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ABSTRACT

Superfluidity in a uniform two-dimensional Bose gas
Panagiotis Christodoulou

This thesis describes experimental studies regarding superfluidity in a two-dimensional gas of ul-
tracold atoms trapped in a uniform potential. It is conceptually divided into three parts.

In the first part we offer a theoretical discussion of a superfluid, first from a general perspective and
then concentrating on its distinct features when restricted to two-dimensions. One of the hallmarks of
superfluidity in all dimensions, predicted by the highly successful hydrodynamic two-fluid model and
observed in both liquid helium and ultracold atomic gases, is the existence of two kinds of sound exci-
tations, the first and second sound. Unlike its three dimensional counter-part, however, superfluidity
in two dimensions is associated with the pairing of vortices of opposite circulation as described by
the Berezinskii-Kosterlitz-Thouless (BKT) theory, rather than the emergence of true long-range or-
der. One of the most well-known features of BKT superfluidity is the universal jump in its superfluid
density at a critical temperature without any discontinuities in the fluid’s thermodynamic properties.

In the second part we describe the experimental realisation and the characterisation of a versatile
two-dimensional box trap for the confinement of a 39K atomic gas. Our apparatus is the outcome
of merging a previously existing experimental setup with a series of modifications and extensive
additions. Importantly for this thesis, we are able to tune the interactions of the gas with the aid
of a magnetic Feshbach resonance, reaching the hydrodynamic regime where the predictions of the
two-fluid model for a two-dimensional superfluid are expected to be valid.

With a homogeneous and tunable two-dimensional gas at hand, in the third part of this thesis we
describe our experimental method to observe both first and second sound; the latter is seen for the
first time in any two-dimensional fluid. From the two temperature-dependent measured sound speeds
we deduce its superfluid density, a central quantity for a superfluid that had so far remained elusive
in ultracold gases. Our results agree with BKT theory, including the prediction for the universal
superfluid-density jump.
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1 Introduction

“In the beginning was the Word.”

— John 1:1

The general framework

The theoretical prediction of a Bose-Einstein condensate (BEC) [1] in 1925 and the observation of
dissipationless flow of liquid 4He [2, 3] in 1938 are considered two milestones in shaping the field of
Quantum Fluids, a field that has been providing great insights into the quantum many-body problem
for almost a century. A quantum fluid is any many-particle system that exhibits both quantum
mechanical and quantum statistical behaviour. The former emerges when the de Broglie wavelength
of individual particles becomes comparable to their inter-particle distances at low temperatures, at
which the statistics of the indistinguishable particles has an effect.

It is then not a surprise that Bose and Fermi quantum fluids, obeying Bose-Einstein and Fermi-
Dirac statistics respectively, require a different theoretical treatment on a microscopic level. However,
on the macroscopic scale, the single most spectacular feature of the various quantum fluids is their
ability to become superfluids, i.e. to show exotic manifestations not expected for classical fluids. Flow
without friction in capillaries [2, 3] is probably the most striking behaviour of a superfluid. Other
hallmarks include the emergence of irrotational flow [4–6], the existence of metastable persistent
currents [7, 8] and a macroscopic tunneling in Josephson junctions [9, 10]. Conceptually, superfluidity
is now linked with the existence of an ordered phase, most commonly a BEC, either directly as in
the case of Bose fluids, or through a pair formation (Cooper pairs or Bosonic dimers) as in the case
of Fermi fluids.

Concentrating on neutral quantum fluids, the first one1 studied experimentally for its superfluid
properties was the Bosonic liquid 4He. At 2.19K it undergoes a second order phase transition to

1Other quantum fluids, such as stellar objects (neutron and quark stars) seem to appear in nature, although difficult
to be tested in the laboratory. The conduction electron gas in metals can be considered also a quantum fluid, which in
this case is charged.

1



2 CHAPTER 1. INTRODUCTION

a superfluid state. The other stable helium isotope, the Fermionic 3He, was found also to support
superfluidity [11] with a critical temperature of about 2.6mK, three orders of magnitude lower than
4He. Helium, in both its stable isotopes, is the only element that remains liquid down to the lowest
attainable temperatures, as a consequence of the large zero-point kinetic energy of the atoms. This
renders liquid helium a unique system for studying quantum behaviour on a macroscopic scale.
Nevertheless, for this strongly-correlated fluid a quantitative microscopic theory, especially for finite
temperatures, is not yet satisfying; liquid helium cannot be treated as a perturbation to the non-
interacting case where the behaviour is well-understood.

This is not the case for a dilute weakly-interacting quantum gas. Nowadays, gases of ultracold
atoms, but also of photons [12] and quasi-particles, like exciton-polaritons [13] and magnons [14],
have reached quantum degeneracy in a metastable state2. Among the systems above, ultracold
gases have gained exceptional attention after the first realisation of a gaseous BEC in 87Rb [15] and
23Na [16] vapour. Since then, gases of various Fermionic and Bosonic isotopes have been cooled to
degeneracy: spin-polarised atomic hydrogen [17], alkali atoms [18–25], alkaline earths [26–29], rare
earth elements [30–32], and 52Cr [33]. Beyond mono-atomic particles, non-polar [34–36] and recently
polar [37] molecules have also been observed in the degenerate regime.

This plethora of available systems is a direct consequence of the way ultracold atomic gases
are prepared and manipulated. Their wall-free magnetic or optical confinement provides isolation
from the surroundings and a clean environment, free of the ubiquitous impurities of a solid-state
system; disorder can, additionally, be introduced in a controlled way for studies of impurity effects.
Their diluteness offers, in general, an ab initio description of interactions, giving the possibility of
quantitative theoretical predictions. The extreme control over nearly all experimental parameters
(atomic internal states, interaction strength, trapping geometry, dimensionality) and the intrinsic
long time- and length-scales of their dynamics make ultracold gases an ideal platform for numerous
studies in the modern fields of phase transitions, strongly-correlated many-body systems, and out-
of-equilibrium behaviour.

Indeed, now, around 25 years after the ignition of the field, there is a vast amount of studies on
ultracold gases. The thermodynamics of the Bose [38, 39] and Fermi [40, 41] gas in the form of an
equation of state is currently, in many cases, well understood. The gas dynamics [6, 42–45] close
to equilibrium has also been investigated and many superfluid features [46–49] have been identified.
More complex situations, like far-from-equilibrium behaviour and open systems have started to make

2For ultracold gases, one must preserve them in a metastable gaseous phase for sufficient time before the formation of
a solid. This is possible at extremely low densities, where the two-body interactions between the particles, responsible
for reaching thermal equilibrium, dominate molecular recombination. This low density, though, implies also the need
for very low critical temperatures in the ultracold regime. Systems of quasiparticles, on the other hand, cannot reach
thermal equilibrium with a non-zero chemical potential, i.e. with a conserved particle number. To overcome this, one
should add an external pumping mechanism to compensate relaxation, such that a stationary metastable state emerges
with a quasi-conserved number of particles. However, this combination of injection and damping leads to a system that
is intrinsically out-of-equilibrium. It is worth mentioning, though, that because of the small mass of the quasi-particles,
degeneracy can be reached even at room temperatures, a property that could be exploited for potential applications.
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their infant steps in the field. Various phase transitions, quantum and thermal, have been observed
and extensively investigated, especially after achieving a precise control of the atomic interactions, by
exploiting Feshbach resonances [50]. Among other quantum transitions and crossovers [51–59], the
observation of the Mott-to-superfluid transition [60] and the BCS-BEC crossover [61–63] had been
long-standing goals that were finally met. In addition, various thermal transitions were identified,
like the aforementioned BEC transition in three dimensions and the Berezinskii-Kosterlitz-Thouless
(BKT) transition [64] in two dimensions.

This thesis

The case of two-dimensional (2D) systems is of particular interest for understanding superfluidity
because of its distinct origin. Unlike their 3D counter-part, 2D superfluids are not associated with
a BEC with true long-range order [65, 66], but they rather emerge from the behaviour of existing
topological defects, known as vortices. The mechanism behind 2D superfluidity was theoretically
explained within the work of Kosterlitz and Thouless [67] and Berezinskii [68], first derived to explain
the melting of 2D crystals, but later also applied to other 2D systems (superconductors, magnets,
Coulomb plasma etc). The topological transition to BKT superfluidity is characterised as of infinite
order, followed by the emergence of quasi-long-range order and it does not involve any spontaneous
symmetry breaking or any discontinuity in the thermodynamic quantities; however, a universal jump
of the superfluid density at the critical point [69] constitutes one of the main signatures of BKT
superfluidity.

This jump has been long observed in thin films of the dense liquid 4He [70–72] verifying the
BKT predictions. In ultracold gases many complementary studies on BKT superfluidity have been
conducted [64, 73–82], going even beyond those in liquid helium3 [64, 73, 78], all of which provide
good evidence for the applicability of the BKT theory. However, in 2D ultracold gases a direct
measurement of the superfluid density is still missing. This can be attributed (partially at least)
to the existence of an additional inhomogeneous confinement used for the trapping of the atoms.
Unlike helium, customary traps for ultracold gases have been harmonic in space, inducing a position-
dependent atomic density and obscuring many phenomena around a phase transition. With the
advent of textbook-like box potentials for confining the atoms [83], and also in two dimensions [84–
87], there is a renewed interest in measuring the superfluid density in such systems, one of the last
standing questions for understanding the (close to) equilibrium behaviour of a 2D Bose gas.

The extraction of the 2D superfluid density is the main topic of this thesis. Various ideas have
been proposed for a quantitative measurement of it in a system of ultracold gases [88–91], most of
which being an adaptation of the techniques used in liquid helium films. However, new opportunities

3Apart from a direct observation of the underlying mechanisms, the close connection with the theory, and their apt-
ness for control, ultracold gases provide a strong tool for studying superfluidity compared to helium as with the former
one can distinguish effects coming from various sources like the substrate, the dynamic nature of the measurements
and the finite size of the system. One can also vary at will the various parameters of the gas, a difficult task in helium
films. These capabilities can lead to a deeper understanding and maybe even to new physics.
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but also new difficulties arise because of the different nature of these experiments compared to those
in liquid helium. The remainder of this thesis is devoted to the theoretical understanding of BKT
superfluidity and the experimental description of the challenges we faced to extract superfluid density
and observe its discontinuity at the critical point.

In the next two chapters, we attempt to clarify the various notions, silently introduced already
here, that are related with a superfluid. In Chapter 2, we approach the general concept of superflu-
idity from various theoretical points of view, ranging from a phenomenological to a fully microscopic
treatment. In Chapter 3, we concentrate on a two dimensional system and describe the unique
behaviour of BKT superfluidity. Throughout these two chapters, we always keep in mind that we
experimentally work with a dilute ultracold gas which allows many conceptual simplifications.

Chapter 4 describes the construction and the characterisation of a newly-built 2D uniform trap of
39K atoms on the ‘ashes’ of a previous experimental setup [92], which serves as the platform for our
measurements. 39K is a relatively difficult alkali species to cool down towards degeneracy, mainly
due to the lack of separation of its hyperfine states, but it provides us with some broad magnetic
Feshbach resonances to finely tune the atomic interaction strength. This opportunity will be proven
crucial for the experimental success of this project.

In Chapter 5, we present our experimental studies and show our final results. In short, we realise
a proposal [91] that makes use of the existence of two discernible sound perturbations (of the same
wavelength) when a superfluid is formed. The first and second sound, as these two modes are widely
known, serve as the means for the extraction of the superfluid density. It is worth noticing that
second sound has never been observed before in any 2D system, and thus such a measurement has
its own weight. The main results discussed in this chapter have been published in: P. Christodoulou,
M. Ga lka, N. Dogra, R. Lopes, J. Schmitt, and Z. Hadzibabic, Observation of first and second sound
in a BKT superfluid, Nature 594, 191 (2021).

Finally, in chapter 6 we shortly discuss the various further opportunities that are offered by this
newly-built experimental platform.



2 Superfluidity in a Bose gas

“I fear those big words, Stephen said, which make us so unhappy.”

— James Joyce, Ulysses

Superfluidity, a term coined [2] in 1938 to accentuate the then-novel observation of frictionless flow
of liquid helium in narrow channels, now rather refers collectively to a number of non-classical man-
ifestations of low-temperature matter; the creeping effect [93], the fountain effect [94], the extremely
good heat conduction [95], and the preservation of dissipationless currents [7] are examples of such
manifestations. Since that first observation in helium, the various phenomena of superfluidity have
been extensively studied both theoretically and experimentally.

From a theoretical perspective, primal studies attempted to understand superfluidity on a phe-
nomenological level by exploiting the general tools of hydrodynamics. On a next, semi - phenomeno-
logical level, the macroscopic behaviour of superfluidity has been connected with certain microscopic
properties, like the notion of elementary excitations1. On a third level, attempts are made to explain
the superfluid properties from a purely microscopic point of view, a task that still remains far from
being complete.

In this chapter, we present a theoretical overview of superfluidity. We discuss all three afore-
mentioned levels of description, each of them providing a complementary picture in understanding
superfluid behaviour. Preparing for next chapters, we focus our attention on the sound perturbations
that may be excited within a superfluid. To set the framework, sound propagation can be classified
into two categories in a quantum fluid: collisionless sounds, like the zero sound, emerging from dy-
namic self-consistent mean fields2, and hydrodynamic sounds, like the first and second sounds, where

1In realistic systems the elementary excitations have not been deduced ab initio but rather extracted from experi-
mental processes; this renders this level of treatment semi-phenomenological.

2We should note that the terminology of zero sound exists also in the collisionless regime of the strongly-interacting
liquid helium, but in that case it is more related with mean-field effects arising from the excited atoms rather than a
coherent ground state.

5



6 CHAPTER 2. SUPERFLUIDITY IN A BOSE GAS

collisions between the constituent particles suffice to sustain local equilibrium. Finally, we point out
that our discussion remains restricted to a uniform and isotropic fluid.

2.1 A phenomenological treatment

Among its manifestations, the conceptually simplest behaviour that often serves as a definition for
a superfluid on a macroscopic level is its unique response to slow rotations. Consider3 a quantum
fluid of mass density ρ = mn (m the mass of the particles and n the number density of the fluid)
inside a thin annular ring of volume V with a very similar inner and outer radius of its walls (≈ R)
both of which rotate with extremely small angular velocity Ω. The fluid then, being essentially
in equilibrium with the moving walls, is a superfluid at low temperatures T if its total angular
momentum L(T ) = f(T )ρV R2Ω deviates by a factor f(T ) < 1 from the classically expected case in
which all the constituent particles travel approximately with a velocity ΩR.

To explain this deviation, one may postulate a split of the fluid into two parts, one with a density
ρn = ρf(T ) that behaves normally with its constituent particles moving with velocity vn = ΩR,
and a second (superfluid) component with a density ρs = ρ[1 − f(T )] and velocity vs = 0. For high
enough temperatures f(T ) = 1 and the normal behaviour is restored. In the other limit, for T → 0
the normal component diminishes (f → 0) and the whole fluid becomes a superfluid with no rotation
at all. Although the fact that vs = 0 is a result for the specific configuration, the description of
a superfluid as two interpenetrating components [97, 98], each with its own density and velocity
fields, was found to be more general and successful in describing both thermodynamic equilibrium,
as above, or small deviations from it.

Such small deviations from equilibrium are typically described within the theory of hydrodynam-
ics. For a distortion of a frequency ω to be close to equilibrium, 1/ω should remain large compared
to any relevant timescales in the system; in this case, equilibrium can be at least locally established.
Equilibrium is maintained by elastic collisions between the particles in the fluid with a characteristic
relaxation time τ . The condition, then, for reaching local equilibrium can be quantified as

ωτ ≪ 1. (2.1)

Before discussing the hydrodynamic two-fluid model for a superfluid, we present a short (but
essential in the framework of this thesis) reminder of single-fluid hydrodynamics. For both models
we omit an extensive derivation and keep only the necessary steps for grasping the physics behind
the results. Details of such derivations can be found, for example, in the classical textbooks for the
single-fluid [99] and the two-fluid [100] models.

3This hypothetical experiment is very similar to the first experiment conducted by Andronikashvili [96] for the
measurement of the normal and superfluid densities in three-dimensional liquid helium.
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2.1.1 One-fluid hydrodynamics

When the hydrodynamic condition of Eq. (2.1) is met, one can treat the behaviour of a fluid
as a perturbation in its thermodynamic state, and simplify its description with the use of only
a small number of (hydrodynamic) variables. These are the densities of quantities that satisfy a
conservation law4. We then expect for the system to show one low-frequency excitation mode for
each hydrodynamic variable.

A single isotropic fluid in d dimensions obeys the following conservation laws:

∂ρ

∂t
+ ∇g = 0 (2.2)

∂g
∂t

+ ∇p− η

ρ
∇2g − 1

ρ

(
ζ + 1

d
η

)
∇(∇g) = 0 (2.3)

∂ϵ

∂t
+ ∇[(ϵ+ p)v − κ∇T ] = 0 (2.4)

The first equation expresses the conservation of particles and connects the mass density ρ with the
mass current which is nothing but the momentum density g = ρv, with v the velocity field of the
fluid. The second equation, a generalised Euler’s equation, is an expression of Newton’s second
law with the net force arising from both spatial (longitudinal) variations in pressure p and viscous
stresses which act as sources of momentum. There are two coefficients of viscosity in a single fluid:
shear viscosity η arising from momentum exchange due to atomic motion, and bulk viscosity ζ that
connects the colliding atoms with internal degrees of freedom. Finally, the third equation represents
the energy conservation in the presence of dissipation. Here ϵ is the energy density, κ the thermal
conductivity and T the temperature of the fluid. The term ϵv corresponds to the internal energy,
while the term pv to the work done on the fluid.

The energy and mass conservation together with conservation of the three components of the
momentum lead to five hydrodynamic modes. We restrict ourselves to the case of small deviations
δX(r, t) from the equilibrium value X0(r), i.e. X(r, t) = X0(r) + δX(r, t), for the relevant quantities
entering the above equations, X = {ρ, p,g, ϵ, ...}. In the absence of any coupling, all five modes
would be expected to satisfy a diffusion equation. This is, indeed, the case for the two transverse
components of momentum gt, where from Eq. (2.3) one gets ∂δgt

∂t = η
ρ∇2δgt.

However, the coupling of Eqs. (2.2) and (2.3) through the longitudinal momentum density, and
of Eq. (2.4) through the velocity field results in the following set of closed equations for the small

4Such quantities, unlike other degrees of freedom that decay to zero on timescales of the order of τ , are characterised
by slow temporal variations at long wavelengths; this can be easily seen by Fourier-transforming a conservation law, for
example Eq. (2.2), in time and space and identify that time diverges (ω → 0) when the system approaches equilibrium
(q → 0).
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fluctuations δX = {δρ, δs}

∂2δρ

∂t2
= 1
ρ

(
d+ 1
d

η + ζ

)
∂

∂t
∇2δρ+

(
∂p

∂ρ

)
S

∇2δρ+
(
∂p

∂s

)
ρ

∇2δs (2.5)

∂δs

∂t
= κ

Tρ

(
∂T

∂ρ

)
s

∇2δρ− κ

Tρ

(
∂T

∂s

)
ρ

∇2δs. (2.6)

Here we replaced, as commonly practiced, the energy density with the entropy per unit mass s
through the thermodynamic relation Tρds = dϵ − (ϵ+p)

ρ dρ. By simply inspecting Eqs. (2.5) - (2.6),
one anticipates the existence of a diffusive mode for the entropy (heat mode) and a sound propagation
for the density. The latter becomes obvious in the absence of dissipation (η, ζ and κ being zero)
where the above equations reduce to

∂2δρ

∂t2
=
(
∂p

∂ρ

)
s

∇2δρ (2.7)

∂δs

∂t
= 0 (2.8)

with the density sound mode propagating at a speed c10 =
√(

∂p
∂ρ

)
s
. This mode is usually called first

sound in the literature.

When dissipation is considered, the diffusive heat mode that appears is characterised by the
diffusivity

DT = κ

ρcp
. (2.9)

Additionally, first sound gets also attenuated with a damping rate Γ10 = D10q
2, where [99, 101]

D10 = 1
ρ

(
d+ 1
d

η + ζ

)
+ κ

ρcp
(γ − 1) (2.10)

is the so-called sound diffusivity and q the sound’s wavenumber. The second term in D10 depends
directly on γ = cp/cv, the ratio of the heat capacities per unit mass, cp,v = T (ds/dT )p,V , under
constant pressure and under constant volume V , respectively. By using simple and general thermo-
dynamic arguments, we can also write γ = κT /κs, with κT,s = −1

ρ

(
∂ρ
∂p

)
T,s

the isothermal (subscript
T ) and isentropic (subscript s) compressibility of the fluid. The quantity γ will play an important
role throughout this thesis and we discuss it more in the next section.

2.1.2 Two-fluid hydrodynamics

We now turn our attention to the case of a superfluid. As already discussed, a good model to
catch the basic physics of a superfluid is its separation into two components, the normal and the
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superfluid, with their densities, ρn = mnn and ρs = mns respectively, satisfying

ρ = ρs + ρn. (2.11)

for the total mass density ρ = mn. It is important to note that neither of these components satisfies
a continuity equation alone and particles can interchange between the two fluids. Similar to the
one-fluid case, our starting point is the proper extraction of the underlying conservation laws. In
order to keep a clear intuition for the modifications from the one-fluid case, we first restrict ourselves
to a dissipationless situation. Later on, we discuss about those physical effects that appear when
dissipation is included.

The conservation relations characterising a two-fluid system are:

∂ρ

∂t
+ ∇g = 0, (2.12)

∂g

∂t
+ ∇p = 0, (2.13)

∂s

∂t
+ ∇(svn) = 0. (2.14)

Eqs. (2.12) and (2.13) for the mass and the momentum conservation have the same form as the
corresponding Eqs. (2.2) and (2.3) for a single fluid; here the total current density is g = ρnvn +ρsvs.
Unlike the first two equations, where both components contribute to the corresponding currents,
Eq. (2.14) states that only the normal component carries entropy. For the complete description of
the two-fluid model, in the above set of equations one needs to add the irrotational character of the
superfluid motion

∇ × vs = 0. (2.15)

We next determine the small amplitude modes of the model described by Eq. (2.12) - Eq. (2.15),
in the same spirit as in Sec. 2.1.1. Following Khalatnikov’s treatment [100], the linearised version of
the two-fluid system gives:

∂2δρ

∂t2
=
(
∂p

∂ρ

)
s

∇2δρ+
(
∂p

∂s

)
ρ

∇2δs, (2.16)

∂2δs

∂t2
= s2ρs

ρn

(
∂T

∂ρ

)
s

∇2δρ+ s2ρs
ρn

(
∂T

∂s

)
ρ

∇2δs. (2.17)

Comparing this set of equations with the corresponding set of Eqs. (2.7) - (2.8) for the one-fluid
case, we now observe the existence of an additional sound mode, known as second sound. Even from
Eq. (2.17) it becomes apparent that it is the coupling of the heat to the superfluid density ρs that
converts energy diffusion into a sound mode. With an assumption of harmonic fluctuations in time
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t and space5 y (δρ, δs ∝ e−j(ωt−qy)), the velocities of first and second sound c = ω/q are eventually
found to satisfy the following Landau’s quartic equation

c4 − (c2
10 + c2

20)c2 + c2
10c

2
20/γ = 0 (2.18)

where c2
10 =

(
∂p
∂ρ

)
s

= 1
ρκs

and c2
20 = ρs

ρn
Ts2

cv
are quantities determined from thermodynamics. The

solution of the previous equation gives the speeds for first (c1) and second (c2) sound

c2
1,2 =

c2
10 + c2

20 ±
√

(c2
10 − c2

20)2 + ∆
2 , (2.19)

with ∆ = 4c2
10c

2
20(γ−1)/γ. In the above, following literature, first sound is defined as the mode with

the higher velocity.

The nature of first and second sound

We first inspect the terms
(
∂p
∂s

)
ρ

and
(
∂T
∂ρ

)
s

that couple δρ and δs in the two-fluid model (Eqs. (2.16)
- (2.17)), and also in the dissipational single fluid (Eqs. (2.5) - (2.6)). Using Maxwell relations and
the general thermodynamic identity [102]

cp − cv = Ta2
T

ρκT
, (2.20)

one can find that
(
∂p
∂s

)
ρ

and
(
∂T
∂ρ

)
s

are equal and proportional to γ−1. In the above, aT = −1
ρ

(
∂ρ
∂T

)
p

is the thermal expansion coefficient of the fluid. It is then not a surprise (actually part of the
derivation process) that both sound speeds in a superfluid, and also the damping rate of the sound
in a normal gas depend on this mixing quantity6 γ − 1.

In order to investigate the nature of first and second sound, we first notice that for a perfectly
incompressible fluid (κT = 0), the quantity cp − cv in Eq. (2.20) unphysically diverges unless aT
becomes zero. Since aT /κT = (∂p/∂T )ρ has to remain finite, it turns out that cp = cv or equivalently
an incompressible fluid is characterised by γ − 1 = 0. In this case, no coupling is present and first
and second sound are pure density and entropy waves, respectively, with c1 = c10 and c2 = c20,
as found from Eq. (2.19). Any local excess of superfluid density would result in local excess of the
normal component at another point of space and thus to temperature differences. Since first sound
does not contain any such temperature differences, the two components of the superfluid have to
fluctuate in-phase with the same velocity, vs = vn. Similarly, for second sound there is no density
change, so the total density current g = vsρs + vnρn should be zero; second sound is an out-of-phase
propagation of the normal and the superfluid components with vs/vn = −ρn/ρs. In practice, liquid
helium and also unitary Fermi gases are well-considered to be incompressible fluids.

5Here and in the rest of this thesis j denotes the imaginary unit.
6In studies of Fermi gases this parameter is often referred to as the Landau - Placzek ratio.
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The situation is very different for a non-zero aT (and κT ), where one finds7 γ > 1. Although
not obvious from the results presented until now, in the case of a large aT , the first sound becomes
mainly an oscillation of the normal component and second sound an oscillation of the superfluid
component [103]. The weak oscillations of the complementary components in each sound mode
follow the previous prescription to keep first sound an in-phase and second sound an out-of-phase
oscillation [103]. The non-zero γ − 1 has important consequences also for a single fluid (like a
degenerate gas above the critical superfluid temperature), since it allows the coupling of the damped
heat mode with density. In reality, weakly-interacting dilute Bose gases are a good example of such
compressible fluids with an important mixing of density and entropy fluctuations in both first and
second sound.

Finally, we note that from Eq. (2.20), even if aT , κT ̸= 0, at T = 0 all fluids behave like incom-
pressible (γ = 1). In the other limit, at high temperatures, a classical treatment for a monoatomic
ideal gas gives γ = (d+ 2)/d, which for our relevant 2D case in the next chapters becomes γ = 2.

2.1.3 Density response to an external probe

In experiments with ultracold gases, where entropy oscillations are difficult to observe8, the most
efficient way of studying the dynamics of the gas is through density fluctuations. The coupling of sec-
ond sound with density fluctuations in compressible fluids offers a great opportunity for its detection
and further investigation. Here, we focus on the density response of a superfluid to some external
perturbation. Generally, there are two different approaches for characterising such a response. On a
purely experimental level, the emerging quantity of interest is the dynamic structure factor, whereas
starting from a more theoretical perspective it is the density response function that contains all the
information we need. These two quantities, connected through the dissipation - fluctuation theorem,
will be discussed here, first from a more general point of view and afterwards in the framework of
the one- and two-fluid models. They will play a crucial role in our experimental work as described
in the next chapters.

Density response function

A straightforward way to study density fluctuations is to observe the effects of applying some
external-potential perturbation δU(r, t). When this perturbation is small, within the linear response
theory, the density fluctuation δn(r, t) becomes

δn(r, t) =
∫

dq

(2π)d
∫
dω

2π χ(q, ω)δU(q, ω)ej(qr−ωt) (2.21)

7Physically, this inequality expresses the fact that one needs to put more energy into a system that is able to expand
(cp = (dW + pdV )/dT with dW the added energy to the fluid) compared to an isochoric process (cv = dW/dT ) for the
same increase in temperature.

8A recent attempt has been publicly reported from the group of M. Zwierlein.
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or equivalently δn(q, ω) = χ(q, ω)δU(q, ω) for the Fourier components δn(q, ω) and δU(q, ω) of the
density and the perturbing potential, respectively. The function χ(q, ω) that connects δn and δU is
known as the density response function. It does not depend on the external perturbation but only
on the intrinsic properties of the system and can be used for its characterisation.

The response function is in general a complex function, i.e. χ(q, ω) = Reχ(q, ω) + jImχ(q, ω). Its
imaginary part can be expressed as

Imχ(ω) = − j

2[χ(ω) − χ∗(ω)] = − j

2

∫ +∞

−∞
dtχ(t)[ejωt − e−jωt] (2.22)

for any q, with χ(t) the Fourier transform of χ(ω), from which one observes that Imχ(ω) is an odd
function of ω. Re-expressing Eq. (2.22) as Imχ(ω) = − j

2
∫+∞

−∞ dtejωt[χ(t) − χ(−t)], it reveals that
Imχ(ω) is not invariant under time reversal t → −t; Imχ is related to dissipation. The energy
absorbed by the system during the perturbation is [104]

∆E =
∫ ∞

−∞
dω ωImχ(ω)|F (ω)|2, (2.23)

with F (ω) the Fourier transform of the force F (t) = −∇rδU(t). For spectroscopic measurements
with a monochromatic F (ω) = F0δ(ω − ω0), the absorbed energy is ∆E ∝ ω0Imχ(ω0).

Dynamic Structure factor

Experimentally, a widely-spread method to extract the density response of a system consists of
using inelastically-scattered external particles9 which transfer momentum q and energy ω to the
system. It has long been found [105] that the differential cross-section per unit solid angle Ω and
unit energy E of such a scattering process

dσ

dΩdE = Wsc · S(q, ω) (2.24)

can be separated into two parts. The first part, Wsc, depends on the actual interaction details
between the probed and the probing particles. The second part, S(q, ω), known as the dynamic
structure factor, is the Fourier transform in space and time of the time-dependent pair correlation
function

Cnn(r, t) = ⟨n(r, t)n(0, 0)⟩ (2.25)

where ⟨...⟩ signifies an average with respect to an equilibrium ensemble. Cnn(r, t) describes the
probability of finding a particle of the system in position r at time t if another lies at r = 0 at t = 0;
S(q, ω) then depends only on the intrinsic spatial and temporal properties of the system, and thus

9The appropriate particles for each system depend on the inter-particle distance in the system and the wavelength
of the particles. In this way, neutron scattering for liquid helium and light scattering for dilute ultracold gases are the
most common techniques.
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it becomes a valuable tool for characterising the system’s fluctuations.
The integration of S(q, ω) over all energy transfers

S(q) =
∫ +∞

−∞
S(q, ω)dω (2.26)

corresponds to the static correlation function Cnn(r, t = 0) which gives information about the instant
spatial distribution of the particles, rather than dynamic properties of the system. The dimensionless
quantity S(q) thus is called the static structure factor and has historically played an important role
in studying excitations10.

In a more technical language, S(q) is the zeroth moment of the dynamic structure factor. Its
first-order moment has also been proven to be an important test for the credibility of experimental
results, since it is found to be ∫ +∞

−∞
ωS(q, ω)dω = ℏq2

2m. (2.27)

Eq. 2.27 is often also called the f sum rule or the energy-weighted sum rule. The validity of Eq. (2.27)
is quite general as long as the forces between the particles are not velocity-dependent. The derivation
and the physical meaning of the above relation will become straightforward with the introduction of
the notion of elementary excitations, so we postpone this discussion for the next section.

Fluctuation - Dissipation theorem

On one hand, Imχ(q, ω) is linked to the absorption of energy by the system when perturbed by
an external potential. On the other hand, S(q, ω) is a measure of the density fluctuations of the
same system as it scatters incoming particles. Since they both characterise the intrinsic properties of
the fluid, one expects to find a connection between these two quantities. Indeed, such a connection
exists, as first discussed in Ref. [107] and has taken the figurative name of the fluctuation-dissipation
relation

S(q, ω) = − 1
πn

[N0(ω) + 1]Imχ(q, ω), (2.28)

where N0(ω) = (eℏω/kBT + 1)−1 is the Bose distribution function and kB the Boltzmann’s constant.
The factor [N0(ω) + 1] represents both thermal (through the first term) and quantum (through the
second term) fluctuations.

For low energies compared to the thermal energy (ℏω ≪ kBT ), one can approximate [N0(ω)+1] ≈
kBT
ℏω + 1

2 . The first term is much larger than the second, and therefore the dynamic structure factor
can be practically approximated by

S(q, ω) ≈ −kBT

πn

Imχ(q, ω)
ω

(2.29)

10S(q) remains the only available experimental quantity when the energy transfer from scattering is much larger than
the typical energies of the excited modes, as with x-ray scattering in liquid helium [106].
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The second term of 1/2, though, becomes necessary to satisfy the resultant f sum rule of Eq. (2.27)
when expressed via Imχ, since the latter is an odd-function of ω so its even moments are zero. With
the use of the fluctuation-dissipation relation, the f sum rule is expressed in terms of the response
function as ∫ ∞

−∞
dω ω Imχ(q, ω) = −πnq2

m
. (2.30)

Response within the hydrodynamic one- and two-fluid models

Having discussed about the general properties of χ(q, ω) and S(q, ω), we now concentrate on their
specific forms within the one- and two-fluid models. We note that these quantities do not provide
any new information that is not contained in the linearised results of Sec. 2.1.1 and 2.1.2. Their
advantage is their simplicity and the direct access to experimental observations.

One-fluid response. The methodology for obtaining the density response from hydrodynamic
equations can be conveniently sketched for the simplest case of a single dissipationless fluid. The
addition of the effect of an external perturbing potential in the relevant equation Eq. (2.7) yields
[108]

∂2δρ(r, t)
∂t2

= c2
10∇2δρ(r, t) + n∇2δU(r, t) (2.31)

By Fourier-transforming Eq. (2.31) in both space and time one directly gets the response function

χ1(q, ω) = δρ(q, ω)/m
δU(q, ω) = nq2/m

ω2 − c2
10q

2 . (2.32)

Its imaginary part is extracted after the replacement ω2 − c2
10q

2 → ω2 − c2
10q

2 + jη in χ1, where the
small parameter η is set in the end to zero to find Imχ1(q, ω) = πnq

2mc10
[δ(ω + c10q) − δ(ω − c10q)],

two Dirac δ-peaks at ω = ±c10q.

Following the same strategy, one deduces the density response for the single fluid when dissipation
is present [99, 109]. Its experimentally relevant imaginary part can be well approximated by [101]

Imχ1(q, ω) ≈ (nq2/m)Γ10ω

(ω2 − c2
10q

2)2 + (Γ10ω)2 − (γ − 1) 1
mc2

10

ωDT q
2

ω2 + (DT q2)2 (2.33)

in which two additional features emerge compared to the dissipationless case. First, the sound δ-peaks
are broadened by Γ10 as given by Eq. (2.10) and second, a diffusive component from the coupling
with the heat makes its appearance; by reconstructing the dynamic structure factor S1(q, ω) ∝
Imχ1(q, ω)/ω from Eq. (2.29), this diffusive part becomes clear as an additional peak, centered at
ω = 0. It is worth noting that starting from this dissipational S1(q, ω) and taking the limits Γ10 and
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DT → 0, one finds [110]

S1(q, ω) = kBT

2mc2 [δ(ω + cq) + δ(ω − cq) + (γ − 1)δ(ω)] (2.34)

which allows for a heuristical study of the effects of heat diffusion even within a dissipationless
model. With or without dissipation, the relative importance of this diffusive mode in S1(q, ω) is
approximated by the coupling parameter γ − 1.

Two-fluid response. In essence, there is nothing new in the treatment of extracting the two-fluid
response compared to the single-fluid case. The dissipational two-fluid response was first calculated
by Hohenberg and Martin [109] with the final result being

χ2(q, ω) = (nq2/m)(ω2 − c2
20q

2 + jΓsω)
(ω2 − c2

1q
2 + jΓ1ω)(ω2 − c2

2q
2 + jΓ2ω) (2.35)

In this case, two distinct poles appear corresponding to first and second sound, with speeds c1 and c2,
respectively, as given by Eq. (2.19). The additional information compared to our previous discussion
about the two-fluid model is the presence of the sound dissipations Γ1,2 = D1,2q

2 together with the
parameter q2Γs = 1

ρ

(
d+1
d

ρs
ρn
η + κ

cv

)
. The first and second sound damping rates satisfy11

D1 +D2 = 1
ρ

(
d+ 1
d

η + κ

cv

)
and c2

1D2 + c2
2D1 = c2

10
ρ

[
d+ 1
d

η

(
c2

20
c2

10
− 2c2

20(∂p/∂T )ρ
ρsc2

20

)
+ κ

cp

]
.

(2.36)
By setting all the damping terms to zero in Eq. (2.35), we deduce the dissipationless version of

the two-fluid model, yielding

χ2(q, ω) = (nq2/m)(ω2 − c2
20q

2)
(ω2 − c2

1q
2)(ω2 − c2

2q
2)

= nq2

m

[
Z1

ω2 − c2
1q

2 + Z2
ω2 − c2

2q
2

]
,

(2.37)

with Z1 = (c2
1 − c2

20)/(c2
1 − c2

2) and Z2 = (c2
20 − c2

2)/(c2
1 − c2

2). The absorptive part of the response
comprises two pairs of δ-peaks

Imχ2(q, ω) = πnq2

m

[
Z1
c1q

{δ(ω + c1q) − δ(ω − c1q)} + Z2
c2q

{δ(ω + c2q) − δ(ω − c2q)}
]
. (2.38)

The comparison with Eq. (2.34), relevant in the absence of superfluidity, allows a description in
which second sound is converted into a heat diffusive mode at the critical point for the superfluid

11These formulas neglect the effects from the four different bulk viscosities present in superfluid, as first introduced
by Landau [111], which are expected to be either zero or small for a scale invariant system [112], as the one we study
in next chapters. The more general formulas including the bulk viscosities are given in [109].
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transition. Also, from the fact that Z1 +Z2 = 1, the f sum rule (Eq. (2.30)) is satisfied. Finally, we
verify using Eq. (2.37) (in its top version) that for an incompressible fluid with γ = 1 where c2 = c20,
only the first mode couples to density perturbations.

