timescale for τdisp. = 1, 2 and 3 Myr for a star
of mass m∗ = 0.5M⊙ hosting a PPD with α = 5.4×10−3:

τdisp. ≈
(
τ
−1
FUV + τ

−1
tidal

)−1
, (7.55)

for the dispersal timescale due to FUV photons, τFUV, and the tidal dispersal timescale, τtidal.
The former we calculate in the same way as in Chapter 6 with scale radius R1 = 40 au and the
initial disc mass Md,0 = 0.1m∗. We assume τtidal is the timescale on which a star undergoes
an encounter within 50 au, with the theoretical encounter rate described in Chapter 1. This is
reasonable since Chapter 3 and Chapter 4 indicate distant encounters are not important for disc
evolution, and we are free to consider the timescale for a single, highly destructive encounter.
Additionally, the findings in Chapter 4 show that the differential effect of encounters on discs
with varying stellar host masses over time is small; we will therefore assume all stars have
mass m∗ = ⟨m∗⟩= 0.5M⊙ in calculating the encounter rate.

Although the sample of young star forming regions compiled in Chapter 5 is not complete,
we qualitatively compare our results in figure 7.3, where we overplot contours for some
observed young cluster environments. As previously, we find that practically no stars exist at
stellar densities sufficient to cause significant PPD truncation that are not also subject to high
FUV field strengths. In the solar neighbourhood the most extreme values are F ∼ 105 G0 and
ρ∗ ∼ 104 M⊙ pc−3. This reflects conditions within the core of the ONC; the most extreme
observed environment in the solar neighbourhood. The lower limit in FUV flux is ∼ 1G0,
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Fig. 7.3 Two dimensional PDF for stars in F–ρ∗ (FUV flux–stellar density) space. The top
panel is for the solar neighbourhood, described by mean surface density Σ0 = 12M⊙ pc−2,
Toomre Q = 1.5, and mean volume density ρ0 ≈ 0.06M⊙ pc−3. The bottom panel reflects
conditions in the central molecular zone (CMZ), with Σ0 = 1000M⊙, Q = 1.5 and ρ0 ≈
250M⊙ pc−3. We have marked contours in the PPD dispersal timescale based on the findings
of previous chapters for a star of mass m∗ = 0.5 M⊙ (approximately the mean mass stellar
mass from our IMF) with a viscosity parameter α = 5.4× 10−3. We have additionally
indicated some empirically derived contours calculated in Chapter 5 for a number of young
stellar environments, truncated at a radius such that 90% of stars for each region are included.
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Fig. 7.4 As in figure 7.3 but including a prescription for the FUV extinction by primordial
gas. The vertical cyan line marks the stellar density threshold above which ram pressure due
to primordial gas will alter disc evolution on timescales ≲ 1 Myr for a star with m∗ = 0.5M⊙.
See text for details.

which is the observed field value in the solar neighbourhood (Habing, 1968). Additionally,
we predict a number of regions with low F ∼ 1–10G0, but ρ∗ ∼ 102 M⊙ pc−3. Lupus is a
local example of such a young region (Nakajima et al., 2000; Merín et al., 2008; Cleeves
et al., 2016; Haworth et al., 2017). In summary, the distribution of stellar environments is in
good agreement with what we would expect from observations of local regions.

In the case of the CMZ we find much higher typical FUV field strengths and densities.
The minimum expected FUV flux in the region is ∼ 150G0, and the most extreme regions lie
at ρ∗ ∼ 106 M⊙ pc−3 and F ∼ 106 G0. This is comparable to the conditions found in core of
Arches and Westerlund 1 (see Chapter 5 and Figer et al., 1999; Mengel and Tacconi-Garman,
2007). The distribution of stellar birth environments in the CMZ suggest that both FUV
photons and tidal encounters play a role in PPD evolution (although for the majority of discs,
external photoevaporation remains the dominant dispersal mechanism), and that discs cannot
survive for long in such environments.

7.5.2 Maximal extinction

In Appendix D.1, we estimate the effect of extinction on the FUV flux distribution by
assuming Plummer sphere geometry of the gas within a nascent cluster. We then integrate
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over a radial coordinate defined to be consistent with the total cluster mass to calculate the
resulting surface density if the most massive star is at the centre of the cluster. The gas
surface density is then used to calculate the reduction in FUV flux a star experiences.

The result of this process is shown in figure 7.4. Our results indicate very high degrees of
extinction at high local gas densities ρg, and hence we find that many regions where PPDs
that would otherwise be dispersed quickly by FUV photons are efficiently shielded during
the embedded phase. Apart from the contours for τdisp. due to tidal encounters and external
photoevaporation, we have further indicated a canonical limit above which gas density rapidly
alters disc evolution through ram pressure, based on the findings of Wijnen et al. (2017a):

τram ∼ Σd

5ρgvg
. (7.56)

We assume that the relative speed of the star with respect to the gas vg = |⃗vg| ≈ σv = 1 km/s,
choose the initial disc surface density Σd close to R1 = 40 au with a surface density as defined
by equation 1.5, and assume that Md,0 = 0.1m∗. In the case of the CMZ, the majority of stars
which experience large FUV extinction have τram < 1 Myr, and hence we would expect the
ISM to play an important role in PPD evolution prior to gas expulsion.

As we discussed in Appendix D.1, the prescription we have implemented for FUV
extinction underestimates the apparent FUV flux experienced by a given star since we have
assumed that the local gas density distribution follows a Plummer density profile. This is not
the case for a realistic, clumpy gas distributions. In the latter case, extinction efficiency is
reduced. Hence the results of our calculations summarised in this section, rather than offering
conclusive answers to the nature of disc evolution during the embedded phase, highlight the
importance of the following issues for disc evolution:

1. The timescale of the embedded phase.

2. The efficiency of extinction during the embedded phase.

3. The (statistical) influence of ram pressure stripping on a PPD population as a function
of local gas density.

To fully understand how PPD properties evolve early during the cluster history, these three
questions must be addressed. Despite these uncertainties, in the case of the CMZ even our
calculation for the minimum FUV flux experienced by stars is sufficient to significantly
reduce PPD lifetimes. However, we have assumed this floor is unaffected by local FUV
extinction. We justify this assertion by arguing that, since the field flux F f is the sum of
contributions from all directions, the clumpiness of the gas distribution makes it likely that it
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is only reduced by a factor of order unity when averaged over time (dependent on the solid
angle subtended by the gas). This assertion requires validation with a realistic treatment
of extinction (point 2). In what follows we will focus on the lifetimes of discs post-gas
expulsion.

