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To identify Coronavirus disease (COVID-19) cases efficiently, affordably, and at scale, recent work has shown how audio (including
cough, breathing and voice) based approaches can be used for testing. However, there is a lack of exploration of how biases and
methodological decisions impact these tools’ performance in practice. In this paper, we explore the realistic performance of
audio-based digital testing of COVID-19. To investigate this, we collected a large crowdsourced respiratory audio dataset through
a mobile app, alongside symptoms and COVID-19 test results. Within the collected dataset, we selected 5240 samples from 2478
English-speaking participants and split them into participant-independent sets for model development and validation. In
addition to controlling the language, we also balanced demographics for model training to avoid potential acoustic bias. We used
these audio samples to construct an audio-based COVID-19 prediction model. The unbiased model took features extracted from
breathing, coughs and voice signals as predictors and yielded an AUC-ROC of 0.71 (95% Cl: 0.65-0.77). We further explored
several scenarios with different types of unbalanced data distributions to demonstrate how biases and participant splits affect the
performance. With these different, but less appropriate, evaluation strategies, the performance could be overestimated, reaching
an AUC up to 0.90 (95% Cl: 0.85-0.95) in some circumstances. We found that an unrealistic experimental setting can result in
misleading, sometimes over-optimistic, performance. Instead, we reported complete and reliable results on crowd-sourced data,
which would allow medical professionals and policy makers to accurately assess the value of this technology and facilitate its

deployment.
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INTRODUCTION

Since its outbreak in early December 2019, over 169 million cases
of the novel coronavirus disease have been reported, including 3.5
million deaths. Researchers and scientists have made considerable
strides in developing treatments and vaccines for COVID-19, and
effective and easily accessible tests have been key to trace
infected people quickly. Currently, the most commonly used and
first-line diagnostic tool for COVID-19 is the reverse transcription
polymerase chain reaction (RT-PCR) assay to detect the presence
of viral ribonucleic acid (RNA) from swab samples [1, 2]. RT-PCR
tests are highly sensitive in laboratory setting (over 95%
diagnostic sensitivity and specificity), however, they have been
found to perform differently in commercial kits, with sensitivity
ranging from 75 to 100%, and in the worst case reaching as low as
38% [3-5]. Moreover, the sample analysis process is involved,
time-consuming, and limited to approved laboratories with
highly-trained staff, leading to limited testing capacity and failing
to meet the rapid increase in demand. Computer tomography (CT)
scans are gaining popularity for COVID-19 diagnostics in some
countries, e.g. China [6]. However, this method had not been
widely adopted worldwide due to many doctors remaining
sceptical about the reported high sensitivity [7]. In addition, CT
scanners are specialised and expensive equipment suitable only
for medical centres with trained staff for its operation. For
inpatients, on top of a high price tag for a single scan, patient
transport to and from the scanner requires to break the isolation,
which significantly increases the infection transmission risk. It is

crucial that the pandemic response overcomes the limitations
from RT-PCR and CT to timely test on a massive scale. This requires
fast, affordable, sustainable and effective testing methods, which
can be repeated over time by individuals to track progression. This
would help contain the current spread but also suppress
resurgence and minimise health risks.

Within this context, in the past year researchers have
developed and published multiple models for COVID-19 predic-
tion using audio [8-13]. Advances in machine learning have
demonstrated the potential of automated auscultation of
respiratory sounds and brought about new possibilities for fully
automated COVID-19 screening [14-21]. For instance, a systema-
tic review by Wynants et al. [22] reported that AUC-ROC (Area
Under the Receiver Operating Characteristics Curve) performance
of over 75 existing COVID-19 prediction models is in the range of
0.70 and 0.99. Studies in [21, 23] also demonstrated that the
motion of the vocal folds during voice production was adversely
affected in COVID-19 patients with impairment of respiratory
functions, implying that discriminative signatures might be
extracted from voice to detect COVID-19.

There is, however, a lack of studies exploring the biases and
model evaluation processes that affect (potentially, even
positively, but unrealistically) these performance results. Such
issues include:

® Potential underlying data biases or study limitations not
reported sufficiently, where models were developed and
evaluated with limited data which might not be representative
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of the target population (e.g. 19 subjects in ref. [21], 51 subjects
in ref. [24] and 88 subjects in ref. [17]).

® Risk of model overfitting, especially when deploying complex
modelling strategies (e.g. a 100% accurate diagnosis of
asymptomatic COVID-19 individuals was reported in ref. [16]).

® Methodological flaws (e.g. same users during model
development and validation [25]), which would be unrea-
listic in a practical clinical setting, resulting in an artificial
performance boost.

® lack of systematic comparison with other respiratory
diseases like asthma and bronchitis, and only distinguishing
COVID-19 from healthy controls [26].

Due to these issues, many researchers raised concerns about
the feasibility and effectiveness of such models if deployed in real
settings [22, 27, 28].