2.2 A semi-phenomenological treatment

Superfluidity and elementary excitations

The two-fluid model, as described in the previous section, makes no connection with a more
fundamental understanding of superfluidity; it simply associates the macroscopic densities ρs and
ρn with the various thermodynamic and transport quantities. A quantitative connection with more
microscopic properties of the superfluid was initiated with the work of Landau and the introduction
of the concept of elementary excitations with a well-defined momentum q and energy ωq = ω(q). A
superfluid then can be conceived as the combination of its ground state and a weakly-interacting gas
of elementary excitations characterised by a dispersion relation ωq.

The form of the excitation spectrum helps to check if a system can manifest superfluidity12. To
understand that, we consider for simplicity a fluid at T = 0 in its ground state moving with velocity
vs with respect to the lab frame. Superfluidity is connected with the absence of viscosity and thus
with the inability to generate elementary excitations. If such an excitation occurs, the total energy
of the fluid changes by ∆E = ℏ(ωq + q · vs), with q its momentum vector of magnitude q. Due
to dissipation this excitation should lead to ∆E < 0, feasible only if ωq − qvs is negative; such an
excitation cannot then occur for velocities lower than a critical value13

vc = minq
ωq
q

= minq
dωq
dq

. (2.39)

In other words, if vc > 0 the system is a superfluid.
In Fig. 2.1 we show qualitatively three different cases of excitation spectra together with the

extracted critical velocities. In (a) the spectrum of a normal fluid characterised by ωq ∝ q2 leads to
a zero vc and the absence of superfluid behaviour. Since such a dispersion describes also an ideal gas
at any temperature, one concludes that the latter is not a superfluid at any non-zero temperature.
Contrary, for a superfluid, as in (b) and (c), the spectrum is modified from the ideal gas case to a
phononic dispersion ωq = cq for long wavelengths, with c the phonon speed, which leads to a finite
critical velocity with an upper bound vc ≤ c.

The picture of elementary excitations on top of the ground state becomes extremely fruitful when
collisions between these excitations are frequent enough to establish equilibrium. This regime corre-

12The discussion here pertains mainly to the effects rather than the cause of superfluidity, since we neglect looking
into the ground state, which is in the end responsible for the spectrum of excitations. Such an investigation is feasible
only within the microscopic treatment of next section.

13The initial assumption of T = 0 is not restrictive. For a finite temperature there will be already some excitations
in the system, but new excitations from the ground state will be forbidden under the same conditions.
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Figure 2.1: A qualitative dispersion relation of the elementary excitations in three different cases: (a) of an ideal gas
or a normal fluid above the superfluid critical temperature, (b) of a superfluid gas and (c) of superfluid liquid. For the
case (a) the typical dispersion is ωq ∝ q2 whereas the long-wavelength limit of a superfluid, whether a gas or a liquid,
is characterised by a phononic dispersion ωq ∝ q. The dashed lines indicate the minimum slope of the spectrum giving
access to the critical velocity for superfluidity. The spectrum in a quantum gas, as in case (b), was first measured in
Ref. [113], whereas an overview of the corresponding measurements in liquid helium, as in case (c), can be found in
Ref. [106].

sponds to the hydrodynamic behaviour discussed in the previous section, where now the condition
ωqτ ≪ 1 pertains to the relation between the excitations’ energy ωq and lifetime τ due to collisions.
Connecting with the two-fluid model, the background gas is identified as the superfluid component
ρs and the gas of thermally-excited elementary excitations as the normal component ρn. The normal
density can then be calculated with the use of the equilibrium distribution of the Bose excitations
with the final result (see for example Ref. [114] for the 3D and Ref. [115] for the 2D case)

ρn = 1
d

1
kBT

∫
ddq

(2π)d
(ℏq)2eℏωq/kBT

(eℏωq/kBT − 1)2 . (2.40)

It becomes then clear that with the knowledge of the dispersion relation of a superfluid, one can
predict the normal and superfluid (ρs = ρ− ρn) densities. In addition, as the ground state does not
carry any entropy, it is also clear that it is the distribution of the excitations that determines the
thermodynamics of the fluid.

A theoretical deduction of ωq is, in most cases, a difficult task and experimental results have
been used throughout the years to extract approximations of this spectrum. A situation where a
theoretical treatment should be applicable is for studying the limit T → 0. In this case, the only
occupied excitations are the long-wavelength ones and the adoption of a phononic spectrum ωq = cq is
quite precise. By calculating the normal density from Eq. (2.40) and the thermodynamic quantities
that enter Eq. (2.19) using this phononic dispersion, one finally finds [114] that first and second
sounds satisfy c1 = c and c2 = c/

√
d. However, this result has to be treated with care and two

notes are worth being mentioned. First, since the existence of two sounds is the consequence of two
different components, one has to think of the above result as the limit of very low temperatures and
not at the absolute T = 0. Second, the excitation of first and second sound relies on hydrodynamic
conditions secured by collisions between the excitations. As temperature is decreased, the number
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of excitations vanishes, hinting at a departure from the hydrodynamic regime.
Although extremely helpful for a quantitative description of various experimental results, ele-

mentary excitations in the spirit introduced by Landau, do not provide a deeper connection with the
microscopic mechanisms which lead to superfluid behavior.

2.3 A microscopic treatment

In 1938, F. London linked superfluidity with a BEC of an ideal gas. Together with L. Tisza, they
attempted to identify the superfluid fraction ρs/ρ with a theoretically deduced condensed fraction
n0/n. We now know that this is not generally true. As already discussed, the archetype ideal Bose
gas does not manifest superfluidity at T ̸= 0. In the other limit of the strongly-interacting liquid
helium, the condensed fraction is calculated [116] and measured [117–119] not to exceed a value of
10% even at extremely low temperatures where the whole fluid becomes a superfluid. This distinction
is more dramatic in two-dimensions where BEC is forbidden in the thermodynamic limit, and yet a
Bose fluid behaves as a superfluid at low temperatures. Before we concentrate on this 2D-exception,
here we discuss the basic aspects of a connection between superfluidity and BEC having as a goal
the introduction of various useful concepts.

The starting point for a microscopic investigation of superfluidity is the Hamiltonian of a cold
Bose fluid of N interacting particles being in the same internal state

Ĥ =
∫
d3r ψ̂†(r)

(
−ℏ2∇2

2m − µ

)
ψ̂(r) + 1

2!

∫
d3rd3r′ψ̂†(r)ψ̂†(r′)V2(r, r′)ψ̂(r′)ψ̂(r)

+ 1
3!

∫
d3rd3r′d3r′′ψ̂†(r)ψ̂†(r′)ψ̂†(r′′)V3(r, r′, r′′)ψ̂(r)ψ̂(r′)ψ̂(r′′) + ...

(2.41)

Here the field operators ψ̂†(r) and ψ̂(r) create and annihilate respectively a particle at position r

obeying the typical Bose commutative relations14 [ψ̂(r), ψ̂†(r′)] = δ(r− r′) and [ψ̂(r), ψ̂(r′)] = 0, and
µ is the chemical potential. The first term in the Hamiltonian represents the kinetic energy of the gas,
the second term describes two-body interactions through the pair-potential V2, the third describes
three-body interactions through V3. Terms of higher order are not common in the literature, and for
a dilute gas their absence is fully justified.

A simplification of the above Hamiltonian, appropriate for the dilute and weakly interacting
ultracold gases, will facilitate the direct connection between a BEC and superfluidity.

2.3.1 Interactions in a dilute Bose gas

Two-body interactions. In the absence of long-range dipole-dipole interactions, a typical two-
body potential is of a Lennard-Jones type, V2(r) = C12/r

12 −C6/r
6, which captures quite well both

14[A,B] = AB −BA
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the longer-range van der Waals attraction (∼ r−6) and the short-range repulsion at an inter-atomic
distance r. For degenerate ultracold gases, the effective range15 of V2 (∼ 102a0, with a0 the Bohr
radius) is about two orders of magnitude shorter than typical inter-atomic separations, and thus
we are permitted to treat two-body interactions like point-like collisions within scattering theory.
Scattering may alter the external and/or the internal degrees of freedom of the two participating
atoms. The internal degrees (e.g. hyperfine states) of the two colliding atoms are labeled as a
scattering ‘channel’. A collision is elastic when the atoms remain in the same channel before and
after the event. For atoms prepared in their lowest internal state, the colliding atoms have no chance
to change channel unless a third atom is involved. We thus start our discussion with the two-body
single-channel problem. For reasons that will become obvious later, we restrict ourselves to the
specific case of collisions in three dimensions.

The single-channel problem is equivalent to that of a moving particle of mass m∗ = m/2 in a
static potential V2(r). In general, scattering states with a positive energy and bound states with
a negative energy exist. A scattering state with an energy E = ℏ2k2/2m∗, (k being the relative
momentum of the two atoms of magnitude k) is characterised by a wavefunction ψrel, the asymptotic
(r ≫ r0) behaviour of which becomes within the first Born approximation (see for example [121, 122])

ψrel(r) = eik·r −
(

m

4πℏ2

∫
d3r′V2(r′)e−iq·r′

)
eikr

r
. (2.42)

This result is often interpreted as the sum of the incoming (first term) and a scattered (second
term) wave, where the amplitude of the scattering in the parenthesis is proportional to the Fourier
transform of the interaction potential. Here q is the vectorial change of momentum between the
incoming to the outgoing wave which in general has an azimuthal dependence.

A further simplification of ψrel occurs for relevant low energies of kr0 ≪ 1; one then approaches
e−q·r′ ∼ 1 for those r′ at which V2(r′) is appreciable, and taking into account the typical spherical
symmetry16 of V2 we reach at the final result

ψrel(r) = eik·r −
(

m

4πℏ2

∫
d3r′V2(r′)

)
︸ ︷︷ ︸

a

eikr

r
. (2.43)

The quantity inside the parenthesis, defined as the s-wave scattering length a, becomes under the
aforementioned conditions a constant parameter, independent of k, which fully characterises two-

15An effective range r0 of the potential can be estimated by equating the van der Waals interaction with the kinetic
energy, leading to r0 ∼ (C6m/ℏ)1/4 [120].

16For a spherically symmetric potential, the scattering eigenstates of the relevant Hamiltonian Hsc = ℏ2k2

2m∗ + V2(r)
are waves of definite angular momentum characterised by a quantum number l, so it is a common practice to expand
the incident and scattered waves in this basis of these ‘partial waves’. For each independent l one can write a 1D
Schrödinger equation with a total potential consisting of V2 plus an effective centrifugal barrier ℏ2l(l + 1)/(2m∗r2).
At low temperatures, this barrier is high enough to suppress all l ̸= 0 partial waves and the l = 0 s-wave solution is
adequate to characterise scattering. This is what we silently considered with the use of the condition kr0 ≪ 1.
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body scattering at low energies.
The description of the problem with a single parameter permits to additionally simplify it by

replacing the exact potential V2(r) with a simpler contact pseudo-potential g3Dδ(r); if both potentials
are characterised by the same a, the asymptotic behaviour of scattering from these two is identical.
By inserting this pseudo-potential in Eq. (2.43) we directly find the expression for the interaction
strength of the pseudo-potential

g3D = 4πℏ2a

m
. (2.44)

Among the various scattering quantities that are now expressed in terms of a, we single out the
scattering cross-section17 σ = 2 × 4πa2, the mean-free path between two collisions lmfp = 1/(nσ),
and finally the elastic collision rate

γel = nσv̄ (2.45)

with v̄ the mean relative velocity of the two atoms. For a thermal cloud v̄ =
√

6kBT/m.

Three-body interactions. Due to diluteness, we assume the dominance of two-body physics in
three-body processes. In other words, we set the intrinsic three-body potential of Eq. (2.41) to zero,
i.e. V3 = 0, and focus on the effective three-body interactions induced by V2 when three atoms are
found simultaneously within their interaction range. In this scenario, the s-wave scattering length is
sufficient to describe also the effective three-body interactions.

With simple arguments, we can estimate the three-body scattering rate as γ3b = nσv̄w, where
w ∼ (a/n−1/3)3 is the probability of a third atom to be present during the scattering of the other two
and v̄ ∼ ℏ/ma now is the velocity of that third atom relatively to the center of mass of the other two.
Combining the above relations, we find γ3b ∼ (ℏa4/m)n2. In reality, the main three-body inelastic
effect is a recombination process in which two atoms form a diatomic molecule while the third atom
receives the excess of the molecular binding energy. Typically in an ultracold gas, this additional
energy is sufficient to remove all three participating atoms from the gas. With dn/dt ∝ γ3bn, the
average atom loss can then be expressed as

dN/dt = −L3 ⟨n2⟩N (2.46)

with the recombination constant L3 scaling as L3 ∝ ℏ
ma

4 in the absence of additional effects, like
Efimov effects18 [124, 125]. For a uniform system we get the simple relation dN/dt = −L′

3N
3 with

L′
3 = L3/V

2. With a known coefficient L3, this differential equation givesN(t) = [2L′
3t+N(0)−2]−1/2,

with N(0) the initial atom number.
We note here that with the emergence of coherence, as we describe in the next section, relation

17The additional factor of 2 compared to the classical result for the scattering cross-section, valid only in the absence
of coherence, stems from the bosonic character of the atoms.

18When Efimov states are present, there are additional log-periodic oscillations of L3 with a, a theoretical prediction
of which together with the experimental investigation for the case of 39K atoms can be found in [123].
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Eq. (2.46), as well as the formula for the scattering cross-section given above, are deficient; in that
case one needs to distinguish between collisions among condensed, non-condensed or mixed atoms,
each case characterised by different scattering rates [126]. For a pure condensate, however, Eq. (2.46)
is restored with a new recombination constant 3! times smaller than that of a non-condensed cloud
[127]. This constant has been experimentally measured for the case of a pure BEC of 39K atoms
[123], and the proportionality constant L30 = L3/(ℏa4/m) can be extracted from those results giving
L30 ≈ 180.

Tuning the interactions: Feshbach resonances. In the previous discussion we considered
scattering in a single channel and concluded that the strength of interactions, inferred by a, is an
intrinsic property of the gas. This is no longer necessarily true when one takes into account other
channels, even if they remain energetically unfavourable (‘closed’). These different channels get
coupled to each other through an additional spin-dependent term in the interaction potential. The
existence of such a spin-dependent term can be argued based on the fact that two singlet electrons,
unlike two triplet ones, can build a covalent bond and deeply decrease their total energy. The
coupling occurs since the quantum numbers of the scattering channel (characterised by the hyperfine
states of the separate atoms) do not remain good in the presence of the spin-dependent term. This
coupling becomes strong when a bound state of a closed channel comes close to the dissociation
threshold of the scattering channel. Then a ‘virtual’ transition19 to the closed channel takes place
for a short period of time. The increase of this virtual-transition time results in the modification of
the scattering length in the open channel. This phenomenon is widely known as a Feshbach resonance
[50].

At large distances, the two potentials with the scattering and the bound states are characterised
by different hyperfine states and thus with the application of an external magnetic field they shift
differently in energy. This allows the tuning of the relative energy difference and therefore the value
of the scattering length. Within a two-channel model [130] (but also experimentally compatible),
the field-dependent scattering length takes the form

a(B) = abg

(
1 − ∆0

B −B0

)
. (2.47)

The value abg corresponds to the previously considered intrinsic scattering length in the absence of
any resonance, the resonant field B0 is the magnetic field at which the bound and the open-channel
energies are equal (neglecting a small correction [131]) and ∆0 is to the width of this resonance. To
experimentally exploit such a resonant feature, ∆0 has to be much wider than the typical magnetic
field noise in real situations.

19The characterisation as a virtual transition stems from the fact that the atoms insert and exert in the end the
collision from the same initial open channel.
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Figure 2.2: (a) The principle of a Feshbach resonance. The coupling between the open channel (blue) and a bound
state of the closed channel (red) leads to a virtual transition and an effective change of the scattering length a from its
background value abg. (b) The application of an external magnetic field tunes a since the two channels are associated
with different spins. The plot corresponds to the resonance we use throughout this thesis for 39K between atoms
trapped in their F = 1, mF = 1 ground hyperfine state. In this case, abg = −29a0 [128], ∆ = 50G and B0 = 402.7G
as measured in [129]. A detailed description of the specific resonance can be found in Ref. [128].

Summary. The bottom line from the discussion above is the approximation of Eq. (2.41) by

Ĥ =
∫
d3r ψ̂†(r)

(
−ℏ2∇2

2m − µ

)
ψ̂(r) + g3D

2

∫
d3rd3r′ψ̂†(r)ψ̂†(r′)ψ̂(r′)ψ̂(r) (2.48)

when three-body losses can be neglected. The Heisenberg equation of motion describing the time
evolution for the field operator becomes20

jℏ
∂ψ̂(r, t)
∂t

= [ψ̂, Ĥ] =
(

−ℏ2∇2

2m − µ+ g3Dψ̂
†(r, t)ψ̂(r, t)

)
ψ̂(r, t) (2.49)

We note here, that the interaction term, in its exact form, contains collisions that leave the atoms
in their same initial external states and collisions that redistribute the atoms within the various
energy states. The former type of collisions are treated within mean fields and the regime where
they dominate is called collisionless, while the latter type of collisions describe the collisional regime
of interactions. When such collisions prevail, the behaviour is very well described within macroscopic
hydrodynamic models, as the one described in Sec. 2.1.

Next, we briefly discuss the connection between the notions of elementary excitations and density
fluctuations from a more microscopic point of view and introduce some fundamental concepts.

20One could heuristically add the effect of three body-losses by adding a term −jℏ(L3/2)|ψ̂(r)|4ψ̂(r) in the equation
of motion [132]. To keep the discussion simple, we neglect such effects.
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2.3.2 Elementary excitations vs density fluctuations

Landau postulated that the dispersion relation of elementary excitations is experimentally obtain-
able through measuring the density fluctuations of the superfluid. Indeed, he used the experimental
results from neutron scattering to deduce the phonon-roton spectrum in liquid helium as qualitatively
depicted in Fig. 2.1(c). This assumption, although valid for a superfluid, is not universally correct.
With a goal to show this subtlety, we start with a reminder of the various correlation functions,
intuitively entering the discussion about the dynamics of a fluid. To that end, we first introduce the
density operator of the fluid as n̂ = ∑

i δ(r − ri) = ψ̂†(r)ψ̂(r), where ri the position operator of the
i-th atom inside the fluid, and its Fourier component N̂q = ∑

i e
−jqri . For a uniform system the latter

is also expressed as N̂q = ∑
k â

†
k+qâk with âk =

∫
drψ̂(r)e−jkr/

√
V the operator that annihilates an

atom of momentum k.
The one-body density matrix21 G(1)(r) = ⟨ψ̂†(r)ψ̂(0)⟩, with G(1)(0) = n (n being the average

density of the uniform fluid), expresses the system’s long-range order through its off-diagonal terms
(r ̸= 0). In the thermodynamic limit, G(1)(r) is the Fourier transform of the momentum distribution
nq [114]. The normalised first-order correlation function g1(r) = G(1)(r)/n is a measure of the
proximity of the many-body state to a mean-field in which ⟨ψ̂(r)†ψ̂(r)⟩ = ⟨ψ̂†(r)⟩ ⟨ψ̂(r)⟩. The above
correlations can be generalised to include also time differences t. In that spirit, one also defines
an ‘intermediate’ first-order correlation22 A(q, t) = ⟨âq(t)â†

q(0)⟩, characterising the propagation of
a single atom of momentum q over time in the fluid. The poles of A(q, ω), the temporal Fourier
transform of A(q, t), correspond to the elementary excitations of the fluid.

In a similar way, the two-body density matrix is G(2)(r) = ⟨ψ̂†(r)ψ̂†(0)ψ̂(r)ψ̂(0)⟩ and its nor-
malised version g2(r) = G(2)(r)/n2. Another useful and experimentally observable quantity is the
density-density correlation function, defined as Cnn(r) = ⟨n̂(r)n̂(0)⟩, which expresses the prob-
ability of simultaneously detecting two particles at a distance r. Using the Bose commutation
relations, one finds Cnn(r) = nδ(r) + n2g2(r). The time-generalisation of Cnn(r) was already in-
troduced in Sec. 2.1.3, where we described it as the temporal and spatial inverse Fourier transform
of the dynamic structure factor S(q, ω); the poles in S(q, ω) correspond to the density fluctua-
tions allowed by the fluid. For completeness, we also introduce the ‘intermediate’ density corre-
lator S(q, t) = ⟨N̂q(t)N̂ †

q (0)⟩ /N . Finally, one can show [104] that also the density response func-
tion χ(q, ω) can be expressed as a correlation function; its ‘intermediate’ transform is χ(q, t) =
−jθ(t) ⟨[N̂q(t), N̂ †

q (0)]⟩ /V , with the Heaviside function θ(t) denoting the causality of the response.
A clear picture for the comparison between elementary excitations and density fluctuations can

be extracted if we express the relevant correlation functions in terms of the (unknown) many-body
eigenstates |m⟩, |n⟩ of the effective Hamiltonian H, i.e. H |m,n⟩ = ℏωm,n |m,n⟩. For instance, the

21Here, we silently assume a translation invariance, appropriate for uniform systems, in which r is equivalent to the
distance between the two points under consideration in space.

22Here the word ‘intermediate’ has the meaning of being only a spatial Fourier transform of G(1).
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first-order correlation function A(q, ω) can be written as

A(q, ω) =
∫ ∞

0
dtejωt ⟨âq(t)â†

q(0)⟩

= 1
Z

∫ ∞

0
dtejωt

∑
m,n

e−ℏωm/kBT ⟨m|âq(t)|n⟩ ⟨n|â†
q(0)|m⟩

(2.50)

where in the second line we averaged with respect to the canonical ensemble characterised by the par-
tition function Z = ∑

m exp(−ℏωm/kBT ). By changing from a Heisenberg to a Schödinger represen-
tation, âq(t) = ejHt/ℏâqe

−jHt/ℏ, and with the use of the integral
∫∞

0 dtej(ω−ω0+jη)t = j/(ω−ω0 + jη)
where again η → 0, one finally finds

A(q, ω) = Z−1 ∑
m,n

e−ℏωm/kBT | ⟨n| â†
q |m⟩ |2δ[ω − (ωn − ωm)] (2.51)

In the same way, the dynamic structure factor and the density response function are written as [133]

S(q, ω) = (ZN)−1 ∑
m,n

e−ℏωm/kBT | ⟨n| N̂ †
q |m⟩ |2δ[ω − (ωn − ωm)] (2.52)

χ(q, ω) = (ZV )−1 ∑
m,n

e−ℏωm/kBT | ⟨n| N̂ †
q |m⟩ |2

[
1 − e−ℏ(ωn−ωm)/kBT

]
ω − (ωn − ωm) + jη

(2.53)

where we deliberately kept the infinitesimal η-dependence in the last formula to point out the complex
nature of χ(q, ω).

The spectral representations, Eq. (2.51) and (2.52), of A(q, ω) and S(q, ω) show clearly that
the elementary (single) excitations are described within the former, whereas S(q, ω) characterises
particle-hole (or equivalently density) excitations. Although all transitions |m⟩ → |n⟩ are included
in both A(q, ω) and S(q, ω), their relative weights, | ⟨n|â†

q|m⟩ |2 and | ⟨n|N̂ †
q |m⟩ |2 respectively, can be

in general significantly different; in that case, different states end up contributing to either A(q, ω)
or S(q, ω). This is expected for a normal fluid; the transition |m⟩ → |n⟩ has a significant weight in
A(q, ω) if these states differ by one particle through the operator â†

q, whereas it has a considerable
weight in S(q, ω) if they both have the same number of particles. This difference between the spectra
of the elementary excitations and density fluctuations is not the case anymore in a superfluid, where
the density fluctuations become the elementary excitations as long as a continuum of multi-particle
excitations in S(q, ω) is ignored.

What is more, the spectral representation of S(q, ω) and χ(q, ω) provides a tool for an almost
trivial derivation of the relations introduced in Sec. 2.1.3, like the fluctuation - dissipation theorem
and the f sum rule. An example is presented in Box 2.1 where we discuss the f sum rule from a
more conceptual perspective.
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Here, we sketch the calculation of the integral I =
∫ +∞

−∞ ωS(q, ω)dω, the left-hand side of of the so-called f sum
rule introduced in Eq. (2.27) and we attempt to reveal the physical meaning of this relation. To that end, we first
note that the integral I is related to the total energy put into the system; this is a direct consequence of expressing
the dissipation energy from Eq. (2.23) in terms of S(q, ω) through the fluctuation - dissipation theorem of Eq. (2.28).

Using the spectral representation of S(q, ω) from Eq. (2.52), we get

I =
∫ +∞

−∞
ωS(q, ω)dω = (ZN)−1

∑
m,n

e−ℏωm/kBT (ωn − ωm)| ⟨n| N̂†
q |m⟩ |2. (2.54)

The right-hand side of the equation above represents a sum of all the energies of the transitions occurring after
a density perturbation in the fluid weighted by their oscillator strengths. The f sum rule is then nothing but an
effective energy conservation law for the fluid: the energy pumped into the system equates the total excitation energy.

Additionally, if one interchanges the indices m and n in the spectral representation of S(q, ω), one finds

S(q,−ω) = e−ℏω/kBTS(q, ω) (2.55)

which is known as the ‘detailed balance’ relation. It expresses the fact that at finite temperatures, transitions to lower
energies are also allowed with a relative probability e−ℏω/kBT and thus the total pumped energy is the difference
between the absorbed and the released energy from the fluid.

Continuing from Eq. (2.54), we note that ℏ(ωn − ωm) ⟨n|N̂†
q |m⟩ = ⟨n|[H, N̂†

q ]|m⟩ which eventually leads to the
result [114]

I = 1
2Nℏ

⟨n̂†
q, [H, N̂†

q ]⟩ = ℏq2

2m (2.56)

the last equality being valid for velocity-independent interactions.

Box 2.1: The f sum rule and the detailed balance

2.3.3 Bose-Einstein condensate and superfluidity

Bose-Einstein condensate. The concept of a BEC was first introduced for an ideal Bose gas as
a phase emerging solely due to the statistics obeyed by the gas. It is linked with the saturation
of the available single-particle excited states and the subsequent macroscopic population N0 of the
system’s ground state characterised by a zero momentum (q = 0). In the presence of a BEC, then,
the momentum distribution nq gets a δ-peak of height n0 = N0/V at q = 0 in addition to the
smooth behaviour at finite momenta. This in turn results in a non-zero value of G(1)(r) (the Fourier
transform of nq) even for large separations r, i.e. limr→∞G(1)(r) = n0 ̸= 0. The quantity n0 is
defined as the condensate density and the remaining nth = n − n0 constitutes the thermal part of
the ideal gas. At zero temperature all the atoms are in the same state and thus n0 = n.

Penrose and Onsager [134] generalised the concept of a BEC also for an interacting Bose fluid,
by applying the same defining condition

lim
r→∞

G(1)(r) = n0 ̸= 0 (2.57)

as for the ideal gas. The condensate can be still considered as the macroscopic occupation of the
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q = 0 state, but now n0 ̸= n even at T = 0. Conceptually one can think of it by considering an
adiabatic turning on of the interactions starting from the ideal gas; the modification of the ground
state couples different q states and thus some of the atoms seem ‘virtually’ excited to states different
than the q = 0. The zero-temperature difference n− n0 in the absence of additional real excitations
is called the quantum depletion of the condensate.

The long-range order or LRO (Eq. (2.57)) that characterises a BEC leads to a non-zero average
⟨ψ̂⟩. One then may find it natural to split the field operator

ψ̂(r) = ψ0 + δψ̂(r) (2.58)

into a mean-field classical component ψ0 = ⟨ψ̂⟩ and the fluctuations δψ̂(r) containing, in general,
the condensate depletion, thermally excited atoms and externally-induced fluctuations. For low
temperatures and weak interactions, such that n0 ≈ n, the fluctuations can be neglected and one finds
limr→∞G(1)(r) = ψ∗

0(r)ψ0(0) which, in turn, provides the required form for the complex classical
field ψ0(r) = √

n0e
jθ. The fixing of the condensate phase θ breaks the phase invariance of the initial

Hamiltonian and leads to the non-conservation of its canonically conjugate condensed number N0.
In other words, a BEC with N0 or N0 + 1 atoms characterise the same state. By neglecting the
fluctuations, the Hamiltonian in Eq. (2.48) reduces to its classical version

H =
∫ ( ℏ2

2m |∇ψ(r)|2 − µ|ψ(r)|2
)
d3r + g3D

2

∫
|ψ(r)|4d3r (2.59)

and Eq. (2.49) converts into the Gross-Pitaevskii (GP) equation, jℏ∂ψ∂t =
(
−ℏ2∇2

2m − µ+ g3Dn0
)
ψ,

that describes the evolution of the classical field ψ0. The condensate ground state can be easily
obtained by setting ∂ψ/∂t = 0 which gives n0 = µ/g3D for an infinite system; in a finite-sized system
the condensate density goes to zero at the system’s edges within a healing length ξ =

√
ℏ2/(2mg3Dn0).

Bogoliubov excitations. The next step is to estimate the excitations on top of the ground state
by considering also the effect of weak fluctuations δψ̂. Typically, for weak fluctuations this is achieved
with a diagonalisation process (Bogoliubov transformation) of the Hamiltonian in Eq. (2.48) using
Eq. (2.58) after discarding all terms higher than quadratic in δψ̂ in the interaction term [135]. An
equivalent way to formulate the problem consists in considering small classical, plane-wave fluctua-
tions on top of the condensate ground state, i.e.

ψ(r, t) = e−jµt/ℏ
[
ψ0 +

∑
q

(
uqe

j(qr−ωqt) + v∗
qe

−j(qr−ωqt)
)]

(2.60)

which have to satisfy the GP equation under the normalisation condition u2
q = v2

q + 1 for the small
amplitudes uq and vq. Within a quasi-particle picture, Eq. (2.60) with its normalisation can be
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interpreted as u2
q atoms to propagate along the q-direction and v2

q atoms along the opposite direction,
resulting in a net momentum of ℏq. Plugging Eq. (2.60) into the time-dependent GP equation, one
extracts the Bogoliubov excitation spectrum

ℏωq =
√
ϵ0q

(
ϵ0q + 2ng3D

)
(2.61)

and the amplitudes

u2
q = v2

q + 1 = 1
2

(
ϵ0q + ng3D

ϵq
+ 1

)
. (2.62)

In the above, ϵ0q = ℏ2q2/2m is the ideal-gas kinetic energy.
The Bogoliubov spectrum ωq has the typical form as shown in Fig. 2.1(b). At long wavelengths,

ϵ0q ≪ 2ng3D and the spectrum becomes phononic with ωq = q
√
ng3D/m. The corresponding speed

of sound cB =
√
ng3D/m is widely known as the Bogoliubov speed and it is a collisionless ‘zero’

sound emerging from the mean-field ng3D among the condensed atoms. By calculating the pressure
in the ground state23, one finds that cB = (∂p/∂ρ)s; this implies, on one hand, that the elementary
phononic excitations are equal to the density fluctuations of the gas, and on the other hand that cB

is the collisionless analogue of the first sound c1 in the T = 0 (necessarily) incompressible case. In
this phononic regime, Eq. (2.62) yields u2

q , v
2
q ≈ 1/2qξ ≫ 1 and thus, as expected for a phonon, the

fluctuation involves a large number of atoms.
On the other hand, for short excitation wavelengths, ϵ0q ≫ 2ng3D and ωq gives a free-particle

spectrum, ϵq ≈ ϵ0q + ng3D, shifted by the mean field. The amplitudes in this regime approach u2
q = 1

and v2
q = 0 indicating again the single-particle character of these excitations. The crossover regime

between the phonons and the free-particle excitations is indicated by a wavelength similar to the
healing length at which the kinetic and the interaction energies are equal.

BEC and superfluidity. The presence of a BEC in a gas has served as a microscopic platform for
explaining superfluidity. The T = 0 Bogoliubov excitation spectrum is the simplest framework for
understanding this connection. For example, the phononic Bogoliubov spectrum of a BEC at long
wavelengths, different from the usual free particle spectrum, supports a non-zero critical velocity
equal to the Bogoliubov speed of sound. The superfluid density, at T = 0 (where ρs = ρ), is equal to
the condensate density plus the BEC depletion; in the absence of the latter, one gets ρs = mn0. The
superfluid velocity, on the other hand, is identified as the velocity of the condensate, vs = ℏ∇θ/m,
even in the presence of depletion24.

23The ground state, characterised by the chemical potential µ =
(

∂E
∂N

)
V

= ng3D, has a total energy of E =
1
2g3DN

2/V . The pressure of the gas is then p = −
(

∂E
∂V

)
N

= 1
2g3Dn

2.
24Since superfluidity is a dynamical effect, to see that, we consider a frame of reference that moves at a velocity

−vs with respect to a static BEC; in that frame, there is a macroscopic population of the state with momentum
ℏq = mvs characterised by the classical field ψ0 = √

n0e
j(θ0+qr); the condensed atoms move coherently at a velocity

ℏ∇(θ0 + q0r)/m = vs. The depleted atoms get the same shift ℏq0 in momentum compared to the static case, and so
they are essentially attached with the condensed atoms when the latter are set in motion (see [136]).
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Another unique property arising from the presence of a BEC is the hybridisation between the
Bogoliubov excitations and the density fluctuations at T = 0 in the long-wavelength limit, as we
hinted before through the relation cB = (∂p/∂ρ)s. In Section 2.3.1 we discussed about the different
oscillator strengths | ⟨n| â†

q |m⟩ | and | ⟨n| N̂ †
q |m⟩ | for normal states. The presence of the BEC with

the breaking of the global phase symmetry and the non-conservation of the condensed atoms modifies
these conclusions; indeed, in this case the density operator can be approximated by

N̂q =
∑
k

â†
k+qâk ≈

√
n0(âq + â†

q), (2.63)

where we kept only the macroscopic k = 0 classical mode in the sum. Eq. (2.63) directly shows that
S(q, ω) is expressed in terms of A(q, ω). With this hybridisation in mind, the dynamic structure
factor can be expressed as S(q, ω) = S(q)δ(ω − ωq), with ωq the Bogoliubov excitation spectrum.
Using the f sum rule of Eq. (2.27), one gets

ℏωq =
ϵ0q
S(q) , (2.64)

which is known as the Feynman relation, an alternative way of linking excitations with density
fluctuations.

Going beyond zero temperature, the thermal depletion of the condensate prevails over the quan-
tum depletion and a quantitative understanding of superfluidity through condensation is proven more
challenging. Various approximations (see for example the reviews in [137–139]) have been applied
which allow numerical investigations of the low temperature behaviour of a Bose gas. The various
approaches can be categorised, generally speaking, into two types. In the first type, the so-called
classical-field approaches, one generalises the notion of the classical field ψ0 to include also heavily-
populated low-lying excitations on top of the single-particle ground state. Since ψ0 does not simply
model the condensate anymore, it allows the study of the prevailing ‘classical’ aspects of the gas and
the extraction of various correlation functions. This methodology will be proven important in the
case of 2D systems.

In the second type of approaches, collectively known as two-gas models, the condensate and the
thermal cloud are treated from the beginning in a separate way. One such two-gas model is the
so-called ZNG theory [140, 141]. Neglecting the quantum depletion, ZNG treatment makes use of a
generalised GP equation for the condensed part, coupled with a quantum Boltzmann equation that
describes the thermal component. The generalisation in the GP equation consists of including both
a mean-field coupling between the two subsystems and also collisional processes beyond a mean field
(also in the kinetic equation). Specifically, the theory allows atom-exchange collisions between the
condensate and the thermal component and thermalising collisions among the thermal part.

The exact details of this model lie beyond the scope of this thesis. However, we want to men-
tion two significant results of this theory in the spirit of our discussion for the connection between
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superfluidity and a BEC. First, when full collisional processes (i.e. collisions between condensate-
thermal and thermal-thermal atoms) are taken into account, it was shown [103] that ZNG theory
can properly lead to the exact Landau’s hydrodynamic two-fluid equations described in Sec. 2.1.1,
if the condensate and thermal components play the role of the superfluid and normal components,
respectively.

Second, with the theoretical ability to control collisions, ZNG theory was able to test beyond
the realm of hydrodynamics, from a purely collisionless to a partially collisional gas. For a purely
collisionless gas only mean-field interactions consist a source of (zero-) sound propagation. In this
regime, the T = 0 Bogoliubov approximation seems to be well-extended to non-zero temperatures,
after a proper account for the thermally-depleted condensate density. On the other hand, for a par-
tially collisional gas, characterised by an equilibrium within the thermal part but not an equilibrium
between the two components, ZNG theory predicts the existence of first and second sound, with the
predictions though being different from the fully hydrodynamic model.





3 The two-dimensional atomic Bosegas

“In order to understand the wor[l]d, one has to turn away from it on occasion.”

— Albert Camus, The Myth of Sisyphus

In the previous chapter we looked at superfluidity from a general perspective, presented the hydro-
dynamic two-fluid model, and finally discussed the microscopic connection between a superfluid and
the existence of long-range order in three dimensions. In the current chapter we give a brief overview
of the theory of superfluidity in two dimensions where true long-range order does not emerge, with a
goal to set the theoretical framework for our experimental work in the next chapters. We concentrate
on the predictions for the superfluid density and the thermodynamic quantities that enter the 2D
version of the hydrodynamic two-fluid model. In the same spirit as before, and although some of the
results are more generally applicable, we will discuss the topic in the context of the atomic 2D Bose
gas, which is studied in our experiments.

To that end, we first introduce in Sec. 3.1 the concept of a quasi-2D gas and its characteristic scale
invariance as is relevant for experiments with atomic gases. Following that, in Sec. 3.2 we discuss
the low-temperature behaviour of an infinite uniform Bose gas where phase fluctuations induced by
phonons prevent the appearance of a BEC, but not of a superfluid (Sec. 3.2.1); a quasi-long-range
order occurs at T > 0. The suppression of density fluctuations and the emergence of the so-called
quasi-condensate enable the appearance of another type of phase defects, the quantised vortices. At
low enough temperatures, the pairing of such whirls restores quasi-long-range order in the system.
At higher temperatures, the proliferation of free vortices destroys both quasi-long-range correlations
and superfluidity. The mechanism for this transition from a normal gas to a superfluid is described
within the BKT theory (Sec. 3.2.2). We also present the equation of state for the 2D gas (Sec. 3.2.3),
which prescribes the thermodynamics of the gas and allows the determination of the BKT transition
point. Finally, in Sec. 3.3 we discuss modifications in the above picture that arise when probing a
2D gas in an experiment.

31
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3.1 The quasi-two-dimensional Bose gas

To provide the experimentally relevant theoretical background for this thesis we focus on the
‘quasi-two-dimensional’ regime1 of an atomic gas: a kinematically two-dimensional but collisionally
three-dimensional system. These two aspects are discussed below.