7.6 Environment and PPD dispersal timescale

7.6.1 Dispersal timescale distribution

When answering the question of planet formation efficiency within a given environment, it is
instructive to understand the expected distribution of PPD lifetimes. In environments where
a large fraction of stars have discs that are quickly dispersed by stellar feedback, then we
might expect a low planet formation efficiency. For this purpose, we consider the fraction of
PPDs with a given lifetime τdisp. for fixed τvisc.:

∂F∗
∂τdisp.

=
∫

dF
∫

dm∗
∂F∗
∂F

∂F∗
∂m∗

∂F∗
∂ρ∗

∣∣∣∣∂τdisp.

∂ρ∗

∣∣∣∣−1

(7.57)

where ∂F∗/∂m∗ = ξ∗ is the stellar IMF and∣∣∣∣∂τdisp.

∂ρ∗

∣∣∣∣= ∣∣∣∣∂τtidal

∂ρ∗

∂τdisp.

∂τtidal

∣∣∣∣= 2
{

1Myr
τdisp.

+
ρ∗

5×105 M⊙ pc−3

}−2 yr
M⊙ pc−3 (7.58)

at fixed F , m∗.
The results of this calculation are presented as cumulative distribution of τdisp. for the

stellar population in figure 7.5. We find that if we consider PPDs around all stars down to
0.08M⊙ with our chosen IMF, then we obtain median dispersal timescales of 2.3 Myr in the
solar neighbourhood and 0.6 Myr in the CMZ. In both cases these medians are below the
characteristic PPD lifetimes for non-photoevaporated populations (∼ 3–10 Myr). However,
if we instead consider only PPDs with host stars above 1M⊙, then the median dispersal
timescales increase to 9.2 Myr in the solar neighbourhood, and 2.2 Myr in the CMZ. This
highlights the large discrepancy between the expected lifetimes of discs around low- and
high-mass stars under the influence of external photoevaporation. For all stars, disc lifetimes
are suppressed by a factor ≳ 3 in the CMZ with respect to the solar neighbourhood. This
finding has significant consequences for PPD evolution in the central ∼ 250 pc of the Milky
Way, where the time and material available for planet formation is severely reduced by
dispersal mechanisms (primarily external photoevaporation). Indeed, for the whole stellar
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population ∼ 70% of PPDs are dispersed within 1 Myr of primordial gas expulsion due to
external dispersal mechanisms alone.

7.6.2 Gas properties & PPD dispersal

To explore the parameter space for primordial gas properties and host stellar mass, we rewrite
equation 7.57 for a fixed stellar mass:

0.5 =
∫

τdisp.,1/2

0
dτdisp.

∫
dF

∂F∗
∂F

∂F∗
∂ρ∗

∣∣∣∣∂τdisp.

∂ρ∗

∣∣∣∣−1

(7.59)

and solve numerically for the median dispersal timescale τdisp.,1/2. In figure 7.6 we show
τdisp.,1/2 as a function of gas surface density Σ0, and angular speed Ω within a galactic
disc for varying Toomre Q, and stellar host mass m∗. Most obviously, the timescale for
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Fig. 7.6 The median dispersal timescales τdisp.,1/2 induced by external photoevaporation and
tidal encounters for PPDs around a star of mass m∗ as a function of primordial gas surface
density Σ0 and angular speed Ω for Toomre Q = 0.5, 1, 3. The blue circle marks the position
of the solar neighbourhood. Regions of parameter space for which τdisp.,1/2 < 10 Myr exhibit
disc lifetimes that are significantly reduced with respect to a PPD evolving in isolation.
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PPD destruction decreases with increasing Σ0, and deceasing m∗. The former relationship
is simply due to increasing stellar density and maximum cluster mass with Σ0, leading to
greater FUV flux. The opposite is true for Q, and therefore τdisp. increases with increasing
Q. The host mass dependence is due to the greater efficiency of external photoevaporation
acting upon lower mass stellar hosts, since they have a reduced gravitational potential and
therefore greater critical radius within the disc (see Haworth et al., 2018a,b).

The dependence of τdisp. on Ω is more complicated, and two competing factors dictate
the relationship. Firstly, larger Ω means larger ρ0 (equation 7.7), and hence higher densities.
However, a high angular speed also restricts the maximum cluster mass (equation 7.21) and
therefore reduces the local maximum FUV luminosity, unless Ω is sufficiently small such that
⟨τfb⟩< τff,2D (equations 7.22 and 7.24). Whether the latter factor is important depends on ρf

(equation 7.42), and whether the resulting field flux Ff is sufficient to significantly influence
disc evolution. If Ff is large, then the influence of the cluster mass function is negligible, and
τdisp. decreases with increasing Ω (and vice versa). These competing factors result in three
regimes for dispersal timescale, with the variation in field flux dominating for high and low
Ω and the rapid decrease in maximum cluster mass dominating for intermediate values.

Finally, we find that the position of the solar neighbourhood in the parameter space
(marked by a blue dot in figure 7.6) is approximately at the maximum surface density where
the majority of the disc population around stars with m∗ ∼ 1M⊙ do not get significantly
depleted by external influences. Dependent on the exact Σ0–Ω relationship within a galaxy
(e.g. the approximate relationship equation 7.11 for local galaxies), regions of much higher or
lower Ω for the same surface density may be unlikely. This is intriguing because it suggests
that the position of the solar system within the galaxy is such that a maximal number (not
fraction) of stars have PPDs which disperse largely by internal processes (including planet
formation). We therefore tentatively suggest that the solar neighbourhood is a special region
for the evolution of PPDs.

7.7 Overall conclusions

In this chapter we have used the results from the previous chapters to illustrate how star
formation parameters can be linked to PPD dispersal timescales due to FUV induced photo-
evaporation and tidal encounters. This has numerous applications for assessing the planet
formation potential of star forming regions, and establishing the typical influences on PPD
evolution for future investigation. It also highlights the significance of the primary conclu-
sions drawn from this dissertation, which we summarise as follows:
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1. The solar neighbourhood lies close to the largest ISM surface density for which the
majority of the PPD population are not influenced by external dispersal mechanisms.
For surface densities much larger, the PPDs have lifetimes which are significantly
shortened by (predominantly) FUV flux.

2. Due to the higher gas densities in the central molecular zone, much of the stellar
population initially experiences high FUV flux. This results in dispersal timescales that
are a factor ≳ 3 shorter than those in the solar neighbourhood. Across the entire IMF,
we predict that ∼ 70% of PPDs are destroyed within 1 Myr in the CMZ. Therefore we
expect that planet formation in this region is severely limited in time and mass.

3. As found in Chapter 5, external photoevaporation is the dominant mechanism for disc
dispersal in the solar neighbourhood, and we find that no stars exist in regions where
type II tidal encounters can truncate PPDs. Extending this to the CMZ in this chapter,
we find that the timescale for FUV induced disc destruction remains shorter than the
tidal timescale after gas expulsion (τFUV < τtidal).