In this work, we investigate the limits of audio-based COVID-19
testing to create the foundation of realistically applicable audio
tools. The aim of this study is two-fold: first, to investigate the
performance of an audio-based COVID-19 testing method while
addressing the issues noted in the previous studies, by using a
large crowd-sourced dataset, to the best of our knowledge,
unbiased data, with a methodological design based on realistic
assumptions (e.g. independent user split). Second, to explore the
impact of biases and design pipeline on the performance.

For this purpose, we first gathered crowd-sourced respiratory
sound data from the general population via smartphones. After
that, we developed a deep learning model on a portion of the
data and then validated its predictive performance on an
independent population. In particular, we adhered to the TRIPOD
reporting guideline [29], aiming at reporting in a complete,
transparent, and usable manner. Our discussion explores the
biases and how machine learning model hyperparameters could
be tuned, depending on the use of the tool (e.g. on symptomatic
or asymptomatic populations) and public health needs.

Our study considerably extends the existing audio-based
machine learning research for COVID-19 detection. Our contribu-
tions can be summarised as follows:

® We conducted large-scale data collection in real life, covering
a wide range of demographics, to study the effectiveness of
an audio-based testing tool for COVID-19. Among these
gathered data, we carefully selected eligible data to construct
the participant sets for model development and evaluation,
and responsibly investigated the practical applicability of
audio-based COVID-19 detection.

® We explored the realistic performance of audio-based digital
testing for COVID-19. Performance of an audio-based model was
evaluated systematically and rigorously: we reported the results
on various population subgroups divided based on gender and
age, presented consistent performance on various COVID-19
prevalence levels, and demonstrated the robustness of the
model with respect to confounding factors caused by patholo-
gical changes from conditions such as asthma and smoking.

® We explicitly studied the impact of biases and an unrealistic
design pipeline. We artificially regrouped the data adding
various biases or purposefully including the data from the same
participant in both training and testing sets, and showed how
the performance in these cases was positively, but unrealisti-
cally, affected.

RESULTS
Dataset

For data gathering purposes, an app (https://www.covid-19-
sounds.org) was developed to crowd-source participants’ demo-
graphics, medical history, symptoms, COVID-19 test results and
audio recordings: three voluntary cough sounds, three to five
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breathing sounds, and three speech recordings where the user
was asked to read a specific sentence. The user had an option to
either input that they had done a COVID-19 test and received a
positive/negative result, or that they had not been tested at the
time of submitting the audio sample. The app is a multi-language
tool, but in this study we focus only on audio samples from
English-speaking participants (77.7% of the overall number of
participants) to avoid language-related bias. Audio quality checks
were conducted to filter out incomplete or noisy samples. Finally,
2478 participants (514 positive and 1964 negative) with 5240 sam-
ples were included for experiments, as shown in Fig. 1a (more
detailed data selecting criteria can be found in Methods section.

Demographic statistics for the experimental data are presented
in Fig. 1b—f: 56% of participants in the selected data were male,
the majority aged 20-49, half never smoked. In addition, as shown
in Fig. 1e, 84% of the participants who tested positive reported
symptoms like fever or cough, while others did not report any
symptoms at the recording time. 51% of the negative participants
reported no symptoms, while 49% had symptoms such as dry/wet
cough, fever, dizziness, etc. We also checked the hospitalisation
status of the selected participants in Fig. 1f: only 2.6% of the
positive and 0.5% of the negative participants were hospitalised at
the time of submitting the audio sample. Since over 99% of the
samples used in this work came from non-hospitalised partici-
pants, the data is adequate to evaluate the developed model in a
non-inpatient setting.

Study design

For machine learing, bias in data will be passed to the mode,
leading to wrong predictions, which is especially dangerous in
healthcare applications. To explore the realistic performance of
audio-based digital testing of COVID-19, in this study we trained
deep learning models with audio data collected in the wild.
Specifically, we aim to answer the following two research questions:

® RQ1: what is the realistic performance that an audio-based
COVID-19 prediction model can achieve?

® RQ2: what is the potential effect of bias that might be
introduced in the audio-based COVID-19 detection model?

To this end, we evaluated different models, obtained on either
(1) unbiased data or (2) data with purposefully added age or
gender bias. We provided a comprehensive analysis and
presented our efforts in eliminating potential biases and devel-
oping trustworthy COVID-19 testing via sound.