Kinematics

Given that both the thermal and interaction energies of the gas are small compared to the energy
difference between the ground and the first excited states allowed in one spatial direction, say z,
the atoms populate predominantly this ‘transverse’ ground state and excitations to other energy
levels associated with the motion along z are energetically suppressed; the gas is then considered
kinematically reduced to 2D.

For the case of ultracold gases, one typically confines the atoms in a tight harmonic potential
in one dimension in order to produce a kinematically 2D gas; this is also the approach pursued in
this thesis. The gas is then restricted to zero-point oscillations in the ground state of the harmonic
trap along z, with a size of about one oscillator length ℓz =

√
ℏ/(mωz) and ωz the corresponding

trapping frequency, when
ℏωz ≫ µ3D and ℏωz ≫ kBT. (3.1)

These strict conditions in Eq. (3.1) define the 2D regime of the gas. It is worth noting, however, that
due to bosonic stimulation, a dimensional reduction in the kinematics can take place even for ℏωz ≲
kBT , µ3D, as the gas effectively ‘condenses’ into the ground state of the tightly-confined direction
while it still occupies many states associated with the motion in the x-y plane, a phenomenon known
as transverse condensation [142, 143].

Interactions

When ℓz ≫ a, as realised in most ultracold gases, the relative motion of the atoms in the region
of the scattering event is not affected by the tight confinement, and the gas behaves collisionally
as a three-dimensional system. In this regime, the 3D pseudo-potential g3D, discussed in the pre-
vious chapter, remains valid for the description of collisions. An effective 2D Hamiltonian can
be constructed starting from the 3D Hamiltonian of Eq. (2.48) by separating the field operator
ψ̂(r) ≡ ψ̂3D(r) → ψ̂2D(x, y)ϕ0(z), where ϕ0 is the classical field describing the ground state along z.

1The notion of a ‘quasi-2D’ gas has been also used in the literature for situations where the defining conditions of
Eq. (3.1) for a kinematically 2D gas are not strictly satisfied. In this thesis, these conditions are always well satisfied
and we keep the definition of the main text for a ‘quasi-2D gas’.
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The interaction term of the Hamiltonian then becomes

V̂int = 1
2

(
g3D

∫
dz|ϕ0(z)|4

)
︸ ︷︷ ︸

gq2D

∫
dxdydx′dy′ ψ̂†

2D(x, y)ψ̂†
2D(x′, y′)ψ̂2D(x′, y′)ψ̂2D(x, y). (3.2)

The resulting 2D interaction strength gq2D takes the simple form

gq2D = ℏ2

m

√
8π a
ℓz

≡ ℏ2

m
g̃ (3.3)

for the Gaussian ground state ϕ0 of a harmonic potential. Here, we define g̃ =
√

8πa/ℓz as the
dimensionless quantity that characterizes the strength of the interactions in this geometry.

The existence of the dimensionless and energy-independent coupling parameter g̃ results in the
same 1/L2-scaling2 of the kinetic and interaction energy with the in-plane system size L. In other
words, the gas shows the same behaviour independently of its size; it is then solely the ratio of the
two energy scales, or equivalently the quantity x = µ/kBT , with µ the chemical potential in 2D, that
determines the thermodynamics of the gas for a specific value of g̃. This property is often referred to
as the scale invariance of a quasi-2D gas and will be an important concept for the rest of this thesis.

Scale invariance breaks down when the interaction strength starts showing a dependence on the
atomic density. A more careful calculation of the 2D interaction strength yields the low-scattering-
energy approximation [144]

gq2D(k) =
√

8πℏ2/m

ℓz/a− (1/
√

2π) ln (πk2ℓ2z)
, (3.4)

with ℏk =
√

2µ3Dm. For ℓz ≫ a (or equivalently g̃ ≪ 1) the second term in the denominator can
be safely neglected and Eq. (3.3) is restored; scale invariance is then well satisfied in this (weakly-
interacting) regime, unlike the opposite strong-coupling limit (g̃ ≫ 1) for the typical densities of
interest. The experiments discussed in this thesis use an interaction parameter lying in the interme-
diate regime near g̃ ≈ 0.5.

3.2 Low-temperature behaviour

Having introduced the notion of a quasi-2D gas, we now investigate its behaviour at low tem-
peratures. A full description requires to consider two types of excitations: smooth phonons and
quantised vortices. In the following, we attempt to introduce each of them in a natural way and

2The interaction energy of the 2D gas is Eint = gq2D
2

∫
⟨n2(r)⟩ d2r ≈ ℏ2

2m
g̃N2

L2 and the kinetic energy of a non-
interacting gas is approximated by Ekin =

∫ EN

0 ϵG(ϵ)dϵ ≈ πℏ2

m
N2

L2 with G(ϵ) = mL2/(2πℏ2) the 2D density of states,
N =

∫ EN

0 G(ϵ)dϵ the atom number and EN the highest energy of the free atoms.
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clarify their effect on the behaviour of the gas. The starting point for the description of this 2D gas
is the Hamiltonian in Eq. (2.41), which we repeat here in its final 2D form:

Ĥ =
∫
d2r ψ̂†(r)

(
−ℏ2∇2

2m − µ

)
ψ̂(r) + gq2D

2

∫
d2rd2r′ψ̂†(r)ψ̂†(r′)ψ̂(r′)ψ̂(r), (3.5)

where now all the involving quantities describe the relevant 2D gas3. By adopting Eq. (3.5), we do
not assume a priori a BEC, as in 3D, where we split the field operator into a classical field and an
operator for the fluctuations (see Eq. (2.58)). Instead, we express ψ̂ in a more general fashion using
the density-phase representation

ψ̂(r) = ejθ̂(r)
√
n̂(r), (3.6)

with the density n̂(r) and phase θ̂(r) operators satisfying the commutation relation [n̂(r), θ̂(r′)] =
jδ(r − r′). Under the assumption that the density operator is split as n̂(r) = n+ δn̂(r) where

By inserting the density-phase representation of ψ̂ (Eq. (3.6)) in the general 2D Hamiltonian (Eq. (3.5)) and the
2D version of the Heisenberg equation of motion (Eq. (2.49)), one obtains two coupled equations of motion for the
density and the phase operators:

−ℏ∂n̂/∂t = (ℏ2/m)∇(∇θ̂n̂),

−ℏ∂θ̂/∂t = [ℏ2/(2m)](∇θ̂)2 − [ℏ2/(2m)](∇2√
n̂)/

√
n̂+ gq2Dn̂.

(3.7)

With the assumption that n̂(r) = n + δn̂(r) where n = ⟨n̂(r)⟩, one expresses the density and phase fluctuations in
terms of the (yet unknown) elementary excitations [145]:

δn̂(r) =
√
n(r)

∑
q

A−
q e

−jϵqt/ℏâq + (A−
q )∗ejϵqt/ℏâ†

q,

θ̂(r) = [4n(r)]−1/2
∑

q

A+
q e

−jϵqt/ℏâq + (A+
q )∗ejϵqt/ℏâ†

q.
(3.8)

Substituting the expanded operators of Eq. (3.8) into Eq. (3.7) and keeping the first-order terms, gives

(−ℏ2∇2/(2m) + gq2Dn− µ)A+
q = ϵqA

−
q

(−ℏ2∇2/(2m) + 3gq2Dn− µ)A−
q = ϵqA

+
q

(3.9)

for the eigenenergies ϵq and the eigenfunctions A±
q (r) of the elementary excitations. By adding/subtracting the two

equations above by parts, one finds the standard form of the Bogoliubov eigen-energy equations (see for example
Ref. [135]) with the density and phase amplitudes of the excitations,

A±
q = uq ± vq, (3.10)

being related with the Bogoliubov amplitudes uq, vq (see Eq. (2.62)).

Box 3.1: Bogoliubov spectrum of excitations in 2D

3From now on, we omit subscripts for the 2D quantities, while using an explicit label for the corresponding three-
dimensional quantities when necessary.
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n = ⟨n̂(r)⟩, one can recover a Bogoliubov spectrum of excitations (see Box 3.1) even in the absence of
a BEC4, rendering superfluidity possible. By applying the Bogoliubov theory in the 2D gas, we can
reach two important conclusions: density fluctuations are suppressed and phase fluctuations destroy
long-range order. We discuss these two results in the following Sec. 3.2.1.

3.2.1 Implications of the Bogoliubov analysis

Suppression of density fluctuations and the quasi-condensate

The long-wavelength Bogoliubov excitations are phonons with amplitudes uq, vq ≈ 1/
√

2qξ ≫ 1
(Sec. 2.3.3). Their density A−

q and phase A+
q components (see Box 3.1) are given by A±

q = uq±vq. By
combining these relations, one finds that A+

q ≫ A−
q ≈ 0 for the case of phonons, and therefore density

fluctuations become unimportant at large scales (> ξ). The suppression of density fluctuations has
significant consequences for the behaviour of the 2D gas, as we describe below. Since in an ideal gas
there are no phonon excitations, one can easily attribute this reduction to interactions.

This suppression, expressed also as ⟨δn̂2⟩ < n2 with ⟨δn̂2⟩ = ⟨δn̂(r = 0)δn̂(0)⟩, results5 in a
second-order correlation g2(0) < 2 and thus in a deviation from the expected behaviour g2(0) = 2
of a Bose gas in the absence of a BEC owing to the bunching of bosons. In fact, for very low
temperatures g2(0) → 1 and the gas resembles a BEC where the density fluctuations can be totally
neglected. The regime where a ‘local BEC’ exists6 is called the quasi-condensate regime; one can
straightforwardly define a quasi-condensate density nqc with n2

qc = [2 − g2(0)]n2. In analogy to a
BEC, the quasi-condensate can be characterised by a classical field

ψ0(r) = √
nqce

jθ(r), (3.11)

with a spatially-dependent phase θ(r) and identical local properties a genuine BEC would manifest:
a quasi-condensate should show the same reduction of the three-body recombination rate and the
same density profile as a true BEC.

With such a classical field describing the properties of the low-temperature gas, the Hamiltonian
of Eq. (3.5) is approximated by a classical Hamiltonian, analog to Eq. (2.59), of the form

H = ℏ2

2mnqc

∫
(∇θ(r))2d2r (3.12)

up to an additive constant gn2
qc
∫
d2r/2. In the following we further make the heuristic substitution

nqc → ns0, with ns0 the superfluid density of the 2D gas as if only Bogoliubov excitations were

4A formal justification of the applicability of Bogoliubov theory to 2D was shown in Ref. [146].
5Directly from the definition of the density-density correlation function in Sec. 2.3.1 and after neglecting the shot-

noise contribution, one finds ⟨δn̂2⟩ /n2 = g2(0) − 1.
6The identification of the quasi-condensate as a true BEC requires a test on the existence of long-range order, and

the answer to that is negative, as we discuss below.
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present. This substitution is qualitatively justified if one identifies the Hamiltonian in Eq. (3.12) as
the kinetic energy of a superfluid through the superfluid velocity vs = ℏ∇θ/m.

Absence of long-range order

The other important consequence from Bogoliubov theory is the destruction of long-range order
through fluctuations in the phase field of the excitations. The investigation of long-range order
requires the analysis of the first order correlation function g1(r) at r → ∞ (Sec. 2.3.2). The use of
the classical field of Eq. (3.11) gives g1(r) ≈ ⟨ej[θ(r)−θ(0)]⟩. Starting from this expression, one finds
an algebraic decay of the correlations (see Box 3.2),

g1(r) ≈ (r/ξ)−1/Ds0 (3.13)

for r > ξ, where we introduced the dimensionless superfluid phase-space density of the gas, Ds0 =
ns0λ

2 = 2πℏ2ns0/mkBT . This result shows that for T = 0 a BEC does indeed exist with n0 = nqc ≈ n

since Ds0 = 2πℏ2ns0/mkBT → ∞. For any finite T , however, g1(r → ∞) = 0 and long-range order is
destroyed. This result, first derived in Ref. [147], is in agreement with the Mermin-Wagner-Hohenberg
theorem [65, 66].

Using Eq. (3.13) we can define some characteristic size lb of the Bogoliubov phase fluctuations
as ⟨[θ(lb) − θ(0)]2⟩ ∼ 1, resulting in lb ∼ ξ exp{Ds0/2} [144]. For temperatures of interest, one finds
lb ≫ ξ and thus the existence of block of size l2b characterised by true BEC.

3.2.2 The Berezinskii-Kosterlitz-Thouless phase transition

Long-wavelength Bogoliubov phase fluctuations destroy long-range order in 2D, but they do not
suffice to explain the superfluid to normal-gas phase transition, indicated also by the change of g1(r)
from decaying algebraicly at low temperatures (Eq. (3.13)) to exponentially at higher temperatures.
To describe the transition, one needs to take into account the excitation of quantised vortices, non-
linear excitations on top of which small-amplitude Bogoliubov phase fluctuations still exist. Vortices
can be seen as stationary solutions in the GP equation; it is the classical field directly associated
with the suppression of density fluctuations (the quasi-condensate) that provides the platform for
the excitation of vortices.

A single vortex is characterised by a point of phase singularity (defect) at which the density of
the gas must vanish and around which the phase varies by 2πν with an integer vorticity ν. The size
of a vortex is of the order of the healing length ξ; for larger distances the effect of a vortex in the
density of the gas is negligible, justifying the suppression of density fluctuations even in the presence
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Starting from g1(r) ≈ ⟨ej[θ(r)−θ(0)]⟩, it is common to use a cumulant expansiona for g1(r) which allows to express it
as

g1(r) ≈ e− 1
2 ⟨[θ(r)−θ(0)]2⟩. (3.14)

The quantity ⟨[θ(r) − θ(0)]2⟩ can be calculated within the long-wavelength limit of the Bogoliubov formalism, and
using Eq. (3.8) we get

⟨[θ(r) − θ(0)]2⟩ = 1
2ns0

∑
ϵq<µ

ϵq

ϵ0
q

[
2N0(ϵq) + 1

]
[1 − cos(qr)] . (3.15)

With the low-temperature approximation 2N0(ϵq) + 1 ≈ 2kBT/ϵq and looking for the asymptotic behaviour for
qr → ∞ after converting the sum into an integral, one finds

⟨[θ(r) − θ(0)]2⟩ ≈ mkBT

ℏ2πns0
ln(r/ξ), (3.16)

the length-scale of ξ entering due to the cut-off µ in the summation. Combining Eqs. (3.14) and (3.16), we find the
final result of Eq. (3.13) stated in the main text.

aFor the random variable X = j[θ(r) − θ(0)] one may write ⟨eX⟩ = exp
(∑

i
κi/i!

)
with κi the cumulants of X.

The first-order κ1 = ⟨X⟩ has to be zero in our case and the second-order κ2 = (⟨X2⟩ − ⟨X⟩2)/2 leads to the result
mentioned in the main text. The higher orders can be neglected for r → ∞; more details can be found in Ref. [147].

Box 3.2: Destruction of long-range order

of vortices. On the contrary, the abrupt change7 in the phase introduced by a vortex plays a
substantial role in the coherence of the gas, even if the probability of exciting vortices of considerable
energy is much smaller than smooth Bogoliubov excitations.

Below, we first present a simplistic argument based on the thermodynamics of the vortices that
however captures the main properties of the BKT transition: a topological transition from a super-
fluid to a normal gas with a discontinuity in the superfluid density at the critical point emerging
due to the proliferation of free vortices in the 2D gas. To estimate the superfluid density for tem-
peratures close to the critical Tc, however, we need to go beyond that simplistic model and consider
the more systematic analysis first conducted by Kosterlitz: the renormalisation-group approach. To-
gether with the properties of scale invariance of the quasi 2D gas and of the universality close to the
transition, we finally discuss the predicted superfluid density close to the transition.

The superfluid to normal-gas BKT transition

The essentials of the BKT phase transition can be revealed by considering the simplest case
of a transition between a state with no vortices and a state with a single vortex, as depicted in
Fig. 3.1(a) and (b), respectively. The two configurations with a different net vorticity, ν = 0 and
ν = 1, respectively, are said to be topologically distinct: smooth deformation8 of the phase field in
one configuration to generate the second leads to inevitable discontinuities at the boundaries of the

7For any two points along a line passing through the singularity but in opposite sides with respect to the latter
there is a phase difference of νπ, no matter how close these two points lie.

8i.e. by keeping the field spatially continuous during this process.
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(𝑎) (𝑏) (𝑐)

Figure 3.1: A pictorial representation of the phase of a classical field; the arrows at any point visually represent the
phase field in the plane. In (a) only large-scale Bogoliubov excitations with a total vorticity ν = 0 constitute the
phase field, corresponding to low T . In (b) a single vortex with net vorticity ν = 1 is shown. A vortex changes the
long-distance behaviour of the phase inducing a distinct topology. Two bound vortices as in (c), on the other hand,
restore the topology of (a) as one can see by comparing the phase field at the edges of these two cases.

system; there is a large energy gap and a large energy cost between such states making them robust
against each other. Vorticity then becomes a topological invariant for the gas and the transition
between states of different vorticity is called a topological phase transition.

A qualitative argument of why this topological transition is connected with superfluidity is as
follows: Assume some superfluid move in a vortex-free configuration, say along x, with a velocity
vs = ℏ

m
∆θ
L , where ∆θ the phase difference in a length L as imposed by some external conditions.

When the vortex is present, this phase is modified as ∆θ → ∆θ−π resulting in a reduced superfluid
velocity and if ∆θ < π in the destruction of superfluidity.

Based on Fig. 3.1(a) and (b), one observes that the effect of a vortex in the phase remains
strong even far from its core. One can estimate the additional energy of the single-vortex state
compared to the vortex-free case as9 Ev = kBT (Ds0/2) ln(R/ξ). The vortex of an area ∼ ξ2 can be
anywhere in the plane of an area ∼ R2 and thus it carries an entropy Sv = ln(R/ξ)2. The free energy
Fv = Ev − kBTSv associated with the vortex, or expressed now as Fv = (Ds0 − 4)(kBT/2) ln(R/ξ),
quantifies the favourability of a vortex excitation. For Ds0 > 4, one gets Fv > 0 and the vortex
remains energetically unfavourable; on the contrary, when Fv < 0 the vortex-state is excited and
the quasi-long range order together with the superfluidity are diminished. The critical point is thus
related with Fv = 0, or equivalently with

Ds0 = 4, (3.17)

and since Ds0 = 0 in the normal-gas phase, this transition is characterised by a universal jump in

9When discussing about vortices, it is typical to assume circularly symmetric systems of some large radius R, instead
of a box system we discussed up to now. This will not modify the physical arguments since we consider R → ∞ for the
thermodynamic limit. In this case, the energy of the vortex is found from Eq. (3.12) as Ev = ℏ2

2m
ns0
∫

(∇θ)2d2r with
∇θ = iθ/r (iθ being the unit vector along the θ direction). Substituting, we find Ev = ℏ2

2m
ns0
∫ R

ξ
2πrdr

r2 and finally the
result in the main text.
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the superfluid density10.
In a more realistic situation, it is the existence of a reservoir of free vortices that eventually forces

superfluid velocity to go to zero. In the same more realistic scenario, it is not the vortex-free state
as in Fig. 3.2 (a) which serves as the background platform, but rather a situation like in Fig. 3.2
(c): a state of bound-pairs of vortices with opposite winding. The net vorticity in (c) is ν = 0, so
this case remains topologically equivalent to the vortex-free state depicted in (a). This equivalence
becomes apparent by checking the long-distance field from the vortex-pair, with similar boundaries.
This observation intuitively justifies the claim that the reduction of the superfluid velocity by such
a pair remains negligible compared to the single-vortex situation.

Renormalisation-group and the superfluid density

To obtain more quantitative results beyond the superfluid-density jump, we present the key results
from a renormalisation-group analysis, without going into details that lie beyond the scope of this
thesis. The starting point of such an analysis is the classical Hamiltonian of Eq. (3.12), which
remains still (approximately) valid despite the presence of vortices, after the substitution θ(r) →
θB(r) + ∑

i νiΘ(r, ri). Here θB(r) corresponds to the Bogoliubov phase fluctuations and the sum-
term takes into account the random distribution of vortices, each characterised by a central position
ri and a vorticity νi. Using this Hamiltonian, Kosterlitz found that the superfluid density Ds of the
gas satisfies

D−1
s = D−1

s0 + 2π2Y2
0

∫ ∞

ξ

dr

ξ

(
r

ξ

)3−Ds0

(3.18)

with Y0 the fugacity of the vortices in the system. Eq. (3.18) can be seen as a modification of the
Bogoliubov-predicted bare superfluid density Ds0 due to the existence of vortices (second term).

The above Eq. (3.18) does not directly provide the superfluid density Ds in the gas, since
it depends on the unknown Bogoliubov component Ds0 and the fugacity of the vortices. The
renormalisation-group approach shows how Ds can be extracted through an equivalent but sim-
pler system after integrating out all short length scales r (equivalently we define l such that ξ <
r < ξ′ = ξel) and transferring the effect of the vortices at these small scales into the phonon con-
tribution Ds0. With this integration out, pairs of vortices of relative distance r0 with ξ < r0 < ξel

are eliminated from the new Hamiltonian since their phase fluctuations become negligible at lengths
> ξel. This is not the case for single vortices whose effect on fluctuations remains significant at large
distances. By keeping only the largest scales of the system, one constructs an equivalent gas with
(as in Fig. 3.1(b)) or without (as in Fig. 3.1(a)) single vortices.

In a more technical language, one can split the integral of Eq. (3.18) into two parts
∫∞
ξ =∫ ξel

ξ +
∫∞
ξel , and embed the first part in D−1

s0 . A scale-dependent Bogoliubov superfluid density Ds(l)

10In the following we keep discussing the dimensionless superfluid (and total) phase-space density; for simplicity we
refer to them directly as densities and appreciate this will not cause any confusion.
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Figure 3.2: The BKT flows: Any point in the plane corresponds to an initial condition for the renormalisation equations
of Eq. (3.20); physicallly this initial point represents the system’s experimentally unmeasurable bare superfluid density
of the Bogoliubov excitations and concentration of vortices when all scales > ξ are considered. The line passing
through that specific point gives the relevant solution of the renormalisation equations for the various integrated scales
l; different lines represent solutions with different initial conditions. The arrow in each line points towards increasing
l. The physically relevant superfluid density for any initial point is identified as the corresponding solution for l → ∞.
The plane is separated into three regions. For initial points belonging to region I, the corresponding Y(l → ∞) = 0 and
Ds(l → ∞) ̸= 0; the gas is in its superfluid state. For points belonging to regions II or III, one gets Ds(l → ∞) = 0;
the gas is in its normal state. The critical point corresponds to the separatrix (purple line) between regions I and II
with a universal Ds(l → ∞) = 4. The separatrix between regions II and III does not have any physical significance.
Physically, the difference between the two distinct situations is explained in the two cartoons with the (un)binding of
vortex pairs.

is then obtained with Ds(l)−1 = D−1
s0 + 2π2Y2

0
∫ ξel

ξ
dr
ξ

(
r
ξ

)3−Ds0 , such that the full superfluid density
is written as

D−1
s = Ds(l)−1 + 2π2Y(l)2

∫ ∞

ξ′

dr

ξ′

(
r

ξ′

)3−Ds(l)
(3.19)

with an also rescaled fugacity Y(l) = e(4−Ds0)l/2Y0 [148]. The superfluid density of the gas can
then be straightforwardly extracted as Ds = Ds(l → ∞) - since the remaining integral in Eq. (3.19)
vanishes - if the behaviour of Ds(l) is known. To that end, one considers an infinitesimal change in
the scale dl in the defining relations for Ds(l) and Y(l) to obtain Kosterlitz’s equations

dDs(l)
dl

= −2π2Y2(l)D2
s (l),

dY(l)
dl

= [4 − Ds(l)]Y(l)/2.
(3.20)

which express the change in the effective Bogoliubov superfluid density and fugacity of the gas when
one integrates out an infinitesimal amount of size.

In the following, we discuss an analytic result for the superfluid density based on the above renor-
malisation equations and the prescription Ds = Ds(l → ∞) for temperatures close to the transition
point for the quasi-2D atomic Bose gas. Before that, we briefly discuss the general behaviour of the
numerical solutions of Eqs. (3.20) as depicted in Fig. 3.3. In this plot, any point in the Ds − Y plane
represents a potential bare {Ds0,Y0} and the line passing through that point connects it with its cor-
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responding {Ds(l),Y(l)} for various l. The arrows on the lines indicate the direction of increasing l.
One can identify two physically distinct (sets of) regions. Region I results in a finite Ds(l → ∞) and
a zero Y(l → ∞), and thus it describes the low temperature regime characterised by tightly-bound
pairs of vortices and by a finite superfluid density. Regions II and III give a zero superfluid density
and a large density of vortices as l → ∞, corresponding to the high temperature phase of the 2D
Bose gas with a proliferation of free vortices. In between regions I and II, the separatrix (purple line)
determines the critical point of the BKT transition, from which one regains the critical condition of
Eq. (3.17), now with the experimentally-relevant renormalised superfluid density, and the jump in
the superfluid density.

The superfluid density in an atomic gas: Close to the BKT transition (critical fluctuation
regime), from the superfluid side, a quasi-2D Bose gas behaves in a scale-invariant and universal
way. We already introduced the concept of scale invariance due to the density-independent and
dimensionless g̃; dimensionless quantities, like the superfluid density Ds, depend only on the quantity
x = µ/kBT for a fixed g̃. The notion of universality, on the other hand, stems from the fact that
the microscopic details of the transition mechanism become irrelevant as the transition point is
approached, and is a general feature of phase transitions. By combining these two properties, the
superfluid density Ds then is expected to show a universal behaviour for different g̃ and depend only
on the rescaled quantity X = (x− xc)/g̃, with xc = µc/kBT the value of x at the critical point.

Using the recursion relations of Eq. (3.20) together with the scale-invariance and universality
properties of the atomic gas, the superfluid density satisfies

4/Ds(X) + ln[Ds(X)] = κ(X) + ln(4), (3.21)

with κ a scale-independent quantity and where we introduced the ln(4)-term such that Eq. (3.21)
is consistent with the results in Ref. [115] (see discussion below). A sketch of the derivation of
Eq. (3.21) is given in Box. 3.3.

The extraction of Ds from Eq. (3.21) requires the knowledge of the quantity κ(X). A simple
analytic treatment for κ is not available, and thus Prokofev and Svistunov [115] proceeded to a
numerical study; using classical Monte-Carlo simulation on a lattice that belongs to the same uni-
versality class as the 2D Bose gas, they found to a very good approximation that κ(X) = 1 + κ′X

with κ′ = 0.61 ± 0.01. Eq. (3.21) provides Ds for various temperatures, as long as the relation
between X and T/Tc is known. We will discuss the latter in the following section.
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The first step to extractDs = Ds(l → ∞) from the renormalisation-group relations of Eq. (3.20) is to eliminate the role
of the fugacity Y(l). To that end, we note that the second recursive equation yields dY2/dl = 2Y[dY/dl] = Y2(4−Ds)
and thus by combining with the other equation, we get

dY2 = Ds − 4
2π2Ds

2 dDs. (3.22)

or
2π2Y2 = ln(Ds) + 4/Ds − C. (3.23)

The constant of integration C in our nomenclature is associated with the parameter κ of the main text as C = κ+ln(4)
and depends only on X through the universality and scale invariance of the gas.
Substituting Eq. (3.23) in the first equation of Eq. (3.20) we finally get

dDs

D2
s [ln(Ds) − C] + 4Ds

= −dl. (3.24)

By integrating Eq. (3.24) for any fixed X:∫ Ds(l2)

Ds(l1)

dD′
s

D′2
s [ln(D′

s) − C] + 4D′
s

= l1 − l2, (3.25)

from which for l = l2 − l1 → ∞, the denominator of the l.h.s. must vanish, to find Eq. (3.21) in the main text.

Box 3.3: The superfluid density from the BKT recursion relations

3.2.3 The equation of state for the atomic two-dimensional Bose gas

The BKT theory sets the framework for understanding the behaviour of the superfluid density
Ds = nsλ

2, including its universal jump at the critical temperature Tc, but it does not provide any
link with the total (phase-space) density D = nλ2 of the gas. Due to its experimental accessibility
and its connection to the thermodynamics of the gas, D is an important quantity that has been widely
studied, both theoretically and experimentally. Through D, the critical point can be experimentally
identified (since Ds is much harder to measure) and a connection between the universal parameter
X and the temperature T/Tc of the gas is provided, i.e. T/Tc = Dc/D(X), with Dc the density at
the critical point. Unlike Ds, the total density does not manifest a universal behaviour at the critical
point, but shows a g̃-dependence. Also unlike Ds, the total density retains a smooth behaviour at
the critical point; the infinite-order BKT transition provides no discontinuity in any thermodynamic
quantity.

In this section, we describe the behaviour of D with T/Tc, a relation that constitutes an equation
of state (EoS) for the quasi-2D gas. The EoS, together with the dimensionless phase-space pressure
P = λ2p/kBT , with p the pressure, provides the means for the extraction of all the thermodynamic
quantities of the gas. The EoS will be proven invaluable to us, both for the experimental thermometry
of the 2D gas and for the deduction of the superfluid density.

Different theories for D can appropriately describe different regions of x = µ/kBT or equivalently
different temperatures of the gas. In Fig. 3.3 we give an overview of the various regimes of the
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Figure 3.3: The various temperature regimes of the scale invariant 2D Bose gas versus the universal X and versus
temperature (rescaled for the specific g̃ = 0.5). The fluctuation region of the BKT transition is characterised by
−1 ≲ X ≲ 0.5. The analytic treatment of Ref. [115] for the EoS is derived in the crossover X ≈ 0.5 between the
fluctuation and the mean-field regimes from the superfluid side but it remains valid in the whole superfluid region.
For the superfluid density, two distinct predictions exist; the mean-field prediction, valid for X ≳ 0.5 and the BKT
prediction for 0 ≲ X ≲ 0.5.

quasi-2D gas, expressed both through the universal parameter X and through the temperature T/Tc

as scaled for the specific case of an intermediate g̃ = 0.5. In Fig. 3.4 we plot the predictions of these
various theories for (a) D and (b) P for the same case of g̃ = 0.5, together with the Monte Carlo
results [115] rescaled to the same g̃. It is worth noting here that scale invariance remains valid for
all values of T/Tc, from a pure superfluid to a purely thermal cloud, validating a description with
respect to x. We now give a brief description of these various regions for the 2D gas, starting from
high temperatures (low X). After that, we summarise the final extracted EoS based on the different
theoretical and numerical approaches together with the corresponding superfluid-density from the
renormalisation-group results.

Classical regime: In the limit of very high temperatures (always having in mind restrictions
related to 2D-ness), a classical-gas study yields Dclass = ex, while the pressure, generally connected
with the density as D = dP/dx, becomes also Pclass = ex since Pclass(x → −∞) → 0.

Hartree-Fock regime: When quantum degeneracy comes into play, the ideal 2D Bose gas behaves
as Dideal = − ln(1 − ex) ≡ G1(ex) [149] and Pideal = G2(ex), where Gi(z) = ∑∞

k=1
zk

ki are the Poly-
logarithmic functions of order i. Taking further into account mean-field interactions and assuming
a fully density-fluctuating (g2(0) = 2) gas, one can replace µ → µ− 2gq2Dn to get the Hartree-Fock
(HF) model for the phase-space density

DHF = − ln
(
1 − ex−g̃DHF/π

)
, (3.26)
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Figure 3.4: (a) The dimensionless phase-space density of the low-T 2D Bose gas with g̃ = 0.5. The shaded region
denotes the fluctuation regime, which corresponds to the temperature range 0.64 ≲ T/Tc ≲ 4. The vertical straight
line represents the BKT critical point. Below Tc, the analytic approximation of Ref. [115], agrees well with Monte
Carlo (MC) simulations. The Hartree-Fock prediction seems to be valid only in the absence of the quasi-condensate,
beyond the fluctuation region. (b) Predictions for the phase-space pressure P for the same g̃. The extraction of P by
integrating the ‘Prokofev function’ requires some unknown constant of integration. We pick to match the extracted P
with the corresponding value of the Hartree - Fock (HF) theory at the critical point, in agreement with experimental
results [38, 39] and the numerical investigation by Rancon et al [150]. By plotting the latter, we see how the behaviour
of P changes from being in agreement with the HF theory to agreeing with the mean field TF theory when decreasing
the temperature. Based on this, we can estimate that the TF theory works pretty well for T/Tc < 0.25.

which can be self-consistently calculated. The pressure can be also numerically extracted by inte-
grating the resulting density with PHF(x → −∞) → 0. The HF model remains a good description
for the gas only in the absence of the quasi-condensate, due to the assumed form of the mean field
(no suppressed density fluctuations).

Pre-superfluid regime: The appearance of the quasi-condensate forces the gas to enter its pre-
superfluid regime and provides a classical field that serves as a background for vortices to emerge.
The pre-superfluid behaviour typically appears at x ≈ 0, or equivalently X ≈ −1 (see Eq. (3.28))
which corresponds to T (X)/Tc ∼ 4 (with a weak g̃-dependence), a result that is in agreement with
experimental studies [74, 75, 151]. The pre-superfluid phase of the gas terminates at the BKT
critical point with the pairing of the vortices and the emergence of superfluidity. A precise analytical
prediction in this region for D is lacking, and one relies on numerical Monte-Carlo simulations.
For the pressure P, on the other hand, experimental studies seem to agree with the Hartree-Fock
prediction down to the critical point [38].

The critical point: The critical point can be qualitatively approached with a simple analytical
argument that starts by expressing the total density as n = nqc + ñ, with ñ ≈

∫ qT
qξ
N0(ϵq)d2q/(2π)2

the non-quasi-condensed component. The integral is restricted between the inverse healing length
qξ ∼

√
g̃n and an arbitrary cut-off of the order the thermal momentum, qT ∼

√
mkBT/ℏ2. With
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ϵq = ϵ0q ≡ ℏ2q2/(2m), one gets ñ ∼ mkBT
2πℏ2 ln

(
q2
T /q

2
ξ

)
and subsequently using the fact that at the

critical point it is nqc ∼ ns(T−
c ) = 4mkBT

2πℏ2 and n ∼ nqc (and thus qξ ∼
√
g̃mkBT/ℏ2), we find the

general scaling of the critical density nc ∼ mkBT
2πℏ2 (4 + ln(1/g̃)). By inserting an unknown constant ξn

to take into account the various inaccuracies, we write

Dc ≡ 2πℏ2nc
mkBT

= ln
(
ξn
g̃

)
. (3.27)

This scaling verifies once again that the BKT transition is driven by interactions since Dc → ∞ for
g̃ → 0. The constant ξn cannot be properly extracted from an analytical treatment. In Ref. [152] it
was numerically deduced to be ξn = 380 ± 3 for a very-weakly interacting gas, by using a classical
Monte Carlo (MC) simulation. In a similar way, the critical normalised chemical potential is found
to be

xc = g̃

π
ln (ξµ/g̃) , (3.28)

with ξµ = 13.2 ± 0.4.

Fluctuation regime on the superfluid side: In the presence of the superfluid, close to the
BKT transition the total density gains additionally the universal character of the critical fluctuation
regime, expressed as

D(X) −Dc = 2πM(X) (3.29)

with M(X) denoting the universal scaling with X. A characteristic of the 2D system is the existence
of a broad critical-fluctuation regime. Because of that, the universal behaviour becomes dominant
and captures almost the whole range of interest of X values studied within this thesis. From the
superfluid side, the fluctuation realm extends up to X ≈ 0.5 or equivalently T (X)/Tc ∼ 0.65 − 0.70,
as numerically investigated in [115].

A density-fluctuation-suppressed mean-field regime: At even lower temperatures (X > 0.5),
a simple mean field approach is restored. Here, however density fluctuations are suppressed, i.e. one
replaces µ → µ− gq2Dn [115]. Further, in the limit of zero temperature (Thomas-Fermi regime), the
phase-space density becomes DTF = 2πx/g̃ and the pressure PTF = πx2/g̃.

The region around the boundary X ≈ 0.5 is expected to satisfy the properties of both universality
(as in the fluctuating regime) and the predictions of the low-temperature mean field. By investigating
this boundary and combining these two different predictions, the authors of Ref. [115] derived an
analytic approximation for M(X). After the extrapolation to smaller X > 0 and the comparison with
Monte Carlo (MC) simulations, they somewhat surprisingly concluded that the resulting analytical
M(X) remains a good description down to the critical point (X = 0). This analytical result is also
plotted in Fig. 3.4 and compared with the MC simulations. Based on these remarks, in Fig. 3.5 we plot
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Figure 3.5: The superfluid density (green) for g̃ = 0.5 as found separately at low temperatures (x > 0.77) and
temperatures close to the BKT transition (0.52 < x < 0.77). Together we plot the total density, as a combination
of analytic function of Ref. [115] in the superfluid region and an interpolation of the MC data for the pre-superfluid
regime. The shaded region indicates the fluctuation regime from the superfluid side.

the overall prediction of D(x) that we will use in the rest of this thesis (blue line), as a combination
of the ‘Prokofev prediction’ at high x in the superfluid regime and an interpolation of the MC data
and the Hartree-Fock prediction for x < xc. This behaviour of D has been experimentally verified
for various g̃ [38, 153], including the ones for stronger interactions [39].

In the same Fig. 3.5, we finally show the prediction for the superfluid density (green line),
the experimental extraction of which is the main topic of this thesis. Close to the critical point
(shaded region), in the fluctuating regime, Ds is provided by Eq. (3.21) and the renormalisation-
group treatment. For higher x (lower temperatures) where the gas enters the mean-field regime, this
prediction strongly deviates, giving the unphysical result Ds > D; a mean-field prediction [115] is
assumed instead, extracted from assuming only Bogoliubov excitations in Landau’s prescription for
the normal component (see Eq. (2.40)). The merging of the two theories at the crossover between
the fluctuation and the mean field regimes at X = 0.5 (or x = 0.78 for the case of g̃ = 0.5 as in
Fig. 3.5) gives the also unphysical kink in the Ds prediction.

Finally, as we mentioned in the beginning of this section, the combination of the (phase-space)
density and pressure11 is adequate for the extraction of all the thermodynamic quantities. Concen-
trating only on the relevant quantities for this work, one gets [154]

s = 2P/D − x, cv = 2P/D −D/(dD/dx), γ = 2P(dD/dx)
D2 . (3.30)

These thermodynamic quantities and the superfluid density will be important parameters for the
sound propagation described by the two-fluid model of the atomic BKT superfluid, which will be

11With a known M(X) one can also extract the pressure of the gas in the fluctuation region. The only complication
is the determination of the constant of the integration. We choose to satisfy P(x = xc) = PHF(x = xc), a condition
that is very close to the theoretical prediction of a nonperturbative renormalisation-group approach [150] and has been
verified experimentally both for weak [38] and stronger [39] interactions.
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discussed in the next chapters.

