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Abstract 

 

Increase in grain/seed size recurrently features as a key element in the ‘domestication 

syndrome’ of plants (cf. Zohary and Hopf 2000; Fuller et al. 2014). In the context of its 

spread across Eurasia, however, the grain size of one of the world’s major crop species 

underwent a substantial reduction. Between the fifth and second millennia BC, the grain 

length in a number of species of Triticum, collectively known as free-threshing wheat, 

decreased by around 30%. In order to understand and help account for this trend, we have 

obtained direct radiocarbon measurements from 51 charred wheat grains and measured 

the dimensions of several hundred grains from Asia to establish when and where that size 

diminution occurred. 

 

Our results indicate that the pace of a eastward/southward spread was interrupted around 

1800 BC on the borders of the distinct culinary zone recognized by Fuller and Rowlands 

(2011), but regained pace around 200-300 years later in central-east China with a 

diminished grain size. We interpret this as evidence of a period of active crop selection to 

suit culinary needs, and consider whether it constitutes a distinct episode in the general 

character of genetic intervention in domesticated species. 
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1. Introduction  

 

Recent developments in archaeobotanical research have shed fresh light on the processes 

of plant domestication and agricultural origins. Among domestication traits expressed in 

various crop species, two have received much scholarly attention, non-shattering cereal 

ears and seed/grain size (cf. Zohary et al. 2000; Fuller et al. 2014)   . Non-shattering 

cereal ears have typically been studied in the context of a growing reliance on humans for 

seed dispersal. The increase in seed/grain size repeatedly observed in crop species is 
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presumed to increase production yield as well as aid seedling establishment in the context 

of deeper burial, and is the most widely documented change in archaeobotanical 

assemblages (cf. Purugganan and Fuller 2009; Harlan et al. 1973).  

 

In this study, we consider the change in grain size of one of the world’s major crops. As 

free threshing wheat spread eastward from a Southwest Asian region of origin, that 

change can be seen on several archaeological sites. However, in contrast to the classic 

domestication trajectory, the grains as they spread eastward became not larger, but 

smaller.  

 

There has been an increase in scholarly interest in the nature and pathways of the 

eastward spread of wheat and barley (Jin, 2007; Li et al., 2007; Zhao, 2009; Flad et al., 

2010; Frachetti et al., 2010; Zhao, 2011; Betts et al., 2013; Dodson et al., 2013; Barton 

and An, 2014; Liu et al., 2014; Spengler et al., 2014a). In light of these studies, and in 

order to understand the variation of wheat grain size in the context of food globalisation, 

we have directly radiocarbon dated 51 charred wheat grains and measured the dimensions 

of several hundred grains from China, India and Pakistan to establish when and where 

that size diminution occurred. By “direct radiocarbon dating” we mean that the wheat 

grains themselves have been analyzed rather than dating distinct organic items from the 

same contexts.  

 

We will address two issues in this paper. Firstly, we will consider the pace of an 

eastward/southward spread. Secondly, we will attempt to understand the nature of the 

reduction in grain size, and consider whether it constitutes a distinct episode of human 

choice that drives changes in domesticated species. 

 

2. Spread of wheat 

 

It is now clear that by late prehistory a series of connections between human populations 

had been established across Eurasia. From the evidence of early horse management, 

metallurgy and a range of associated artifacts, we may trace the origins of these 
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connections in the latter part of the second millennium BC (Levine, 1999; Mei, 2003; 

Sherratt, 2005; Linduff and Mei, 2009; Rawson, 2013). Archaeobotanical evidence from 

cereal crops has the potential to push this date back yet further into at least the third 

millennium BC or even earlier, when exchanges between the various sectors of Eurasia 

have been documented. This process has been referred as ‘food globalisation in 

prehistory’ (cf. Jones et al. 2011; Liu and Jones 2014; Jones et al. in press) or the ‘trans-

Eurasian exchanges of crops’ (Boivin et al., 2012). During the course of the third and 

second millennia BC, some of the crops that originated in the Fertile Crescent spread 

from southwest Asia to eastern China. 