COVID-19 detection performance

On the demographic-representative testing set with 200 partici-
pants (see the age and gender distribution in Supplementary
Table 1), our deep learning model with three sound types yielded
a ROC-AUC of 0.71 (95% confidence interval (Cl) 0.65-0.77)
(Fig. 2a), with sensitivity 0.65 (0.58-0.72) and specificity 0.69
(0.62-0.76) (Fig. 2b). The combination of three sound types
outperformed any single modality: a ROC-AUC of 0.66 (0.60-0.71)
on cough, 0.62 (0.56-0.68) on breathing, and 0.61 (0.55-0.67) on
voice was achieved. Moreover, breathing yielded the highest
sensitivity of 0.64 (0.56-0.71), but cough showed the highest
specificity of 0.66 (0.58-0.73). This indicates that all modalities are
informative, and their combination leads to the optimal perfor-
mance. We further tested the performance of the model on
different demographic subgroups under this testing set (Fig. 2c),
which shows similar results across different age and gender
distributions: ROC-AUCs were all above 0.65, and sensitivity and
specificity were similar for each group. Accuracy on the over-60
subgroup is slightly higher, but we suspect that the increased
performance might be a result of the limited number of
participants in this group. We also inspected how symptoms
impact the model performance by dividing the 200 participants in
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36,364 participants with 75,201 samples collected

Exclusion criteria:

* No testing results: 61,615 samples

» No recent testing results: 110 samples
* Non-English speaker: 8,102 samples
» Disqualified: 134 samples
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Data flow diagram and demographic statistics. a Data cleaning and selecting with 514 COVID-19 positive and 1,964 COVID-19

negative participants eventually included for experiments. b-e Demographic statistics for the included 2478 participants with blue
representing positive class and orange -- negative class: b Gender distribution with about 56% male, 43% female and 1% preferring not to say
both two classes. ¢ Age distribution with more than 87% positive and negative participants aged 20-59. d Smoking history with more than
half participants never smoking and the remaining participants having smoked before or smoking currently. e symptom distribution: 16% of
the positive group showed no symptoms, while 49% of the negative group reported at least one of the symptoms. f Hospitalisation: among all
the tested participants, only 29 positive and 10 negative participants reported to be in a hospital.
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1.0 ROC-AUC Sensitivity Specificity
Breathing only 0.62(0.56-0.68)  0.64(0.56-0.71)  0.56(0.48-0.63)
Cough only 0.66(0.60-0.71)  0.59(0.51-0.66)  0.66(0.58-0.73)
08 Voice only 0.61(0.55-0.67)  0.57(0.49-0.64)  0.60(0.52-0.67)
All modalities 0.71(0.65-0.77)  0.65(0.58-0.72)  0.69(0.62-0.76)
>
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":;,; Subgroup #Pos./Neg. ROC-AUC Sensitivity Specificity
50_4 Gender
n Male 58/52 0.71(0.63-0.78)  0.59(0.49-0.68)  0.74(0.63-0.83)
"~~~ Chance (AUC=0.5) Female 42/46 0.73(0.65-0.80)  0.71(0.61-0.81)  0.65(0.55-0.75)
L Breathing (AUC=0.62) Age
0.2 y Cough (AUC=0.66) 16-39 55/54 0.65(0.56-0.73)  0.57(0.46-0.68)  0.65(0.55-0.75)
Voice (AUC=0.61) 40-59 36/34 0.76(0.67-0.85)  0.72(0.61-0.82)  0.68(0.55-0.81)
- 4 — All modalities (AUC=0.71) go- 4/6 0.91(0.77-1.0 )  0.88(0.60-1.0 )  0.88(0.69-1.0 )
ymptom
0.0 0.2 0.4 0.6 0.8 1.0 Asymptomatic 18/73 0.75(0.60-0.88)  0.50(0.25-0.76)  0.85(0.77-0.92)
1-Specificity Symptomatic ~ 144/89 0.66(0.59-0.73)  0.67(0.59-0.74)  0.56(0.45-0.66)

Fig. 2 Model performance. a Receiver-operating characteristic curve for the binary classification task of diagnosing COVID-19. b ROC-AUC,
sensitivity and specificity with 95% confidence intervals in brackets for the combination of all modalities or each single modality separately.
¢ Subgroup performance comparison under three modalities. For gender and age group, # denotes the number of unique positive/negative
participants. Note that some participants provided multiple samples, which could be either asymptomatic or symptomatic.

the testing set into asymptomatic and symptomatic subgroups. As
presented in Fig. 2¢, for both subgroups our model yielded ROC-
AUCs above 0.66. Yet, from the comparison we can also observe
that our model performs better on distinguishing asymptomatic
negative participants (specificity=0.85 (0.77-0.92)) and sympto-
matic positive participants (sensitivity=0.67 (0.59-0.74)). While for
more challenging cases, i.e. predicting symptomatic negative and
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asymptomatic positive cases, we achieved a lower accuracy:
Sensitivity of 0.50 (0.25-0.76) for asymptomatic and specificity of
0.56 (0.45-0.66) for symptomatic participants. A potential explana-
tion could be that asymptomatic positive participants might not
manifest changes in audio characteristics, and thus are intractable
for detection. Further discussion about the real implications and
applications can be found in Discussion section.
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No 97/1517 0.69(0.65-0.74)  0.64(0.57-0.72)  0.65(0.63-0.67) Asthma HBP Non- Never- Ex- Now-

Fig.3 Performance comparison under different conditions. a Performance for different prevalence levels, for participants with asthma/HBP
or without any medical history, for never-, ex- and now-smoking participants, and for hospitalised and non-hospitalised participants.
# denotes the number of positive/negative participants. b Predicted probabilities of infecting COVID-19 on those negative participants, with
values above 0.5 indicating a false positive. No significant difference was observed across subgroups.