3.3 Real gases: finite-size-system modifications

In ultracold atoms, the experimentally relevant samples of a few tens of microns in size will
inevitably manifest finite-size effects and a modified behaviour compared to the gas studied pre-
viously in its thermodynamic limit. In this section we describe the expected deviations from the
thermodynamic-limit behaviour as a background for discussing our results in chapter 5. Specifically,
we are concerned with the effect of the quantisation of the excitation-mode energies in the gas that
challenges the validity of a hydrodynamic description for the superfluid, and with the conversion
of the BKT transition into a finite-width crossover. Before we go into more details for the finite-
size-induced modifications, we note another possible source of deviations from the BKT theory: the
dynamic probing of a real gas at finite frequencies and the introduced effects from the dynamics
of (both bound pairs and free) vortices. The dynamic BKT theory [155, 156] that incorporated
such effects was first presented to explain the behaviour of sound propagation in 2D helium [72] and
recently [157] was adjusted to the language of ultracold gases. However, it is not yet clear if this
mechanism is relevant for experiments in ultracold gases.

Questioning hydrodynamic conditions

The first direct consequence of a finite-sized system is the discretisation of its phononic spectrum
of low-lying excitations, stemming from the need to satisfy the imposed boundary conditions. In two
dimensions, the allowed wavevectors can be decomposed into two independent wavenumbers along
the x and y direction. In each direction the allowed wavenumbers are q = iπ/L with L = {Lx, Ly}
the corresponding extent of the box and i a positive integer.

The phonon-energy discretisation has a detrimental effect in the ability of a typical atomic system
to be hydrodynamic and will be an issue of discussion for our experimental results. To see that, we
have to test the hydrodynamic condition of Eq. (2.1) for the lowest-lying excited mode of wavenumber
q = π/L and frequency ω. We find helpful to express Eq. (2.1) in an equivalent form as K ≡ γel/ω ≫
1. Using the elastic collision rate γel = n3Dσv̄, as introduced in Eq. (2.45), with a 3D density
n3D ≈ n/ℓz and a velocity v̄ ≈ ℏ/(mℓz) coming from the confinement along z, we can estimate a
lower bound for the ‘hydrodynamicity’ quantity K as

K ≈ 1
ω

ℏng̃2

2m , (3.31)

where we also used a cross-section σ = 4πa2, assuming that for the range of interest the existence of
a quasi-condensate has already totally reduced the fluctuations. An estimation for K for the typical
realisations of 2D atomic gases can be obtained if one substitutes ω → ωB = cB(π/L), with ωB the
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Bogoliubov frequency of the lowest mode to find

KB ≈ g̃3/2n1/2L

2π . (3.32)

In the weakly-interacting regime (g̃ ∼ 0.1), KB ≲ 1 for typical gases (L ∼ 50µm and n ∼ 50µm−2);
the hydrodynamic regime is difficult to be achieved.

Turning BKT transition into a crossover

The slow algebraic decay of correlations in the presence of a superfluid results in an exten-
sive coherence for distances comparable to the system size L and thus in the appearance of a
significant condensed fraction in the gas below Tc. At the critical point, one typically expects
g1(L) ∼ (L/ξ)−1/4 ≈ 0.2 − 0.3 for relevant g̃ and L. Above Tc, with an exponential decay of corre-
lations, g1(r) ∼ e−r/lc with lc the correlation length, a BEC would emerge roughly when lc ≳ L or
equivalently at the critical phase-space density DBEC ≈ ln

(
4πL2/λ2), which is always larger than

the BKT critical Dc for our experiments; a BEC does not appear without superfluidity.
However,the unavoidable termination of the renormalisation process at a scale l = ln(L/ξ), set

by the system size, is already responsible for the modification of the BKT predictions. Due to the
diverging behaviour of lc as one approaches the BKT transition from above [149], i.e.

lc = λ exp
( √

alTc√
T − Tc

)
(3.33)

with al a constant of order unity12, the modified effects will mainly appear in the region close to
the transition. The net result is the conversion of the BKT transition into a crossover where the
universal jump of Ds is rounded out into a steep yet continuous drop to zero.

A complete analytical study of the crossover-modifications is difficult; here we present some qual-
itative signatures of BKT in a finite system based on order-of magnitude arguments and numerical
simulations. Based on them, we identify a crossover region lying roughly between two characteris-
tic temperatures T1 and T2 where the deviations from the infinite-system behaviour become most
pronounced [159]. The boundary T1 is characterised by g1(r) ∝ r−1/4, similar to the behaviour at
the critical point of the infinite system. The boundary T2 is characterised as the lowest temperature
at which Ds = 0. It is worth noting that based on the results of Ref. [159], the whole intermediate
regime T1 < T < T2 still manifests an algebraic decay of g1(r) but with an exponent smaller than
−1/4, a behaviour that is not allowed in the thermodynamic-limit. A third characteristic temper-
ature T ∗ inside the crossover region, which often serves as the effective critical temperature for the
finite-sized BKT transition, is identified as the one for which Ds = 4.

These three characteristic temperatures do not necessarily coincide with Tc, the critical temper-
12In Kosterlitz’ theory of Ref. [158] it is assigned with the value al ≈ 2.25.
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Figure 3.6: Finite-size effects in the superfluid fraction. A typical crossover region (shaded area) characterised by the
edge temperatures T1 and T2 (see text) for a specific g̃ and three different N for fixed n. The vertical straight line
represents the ‘infinite-system’ Tc. The figure is reproduced from [159].

ature of the infinite system; the exact relative location of Tc inside the crossover region depends on
L. Since T2 is the highest temperature for which modifications are visible, one can approach the
difference between Tc and T2 from Eq. (3.33) with lc = L as

T2 − Tc
Tc

≈ al
[ln(L/λ)]2 . (3.34)

For the typical experimental values discussed above and for al ∼ 2, we get a value T2 ∼ 1.1Tc. On
the other hand, the definition of T1 does not allow some simple analytic treatment to estimate its
relation with Tc. However, numerical results [159–162] suggest that Tc−T1 ≪ T2−Tc, indicating that
the superfluid region is not affected to the same degree by the departure from the thermodynamic
limit. Finally T ∗ is shifted towards higher temperatures with decreasing L, linked with Tc as [163, 164]

T ∗(L) − Tc ≈ (T2 − Tc)/4 (3.35)

which gives a relative increase of ∼ 2% for the previously used typical experimental values.

A brief summary: In this chapter we presented the main properties of a 2D ultracold-gas system,
characterised by its scale-invariance that stems from the intrinsic three-dimensional character of the
interatomic interactions. The description of the low-temperature region of this system requires to
consider two types of excitations: smooth Bogoliubov phonons and quantised vortices. The latter are
supported by the appearance of a quasi-condensate and are the essential elements for the description
of a superfluid to normal-gas transition at a critical Tc; the proper description is achieved through the
BKT theory and the pairing of vortices below Tc that allows an algebraic decay of correlations in the
system and thus superfluidity. A systematic renormalisation-group treatment for the 2D gas provides
a prediction for the superfluid density for the various temperatures which includes the characteristic
discontinuity at Tc. This discontinuity, however, is expected to smear our in real experiments owing
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to the finite size of the system; the experimental relevance of this conversion to a crossover of finite
width should depend on various parameters, like the interaction strength and the size of the system.
Moreover, together with the superfluid density, we presented the equation of state for this 2D atomic
gas from which all the thermodynamic quantities can be extracted. The superfluid density and
thermodynamic quantities are the main inputs to Landau’s two-fluid model for a prediction of the
speeds of first and second sound that we make use of in chapter 5. The two-fluid model is built
from general arguments and thus expected to be valid also in a 2D gas as long as a hydrodynamic
description remains valid. Again, the finite size of the gas has an effect on the relevance of this model
due to the quantisation of the excitation-mode energies in the system.



4 The realisation of a two-dimensional
box trap

“If the word doesn’t exist, invent it; but first be sure it doesn’t exist.”

— Charles Baudelaire

In this chapter we detail the experimental realisation of a 2D homogeneous ultracold atomic 39K gas
that provides the means for our studies of BKT superfluidity (Chapter 5). The resulting apparatus is
the final outcome of merging a previously existing ultracold-atom setup with a series of modifications
and extensive additions. In a sense, and although the original machine was built almost ten years
ago [165, 166], the new version to be described can be considered as the second generation of a 2D
setup, while the first generation used a harmonically trapped 2D gas of both 39K and 87Rb atoms
[167].

4.1 Setting the stage and initial steps

By comparing the available bosonic 39K and 87Rb, the former offers a significant advantage, vital
for our work: it permits the tuning of interatomic interactions through easily accessible and broad
Feshbach resonances1 (see Sec. 2.3.1); we thus choose to concentrate on 39K. The experimentally
simplest method to realise a uniform 2D gas, as we discuss in detail in Sec. 4.3, consists in properly
box-shaping and squeezing an already prepared harmonically-trapped BEC.

Typically the production of such a BEC, with a critical temperature of the order of hundreds
of nK, is the result of two successive general cooling techniques, laser and evaporative cooling.
Nonetheless, 39K remains a relatively difficult species to cool down: on one hand, its unresolved
manifold of the excited P3/2 hyperfine states (see also Fig. 4.2 below) precludes a clean cycling
transition for laser cooling and restricts the minimum attainable temperatures to relatively high
values of the order of several hundreds of µK; on the other hand, its small and negative background

1We work with a 39K-resonance at B0 = 402.7G with a width ∆0 = 50G, whereas the most promising resonance for
Rubidium has a width around 0.2G [168].
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scattering length (for example abg = −29a0 [128] in its absolute ground hyperfine state; here a0 is the
Bohr radius) leads to a slow thermalisation rate (rendering evaporation inefficient) and eventually to
an unstable collapsing BEC. The slow rate and the stability of the BEC can be modified again with
the use of magnetic Feshbach resonances if atoms are trapped in an optical rather than a magnetic
conservative potential. Optical confinement, however, has a limited trapping volume and trapping
potential depths typically on the order of tens or hundreds of µK and thus it requires an efficient
pre-cooling of the cloud to be trapped2.

Fig. 4.1 gives an overview of our production steps of a BEC and subsequently of a 2D uniform
gas. We classify the steps into two groups following the two-chamber composition of our vacuum
system. The two chambers are connected with a narrow tube that allows differential pumping. The
first (‘laser-cooling’) chamber is kept at a pressure of the order of 10−9mbar, high enough for a fast
trapping of atoms directly from its background vapor, where the atoms are laser-cooled. After that,
the atoms are transported to the second chamber using an inhomogeneous magnetic confinement
which moves along a mechanical track. In the second chamber, the ‘science cell’, at a pressure of
around 10−12mbar that provides a large lifetime for the atom cloud3, the BEC and the final 2D gas
are produced.

The experimental apparatus around the first chamber remains essentially the same as described
in the previous Ph.D. theses [165–167] of the group. Contrary, the setup surrounding the science cell
is new and it will be discussed in depth in this chapter. The single most crucial part of this setup
pertains to light shaping techniques for the construction of the used optical traps. Optical trapping
exploits the dipole force exerted from light (of frequency ω) on the atoms; it is a conservative force
which can equivalently be seen as the effect of the ac-Stark shift. The resulting trapping potential
takes the form4 [169]

Udip(r) = −3πc2

2ω3
0

( Γ
ω0 − ω

+ Γ
ω0 + ω

)
I(r). (4.1)

In the above, ω0 is the resonance frequency of an atomic transition, 1/Γ the excited-state lifetime
and c the speed of light. It is this simple relation between the intensity I(r) of the trapping beam and
the potential Udip(r) that allows the sculpting of potentials of arbitrary geometries by shaping laser
beam profiles. For red-detuned light (ω0 − ω > 0), trapping occurs at intensity maxima, whereas
blue detuning of light (ω0 − ω < 0) serves for confinement in regions where light is absent. In order

2The previous version of the apparatus circumvented these difficulties with the addition of an intermediate step
of sympathetic cooling for 39K through its thermalisation with the easy to be evaporatively cooled 87Rb in a deep
magnetic trap. Due to the small intra-species scattering length aK-Rb = 36a0, the total experimental cycle for reaching
degeneracy was around two minutes. To improve this timescale, we substituted sympathetic cooling with a stage of
gray molasses (see below) on 39K. This simplified substantially the apparatus and all the components that supported
the cooling and trapping of 87Rb are now removed from the setup. The newly attained cycle-time for degeneracy is of
the order of 20s.

3Measured lifetime of ∼ 150 s.
4In this chapter, we choose to use symbols widely accepted in the literature, like the polar coordinates ρ and ϕ, the

speed of light c and the light frequency ω. Although the same symbols are used differently in the rest of this thesis,
we appreciate that there will be no confusion to the reader.
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Loading the optical trap

State transfer:|2,2>    |1,1>

BEC in a CDT

2D uniform gas

Laser-cooling Chamber Science Cell

D2 cooling

D1 cooling

Optical pumping

Magnetic trapping

Magnetic compression

Laser trapping and cooling

Preparation for magnetic transport

Magnetic transport
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Loading the new box trap
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Figure 4.1: Overview of the ‘technical’ steps followed until the production of a degenerate 2D uniform gas of 39K atoms.
We split the steps into two large categories, according to the corresponding chamber of our apparatus in which they
take place. These steps are described (briefly or in detail) throughout the current chapter.

to minimize the scattering rate between photons and atoms

Γsc = 3πc2

2ℏω3
0

(
ω

ω0

)3 ( Γ
ω0 − ω

+ Γ
ω0 + ω

)2
I(r), (4.2)

that comes from the scattering force and leads to heating, we are restricted to work with far-detuned
light and high-power laser beams.

Before we go into details of the apparatus around the science cell, we first give a brief description
of the initial stages in the laser-cooling chamber, concentrating on the new aspects that have been
introduced in this latest version of our ultracold-atom machine.

Before the magnetic transport

Typically, laser cooling is achieved in two steps, an initial cooling in a magneto-optical trap (MOT)
followed by further successive cooling in optical molasses. Two essential components are required
for the implementation of laser cooling in the MOT: a six-beam configuration of pairs of σ+ − σ−

cirlularly-polarised light along three perpendicular directions, and a quadrupole magnetic field B =
B′(x/2, y/2,−z) with gradient B′, centered at the intersection of the six beams. Each of the six
optical beams normally requires two different frequencies, the ‘cooling’ and the ‘repump’ to sustain
the addressed cooling transition. For details of the principles of these cooling techniques see for
example Ref. [165].
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Figure 4.2: (a) The hyperfine splitting of the low-lying states for 39K. The 4P3/2 fine state is not experimentally
well-resolved since the whole manifold is only 5.4 linewidths. The lines in red illustrate the frequencies used for the
initial D2 cooling, while the green lines are used for the successive D1 cooling, as described in the text. (b) Sisyphus
cooling exploited in the optical molasses: polarisation gradients create a spatially varying light shift, different for the
various sub-states of the ground state. The optical pumping of the atoms from potential ‘hills’ to ‘valleys’ for properly
detuned light results in the final cooling of the gas since energy is taken away with the larger-energy emitted photons
compared to the absorbed ones. (c) When the Sisyphus effect is combined with dark ground states with a departure
rate dependent on the atomic velocity, a gray molasses scheme is formed providing much lower temperatures.

Cooling on the D2 line.

In Fig. 4.2(a) the hyperfine structure of the three lowest fine-structure states of 39K is depicted.
In the absence of a strong magnetic field, the total angular momentum and its z-projection, F and
mF , are good quantum numbers for the description of the atomic hyperfine states. For a species
with well-resolved hyperfine states in the P3/2 manifold, the MOT step demands for the cooling
and repump beams to be near-red detuned (∼ −Γ) from the cycling F = 2 → F ′′ = 3 and the
F = 1 → F ′′ = 2 transitions of the D2 line, respectively. For 39K, where the excited states are
energetically overlapping within their linewidths, this strategy leads to heating from the other (blue-
detuned) hyperfine states, and one has to detune the frequency of the cooling and repump beams
to the red side of the entire hyperfine structure of the P3/2 state [170, 171]. Such a large detuning
offers a large capture velocity from the MOT (enabling to trap atoms directly from the vapour)
when combined with large beam intensities, but it also leads to temperatures much larger than the
Doppler limit (145µK for 39K).

Experimentally, we start the MOT stage with an intensity Icool ≈ 10Is per beam and a ratio
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Icool : Irp ≈ 2 : 1 for the cooling and repump components, while the optimised5 detunings are
∆(2)

cool = −5.4Γ and ∆(2)
rp = −7.0Γ (see Fig. 4.2(a) for their definition). Here Is = 1.75mW/cm2 is

the saturation intensity for the cycling transition F = 2 → F ′′ = 3 for 39K and Γ = 2π × 6.0MHz
the excited state linewidth. With a magnetic gradient B′ ≈ 8G/cm along z, we load a few 109

atoms during the 7-second step. The temperature of the cloud is then around 1mK. To achieve
a higher phase-space density [172], we subsequently decrease the beam intensities to Icool = 0.2Is

and Icool : Irp ≈ 20 : 1, and reduce the detunings to ∆(2)
cool = −3.6Γ and ∆(2)

rp = −4.8Γ, while
simultaneously increasing the magnetic gradient to 14G/cm. At the end of this 80ms-step we obtain
a gas temperature of around 300µK.

Cooling on the D1 line.

To reach temperatures below the Doppler limit, optical-molasses cooling is applied. In a conven-
tional optical molasses, cooling relies on a Sisyphus-like behaviour of the moving atoms; polarisation
gradients from the pairs of counter-propagating beams create periodically modulated Zeeman-energy
sublevels of the ground state, between which the atoms are pumped, such that they lose kinetic en-
ergy (Fig. 4.2(b)). In its most common realisation on a well-resolved D2 line, low-intensity cooling
and repump light, far red-detuned from the resolved F = 2 → F ′′ = 3 and F = 1 → F ′′ = 2
transitions, are applied. For 39K this configuration does not allow considerable sub-Doppler forces.
Alternative schemes on the D2 line have been implemented, like using low-intensity near-red-detuned
light [173], or blue-detuned light in a F → F ′ = F transition [174, 175].

The latter case is an example of a cooling method known as ‘gray’ molasses. The resulting low
temperatures and high densities can be attributed to the existence of dark ground sub-levels, states
not coupled to the excited manifold through the applied light, the optical pumping to which leads to
much reduced scattering of light. In its simplest scenario, a dark state is simply a Zeeman sub-state
due to the polarisation of the applied light. For blue-detuned light, the rest ‘bright’ ground states get
a positive light shift which varies in space due to polarisation gradients, compared to the spatially
constant dark state, as illustrated in Fig. 4.2(c). Sisyphus cooling between the bright and the dark
states then results in the final lowering of the temperature.

This situation becomes even more favorable when light in the D1 line is used instead [176, 177],
i.e. blue detuned with respect to the F = 2 → F ′ = 2 transition, and with the addition of a
second ‘repump’ beam6 close to the resonance of the F = 1 → F ′ = 2 transition (green lines in
Fig. 4.2(a)). The enhancement is partially explained by the lack of a F → F ′ = F + 1 transition,
the close proximity of which would limit the overall cooling efficiency, as happens for the D2 line.
But most importantly, the addition of the repump beam creates effectively a three-level (F = 1,

5All mentioned parameters emerged after an iterative experimental optimisation of the various laser-cooling steps
having as a goal the maximisation of the atom-number loaded in the optical-dipole trap (see Fig. 4.1) of fixed trap-
depth. In this way, not only the atom-number, but also the temperature is optimised, providing us the maximum initial
phase-space density at the beginning of the processes in the science cell.

6These names are merely a convention for this cooling scheme.
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F = 2 and F ′ = 2) Λ-system [178] and under the Raman condition (∆(1)
cool = ∆(1)

rp or δ = 0) new
dark states emerge as coherent superpositions of the F = 1 and F = 2 ground states. The additional
Doppler detuning from the Raman condition (due to the different frequencies of the two laser beams)
converts these dark states into ‘gray’ states and the optical departure of the atoms from them becomes
velocity-selective. Therefore, the gray states provide, on one hand, more gray molasses cooling cycles
(compared to the single-beam case) and, on the other hand, a preference for affecting predominantly
the high-energy atoms. This further Raman cooling, of around a factor of 3, manifests a Fano-like
profile with the detuning δ of a sub-natural linewidth on top of the background single-beam cooling
of the F = 2 → F ′ = 2 gray molasses scheme.

We implement gray molasses by adding on the six σ+-σ− polarised MOT-beam configuration
two more frequencies of light locked on the D1 line, with an independent control in frequency and
power. Optical molasses start with the turning off of the magnetic field of the MOT stage and
interchanging the D2-laser beams with the D1 ones. We operate on the Raman condition with an
overall detuning ∆(1)

cool = ∆(1)
rp = 4.1Γ, although this overall detuning seems rather insensitive. An

initial large intensity for the two beams of Icool ≈ 2.8Is and Icool : Irp ≈ 3.5 : 1 captures and cools
essentially all the already trapped atoms for 2.6ms; the gradual ramping down of the intensities by
a final factor of ∼ 7 at the end of its 7ms duration provides a temperature of 9µK.

Optical pumping and magnetic trapping.

After laser cooling, the atoms are transported to the ‘science’ cell with the help of a movable
magnetic quadrupole field. Distributed among all the sub-levels of the ground state manifold after
gray molasses, the atoms are first optically pumped to the magnetically trappable |F = 2,mF = 2⟩
state with the help of a weak guide field and a σ+ circularly polarised pumping beam consisting
of two frequencies. For the optical pumping, we use light on the D1 line; its ‘cooling’ component,
resonant on the F = 2 → F ′ = 2 transition illuminates the cloud for 900µs in the presence of the
repump light that also minimises losses from atoms being transferred back in the F = 1 manifold
during the pumping cycles.

The quadrupole magnetic field is then ramped up to its maximum available value of B′ =
160G/cm along its strong axis, trapping and compressing the atoms in the |F = 2,mF = 2⟩ state.
The subsequent transport over a distance of 75cm takes place in a time interval of 2.5s. At the end
of the transfer, the temperature of the cloud increases to roughly 130µK, as a result of the adiabatic
compression of the cloud during the magnetic trapping and possible non-adiabatic effects during the
transport.
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4.2 Production of a Bose-Einstein condensate

In the ‘science’ cell the atoms are transferred from the magnetic to an optical trap. There, they are
evaporatively cooled to degeneracy after appropriately tuning the scattering length. Evaporation,
the removal of the most energetic atoms by gradually decreasing the depth of the trap followed by
the re-thermalisation of the remaining particles to a lower temperature, is typically characterised by
the quantity γev = −d lnD3D/d lnN , expressing the efficiency of increasing the phase-space density
D3D at the centre of the cloud after an atom has departed from the trap. In the most common
successful scenario, γev takes an almost constant in time value typically larger than 3.

Optical dipole trap

The experimentally simplest form of an optical trap consists of a single far-red-detuned Gaussian
beam with the atoms trapped around its focal point. Such a beam propagating along some axis
y′ with a characteristic intensity I(ρ′, ϕ′, y′) = 2P

πw2(y′) exp
(
−2 ρ′2

w2(y′)

)
, with the corresponding polar

coordinates {ρ′, ϕ′} of the plane perpendicular to y′, is translated according to Eq. (4.1) into a
Gaussian trapping potential of maximum trap-depth

Uodt = Udip(r = 0) = 2P
πw2

0

3πc2

2ω3
0

( Γ
ω0 − ω

+ Γ
ω0 + ω

)
. (4.3)

In the above, P denotes the total power, w(y′) = w0
√

1 + (y′/zR)2 the waist with w0 its minimum
value, and zR = πw2

0/λ0 the Rayleigh range of the trapping beam of wavelength λ0. Near the
trapping minimum, one can expand this potential to get a harmonic-oscillator approximation

Udip(ρ′, ϕ′, y′) ≈ Uodt

[
1 − 2

(
ρ′

w0

)2
−
(
y′

zR

)2]
(4.4)

characterised by the angular frequencies ωρ′ = (4Uodt/mw
2
0)1/2 and ωy′ = (2Uodt/mz

2
R)1/2 ≪ ωρ′ .

For such a single-beam configuration, the initial temperature of ∼ 130µK of the cloud requires
a beam-waist w01 no larger than ∼ 30µm to get a trap-depth of the order of 1mK for our available
laser of λ0 = 1064nm at a maximum available power ∼ 13W on the atoms. Following some rough
estimations7, a condensate can be, in principle, successfully formed after evaporation in the trap if

7Concentrating on the beginning (end) of a hypothetical evaporation route, characterised by a phase-space density
Di (Df) and an atom-number Ni (Nf), we can approach the overall efficiency parameter as

γev = ln(Df/Di)
ln(Ni/Nf)

= lnDf − lnNi − 3 ln(ℏω̄i) + 3 ln(kBTi)
lnNi − lnNf

. (4.5)

where in the last step we used that the phase-space density in a harmonic trap is given by D = N(ℏω̄)3/(kBT )3 with
ω̄3 = ωxωyωz. With the requirement of γev ≳ 3, the initial temperature Ti ∼ 130µK, trapping frequency ω̄i ∼ 6×103s−1

(coming directly from w0 ∼ 30µm and P ∼ 13W), the final Df ∼ 1 for condensation and a lower bound Nf ∼ 5 × 105,
we obtain the required Ni ≳ 107. After realising our trap, we find that we can routinely create a BEC if initially N ≳ 9
million.
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Figure 4.3: Overview of the CDT setup. Two 20W ytterbium fibre lasers (YLR-20-LP) operating at 1070nm and
1064nm provide the two ODT beams, respectively. The beams, both with an initial size of 2.5mm (1/e2-radius), are
demagnified (∼ 0.4mm) so each passes through an acousto-optical modulator (AOM) in the most efficient way (90%
and 75% of efficiency for the relevant order). The AOMs (operating RF frequency of 110MHz) are used for controlling
the power on the atoms and are stabilised via PID feedback. Finally, a cage system of two lenses for each of the beams
is responsible for focusing them on the position of the atoms. The choice of the focal lengths and the distances between
them was done to get the desired waists, described in the main text, at a distance (45cm and 50cm respectively from
the last lens of the cage) restricted by the experimental setup.

we initially confine at least around 10 × 106 atoms in this optical trap.
The full setup for our optical dipole trap is illustrated in Fig. 4.3. We superimpose the already-

discussed ‘ODT1’ beam, with a second one (‘ODT2’ beam) to create a crossed dipole trap (‘CDT’).
The two beams are separately prepared and focused on the position of the atoms intersecting at an
angle of 90° with respect to each other and 45° to the long axis of the science cell (in Fig. 4.3 we define
two useful reference systems xyz linked with the direction of the science cell and x′y′z linked with
the dipole traps), both propagating in the horizontal plane. An optimum loading and evaporation
has been found for a large ODT2 waist w02 (∼ 150µm), since the relatively large trapping volume
minimises atom losses from three-body collisions. With the chosen waist, ODT2 indeed does not
play a role in the initial loading of the atoms, but it serves in the later stages of evaporation, where
it provides an additional confinement along the weakly trapped axial direction x′ of ODT1.

Fig. 4.4 shows the measured radial frequencies of ODT1 and ODT2 for various powers of the
corresponding laser beam. By turning off one of the two, we observe a breathing mode oscillation
of the cloud in the remaining trap. The measurements are conducted with a ∼ 0 such that the
extracted frequency of the breathing mode is double the characteristic frequency of the trap. The
beam powers on the atoms are deduced from an average of the power measurements just before and
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Figure 4.4: Measured trapping frequencies versus light power for (a) ODT1 and (b) ODT2 along z-direction. The
low-right cartoons indicate the method used for measuring these frequencies: For each beam, the other one is turned
off triggering breathing-mode oscillations in the remaining trap. For ODT1 measurements we found a better signal
is we temporarily quench its power as well. The blue region is where oscillations are observed. Black dashed lines:
expectation based on measured waist with the use of a camera. Red lines: a fit of the form ω/2π ∝

√
P on the data

which gives a refined estimation for the beam waists. The larger expectation for ODT2 compared to the measured
frequency can be explained, in most probable scenario, by a slight misalignment of the beam in its axial direction with
respect to its focus.

after the science cell. Under the assumption of equal losses from both sides of the cell, we find a
∼ 15% of decrease in power in each of the two surfaces of the cell in relatively good agreement with
the expectation of ∼ 80% transmittance through the entire science cell at a 45°-incidence [165]. The
black dashed lines correspond to the expected behaviour of the frequencies with our best estimated
value of the waists, w01 = 27µm and w02 = 154µm, as measured with a camera (in the absence
of the science-cell effects). The red line is a fit on the data which can be used to extract the final
waists on the atoms, w01 = 26µm and w02 = 164µm. The errors of these fits are negligible. With
the knowledge of the powers and the waists of the two beams, we approach the total potential of our
crossed-dipole trap close to its center by

UCDT(x′, y′, z) ≈ −(U01 + U02) + 2U01
w2

01
x′2 +

(
U01λ0
πw4

01
+ 2U02

w2
02

)
y′2 +

(2U01
w2

01
+ 2U02

w2
02

)
z2 (4.6)

with the trap-depths U01 and U02 given by Eq. (4.3) for each beam separately.

BEC in the crossed dipole trap

Both ODT beams are already turned on while the atoms are transported to the science cell; ODT1
is at its maximum available power of around 13W on the atoms, and ODT2 at a value of 0.4W. At
these powers, the lifetime of the atoms in the dipole trap is limited by the trapping light (one-body
scattering with a rate Γsc = Γ(U01 +U02)/ℏ(ω0 −ω) [169]) to ∼ 3s, so the whole loading stage should
be as fast as possible before we initiate the evaporation process. We found an optimum waiting time
of 2s for the loading, with both the magnetic and the optical trap on.
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Figure 4.5: (a) The loading of the CDT: Number of atoms loaded in the dipole trap vs the Raman detuning in the
stage of D1-gray molasses. The green line is a fit of the Fano-form F (γ + δ − δ0)2/[(δ − δ0)2 + γ2] to the data, with
γ, δ0 and F the fitting parameters. This gives a sub-natural width of ∼ 0.03Γ. (b) Evaporative cooling: The evolution
of the ODT powers (upper panel) and the scattering length (lower panel) in a total ramp of 5.8s. BEC appears after
5.2s, indicated by the vertical dashed line. ODT1 is ramped down from 12W exponentially with a time constant
of 0.9s. ODT2 remains constant at 0.4W until before the end that the two trap-heights become equal, after which
time ODT2 follows ODT1. (c) The central phase-space density D3D = N(ℏω̄/kBT )3, with ω̄ the geometric average of
the trapping frequencies, versus the atom number in the non-degenerate regime of the gas. The slope indicates the
efficiency of evaporation and gives γev = 3.6(2). The black dashed line corresponds to the critical phase space density
Dcr

3D ≈ 1.20 [120]. In the inset we show a typical density distribution of a final pure BEC after 20ms of free expansion.
The distribution is well fitted with a parabolic profile, characteristic for the Thomas-Fermi description of a BEC.

With this scheme, a maximum of 12.5(7) × 106 of atoms (around 2.5% of the atoms transferred
to the cell) are loaded into the optical trap, as shown in Fig. 4.5(a). This figure demonstrates the
importance of gray-molasses cooling in achieving such loading numbers: we show the effect of the
loaded atom number N on the detuning δ between the D1 cooling and repump beams from the
Raman resonance. Since the dipole trap has a fixed trap-depth for the specific powers, the observed
atom-number is a direct measure for the temperature of the ‘arriving’ cloud, which, as we already
mentioned, follows a Fano-resonance behaviour with detuning. In this spirit, and together with fixed
trapping frequencies (during loading), the loaded number of atoms in the dipole trap constitutes a
simple tool for maximising the phase-space density of all the previous preparation stages.

The optically trapped atoms are in the |F = 2,mF = 2⟩ hyperfine state. In order to make use of
the wide Feshbach resonance presented in Sec. 2.3.1 for evaporation, we transfer the atoms to the
|F = 1,mF = 1⟩ ground state. We apply a Landau-Zener sweep of the Feshbach field in the presence
of microwave radiation at 476.7MHZ. The magnetic field is increased from 6.8G to 7.7G in 20ms,
which is proven adiabatic enough for ∼ 98% of the atoms to stay in the lower-energy dressed state
corresponding to the |1, 1⟩ state when the microwave field is turned off8.

We then ramp down the power of the CDT beams as in the upper panel of Fig. 4.5(b). For the
dominant ODT1 we use an exponential ramp until the end, whereas for ODT2 we keep its power
constant until the point that the two trap-depths U01 and U02 become equal; after this moment, ODT2

8Details about the antenna and the hardware used can again be found in Ref. [165, 166].
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follows the behaviour of ODT1. To compensate the detrimental effect of three-body losses with the
efficiency of evaporation, we simultaneously ramp up the scattering length, as shown in the lower
panel of Fig. 4.5(b). In the end, the cloud has a scattering length of 147a0. During the whole duration
of evaporation, the ratio of the total trap-depth over kBT remains around 7. To characterise the
efficiency of evaporation we measure the approximately constant quantity γev = 3.6(2) in Fig. 4.5 (b).
With this evaporation trajectory, a BEC is observed after 5.2s at a critical temperature of around
550nK for a total atom number of around 6.5×105, with an uncertainty of ∼ 15% in both quantities;
their calibration is discussed in Sec. 4.8. Beyond the critical point, further evaporation leads to the
purification of the BEC with an increasing condensed fraction. After 5.8s of evaporation we get an
essentially pure BEC of 2 × 105 atoms, with a geometrically average frequency of ω̄/2π = 51Hz and
Thomas-Fermi radii Rx′ = 7.7µm, Ry′ = 47.8µm and Rz = 7.6µm, in respective directions of the
harmonic trap.

The reproducibility of the BEC, both in atom number and position, is important for the stability
of the final uniform 2D gas. To that end, we need to discuss possible sources of instabilities. We
first note that the CDT light and the RF power inevitably heat the controlling AOMs (see Fig. 4.3),
creating lensing effects that systematically change the focus position between the initial and final
steps of evaporation. The effect is much stronger for the high-power ODT1; there is a change of
around 250µm in the position of the focus along the beam propagation between the beginning and
the end of evaporation. We take care to place the ODT focus in such a way that the harmonic BEC
occurs at the desired position of the final uniform cloud. In addition to that fast change of the focus
within a single run, the BEC position slowly drifts in the course of time, mainly due to slow warming
up of the CDT laser heads. The difference between a completely cold and a warm run is translated
into a change of the BEC position by 20µm in the horizontal plane. Although this slow drift does
not create significant differences in the final number of atoms in the BEC, it provably matters for
the loading of the box trap, especially for small boxes. To avoid such undesired effects, the machine
is routinely warmed up for 2 hours before collecting data.

With a BEC at hand, we proceed to describing our realisation of a two-dimensional (Sec. 4.3)
and an in-plane box (Sec. 4.4) trap. We follow a similar approach for both confinements: we first
present the various options available, we then set our requirements and finally, based on the optimum
technique identified, we give a brief description of our setup and its characteristics. At the end of
each section, we discuss important technical issues of the corresponding realisation.

4.3 The two-dimensional confinement

Background

By satisfying the relevant conditions of Eq. (3.1), two-dimensional atomic samples were first pro-
duced in 2001 in the group of W. Ketterle [179], where a cylindrical lens was used to focus a
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Figure 4.6: (a) The trapping potential of a height U0 generated from two repulsive light sheets for the confinement of
the atoms in two dimensions. (b) A real-life example (taken from [183]) of using a TEM01 laser mode to create the 2D
potential, and (c) a real-life example (taken from [184]) of using a 1D optical lattice for the same reason.

red-detuned beam along one direction in order to create a highly anisotropic trap. Such light-sheet
potentials have been commonly used since, although various other aspects have been exploited to
give rise to alternative 2D confinements, like gravito-optical [180] or RF-dressed magnetic [181] traps.
For purely optical methods, the latest implementations of 2D samples have concentrated on using
blue-detuned repulsive light to limit losses and heating: the atoms get confined in a dark ‘sheet’
between two intensity maxima of the applied beam profile, as illustrated in Fig. 4.6(a), thus reducing
the detrimental effect of spontaneous emission9.

Two types of techniques to shape this dark sheet have been widely used. As of first type, a
Hermite-Gaussian TEM01-like mode is shone on the atoms, see Fig. 4.6(b). Such a beam profile
is holographically generated [185], with the use of a 0-π phase-plate to imprint a phase difference
between the two halves (upper and lower) of a Gaussian beam; when imaged, the resulting beam
produces a nearly TEM01 mode. The TEM01-like technique is briefly characterised in Box 4.1.
Alternatively, two coherent beams that interfere form a one-dimensional optical lattice, in the dark
fringes of which atoms can be trapped. An example for the latter configuration is shown in Fig. 4.6(c),
and Box 4.2 briefly discusses this technique.

To decide on a specific implementation for the 2D optical confinement of the atoms, we first set
our requirements.

9Technical heating caused by laser intensity and beam-pointing fluctuations cannot be avoided with choosing a
blue-detuned trap [182].
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The light intensity of the TEM01 mode,

I01(x, z) = 2P
πwxwz

(2z)2
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)
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−2z2
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)
(4.7)

with P the total power and wx,z the beam waists, gives a maximum trap-depth

U0 = 4P
πewxwz
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2ω3
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)
(4.8)

at {x, z} = {0,±wz/
√

2}. Thus, the waist wz is related to the distance ∆z between the intensity maxima as
∆z =

√
2wz. Expanding around the minimum at {x = 0, z = 0}, the trapping frequency is
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√
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∆z

√
U0

2m (4.9)

with an error less than 5%. When using a 0 - π phase-plate to approach the TEM01 mode, close to the center of the
beam the actual light intensity is a factor of π lower compared to I01 due much broader wings [185], with Eq. (4.9)
remaining approximately still valid.