4. While type II encounters may be insignificant as a dispersal mechanism for PPDs, we
have highlighted that this does not preclude encounters within multiple systems (type
I), particularly during the earlier stages of disc evolution. In Chapter 2 we present
evidence that HV and DO Tau is the first example of a presently unbound or marginally
bound system that underwent a past close disc-disc encounter during the ejection of
one of its members.

5. In this chapter we estimate an upper limit on the influence of extinction on the FUV
flux. Our calculations suggest that PPDs in high density regions can be efficiently
shielded by primordial gas. In this case tidal encounters remain insignificant as a
depletion mechanism since the ram pressure imposed on a disc population operates
on a much shorter timescale τram ≪ τtidal (in agreement with Wijnen et al., 2017b).
We therefore conclusively rule out tidal encounters as a dispersal mechanism in any
environment. For CMZ-like regions, the ram pressure influences PPDs on a short
timescale in all regions where FUV flux is severely reduced by extinction.

6. Strong evidence for the FUV induced depletion of the PPD sample in Cygnus OB2
is discussed in Chapter 6, where we find that the disc fractions can be successfully
explained by external photoevaporation. Through our modelling procedure, we also
find that disc dispersal timescales are strongly correlated with host mass in regions
where external photoevaporation is significant. This is because a shallower gravitational
potential allows more efficient mass loss driven by FUV photons. We predict that
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the signature of rapidly depleted discs around low mass stars should be evident in
sufficiently photoevaporated samples such as in Cygnus OB2. This may also, for
example, explain the low disc fraction around M-stars found by Hernández et al.
(2010) in λ Ori if the hypothesised past supernova scenario is accurate (Dolan and
Mathieu, 2001).

As well as providing insights into the link between star formation physics and planet
formation, our findings also highlight particular questions for future work to answer. For
each of the above findings we summarise some such issues:

1. Is the solar neighbourhood special? Future studies may, for example, compare our
calculations to simulations and observations of star formation over time and space.
In this way, statistical conclusions may be drawn regarding the significance of the
position of the solar neighbourhood in Σ0–Ω space.

2. What is the observed fraction of stars that have discs in the CMZ as a function of age?
Early investigations on this topic suggest low disc fractions of a few percent in Arches
(Stolte et al., 2010, 2015).

3. How long is the typical viscous timescale for PPDs? In this chapter, we have assumed
a viscous timescale of τvisc. = 1 Myr for a star of mass 1M⊙. The dispersal timescale is
a moderate function of this choice. In the case that MHD winds are instead responsible
for the majority of accretion onto the central star such that the disc does not spread,
how rapidly does the outside-in clearing due to external photoevaporation disperse a
PPD?

4. Since type I encounters do occur, even in low density regions such as Taurus, the influ-
ence of multiplicity on disc evolution and the resultant exoplanet population remains
an important issue. Any population synthesis for PPD samples and their resulting
exoplanet population will be incomplete without considering realistic multiplicity in
the early stages of cluster evolution.

5. What is the influence of primordial gas on disc evolution? This broad topic includes a
number of questions regarding both star formation physics and the response of the disc
to the ISM. Some of these include: How long is the embedded phase as a function of
environment? How efficient is extinction in regions of high primordial gas density?
What is the statistical influence of the motion of the dense ISM with respect to a
population of PPDs?
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6. Can we find evidence of a steep disc mass–host mass relationship in regions of strong
FUV flux? Our modelling of Cygnus OB2 in Chapter 6 suggests that finding such
observational signatures of photoevaporation should indeed be possible with relatively
small sample sizes if PPDs in a region have been sufficiently depleted.

Overall we conclude that building a picture of planet formation predominantly based
on PPDs in the solar neighbourhood, or ignoring external influences, will result in a biased
understanding of the time and mass available for planet formation over galactic and cosmo-
logical scales. The prescription we have presented in this chapter is a tool for future studies
wishing to estimate the variation of PPD properties in diverse environments. Our findings
also highlight the key issues that need to be addressed to further quantify the importance of
star formation conditions for planet formation.
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Appendix A

Appendix to Chapter 3

A.1 Linearised angular momentum transport equations

In order to derive results for a given ring at radius r within a disc, we adapt the results of
Ostriker (1994), and henceforth equation numbers in brackets are in reference to that paper.
Before we discuss the individual contributions, some consideration is given to particular
equations and notation within that extensive study. We first briefly review the relevant vectors.
The vector between the star with a disc and a given fluid element is defined to be

rrr = rrr0(t)+ rrr1

where rrr0 is the unperturbed position vector and rrr1 is the perturbation from this vector induced
by the force from the secondary star. This can be expanded into the form

rrr1 ≡ r1r̂rr0 +φ1r0φ̂φφ
0
+ z1ẑzz

where subscript (superscript) 0 denotes an unperturbed co-ordinate value (unit vector), and
1 the corresponding perturbed value. Note that z0 = 0 in the chosen coordinate system.
The external force per disc fluid element mass exerted by the perturbing star with mass M2,
separated by vector xxx from the host star, can be expanded in terms of spherical harmonics:

fff ext = GM2

∞

∑
l=2

l

∑
m=−l

4π

2l +1
∇∇∇

[
|rrr′|lY m∗

l (rrr′)
]Y m

l (xxx)
|xxx|l+1 (A.1)
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where rrr′ is the distance between the perturbed fluid particle and the center of mass of the
system

rrr′ = rrr− Mdisc

M1 +Mdisc
rrrdisc ≈ rrr

assuming that the mass of this disc Mdisc is negligible. The sum in equation A.1 starts at
l = 2 since the l = 0 term is independent of rrr′ and the l = 1 term vanishes in the frame that
is accelerating due to the force exerted on the host star.

While working with spherical harmonics in this context it becomes necessary to define a
quantity denoted in Ostriker (1994) as Y m

l (0). This quantity is used to represent the polar part
of the spherical harmonic evaluated at rrr0, which is Y m

l (π/2,0) given that the disc is fixed in
the equatorial plane. For equation [2.15] and [2.16] the azimuthal component is cancelled
when the Laplace transformation is applied to equations [2.10] and [2.11]. The integral over
φ0 is then simply a factor 2π .