 

By c.1500 BC, the geographical range of one of the southwest Asian crops, free threshing 

wheat, extended from the Pacific to the Atlantic Ocean. In the context of early Chinese 

wheat, Zhao (2009) suggested three candidates for a trans-Asian route. One was a proto-

Silk Route – essentially the topographically most convenient and economic land route 

between East and West. The second drew from discussions of shared traditions of 

pastoralism, horse management and metallurgical traditions and was characterized as the 

northern steppe route. The third related to the near-coastal position of some of the earliest 

wheat appearing in the east, raising the possibility of a sea route. These three potential 

routes presented a set of initial hypotheses that have stimulated useful discussion around 

the issue of the spread of wheat (Betts et al., 2013; Dodson et al., 2013; Barton and An, 

2014; Spengler et al., 2014a). Discussion has now moved beyond the scope of dates and 

routes, and has addressed such issues as social drivers, the pace of crop movement and 

dietary conservatism (Lightfoot et al., 2013; Liu and Jones, 2014; Liu et al., 2014; Jones 

et al., in press). 

 

The pattern of the eastern movement of wheat from southwest Asia has also become 

clear. Early evidence for cultivation and domestication of various wheat species appears 

in southwest Asia from at least 8000 BC (cf. Weiss and Zohary 2011)   . Wheat species 

(both free threshing and hulled) are documented in western Central Asia around 4000-

3000 BC at Jeitun and Anau North (Miller, 2003; Harris, 2010) and in western South 

Asia by around 5000 BC in Mehgarh (Costantini, 1984; Meadow, 1996; Petrie, 2015). 
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After these initial dispersals, the subsequent, more extensive movement of different types 

of wheat appears to be restricted to free threshing forms. To the north of the Iranian 

Plateau, free threshing wheats have been documented in Turkmenistan sites such as Anau 

South and Gonur Depe around 2000 BC (Moore et al., 1994; Miller, 1999), and 

Ojakly/1211 around 1500 BC (Spengler et al., 2014a). They appeared in Tajikistan 

between 3500 - 2000 BC at Sarazm (Spengler and Willcox, 2013), and in Afghanistan at 

Shortugai 2500-2000 BC (Willcox, 1991), and in Kyrgyzstan at Aigyrzhal-2 around 1800 

BC (Motuzaite Matuzeviciute et al., 2015). Records from the south-eastern and eastern 

parts of the greater Iranian Plateau are even older. For example, free threshing wheat 

(often in association with hulled wheat) was recovered from Pakistani sites such as Sheri 

Khan Tarakai, Miri Qalat and Shahi Tump dating back to the fifth/fourth millennium BC 

(Tengberg, 1998; Desse et al., 2008; Petrie et al., 2010; Thomas and Cartwright, 2010). 

From there, it is plausible that these crops moved further east and south into the Indus 

region during the third millennium BC, and subsequently, into the Ganges and South 

India (Fuller and Madella, 2001; Fuller, 2006; Pokharia, 2011; Pokharia et al., 2011). 

 

Recent research suggests that the ‘Inner Asian Mountain Corridor’ connecting the 

mountain territories of the Iranian Plateau and the Pamir Plateau played a key role in the 

dispersal of free threshing wheat to the east (and broomcorn millet to the west) during the 

third millennium BC (Frachetti, 2012). Work in eastern Central Asia reveals that both 

free threshing wheat and broomcorn millet were present from the same archaeological 

contexts in the middle third millennium BC (Frachetti et al., 2010; Spengler et al., 2014a; 

Spengler 2015). Currently, the earliest recorded wheat grain in Central Asia is from 

Tasbas, 4010 ± 30 (radiocarbon years) BP, which calibrates to 2617-2468 cal. BC at the 

95.4% probability range (Doumani et al., 2015). 

 

The ‘Inner Asian Mountain Corridor’ may be extended further eastwards to China along 

the foothills of the Tianshan Mountains and the Hexi Corridor (i.e. along the northern 

edge of the Tibetan Plateau), and finds of archaeobotanical wheat are distributed along 

these mountain ranges. Notwithstanding the debate around some allegedly older 

specimens (Li and Mo, 2004), recent studies have suggested that free threshing wheat 
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probably did not appear in northwest China until very late in the third or early in the 

second millennium BC (Flad et al., 2010; Dodson et al., 2013; Liu et al., 2014). It is 

worth noting, however, that hexaploid free threshing wheat is also reported from the third 

millennium BC site of Longshan culture in eastern China (Zhao, 2009). At 

Zhaojiazhuang in Shandong, for example, a wheat grain has been directly dated to 

3905±50 (radiocarbon years) BP, which calibrates to 2562-2209 cal. BC at 95.4% 

probability (Jin et al., 2008).  

 

3. Variation in grain size 

 

Turning from chronology to plant morphology, Fuller et al. (2014) have suggested that 

most seeds increased by 20-60% in one or two dimensions during the course of 

domestication. While there may be some variation in the precision and accuracy of the 

published measurements of early wheat, the following trends are regarded as secure. 