Box 4.1: TEM01-like beam

The cleanest way of interference occurs when a cylindrical lens of focal length f focuses two similar (same power P ,
wavelength λ0, and waists wx and wz) and parallel beams of a relative distance d. Following the rules of Fresnel
propagation, the intensity pattern at the focal point of the lens is

I1D(x, z) = 2Pwz

λ0fwx

[
1 + cos

( 2π
∆z z

)]
exp
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−2x2

w2
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)
exp
(

− 2z2

(λ0f/πwz)2

)
, (4.10)

which corresponds to a simple small-beam interference pattern of periodicity ∆z = λ0f/d with an envelope of a
focused Gaussian beam of waist w′

z = λ0f/πωz. The tightest confinement occurs between the central (z = 0) and
the adjacent (z = ±∆z) intensity peaks of potential height

U0(x = 0, z = ±∆z) = 4Pwz

λ0fwx
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)
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Expanding around the minimum of the potential, the trapping frequency is found to be

νz = 1
∆z

√
U0

2m. (4.12)

Box 4.2: One-dimensional optical lattice

Prerequisites and constraints

1. Trapping frequency: The first prerequisite is to satisfy the 2D conditions of Eq. (3.1) for the
transverse trapping frequency νz = ωz/2π. For an estimation it is adequate to approximate µ3D by
the 3D Thomas-Fermi limit. For an in-plane box potential µ3D =

(
3

25/2ωzg3Dm
1/2n

)2/3
as extracted

from the normalisation condition N =
∫
n3D(r)dr with n3D(r) = µ3D− 1

2mω
2
zz

2

g3D
and a Thomas-Fermi
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radius (2µ3D/mω
2
z)1/2 along z. In Fig. 4.7(a), we estimate the minimum frequency required for

various densities and scattering lengths for the conditions ℏωz > kBT, µ3D to be simultaneously
satisfied over a wide range of temperatures even above the critical BKT temperature Tc. We set a
minimum request for νz ≈ 5kHz, which will be enough for surface densities smaller than roughly
20µm−2 even for the highest accessible interaction strengths.

2. Potential height: Second, we need a potential height U0 that is large enough to allow the
trapping of the atoms at a total power that is experimentally available. For the highest temperatures
of interest (≲ 300 − 400nK), the minimum potential height of the 2D ‘blades’ has to be at least
around 2 − 3µK. On the other hand, and although in principle there should be no harm for larger
U0, in practice this height sets also the scale for imperfections (see Fig. 4.13 below and the relevant
discussion) in the dark center of the potential, and therefore we should keep it as low as possible.

3. Beam extent: Another issue relevant for our final goal of a uniform trap is related with the
finite extent of the applied beam perpendicular to the transverse confinement. Due to the typical
Gaussian profile of the beam (of waist Wx) in this horizontal direction, the maximum height of the
potential U0(x) = U0 exp(−2x2/W 2

x ) leads to a spatially-dependent zero-point energy ℏωz(x)/2 =
ℏπνz exp(−x2/W 2

x ) and thus, with a Taylor expansion, to an in-plane anti-trapping potential of
frequency

νx =
√
ℏνz/(2πmW 2

x ). (4.13)

To determine a minimum acceptable size Wx for a given box size Lx, we have to compare the potential
difference ∆Ux = m(2πνx)2(Lx/2)2/2 caused by this anti-trapping with the relevant energy scales
(temperature and chemical potential) of the box. At the critical temperature, one gets

∆Ux
kBTc

= mνzL
2
x ln(ξn/g̃)

8ℏW 2
xn

. (4.14)

We pick a desired minimum waist of around 170µm to guarantee that ∆Ux is at least an order of
magnitude smaller than Tc in the relevant range of parameters (see Fig. 4.7(b)). Of course, for
lower temperatures the ratio ∆Ux/kBT becomes larger and at T = 0 the Thomas-Fermi result gives
∆Ux/µ2D to be 2π/g̃ ln(ξn/g̃) times larger compared to ∆Ux/kBTc.

The chosen trapping method

For a maximum height of ∼ 3µK and a minimum distance ∆z ∼ 15µm between the two intensity
maxima, slightly larger than the extent of the BEC to be loaded along this direction, we can estimate
(using Eq. (4.9) or Eq. (4.12)) a resulting frequency of 1.2kHz, way below our target value of 5kHz.
From the same relation(s), it becomes apparent that in order to increase the frequency without
boosting U0 one has to squeeze the 2D blades to a distance of around 3µm. However, such a scenario
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Figure 4.7: (a) Minimum transverse frequency νz = ωz/2π that satisfies ℏωz > kBT and ℏωz > kBµ3D for various
densities and scattering lengths. We pick T = 1.4Tc(n, a), so the gas remains strictly 2D even at temperatures above
the BKT critical one. We note that it is the condition ℏωz > kBT that predominantly determines the minimum
acceptable νz, apart from very large a. (b) Minimum extent (waist) in the x-direction of the 2D for ∆Ux/kBTc = 10%
for a typical box-size of 40µm.

would lead to an abrupt decrease in the atom number loaded from the BEC or equivalently to a
multiple-fringe loading in the case of a lattice. To avoid such a situation, we implement a technique
often referred to as an optical accordion [186]: the atoms are first loaded in an initial configuration
with a large ∆z and then dynamically compressed by reducing the spacing of the two blades.

This (adiabatic) compression can be easily realised with the standing-wave technique. In its sim-
plest form, two parallel beams at a distance d are focused by a cylindrical lens of focal length f ; the
spacing ∆z = λ0f/d decreases with moving the two initial parallel beams further apart. Compared to
the TEM01-mode technique, the interference-method is also cleaner since it avoids corrugations orig-
inating from unavoidable imperfections of a manufactured phase-plate. These corrugations become
even more detrimental for the case of a uniform in-plane trap since its typical extent is significantly
larger than 2D gases in harmonic traps. On the other hand, the interference of two in-phase beams
that results in an intensity maximum in the center of the lattice profile manifests two relative draw-
backs: first, the position of the minimum of the potential changes together with a changing ∆z,
deteriorating the stability of the trap and making the beam alignment sensitive to it; second, the
unavoidable intensity imbalance between two adjacent maxima leads to an overall reduced potential
height at a waste of useful power.

In order to circumvent these inconveniences, we combine the two methods: a 0-π phase-plate
imposes a π-phase difference between the two interfering beams (and thus a potential minimum
always at the lattice center independently of ∆z), whereas a finite distance between these two beams
eliminates the effect of imperfections at the junction of the two surfaces of the phase-plate. The
scheme of our setup is shown in Fig. 4.8. The trapping potential is produced from light at λ0 =
532nm, far blue-detuned to keep the photon absorption rate negligible. For the interference of the
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Figure 4.8: The main elements for the two-dimensional confinement. A single Gaussian beam is shaped by the chosen
pattern on the digital-micromirror device (DMD) and then Fourier imaged with the use of a cylindrical lens with a
focal length of 100mm. Putting a 0 - π phase plate in the route of the beam provides us with a zero-intensity beam in
its symmetry center. The chosen displayed geometry on the DMD is a two-bar horizontal pattern, the dimensions δz
and z0 of which determine the final beam on the atoms as explained in the main text.

two beams we use a cylindrical lens with a focal length of 100mm. With this choice, the beam
profile remains extended along the horizontal direction to satisfy the beam-extent requirement. For
the shaping of these interfering beams, but also for the dynamic compression of the spacing ∆z,
we chose to exploit the capabilities of a digital micromirror device (DMD); it is a spatial light
modulator that acts on the intensity of the incoming (Gaussian) beam with a large number (in our
case 1024 × 768) of controllable micromirrors (of pitch 13.6µm), switched to two possible positions
(±12° with respect to their diagonal axis). The mirrors that are in the +12° position are said to be
‘on’, reflecting the light to the phase-plate and eventually to the atomic plane, whereas the light in
the rest of the mirrors is discarded.

More details about the operation, the control and the capabilities of the used DMD will be
discussed in Sec. 4.5. Here it is enough to consider the DMD as a diffraction grating constructed by
the micromirrors, with a filling factor of 92% that produces many diffraction copies of the Fourier
transform of the displayed shape in the far field. All orders but one are then blocked and the
remaining is shone on the atoms. The efficiency of the chosen order depends both on the incoming
beam direction and the choice of the pattern on the DMD (‘off’ mirrors waste their power). The
loss of power is in general considered the main disadvantage of using a DMD for potential shaping.
However, as we discuss below, it is feasible to produce trapping heights of some µK with a total
power of around 100mW on the atoms, a value achievable starting with an available 2W-laser.
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Details of the final trap

The details of the optical-accordion process till the final 2D uniform gas will be presented in
Sec. 4.7, after all the relevant components are introduced. Here we discuss the experimental choices
made for this final gas to satisfy the three criteria we set before, namely a trapping frequency of at
least 5kHz, a trapping height of about 2 − 3µK and a minimum possible anti-trapping along the x-
and y-directions. This discussion also facilitates the quantitative characterisation of our setup that
follows.

The degrees of freedom we can externally control are the size of the Gaussian beam incident
on the DMD (characterised by the waists wx and wz), the projected pattern on the DMD, and the
imaging of the resulting Fourier space distribution onto the atoms (demagnification). Starting from
the latter, we picked a demagnification factor M2D ≡ wx/Wx = 10 so as to use a large fraction of
the DMD active area (see Sec. 4.7) and to keep a simple telescopic system that avoids aberrations
from small focal-length lenses.

Regarding the DMD geometry, we display a pattern of two rectangular horizontal bars as depicted
in Fig. 4.8, to control the intensity profile on the atoms along z and avoid cutting part of the power
of the initial beam along the horizontal x-direction. The two controlling parameters of this geometry
then become the width δz of the bars and their distance z0 from the center of the DMD (defined in
Fig. 4.8). The intensity distribution in the Fourier plane, and thus rescaled on the atoms, from the
rectangularly-masked Gaussian beam on the DMD has a rather complicated form10. To get some
intuition, however, we discard the Gaussian dependence, i.e. we assume that δz ≪ wz, and find that
the intensity profile on the Fourier plane is approximated by:

I(x, z) = Imax sinc2
(
πδz

λ0f
z

)
sin2

(2πz0
λ0f

z

)
exp

(
−2x2

w2
x

)
(4.15)

with the normalisation constant Imax = 2Pδz
fλ0wx

√
2
π , where P is the total power of the light on the

Fourier plane. In Fig. 4.9(a) we compare the approximation of Eq. (4.15) with numerical simulations
based on Fraunhofer propagation [187] and find rather good agreement between the two with no
appreciable difference in their respective potential heights. This analytical intensity profile offers the
following characteristic quantities:
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is the rectangular function of value 1 in the interval {−1/2, 1/2} and zero otherwise, is

E(k) = jwz exp
(
k2w2

z

4

)[
erfi
(
kw2

z + 2jz0 − jδz

2wz

)
+ erfi

(
kw2

z − 2jz0 + jδz

2wz

)
−erfi

(
kw2

z − 2jz0 − jδz

2wz

)
− erfi

(
kw2

z + 2jz0 + jδz

2wz

)]
where erfi(z) = −(2j/

√
π)
∫ jz

0 e−t2
dt is the imaginary error function.
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Figure 4.9: (a) Comparison between the numerically extracted potential profile along z using Fraunhofer theory of
propagation (yellow) and the analytical approximation Eq. (4.15) (blue) for a situation with δz =50 mirrors that
validates our discussion in the main text. (b) Corrections for the actual spacing ∆z and potential height U0 due to
a finite width δz of the bars-geometry in the DMD. Both are ‘universal’, depending only on the ratio z0/δz. (c) The
potential height U0 (blue) and the potential difference (green) along y due to anti-trapping for a typical gas (L = 40µm,
n = 10µm−2, g̃ = 0.1) for z0 = 50 mirrors. The dashed line gives the height of the potential without the corrections in
(b) showing that thick bars indeed reduce the achievable U0 due to the sinc-envelope. The shaded regions indicate the
acceptable δz for U0 and ∆Uy based on the discussion in the main text. We pick to work with δz = 50 mirrors for our
final configuration.

1. The spacing ∆z between the two intensity maxima: From the sine-term of Eq. (4.15) alone,
one can approximate ∆z with ∆z0 ≡ λ0f/2z0. As expected from the reciprocal relation between real
and Fourier space, it is the distance z0 that controls the spacing between the intensity maxima on
the atoms. For a desired distance of 2 − 3µm on the atoms (taking into account the demagnification
M2D) it requires a shift z0 ≈ 0.8mm of the bars on the DMD (or around 60 micromirrors). We note
that the non-physical situation with bar widths δz > 2z0 can be incorporated to our studies after
defining an effective zeff

0 → z0/2 + δz/4 and an effective δzeff → 2zeff
0 for that case. Furthermore, a

more careful treatment for ∆z, including the effect of the sinc-dependence yields a suppression of the
spacing that depends only on the ratio z0/δz. The correction ∆z/∆z0 is plotted in the upper panel
of Fig. 4.9(b) and allows a slightly smaller z0 than 60 micromirrors to achieve the desired spacing.
We eventually pick z0 = 50 mirrors.

2. The potential height U0: With a given total power P on the atoms, the trapping potential
U(z) = Umax sinc2

(
πδz
λf z

)
sin2

(
2πz0
λf z

)
would give a height Umax = Imax

3πc2

2ω3
0

(
Γ

ω0−ω + Γ
ω0+ω

)
for an

infinitesimally small δz. The finite width of the bars, however, provides the additional sinc-envelope
of a width11 w = 2λ0f/δz that suppresses the potential height to a value U0 by a factor that depends
only on the ratio z0/δz; this dependence is depicted in the lower panel of Fig. 4.9(b). On the other
hand, the maximum power on the atoms is not a constant but itself depends on δz, with larger bars
picking a larger fraction of the total incoming to the DMD power Ptot. With simple calculations, we

11w is defined as the distance between the first two zeros of I(z) around z = 0 (see Fig. 4.8).
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can estimate the power on the atoms

P (z0, δz) = κ2DPtot

[
erf
(
δz − 2z0√

2wz

)
+ erf

(
δz + 2z0√

2wz

)]
. (4.16)

Here κ2D ≈ 0.18 is an experimentally deduced coefficient (see also discussion below) that takes
into account power losses from the DMD (diffraction efficiency of the selected order, filling factor
of the grating etc) and the following optical elements (transmission from mirrors, the cell etc) and
erf(x) = 2√

π

∫ x
0 e

−t2dt. In Fig. 4.9(c) we show the resulting potential height U0 (straight blue line)
as a function of δz for z0 = 50 mirrors and for our maximum incoming power. The blue shadowed
region roughly indicates the acceptable values of δz based on the requirement that U0 ≳ 2µK.

3. The trapping frequency νz: A Taylor expansion of the potential U(z) around its central mini-
mum at z = 0 gives νz = 1

∆z0

√
Umax
2m . One can show that the corrections ∆z/∆z0 and U0/Umax cancel

out for any ratio z0/δz (with an error less than 1%), and thus we can also approximate νz = 1
∆z

√
U0
2m .

This result is the same as in the general cases of Eq. (4.9) and Eq. (4.12) described above, validating
our discussion for the desired ∆z.

4. The anti-trapping frequencies νx and νy of the x− y plane: We already expressed the re-
quirement Wx ≈ 170µm along x. With the chosen M2D we finally pick the size for the incoming
beam to be wx = 1.7mm. More elliptic profiles were tested but the need for a large width also along
z forced a circular profile (wz = wx). For the desired νz = 5kHz, the anti-trapping frequency along
x is estimated to be νx ≈ 6Hz.

Along the propagation direction, a theoretical prediction requires a numerical treatment of the op-
tical setup using Fraunhofer propagation theory. At any displacement ∆y along our propagating laser
beam with respect to the focal position, we extract the central frequency νz(∆y) of the numerically
obtained intensity profile. We then attribute an effective Gaussian waist Wy by fitting the resulting
νz(∆y) with a function ∝ exp(−∆y2/W 2

y ). By repeating the same process for various δz (while
keeping z0 = 50 mirrors) we end up getting the (somehow surprising) result Wy = 1.05λ0f

δz . We can
now approach an anti-trapping frequency along y analogue to Eq. (4.13) as νy = δz

λ0f

√
ℏνz/(2.1πm)

and conclude that thin bars minimise νy. In Fig. 4.9(c) we also show the prediction (green line) of
the potential difference along y due to Wy in units of the critical temperature for a typical box of
Ly = 40µm. The shaded region denotes roughly the acceptable δz with an arbitrary but reasonable
cut-off ∆Uy/kBTc = 0.1. A compromise for νy and U0 leads us to pick δz = 50 mirrors and estimate
an anti-trapping frequency νy ≈ 14 Hz.

Experimental setup and characterisation

Following our above described theoretical considerations, the full experimental setup related to
the 2D confinement is shown in Fig. 4.10. The light, generated by a 2W green laser (Laser Quantum
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Figure 4.10: The full setup for the production of a 2D gas. The final apparatus follows the ideas set in Fig. 4.8. In the
final implementation, the phase-plate is eventually placed after the Fourier plane for reasons of space limitation, after
we experimentally checked that the quality of the blades is not deteriorised.

gem 532 ) passes through a high-power AOM (AA Opto-electronic, MCQ 110-A3-VIS) aligned for
a maximum efficiency of 85% for the first diffracted order that allows the fast control of its power
and then directed onto the DMD using a periscope to fulfil the blazing condition12. At an angle of
around 25° with respect to the diagonal of the ‘on’ mirrors, the overall efficiency of the selected 10th
order of diffraction is ∼ 22% when all the mirrors are at the ‘on’ position. The DMD is placed in one
focal-length distance of a cylindrical lens. In the opposite focal point of the lens, an iris blocks the
rest of the diffraction orders. This focal point is subsequently imaged on the atoms with two lenses
of 500mm (Thorlabs, AC254-500-A-ML) and 50mm (aspheric, Thorlabs, AL2550-A) focal lengths.
The 0-π phase-plate was obtained from the previous version of the 2D confinement of our machine
[167].

We next verify that we can satisfy the initially imposed requirements. In Fig. 4.11 we show (i)
two examples of the beam profile on the atoms as recorded with a camera together with (ii) the
corresponding prediction (Fraunhofer numerics). In both cases we keep δz = 50 mirrors and increase
the distance z0 verifying that it compresses the space between the blades. Sub-fibures (iii) show a
cut of the intensity profiles along z in the central region of the beam giving very good agreement
between theory and experiment.

12A blazing condition [188] (see also Ref. [189]) occurs when the direction of reflection from the individual mirrors
coincides with the direction of an order of diffraction of the DMD, transferring in principle all the power into the
specific order. The maximum diffraction efficiency of the used DMD is 65%.
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Figure 4.11: The experimentally extracted (i) and the numerically calculated using Fresnel theory (ii) intensity profiles
on the atoms for two DMD patterns. In (a) we used z0 = 0 and δz = 50 mirrors. In (b) we used the ‘optimum’ z0 = 50
and δz = 50 mirrors for the satisfaction of our criteria. We also show (iii) a cut of the above profiles along z in the
central region of the beams. Red lines correspond to the experimental images and blue lines to the theory at the same
power.

Images of the beam profile can be straightforwardly used to extract the spacing and the height
of the potential peaks. Fig. 4.12(a) presents the results for the spacing ∆z as we keep a constant
δz = 50 mirrors and scan the distance z0. In this process one can distinguish two different regimes,
separated by the dashed vertical line in the plot. For z0 < 25 mirrors the two bars partially overlap,
mimicking the situation of a TEM10-like mode. For z0 > 25 mirrors one can see the Fourier profile
as the interference of the two distinct bars.

Fig. 4.12(b) illustrates the potential maximum along z. Due to space limitations we were unable
to extract the power on the atoms by averaging the measured power just before and after the ‘science’
cell. Alternatively, we estimated the loss in power from the relevant optics and the cell based on
their specification data [166]. At small distances z0, the increase of U0 with z0 is a consequence of the
increase of δzeff. At larger distances, as the bars move further away from the center of the incoming
beam, U0 starts decreasing due to a smaller fraction of the total power.

Finally, in Fig. 4.12(c) we plot the resulting transverse frequency. The red points are the experi-
mentally measured frequencies, as deduced by measuring the breathing mode after the perturbation
of the 2D confinement in the same way as in Sec. 4.2 for the frequencies in the CDT. The gray points
correspond to a fit of the camera-obtained potential profiles close to their minimum around z = 0.
For distances larger than 50 mirrors we observe a reduction in the visibility of the interference profile,
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Figure 4.12: Characterisation of the quality of our 2D trap for δz = 50 mirrors and varying the distance z0. (a) The
spacing between the two potential maxima as extracted from a camera. For z0 ≤ 25 mirrors, the two bars on the DMD
can be equivalently be thought as a single larger centered bar. The green line indicates the theoretical predictions after
taking into account the corrections described in Fig. 4.9. We are able to achieve a spacing down to ∼ 2.5µm after
which no gain is observed; this saturation may be caused due to physical reasons (aberrations) or due to our detection
resolution. (b) The corresponding potential height U0, as extracted from the camera and the measurement of the total
power. The errorbars indicate the difference in height between the two peaks (standard deviation) whereas the point
represents the mean height. The theoretical green line is the prediction taking into account the effects of the picked
fraction of power from the incoming beam, the various sources of loss and the corrections due to the sinc-envelope (see
main text). (c) The transverse frequency measured through the atoms (red points) and through the light (blue points).
The theoretical curve is composed by the lines in (a) and (b) and the prediction νz = (1/∆z)

√
(U0/2m). The fact

that the measured frequency using the atoms exceeds the light measurement for higher distances z0 indicates that the
limitation in ∆z we observe is mainly due to the detection resolution.

a result translated into lower fitted frequencies. The theoretical prediction (black line) is derived
from combining the predictions in ∆z and U0.

Before we shift our attention to the discussion of the new in-plane uniform confinement, we make
two technical comments for our 2D setup:

Further technical considerations

Laser stability. The stability of the laser-beam position is crucial for the reliable operation of our
experiments. Position instabilities of the incoming light beam are translated into potential-height
imbalances of the two blades and decrease the interference contrast of the pattern derived from the
DMD. The top panel of Fig. 4.13(a) shows the shift in time of the incoming beam position just
before hitting the DMD; the reason of this shift is the slow heating of both the laser head and used
AOM, but also shorter-timescale fluctuations (shot-to-shot) are significant. The predominant shift
of almost 2.5mm in the z-direction is a serious limitation when compared with the total size of the
DMD extent of 10mm and the incoming beam waist of 1.7mm.

To overcome this effect, we implement an automatic beam-walking technique. Two quadrant
photodiodes (Thorlabs, PDQ80A) detect power imbalances between the four (horizontal and vertical)
quarters of their area from the laser light that is partially transmitted through two back-polished
mirrors (∼ 1% of the total beam power is transmitted), as seen in Fig. 4.10. The four voltage signals
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Figure 4.13: (a) The drift of the 2D laser beam on the DMD (upper panel) and its correction (lower panel) after
the implementation of an automatic beam walking technique. (b) The deviation of the density profile from being
homogeneous along the x direction of the observed imperfections (see main text). The parameter Σnorm = σn,x/σn,y

quantifies this emergence of inhomogeneity. The data points correspond to ∆z = 6.8µm (blue) and ∆z = 3.2µm
(green). The hue of the points indicate the used scattering length (lighter colors for 150a0 up to 800a0 for darker
colors). The dashed line shows the expected behaviour for a truly uniform gas. The solid line is a heuristic exponential
fit on the data.

(two directions per photodiode) are fed into an Arduino microcontroller board (Arduino Nano). The
Arduino itself is connected with four piezo-electric actuators of a maximum travel of 30µm each,
which have been inserted in the mounting of two mirrors for the control of their position. When
the Arduino is triggered13, it starts scans on the length of the four piezos (in pairs in th x- and
z-direction), in a way that it mimics the process of beam walking, until the signals in the quadratic
photodiodes are totally balanced. The corrected position of the beam center on the DMD after a
beam-walking scan is completed is depicted in the low panel of Fig. 4.13(a). There is no visible shift
on the atoms after walking has finished.

Potential defects. The large potential heights that come together with the required large trans-
verse frequencies lead to undesired and difficult-to-overcome imperfections in the 2D trapping light
profile, affecting the atom density and hampering the production of a uniform gas. We found a
‘quasi-periodic’ modulation of the light intensity along the x direction (and in the nominally dark re-
gion of the 2D trap) as the most pronounced defect in our trap. This modulation with a ‘periodicity’
of the order of 15µm was tested to be irrelevant of the existence of the DMD or the phase-plate in
our setup. Although its exact origin was not identified, the most plausible explanation relates it with
imperfections of the collimated (along x) beam due to diffraction effects; an alternative explanation
could link them with the interference of the trapping light with itself at the surfaces of the ‘science’
cell, or wavefront distortions on other optical elements. Similar defects seem to appear in other 2D
atomic gas experiments, as revealed to us during various private communications.

To quantify the role of the defects, we test the homogeneity (see next section) of a very-low-
13During continuous running of the machine, the triggering occurs at the MOT stage of each experimental cycle and

the beam walking is finished in a couple of seconds, before the green laser is shone into the atoms.
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temperature 2D gas in a box as a function of its chemical potential and correlate it with the height
U0 of the 2D potential. Fig. 4.13(b) shows the results for various chemical potentials (by changing
both the density and the scattering length of the gas) and various spacings ∆z of the 2D confinement.
We calculate the parameter Σnorm, the relative standard deviation σn,x of the surface density along
slices in x normalised by its standard deviation σn,y along y, i.e. Σnorm = σn,x/σn,y. We can
distinguish two different regimes. For large chemical potentials, no defects are visible in the density
profile and Σnorm ≈ 1. For lower µ, the density profile along x deviates from being homogeneous and
lines of lower and higher densities along y appear. The appearance of corrugations occurs at around
µ/U0 = 0.01. In other words, we estimate imperfections on the beam at an energy scale of around
1% of the potential height U0, which we acknowledge as an additional lower bound for the studied
gases’ energy scales (chemical potential and temperature). Of course, this condition is easier to be
satisfied for higher temperatures and larger interaction strengths.

4.4 The uniform in-plane confinement

In this section we describe our realisation of an in-plane box potential, which together with the
two-dimensional confinement of the previous section constitute the essentials of our experimental
platform.

Background

An optical blue-detuned uniform trap requires a hollow laser beam with a dark central region where
the atoms are confined. The first techniques to implement such a beam profile followed the same
holographic principles already discussed for a 2D trap; carefully chosen phase patterns to be imprinted
on a Gaussian beam have been exploited to create hollow beams in the far-field. Among the various
choices, static phase plates14 [190, 191], axicon lenses15 [87, 192] or more flexible and computer-
controlled spatial light modulators (SLM), like the phase-only-controlling liquid crystal (LC) SLM
[83] (that can mimic both phase-plates and lenses) have been experimentally used. However, the
larger relevant length scales of the hollow beams compared to 2D traps have allowed additional
techniques to be tested and successfully produce uniform potentials. One such technique utilizes
a fast rotating laser beam to paint a time-averaged uniform disk-shaped potential on the atoms
[193, 194]. This rotation is made by two orthogonal acousto-optical modulators that operate out-of-
phase and is typically of the order of 10kHz. Another verified technique uses a mask in the path of the
beam to sculpt its intensity profile, which is directly imaged on the atomic plane. Several experiments
used static masks, lithographically manufactured, but recent developments have incorporated tunable

14A useful phase plate is that of a circular shape that imposes a π-phase difference between the inner and outer parts
of a Gaussian beam. This configuration generates a Laguerre-Gaussian intensity profile in the far-field.

15An axicon lens, essentially a glass cone, can be regarded as a phase plate with radial phase gradient that creates a
Bessel function in the near field, the Fourier transform of which is a circle.
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Figure 4.14: A typical potential for the realisation of a box trap. The characteristic quantities of this box denoted in
the sketch are discussed in the main text.

intensity masks, like the DMD, that allow changeable shapes for the projected light [84, 85, 195].

Prerequisites and constraints

Fig. 4.14 shows a cartoon mimicking the typical potential resulting from these various methods
that aim for a uniform trap. Such a potential is characterised by (1) an average background value
Umin of its central region where atoms are to be trapped, (2) an effective size L of this region,
(3) a potential height Upeak which serves for confining the atoms, (4) a finite potential slope that
connects the uniform central region with the potential maximum, and (5) a typical height Ucorr of
inhomogeneities inside the central region. The last two properties constitute the limits of how uniform
a certain realisation can become. We now discuss these characteristics in view of our requirements,
as well as various physical and technical constraints.

1. Central uniformity: Ideally, one should aim for Umin = 0. A constant background light has no
effect apart from adding to the heating and losses of atoms from the trap due to light absorption. In
most realistic situations, however, some light in the central region will not be spatially homogeneous,
leading to short range potential disorder. As in the case of the 2D confinement, one has to compare
these variations with the energy scales (thermal and interaction) of the trapped cloud to determine
if they play a detrimental role against homogeneity. For our realisation, we can set an upper limit
in what is acceptable by keeping these potential corrugations smaller than the anti-trapping or the
defect-related potential differences occurring from the 2D confinement.

2. Potential height: As in the case of the 2D trapping, we need to reach potential heights of 2µK
in order to trap properly atoms at a temperature up to around 400nK. As we will show, we can use
this height to evaporate the cloud in the new trap and control its temperature. A desired feature is
to realise a potential height that is as uniform as possible along the confining walls for a systematic
control of the temperature and evaporation.
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3. Box size: The exact definition of the size of a trap of finite sharpness is not straightforward
without referring to density distributions. This question will arise in next chapter and we will discuss
it in more detail. For now we can assume that the slope of the edges is rather unimportant and
define a trap size as the distance between the two potential maxima. When compared with the size
of the harmonically-confined BEC in its elongated direction (without any additional compression),
all the BEC atoms are trapped if the box size is larger than ∼ 60µm; in reality, most atoms are
confined for a size of at least 20µm. In the other limit, technical issues, like the achievable potential
height or the resulting 2D densities, restrict the box to relatively small values. Typically, we can ask
for a proper trapping when the size is in the interval 20 − 80µm.

4. Slope of the edges: The deviation from an ideal box with infinitely sharp edges is typically
described with the leading power-law behaviour of the potential (U ∼ rβ). The value of β is used
also to quantify the departure from the traditional harmonic potentials (β = 2). Experimental large
traps with β up to ∼ 80 have been constructed. For our convenience, we also define a characteristic
length R (see Fig. 4.14) over which the potential increases from its ‘minimum’ value to the relative
energy scale of the system (temperature, chemical potential), relevant for the atoms. For R ≪ L,
one may call it a box trap. This claim becomes obvious if R is smaller than the healing length of the
system, in which case the finite-slope potential would be essentially indiscernible from an ideal box.

The chosen trapping method

Having set our criteria, we proceed to deciding which technique to pursue for building a box
trap. We first abandon the idea of painting an average potential, due to the close proximity of the
maximum beam-rotating frequency with our transverse trapping frequency and the fear of extensive
heating; our optimum options lie between a holographic ‘Fourier’ imaging or a direct imaging with
the use of a DMD. At this point, there is enough experimental literature that allows us to make a
safe choice based on our desires. For example, one can have a look at the PhD thesis of Alex Gaunt
[196] of our group, where various phase patterns of the holographic method are compared, and those
of Lauriane Chomaz [143] in Paris and Klaus Hueck [197] in Hamburg, where the direct and Fourier
imaging techniques are contrasted in the context of 2D systems.

We choose to work with a DMD as an intensity mask and project directly its displayed image onto
the atoms. The main advantage of this method is its intuitive simplicity and the ability it offers to
shape arbitrary potentials with sharp edges; this is a key feature for the construction of a textbook-
like rectangular box trap. A common disadvantage of a direct imaging technique is its limited depth
of focus, making the hollow region of the intensity pattern we project really dark only for a very
limited regime along its propagation axis. This could be a real constraint for 3D experiments, but
not in our case of a transverse extent for the cloud of a few hundreds of nm; the depth of focus of our
imaging pattern will be an order of magnitude larger than this size. A second obvious disadvantage
is the highly inefficient way this technique treats the available power, especially by throwing away
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the central part of the incoming beam to sculpt the dark trapping region. In what follows, we sketch
our experimental choices to nevertheless make this method satisfy our requirements.

Details of the final trap

Our first choice pertains to the magnification between the DMD pattern and the atomic plane.
We use a demagnification factor of Mv = 68 to realise box sizes up to 100µm using up to 70% of
the DMD pixels. In order to have reasonably uniform potential walls, and also to be able to change
the box size at will, the DMD is illuminated with a beam of waist wi = 7.2mm which occupies the
whole area of the DMD. With this beam, the relative change (non-uniformity) of the potential along
the walls for a typical square box of 40µm would be, in principle, no more than 7%, while the walls
potential for a 80µm box will be 0.76 times smaller than that of a 20µm box.

Given the demagnification, we can estimate the required power for a potential height of around
2µK. From the discussion above, it is sufficient to concentrate on the single case of a 40×40µm2 box.
If Pv is the total power of the incoming beam on the DMD then a single pixel16 (of size spx = 13.6µm)
on the DMD corresponds to an intensity of

Iwalls ≈ κvM
2
v

2Pv
πw2

i

exp
(

−4(100spx)2

w2
i

)
≈ 9.8 × 106Pv [1/m2] (4.17)

on the atoms. Here, κv ≈ 0.29 is again an experimentally extracted constant that accumulates the
various losses of power of that pixel during the propagation, like the diffraction efficiency of the
DMD, the absorption of the various optical elements and the cell. Using light at 532nm, as for the
2D confinement, one would require around 3.5W of initial power on the DMD. Instead, we use light
at 760nm, much closer to the atomic transition; we can then achieve the goal of the same potential
height (2µm) with 50 times less power (70mW). The increased light scattering rate from this choice
is not capable of creating significant losses in the dark trapping region; with simple calculations, one
gets a lifetime (solely because of the light) of 50s if Umin ∼ 0.05Upeak (for Upeak ≈ 2µK), which is
comparable to the lifetime due to background collisions of 150s in our science cell.

With light at 760nm, we can exploit the optical components already in place around the cell,
especially the vertical imaging setup [165]; with the trapping beam counter-propagating to the imag-
ing beam, the imaging objective acts as a diffraction-limited objective also for the DMD projection
(with a demagnification of 5.2). The total setup, with the additional steps of demagnification, is
illustrated in Fig. 4.15. For the production of the DMD-shaped beam, we use a CW Ti:Sapphire
(TiSa) laser (Coherent Ti:Sapphire MBR-110 ) which is pumped by a 18W green laser (Coherent
Verdi V18 ) to generate light at a tuneable wavelength over the range 700 − 795nm for our chosen
birefringent filter. At 760nm, we get up to 1.2W of output power which, after passing through an

16The relevant pixel for the box of 40 × 40µm2 occupies the position of index {100, 100} with respect to the central
pixel of the DMD.
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Figure 4.15: The full setup for the production of a uniform gas.

AOM (AA Opto-electronics, MT80-A1,5-IR) for an external fine-control of the final power, is subse-
quently fiber-coupled to reach our experimental table. There, the beam is masked by the projected
pattern on the DMD and imaged to the atoms. Two initial steps of demagnification (500:50 and
200:150) are added before the final demagnification from the imaging objective to construct the total
Mv.

Setup characterisation

The direct imaging of the DMD pattern on the atoms permits arbitrary geometries, limited only
by the imaging resolution and other technical defects. We restrict our discussion to the simple but
relevant case of box potentials. We create such potentials by switching on rectangular frames of DMD
pixels. An example of the resulting light intensity that is projected on the atomic plane is depicted
in the upper panel of Fig. 4.16(a) for the case of a square box of L ≈ 60µm, and its corresponding
potential in a slice along x in the lower panel of the same figure. Using this potential, we trap the
atoms in the central region of the low light intensity. An example of the density distribution obtained
with absorption imaging (Section 4.8) for the trapped gas is shown in Fig. 4.16(b). With images of
the light and the atom density at hand, we attempt to characterise our uniform traps.

With a maximum stabilised power of around 100mW hitting the DMD, box potentials at a
height up to ∼ 3µK can be realised. As expected, the maximum height of the potential has a slight
dependence on the size of the projected box; the decrease of the achievable height for larger boxes
of a few percent is irrelevant for the purposes of trapping gases at a temperature of some hundreds
or even tens of nK.



4.4. THE UNIFORM IN-PLANE CONFINEMENT 79

(𝑎) (𝑏)

−40

−20

0

20

40

−40 −20 0 20 40

𝑈
/𝑈

𝑝
𝑒
𝑎
𝑘

0

0.4

0.8

1.2

න
𝑛
𝑑
𝑦
/
𝑛

0

0.4

0.8

1.2

−40 −20 0 20 40

𝑥 (𝜇𝑚) 𝑥 (𝜇𝑚)

−40

−20

0

20

40

𝑦
(𝜇
𝑚
)

𝑦
(𝜇
𝑚
)

Figure 4.16: A typical example of (a) the trapping light for the in-plane confinement and (b) the resulting density
profile. The lower panels show a normalised cut across x and the integrated density along y, respectively.

In the central dark region of the trap, the light intensity shows some ripples which depend on
the box size. For the smallest boxes of around 20µm, the average central intensity approaches the
3% of the potential barrier, whereas for larger boxes (above 40µm) this background is suppressed
to values below 1%. The standard deviation of the potential in the central region normalised to
the potential barrier remains low at values about 0.5%. Its peak-to-peak deviations can reach up
to 5% of the barrier, especially for smaller boxes. These corrugations seem larger than the defects
originating from the 2D confinement. However, we note that the relevant heights for the box trap
that we will work with are in the range of 100 − 500nK, much lower than the corresponding heights
from the 2D trap, making the latter the prevailing source for density inhomogeneities. Inspecting
the density profile of the gas, we calculate a typical standard deviation of around 8% on the mean
density, when 2D-light defects are well suppressed.

Together with the light profile in Fig. 4.16(a), we show (dashed line) a characteristic U ∼ rβ fit for
the determination of the leading power-law β as a measure of the potential slope. The fit is restricted
to values up to 0.7Upeak and the extracted β is plotted in the upper panel of Fig. 4.17(a) for various
box sizes. The results show a clear deviation from the harmonic case even for the smallest boxes and
are comparable to other recently built uniform experiments [196–198]. We also estimate the length
R over which the potential increases from its mean central value to 0.2Upeak, corresponding to a
typical (but also relevant for our experiment - see Section 4.7) η = Upeak/kBT ≈ 5. A very similar
parameter Rn is alternatively extracted from the atom-density profiles as shown (dashed line) in the
lower panel of Fig. 4.16(b); we chose to fit the low-temperature density profiles with n0 tanh(x/Rn),
the same form as for a finite-sized perfectly-uniform BEC where Rn → ξ. We find Rn = 1.7(3)µm,
a value very similar to the best estimation we have for the system’s resolution.
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Figure 4.17: (a) Upper panel: The power-law exponent of the in-plane trapping potential as determined from the light
images on the atomic plane. Lower panel: the characteristic length R for the slope of the edges. The data points are
extracted from light images, whereas the shaded regime corresponds to the behaviour of the atom-density (see main
text).The dashed line shows our best estimation for the system’s resolution. (b) Potential height (blue points) versus
gray-scaling level or equivalently the fraction of DMD mirrors that are turned on. In the specific testing geometry
(shown in the upper side cartoon), the barrier remains to a level 100% and we change the fraction of mirrors in the
central regime of the DMD. The green data-points correspond to the potential height of the barrier. The potential
height follows a parabolic behaviour with the fraction of the mirrors that are turned on due to the parabolic change of
the intensity peak of one diffraction order with the number of the slits. The black line in the main figure is a prediction
for U0 based on this parabolic dependence, the knowledge of the central area that is used for gray scaling, and the
measured power when all the mirrors are turned on (no additional grating). The low-side cartoon illustrates the change
of the efficiency of the selected order with the changing of the gray level based on Eq. (4.18). The blue line corresponds
to a doubling of the number of mirrors compared to the red line. The total power is also doubled, but the intensity of
the selected order is quadrupled.