To calculate the angular momentum change in the disc, we note that dLLL ≈ dmrrr×dvvv =
dmrrr× fff ext dt so that:

∆LLL = GM2

∫ Rout

Rin

dr0 r0Σ0(r0)
∫ 2π

0
dφ0

∫
∞

−∞

dt rrr× fff ext. (A.2)

From equation 3.1, we can approximate the total change in angular momentum by the z-
component of equation A.2. Although Ostriker (1994) finds a component proportional to
Y m+1

l (0) and the Laplace-transformed z-coordinate, we show briefly that this term is not
present in the vertical projection of the angular momentum transfer. This is important because
it is the term which eventually leads to a vertical resonance contribution which dominates at
large xmin/r in the calculations of Ostriker (1994). Substituting equation A.1 into equation
A.2 and expanding by the product rule, it is immediately clear that any Y m+1

l terms must
come from the expression rrr×∇∇∇Y m∗

l (rrr). This is easier to evaluate in spherical coordinates ρ ,
θ , φ , in which case ∇∇∇Y m∗

l (rrr) has θ̂θθ and φ̂φφ components only, which we denote ∇θY m∗
l (rrr) and

∇φY m∗
l (rrr). Now taking the cross product with r, we find

rrr×∇∇∇Y m∗
l (rrr) =

[
θ∇φY m∗

l (rrr)−φ∇θY m∗
l (rrr)

]
ρ̂ρρ −ρ∇φY m∗

l (rrr)θ̂θθ +ρ∇θY m∗
l (rrr)φ̂φφ

Changing to cylindrical unit vectors, the z-component of this product is

ẑzz · [rrr×∇∇∇Y m∗
l (rrr)] =

[
θ∇φY m∗

l (rrr)−φ∇θY m∗
l (rrr)

]
cosθ +ρ∇φY m∗

l (rrr)sinθ .
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Since cosθ/sinθ = z1/(r0 + r1)≪ 1, we have

ẑzz · [rrr×∇∇∇Y m∗
l (rrr)]≈−imY m∗

l (rrr).

Hence, the contribution of the vertical resonance is not dominant at large closest approach
distances, and we find instead an ILR dominates angular momentum transfer in all regimes.

We now jump to the derived expression for the Lindblad resonances, which turn out to be
the dominant contributions to the angular momentum loss in the disc. Equation [2.43] for
angular momentum is

∆LILR/OLR=±
∞

∑
m=0

1
1+δm0

∫
ωmax

ωmin

dω
mπΣ0(rL)

rLκ(rL)∂ (mΩ∓κ)/∂ rL
×∣∣∣∣∣∣GM2

∞

∑
l≥|m|,2

4π

2l +1
rl

L

(
l ± 2mΩ(rL)

κ(rL)

)
Y m

l (0)
∫

∞

−∞

dt
Y m

l (xxx)
|xxx|l+1 e−iωt

∣∣∣∣∣∣
2

(A.3)

where rL is the radius defined such that ω = mΩ(rL)∓ κ(rL) are satisfied for ILR/OLR
respectively, where κ is the epicyclic frequency. The limits ωmin/max are defined similarly
for the maximum and minimum disc radii. As discussed in Section 3.2.1, the epicyclic and
Keplerian frequencies coincide when the disc mass is negligible. In this case, ω apparently
vanishes for the m = 1 contribution; the forcing frequency is small enough such that, although
the radius of exact resonance is not well defined, a large range of radii are in a state of near
resonance (and exact resonances do not exist). Formally the outer radius for which this is
true is described in terms of a fiducial ‘wave radius’ rw (Ostriker et al., 1992). However,
for a low-mass disc, the effect of the near resonance are nearly the same as the m = 1
contribution to the exact resonance in equation A.3 and setting ω = 0. This is physically
equivalent to a secular perturbation, wherein the external trajectory is replaced by a ring
of mass per unit length proportional to the inverse of the velocity at each point. We then
have dω · [∂ (Ω−κ)/∂ rL]

−1 ≈ dr, from which comes equation [2.50]. The integration limits
are swapped, and the value of m is negated. The secular resonance acts as an OLR since
it propagates outwards. We are interested in the angular momentum transferred to a ring
within the disc. This is obtained by treating the surface density distribution as a delta function
Σ0(r)→ δ (r− rr), where the subscript ‘r’ denotes the ring quantity. Dividing through by the
total angular momentum

L = 2π

∫ Rout

Rin

r3
Σ0(r)Ω(r)dr

where Σ0(r) is again treated as a delta function gives ∆Lr/Lr.
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The final stage is to parameterise the trajectory of the perturbing star xxx relative to the
central star, and the time t in terms of an angular coordinate ψ , phase with respect to
pericentre. The appropriate transformation for τ = tan(ψ/2) is

x(τ) = xmin(1+ τ
2) ; t =

(
2x3

min
GMtot

)1/2 (
τ + τ

3)
so that the time integral is over ψ between −π and π . Hence for the m = 1, ω = 0 case the
contribution of the ILR to angular momentum loss from a ring at radius r within the disc is

∆Lr

Lr

∣∣∣∣ILR

m=1,ω=0
=− M2

2
4M1Mtot

xmin

r

∣∣∣∣∣
∞

∑
l≥2

4π(l +2)
2l +1

(xmin

r

)−l
Y 1

l (0)
∫

π

−π

dψ cos2l−2(ψ/2)Y 1
l (xxx)

∣∣∣∣∣
2

(A.4)
where it is understood that the spherical harmonic as a function of the separation can be
rotated in the axes described in Section 3.2.2 such that

Y m
l (xxx) =

l

∑
m′=−l

Y m′
l (π/2,ψ)dl

m′m(β )e
−imα

where dl
m′m is a Wigner-d matrix.

The contributions of the exact resonances can be found in a similar way to be

∆Lr

Lr

∣∣∣∣ILR

=−
∞

∑
m=2

mM2
2

2M1Mtot

xmin

r
×∣∣∣∣∣

∞

∑
l=m

4π(l −2m)

2l +1

(xmin

r

)−l
Y m

l (0)
∫

π

−π

dψ cos2l−2(ψ/2)Y m
l (xxx)exp

[
−i23/2y

tan(ψ/2)
cos2(ψ/2)

]∣∣∣∣∣
2

(A.5)

where

y = (m−1)
(

M1

Mtot

)1/2(xmin

r

)3/2
.

Equation A.4 has the clear properties that it scales as (xmin/r)1−2l , and is therefore dominated
by the non-zero components with lowest values of l. As Y 1

2 (0) = 0, this is the l = 3 term.
While equation A.5 can simply be calculated numerically, in order to write the exact resonance
contributions in a helpful form an approximation for the integral over ψ (for ω ̸= 0) is needed.
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The approach for this is provided by Ostriker (1994), and we obtain

∆Lr

Lr

∣∣∣∣ILR

=−
∞

∑
m=2

mπM2
2

2M1Mtot

xmin

r
exp

[
−25/2

3
y

]
×∣∣∣∣∣

∞

∑
l=m

4π(l −2m)

2l +1
23l/2+1/4

(2l −1)!!
y(2l−1)/2

(xmin

r

)−l
Y m

l (0)Y l
l (xxxmin)

∣∣∣∣∣
2

. (A.6)

This term is dominated by lower m values, and is thus referred to as the m= 2 ILR component.
The total angular momentum lost in a close encounter can be approximated by the sum of
equations A.4 and A.6.
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Fig. A.1 Time-step test for 2D SPH calculation results. The new results (red) use a smaller a
time-step which is reduced by a factor three. This is compared to our original results (black)
in the case where the encounter is prograde (solid) and retrograde (dashed). No significant
difference is found between the two sets of results above the |∆L/L| ∼ 10−3 noise limit.
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Fig. A.2 Change in angular momentum during an encounter for the prograde case in 2D
SPH simulations and varying particle numbers. Numbers in the legend represent the value
of xmin/R1/2. Results for which ∆L/L > 0 are shown as empty squares, while filled squared
represent angular momentum loss. The vertical line is placed at 105 particles, which is the
resolution of the 2D SPH results presented in Section 3.3.2. The noise limit found for 105

particles is shaded. We find no significant change in the results with particle number for
xmin/R1/2 ≤ 6.4.