Model performance on the varied prevalence rate

According to a recent statistical study, the prevalence rate of
COVID-19 ranges from 0.12% to 33% worldwide [30]. Therefore, in
addition to testing our model in a balanced setting (50%
prevalence level, Fig. 2), we evaluated its performance in various
prevalence scenarios. To simulate this, we re-sampled participants
from the testing pool (Fig. 1a) and lowered the proportion of
COVID-19 positives to 5%, 10% and 20% (Fig. 3a). The
performance does not degrade compared to that of 50%
prevalence (Fig. 2b): ROC-AUC of 0.71 (95% ClI 0.66-0.75), 0.69
(0.65-0.74) and 0.69 (0.65-0.74) can be achieved on 5%, 10%, and
20% prevalence levels, respectively. This is a promising result,
suggesting the potential of Al-enabled COVID-19 screening in the
real world.

Model performance on various health and smoking status
One of the most important concerns to address is whether these
audio models for COVID-19 testing might be confusing COVID-19
with other illnesses or respiratory pathologies. To investigate this
topic further, we split the participants of the testing pool into
several non-overlapping groups. Results are presented in Fig. 3.
The first controlled criterion is medical history. We selected
participants who reported that they have Asthma, HBP (High
Blood Pressure), and those who claimed to have no medical
history. We compared the model performance and found that all
metrics reach comparable level of accuracy on average: the
specificity on Asthma group was 0.62 (0.55-0.68), on HBP group
was 0.69 (0.62-0.76), on no medical history group was 0.65
(0.62-0.76) (Fig. 3a) and on a mix of participants was 0.69
(0.62-0.76) (Fig. 2b). Predicted COVID-19 probabilities of the
negative participants based on our model are compared in Fig. 3b.
Kruskal-Wallis H Test [31] on the three negative groups’
probabilities yielded a p-value of 0.62 (>0.05), showing that the
predictions are from the same distribution. This validated the
assumption that the medical history cannot confuse our model.
Worth noting, that the declined sensitivity for Asthma and HBP
groups might be caused by the very limited number of testing
samples, leading to relatively large performance fluctuations.
The second controlled criterion is the reported smoking
status. The variance of the performance across groups was
marginal (Fig. 3a): Specificity for those never smoking was 0.66
(0.63-0.68), for those having quit smoking was 0.67 (0.62-0.71),
and for those smoking currently was 0.63 (0.58-0.68). Similar to
medical history, predicted probabilities for these three are
presented in Fig. 3b, with a p-value of 0.51 (>0.05) from the
Kruskal-Wallis H Test. Sensitivity for smokers was slightly lower:
0.47 (0.31-0.66), which might be explained by the fact that five
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of the 22 COVID-19-positive smokers were asymptomatic (23%
in this group against 16% in Fig. 1e). As our model is better in
predicting symptomatic COVID-19 correctly, this explains the
slight drop in the overall sensitivity for this group.

Finally, we assessed the performance of hospitalised and non-
hospitalised subgroups, separately. From Fig. 3a, our model
correctly predicted all positive hospitalised cases (Sensitivity of
1.00) and detected four of the six negative hospitalised cases as
COVID-19 negative (Specificity of 0.67). For the majority non-
hospitalised group, our model yielded a ROC-AUC of 0.69
(0.65-0.74). This validates the capability of applying our model
for pre-screening: distinguishing non-severe COVID-19 infections
from the population.

Model performance with unrealistic evaluation and biases

To show how the bias and unrealistic experiment design impacts
the model performance, we re-selected and purposefully
introduced various biases that previous works might have had,
to generate another four training and testing sets to attempt to
artificially inflate the results. The artificially created biases are as
follows: (1) Using sample-level random splits (random-splits for
short) instead of participant-independent splits (user-splits for
short) for training and testing. (2) Introducing gender bias into
the data by selecting 85% of the negative participants as female.
(3) Bringing age bias into the negative group. There are two
biased groups: selecting all negative participants as those aged
over 39 (Group 1) and as those aged under 39 (Group 2). (4)
Replacing some English-speaking participants with Italian-
speaking participants and making the proportion of Italian-
speaking participants relatively higher in the positive group.
Details of the data used for comparison can be found in Methods
section (Supplementary Figs. 3-5). We trained the model without
changing the network structure, and if not specifically mentioned,
the results are based on the combination of three sound types
(breathing, cough and voice).