Another comment we want to make is related with the choice of a framed wall for the potential
barrier as in Fig. 4.16(a) and the blocking of the light in the outer part of the trap from reaching the
atomic plane. This frame serves two purposes. On one hand, we found experimentally that allowing
light in the outer part of the trap creates undesired effects in the central density profile, probably
due to reflection effects. On the other hand, a very thin frame would lead to a reduced trap-depth.
To see that, we first calculate the effective size of a single DMD mirror on the atomic plane to be
spx/Mv = 0.2µm. This size is well below the optical resolution (1.7µm) of the imaging of the DMD
pattern. This means that around (1.7/0.2)2 ≈ 72 mirrors correspond to the same diffraction-limited
spot on the atomic plane and keeping some of them off would result in the decrease of the total power
in that spot. A width of at least 9 mirrors is then necessary for reaching the maximum available
trap-depth.

Gray scaling: Although the projected DMD patterns are binary, the relatively low resolution
compared to the DMD mirror-size on the atom plane permits a spatial gray-scaling of the resulting
potential with, in our case, around 72 different gray levels. The intensity of a resolution-limited
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spot on the atoms is then controlled by the turning on of a proper number of neighbor mirrors that
are connected with that spot. We found that a simple ‘throwing-the-dice algorithm’ for turning
on or off each mirror (with a probability of being on equal to the desired gray level) provides
smoother monotonic behaviour of the light intensity compared to other, commonly used algorithms
(like the Floyd-Steinberg error diffusion algorithm [199]). An example of our gray-scaling technique
is illustrated in Fig. 4.17(b). In this example we use the central region of the atomic sample to test
gray scaling, while keeping the trapping barrier at its maximum value (see upper cartoon in the side).
The resulting potential height in the center for various chosen gray levels (blue points) together with
the height of the barrier (green points) are shown in the main figure.

An initially surprising result is that the central potential height is not proportional to the fraction
of the mirrors that are turned on and subsequently to the picked power, but there is rather a parabolic
dependence. We interpret this behaviour as the result of the change of the efficiency of the projected
order of diffraction with the gray level. A simple way to understand this effect is by considering the
central gray-scaled pattern of the DMD as a separate external grating made from the combination
of the ‘on’ and ‘off’ mirrors of that pattern. With a simple one-dimensional (along - say - x) model
of diffraction, the intensity profile of this grating is

I = I0
sin2(πNsdsx/λ0f)

sin2(πdsx/λ0f) sinc2(πwsx/λ0f), (4.18)

with Ns the number of the slits (‘on’ mirrors), ds the distance between the slits, and ws their width
(mirror size). By increasing the gray level (number of mirrors that are ‘on’) by a factor F , the total
power indeed changes by F (I0 → FI0); at the same time, the effective number of the slits in the
grating changes as Ns → FNs and their average distance reduces as ds → ds/F . This leads to a
change of the intensity peak of any order (and thus of the potential on the atoms) by a factor F 2 as
can be obtained from Eq. (4.18). This situation is depicted and described in the low-side cartoon of
Fig. 4.17(b).

4.5 Integration of the DMDs into the experimental setup

In the previous sections we treated the DMDs almost as black boxes that mask the incoming beams
with a desired shape for direct (box trap) or Fourier (2D trap) imaging. In this section we give some
more details of their functionality from a more technical perspective and discuss their integration to
our experimental apparatus.

A simplified block diagram of our DMD-controlling setup is shown in Fig. 4.18. The core of the
hardware of this setup (the ‘chipset’) consists of the actual micromirror device, a digital controller
and an internal memory board. Each micromirror on the chip is mounted on a 1-bit memory cell, the
value of which sets the position of the mirror through electrostatic forces. Sequences of images can
be loaded into the internal memory board and then one-by-one to the memory cells with a fashion
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Figure 4.18: Simplified block diagram of the DMD-controlling setup.

controlled by the DMD controller. The refresh rate (or its inverse ‘picture’ time) of the frames in
the sequence can be generally set either by an internal to the chipset clock or externally through a
triggering comb of pulses.

We use the V7001-model from Vialux. The DMD display consists of 1024 × 768 mirrors of
dimensions 13.6 × 13.6µm2. The chipset supports a wide range of optical wavelengths including
760nm and 532nm at a maximum efficiency17 of ∼ 68%. It allows storing ∼ 14 × 103 frames and
offers a high refresh rate. For binary images the maximum rate of 23kHz permits a large spectrum
of dynamic performances ranging from the slow adiabatic deformation of the corresponding light
potential to almost instantaneous quenches for studies of out-of-equilibrium phenomena. Apart from
binary frames, one can project images of a depth up to 8 bits (256 levels) of gray scaling by binary
pulse modulation, i.e. the flickering of the mirrors for the corresponding fraction of time. However,
this flickering rate, being comparable to the transverse trapping frequency, may cause heating and
losses of atoms; to minimise such effects, we perform gray-scaled patterns, when necessary, only with
the spatial method of sub-sampling as discussed in the previous section.

17Total reflected power when all mirrors are on compared to the incoming power.
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Figure 4.19: (a) Illumination on the atoms when DMD operated with (upper panel) or without (lower panel) a dark
phase in the beginning of each picture time. (b) The corresponding evolution of the number of trapped atoms in
a box of size 30µm and transverse frequency of 0.6kHz with (red points) and without (blue points) the dark phase.
The green line indicates the expected evolution for a purely static potential due to three-body losses for the measured
atom number in the beginning of the process. The agreement between theory and experiment for the lifetime in the
uninterrupted mode is valid for all relevant transverse frequencies that we checked.

We control the DMD projection using a friendly C++ based interface-program developed by
Julian Schmitt in our group that allows a simple generation of various DMD patterns. It communi-
cates with the DMD controller allowing us to create and project frame patterns in a static, repeated
(video-like) or triggered mode. It also communicates with a camera that displays the projected pat-
tern on the atomic plane for diagnostic reasons. For externally triggering the DMD, and following
our general strategy of controlling the experiment [165], we use a National Instrument digital output
card (PCIe 6341 ). The card talks with both Cicero Word Generator [200] (our machine control-
ling software) and the DMD interface program. Through Cicero we can synchronize the triggering
event with the rest of the experimental sequence with the use of a universal FPGA clock; the DMD
interface program is responsible for sending triggering pulses, one pulse for each new frame, at a
predetermined by us rate after the activation signal from Cicero has been received.

Static potentials with DMDs: The possibility to realise truly static projections on the atoms
was one of our main concerns when deciding to implement trapping potentials using DMDs, due to
the inherently dynamic nature of these SLMs: in order to protect the mechanical parts from being
stuck or deformed, DMD manufacturers typically implement a refresh of the projected pattern at a
period of a picture time, even for static projections. During this refresh, the mirrors enter a ‘dark’
phase where they are moved to a flat 0° position, before retaking their desired (on or off) place. This
situation is visible in the upper panel of Fig. 4.19(a), where we show the light illuminated on the
atoms from a static projection, as monitored by a photodiode. Fortunately, our DMD supports a
(software-based) uninterrupted mode where the dark phase is basically suppressed. However, even
in this case there is a residual ringing of the mirrors in the beginning of each picture time (lower
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panel), for a duration of around 10µm.

In order to check if this behaviour of the DMD poses a limitation to the trapped atom gas, we
measure in Fig. 4.19(b) the number of atoms staying in a (2D and in-plane) static potential in the
course of time in both the presence (red points) and the absence (blue points) of the dark phase.
We observe a boost of the gas lifetime when the uninterrupted mode is applied. To quantify if
the remaining ringing causes additional losses and heating, we also plot (green line) the expected
behaviour of the number of atoms in the ideal case of a truly static trap, with losses occurring only
due to three-body recombination events (Sec. 2.3.1). This result indicates no additional significant
loss and heating due to the dynamic nature of the DMDs. However, we note that in case such
detrimental effects become relevant in the future, one could implement a hardware-based suppression
of the ringing by overriding the internal DMD hardware clock, as in Ref. [201].

4.6 Compensation of magnetic fields

Having characterised the newly-built 2D box trap in Sec. 4.3 and 4.4 and discussed its technical
incorporation to the setup in Sec. 4.5, in the following we discuss an equally important requirement
for generating truly uniform gases: the compensation of residual magnetic field inhomogeneities in
the trapping region.

For 39K atoms in the high-field seeking |F = 1, mF = 1⟩ ground state, magnetic field minima give
rise to potential peaks. For the production of uniform gases, we need to minimize the in-plane spatial
variation of the existing (desired or stray) fields in the vicinity of the atoms; effective field-gradients
smaller than 10−3 G/cm are required in order for the potential variations to fall below 1nK within
our boxes. In addition, we desire to cancel the effect of gravity which corresponds to a field gradient
of 6.9 G/cm. This gradient, which gives a potential difference of ∼ 10nK in a length-scale of one
transverse oscillator length ℓz ≈ 200nm, is not, in principle, crucial for the final 2D gas of a potential
height ∼ 1µK. However, on one hand, the preparation of such a cloud becomes more efficient when
gravity is compensated, and, on the other hand, we need to maintain the ability for long 3D free
expansions of the cloud.

In Fig. 4.20(a), we sketch the configuration of the coils surrounding our science cell. The exact
dimensions, distances and number of windings for these coils are given in [165, 166]. Two parallel
groups of coils (green) along z of radius RFesh in Helmholtz configuration generate the Feshbach field
to control the atomic interactions and will be responsible for a relatively high bias field of 350−400G
in the vicinity of the atoms. In an ideal Helmholtz configuration (with a distance dFesh = RFesh

between the two groups of coils), the resulting field has only a z-component and its magnitude B0

is truly homogeneous in an extended region around the center of the coils. In that scenario, gravity
(but also any stray in-plane gradient) can be cancelled out with the use of our transport coils (blue)
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Figure 4.20: (a) Geometry of the coils for the production of the necessary fields and the compensation of stray fields.
One can discern the transport quadrupole coils (blue), the Feshbach coils (green), the y-compensation bias coils (black)
and the newly placed anti-Ioffe coil (yellow). (b) A picture of this new water-cooled coil before it was placed in the
experiment. It is mounted together with the horizontal imaging objective. With the freedom to move along all three
directions, we experimentally placed the coil in a way that it required acceptable currents in order to properly cancel
the potential gradients on the atoms. (c) The magnitude of the magnetic field along y from the combination of the
Feshbach, the quadrupole and the new anti-Ioffe coils. The large Feshbach bias along z transforms the field along y into
a curvature. The current in the anti-Ioffe coil (7A, 9A and 11A for the red, blue and green curves respectively) mainly
shifts the position of the field minimum. By considering the position y = 0 as the one where atoms lie, compensation
occurs for the blue curve with an anti-trapping frequency of around 1Hz. The absolute value of the minimum field also
changes with the anti-Ioffe current approximately by 0.1G/A, which is not shown here for plotting reasons.

which provide a quadrupole field with a gradient18 B′ = 0.8G/cm/A along the strong z axis. The
magnitude of the Feshbach plus quadrupole field then is approximately

B = B0 +B′z + 1
2
B′2

4B0
ρ2, (4.19)

which simultaneously can compensate gravity (when B′ = 6.9 G/cm) and suppress the quadrupole
or other in-plane gradients due to the large value of B0.

However, in our experiment we noticed a surprisingly large (and Feshbach-dependent) ‘gradient’
of around 0.8(2)G/cm along y, impossible to be explained within Eq. (4.19), unless the atoms were
displaced by about 0.2m along y with respect to the symmetry center {x0, y0, z0} = {0, 0, 0} of the
coils. We attributed19 this push of the atoms to a squeezing of the Feshbach coils (dFesh < RFesh),
facilitated by a small misalignment ∆y between y0 and the position of the atoms. In this more

18A perfect quadrupole generates a field Bquad = {−(B′/2)ρ, B′z} in its radial ρ and axial z direction.
19After discarding other possibilities, like a tilt of Feshbach coils with respect to the vertical direction.
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realistic scenario, we substitute the magnitude of the z-component20

B0 → B0

1 − 3
4

d2
Fesh −R2

Fesh
(d2

Fesh/4 +R2
Fesh)2︸ ︷︷ ︸

AF

ρ2

 (4.20)

in the first term of Eq. (4.19) to get a first order correction of the total field (assuming a large
displacement only along y). The added in-plane curvature depends now linearly on B0 and even
small mismatches between dFesh and RFesh make it prevail, giving an enhanced local ‘gradient’ on
the atoms. Using Eq. (4.20) (with the experimental RFesh = 3.7cm) in Eq. (4.19) and with an intrinsic
squeezing of 0.5cm for the Feshbach coils by construction [166], we get a displacement ∆y ≈ 1mm
in order to reproduce the observed gradient.

Instead of aligning the atoms on the center of the fields, an attempt of which degraded our BEC
production, we opted for better flexibility to shift the field’s center towards the position of the atoms.
To that end, we added a new coil to the setup (the yellow coil in the sketch, properly pictured in
Fig. 4.20(b)), consisting of three layers with eight circular windings of copper per layer of radius
RA = 1.2cm and placed DA = 1.9cm away from the atoms along the y-direction. Mounted on
a water-cooled hollow steel block, it permits the necessary currents I of around 10A without any
considerable heating. This new coil resembles the configuration of an Ioffe coil, like the one used in
previous versions of the machine, and since it is placed antidiametrically to that old coil, we adopted
for it the figurative name ‘anti-Ioffe’ coil.

A simple model that captures our compensation method uses just the Feshbach and the anti-Ioffe
coils. The latter generates at the distance DA a bias field BA ≈ (3 × 8)µ0IR

2
A/2(D2

A + R2
A)3/2 and

a quadrupole of gradient aA = BA3DA/(D2
A + R2

A) along y. In the above, µ0 = 4π × 10−7 H/m is
the magnetic permeability of free space. The magnitude of the total field from these two coils close
to the Feshbach center and along y (at x = z = 0) is written as

B(y) =
(

(BA + aAy)2 +
(
B0 −B0AFy

2
)2
)1/2

≈ B0
(
1 −AFy

2
)

+ 1
2

(BA + aAy)2

B0
.

(4.21)

which shows a parabolic behaviour with a minimum at y0 = −BAaA/(a2
A − 2AFB

2
0). In the absence

of the anti-Ioffe coil, Eq. (4.21) reduces to Eq (4.20) with a minimum at y0 = 0; for a change of
current from I by δI, the change of the minimum position is to an excellent degree linear with

δy0 = 4BAaAAFB
2
0/I

(2AFB2
0 − a2

A)2 δI (4.22)

20See Appendix E of Ref. [165] for a detailed derivation of the magnetic field in a real Helmholtz configuration.
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within the range of the parameters we use. With this simple model, one can estimate the shift of
the field minimum by 10A on the anti-Ioffe coil (that is eventually used) to be around 0.6mm, quite
close to the calculated shift of 1mm.

This parabolic behaviour is also found if we numerically estimate the field produced by the
combination of all the coils taking into account all the details of our geometry; with this simulation we
find very good quantitative agreement with the experimental choices of currents for the compensation
of the fields. The resulting field is illustrated in Fig. 4.20(c), for three different values of the anti-Ioffe
current. With increasing current, y0 shifts towards negative y-values with the position of the coil
being located at y = −1.9 cm. There is, in addition, a very weak dependence of the field minimum
and the strength of the curvature on the anti-Ioffe current. However, using our simulations, we
deduce that the resulting anti-trapping frequency from this curvature remains between 1Hz and 2Hz
for all relevant cases. This frequency corresponds to a maximum of ∼ 1nK variation of the magnetic
potential for the largest boxes of 100µm size when y0 coincides with the atomic position, and becomes
thus irrelevant for the homogeneity of our cloud.

Experimentally, we optimised empirically the currents of the transport and anti-Ioffe coils for
each value of the Feshbach current by minimising the displacement of a freely expanding cloud in
the presence of the same magnetic fields from both the vertical and horizontal imaging directions.

4.7 The procedure for producing a degenerate 2D uniform gas

Having introduced all the necessary components, here we describe the process we follow to create a
2D uniform gas from a harmonic BEC. In short, and as summarised in Fig. 4.21, the process consists
of an initial step of transferring the atoms from the CDT to the box trap, a subsequent step of
compressing the cloud for freezing out its transverse direction and a final step for the control of its
density, temperature and interaction strength. These three steps are separately discussed in what
follows.

Loading of the box trap. The loading of the 2D-box trap presupposes the alignment of the
corresponding light potentials with the position of the prepared BEC. We align the box trap such
that its sides lie along the x and y directions (see Fig. 4.3). In this way the elongated BEC points
along the diagonal of the box, allowing a maximum number of trapped atoms. The alignment of the
2D blades was proven more tricky. Using the results of enhanced anti-trapping when not properly
aligned, we now trivially determine the focus (y direction) and the position of the blades along x.
The vertical alignment is completed by temporarily removing the phase-plate and achieving a split of
the BEC into two equal parts from the resulting central intensity of the light. Due to the automatic
control (walking) of the beam position, there is no need for any daily realignment of the blades.

With an aligned box trap, we proceed to the loading from an almost pure BEC or alternatively
from a partially condensed cloud, depending on the desired final temperature. For the range of
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Figure 4.21: An overview of the steps used for the production of the 2D uniform gas as described in the main text. The
lines of the various quantities represent power if they are related to light potentials or current if they are for magnetic
fields.

temperatures we are interested in this thesis, we consider the case of a quasi-pure BEC. The loading
starts by first ramping up linearly the power of the box potential in 250ms and subsequently the
power of the 2D blades for another 250ms, while keeping the CDT powers at their previously constant
values. A short waiting of 50ms in this combined trap is followed by the ramping down of the CDT.
We keep the height of the box potential at around 600nK independently of the chosen box size to
prevent the atoms from being evaporated from the trap.

To facilitate the loading of a large number of atoms, we may first shrink the BEC before the
ramping up of the 2D-box potentials, either by ramping up the power of the CDT (recompression
of the cloud) or by decreasing the scattering length. However, the versatility of our setup allows the
trapping of most BEC atoms for a wide range of box sizes and spacings between the blades without
any change in the BEC properties. In Fig. 4.22 we show the atom number loaded in the box trap for
various choices of (a) box sizes and (b) blades spacing, when almost all the atoms are trapped along
the transverse direction or the horizontal plane, respectively. The efficiency of loading is around 90%
for L ≳ 50µm in a qualitative agreement with the BEC size. For smaller boxes the loading efficiency
decreases and we indeed achieve better loading by reducing a; in the future, if higher atom numbers
are required for even smaller boxes, one can exploit the dynamical capabilities of DMDs to realise a
compression of the cloud also in the x− y plane.

For the transverse confinement we use ∆z = 19µm to get practically all the BEC atoms in the
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Figure 4.22: The loading efficiency of our 2D-box trap for various (a) box sizes and (b) blades spacings starting from
a quasi-pure BEC with 1.8 × 105 atoms. In (a) we kept a = 170a0 and ∆z = 19µm, whereas in (b) it is a = 20a0
and L = 60µm. Extrapolating for ∆z ≈ 3µm, the efficiency of loading the central minimum of the 1D lattice drops to
around 20%, with the simultaneous loading of adjacent minima. We choose to load the 2D trap with ∆z = 19µm, that
traps essentially all the atoms in the central minimum of the 1D lattice.

main potential minimum during loading21 with a transverse frequency of 250Hz. For large box sizes,
the temperature of the trapped cloud is around 30nK; for smaller boxes, we found an increased
temperature of around 50nK, and we attribute it to heating effects from the interaction of the atoms
with the box light. For the method to extract the temperature, we refer to Sec. 4.8. Although it is
experimentally difficult to measure the temperature of the harmonic quasi-pure BEC, we note that
the 3D phase-space density is expected to decrease22 by a factor of almost 3 during the loading from
a 3D harmonic to a 1D harmonic + 2D uniform trap even in the absence of additional heating effects
[202].

Adiabatic compression in the box trap. Following our discussion in Sec. 3.1 and 4.3, we aim
to freeze out the atomic motion along the vertical direction with ωz ≈ 2π × 5kHz. For the initial
trapping frequency ωz ≈ 2π × 250 Hz during the loading, the condition ℏωz > kBTc is satisfied only
for a very small number of atoms (N < 103) for our typical box sizes (with a weak logarithmic
dependence on g̃). In addition, in accordance with Eqs. (2.46) and (3.3), the interaction strength
scales as g̃ ∝ a

√
ωz, whereas the three-body loss-rate constant scales23 as L(2D)

3 ∝ a4ωz, and thus
a larger transverse frequency makes it easier to get into strong interactions with slower losses as
compared to increasing the scattering length.

As introduced in Sec. 4.3, we compress the loaded gas along z by dynamically decreasing the
21The chosen pattern consists of z0 = 0 and δz = 30 mirrors, referring to the parameters as defined in Fig. 4.8.
22The change in D(3D) when modifying adiabatically the power-law of the trapping potential follows D(3D)

2 /D
(3D)
1 =

eγ2−γ1 , where γi = 3/2 +
∑3

k=1 1/sk and sk characterising the trapping potential U ∝
∑3

k=1 x
sk
k . In our case γ1 = 3

and γ2 ≈ 2, giving D(3D)
2 /D

(3D)
1 ≈ e−1.

23Scattering is still considered three-dimensional, so we can still write dn3D/dt ∼ −L3n
3
3D. With n ≈ n3Dℓz we

can write an effective 2D loss-rate with a constant L(2D)
3 ≈ L3/ℓ

2
z providing the scaling in the main text. For a more

detailed treatment see the discussion in Sec. 4.8.
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Figure 4.23: Optical accordion. (a) The top cartoons show the evolution of the DMD pattern. We remind the definitions
of z0 as the distance of the bars from the horizontal symmetry of the DMD and δz as the width of the bars. The main
plot quantifies this evolution in terms of z0 (blue) and δz (green). We picked a DMD picture time of 25ms to secure
adiabatic conditions without considerable losses. The resulting spacing δz of the blades follows the route shown in
Fig. 4.12. (b) The evolution of the temperature of the cloud during compression. The dashed line shows a square-root
adiabatic prediction as explained in the main text.

periodicity ∆z of the applied 1D lattice. Optical lattices with dynamically adjustable periodicity,
often called optical accordions, have been suggested [203, 204] and implemented [205] before, and
also for a 2D Bose gas [84]. Our main innovation was the implementation of an accordion based on
a DMD. The details of the chosen route to compress the gas are described in Fig. 4.23(a) and can
be split into two distinct stages. During the first stage, we keep z0 = 0 while δz increases from 30
to 50 mirrors with a rate of 2 pixels/∆t, where ∆t is the pre-determined picture time of the refresh
of the projected frames. In a second stage, the width of the two initially overlapping bars remains
at δz = 50 mirrors, while they separate with the same rate of ±2 pixels/∆t (or 1 pixel of change
in z0 every ∆t). In the end of the compression, we have the desired configuration (Sec. 4.3) of two
separated bars with z0 = 50 and δz = 50 mirrors; at this configuration and with the used power, we
find a potential height a bit less than 3µK and a frequency of 5.5(1) kHz.

We can approximate the condition for an adiabatic compression as

dωz(t)
dt

≪ ω2
z(t). (4.23)

By first neglecting digitalised effects related to the DMD, we reach the adiabatic condition ∆t ≫ 1ms
for our compression protocol24. Strictly speaking, however, the derivative dωz/dt never satisfies the
condition in Eq. (4.23) because of a δ-like time-dependence at the moments of the refresh of the
DMD pattern. We plot in Fig. 4.23(b) the evolution of the measured temperature during the applied

24According to the discussion in Section 4.3, the trapping frequency during compression evolves as ωz(t) =
2π
√

U0
2m

1
∆z

= Kz0(t), with K = 4π
λ0f

√
U0
2m

. The central position of each bar changes as z0(t) = z0i + ∆δz
∆t

t, where
z0i the position at the beginning of compression and ∆δz = 1 pixel. By replacing ωz(t) into Eq. (4.23), one finally gets
∆t ≫ ∆δz

Kz2
0i

or ∆t ≫ 1ms for our effective z0i = 7.5 mirrors and the relevant trapping heights.
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Figure 4.24: Temperature of the prepared 2D uniform gas for different in-plane potential heights Upeak for Lx = 22µm,
Ly = 36µm and g̃ = 0.64. We generally find a slope η = Upeak/kBT ≈ 4 to 5 with a slight dependence on the box size.
In the shown specific case, η = 4.7(1).

compression. The picture time is chosen, as in all our future results, to be ∆t = 25ms, giving a total
compression time of 1.75s. For the specific measurement, we used a large square box of 70µm to
start with the lowest temperature and a large in-plane potential height of 2µK. In the same plot,
we compare the results with the theoretical prediction T ∝ √

ωz for the adiabatic compression of an
ideal Bose gas25 and find good agreement.

Control of the temperature and atom number. Unlike in the case of a large in-plane potential
height as used for the results in Fig. 4.23(b), by restricting Upeak to lower values we notice that T
saturates to a value that depends linearly on Upeak; this is a balancing effect between the tendency to
higher temperatures through compression and lower temperatures through evaporative cooling. We
exploit this behaviour to control the temperature and atom number (through losses and evaporation)
in the trap before commencing the main experiment. In more detail, the 1.75s-step of the compression
occurs always at a height Upeak ≈ 600nK. By the end of compression, we typically get a gas with
N ≈ 80 × 103 at around 120nK. The Feshbach and compensation fields are ramped to their final
experiment-dependent values after which a ‘2D evaporation’ process is applied, in which Upeak is
linearly ramped to give the desired temperature. The total duration of this step is 0.7s with an
additional holding time for the determination of N through three-body losses.

An example of controlling the temperature with Upeak is shown in Fig. 4.24 for a cloud of dimen-
sions Lx = 22µm and Ly = 36µm. In this case, we find η = Upeak/kBT = 4.7(1). We note that this
number is not universal for our experiment, but slightly depends on the size of the cloud. We also
note that after long holding times, we have noticed an additional cooling and a precise calibration

25A simple way to obtain the dependence T ∝ √
ωz for the ideal 2D uniform gas is through considering a trans-

verse condensate [142, 143]; the atoms condense in the z-ground state when the 2D phase-space density, D, reaches
approximately the value Dtrans

c ≈ π2

6
kBT
ℏωz

. Furthermore, D (being ∝ n/T ) decreases during adiabatic compression since
n (the integrated density along z) remains constant, while T increases to satisfy an unchanged total 3D phase-space
density. However, since the adiabatic compression of an ideal gas does not change the populations of the transverse
states, the fraction D/Dtrans

c should remain constant during compression; this condition, together with the relations
Dtrans

c ∝ T/ωz and D ∝ n/T , give the desired dependence T ∝ √
ωz.
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of temperature is required if comparing clouds at different times.

4.8 Imaging and calibration of density and temperature

So far we have taken for granted the various physical quantities (like the atom number and the
temperature of the gas) that have appeared in our discussion throughout this chapter. Before con-
tinuing with next chapter, here we describe the techniques used for the probing of the prepared 2D
gas and for the extraction of the relevant parameters. To that end, we have incorporated imaging
from two different sides, bottom to top (vertical imaging) and along the x direction (horizontal imag-
ing). Additionally, we are able to image the gas either with the strong Feshbach bias field turned
off (low-field imaging) or on (high-field imaging). The latter becomes a crucial tool in obtaining the
in-trap (in-situ) density distribution, since the turning off of the fields requires a significant amount
of time (∼ 5ms). In Sec. 4.8.1 we concentrate on our implementation of high-field imaging along the
vertical direction which is the one used for the experimental results discussed in this thesis.

For the probing we use absorption imaging. It consists of shining a pulse of resonant light on the
atoms and collecting their shadow on a CCD (charged couple device) camera, as a result of cycles of
absorption and isotropic re-emittance of the imaging photons. Standard absorption imaging exploits
a closed transition; atoms cycle between two states and can be treated as a two-level system. For a
resonant to the transition (∆ = 0) and low-intensity (I ≪ Isat) imaging light of a given polarisation,
the low density of the atoms can be deduced using the Beer-Lambert law. According to that, an
imaging beam passing through an atom cloud of infinitesimal thickness dz along the z-direction
is attenuated by dI(z) = −n3Dσ0I(z)dz, with σ0 the resonant scattering cross-section. For a real
cycling transition, σ0 = 3λ2/2π which in our case is 2.83 × 10−9cm2. The integration over the
line-of-sight for vertical imaging yields directly the 2D atom density in the trap

n = − 1
σ0

ln
(
Ifin
Iinit

)
(4.24)

with Ifin (Iinit) the final (initial) beam intensity after (before) passing through the atoms. The
quantity OD = − ln(Ifin/Iinit) is the corresponding optical density. Experimentally, the intensities
Ifin and Iinit are extracted from two consecutive images, with and without the presence of the atoms,
respectively. A third image, with an intensity Ibg in the absence of the imaging light is typically
taken, its intensity being subtracted from both Ifin and Iinit in order to remove misleading effects of
any stray light.

Deviations from the simple Beer-Lambert description are proven to be significant in many real
situations, especially for a 2D cloud, when one of the above assumptions is violated. We describe
the various sources of such deviations and the way we took care of them in Sec. 4.8.2.
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Figure 4.25: The splitting of the hyperfine states of the three lowest fine manifolds in the presence of a uniform magnetic
field of magnitude B. The yellow state in the ground manifold is where our gas is prepared. The two red states are
used for high field imaging. The yellow excited state of the D1 line is the intermediate state used for pumping the
atoms before they get imaged. The shaded region corresponds to the working interval around the Feshbach resonance.

4.8.1 High-field imaging of the 2D plane

The eigenenergies of the characteristic Hamiltonian describing the hyperfine and Zeeman effects
of the 39K atoms in their three lowest fine states and in the presence of a magnetic bias [120] are
shown in Fig. 4.25. At a low field the energy levels are described by the usual F and mF quantum
numbers. In the limit of very strong magnetic fields, the nuclear I⃗ and electronic J⃗ angular momenta
of the atoms decouple and mJ and mI become good quantum numbers. For the here relevant case
of a moderately strong magnetic field between 350G and 400G, the Hamiltonian’s eigenstates retain
some small admixtures from different |mJ , mI⟩ states.

The 2D gas to be imaged has been prepared in the total ground state (yellow line in Fig. 4.25)
denoted as |1⟩, which is adiabatically connected to the low-field |F = 1, mF = 1⟩ and the high-field
|mJ = −1/2, mI = 3/2⟩ state. It can be expressed as a superposition |1⟩ = α |mJ = −1/2, mI = 3/2⟩+
β |mJ = 1/2, mI = 1/2⟩ with β2 between 2% and 2.5% (for B = 400G and 350G, respectively). The
non-zero β results in a depumping effect when the atoms are imaged in the almost cycling transi-
tion |1⟩ → |mJ = −3/2, mI = 3/2⟩ of the D2 line [167]. To avoid this depumping, we choose to
use the |2⟩ = |mJ = 1/2, mI = 3/2⟩ state of the ground manifold (adiabatically connected with the
|F = 2, mF = 2⟩) which remains unmixed with the other |mJ , mI⟩ states. Starting from |2⟩ we
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image using the transition to |3⟩ = |mJ = 3/2, mI = 3/2⟩ of the D2 line by shining σ+ resonant cir-
cularly polarised light (red lines in Fig. 4.25). The polarised light propagates along z in the opposite
direction of the TiSa beam, while the Feshbach field serves as a quantisation axis.

We pump the atoms from |1⟩ to |2⟩ prior to imaging by shining a light beam linearly po-
larised with a polarisation parallel to the Feshbach field, and resonant with the |1⟩ → |4⟩ =
|mJ = −1/2, mI = 3/2⟩ transition of the P1/2 fine manifold. The atoms that get excited to the
state |4⟩ decay spontaneously to either |1⟩ or |2⟩ (selection rules for the allowed dipole transitions
dictate ∆mJ = 0,±1 and ∆mI = 0, the latter being a direct consequence of the unimportant mag-
netic component of the light). Since there is no resonant light to some excited state in the |2⟩ state,
the net result is a depopulation of |1⟩ with the simultaneous population of |2⟩.

The essentials of the imaging setup (objective and camera) were left untouched compared to the
previous generations of this machine and are described in detail in [165]. In short, the objective is
characterised by a numerical aperture NA = 0.27 which leads to a depth of field of about 5.0µm
and a diffraction-limited resolution of ∼ 1.7µm. The atom cloud is imaged onto the CCD camera
(Princeton Instruments, PIXIS 1024-BR) with a magnification of 5.2. The corresponding pixel
size in the atomic plane is 0.94µm, as calibrated after the comparison with horizontal imaging and
exploiting the effect of free fall of the atoms due to gravity.

The imaging beam is provided by the same laser used for cooling and trapping, locked in the
D2 line. For B = 350 − 400G, the required additional 490 − 560MHz compared to the zero-field
transition F = 2 → F ′′ = 3 (as used for the already set low-field imaging technique) are supplied
by the combination of using the D2-repump light (instead of the D2-cooling light, see Fig. 4.2) and
an additional 100MHz-AOM. The optical pumping beam is taken as a small fraction of the D1 laser
light with an extra 200MHz-AOM. Furthermore, these AOMs are used for the control of the imaging
and pumping intensities, but also as a fast shutter allowing imaging exposure times τ0 of some tens
of µs. The three imaging pulses to obtain Iinit, Ifin and Ibg are shone with a time difference of
600ms for the proper reading out of the camera; before each pulse the same sequence of events is
repeated to minimize the difference of the external conditions between the three images. To minimise
even further possible changing conditions in time, we externally correct the obtained intensity in the
second image Iinit by normalising its background counts to the first one, Ifin.

4.8.2 Calibration of density and temperature

With the help of vertical high-field imaging, as just presented, we are able to extract important
experimental quantities of the imaged gas, like its density distribution and temperature, necessary
for explaining the observations already discussed in this chapter, but also in the next one. Here we
describe the techniques we apply for the determination of these two quantities, the density and the
temperature of the gas.
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Density

The validity of the Beer-Lambert (BL) law, n = OD/σ0, for the deduction of the atom density is
fundamentally limited to low light intensities and low atom densities. After introducing the dominant
sources of modification from this law in a realistic experimental setting, we describe our method of
extracting the surface density from the measured OD.

High-intensity effects: The finite intensity of the imaging beam and the subsequent saturation
of the excited state results in a lower photon scattering rate and thus a reduced cross-section σ(I).
Within a two-level system, σ(I) = σ0

(
1 + I/Is + (2∆/Γ)2)−1 [38], where we have additionally con-

sidered the effect of detuning ∆ from the imaging resonance. The substitution σ0 → σ(I) in the
Beer-Lambert law with an effective intensity I, such that Ifin = Iinit − nσ(I)I yields

nσ0 = − ln
(
Ifin
Iinit

)
+ Iinit − Ifin

Is
. (4.25)

This correction shows that for considerable intensities, it is not only their ratio before and after the
atomic plane that is important for extracting n, but that an absolute calibration of the recorded
intensities is required.

High-density effects: High densities of the imaged sample cause the emergence of van der Waals
interactions between the induced atomic dipoles by the imaging light or equivalently the multiple
scattering of photons from adjacent atoms modifying the predictions of imaging a dilute sample.
The effects from multiple scattering become more pronounced in a 2D gas. To see that, we first note
that these modifications should depend on the proximity between the atoms; with an interparticle
distance n−1/3

3D , the corrections then should follow a scaling n3Dk
−3
0 where k0 = 2π/λ0 is the imaging

wavenumber. This scaling can be expressed through the surface density as nk−2
0 /(k0ℓz) showing

that the strength of the modifications from the BL law depends on both the in-plane inter-particle
distance and the optical thickness of the atomic sample. For a thick gas with k0ℓz ≫ 1, as in the
case of three dimensions, the modifications are suppressed even if nk−2

0 ≈ 1. On the contrary, for
a thin 2D gas multiple scattering leads to an appreciable reduction of the observed optical density
compared to the ideal BL law for the true density. This reduction is also followed by a relatively
small blue shift of the imaging resonance and the broadening of the absorption line [206].

Other sources of deviation: Apart from the reduction of the measured OD through its finite
intensity, the imaging light introduces additional undesired modifications through a non-perfect po-
larisation. In our case, the large bias field prohibits transitions from |2⟩ to the |mJ = 1/2, mI = 3/2⟩
and |mJ = −1/2, mI = 3/2⟩ states of the D2 line for any small π and σ− components in the polari-
sation, respectively, since they are largely detuned from the light frequency. The gas then becomes
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transparent for this fraction of the light with the ‘wrong’ polarisation. One could model this be-
haviour together with other relative effects, like an imperfect optical pumping to |2⟩, with a heuristic
substitution Iinit → Iinit + Iimg, Ifin → Ifin + Iimg, Is → αimgIs and σ0 → βimgσ0 in Eq. (4.25); the
unknown Iimg plays the role of the transparent part of the light and βimg the role of a total ‘fudge’
factor. The unknown parameters above can then be experimentally approximated, by requiring a
prepared gas under the same conditions but imaged with different light intensity to physically have
the same density distribution [38].

The motion of the atoms during imaging constitutes another possible source of deviation from the
simple picture above. Absorption cycles transfer momentum ℏk0 to the atoms along the direction of
the imaging propagation. The average force applied by the photons, F = γimgℏk0, with the scattering
rate γimg = Γ

2
I/Is

1+I/Is+4∆2/Γ2 for the simplest case of a two-level system, leads mainly to two undesired
effects. First, the corresponding average displacement dimg = (F/m)τ2

0 /2 along z of the atoms during
the imaging pulse of a duration τ0 may bring them out of the focus of the imaging setup. Second,
the average obtained velocity vimg = (F/m)τ0 Doppler-shifts the imaging resonance by k0vimg. Both
effects depend on the imaging intensity through the average force.