Emmer wheat, for example, increased in thickness from approximately 1.7mm to more 

than 2.5mm over a time period of between 9000 and 5000 BC. The breadth of einkorn 

wheat increased from about 1.2mm to 1.8mm between 10,000 and 6000 BC (Fuller et al. 

2014, Fig. 2). It is worth noting though that einkorn and emmer measurements are not 

always reliable because of identification issues. Fuller et al. (2014) also noted that after 

the episode of initial increase, grain size became variable, fluctuating both up and down.  

 

Grain shape and the compactness of the spike are important variables used in the 

taxonomy of hexaploid wheat (MacKey, 1966) Archaeobotanists have frequently 

observed a more compact form of wheat grain and chaff in regions east of the Fertile 

Crescent. For example, a compact form is recorded from Mehrgarh in Pakistan by at least 

the mid-fifth millennium BC (Costantini, 1984; Zohary and Hopf, 2000) and later in 

third/second millennium BC sites in the greater Indus and Ganges regions (Weber, 1991; 

Miller, 1999; Fuller et al., 2008; Pokharia, 2008, 2009; Pokharia et al., 2009; Pokharia, 

2011; Pokharia et al., 2011). Compact wheat grains are documented in the third and 

second millennium BC sites in Central Asia (see Spengler, 2015 for review), such as 

Anau South, Gonur Depe, Ojakly and 1211 in Turkmenistan (Moore et al., 1994; Miller, 
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1999; Spengler et al., 2014a), and, notably, Begash and Tasbas in Kazakhstan (Frachetti 

et al., 2010; Spengler et al., 2014b). In East Asia, Crawford (1992) noted that early wheat 

grains in China, Japan and Korea are predominantly a hexaploid compact form. These 

short and rounded wheat grains have been placed in different taxa, including T. aestivum 

subsp. sphaerococcum, T. sphaerococcum, T. aestivum subsp. compactum and T. 

compactum. There are also two prehistoric wheats, namely T. parvicoccum and T. 

antiquorum, for which it was thought that no modern counterpart has survived. To clarify 

various issues, it is useful to consider the naming of small-grained wheats that have 

modern counterparts and the genetic basis of their small grain size.  

 

3.1 Indian shot wheat 

 

Indian shot wheat or dwarf wheat (T. aestivum subsp. sphaerococcum) is a hexaploid 

free-threshing wheat currently endemic to southern Pakistan and northwestern India. 

Today it is a relic crop in this region (Percival, 1921; Mori et al., 2013), yielding poorly 

in comparison with improved varieties of wheat. The name ‘shot’ wheat is a reflection of 

the small, round grains being similar in form to shot-gun pellets. A mutation in a single 

recessive gene, denoted as ‘s’, is believed to affect many parts of the plant, and this wheat 

is characterised by having a short dense ear, a rigid short culm (stem), hemispherical 

glumes, and small, spherical grains (Salina et al., 2000). The precise mutation responsible 

for the sphaerococcoid features has not been identified, but is thought to be a tandem 

gene duplication near the centromere in chromosome 3D. The s mutation has been shown 

to affect a gene that determines the length of the grain, leading to a significant alteration 

in grain size and shape (Asakura et al., 2011). T. aestivum subsp. sphaerococcum is 

believed to have originated from a spontaneous mutation in T. aestivum from India or 

Pakistan (Asakura et al., 2011). A recent study by Kippes et al. (2015) has shown that a 

spring allele of the vernalization genes VRN4 originated from and is fixed in T. aestivum 

subsp. sphaerococcum in Southern Asia, and is responsible for the first spring wheats in 

this region. These authors propose that this allele was fixed in prehistory in South Asia 

(Kippes et al. 2015). 
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3.2 Club wheat 

 

T. aestivum L. subsp. compactum (Host) Mackey, also known as club, dwarf, cluster or 

hedgehog wheat (Percival, 1921) is rarely cultivated these days, presumably because of 

its low yield relative to modern T. aestivum cultivars. The ears of this wheat are very 

short, dense and rigid, with closely packed spikelets. There appears to be a number of 

genetic loci affecting spike compactness: the compactum (C) locus on chromosome 2D, 

which in its dominant form results in a compact spike (Johnson et al., 2008); and another 

locus, distal to the C locus, on chromosome 5AL. The distinguishing feature of T. 

aestivum L. subsp. compactum is its compact spike. The plants themselves are not 

necessarily short in stature. The actual identity of the C locus and its mode of action are 

not yet fully understood. Both of these loci are completely separate from the locus of the 

gene responsible for the sphaerococcum phenotype.  