Figure 4 presents the key findings (a detailed comparison can
be found in Methods section (Supplementary Tables 2-6). From
Fig. 4a, random-splits yielded a higher accuracy than user-splits,
with the performance gains coming from the overlapping
participants whose data have been seen from training: with the
sensitivity of 0.84 (0.75-0.92) and specificity of 0.78 (0.68-0.87),
since personal sound traits are easy to memorise for the model.
However, this is less realistic, as in real-world scenarios the model
should ideally be well adapted to unseen new population. This
also may validate our hypothesis that some previous works
reported optimistic performance by using this random-split
protocol. Demographic bias either in age or gender appears to
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Fig. 4 Performance comparison. Sensitivity (blue) and specificity (pink) are presented with sold liner showing the 95% Cls. If not particularly
mentioned, the results are based on the combination of three sound types. a User-independent splits vs. sample-level random splits: (Seen)
denotes the performance on samples whose other samples were used for training, otherwise the performance is notated by (Unseen).
b Controlled demographics vs gender bias: (Female) denotes the female subgroup. ¢, Controlled demographics vs two types of gender biases:
all negative participants in training set aged over 39 or under 39. (Aged 60-) and (Aged 16-39) denote the elder and the younger subgroup.
d-f Model for English-speakers vs model for biased English- and Italian-speakers: (En) and (It) denote two subgroups from the testing set.

also lead to biased results. Overall ROC-AUC might be boosted as
shown in Supplementary Tables 3 and 4, but a great difference
between sensitivity and specificity can be observed in some
subgroups. For instance, the sensitivity of 0.23 (0.14-0.33) but
specificity of 0.93 (0.90-0.97) were obtained as shown in Fig. 4b on
biased (Female) group, because positive females were under-
represented in the training set and this model tends to treat
female participants as negative. Similar results can be observed in
age-biased groups (see Fig. 4c). In the group where negative
participants aged-over-39 in training set, the model yielded higher
specificity than sensitivity on the aged-over-60 participants in the
testing set. On the contrary, the model trained from the data
biased to aged-under-39 negative participants yielded higher
specificity on the younger group (see Fig. 4c). When it comes to
the language bias, i.e., for Italian-speakers, positive participants
were over-represented for training, we get the results that
sensitivity is as low as 0.25 (0.15-0.36) in English subgroup and
specificity is close to 0 in Italian subgroup from Fig. 4d, and this
bias particularly impacted voice modality (see Fig. 4f) and slightly
influenced cough (see Fig. 4e). Yet, our performance (namely
controlled model in Fig. 4) shows consistent sensitivity and
specificity across all subgroups, presenting a realistic value for
model application.

DISCUSSION

For digital technologies to penetrate the clinical practice it is
pivotal that studies become more explainable and that the models
are resilient to the data noise, variability and bias present in real
data. Unlike other studies, we highlight the need for more realistic
evaluation and report model performance when considering the
following factors.

Published in partnership with Seoul National University Bundang Hospital

The first is demographic bias. In our study design and data
selection, we concerned ourselves with potential confounding
factors and tried to rule out selection bias, as these may lead to
unrealistically inflated results. Specifically, we split positive and
negative samples into three partitions for model training,
optimisation and testing, while adjusting the data partitioning
and maintaining similar distributions of age and gender across
different data splits to control for potential confounding variables
(see Supplementary Table 1). This is different from some prior
studies in the literature, in which the selection of the data is
unclear and lacks a cohort diagram [16, 17]. More importantly, we
further performed experimental analysis to explore the effect of
demographic bias on the model.

Language bias is another factor that we considered. With the
potential of COVID-19 digital testing to be applicable world-
wide, it is important to explore the effect of language bias on
different audio-based data (such as cough, breathing and
voice). To disentangle the possible confounding effect of
language, we restricted our analysis to English-speaking data,
which gives the most realistic perspective of the capabilities of
audio-based diagnostics for COVID-19. In addition, similar to
demographic bias, we carried out experiments to test the effect
of language bias when the model was trained with unbalanced
multi-language data.

Data splitting for experiments also has a notable impact on
results. Moreover, in some prior studies, cross-validation was
applied for performance validation: this is generally done when
the data is scarce and user samples become very important. Data
from the same participant might be used for both model training
and validation [25, 32]: while this might be considered acceptable
in testing theoretical machine learning techniques, if a user
appears in both training and testing sets, such models typically
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Fig. 5 Overview architecture of the deep learning model. A convolutional neural network using cough, breathing, and voice sounds as
input, to predict COVID-19 as a binary outcome. VGGish is a neural network pre-trained on the Audioset dataset, Pooling is an aggregation
operator, Dense is a fully connected neural network layer, Dropout is a randomised operation that reduces overfitting, ReLU is a rectified linear

unit activation, Softmax is the logistic function.

do not generalise well, making them poorly-suited for a realistic
setting. With the luxury of a large dataset, we could choose to
perform user-independent validation, where participants’ data
used for model validation are not included and unseen during
model training. We are confident that this is a more realistic
approach, which could inform future in-the-wild audio-based
screening.