Empirical corrections: To combine all the previous effects, if not more, in a simple theoretical
model for the calculation of the density from the measured OD seems a daunting task. Alternatively,
we use an empirical model extracted after imaging the same uniform gas for various atom densities
and light intensities.

We first cancel pixelwise the effect of a variable intensity of the imaging beam by rescaling the
measured OD according to the number of corresponding pixel counts C in the light image Iinit. The
main idea is illustrated in Fig. 4.26(a). Using the central part of a homogeneous cloud in the absence
of density corrugations, the difference in the camera counts from shot to shot and from pixel to pixel
within the same image is attributed to differences in the light intensity I. By changing the power
of the imaging beam for the same atom density, we obtain the measured OD versus the number of
counts, both normalised to an arbitrary reference C0 = 100 counts (or equivalently I/I0 = C/C0)
and the normalised OD0 = OD(C0). We then repeat the same procedure for various atom densities
(different reference values OD0 for C0 = 100 counts). We find that the normalised results OD0/OD
versus C/C0 collapse to the same linear curve which we use as the rescaling function of OD to the
reference C0. As a sanity test of this calibration, we estimate in Fig. 4.26(b) the total number of
atoms in the testing box at a fixed density and for various imaging intensities before (red) and after
(gray) applying the rescaling of the measured OD, and find that the corrected number of atoms is
indeed independent of the used power of the imaging beam.

With a pixel-to-pixel intensity-corrected optical density, we then check the effect of n on OD0. We
control the density by waiting a variable time in the trap prior to imaging for three-body collisions
to remove a fraction of the atoms. The decrease of the 3D density follows Eq. (2.46) expressed
in its local form as dn3D/dt = −L3 ⟨n2

3D⟩n3D. With n3D(z) = ncoe
−z2/ℓ2z assuming that only the
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Figure 4.26: (a) Intensity corrections of the measured optical density OD for various atom densities (or equivalently
various average normalised OD0 in the range 0.4 to 1.3) as described in the main text. The arbitrary reference for this
rescaling of C0 = 100 counts (dashed line) corresponds to an average intensity I0 ≈ 0.3Is. The black line is a linear
fit of the collapsed ODs for the various densities. The gray area indicates the total range of variations (pixel-to-pixel
and shot-to-shot) for our imaging process at a used average imaging intensity of 0.3Is. (b) The total atom number in
a box for various imaging powers before (blue) and after (green) the intensity corrections based on the fitting function
of the first panel. (c) The behaviour of the intensity-rescaled OD0 for various waiting times in the trap in the presence
of three-body losses. When plotted as OD−2

0 versus time, one expects a linear dependence (yellow fit of the data for
large times). The deviation from this linear dependence is used for the extraction of a density-dependent correction as
in (d). In this lower panel, the blue line is the actual corrections directly extracted from the data in (c). Red line: a
fit on the data. Dashed purple line: a theoretical expectation based on [206]. Green points: OD measured from in-situ
images versus after 25ms of free-expansion in which case the density effects are suppressed due to lower densities. In
our imaging procedure we use an exposure time τ0 = 30µs as a compromise between a good signal-to-noise ratio and
negligible Doppler shifts for the used imaging intensities. This result does not contain the final density calibration with
an intensity- and density-independent fudge factor S.

transverse ground state is occupied and nco = n/ℓz
√
π the 3D density at the center of the transverse

confinement, one writes equivalently for the surface density

dn/dt = −K3n
3 (4.26)

with K3 = L3/(ℓ2zπ
√

3). The real optical density ODn after removing any possible density-effects
from OD0 should be ∝ n and thus one may also write that dODn/dt = −(K3S

2/σ2
0)OD3

n. The
constant S plays the role of a final intensity- and density-independent fudge factor and we discuss it
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below. The differential equation for ODn has the solution

OD−2
n (t) = (2K3S

2/σ2
0)t+ OD−2

n (t = 0). (4.27)

We exploit the linear dependence on time of OD−2
n to extract the density corrections in the

optical density. In Fig. 4.26(c) we show the measured (after the applied intensity-corrections) OD−2
0

for various waiting times for the case of a transverse frequency νz = 5.5kHz at a scattering length
a = 636a0. The data points for t > t0 are fitted with a linear line (yellow); we check that the fit
does not depend on the choice of t0 if it is larger than ∼ 7ms. The yellow line physically represents
the corrected ODn even for high densities that OD0 deviates from a linear behaviour. At any t one
yields a measured OD0 and a fitted ODn. An interpolation of this result is shown (blue line) in
Fig. 4.26(d). We found that a heuristic fit (red line) of the form OD0 = c ln(aODn + b) works pretty
well for OD values that deviate from the ODn =OD0 line; in our case a = 3.97, b = −0.14 and
c = 0.74. The resulting fit is used for the density-corrections in the measured OD.

By assuming a linear behaviour between OD−2
n and t we have neglected effects arising from the

tight confinement along z in the scattering between the atoms. A more precise treatment, based
on the discussion in Ref. [144], requires a correction in the collision rate K3 by a factor η6

q2D, with
ηq2D = gq2D(k)/(ℏ2g̃/m) being directly related with the density-dependent component in the quasi-
2D interaction strength of Eq. (3.4). For high densities this effect results in a downward bending
of the OD−2

n -versus-t line for small times and thus in the underestimation of the corresponding real
ODs using our technique. In this thesis, however, we work in a low-density regime that this effect
is expected to remain small; as a relative example, for a gas of n = 3µm−2 and g̃ = 0.64 (that we
use in next chapter), the density-dependent corrections in the interaction strength are expected to
be less than 2%.

To verify that the used correction is reasonable, we compare it with the results of a Monte Carlo
simulation [206] that tests the effects of multiple scattering; the result of this simulation for ℓzk0 = 2
is plotted as the dashed purple line (for our experimental case ℓzk0 = 1.8). As another test of the
validity of our correction function, in the same figure we also show (green points) the measured
total atom number in the box when imaged in-situ (OD0-axis) and after some time of free expansion
(ODn-axis) where the cloud’s density is reduced, both normalised to the in-situ measured OD. We
note that for clouds with higher OD, beyond this simple calibration, we are following an alternative
method of transferring part of the cloud in a controllable way in an invisible by the imaging light
state; the density of the remaining atoms is then low enough rendering it valid to apply the above
empirical corrections.

Having corrected for intensity fluctuations and multiple-scattering effects, the last step consists
of relating the extracted ODn with the absolute value of the 2D atom density n. The arbitrary choice
of the finite-intensity reference C0 hints that still ODn < nσ0. We already introduced the notion of a
‘fudge factor’ S that leads to n = ODnS/σ0. As a first approach to estimate S, we can assume that
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this fudge stems only from the finite intensity of the imaging light. We can then use an extrapolation
of the fit of Fig. 4.26(a) to find the additional correction if we had chosen C0 = 0 counts (I/I0 → 0
in the plot). This process gives an average S = 1.75. This result is in a very good agreement with
calibrating S based on three-body losses (S ≈ 1.77) such that the experimentally deduced slope of
the fit in Fig. 4.26(c) equates 2K3S

2/σ2
0 from Eq. (4.27) or through the critical density for a harmonic

3D BEC (S ≈ 1.80) as described in [167]. The last two more general procedures assess a systematic
uncertainty of around 15% in the extracted density.

Temperature

Equation-of-state measurement: The scale-invariance of a 2D system has allowed a robust ex-
traction of the temperature for both Fermi [87] and Bose [207] uniform gases when a single transverse
state is occupied. Inspired by these previous experiments, we implement a variation of this equation-
of-state temperature-measurement. The idea is by scanning the chemical potential µ at a constant
temperature to measure the density n(µ) = λ−2D(µ/kBT ), from which we get the best estimation
of T through the known universal function D (Sec. 3.2.3); at a given n then and with the knowledge
of T , the chemical potential of the gas is also obtainable.

To scan µ we project a gray-scaled potential defect onto the center of the atom gas in addition
to the surrunding in-plane box walls from the ‘vertical’ DMD, as in Fig. 4.17(b). The resulting
potential on the atoms is shown in the inset of Fig. 4.27(b). The height of this potential dip, Vdip, is
controlled with the level of gray-scaling, and takes values between zero and the trap-depth Upeak. In
the central region of the applied dip, the atom density gets depleted from the bulk value n to ndip.
By taking care to keep the area of the dip small in order not to influence the rest of the gas, the
whole cloud is in thermodynamic equilibrium at some T and using local density approximation the
local chemical potential in the dip is µdip = µ− Vdip. The normalised density of the dip to its bulk
value is

ndip/n = D

(
µ− Vdip
kBT

)/
D

(
µ

kBT

)
. (4.28)

We fit the experimental results {Vdip, ndip/n} using the interpolated version of the universal function
D (see the discussion in Fig. 3.5) with T and µ as the fitting parameters.

In Fig. 4.27(a) we show the measured ndip/n for various Vdip and for two different temperatures at
g̃ = 0.64. In this example of a box of Lx = 22µm and Ly = 36µm, the square dip area of 10µm×10µm
corresponds to around 12% of the total area of the trap; however, we use only the central 3µm×3µm
region of the dip to extract ndip in order to avoid misleading effects from the tails of the density
distribution on the dip. We note that no considerable change in the bulk density outside the dip is
observed for the various Vdip. The green (blue) points correspond to a temperature below (above)
the BKT critical temperature. We found T = 58nK for the blue points and T = 34nK for the green
points at an expected Tc = 40nK.

The relative uncertainty of the temperature extraction from this fitting process is between 10%
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Figure 4.27: (a) Equation-of-state method for extracting the temperature of a 2D gas. The inset shows the concept
behind this technique. A potential dip in the center of the trap of variable height Vdip depletes the central density ndip
which we show normalised to the bulk density n in the main plot. The behaviour of ndip for various Vdip reveals the
temperature and the chemical potential of the bulk gas. In these examples, we extract T = 34nK (green) and 58nK
(blue) for a box of 22 × 38µm2 and g̃ = 0.64. (b) An example of extracting the temperature using the time-of-flight
(ToF) technique for a box of 70µm and T = 68(9)nK. The points correspond to the radially-averaged experimental
density profile after t = 25ms of ToF and the fit form is numerically extracted using the process described in the main
text.

and 15% and is mainly related with the uncertainties in the dip-potential height and the resulting
density of the dip. We note that this method of extracting temperatures may contain additional
sources of systematic errors and one needs to validate it also with another type of measurement.
One such source of possible errors stems from the (reasonable) assumption that temperature remains
the same for all potential dips. Another source could be the one-body losses from the light of the
dip; higher dips lead to faster losses and an underestimated ndip that could modify the extracted
temperature. For the potential heights we use (Upeak ≈ 200nK), we find that these losses at a rate
Γloss = (Γ/ℏ(ω−ω0))Udip [169] are not important for our timescale of ∼ 2s even for the highest dips.
They could lead to an underestimation of the extracted temperature by around 1% as we checked
by correcting the density according to the predicted loss rate. In next chapter, we compare these
results for the temperature with an independent measurement based on superfluidity.

Time-of-flight measurement: We have also attempted to extract the temperature using the
more conventional technique of a time-of-flight (ToF) measurement. In this method one lets the
cloud expand freely after turning off the interactions and depicts the expanded density distribution
after some long time t as a rescaled version of the in-trap momentum distribution of the gas. This
distribution is typically fitted with a model function with the temperature as the fitting parameter
and the main question pertains to the deduction of a proper theoretical model for the fitting. Unlike
in equation-of-state measurements, this technique is also valid for a semi-2D gas where additional
transverse states may be occupied. Although assuming an ideal box potential simplifies the treat-
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ment, we will discuss the implemented method from a more general perspective that allows various
extensions like taking into account the proper power-law potential of the walls. We generally find
temperatures that are slightly higher but consistent within their errors with the equation-of-state
measurements. However, due to its less robust character (equation-of-state measurements are for ex-
ample independent of the exact density fudge, unlike ToF measurements) and the need for additional
assumptions (see below), the ToF technique is used only for fast and rough diagnostic estimations
in our experiments. We note here that the results for the adiabatic compression of Fig. 4.23(b) are
extracted using this method.

For the extraction of a meaningful temperature out of the ToF measurements without a rather in-
volved analysis, we require that the gas do not include a quasi-condensate or a transverse condensate.
In this case we are allowed to use a semi-classical approximation and a Hartree-Fock description for
the density distribution of the gas (Sec. 3.2.3). For this requirement to be experimentally relevant,
but also not restrictive, we use a microwave pulse to transfer most of the atoms to |F = 1, mF = 0⟩
state which is invisible by our high-field imaging; since the transferred atoms have very slow collision
rates in |F = 1, mF = 0⟩ at relevant magnetic fields (∼ 400G), we make the essential assumption
that the remaining atoms in |F = 1, mF = 1⟩ do not change their temperature.

In the general case of higher-energy z-states occupied, the total 2D density is a sum of the partial
densities ni in the i-th transverse level, i.e. n(r, t) = ∑∞

i=0 ni(r, t). Due to ballistic conditions,
the expanded density distribution in the i-th transverse state can be deduced after integrating the
Bose-Einstein distribution over momentum p,

ni(r, t) =
∫

d2p

(2πℏ)2 g0
(
Zie

−(p2/2m)/kBT
)

(4.29)

with the fugacity Zi = eµi/kBT , the partial chemical potential µi of the i-th state and the zeroth
order polylogarithmic function g0(x) = 1/(x−1+1) as another way of expressing the Bose distribution
function N0. From classical arguments, the momentum p connects the initial in-trap r′ and the final
after expansion r positions of the atoms as p = m(r−r′)/t, and thus the expanded distribution takes
the form

ni(r, t) = m2

(2πℏ)2t2

∫
Lx,Ly

d2r′

(2πℏ)2 g0
(
Zie

−m(r−r′)2/(2t2kBT )
)
. (4.30)

To proceed further and be able to extract some model-function which can be used for fitting the
experimental density distribution after ToF, we need to estimate the parameters Zi. Within the
Hartree-Fock theory, these fugacities are connected with the in-trap densities ni(r, t = 0) as

ni(r, t = 0) = −λ−2 ln (1 − Zi) . (4.31)

The partial chemical potential, as a direct generalisation of Eq. (3.26) for many transverse states, is
µi = µ−Vi with Vi = iℏωz+2∑∞

k=0 giknk [208, 209] and the partial interaction strengths are given by
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gik = 4πaℏ2

m

∫
dz|ϕi(z)|2|ϕk(z)|2 extracted from the overlap between the various z-eigenstates ϕi(z).

In our analysis we use the ideal-gas z-eigenstates of a harmonic potential, the Hermite polynomials
normalised to the oscillator length ℓz. Additionally, although we neglected it, Vi may contain a term
describing the precise power-law of the trapping potential (see, for example, the process in Ref. [210]).

The Hartree-Fock equations of Eq. (4.31) are characterised by the parameters x = µ/kBT , ζ =
ℏωz/kBT and the scattering length a. For a given a, we numerically solve26 Eq. (4.31) for the partial
densities for various selected x and ζ. The theoretically estimated in-trap densities (or equivalently
the Zi’s) are then fed in Eq. (4.30) for the expanded density distribution. We interpolate the results
for any arbitrary x and ζ and use this numerically extracted function as the fitting model for the
radially-averaged experimental density distribution of the cloud after the expansion. An example of
the experimental data and the fitting function is shown in Fig. 4.27(b) for the actual data during
the optical accordion.

26For efficiency reasons, we use only the first 4 lowest z levels and an estimator for the PSD of the next ones and
check that the result is very similar to considering more levels.



5 First and second sound in a BKT
superfluid

“I imagined I had discovered a new word. I rise up in bed and say, ”It is not in the language; I
have discovered it. ’Kuboa.’ It has letters as a word has. By the benign God, Man you have

discovered a word!... ’Kuboa’ ... a word of profound import.”

— Knut Hamsun, Hunger

This chapter describes the main experimental results of this thesis. By applying the hydrodynamic
two-fluid model (Chapter 2) to the relevant case of a quasi-two-dimensional Bose gas (Chapter 3)
we combine the previously verified predictions for the equation of state with the speeds of first
and second sound, measured using our experimental platform (Chapter 4), to deduce the superfluid
density and verify its universal jump at the BKT critical point.

The measurement of the first- and second-sound speeds is interesting in its own right; the hy-
drodynamic second sound has never been observed before in any two-dimensional quantum fluid,
neither liquid helium nor ultracold gases. Probing sound in a 2D quantum gas can be a useful tool in
the future for further systematic studies of the hydrodynamic modes and the extraction of transport
quantities of this system.

We start this chapter (Sec. 5.1) with a brief overview of recent experiments on two-dimensional
superfluidity and sketch the approach we follow to infer the superfluid density from first and second
sound. In Sec. 5.2, we describe our experimental protocol that allows the observation of these
hydrodynamic sound modes. In Sec. 5.3 we present our main results.

5.1 Setting the stage

Overview of the current state of the art on BKT superfluidity

The systematic investigation of 2D superfluidity dates back to the 1960s via studies of thin films
of liquid helium [211–213]. The final link of superfluidity to the BKT mechanism in these systems
was provided in 1978 with the extraction of the superfluid density ns by Bishop and Reppy [72].

103
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This result, based on the torsional oscillator technique that measures the decrease in the moment of
inertia in the presence of a superfluid, as we described in Sec. 2.1, revealed also the characteristic
jump in ns at the critical point1.

Two-dimensional ultracold gases, on the other hand, are a relatively new platform that have
been studied experimentally for almost 20 years and many investigations have tested and supported
the existence of BKT superfluidity. Among others, a critical velocity for frictionless flow has been
measured for both Bose [77] and Fermi [81] 2D gases. The emergence of coherence [74, 75, 82, 184]
at low temperatures has been observed and recently evidence for the algebraic decay of correlations
[79, 214] below a critical temperature Tc has been reported. The measured critical Tc [39], (see
also Refs. [80, 184, 215]) is in very good agreement with the BKT prediction for a wide range of
interaction strengths. Even on a microscopic level, the observation of the proliferation of vortices
above Tc [64, 73] and of bound vortex pairs below Tc [78], which disappear at even lower temperatures,
confirmed the underlying mechanism of BKT superfluidity.

Despite this progress, the central quantity for a quantitative characterisation of superfluidity, the
superfluid density ns, has not yet been measured in 2D ultracold gases. Unlike in films of helium,
the measurement of the angular momentum of the 2D gas and thus its moment of inertia from which
ns could be inferred is a difficult task. Also, unlike in a weakly-interacting 3D Bose gas, ns does not
coincide with an experimentally accessible condensate density. The quest for the superfluid density in
2D ultracold gases becomes especially intriguing for two main reasons: First, the ability to tune most
parameters will allow the test of plausible theories under a wide range of experimental conditions,
unavailable with liquid helium. Second, measuring the temperature-dependent ns would provide a
quantitative proof that the 2D Bose gas belongs to the universality class of systems described by the
BKT theory.

Deduction of ns in 2D ultracold gases: the idea

Superfluidity is a dynamical feature even if it is linked with the thermodynamic equilibrium of a
fluid, and thus a deduction of the superfluid density requires the measurement of some transport
quantity that directly depends on ns; the torsional oscillator measurement in liquid helium is such an
example. In experiments with ultracold gases where one is mainly restricted to measure the density
of the gas instead of rotational properties, the hydrodynamic second sound as described by Landau’s
two-fluid model is such a transport property with a direct link to ns, as was first pointed out in
Ref. [91].

Landau’s model characterizes the dynamics of all superfluids in the collisional hydrodynamic
regime, and thus is expected to be applicable also in 2D. From Eq. (2.18), which we repeat here
in a more convenient dimensionless form, the first and second sound speeds in a uniform system

1Although small corrections needed to be applied to take into account the dynamical nature of the measuring
procedure.
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normalised to Bogoliubov speed are

u2
1,2 =

u2
10 + u2

20 ±
√

(u2
10 − u2

20)2 + ∆4
0

2 (5.1)

with u1,2 = c1,2/cB, u10,20 = c10,20/cB and ∆0 = 4u2
10u

2
20(γ− 1)/γ; we remind that γ, being the ratio

of isobaric to isochoric specific heat, characterises how compressible the gas is. The speeds of first
and second sound depend on various thermodynamic quantities and the superfluid density. However,
in two dimensions and for a given interaction strength g̃, the various dimensionless thermodynamic
quantities and the superfluid phase-space density depend only on x = µ/kBT , or equivalently on
T/Tc (see Sec. 3.3). It is then of no surprise that the normalised speeds of first and second sound
also become universal through the combination of Eqs. (2.18) and (3.30):

u2
10(x) = 2π

g̃D(x)
2P(x)
D(x) , u2

20(x) = Λ(x) Ds(x)
D(x) −Ds(x) , γ(x) = 2P(x)(dD/dx)

D(x)2 (5.2)

Here, Λ(x) = 2π
g̃D

(2P/D−x)2

2P/D−D/(dD/dx) depends only on the dimensionless phase-space density D and
pressure P but not on the superfluid density.

Eqs. (5.1) and (5.2) show how the temperature-dependent superfluid density ns = Dsλ
−2 can be

deduced from u20, and thus from measured u1,2, as long as the thermodynamic functions D and P
are known. Additionally, one notices that a jump in ns results in a discontinuity also in u20. For
the special case of an incompressible gas with γ = 1 (as it is approximately for liquid helium or a
unitary Fermi gas), u1 = u10 and u2 = u20 and thus, one expects that the jump in ns results in a
discontinuity of the speed of second (and only second) sound. The finite compressibility (γ > 1) of
Bose gases, however, leads to the mixing of u10 and u20 in u1 and therefore to a discontinuity also
in the speed of first sound (see also Fig. 5.1(a) later).

First and second sound in 2D experiments

Films of liquid helium, of a few-atomic-layer thickness dHe and created by adsorption on a bulk
substrate, do not permit the excitation of first and second sound since the viscous normal component
of the superfluid is pinned to the rough substrate2. However, an alternative sound mode, the so-
called third sound [216], can be excited, consisting of the propagation of the superfluid component
on top of a static normal fluid, with a speed ∝

√
ns/n.

Ultracold gases, on the other hand, are trapped inside smooth light or magnetic fields allowing, in
principle, the excitation of first and second sound. However, unlike the situation in 3D gases, attempts
to measure hydrodynamic sound modes in 2D have just recently been initiated [207], only after the

2The fluid has zero velocity relative to the substrate at their boundary (no-slip condition) even for atomically flat
substrates. The finite viscous penetration depth ∼

√
2η/ωρn ≫ dHe, that characterises the viscosity η, locks the normal

component and prevents it from an in-phase (first sound) and out-of-phase (second sound) move with the superfluid
component.
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advent of box traps. A previous numerical solution of the two-fluid equations in the presence of a
harmonic potential has been presented in Ref. [217]; the resulting in-phase and out-of-phase motion3

of fluctuations in temperature and pressure, analog to first and second sound, do not show a simple
scaling with the superfluid fraction, nor a discontinuity at the critical point.

5.2 Probing first and second sound excitations

We saw above that the extraction of ns requires the speeds of both first and second sound provided
hydrodynamic conditions apply. In the following we first discuss the relevance of the hydrodynamic
conditions for our 2D gas and the ability to couple both sounds with simple-to-probe density pertur-
bations (Sec. 5.2.1). Then we describe the realised experimental protocol for measuring the speeds
of the two sound modes (Sec. 5.2.2).

5.2.1 Density probes and the ability to observe first and second sound

Hydrodynamic conditions

The diluteness and the relatively weak intrinsic interactions of ultracold gases in combination with
their finite size (see Sec. 3.3) make it difficult in most cases to satisfy the hydrodynamic condition
of Eq. (2.1) even for the lowest-lying modes. A recent attempt in the group of J. Dalibard [207]
to measure first and second sound using a 87Rb gas with g̃ = 0.16, n ≈ 50µm−2 and L ≈ 30µm
revealed only one sound mode without a discontinuity at the BKT critical temperature. Those
findings were attributed in Ref. [218, 219], and also by the authors of Ref. [207], to the deviation
from hydrodynamic behaviour.

To quantify this, we estimate the expected ’hydrodynamicity’ quantity K = γcoll/ω around the
critical point in that experiment. Extracting K is conceptually easier for normal gases above Tc

with a collision rate proportional to the total density. In Sec. 3.3 we approximated K by KB ≡
γcoll/ωB = g̃3/2n1/2Ly/(2π), with ωB the Bogoliubov frequency, that reveals the important role
played by interactions. More precisely, one can now write K = KB/u1. In Fig. 5.1(a) we show
u1,2(Tc) as predicted from Eq. (5.1) and (5.2) using the thermodynamic quantities (Sec. 3.2.3), and
the BKT superfluid density (Sec. 3.2.2). We use u1(T+

c ), just above the critical temperature to
extract K for various n and g̃; the results for Ly = 30µm are depicted in Fig. 5.1(b). The gas in
Ref. [207] with the expected hydrodynamic u1(Tc) gives K ≲ 1, showing that this experiment was
conducted in the crossover between the collisional and collisionless regimes.

In Fig. 5.1(b), we also show, as a realistic example, the line K = 4 (green line). Due to the much
stronger effect of g̃ in K, for K ≳ 4 and with our available densities, we need a relatively high g̃ ≳ 0.4.
However, at these values of g̃, one is limited by atom-losses from three-body recombination events. In

3Apparently, the excitations are not plane waves anymore but can be decomposed into the normal modes charac-
terising the symmetry of the trapping potential.
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Figure 5.1: (a) Normalised first (upper panel) and second (lower panel) speed of sound just above (T+
c ) and below

(T−
c ) the critical point. (b) The hydrodynamicity factor K = γcoll/ω for various densities n and interactions g̃ for

Ly = 30µm. Red (green) line corresponds to K = 1 (K = 4) and the dashed line to our choice of n = 3µm−2. (c)
Relative losses, R = [n(0) − n(t)]/n(0), during 4 Bogoliubov periods due to three-body collisions for various n and g̃,
using the results of Ref. [123]. The white line corresponds to R = 15%.

Fig. 5.1(c) we quantify these losses as expected from their theoretical modeling (Sec. 2.3.1). The plot
shows the relative decrease of the density R = [n(0)−n(t)]/n(0) for various g̃ and initial n = n(0) in
a time duration of 4 Bogoliubov oscillations. The white line represents, as an example, the condition
R = 15%.

For T < Tc, the above estimations for K become less precise. Since the two-fluid model is based
on thermodynamic equilibrium of both the superfluid and normal components, a simplistic attempt
would consist of replacing n → n− ns for the estimation of K. In 2D, the expected ns/n ∼ 0.6 − 0.7
at Tc would decrease the predicted K by around 3 times compared to a normal gas above Tc; K
would be still above unity if one starts with proper hydrodynamic conditions. However, as pointed
out in Ref. [220] for the 3D case of a BEC, if the gas is already collisional above Tc, it becomes
even more hydrodynamic in the presence of a superfluid due to collisions between condensed and
thermal atoms. This expectation becomes questionable at very low temperatures (T/Tc ≲ 0.5) with
only a few excitations constituting the normal component of the gas. We finally note that below Tc,
the hydrodynamic requirement will be more difficult to be met for the first sound due to its higher
frequency compared to second sound.

Density probes

Our ability to observe the in-situ density distribution of a 2D gas, without complications arising
from integrating the third dimension or the expansion of the cloud, allows the use of the density
response as a straightforward means to observe and analyse sound propagation. Historically, the
common ways for studying sound excitations have been either through the free propagation of a
localised density perturbation [207, 221, 222] or through energy-momentum spectroscopy (neutron
or Bragg [223, 224] spectroscopy for liquid helium and ultracold gases, respectively). As discussed in
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Figure 5.2: (a) The relative weight of the first-sound peak in Imχ(ω) (red) and S(ω) (green) at the critical point as
predicted by the dissipationless two-fluid model and using the classical-field equation of state and the BKT prediction
for the superfluid density. (b) The ratio of compressibilities, γ for the same case as in (a). The inset shows γ versus
T/Tc for the chosen g̃ = 0.64.

Sec. 2.1.3, neutron scattering probes directly the dynamic structure factor, S(ω). The same quantity
is probed through free propagation after a sudden kick of the gas; to see why, one can express the
density response of Eq. (2.21) in the case of a sudden perturbation4 i.e δU(ω) ∝ 1/jω as

δn(ω) ∝ Imχ(ω)
ω

, (5.3)

revealing directly that δn(ω) ∝ S(ω) through the fluctuation-dissipation theorem of Eq. (2.29). In
Bragg spectroscopy, on the other hand, the measurement of the transferred energy and momentum
probes the absorptive part of the response function, Imχ(ω) [110]. Of course, following the argument
above for the free propagation, Imχ(ω) is also obtained through the observation of density for a
perturbation of the form δU(ω) ∝ 1; such a case can be mimicked by a monochromatically driven
system: the ‘shaking’ of the gas at various frequencies Ω, one at the time, with δU(ω) ∝ δ(ω − Ω)
allows the direct reconstruction of Imχ(ω).

These two experimentally relevant quantities, S(ω) and Im(ω), should reveal the same excitation
modes, first and second sound; the relative contribution of the two modes is, nevertheless, different:
S(ω) ∝ Im(ω)/ω suppresses (facilitates) the observation of first (second) sound as it suppresses
the higher frequencies. To quantify this argument, we consider the dissipationless two-fluid model
of Eq. (2.37). Within this model the relative weights of the two δ-peaks in the density response
function χ(ω), now expressed through the normalised speeds as Z1 = (u2

1 − u2
20)/(u2

1 − u2
2) and

Z2 = (u2
20 − u2

2)/(u2
1 − u2

2), trivially satisfy the f sum rule Z1 + Z2 = 1. The corresponding weights
B1,2 in Imχ(ω) are derived directly from Eq. (2.38) to be proportional to Z1,2/u1,2. In the same way,
the weights W1,2 in S(ω) become proportional to B1,2/u1,2 ∝ Z1,2/u

2
1,2.

4The perturbation of a kick experiment can be modelled as a step function in time with its fourier transform ∝ j/ω.
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One can now use Eqs. (5.1) and (5.2) for u1,2 with the scale-invariant quantities described in
Sec. 3.2 to predict the weights of first and second sound in both Imχ(ω) and S(ω). In Fig. 5.2(a)
we plot the resulting relative weight of first sound in Imχ(ω) and S(ω) at Tc for different values
of g̃. One notices that first sound is easier to be excited at higher g̃ both in Imχ(ω) and S(ω).
This is the consequence of a decreased compressibility with increasing interactions5; γ(Tc) versus g̃
is plotted in Fig. 5.2(b). For an incompressible gas (γ → 1), second sound is an entropy wave and
thus density perturbations excite predominantly first sound. At such strong interactions, methods
to probe S(ω) are advantageous for the observation of second sound. In the other limit (γ ≫ 1) of
weakly-interacting and highly compressible Bose gases, first (second) sound mainly corresponds to
the excitation of the (normal) superfluid component; the relatively large superfluid fractions make
second sound the prevailing mode in density perturbations. At these weak interactions, methods to
probe Imχ(ω) are advantageous for the observation of second sound.

5.2.2 Our experimental protocol for exciting first and second sound

For observing both hydrodynamic modes in density perturbations one thus needs to work with
gases at intermediate interaction strengths around g̃ ≈ 0.5 and with low densities to avoid extensive
losses. We implement a monochromatic driving technique which probes directly Imχ(ω). This
excitation method provides a straightforward analysis of the results, without complications from
the coexistence of various frequencies in them at the same time. Also, probing Imχ(ω) allows the
deduction of the weights Z1,2 in the f sum rule and the reconstruction of S(ω) with relatively small
uncertainties. One has to be careful, though, to keep the applied driving force weak enough such
that it does not modify the essentially uniform character of the system.

The uniform 2D gas is prepared as described in Sec. 4.7. We work with g̃ = 0.64(3), which corre-
sponds to a scattering length6 of a = 522(23)a0. For the final gas during the sound(s) propagation,
the density n stays within 15% of its average value, n = 3.0(5)µm−2, in the probed time-window
(of a 100-ms duration). At these densities, the density-dependent correction of the 2D interaction
strength (see Eq.(3.4)) remains low, around 2%; the assumption of g̃ as the effective interaction
strength is then well justified. The temperature is controlled by adjusting the in-plane potential
height as described also in Sec. 4.7. With ωz = 2π × 5.5(1)kHz, the gas is deep in the 2D regime,
with both the interaction and thermal energy per particle below 0.3 ℏωz. We use two different box
geometries (Lx, Ly) = (21 µm, 33 µm) and (56 µm, 23 µm) which also serves as a small confirmation
test of scale invariance; for each data-set we take, we calibrate separately the size of the box as we
describe later in Sec. 5.3.3.

5Although intuitive, a simple mathematical argument for that can be extracted from a low-temperature Thomas-
Fermi gas; the compressibility κ ∝ ∂n/∂µ with µ ∝ ng̃ gives κ ∝ 1/g̃.

6We calibrate a with an RF pulse that transfers the atoms in the |mJ = −1/2, mI = 1/2⟩ ground state; the obtained
resonant frequency gives the magnitude of the field. With an already calibrated Feshbach resonance [129] the scattering
length is straightforwardly extracted. The uncertainty in a and thus in g̃ stems from a peak-to-peak oscillation of the
magnetic field of 0.2G owing to the effect of the mains.
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Figure 5.3: We apply an in-plane, spatially-uniform force Fy(t) = F0 sin(ωt), created by a magnetic field gradient to
excite the longest-wavelength mode with wavenumber q = π/Ly of first and second sound. The center of mass dcom of
the cloud is consequently displaced and we use this oscillation to extract the resonances of first and second sound.

The driving potential δU(r, t) = δU(r) sin(ωt) is realised using our ‘anti-Ioffe’ coil (Sec. 4.6).
δU(r) is linear in y, having no effect in the other directions, with a gradient linear in the applied
current δI on top of the compensation of the magnetic fields7. The corresponding driving force
Fy = F0 sin(ωt) is spatially uniform, and oscillates sinusoidally in time as shown in Fig. 5.3. We
calibrate F0 versus δI by allowing the gas to freely move in the plane under the effect of a fixed
δI and fitting the center-of-mass displacement versus time with a constant-acceleration prediction.
We find a linear acceleration F0/m with the applied current and for most of our results we use
F0/m ≈ 0.074m/s2 with a relative uncertainty of ∼ 5%.

By applying this force, the initially uniform distribution with density n is perturbed along y,
and we decompose the resulting perturbation δn(y, t) into the excitation modes of wavenumber
qi = iπ/Ly, i.e.

δn(y, t)/n =
∞∑
i=1

bi(t) sin(iπy/Ly). (5.4)

Here, we set y = 0 at the center of the box (with −Ly/2 ≤ y ≤ Ly/2) and the sine basis is chosen
such that at the edges of the box there are no density gradients (ignoring finite-size effects). We note
that bi(t) contain the potential contributions from both first and second sound in the excitations of
wavenumber qi.

We experimentally extract bi(t) by calculating the overlap of the mode i with the (integrated
along x) density distribution n(y, t). A typical example of the density perturbation is illustrated in
Fig. 5.4(a). In all the results described in this thesis, we find that only the b1-mode with q = π/Ly

7The main effect of the anti-Ioffe coil is to shift the position y0 of the minimum in the parabolic field magnitude
along y (see Sec. 4.6). When y0 does not coincide with the position of the gas, the induced in-plane potential along y
takes the form UB(y; I) = UB0 −αB [y− y0(I)]2, as derived from Eq. (4.21), with UB0 and αB values depending on the
Feshbach field. For small changes of the current in the anti-Ioffe coil by δI the resulting difference in the potential varies
in space as δU(y) = 2αBδy0y; δU(y) is linear in y with a gradient linear in the displacement δy0 = y0(I + δI) − y0(I),
and thus also linear in δI as directly deduced from Eq. (4.22).
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Figure 5.4: (a) An example of the density profile along y (integrated along x) from the application of a driving
potential. The perturbation on top of the uniform density of the unperturbed gas shows the excitation of only the
longest-wavelength mode with a wavenumber q = π/Ly. The red line is a fit on the density distribution using that
mode. (b) Center-of-mass oscillations of the density distribution for three different driving frequencies for a box
(Lx, Ly) = (56 µm, 23 µm). The blue lines show the single-frequency fit of Eq. (5.9), whereas the dashed green line
represents the temporal behaviour of the driving force (in arbitrary units).

is excited. This behaviour is to be expected owing to the weakness (see also Sec. 5.3.6 later for
a relevant discussion) and the symmetry of the applied driving potential. By decomposing the
perturbing potential δU(y, t) = −F0y sin(ωt) on the basis of the phonon modes as

δU(y, t) =
∞∑
i=1

Ui sin[(2i− 1)πy/Ly] sin(ωt) (5.5)

with Ui = −4F0Ly/(2i− 1)2π2, we find that δU(y) contains predominantly the q = π/Ly component
and thus our perturbation excites the longest-wavelength phonon mode.

The observations above permit us to proceed to two simplifications. First, the potential pertur-
bation can be well approximated by

δU(y, t) = U1 sin(πy/Ly) sin(ωt), (5.6)

where we can also explicitly repeat that U1 = −4F0Ly/π
2; second, the resulting density distribution

can be expressed as
δn(y, t)/n = b1(t) sin(πy/Ly) (5.7)

This perturbation displaces the center of mass of the cloud, (1/Ly)
∫
dy yδn(y, t)/n, by

dcom(t) = 2b1(t)Ly/π2 (5.8)
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with respect to the unperturbed dcom = 0 case. Eq. (5.8) between b1 and dcom allows us to use the
latter as the main observable in our analysis. Some typical examples of the observed center-of-mass
oscillations are illustrated in Fig. 5.4(b) for various driving frequencies ω.

5.3 Data analysis and experimental results

Starting with the raw data of centre-of-mass oscillations at different drive frequencies and subse-
quently for various temperatures, we reconstruct the spectral absorptive response function, Imχ(ω),
in Sec. 5.3.1. We use the spectra first to verify the f sum rule (Sec. 5.3.2) and then to extract the
speed (Sec. 5.3.3) and the damping (Sec. 5.3.4) of the two observed hydrodynamic sounds. Con-
centrating on the speeds, we infer the superfluid density (Sec. 5.3.5), as sketched in the previous
Sec. 5.1. Finally, in Sec. 5.3.6 we discuss and justify assumptions that we adopted at various stages
in this chapter and give some more details of our experimental results.