A.2 Numerical convergence tests

To ensure that the results of our SPH calculations using GANDALF are numerically converged,
we show the equivalent results in the 2D disc case for different particle resolutions and
alternate time-step criteria. In our discussion of SPH results, we compare simulations
performed with a Leapfrog time integration method to those of MERCURY’s built in BS
integrator. While the latter technically has much greater accuracy, we show that the Leapfrog
integrator is accurate enough for the range of parameter space we are interested in by reducing
the timestep (see figure A.1). We similarly confirm that the 2D results for close encounters
are not limited by the number of particles in figure A.2. This is further explored in figure A.3,
where the higher resolution (106 particle) 2D simulations are compared with the test particle
case, to marginal improved agreement close to the noise threshold for angular momentum
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Fig. A.3 Angular momentum change calculations using SPH in 2D for a prograde encounter
with 106 particles. The test particle reconstructed disc case is plotted for comparison, as in
figure 3.6. The shaded region represents the assumed noise limit in the 105 particle case.
Good agreement is found over the the same range as in the 105 particle case, with some
marginal improvement at xmin/Rout ∼ 8.

loss. We note that given our choice of a cubic kernel it is possible that noise limit might
be improved by applying, for example, a higher order kernel (Booth et al., 2015; Rosswog,
2015). However, given that the required accuracy has been achieved in the region of interest,
we do not pursue this possibility further here. We conclude that the SPH results that we
present in Section 3.3.2 are not resolution dependent in the high |∆L/L|> 10−3 regime, and
are not altered by improving the time-step criteria.





Appendix B

Appendix to Chapter 4

B.1 Particle number convergence

In Chapter 4 we use test particle ring simulations to calculate the angle-averaged change of
disc outer radius due to an arbitrary encounter. To confirm that the choice of the number of
particles in our simulations (N = 200) is sufficient, we run a convergence test by varying
number of particles (see figure B.1). We find no significant change in angular momentum
loss for N > 50 and conclude that our results are not particle number limited.
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Fig. B.1 Results of the perturbation of an orbiting ring of test particles by an equal mass host
in a coplanar, prograde, parabolic encounter. Top: mean fractional angular momentum loss of
those particles that remain bound to the original host star. Bottom: fraction of particles which
remain bound to the host N′/N. Results are shown for varying numbers of test particles,
N = 10, 50, 100, 200 and 400. There is no significant change in the angular momentum
loss until N < 50. Further, the particle rings only contribute to the outer radius calculation
if the surviving particle fraction N′/N > 0.9 (see Section 4.3) which limits concerns about
convergence to more distant encounters.
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C.1 Cluster modelling

Below we review the assumptions made in the cases of specific clusters in order to model the
FUV flux in the region, the results of which are shown in Section 5.2.3.

C.1.1 Cygnus OB2

The properties of Cygnus OB2 are discussed in detail in Chapter 6. For our simplified static
model in Chapter 5 we make some corrections to our calculations to take into account the
modest sub-structure and a slightly different IMF to our canonical choice. The IMF is found
to be marginally shallower (ξ ∝ m−2.39±0.19) in the high-mass end. An increased population
of massive stars will alter the FFUV estimates and we therefore adopt this shallower IMF
for m > 1M⊙. To estimate the density enhancement, we apply the results of (Guarcello
et al., 2016) who used minimum spanning trees to simulate sub-clustering. We introduce a
multiplicative factor to our number density profile such that the fraction of stars with number
densities > 200 pc−3 agrees with the results shown in figure 12 of that paper. This results
in an enhancement in the number densities by a factor ∼ 12. Similarly the FUV flux is
enhanced by the reduced distance to neighbouring stars, and Guarcello et al. (2016) find the
FFUV ∼ 104 G0 in the core. This only increases our FFUV estimates by a small factor. We
present both the enhanced and non-enhanced cases.

C.1.2 Serpens

The recent study of Law et al. (2017) found no significant differences in the PPD masses
in the Serpens star forming region when compared to the low-density Taurus region which
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is of a similar age (1− 3 Myr). This suggests that neither tidal truncation nor external
photoevaporation has had a significant influence on the disc evolution in this region.

At least two main sub-clusters are present in the Serpens region, Serpens A and B. Harvey
et al. (2007) find the radius of sub-cluster A(B) to be ∼ 0.25(0.21) pc. They contain 44 and
17 stars respectively, while the the rest of the region contains an additional 174, at an average
number density of ∼ 2.5 pc−3, and this sample is complete down to masses ∼ 0.08M⊙.
Erickson et al. (2015) find the most massive star in Serpens to be 5.1 M⊙ located at R.A.
18 h 29 m 56.1 s and Dec. 01◦ 00’ 21.7” which places it close to the centre of Serpens A as
projected onto the sky.

We model Serpens A and B as two Plummer spheres (with γ = 4 in Equation 5.2) with a
maximum stellar mass of 5.1M⊙ placed at the centre of cluster A. The projected separations
of the two sub-clusters is ∼ 3 pc, which we use as our physical separation. The scale factors
a = 0.25, 0.21 pc are taken for A and B respectively. The mass, Mclust, of each A and B is
fixed so that the correct number of stars are found within a from the centre when drawn from
the IMF truncated above 5.1M⊙. We remove all stars outside of the radius a from the centre
of the two Plummer spheres. Serpens has an elongated, filamentary shape, and therefore
we arrange the remaining stars isotropically over a rectangular box centred on Serpens B
such that the total number of stars is 235. We assume that the box has dimensions such that
the two shortest sides have equal length of 2 pc and the third has length 7 pc. Because the
number of stars in Serpens is relatively small, the approximate FUV flux experienced by
those stars is dependent on the stochastic ICs. We therefore produce 100 versions of this
model and perform statistics on the full sample in Serpens A, B and the remaining population.
Thus we produce a reasonable range of FFUV in the two cores.