 

T. antiquorum (Heer) Udachin and T. parvicoccum (Kislev) are both defined from 

archaeological macrofossils alone, and so no equivalent genetic information is available. 

Ostwald Heer originally delineated T. antiquorum as a variety of T. compactum (Triticum 

compactum Host var. antiquorum Heer). In both these taxa, macrofossil remains of 

caryopses, chaff and internode have been recovered. These latter remains retain some 

physical features for which the genetic control of grain size may be surmised, but this 

remains entirely speculative for these taxa. 

 

There is some skepticism over whether the actual species of free-threshing wheat can be 

identified on the basis of the charred grain evidence alone (Nesbitt, 2001). Hillman 

(2001), for example, warns against creating new species names from such evidence, and 

suggested that T. parvicoccum is most likely a short-grained form of a dense eared T. 

turgidum subsp. durum. Free threshing wheat remains from South Asia are often 

identified as T. aestivum subsp. sphaerococcum because of their short, compact grains. 

However, most charred naked wheats from the Near East, Europe and China also have 

small compact grains of less than 5 mm length, regardless of their species or ploidy (cf. 

Nesbitt 2001) and there has been a great deal of inconsistency in the naming of 
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archaeobotanical wheats. In light of these concerns, we present in this paper the grain 

sizes of free-threshing wheat without assigning them to species. This work aims to 

understand a reduction in size for all free-threshing species in the context of the eastward 

and southward dispersals of free threshing wheat. The statistical analyses are based on 

groups of free-threshing wheat from different geographical regions, regardless of their 

initial archaeobotanical identification. 

 

4. Materials and methods 

 

Fifty-one carbonized grains of wheat from China (n=40), India (n=8), Kyrgyzstan (n=2) 

and Pakistan (n=1) were selected for radiocarbon (14C) analyses at several laboratories, 

including Oxford Radiocarbon Accelerator Unit (ORAU), the Laboratory of Earth 

Surface Processes and Institute for Heavy Ion Physics, Peking University, Centre for 

Climate, the Environment, and Chronology, Queen’s University Belfast, and Beta-

Analytic. The sample preparation methods undertaken at these laboratories were similar, 

with a standard acid-base-acid (ABA) chemical pre-treatment method followed by 

combustion and graphitization prior to accelerator mass spectrometry (AMS) dating 

(Brock et al., 2010). These new radiocarbon determinations were subsequently collated 

with previously published data and analysed using the Bayesian statistical software 

OxCal ver. 4.2 (Bronk Ramsey, 2009), applying the IntCal13 calibration curve (Reimer et 

al., 2013). A summary of these data is presented in Table 1. 

 

In addition, charred grains from 21 archaeological sites from the third, second and first 

millennia BC from China, India, Pakistan and Kazakhstan were morphometrically 

measured in two or three dimensions. These measurements are combined with previously 

published measurements of hexaploid wheat from southwest Asia and west Asia. 

Archaeobotanical analyses and measurements were undertaken in the George Pitt-Rivers 

Laboratory, University of Cambridge, the Archaeobotanical Laboratory at the Institute of 

Archaeology, Beijing, and the Archaeobotany Laboratory at Birbal Sahni Institute of 

Palaeobotany, Lucknow. A summary of these data is presented in Tables 2 and 3. There 

are several factors apart from initial grain dimensions that influence the observed 
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dimension, including crop-processing activities (e.g. sieving) and mode of preservation.  

While the former is less easy to control, and for this exercise is essentially a source of 

‘noise’, the latter is mitigated by restricted attention to a singular category of preservation 

(carbonization) such that grain dimensions will tend to be affected in a similar way. 

 

5. Results 

 

5.1 Direct radiocarbon dates 

 

All 51 radiocarbon samples provided good pre-treatment and combustion yields. Table 1 

shows the radiocarbon determinations obtained in this study, along with previously 

published data. Herein, all calibrated radiocarbon data are presented at the 95.4% 

probability range (which approximates the 2σ range of normally distributed data). The 

oldest directly measured age in Central Asia is from Tasbas, Kazakhstan (dating to 

between 2617 and 2468 cal. BC), which is several hundred years older than that from 

Begash. In the northwestern Chinese provinces, the oldest age is from Xintala in Xinjiang 

(between 1972 and 1694 cal. BC), Jinchankou in Qinghai (between 1878 and 1664 cal. 