Several limitations to our work should be acknowledged.
COVID-19 is known to often manifest as respiratory symptoms,
which are also common for other relatively widespread diseases,
as well as among the smoking population. Therefore, we
conducted an in-depth analysis to establish whether our model
could be influenced by other respiratory pathology. Specifically,
we evaluated the ability of our model to correctly identify a
COVID-19 infection in participants who indicated Asthma and
High blood pressure in their medical history as well (as these are
reasonably large cohorts in our data collection) compared to a
cohort who indicated no other medical conditions. We also tested
the model on participants with a variety of smoking status
reported (e.g. few to many cigarettes per day). However, we note
that we have not had the opportunity to test against a wider
variety of specific respiratory infections, such as influenza or
rhinovirus, since they were not prevalent when our data were
collected and are difficult to have a reliable ground truth for. It is
also worth noting that some symptoms would be non-respiratory
related and may have no effect on the respiratory sounds.
However, in the current study, we did not evaluate the
performance of our model among different groups of participants
with respect to their specific symptoms. The association between
symptoms (either respiratory or entirely non-respiratory) and their
potential influence on human sounds (either directly or indirectly),
and thus the caused effects on audio-based COVID-19 testing, can
be investigated in future.

Also, as our models did not fully control for all potential
confounding factors such as race and have much less number of
elderly participants, future studies should investigate these biases.
In addition, though in the present study the language was well
controlled (all English), it is yet unclear whether and how different
types of accents would affect the model, while we lack such
information to study this.

Our data is crowdsourced: we rely on the trustworthiness of the
responses from individuals, especially with respect to their COVID-
19 testing status. Additionally, some noise inevitably occurs in the
collected COVID-19 status labels. The causes of the noise are two-
fold: (a) the inaccuracy of a RT-PCR test itself may result in
incorrectly reported COVID-19 status; (b) the 14-day time interval
in the COVID-19 status may introduce some noise, that is, a person
testing negative within the past 14 days may contract COVID-19
later and thus possibly report an improper label. It would be better
if the audio data were collected on the same day of the RT-PCR
test. The scale of the data helps in amortising the noise generated
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by the crowdsourcing process while, at the same time, shows
robustness of the approach to uncontrolled conditions. Our data,
while aims to match the cohort to target population as much as
possible, lacks clinical validation. Thus, additional external valida-
tion should be performed to assess the generalisation of the
prediction model before being applied in clinical practice.

Further, the model’s trainable parameters are optimised based
on the probability vector from the final softmax output layer (see
Fig. 5): this vector is used to classify COVID-19 positive and
negative predictions. While our model could be used on the
general population for COVID-19 digital testing, we explore
different contexts of applications where the prediction can be
adjusted for a more optimal outcome. To achieve this, instead of
categorising a participant to the class with the largest probability,
we only consider the predicted probability for the positive class
and compare it with a threshold. If this value is larger than the
given threshold, we will take it as a positive prediction. Hence, we
report the ROC curve and sensitivity/specificity under different
decision thresholds for asymptomatic and symptomatic groups
(participants who did and did not declare symptoms) in
Supplementary Figs. 1 and 2, respectively. Specifically, when
applying the model with the aim of screening the asymptomatic
population for risk of exposure, from Supplementary Fig. 1b), a
lower threshold can be used to guarantee a higher Youden Index
(defined as Sensitivity 4+ Specificity — 1) and a higher sensitivity
compared to the threshold of 0.5, so that potential COVID-19
infections are exhaustively covered, and false positives can be
easily filtered by a further clinical testing. Yet, if the targeted
group is symptomatic (Supplementary Fig. 2b), to limit the false
positives, a higher specificity can be achieved by slightly
increasing the threshold to maximise the Youden Index. In this
study, as we have limited samples for validation in our dataset,
we only demonstrate the performance on the test set data under
different threshold settings as a proof-of-concept. For clinical use,
a further investigation is required on how to adjust and calibrate
this threshold to meet different testing criteria.

As a non-invasive, affordable, and ubiquitous digital screening
tool, our model can be applied as an at-home COVID-19 pre-
screening tool that is available to the masses to prioritise and
allocate the limited clinical resources. In addition to adapting the
model to either symptomatic or asymptomatic population, the
audio-based predictive models could also be combined with other
signatures from other biological signals such as heart rate [33], as
well as self-reported symptoms [8] for improved accuracy.
Meanwhile, model calibration and uncertainty estimation can be
further investigated and incorporated into the automatic diag-
nosis system, so that the output probability can precisely indicate
the confidence of each prediction [34, 35]. Further, when the
model is very uncertain towards some inputs, those (a few)
samples can be passed to doctors for a clinical test. As such, both
testing efficiency and safety can be improved.
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In conclusion, we have developed and validated a deep
learning method for detecting COVID-19 solely by analysing
human sounds via mobile or web applications. In particular, the
crowdsourced data have been collected and processed to make
the results reliable, by controlling potential confounding factors in
COVID-19 positive and negative cases. We analysed the presented
model’s predictive performance on detecting COVID-19 infection,
which may bring insights into the adoption of digital health
technologies in the COVID-19 era. Moreover, we analysed the risks
of modelling with various biased data, which led to an over-
estimated performance. This demonstrated that biased data or
modelling should be avoided to rigorously validate the digital
testing tool for clinical efficacy.