5.3.1 Excitation spectra

With the protocol described above, we repeat driving the cloud at various frequencies ω to extract
the frequency-dependent centre-of-mass, dcom(t;ω). The cloud responds linearly and thus dcom(t;ω)
oscillates with the driving frequency. Experimentally, after 150ms of driving we record the behaviour
in a ∼ 100ms-time-window. Here the data are fitted well by assuming a steady-state oscillation. Our
fit function

dcom(t;ω) = R(ω) sin(ωt) −A(ω) cos(ωt) (5.9)

gives the reactive R(ω) (in-phase with the driving force) and absorptive A(ω) (out-of-phase with
the driving force) response of the cloud. As seen also in Fig. 5.4(b), at low driving frequencies the
atoms oscillate in phase with the driving force giving A(ω = 0) = 0, whereas for high frequencies the
response has close to a π-phase difference with the phase of the driving force.

Starting from the measured A(ω), one can reconstruct the imaginary part of the response function,
Imχ(ω). By combining Eqs. (5.7) to (5.9), one gets the absorptive response δn(ω) = −nπ2A(ω)/2Ly,
and together with Eq. (5.6) for the driving potential, this yields

Imχ(ω) = δn(ω)
δU(ω) = − nπ4

8L2
yF0

A(ω). (5.10)

This connection clearly indicates that the measured A(ω) is the key to observing the propagation
of both first and second sound. Being proportional to Imχ(ω), it is expected to show two distinct
peaks when T < Tc, following the two-fluid behaviour as represented by Eq. (2.38). Also, from its
relation with Imχ(ω), one can rewrite the f sum rule of Eq. (2.30) in terms of A(ω) as

fsum ≡
∫ ∞

−∞
dω ω πA(ω)

8F0/m
= 1. (5.11)
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Figure 5.5: Two examples of the normalised response spectra Ã(ω) for (a) low (0.91Tc) and (b) high (1.17Tc) tem-
peratures. In these examples n ≈ 3µm2, Ly ≈ 33µm and F0/m ≈ 0.074ms2. Below Tc we observe two resonances
corresponding to the first (dotted) and second (dashed) sound. Above Tc we instead observe just the first-sound reso-
nance (dotted), while the second sound is replaced by a diffusive, overdamped mode (dashed).

We test experimentally this universal condition for A(ω) in next section. Eq. (5.11), or its rescaled
form fsum ≡

∫∞
−∞ dω ω Ã(ω)/ω2

B = 1 with Ã(ω) = ω2
BπA(ω)/(8F0/m), allows the direct comparison

of various spectra at different temperatures when plotted versus ω/ωB. Two such examples for two
different temperatures are shown in Fig. 5.5.

Below some critical temperature (Fig. 5.5(a)), we indeed observe two resolved resonances corre-
sponding to the first (higher-ω peak) and second (lower-ω peak) sound. Above this critical tempera-
ture (Fig. 5.5(b)), the lower-ω resonance disappears and we interpret this result as the conversion of
second sound to the diffusive heat mode predicted by the one-fluid model (Sec. 2.1) that also couples
to density perturbations owing to γ > 1. In order to determine this change in an unbiased way, we
fit the experimental spectra with A(ω) = A1(ω) +A2(ω), where

A1,2(ω) =
x1,2 ω

2
1,2 Γ1,2 ω

(ω2 − ω2
1,2)2 + (ω Γ1,2)2 . (5.12)

In the above, the amplitudes x1,2, resonance frequencies ω1,2, with ω1 > ω2, and damping rates Γ1,2,
are fit parameters. One can see Eq. (5.12) either as the direct result of taking the imaginary part of
the dissipational model of Eq. (2.35) or, alternatively, as the extension of the dissipationless model of
Eq. (2.38) after the inclusion of linear damping. We note that this form of the response corresponds
to a simple model of two independent harmonic oscillators. Together with this fit, we also explicitly
show in Fig. 5.5 the fitted contributions of the independent first (dotted) and second (dashed) sound
modes.

In analogy to a harmonic oscillator, we define the quality factor of the sound modes as Q1,2 =
2ω1,2/Γ1,2. We find that the first sound is always underdamped (Q1 > 1). For the spectra at low
temperatures (Fig. 5.5(a)), the fit gives that the second sound is also underdamped. For higher
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Figure 5.6: The corresponding dynamical structure factors S(ω) of the two spectra shown in Fig. 5.5 (in same colors).
Here the diffusive mode of the high-temperature case has a maximum at ω = 0, so its distinction from the second-sound
resonance at low temperatures is clearer. The inset shows the fitted contributions to S(ω) from the second sound below
Tc (blue) and the diffusive mode above Tc (red), omitting for clarity the first-sound contributions S1(ω), which are
similar at the two temperatures.

temperatures (Fig. 5.5(b)), the second term in the fit function gives that this mode is overdamped.
A more striking distinction between second sound and the diffusive mode can be gained by

extracting the dynamic structure factor, linked with Imχ(ω) and subsequently with Ã(ω) through
the fluctuation-dissipation theorem of Eq. (2.29) as

S(ω) = kBTÃ(ω)/(mc2
Bω). (5.13)

Indeed, unlike Imχ(ω), which has to be zero at ω = 0, S(ω) manifests a peak at zero frequency when
the diffusive mode is present (see Eq. (2.34)). In Fig. 5.6 we calculate S(ω) for the two cases shown
in Fig. 5.5; the inset highlights the difference between second sound (ω2 > 0) and the diffusive mode
corresponding to ω2 = 0.

5.3.2 f sum rule and the critical temperature

We systematically measure A(ω) for different temperatures in the range from 23nK to 56nK. For
a sanity test of the measured spectra A(ω), we check the validity of the f sum rule. In the top panel
of Fig. 5.7 we calculate the value of the integral fsum from Eq. (5.11) using the fit of the spectra
(Eq. (5.12)) for the various temperatures. We find that the condition fsum = 1 is well satisfied, and
thus the observed modes ‘exhaust’ the f sum rule for the probed wavelength.

For the low-temperature spectra, where two resolved peaks are present, we further extract the
values f1 and f2, the contributions to fsum from the A1(ω) and A2(ω) components in Eq. (5.12),
respectively. The results for f2 are plotted in the lower panel of Fig. 5.7 and show how f2 decreases
with increasing temperature. The experimentally extracted f1,2 correspond to the theoretical weights



5.3. DATA ANALYSIS AND EXPERIMENTAL RESULTS 115

1.0

𝑓 2

0.0

0.5

0.0

1.0

2.0

𝑓 𝑠
𝑢
𝑚

𝑇/𝑇𝑐

0.5 1.51.0
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decrease in density due to atom losses, canceled by the process of determining Tc.

Z1,2 in the f sum rule in the absence of dissipation, with Z1 + Z2 = 1. Currently, we are not aware
of a general theoretical prediction on how the relative weights of the two sounds get modified in the
presence of dissipation, if at all. However, the simple observation that the integrals∫ ∞

−∞
ωA1,2(ω)dω = x1,2ω

2
1,2π, (5.14)

directly related with the f sum rule, are independent of the damping rates Γ1,2 hints that the weights
of first and second sound are not significantly modified, at least as long as the fitting form of Eq. (5.12)
remains applicable8 (i.e. in the presence of only linear damping).

From the observed behaviour of f2 we identify a critical temperature for the (dis)appearance
of second sound, as the lowest temperature at which f2 = 0. By using the prediction for Z2 for
this identification, this temperature corresponds to Tc, the critical temperature of the 2D gas in the
thermodynamic limit. In absolute numbers we find the inferred Tc to be 42nK (with a systematic
uncertainty of 4nK), which is compatible with the BKT prediction Tc = 2πℏ2n/mkB ln(380/g̃) =
37(6)nK for our n = 3.0(5)µm−2. In the language of finite systems the experimentally extracted
critical temperature corresponds to T2 (Sec. 3.3) and is expected to be around ∼ 5 − 10% higher
than the infinite-system critical temperature. However, within our systematic errors in temperature
and density such a shift is not conclusive.

8We use this alternative method to extract the f sum weights as f1,2 = π2x1,2ω
2
1,2/(8F0/m) for a double-check of

the values shown in Fig. 5.7, obtained from a direct calculation of the integrals in Eq. (5.11) .
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In the limit T → 0, the hydrodynamic two-fluid model for two-dimensional fluids predicts that
the first and second sound speeds take the Bogoliubov-related values cB and cB/

√
2, respectively,

with only the first sound coupling to density perturbations (γ → 1 as T → 0). On the other hand,
for higher temperatures and for a g̃ similar to ours, it is the second sound that mainly couples to
density and extrapolates to the Bogoliubov speed of sound. One then expects at some relatively low
temperature a hybridisation mechanism between the two sound modes at which the importance of the
weights of first and second sound is inverted. Our measurements manifest an increasing importance
of f2 as temperature decreases down to T/Tc ≈ 0.5, showing that if such a hybridisation mechanism
exists, it should occur at even lower temperatures.

Above Tc, where the diffusive mode has replaced second sound, we can still define a weight for
this heat mode in the f sum, fdiff, which together with f1 they satisfy fsum = f1 + fdiff. We note
that approximating the diffusive mode by a δ-function response at ω = 0, as in the dissipationless
one-fluid model of Eq. (2.34), gives fdiff = 0; in reality this mode has a non-zero contribution to
the experimental fsum coming from the low-ω behaviour. Because of this discrepancy, we instead
estimate the ratio of weights s2/s1 =

∫
[A2(ω)/ω]dω/

∫
[A1(ω)/ω]dω in S(ω), where s2 represents the

diffusive mode above Tc, and we compare the results with the theoretical prediction s2/s1 ≈ γ − 1,
as one can directly deduce from the same Eq. (2.34). For the three measured spectra above Tc,
at a temperature T/Tc = 1.17(4), 1.22(8), and 1.48(6) we find s2/s1 = 1.1(5), 1.0(3) and 1.5(4),
respectively, which are in good agreement with the corresponding predictions γ − 1 = 1.1(1), 1.2(2)
and 1.7(1). The uncertainty in the theoretical γ − 1 comes from the statistical uncertainty in T/Tc

and we do not consider the systematic error in g̃ (see relevant discussion in Sec. 5.3.6).

5.3.3 First and second sound speeds

We can now extract the speeds of first and second sound, c1,2 = ω1,2/q, through the fitted resonant
frequencies ω1,2. Here, the wave number q = π/Ly of the excitations requires the knowledge of the
box-size Ly. Already from the cartoon in Fig. 4.14 it becomes apparent that a proper definition of
the box-size is ambiguous due to the finite slope of the in-plane potential. We thus use the density
profile of the corresponding uniform gas for a systematic determination of Ly. Specifically, we define
Ly as the length of the region in which the density is above 90% of its value in the bulk. This
choice is supported by the observation that with this definition of Ly it closely corresponds to the
half-wavelength of the density oscillations in a driven system, i.e. the observed q, an example of
which is depicted in Fig. 5.4(a). We discuss the uncertainty in extracting Ly together with other
errors in Sec. 5.3.6.

In Fig. 5.8 we summarise our results for the temperature-dependent speeds of first (red) and
second (blue) sound, normalised to the Bogoliubov sound cB. Above Tc, the lower-frequency peak
in S(ω) occurs at ω = 0, i.e. c2 = 0. In the same plot, we show the theoretical predictions of
the normalised first and second sound for an infinite system, u1,2, from Eqs. (5.1)-(5.2) and the
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Figure 5.8: Normalised sound speeds, c1/cB (red) and c2/cB (blue), and the corresponding theoretical predictions
u1,2 of the infinite-system theory, based on identifying the temperature where second sound disappears as the critical
temperature Tc in that theory. Owing to scale invariance in two dimensions, the predicted u1,2 are functions of just
T/Tc and g̃. Their discontinuities at Tc correspond to the infinite-system jump in superfluid density.

scale invariant predictions of Sec. 3.3, under the assumption that the theoretical critical temperature
coincides with our defined Tc.

By comparing the measured normalised speeds with the infinite-system theory, we find a good
overall agreement. Most importantly, the measurements reveal the abrupt decrease of the normalised
speed of second sound at Tc in agreement with the expected discontinuity of ≈ 0.45. The observation
of c2/cB below this threshold, and similarly for f2 in Fig. 5.7, is most likely a result of the finite-size
modifications compared to the infinite-system theory. Due to the finite compressibility, the theory
predicts also a smaller discontinuity in the speed of first sound (≈ 0.1), which is comparable to our
errors and thus experimentally inconclusive. The agreement between theory and experiment is also
in line with the scale invariance that governs the 2D gas, due to which the normalised first and
second sound are expected to be independent of the actual box geometry (as long as hydrodynamic
conditions are satisfied).

Failure of the theoretical prediction at low temperatures

At low temperatures, the theoretical prediction of first sound in Fig. 5.8 becomes unphysical. To
understand why, we first note that u1,2 depend on the predicted D−Ds through u20 (see Eq. (5.2)).
At low temperatures, u20 is extremely sensitive to this difference since D ≈ Ds and even small
disagreements between the two independent theories (for D and Ds) can cause a substantial change in
u20. The divergence in u20 results in a subsequent divergence in u1. For an intuitive understanding of
this, we consider the extreme case with γ = 1 (not so different from reality at these low temperatures).
In Fig. 5.9(a) we show the calculated u10 and u20 as extracted from the theories for D and Ds versus
x = µ/kBT . In this case with γ = 1, the sound speeds should coincide with u10 and u20 from the
solutions of Eq. (5.1); first sound, u1, being the faster of the two then is identified as u10 for low
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Figure 5.9: (a) The quantities u10 (green) and u20 (purple) for g̃ = 0.64 as extracted using the scale-invariant ther-
modynamic quantities and the superfluid density prediction. (b) The subsequent normalised speeds, u1 (red) and u2
(blue) in the hypothetical scenario of γ = 1 for all values of x. The role of u10 and u20 is interchanged at x ≈ 0.8
(T/Tc ≈ 0.75) leading to the deviation of the speed of first sound at low temperatures. In reality, at low temperatures
it is γ ≈ 1 and the behaviour changes only quantitatively.

x < 0.8 (large T ≳ 0.75Tc) and as u20 for high x > 0.8 (low T ≲ 0.75Tc). This is illustrated in
Fig. 5.9(b). For a realistic γ close to unity, the situation is not qualitatively modified.

5.3.4 Dissipation of first and second sound

The obtained spectra also provide the damping rates Γ1,2,T for the two sound and the heat modes,
which are linked to the corresponding sound and heat diffusivities through D1,2,T = Γ1,2,T /q

2 within
the hydrodynamic theory [225]. For the heat mode, a proper extraction of the damping rate and
subsequently the heat diffusivity requires refitting9 the spectra for T > Tc with A(ω) = A1(ω) +
AT(ω), where

AT(ω) = xT ΓT ω

ω2 + Γ2
T
, (5.15)

as deduced from Eq. (2.33). We concentrate on the diffusivity rather than the damping rates or the
quality factor of these modes because the scale invariance of a 2D system hints that D1,2,T manifest a
‘universal’ behaviour and depend only on T/Tc for a given g̃ [226], although this is not yet confirmed.

The results for D1,2,T in units of ℏ/m for the various temperatures below and above the transition
point are shown in Fig. 5.10(a). The measured D1,2,T show a general insensitivity on T for the
relevant range of temperatures and within the precision of our measurements, with values in the
range ∼ (5-8)ℏ/m. This behaviour may be connected with additional and dominating damping effects
in our experiment, like a broadening by the loss-induced density drift during the measurements or
by still imperfect hydrodynamic conditions, and more detailed studies on dissipation for a complete
understanding of our measurements are needed. Despite the absence of a solid theoretical prediction10

9After this refit, we verified that the results presented before are not essentially modified.
10Such predictions within the hydrodynamic one- and two-fluid theories require the good knowledge of the shear
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Figure 5.10: Measured diffusivity D1,2,T = Γ1,2,T /q
2 for the first (red) and second (blue) sound and the diffusive

heat (green) modes. The yellow dashed line is the lowest expectable diffusivity in the limit that the free mean path
becomes similar to the interparticle distances. The shaded regime corresponds to the measured first-sound diffusivity
from Ref. [227] for the case of a Fermi gas (on its BEC side) for similar interaction strengths to ours and for low
temperatures.

for D1,2,T in a 2D Bose gas to compare our results with, we briefly discuss simple expectations and
comparisons with similar recent experiments with Fermi gases.

A crude first attempt is to apply the kinetic theory for a dilute gas, in which the diffusivity
(of both sound and heat) is approximately v̄lmfp (see for example [228]), with v̄ the mean velocity
and lmfp the mean free path of the atoms. Following the same process as for the collision rate in
Eq. (3.31), we have v̄ ≈ ℏ/(mℓz) and lmfp ≈ 1/(n3Dσ) with σ ≈ 4πa2 and n3D ≈ n/ℓz, from which
we finally get

D1,2,T ∼ ℏ/m
4πa2n

. (5.16)

This simple theory does not show a scale-invariant behaviour, as it includes a three-dimensional
consideration of the atomic motion, and the resulting predictions are a few times higher than our
measurements for the relevant densities. However, it directly shows how for strongly interacting
gases, where lmfp ∼ dint and v̄ ∼ ℏ/(mdint), with dint the interparticle separation, the diffusivity
reaches a minimum ∼ ℏ/m. Although the exact prefactor is not known, in Fig. 5.10(a) we represent
this quantum limit (dashed yellow line) as ℏ/m, motivated by the minimum of diffusivity that has
been observed so far for both a 3D [226] and a 2D [227] unitary Fermi gas.

Specifically for 2D, in Ref. [227] the first-sound diffusivity was measured for different interaction
strengths (adopting the language of the two-dimensional scattering length a2D) and it was concluded
that on the BEC side of the Fermi gas, i.e. ln(kFa2D) < 0 with kF = (4πn)1/2, the limit D1 ∼ ℏ/m
is indeed reached in the strongly-interacting regime. Their measurements show furthermore that D1

viscosity η and the thermal conductivity κ of the gas (see Eqs. (2.9), (2.10), and (2.36)), quantities that are still
challenging both experimentally and theoretically.
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increases for weaker interactions, ln kFa2D ≲ −2, to another plateau of ∼ (5-8)ℏ/m. In our case11

ln(kFa2D) ≈ −8.5, and our results indeed fall into this high-diffusivity plateau. In Fig. 5.10 the gray
shaded region represents the measurements of Ref. [227] for the relevant for us interaction strength;
the extent over our whole temperature region of a superfluid is indicative and does not correspond to
the region of the original (low-temperature) measurements. As said in the beginning of this section,
further studies are required to state whether this agreement is accidental or not.

5.3.5 Superfluid fraction and superfluid density

In Sec. 5.1 we argued how the measurement of the speeds of first and second sound could serve for
the deduction of the superfluid density. In more detail, we saw that within the two-fluid model the
sound speeds depend on both the thermodynamics of the gas and the superfluid density and thus
with the knowledge of the former, the superfluid density can be inferred. Starting from Eq. (5.2) for
u20, one can express the superfluid fraction as

ns
n

= 1
1 + Λ(x)/u2

20(x) , (5.17)

with Λ(x) depending only on the scale-invariant and dimensionless thermodynamic phase-space den-
sity D(x) and pressure P(x). The quantity u20 can be expressed through the first and second sound
u1,2 by inverting Eq. (5.1), yielding

u10,20 =

√
u2

1 + u2
2 ±

√
u4

1 + u4
2 + 2u2

1u
2
2(1 − 2γ)

√
2

, (5.18)

where one has to be careful to correlate properly the two branches with the quantities u10 and u20

(see Fig. 5.9). We note that u20 depends also on D(x) and P(x) through the coupling γ(x).
We use the classical-field theoretical predictions of Ref. [115], as discussed in detail in Sec. 3.2.3

and plotted in Fig. 3.4, for the necessary thermodynamic D(x) and P(x) entering the relations above.
Although these predictions were theoretically derived for a weakly interacting 2D Bose gas, D(x)
and P(x) have been measured in the past [38, 39, 153] for a wider range of interaction strengths,
including g̃ = 0.64, with no evidence of deviation between theory and experiment. Using them
and the measured first and second sound speeds, we show in Fig. 5.11(a) the calculated u20 from
Eq. (5.18) together with its prediction. The disagreement between the theory and the measurement
at low temperatures stems from the failing theory as we discussed before.

Combining u20 with the predicted Λ(x), its behaviour for g̃ = 0.64 being illustrated in Fig. 5.11(b),
we extract the superfluid fraction, plotted in Fig. 5.11(c). Our results for ns/n are compared in the

11To connect our familiar language with the one using a2D as in Ref. [227], we use 4πℏ2

m
1

ln(1/na2
2D) ≈ ℏ2g̃/m [144]

to find ln(kFa2D) = ln[(4π)1/2e−2π/g̃]. For our g̃ = 0.64, we get ln(kFa2D) = −8.5. This correspondence hints the
difficulty in reaching the quantum limit of diffusivity with a 2D Bose gas.
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Figure 5.11: The extraction of the superfluid density step-by-step. (a) The deduced u20 from the measured speeds of
first and second sound together with the infinite-system theoretical prediction. (b) The theoretical prediction for Λ
that depends only on the thermodynamic D and P, which have been previously verified. (c) The superfluid fraction,
ns/n, using the previous two results for u20 and Λ based on Eq. (5.17); the solid line shows the BKT prediction for the
infinite system. (d) The superfluid phase-space density, Ds, deduced from the superfluid fraction and the total density.
The solid line, the corresponding BKT theory, shows the universal jump of Ds from 0 to 4 at D = Dc. The dashed
line corresponds to a 100% superfluid (Ds = D).

same plot with the corresponding prediction using the theoretical superfluid density (Sec. 3.2.2) and
the theoretical equation of state (Sec. 3.2.3). The restoration of the agreement between theory and
experiment at low temperatures is due to the small value of Λ there, physically implying an almost
100% superfluid fraction. As expected, the superfluid fraction manifests the same behaviour we found
also in the speeds of sound, namely a sharp drop close to the critical temperature that resembles the
jump in ns.

This universal jump can be visualised if we further deduce the superfluid phase-space density as
Ds = (ns/n)Dc/(T/Tc), with Dc the critical phase-space density of Eq. (3.27); we plot the resulting
Ds versus Tc/T = D/Dc in Fig. 5.11(d). The inferred Ds is again compared with the theory of the
infinite system and is in good agreement with the expected discontinuity 4 → 0 at the critical point.

5.3.6 Further remarks

In the last part of this chapter we discuss and clarify various subtle aspects of the results discussed
before.
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Figure 5.12: Speeds of first (red) and second (blue) sound, as extracted using various amplitudes F0 of the driving
force. For this test we used a gas at T = 0.7Tc and g̃ = 0.4. The dashed lines are guides to the eye, taken as the mean
of the three points with the smallest driving amplitude.

Weakness of the perturbation

For the results to be quantitatively meaningful and comparable with theory, one has to verify that
the presence of the driving potential does not alter the excitation spectra compared to those of the
2D uniform Bose gas. For that, we repeat our measurements for different amplitudes of the driving
force and check the effect of F0 on the first and second sound speeds.

In Fig. 5.12 we show the resulting normalised speeds for different edge-to-edge potential differ-
ences, F0Ly, normalised to kBT as the most relevant energy scale of the gas. The blue-shaded region
represents the interval where the results that we presented in this chapter take place. With this
check we verify that there is no essential change in the resonant frequencies in the range of driving
forces we apply and our measurements properly describe those of a uniform gas.

Experimental uncertainties

Our experiments are subject to different sources of uncertainties, both statistical and systematic.
However, in all the results we presented above, only uncertainties with a statistical character are
included in the shown error bars. Their origin stems from the standard fitting errors of the raw
centre-of-mass oscillations and of the subsequent absorptive spectra, and the statistical uncertainties
in the density of the gas and the size of the container. Specifically, we consider shot-to-shot temporal
variations in the average n and temporal and spatial variations in Ly along different x-values of
the box. These errors are typically around ∼ 5% in the density and below 3% in the size of the
box. In addition to these statistical errors, various systematic uncertainties have to be kept in mind.
Important systematic errors in density appear from the imperfect homogeneity of the gas (∼ 10%)
in its central region, the three-body losses during the driving (∼ 15%), and finally the process of
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Figure 5.13: A ‘bootstrapping’-like method to estimate the uncertainties in (a) the speeds of first and second sound,
(b) the superfluid fraction, and (c) the superfluid density. The resulting mean and one standard deviation are plotted
on top of the random points, generated from a probability distribution that takes into account the uncertainties in
the density, the box size and the fitted resonances in the driving frequency. The conversion from the speeds to the
superfluid fraction requires the equation of state (or equivalently the quantity Λ); uncertainties of the latter stem only
from the error in T/Tc in our approach.

absorption imaging (∼ 15%). Systematic uncertainties on other relevant quantities also need to be
mentioned, for example in the interaction strength g̃ (∼ 5%), in the amplitude F0 of the driving force
(∼ 5%), or in the in-plane trap-depth (∼ 10%) which ultimately determines the temperature of the
gas.

Focusing on the statistical errors, we use a ‘bootstrapping’-like approach for the determination
of the various uncertainties: For each measured absorptive spectrum at the nominal temperature
T (we call that spectrum a ‘data-set’), we ‘randomly’ select values of T/Tc and c1,2/cB and apply
the analysis of Sec. 5.3.5 to obtain the corresponding c20, Λ, ns/n and finally Ds. By repeating this
process a large number of times, we obtain a scatter of values for each of the above quantities, from
which its uncertainty as one standard deviation is extracted.

The initial ‘randomly’ picked values of T/Tc and c1,2/cB, for the application of the above process,
respect the statistics of our measured n and Ly, and the fitting results of the resonant frequencies ω1,2.
Specifically, the samples of T/Tc(n) = mkBT ln(380/g̃)/(2πℏ2n) and cB(n) = (ℏ/m)

√
ng̃ depend on

the density; for each repeat, we choose a value of n by sampling from a normal distribution originating
from the measured mean and standard deviation of the density for the relevant data-set. In the same
way, the samples of c1,2 = ω1,2π/Ly are generated using the uncertainties in the box size Ly and the
standard fit error on ω1,2. Within our experimental precision a correlation between the measured Ly
and the obtained ω1,2 is a difficult task, and thus we resort to assuming that these two quantities
are independent for the extraction of c1,2; similarly, any n-dependence of c1,2 is omitted.

The scatter plots for the normalised speeds of first and second sound, the superfluid fraction and
the superfluid density are shown in Fig. 5.13. Together we show the extracted mean and one standard
deviation of the corresponding quantities, already plotted in Figs. 5.8 and 5.11. From Fig. 5.13(a)
one can see a correlation between c1,2/cB and T/Tc, caused by the mutual density dependence of the
two axes. A correlation between the two axes is even more visible in Fig. 5.13(c) where Ds is plotted



124 CHAPTER 5. FIRST AND SECOND SOUND IN A BKT SUPERFLUID

𝑔

1 2 30

(𝑥 − 𝑥𝑐)/𝐺

0

−5

5
𝐷
−
𝐷
𝑐

−1 10
2

3

1

0

𝐺

𝐷
𝑃

0

5

10

𝑇/𝑇𝑐

0.9 1.00.80.7

𝑢
1
,2

1.0

0.5

0.0

14

4

9

𝑥

2.00.5 1.51.0

1.5

(𝑎) (𝑏) (𝑐)

Figure 5.14: Testing the validity of the classical-field equation of state. (a) The optimal coupling constant G for
various g̃ and the universal function H (inset) that collapses all the equations of state; plot reproduced from Ref. [39].
(b) The phase-space density (top panel) and phase-space pressure (bottom panel) as derived from the classical-field
theoretical results (straight lines) and extracted by rescaling the experimental universal function H (dashed lines) for
three different interaction strengths, g̃ = 0.2 (yellow), 0.64 (purple), and 1.5 (cyan) and for x = µ/kBT that corresponds
to T/Tc between 0.5 and 1.0. (c) The predicted speeds of first (red) and second (blue) sound using BKT prediction for
the superfluid density and the classical-field equation of state (straight lines) or the rescaled version of the measured
universal H (dashed lines).

versus D/Dc, since Ds = (ns/n)(D/Dc)Dc. The shown error bars, also given in Figs. 5.8 and 5.11,
represent the projection of the uncertainties on the plotted horizontal and vertical axes.

Error from considering the classical-field equation of state

The estimation for the superfluid fraction and superfluid density used not only the measured
speeds of first and second sound but also the theoretical classical-field equation of state. It is thus
important to justify that this treatment does not introduce significant errors. We argue based on
the experimental results of Ref. [39].

In that work, the equation of state for the 2D Bose gas was experimentally measured for different
interaction strengths g̃, ranging from the weak to the strong interaction regime, and the results
overlap excellently after a rescaling

D −Dc(g̃) = H

(
x− xc(g̃)
G(g̃)

)
, (5.19)

where again x = µ/kBT and H is an experimentally obtained function (inset of Fig. 5.14(a), as
reproduced from Ref. [39]). The quantity G(g̃) plays the role of a generalised coupling constant and
is shown in the main panel of Fig. 5.14(a); for the weakly-interacting case G = g̃, whereas good
general agreement with the experiment shows the behaviour G = 2πg̃/(2π + g̃) (black line in the
plot). In the same work, the authors deduced the critical Dc and xc and verified the classical field
predictions of Eq. (3.27) and Eq. (3.28), respectively, for a wide range of interactions up to g̃ ∼ 2.

By rescaling back the universal function H to any specific g̃, we get the experimentally deduced
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equation of state D(x) that can be compared with the theoretical classical-field equation of state.
The comparison is shown in the upper panel of Fig. 5.14(b), for three values of g̃, including our case
(in purple) with g̃ = 0.64 and G = 0.58; in this case the deviation is still negligible for the relevant
range of temperatures. We further recreate the phase-space pressure P(x), shown in the lower panel
of Fig. 5.14(b), and together with the rescaled D, we finally plot in Fig. 5.14(c) a comparison for the
speeds of sound u1,2 extracted from the classical-field prediction that we use in this thesis (straight
lines) and the measured equation of state (dashed lines), showing minor differences in the range of
interest for our results.





6 Conclusions and outlook

“This is the way the wor(l)d ends, not with a bang, but a whimper.”

— T. S. Eliot, The Hollow Men

In this thesis, we presented an experimental realisation of an interacting 2D uniform Bose gas
of 39K atoms, which we used as a platform to connect Landau’s two-fluid hydrodynamic model
with the BKT theory for 2D superfluids. The tunability of interactions owing to a broad Feshbach
resonance allowed us to work at a relatively strong interaction strength1 with g̃ = 0.64(3), meeting
the conditions for this connection. The gas homogeneity, on the other hand, provided suitable
conditions to systematically probe the bulk properties of the gas. The main results of our studies
can be summarised as follows:

1. In addition to the usual (first) sound of density excitations, present even in the absence of
superfluidity, the second sound predicted within the two-fluid model is seen for the first time
in any 2D fluid. Moreover, we observed the high-temperature continuation of second sound
which appears as a diffusive heat mode.

2. The temperature-dependent speeds of first and second sound are in good agreement with a
theoretical classical-field prediction for the infinite and scale-invariant 2D gas, when defining
the critical temperature as the one at which second sound disappears.

3. The deduced superfluid density, a central quantity that had so far remained elusive in ultracold
gases, shows agreement with the characteristic jump at the critical point, as described by the
BKT theory.

Furthermore, we characterised the observed first and second sound modes by providing their damping
rates and relative weights in their density response. These quantities are of great interest since they

1But not so strong to modify the expected scale invariance of our system.
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go beyond the predictions of the simple dissipationless two-fluid model; however, our results for these
quantities have to be taken with a grain of salt and a more systematic investigation is required that
excludes possible caveats arising from atom losses or imperfect hydrodynamic conditions.

Future studies for the behaviour of first and second sound in a 2D superfluid include:

1. The investigation of sound modes at even lower temperatures than explored in the present
thesis, in order to test a possible hybridisation between the two sounds. Theory predicts
that the hybridisation temperature increases with larger g̃ [229]; however, it is not yet clear
if at such low temperatures (∼ 0.2 - 0.3Tc), with only a small normal component in the gas,
hydrodynamic conditions necessary for the excitation of first and second sound still remain
valid.

2. A quantitative characterisation of finite size effects of our gas close to the BKT transition, which
is expected to transform into a crossover. Recent numerical simulations [159, 230] estimate
this crossover based on the behaviour of the superfluid fraction around Tc, a quantity that
has now become experimentally accessible with the help of our technique. A careful study
of the crossover will require, however, a more precise and independent determination of the
temperature of the gas.

3. Connecting the hydrodynamic system where the two sound modes exist, as in our measure-
ments, with the collisionless regime where a single sound without any discontinuity at Tc has
been observed, as in the work of Ref. [207]. This will require repeating the experiment with
smaller g̃.

4. The investigation of the dimensional crossover from 2D to 3D superfluidity by loosening the
transverse confinement in the gas. It would be interesting to see how the critical temperature
for the disappearance of second sound changes to meet the known limiting cases of a strict 2D
BKT gas and the 3D BEC and if the sharp drop of second sound in the BKT superfluid could
be distinguished from the smoother behaviour in a 3D gas.

5. The systematic study of dissipation of the two sound modes at various interaction strengths.
It would be interesting to check if diffusivities as low as ∼ ℏ/m, as observed in unitary Fermi
gases [226, 227], can be measured also for the 2D Bose gas. The measurement of the sound
diffusivities could lead to the extraction of transport quantities like the shear viscosity and the
thermal conductivity of the gas.

Going beyond the sound investigation for the 2D Bose gas in thermodynamic equilibrium, our
newly-built and versatile 2D uniform trap provides a broad range of experimental paths one could
follow. An appealing perspective is the possibility to study non-equilibrium critical phenomena
occurring at the BKT transition. The Kibble-Zurek (KZ) mechanism, for instance, that describes
the critical dynamics of the emerging ‘order’ after a quench through a second-order transition [231],
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has been theoretically revisited also for the infinite-order BKT case [232, 233]. Experimental access
to the first-order correlation function would not only serve as a tool to explore the KZ mechanism, but
it would also be an important result in its own right, providing the algebraic decay of the equilibrium
correlations below Tc, a result that would reveal the superfluid jump from a different perspective,
complementary to our studies.

Another direction would be the investigation of transport phenomena in a Bose2 gas by con-
structing more complicated but convenient trapping geometries. An example would be the study of
the thermo-mechanical effect, analog to the fountain effect in liquid helium, through the creation of
two uniform gases (reservoirs) that are connected via a narrow channel. With the addition of dis-
order in the channel, by projecting for example an additional laser speckle pattern that mimics the
role of the capillaries in helium, a ‘super-leak’ is formed in which temperature or chemical-potential
differences between the two reservoirs lead to the transport of only the superfluid component through
the channel [236, 237].

In general, our apparatus permits various studies in two dimensions, or even in one- or three-
dimensions with some modifications, and the enthusiasm that I discern in the team allows me to
look optimistically into the future of this machine. Until new progress is reported:

2Transport phenomena have been studied more in Fermi gases [82, 234, 235] owing to the similar character with the
electrons in well-known mesoscopic systems, like a transistor.
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[215] P. Krüger, Z. Hadzibabic, and J. Dalibard. Critical point of an interacting two-dimensional
atomic Bose gas. Phys. Rev. Lett., 99:040402, 2007.

[216] K. Atkins. Third and fourth sound in liquid helium II. Physical Review, 113(4):962, 1959.

[217] X. J. Liu and H. Hu. First and second sound in a two-dimensional harmonically trapped Bose
gas across the Berezinskii–Kosterlitz–Thouless transition. Annals of Physics, 351:531–539,
2014.

[218] M. Ota, F. Larcher, F. Dalfovo, L. Pitaevskii, N. Proukakis, and S. Stringari. Collisionless
sound in a uniform two-dimensional Bose gas. Phys. Rev. Lett., 121:145302, 2018.

[219] A. Cappellaro, F. Toigo, and L. Salasnich. Collisionless dynamics in two-dimensional bosonic
gases. Phys. Rev. A, 98:043605, Oct 2018.

[220] R. Meppelink, S. B. Koller, and P. van der Straten. Sound propagation in a Bose-Einstein
condensate at finite temperatures. Phys. Rev. A, 80:043605, Oct 2009.



BIBLIOGRAPHY 147

[221] M. Andrews, D. Kurn, H. Miesner, D. Durfee, C. Townsend, S. Inouye, and W. Ketterle.
Propagation of sound in a Bose–Einstein condensate. Phys. Rev. Lett., 79:553–556, 1997.

[222] L. A Sidorenkov, M. K. Tey, R. Grimm, Y. H. Hou, L. Pitaevskii, and S. Stringari. Second sound
and the superfluid fraction in a Fermi gas with resonant interactions. Nature, 498(7452):78–81,
2013.

[223] D. M. Stamper-Kurn, A. P. Chikkatur, A. Görlitz, S. Inouye, S. Gupta, D. E. Pritchard, and
W. Ketterle. Excitation of phonons in a Bose–Einstein condensate by light scattering. Phys.
Rev. Lett., 83:2876, 1999.

[224] J. M. Vogels, K. Xu, C. Raman, J. R. Abo-Shaeer, and W. Ketterle. Experimental observa-
tion of the Bogoliubov transformation for a Bose–Einstein condensed gas. Phys. Rev. Lett.,
88:060402, 2002.

[225] K Tani. The damping constant of a collective mode in the hydrodynamic regime. Journal of
Physics C: Solid State Physics, 3(2):L50, 1970.

[226] P. Patel, Z. Yan, B. Mukherjee, R. Fletcher, J. Struck, and M. Zwierlein. Universal sound
diffusion in a strongly interacting Fermi gas. Science, 370(6521):1222–1226, 2020.

[227] M. Bohlen, L. Sobirey, N. Luick, H. Biss, T. Enss, T. Lompe, and H. Moritz. Sound propagation
and quantum-limited damping in a two-dimensional Fermi gas. Phys. Rev. Lett., 124:240403,
2020.

[228] G. Yang, A. Migone, and K. Johnson. Relationship between thermal diffusivity and mean free
path. American Journal of Physics, 62(4):370–372, 1994.

[229] L. Verney, L. Pitaevskii, and S. Stringari. Hybridization of first and second sound in a weakly
interacting Bose gas. EPL (Europhysics Letters), 111(4):40005, 2015.

[230] V. Singh and L. Mathey. Sound propagation in a two-dimensional Bose gas across the superfluid
transition. Phys. Rev. Research, 2:023336, 2020.

[231] J. Beugnon and N. Navon. Exploring the Kibble–Zurek mechanism with homogeneous Bose
gases. J. Phys. B: At. Mol. Opt. Phys., 50:022002, 2017.
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