BC), and Huoshiliang in Gansu (between 2135 and 1896 cal. BC). Karuo (between 1665 

and 1518 cal. BC) provides the oldest age for wheat in Tibet. In central China, there are 

no data at present from earlier than 1650 cal. BC. The oldest ages occur in Nansha 

(between 1643 and 1504 cal. BC) and Wangchenggang (between 1608 and 1412 cal. BC) 

in Henan. As indicated above, the oldest age for wheat in eastern China occurs in 

Zhaojiazhuang, and falls in the third millennium BC. Apart from this one very early date, 

wheat is not recorded in Shandong until the latter half of the second millennium BC in 

Daxinzhuang (between 1442 and 1290 cal. BC). The remaining dates in eastern China all 

fall in the first millennium BC.  

 

Turning to the south of the Himalayan Mountains, the earliest date for free threshing 

wheat is currently from Tigrana (between 2847 and 2477 cal BC), followed by Ojiyana 

(between 2456 and 2151 cal BC). Although there is an abundance of radiocarbon dates 

from Harappa (e.g. Meadow 1996; Weber 2003; Meadow and Kenoyer 2005)  , as yet, 



 11 

the oldest directly dated wheat grain from the site is dated to between 1901 and 1743 cal. 

BC; and was recovered from the later phases of occupation at the site. The earliest age for 

free threshing wheat from south India is from Sannarachamma, dating between 2016 and 

1756 cal. BC (Fuller et al., 2008). There are no direct radiocarbon measurements of 

wheat grains from the Ganges region at present. 

 

In order to provide more refined estimates of the ‘first appearance dates’ of wheat within 

each region, we undertook Bayesian statistical modelling of the collated dataset. All 

radiocarbon determinations were inserted into a series of sixteen independent ‘Phases’, 

representing the sixteen geographical regions identified in Table 1. These sixteen Phases 

were unrelated to each other; i.e. there were no assumptions, a priori, as to the relative 

ordering of the respective Phases. A combination of ‘Boundaries’ and ‘Tau_Boundaries’ 

were applied at the ‘Start’ and ‘End’ of each of the sixteen model Phases, respectively 

(see Supporting Document, Fig. S1.). This combination of Boundaries and 

Tau_Boundaries provides an exponentially decreasing Phase prior, allowing for the bias 

towards older samples within each Phase that results from our research focus on 

providing the earliest dating wheat grains from each site. The Start Boundaries of each 

Phase thus provide the model estimated ‘first appearance’ date from each of the sixteen 

regions, and slightly pre-date the earliest individual radiocarbon dated sample from each 

region. A second, parallel series of six Phases representing broader geographical scale 

regions from which the sixteen more localized geographical regions were located 

(namely: East Central Asia, northwest (NW) China, southwest (SW) China, central-east 

(CE) China, Indus/northwest (NW) India and South India) was run within the same 

OxCal model. By grouping more radiocarbon dated samples within these broader 

regional Phases, the model could produce more precise Start Boundaries – i.e. more 

precise ‘first appearance dates’ – which allow for more rigorous archaeological 

interpretation. Finally, an ‘Order’ function was applied to each of the sixteen Start 

Boundaries to ascertain a matrix of the most likely relative ordering of the first 

appearance of wheat from each (smaller scale) region (see Fig. 2). These results confirm 

a west to east chronological sequence in China and a north to south sequence in South 

Asia, as indicated by the dates and associated locations shown in Fig. 1. 



 12 

 

5.2 Grain measurements 

 

Grain measurements are summarized in Tables 2 and 3. Fig. 3 shows (a) the scattered and 

(b) the average values of charred grain length and breadth from six regions (desiccated 

samples excluded): West Asia, Kazakhstan, and NW and CE China, Indus/NW India and 

Ganges. Fig. 4 (a and b) shows a similar dataset within China. Visual inspection indicates 

that free threshing wheat grains from CE China are shorter and narrower than those from 

NW China, West Asia and South Asia. While noting that the number of Kazakh grains 

measured is small (n=2), they too show a pattern similar to that from CE China. Similar 

observations have been made by Motuzaite Matuzeviciute et al. (2015) from a second 

millennium BC site in Kyrgyzstan. Within China, grains appeared to have become shorter 

and narrower while moving from NW China to CE China. 