METHODS
Data collection

Our data were crowd-sourced via a data gathering framework released in
April 2020, in multiple languages and for multiple platforms (a webpage,
an Android app, and an iOS app). Collected data consist of participants’
age, gender, medical history, current symptoms11 types of symptoms
including headache, fever, dry/wet cough, chills, tightness in your chest,
shortness of breath, loss of taste and smell, dizziness, sore throat, runny or
blocked nose, muscle aches), and three audio recordings: three voluntary
cough sounds, three to five inhalation-exhalation sounds, and the
participant reading a standard sentence from the screen three times.
Participants were asked whether they had been tested for COVID-19, and
an optional geo-location sample was collected. The mobile apps also
prompted the participant to input symptoms and sounds every two days.
No identifiable information was collected. As of 26th April 2021, a total of
36,364 participants contributed 75,201 samples to our project.

We used samples with self-reported COVID-19 test results for experi-
ments as ground truth. Hence, 61,615 samples without reported test
results were excluded. Further 110 samples with COVID-19 testing results
declared to be obtained 2 weeks before the recordings were made were
also discarded due to the delayed audio recordings with respect to COVID-
19 testing. Our data was sourced in multiple languages (English, Italian,
Spanish, Portuguese, etc.) and the number of samples in each language
varied. To avoid language bias, for the main results of this paper we used
English audio samples only, with 8102 non-English samples excluded.
Lastly, we manually checked the quality of each recording, deleting in total
another 134 samples, that were either incomplete with recordings shorter
than 2's, or samples with silent recordings, or distorted samples with poor
audio quality. As a result, 5240 samples from 2478 participants were
explored for the majority of the experiments.

Model architecture

The framework we implemented for COVID-19 classification is a Convolu-
tional Neural Network (CNN) based model, as shown in Fig. 5. The key
module, VGGish, is a pre-trained CNN, with which we leverage and transfer
the knowledge learnt from an external massive general-audio dataset [36].

Specifically, the framework is composed of three parts as below,

(1) Input layers: the network receives one sample with three audio
recordings as input, including breathing, cough, and voice from one
participant. The audio recording is first chunked into non-overlapping
segments of 0.96 seconds. Log-mel spectrogram is computed for each
segment with a window size of 25ms, a window hop of 10ms, and a
periodic Hanning window. 64 Mel bins are adopted for Mel spectrogram
covering the frequency range from 125Hz to 7500 Hz. A small offset is
used to convert the mel-spectrogram into log-scale, resulting in a log-mel
spectrogram with the size of 64 x 96 per chunk.

(2) Feature extraction layers: the main component of the model is
VGGish, a CNN-based network with cascaded convolutional layers, max-
pooling and fully connected layers. This network transforms each input
spectrogram frame into a 128-dimensional feature vector. Then, an
average pooling layer is employed to aggregate all frames within one
audio recording into one fixed-length latent feature vector. The size of the
CNN kernels and the number of hidden states of fully connected layers are
kept consistent with the original work [36].

(3) Prediction layers: the resulting latent feature vectors for three
modalities are concatenated, and fed into the binary classifier, which
consists of two dense layers (the number of hidden states are 96 and 2,

Published in partnership with Seoul National University Bundang Hospital

J. Han et al.

npj

respectively) with non-linear ReLU and Softmax activation functions,
respectively. The output of the model is a two-dimensional probability
vector: corresponding to the probability of being positive and negative,
respectively. If not otherwise specified, we made the categorical prediction
as the class with larger probability.

Data and experiments for evaluation

From the 2478 English-speaking participants, we prepared a training and
validation set consisting of 800 participants with balanced COVID-19 status
and other demographics to optimise the parameters of our deep learning
model, as labelled by the yellow box in Fig. 1a. In the training and
validation set, we maintained similar demographic distributions in positive
and negative groups (see Supplementary Table 1), aiming to minimise the
bias of the crowd-sourced data. The rest of the data were used for
evaluation, namely testing set pool (green box in Fig. 1a). To inspect the
performance in different realistic deployment scenarios, we first held out a
balanced testing set with varied demographics, containing 100 positive
and 100 negative participants. Furthermore, we randomly selected positive
and negative participants from the testing pool to form new groups with
the criteria of various prevalence levels (i.e. the proportion of COVID-19
positive people among the whole population), medical history and
smoking status to holistically validate our model.