We find that all versions of these initial conditions produce a local FUV flux which is
FFUV ≪ 1G0 in all regions of Serpens. As the interstellar value is unity, we adopt this as
the floor in our FUV flux estimates (i.e. the irradiation of discs due to member stars is
insignificant). We choose the extremal number densities in all of our model generations as
the range of nc.

C.1.3 IM Lup in Lupus 2

The Lupus clouds are a low-mass star forming complex located ∼ 140−200 pc from the Sun.
It is composed of multiple physically separated associations (e.g. Comerón, 2008). They are
projected along the sky against the Scorpius-Centaurus OB association (Sco OB2), which
is a distance of ∼ 140 pc from the Sun and comprised of several spatially separated groups
with varying ages. The stellar components of Sco OB2 are ∼ 5−16 Myr old, with masses up
to ∼ 20M⊙ and an approximate IMF with ξ ∝ m−2.6 at the high-mass end (Preibisch et al.,
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2002). The number of OB members in close proximity to Lupus suggests a larger ambient
field of UV radiation than other comparable low-mass star forming regions.

Cleeves et al. (2016, see also Haworth et al. 2017) studied the gas and dust structure of
the disc around IM Lup, a 1M⊙ young (≲ 1 Myr) M0 type star associated with the Lupus 2
cloud, ∼ 160 pc from the Sun. They make an estimate of the local G0 ∼ 2.9−4.5 depending
on assumptions made about extinction, sufficient to alter the gas phase CO profile within the
disc.

Clearly the diffuse and clumpy Lupus region is not well suited to modelling using the
same density profile as in other cases. We do not estimate the local stellar number density in
the region around IM Lup directly, but instead argue that the most dense region in Lupus is
Lupus 3, which is thought to have a stellar number density up to ∼ 500 pc−3 in the cores
(Nakajima et al., 2000; Merín et al., 2008). This serves as an upper limit on the local number
density around IM Lup.

C.1.4 NGC 1977

Kim et al. (2016) reported the discovery of seven proplyds in NGC 1977, a region which
experiences much weaker FUV fields than the core of the location of the classic proplyds
in the core of the ONC, with a G0 value 10−30 times lower. NGC 1977 is located at the
interface between the Orion molecular cloud and the H II region S279 (Kutner et al., 1976).
The ionising source in this region is a B1 V star, HD 37018 (42 Ori), which is estimated to
have a mass of 10 M⊙. Thus the FUV flux at the distance of the proplyds (at separations of
∼ 0.2 pc from 42 Ori) is estimated to be ∼ 3000G0 by Kim et al. (2016).

In total the region contains ∼ 170 young stellar objects and 3 young B stars within a
region of radius ∼ 10’, or ∼ 1 pc (Peterson and Megeath, 2008). We therefore estimate the
stellar density in the region to be ∼ 40 pc−3.

C.1.5 σ Orionis

The disc population of σ Orionis (σ Ori), a ∼ 3 Myr old cluster at a distance of 350-440 pc
(Mayne and Naylor, 2008; Sherry et al., 2008), has been surveyed using both Herschel/PACS
(Maucó et al., 2016) and ALMA (Ansdell et al., 2017). Maucó et al. (2016) report that
23% of the 142 T-Tauri stars in the dense core of radius ∼ 20′ (or ∼ 2 pc) are disc-hosting
candidates, while the disc fraction outside this core out to ∼ 30′ is 42%. Ansdell et al. (2017)
also conclude that the dust mass within discs decreases with stars with closer proximity to
the central massive star.
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Observed stellar masses in σ Ori range from the O9 V star σ Ori A with mass ∼ 17M⊙
down to brown dwarves with a minimum mass ∼ 0.033M⊙ (Caballero, 2008b). In fact σ

Ori A is part of a triple system, a spectroscopic binary previously considered to be a single
star with components of mass 17 and 12.8M⊙, and a B0.5 V star σ Ori B at a separation of
0.25′′ and mass ∼ 11.5 (Schaefer et al., 2016). For modelling purposes, as these components
have similar masses, we place all of these stars in the centre of the cluster with a separation
of 100 au for the wide binary (period ∼ 150 yrs) and a distance of 8 au for the tight binary
(period ∼ 150 days).

The density profile in σ Ori was modelled by Caballero (2008a), where the surface
density distribution is found to be well fit by a power law ∝ r−1

c in the core, with a steeper
slope of ∝ r−1.3

c between 21′ and 30′ from the centre of the cluster. However, we find that by
allowing small values of a and γ we can also fit this profile sufficiently with our assumed
density profile in Equation 5.2. Small values of γ ≤ 2 are acceptable because, although we
don’t have a value for reff, we truncate the cluster outside 30′ (rt ≈ 3 pc). We fit the mass of
the cluster using the average mass obtained from Equation 4.7 between 0.08 and 17M⊙ and
the total number of members in the Mayrit catalogue, 338 (Caballero, 2008b). Our density
profile is such that the same number of sources can be found within 3 pc. A number of
these candidates might be falsely associated with the cluster, and that the catalogue includes
a number of brown dwarves. However for our purposes of number density and FUV flux
calculations this approximation is sufficient.

C.1.6 λ Orionis

The λ Orionis (λ Ori) star forming region is an OB association at a distance of around 420 pc
from the Sun (Schlafly et al., 2014). It began forming stars ∼ 5 Myr ago, and is located
inside a shell-like structure of dust and gas which is thought to be the result of a supernova
explosion ∼ 1 Myr ago (Dolan and Mathieu, 2001; Lee et al., 2015) . Its proximity makes
it a good candidate for studying disc populations, and previously Hernández et al. (2010)
have used data from the Spitzer Space Telescope to observe disc fractions of ∼ 20% around
M-type stars. However, at present there are no studies which establish the dependence of
disc properties on location within the association.

Dolan and Mathieu (2001) report the masses of the 20 OB stars associated with λ Ori, of
which the most massive HD 36861 (also known as λ Ori, with spectral type O8 III) has a
mass of 26.8M⊙, and lies in the centre of the region.

With regards to the spatial distribution of the stars, it is possible that the region formed
in a flattened molecular cloud, and therefore does not have 3D symmetry (Maddalena and
Morris, 1987). Also, the presence of the actively star forming clouds B30 and B35 at a
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distance ∼ 2◦ from the central star means that the projected surface density is not isotropic.
In order to model the region close to λ Ori, we truncate our stellar distribution outside 15 pc.
We then fit our surface density profile, Equation 5.1, to that obtained by Dolan and Mathieu
in that range. Applying our IMF truncated at 26.8M⊙, we find that the total mass up to
rt = 15 pc is 214M⊙, which is approximately consistent with the 450−600M⊙ estimate of
Dolan and Mathieu for the whole region. As in the case of σ Ori, we allow small values of a
and γ , and obtain a similar density profile.