 

In order to clearly show grain size/shape differences, various forms of statistical analyses 

have been applied. Desiccated samples from Xinjiang are excluded because of their 

distinct preservation state; and the Kazakh samples are also excluded because of the small 

population size (n=2). Analysis of variance (ANOVA) shows that the differences among 

the four groups were statistically significant for both length and breadth (p<0.001). 

Therefore, the differences between individual pairs of regions were tested as a follow-up 

analysis. A statistical test using Tukey’s Honest Significant Difference (HSD) shows that 

the grain lengths were identical for South and West Asia, and that NW China and CE 

China differed from them, and from each other, at a statistically significant level (see Fig. 

5-a). For the measurement of breadth, however, CE China wheat grains were different 

from all other groups, which otherwise display no significant differences from each other 

(see Fig. 5-b).  

 

Further analyses indicate the grains from Indus/NW India and Ganges differ from each 

other in both dimensions, with the grains from the Ganges being shorter and wider (See 

Supporting Document; Fig. S2); the difference in width is statistically significant (t-test, 

p=0.005), while the difference in length is not (t-test, p=0.103). Our lack of sufficient 
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measurement data does not permit us to test the statistical difference between south India 

and north India. Further studies to consider the difference between those regions are 

required.  

 

6. Discussion 

 

6.1 Pace of a southward/eastward spread 

 

In the context of food globalisation in prehistory, various authors have drawn attention to 

the nature and context of the Trans-Eurasian exchange of cereal crops (cf. Jones et al. 

2010). Previous publications provide us with plausible views on the potential pathways of 

wheat translocation through Central Asia, and its introduction to China and India (see 

Section 2).  

 

Barton and An (2014) have emphasised the role of archaeological visibility, and suggest 

that wheat may have arrived in different parts of China through different channels and at 

different times. We concur with their argument, as these current dates probably reflect the 

establishment of the wheat cultivation, on some reasonable scale, leading to 

archaeological visibility. Our evidence adds two things, however. Firstly, the spread of 

wheat across East and South Asia was a more gradual and intermittent process than has 

previously been inferred (cf. Zhao 2009; Barton and An 2014). The dates for the first 

appearance of wheat ranged between 2650 and 800 cal. BC, from Tasbas to Jiaochangpu 

in the north (Zhaojiazhuang notwithstanding), and between 2850 and 1700 cal. BC from 

Tigrana to Sannarachamma in the south (see Fig. 1). In the case of China, there is 

evidence that this process of spread was protracted over almost two millennia.  

 

Secondly, we could distinguish separate sequences along the north and south of the 

Tibetan Plateau (see Fig. 1 and 2). In the north, the sequence runs from the eastern range 

of the Inner Asian Mountain Corridor through the Tianshan Mountains and the Hexi 

Corridor. It then extends to the middle and lower reaches of the Yellow River. In the 

south, though on the basis of less data, the sequence runs from northwest India through to 
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south India and the Ganges region. The source of wheat in Tibet could be from either the 

northern or the southern corridor. Here, two points are worth noting. In the north, 

although the directly dated wheat grains from the lower Yellow River post-date 1500 cal. 

BC, there have been reports of earlier wheat grains. As discussed above, a grain from one 

of the Longshan culture sites, Zhaojiazhuang, is dated to the mid-third millennium BC. 

Although there are fewer data points in the south, the limited evidence we have reveals a 

sequence running from the southern Iranian Plateau, to the greater Indus region and 

northwest India, and subsequently to the Ganges region in the east, and to south India. 

Although the directly dated wheat grains from Harappa itself (in modern Pakistan) post-

date those from northwest India, free-threshing wheat is ubiquitous throughout earlier 

phases of occupation there (Weber 1999, 2003), as well as at other early-mid third 

millennium sites in the area (see Fuller and Madella, 2001; Fuller, 2006; Thomas and 

Cartwright, 2010). It is likely that free threshing wheat spread into northwest India via the 

Indus valley and Punjab. While further dating will be undertaken to confirm these 

hypotheses, these data support the argument that the current dates probably reflect the 

establishment of some large-scale cultivation of wheat, rather than the initial introduction 

(‘first appearance’ dates) of wheat into China and India. 

 

Changes in the pace of the spread of free threshing wheat is worthy of note. In the north, 

the adoption of wheat was initially rapid. The earliest dates from the western Chinese 

provinces of Xinjiang, Qinghai and Gansu, for example, fall within a few centuries, from 

about 2100 to 1800 cal. BC. This rapid pace is then interrupted in eastern Gansu and 

eastern Qinghai. The pace then recovered in the central plains (zhong yuan) after 1650 

cal. BC. Although the current data do not allow us to comment on the pattern in South 

Asia with similar clarity, there might be a parallel pattern of interruption moving from the 

Indus plains and northwest India to south India. 