Additional data and experiments for bias evaluation

Apart from the controlled training and testing data, to simulate the impact
of the unrealistic experiment setting and bias, we also prepared some
training and testing sets with improper data splitting and various biases
(RQ2). Particularly, different data splits were created to investigate the
following four inappropriate scenarios: with different samples from the
same participant (may) appearing in both training and testing sets, namely
random-split; data split with gender bias; data split with age bias; data split
with language. To be more specific, the following strategies were followed
to generate the data:

® |ndividual-dependant Splitting: our balanced training set and testing
set contained 1000 participants (800 participants for training&valida-
tion, 200 for testing) and 1486 samples (1162 samples for
training&validation, and 329 for testing), with 1.5 samples per
participant on average. Instead of splitting training and testing by
participants, for this comparison group, we randomly shuffled all
samples and split them into training and testing according to the
original ratio (1162:329).

® Gender bias: to simulate the scenario where COVID-19 positive rate is
significantly different in different gender groups, which raises the
concern that the model is detecting gender instead of COVID-19, we
manually selected 500 positive and 500 negative participants from
the total 2,478 participants (blue box in Fig. 1) with gender
distribution bias. Specifically, 56% of the positive group are male
and the rest 44% are female, while in the negative group, females
account for 85% and males for 15%. Age demographics are kept
balanced and the total number of participants is unchanged, as
shown in Supplementary Fig. 3.

® Age bias: with the same approach, for negative participants, we also
purposefully selected (1) those aged over 39, and (2) those aged
under 39 to simulate the scenarios when participants were not from
the whole population. The revised distribution can be found in
Supplementary Fig. 4.

® | anguage bias: rather than using all English speakers, to investigate
the effect of language, we replaced some English-speaking partici-
pants with Italian-speaking participants. Specifically, we used more
positively-tested Italians than negative. As a result, the positive group
mainly consists of Italian speakers, indicating the bias that partici-
pants who speak Italian are more likely to be COVID-19 positive. The
detailed percentage can be found in Supplementary Fig. 5.

Model training

After preparing the data splits for model training, we pre-processed the
audio data before feeding them into the model. In particular, all the
collected audio recordings were resampled to 16 kHz and converted to
mono channel. Then, these audio recordings were cropped by removing
the silence periods at the beginning and the end of the recording, after
which each sample was normalised. Parameters of the deep learning
model were updated by iterative gradient back propagation by the binary
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cross-entropy loss function on the training set. Adam was used as the
optimiser [37]. The training batch size was 1. The whole framework was
implemented by Python 3.6 and Tensorflow 1.15. Model training was done
on an Nvidia Quadro RTX 8000 GPU.

To improve the robustness and generalisation ability of our deep
learning model, the following techniques were employed:

® Transfer learning: our collected data is relatively small compared to the
number of parameters in the proposed deep neural network. In light
of this, we harness transfer learning to improve the representing
ability. Specifically, VGGish layers are initialised by a pre-train model,
which is designed for audio classification task.

e Differential learning rate: both VGGish and dense layers are jointly
updated by using our audio data. However, we used a small learning
rate for parameter update of the VGGish part of the network, and
increased the learning rate 10 times for the dense layers. Specifically,
the learning rate was set as 1e-6 for VGGish and 1e-5 for the final
dense layers.

® Avoiding overfitting: we utilised learning rate decay (factor = 0.9) and
L2-regularisation (penalty coefficient = 1e-6).

® Two-phase training: to use the data more efficiently, we primarily
trained the model via training set and identified the best hyper-
parameters based on the averaged sensitivity and specificity of the
15th epoch on validation set, and then we merged the training set to
fine tune the model until the training performance kept unchanged.

Performance analysis

Once a learnt model was obtained (trained and optimised on the training
and validation sets), performance was then evaluated on the remaining
test set for different demographics, prevalence levels and health
conditions. Measures of performance included the ROC-AUC, sensitivity
and specificity. For all the metrics, we calculated two-sided 95% Cls, using
bootstrap re-sampling with 1000 bootstrap samples and replacement [38].

Ethics

The study was approved by the ethics committee of the Department of
Computer Science at the University of Cambridge, with ID #722. Our app
displays a consent screen, where we ask the user's permission to
participate in the study by using the app. Also note that the legal basis
for processing any personal data collected for this work is to perform a task
in the public interest, namely academic research. More information is
available at https://covid-19-sounds.org/en/privacy.html.

Reporting summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY

The data is sensitive, as voice can be deanonymised. Anonymised data will be made
available for academic research upon requests directed to the corresponding email.
Academic institutions will need to sign a Data Transfer Agreement with the University
of Cambridge to obtain the data. We have this agreement in place; please contact
covid-19-sounds@cl.cam.ac.uk to obtain it. Once the document is signed, we will
provide a download access to where the data is stored.

CODE AVAILABILITY

Python code and parameters used for training of neural networks are available on
GitHub at https://github.com/cam-mobsys/covid 19-sounds-npjDM for reproducibility
purposes.
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