C.1.7 NGC 2024

NGC 2024 (also known as Orion B) is an HII region in the Orion star forming complex around
415 pc away (Anthony-Twarog, 1982). It is thought to be ∼ 0.5−1 Myr old (Levine et al.,
2006; Getman et al., 2014), although there is considerable extinction of ≳ 27 magnitudes
due to dust in the region (Lenorzer et al., 2004).

The region is known to contain ∼ 300 sources (e.g. Meyer, 1996), of which around 85%
show evidence of hosting a disc (Haisch et al., 2000, 2001a). Mann et al. (2015) studied this
PPD population and found no evidence of disc mass dependence on the projected distance
from the massive star IRS 2b, which they attribute either to the youth of the cluster or the
insufficient flux from the ionising source. The spectral type of IRS 2b itself is not well
constrained, with Bik et al. (2003) concluding it has spectral type O8 V-B2 V (15−25M⊙).
Similarly, the region has a clumpy dust distribution and the extent of the extinction is not
well characterised.

Lada and Kylafis (1999) estimated the radius of the region in which there are 300 stars
to be 0.9 pc, and the average stellar surface density in the area to be 179 pc−2. The central
0.1 pc (projected from the centre) encompasses 50 stars, and therefore the association has a
central surface density of 1600 pc−2. While this is not sufficient to fit a full density profile,
we assume the latter number density represents the central value, and fit associated values of
γ and a.

We model two versions of NGC 2024, with mmax = 15M⊙, 25M⊙. Although IRS 2b
does not lie directly in the centre of the cluster, we place it there for simplicity. Given that
dynamical mass segregation can occur on short time-scales (e.g. Allison et al., 2009) this is a
reasonable assumption for the long-term properties of the environment.
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C.2 Notes on specific flux-density contours

The results for certain clusters presented in Figure 5.3 require discussion where particular
simplifying assumptions have been made. These cases are discussed below.

C.2.1 Wd 1

In all of the six examples for which density profiles are taken directly from the review of
Portegies Zwart et al. (2010), with the exception of the ONC and Westerlund 1 (Wd 1), the
maximum stellar masses are taken to be such that 84% of clusters of equal mass are expected
to contain a higher mass star ( mmax = m−σ

max). In the case of the ONC we use the observed
maximum stellar mass which coincides with this value. For Wd 1 we find m−σ

max ≈ 114M⊙,
which is the only case which is greater than the upper mass limit for our stellar atmosphere
models. We have therefore used this upper limit, mmax = 100. This is a further underestimate
of the flux in the region. However we find that for massive clusters where the upper limit of
the IMF is relatively well sampled, the FUV flux in the cluster is less sensitive to mmax. In
figure 5.3, all the massive clusters follow contours in the parameter space within an order of
magnitude of each other, particularly in the most dense regions. Thus our decision for Wd 1
is justified.

C.2.2 Cygnus OB2

For the Cygnus OB2 association, we show two contours in figure 5.3 (both in brown,
enhanced density marked by triangles), for the first of which we simply use the results as
implied by our density profile without any sub-structure. The second takes the same results
normalised to reflect the maximum densities and fluxes obtained by Guarcello et al. (2016),
wherein the considerable sub-structure observed in the association is accounted for. While
this is a crude approximation, we find that the factors ∼ 12 and ∼ 1.2 for number density and
flux respectively. This suggests that the effect of sub-structure enhances number density more
than the local FFUV values. We would expect this as on large scales given that most stars will
not have any significant reduction in the distance to the most massive stellar components of
the cluster which make up the dominant contribution to the FUV flux.

C.2.3 NGC 2024

The association NGC 2024 is also represented by two contours. Because of the observational
complications in that region, the stellar masses are not well constrained and hence we have
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produced two models for mmax = 15M⊙, 25M⊙. This represents a range of likely fluxes in
the region, although the ionization in the region is consistent with a source closer to ∼ 25M⊙
(Bik et al., 2003). Given the difficulty modelling the clumpy dust distribution, we do not
account for extinction in the region, which may somewhat reduce flux estimates. However,
as NGC 2024 is contained within a small region ∼ 0.9 pc in radius, we expect the range of
fluxes suggested by the two contours without extinction to be reasonable.
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D.1 FUV extinction

D.1.1 Modified flux distribution

At early times, the presence of primordial gas causes intra-cluster extinction in the FUV;
we wish to evaluate its influence on the flux PDF at fixed x. This is the dependent on the
effective local gas surface density Σeff between a given star and FUV source. We define the
corresponding surface overdensity χ ≡ Σeff/Σ0. In order to proceed we assume that the local
extinction does not influence the flux in the field, which remains the floor of the distribution
of F . Then the ratio of the extincted flux to the local mean flux is ψext

0 ≡ Fext
0 /FHM

0 is

ψ
ext
0 =

e−Cextχ
(
1− e−Γ

)
+ψ f

0 ψ f
0 < 1

ψ f
0 ψ f

0 ≥ 1
(D.1)

where the extinction properties of the ISM are contained within the constant

Cext =
Σ0

13.36M⊙ pc−2 (D.2)

based on the ratio of extinction in FUV to the visible AFUV/AV ≈ 2.7 (Cardelli et al., 1989)
and the column density of hydrogen required for 1m of extinction in the visible NH/AV =

1.8×1021 cm−2 mag−1 (Predehl and Schmitt, 1995). As before we can immediately evaluate
the PDF for ψext

0 at certain limits. Equation 7.45 applies here as before, as does equation 7.46
except the upper limit for ψext

0 is now set by χ . Physically, χ varies for a given Γ (or
equivalently φ ), and therefore establishing the probablity of obtaining a given ψext

0 requires
evaluating the PDF for χ .
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D.1.2 Effective surface density

Gas density profile

To evaluate the appropriate surface density, we are required to make assumptions about the
geometry of the system. This involves introducing an additional parameter, describing the
relative position in a local environment such that we can link ρg to Σeff. We define a radial
coordinate r within a cluster of scale radius a, and the relative radius γ ≡ r/a, and assume a
Plummer density profile:

ρg =
ρc

(1+ γ2)5/2 . (D.3)

The local overdensity in the centre xc ≡ ρc/ρ0 is a monotonic function of γ > 0, which we
assume has the same PDF as defined for x, truncated such that xc > x. The corresponding
PDF for γ at fixed x is

∂F∗
∂γ

=
∂F∗
∂xc

∂xc

∂γ
∝ γ
(
1+ γ

2)4 ∂ p
∂xc

. (D.4)

For a given γ , we can also calculate the corresponding a such that the total cluster gas mass
is φMcrit/ε:

a =

(
3Mcrit

4περ0xc

)1/3

=

(
3Mcrit

4περ0

)1/3

x−1/3
φ

1/3(1+ γ
2)−5/6. (D.5)