 

This pause may be understood in both its environmental and cultural contexts. In terms of 

the environment, the Asian summer monsoons bring water from the Pacific and Indian 

Ocean into much of southeastern China and the subcontinent, and have a powerful 

ameliorative effect on the intrinsic aridity of the continental interior. Northwest China lies 
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beyond the monsoon, while central-east China lies within it. Similarly, the Indus region is 

situated at or just beyond the monsoonal zone, while northwest and south India both lie 

well within it. This effect would have an impact on crop choice in these regions. In the 

case of China, despite the debates about the variations of the East Asian monsoon in the 

Holocene, the monsoon probably found its limit during the third and second millennia BC 

in eastern Gansu and Qinghai (An et al., 2005; Chen et al., 2008).  

 

Turning to the cultural context, archaeologists have noticed that the monsoonal divide 

also forms cultural boundaries between eastern and western sectors of China in the past. 

In the context of the trans-Eurasian exchange of material goods, Rawson (2013) has 

highlighted differences in prehistoric material culture traditions between areas within the 

monsoon and areas immediately outside it. There tended to be a fast adoption and 

adaptation of western technologies, luxury goods and weapons in regions beyond the 

monsoon, and with some interruption of that pace, moving into the central plains. A 

pattern apparent in the material culture record thus resonates with the early evidence for 

wheat discussed here. In contrast, the Indus Civilisation spans both winter and summer 

rainfall zones, and while there are clear material culture differences between 

neighbouring regions that lie within one or other rainfall zone, the Indus is notable for the 

exploitation of a number of similar elements of material culture in both zones (Petrie et 

al. in press). 

 

6.2 Grains become smaller as they move east  

 

Turning from radiocarbon dates to seed/grain size, a general trend is that the length and 

breadth of grain measurements both decrease from west to east, most particularly  the 

length. The smallest wheat grains are those encountered in central-eastern China. They 

show statistically significant differences in both length and breadth from grains in 

northwest China, West Asia and South Asia. Although grains from northwest China are 

smaller, on average, than those from West Asia and South Asia, these differences are not 

statistically significant. Within China, there is a clear pattern of decreasing grain length 

and breadth from northwest to southeast (the geographical trend in grain size reduction is 
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shown in Fig. 4). Within India, to a less statistically significant degree, there is a pattern 

of decreasing grain length and increasing grain breadth from the Indus/NW India to the 

Ganges region. 

 

These findings must be viewed in the context of the effect that charring has on size and 

shape. A study by Braadbaart (2008)  on artificial charring of T. aestivum grains at 

different temperatures and for different time periods shows some increase in breadth and 

decrease in length. Through experimental charring of grain, a subsequent study 

demonstrated that distortion is less likely to occur at temperatures below 250 °C and 

proposed that this undistorted type is the state of grain found at well-preserved 

archaeological sites (Styring et al., 2013). A further study will clarify the 

archaeobotanical identification of different Triticum species and sub-species (Lister et al., 

in prep.). In this paper we consider the small wheats in the context of culinary choices. 

 

6.3 Getting smaller in the context of culinary choices 

 

While a range of factors, taphonomic as well as biological, can lead to a prevalence of 

small grains in the archaeobotanical record, the consistency of size across a range of 

Asian archaeological contexts suggests an underlying shift through the selection of 

smaller grained plants. Various hypotheses have been put forward to account for the 

selection of compact forms, particularly T. aestivum subsp. sphaerococcum (cf. Crawford 

1992). For example, a short rigid culm may confer greater stability against lodging in 

monsoonal climates. A similar observation was made in relating the small grains in 

Kyrgyzstan to the adaptation to the altitude and strong valley winds in the region 

(Motuzaite Matuzeviciute et al., 2015). Compact forms also show resistance to drought 

and, specifically, T. aestivum subsp. sphaerococcum shows resistance to the yellow rust 

caused by the pathogen Puccinia striiformis (Chen et al., 2012). Rounder grains are easier 

to mill, and the shallow crease of the grain produces a whiter flour which may be more 

desirable culturally, as this flour is said to make higher quality bread than regular wheat. 

The grains also have a higher protein content than T. aestivum (Josekutty, 2008). During 

the ‘green revolution’ of the 1960s, other dwarfing genes were bred into modern wheat, 
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producing wheat varieties suitable for the climate of South Asia without compromising 

yield (Mori et al., 2013). Spengler (2015) has suggested parallel evolutionary pathways 

for highly compact wheat forms in Central Asia and East Asia.  

 

In 2011, Fuller and Rowlands discussed difference between eastern and western 

traditions of food preparation and ingestion that may be deeply rooted in prehistory. 

Ethnographic and archaeological evidence would indicate a contrast between two 

traditions: a wholegrain steaming and boiling tradition in East and South Asia, and a 

grinding and bread-baking tradition in West and Central Asia and north India. Fuller and 

Rowlands (2011) point out that the boundaries between these culinary traditions correlate 

with the limits of the East Asian and Indian summer monsoon. The eastward spread of 

free threshing wheat into China thus crossed not only an environmental divide, but also a 

culinary one. Its southward spread into southern India and eastward into the Ganges also 

involved culinary transitions, as it moved into areas previously dominated by alternative 

boiling (Ganges) and pulse and millet-based (South India) traditions (Fuller and 

Rowlands 2011).  

 

The actual manner of selection merits further enquiry. In the case of China, given the 

pace of the eastward spread, we propose that the grain size of free threshing wheat was 

selected consciously. It would be interesting to explore and model how quickly such 

intense selection upon these cereal ear characteristics would impact upon average grain 

size. There is also the issue of how other factors, such as sowing practice, may connect 

with selection for this trait. 

 

In conclusion, although regional variations in timing, pace and selection pressure lease 

much to explore, we suggest that differences in long standing culinary tradition offer the 

parsimonious explanation of the widespread substantial diminution in grain size of one 

the world’s most important cereal crops. 
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Figure 1. Key sites mentioned in the text. The oldest individually dated grains of free-
threshing wheat from each region are indicated. 1. Begash, 2. Tasbas 1, 3. Aigyrzhal-2, 4. 
Gumugou, 5. Shengjindian, 6. Yanghai, 7. Astana, 8. Sidaogou, 9. Xicaozi, 10. Wupaer, 
11. Xintala, 12. Karou, 13. Bangga, 14. Changgougou, 15. Xishanping, 16. Heishuiguo, 
17. Donghuishan, 18. Ganggangwa, 19. Huoshiliang, 20. Mozuizi, 21. Shaguoliang, 22. 
Huangniangniangtai, 23. Dadiwan, 24. Huoshaogou, 25. Qiaocun, 26. Fengtai, 27. 
Jinchankou, 28. Aiqingya, 29. Xiariyamakebu, 30. Shuangerdongping, 31. Longshan, 32. 
Zhouyuan, 33. Shangguancun, 34. Nansha, 35. Wangchenggang, 36. Yanshishangcheng, 
37. Zhaogezhuang, 38. Dongpan, 39. Daxinzhuang, 40. Liujiazhuang, 41. Jiaochangpu, 
42. Zhaojiazhuang, 43. Yantai, 44. Harappa, 45. Khirsara, 46. 4-MSR/Binjore, 47. 
Tigrana, 48. Kunal, 49. Banawali, 50. Kanispur, 51. Ojiyana, 51. Pikliha, 53. 
Sannarachamma, 54. Hiregudda.  
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Figure 2. The implied ‘first appearance dates’ (i.e. ‘Start’ Boundaries) of the sixteen 
regions (grouped in six broader regional groups) derived from the Bayesian statistical 
model. The horizontal bars below each of the probability density functions reflect the 
68.2% and 95.4% highest probability density ranges, respectively. These results show a 
west-east chronological sequence in Central and East Asia, and a north-south sequence in 
South Asia.   
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Figure 3. (a) Scatterplot and (b) the average values of charred grain length and breadth 
from six regions (desiccated samples not included). The length and breadth of wheat 
grains from China are smaller than those of other regions. The size of grains from central-
east China is particularly diminished. Due to the small sample size (n=2), similar 
observations cannot be drawn from Kazakhstan.  
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Figure 4. (a) Scatterplot and (b) average values of charred grain length and breadth from 
China (desiccated samples not included). The grain length and breadth decreased as free 
threshing wheat moved from northwest China to central-east China. 
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Figure 5. Boxplot of grain length vs breadth from four different regions. The horizontal 
line connects the means. Grains from South Asia and West Asia are identical in length, 
while grains from CE China and NW China differ from them and from each other. 
Chinese grains are smaller, particularly those from CE China (a). For the measurement of 
breadth, however, NW China is identical to South Asia and West Asia, while CE China is 
smaller than the others. (b). 
 

 

 