Ionisation

Having defined our local density profile, we integrate over the relevant range to establish the
effective surface density. When a massive star occupies the central region of a cluster, then
we would expect material within a certain radius to be ionised (and therefore optically thin to
FUV photons). This size scale is initially given by the Strömgren (1939) radius:

RS ≈
(

3 ˙NLyCm2
p

4παBρ2
c

)1/3

=

(
3 ˙NLyCm2

p

4παBρ2
0

)1/3

x−2/3(1+ γ
2)−5/3 (D.6)

where ˙NLyC is the number of ionising (Lyman continuum) photons emmitted by the central
source per unit time, αB ≈ 2.7×10−13 cm3 s−1 is the recombination coefficient assuming a
temperature ∼ 104 K for the ionised gas (Osterbrock, 1989) , assuming constant local density
for r < RS.
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Fig. D.1 As in figure 7.2 but for the number of EUV counts ˙NEUV,1/2 of the most massive
cluster member as a function of cluster mass Mc. The solid line is calculated directly from
random drawing and the stellar atmosphere models, while the dotted line follows our analytic
approximation, equation D.7. The vertical dashed line is at Mcrit and the corresponding
number of counts ˙NEUV,crit = 2.07×1049 s−1 is shown as a horizontal dashed line.

We assume EUV photons dominate ionisation and define the median number of EUV
counts from the most massive star ˙NEUV,1/2(φ). For this we define a fitting formula:

Θ(φ)≡
˙NEUV,1/2
˙NEUV,crit

≈
{

1− e−δ1φ

}δ2
ln(1+δ1φ) (D.7)

where ˙NEUV,crit = 2.07× 1049 s−1, and we find δ1 = 2.9, δ2 = 4.0. This expression is
compared to the direct calculation from the stellar atmosphere models in figure D.1.

Combining equations D.6 and D.7, we have:

γS ≡ RS

a
=

(
˙NEUV,critm2

p

αBMcritρ0

)1/3

ε
1/3x−1/3

φ
−1/3 (1+ γ

2)−5/6
Θ

1/3, (D.8)
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in dimensionless quantities. Evaluating the prefactor:(
˙NEUV,critm2

p

αBMcritρ0

)1/3

≈
(

ρ0

1.6M⊙ pc−3

)−1/3

. (D.9)

Effective surface density PDF outside Strömgren radius

We assume that F is dominated by sources at the center of the density profile, then we have:

Σeff = a
∫

γ

γS

(1− ε)ρc

(1+ γ̃2)5/2 dγ̃ (D.10)

By making the simplifying assumption that the SFE is constant over the region such that
ε = ε(x) ̸= ε(γ), equation D.10 becomes:

χ1 ≈
(1− ε)

3ε1/3

(
3Mcritρ

2
0

4πΣ3
0

)1/3

x2/3
φ

1/3(1+ γ)5/3
[

γ(2γ2 +3)
(1+ γ2)3/2 −

γS(2γ2
S +3)

(1+ γ2
S)

3/2

]
, (D.11)

where we have defined χ1 ≡ χ(γ > γS), since χ(γ < γS) = 0.
Now we have a definition for χ , we use the PDF for γ (equation D.4) and φ (equation 7.48)

to calculate the corresponding PDF for χ at a fixed x. Since there is a non-zero probability
that χ = 0, we must separately consider the regions inside and outside the Strömgren radius.
The PDF of χ1 (that is, assuming χ > 0 – a star outside the Strömgren radius) is:

∂F∗
∂ χ1

=
∫

∞

0
dφ

∂F∗
∂φ

∂F∗
∂γ

∣∣∣∣∂ χ1

∂γ

∣∣∣∣−1

, (D.12)

where γ(φ ,χ1) is evaluated numerically. Figure D.2 shows the result for solar neighbourhood-
and CMZ-like regions. The effective surface density experienced by a given star increases
with local gas density x, as expected. Regions of high overdensity are therefore severely
influenced by extinction. However, we must also consider the fact that stars at high density
are more likely to be found towards the centre of the cluster, and therefore to occupy the
Strömgren sphere (hence χ = 0).
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Fig. D.2 PDF of χ1 (i.e. χ such that we assume χ > 0) for varying overdensity x in the solar
neighbourhood (blue lines) and CMZ (red lines). The value of χ1 is the effective surface
density experienced by a given star in the direction of the centre of the cluster during the
embedded phase.

Fraction of stars within the Strömgren radius

The probability that χ = 0 is equivalent to the probability that a star is found inside a radius
γS. This can be written:

pS(φ ,x)≡ F∗(χ = 0;φ ,x) =
∫

γ<γS

dγ
∂F∗
∂γ

, (D.13)

where the region γ < γS is defined numerically for a fixed φ , x. Equation D.13 is evaluated
using equation D.4 in figure D.3, from which we find that the probability of finding a star
within a Strömgren radius is small (≪ 10%) throughout the parameter space, especially for
high ρ0 environments. This is intuitively true from equation D.8; in the limit of large ρ0,
x, φ , we have small γS, and hence a small pS. Since the contribution to the PDF from stars
with γ < γS is small, we have ∂F∗/∂ χ1 ≈ ∂F∗/∂ χ and we limit our consideration to the
distribution of χ1 > 0 in calculation of the PDF for ψext

0 .
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Fig. D.3 Probability pS of finding a given star within the Strömgren radius (γ < γS) as a
function of cluster mass φ and overdensity x for the solar neighbourhood (top panel) and
CMZ (bottom panel). This is equivalent to the probability that a star has χ = 0, and does not
experience significant extinction of FUV photons from neighbouring stars.
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D.1.3 PDF for extincted FUV flux

As a result of the above analysis, we can now write the PDF for ψext
0 :

∂F∗
∂ψext

0
≈
∫

∞

δ χ

dχ1
∂F∗
∂ χ1

∂F∗
∂φ

∣∣∣∣∂ψext
0

∂φ

∣∣∣∣−1

(D.14)

for some sufficiently small δ χ . Equation D.14 is the PDF for the flux in the embedded phase
of the cluster (at fixed x), and can be compared to the non-extincted PDF (equation 7.47) to
estimate the role of gas with regards to stellar birth environment at early times.

This formulation gives an upper limit to the extinction experienced within a given
environment. We have neglected the fact that realistically we would expect a clumpy density
distribution, which considerably reduces the influence of extinction averaged over time.
Additionally, we have established the Strömgren radius by assuming a constant central
density, and the EUV luminosity of the single most massive star. In the case of a steep density
profile, or multiple ionising sources, this will be an underestimate. Nor have we considered
the rate of expansion of such an ionised region (Bisbas et al., 2015). For these reasons, the
true FUV flux experienced by a star is larger than the estimate we establish here.
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