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Abstract

A new approach to predict athermal martensite formation in metals is presented. It

is based on computing the driving force of the transformation including a strain energy

term induced by atomic shear displacements and energy terms due to substitutional

and interstitial lattice distortions. The model is applied to prescribe the martensite

and austenite start temperatures in Fe–, Ti– and Co–based alloys with no adjustable

parameters. Expressions for Ms variations with composition are derived for multicom-

ponent systems. The transformation temperature hysteresis is predicted in Co alloys

showing that this approximation can be used to design alloys with the shape memory

effect.

Keywords: 4. martensitic phase transformation; 3. Martensitic steels; 3. Shape memory

alloys; 3. Titanium alloys; 5. CALPHAD

Martensitic transformations have been studied extensively due to their importance in ap-

plications for high–strength, shape–memory effects or superelastic properties. These are diffu-

sionless first order solid–state transformations, which nucleate from a parent phase, commonly

referred to as austenite. Martensite nucleates at a critical temperature Ms (martensite–start)

when the driving force for its nucleation is reached. Additional undercooling is required for

the transformation to continue and reach completion at a temperature Mf (Martensite–

finish). The reverse transition occurs upon heating the martensite to transform back to

austenite; the temperatures at which the transformation begins and finish are austenite start
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(As) and finish (Af ), respectively. Although there are considerable studies in different al-

loying systems showing how martensite formation changes with composition [1–4], there is

virtually no theoretical approximation able to predict the conditions for its occurrence with-

out introducing fitting parameters or remaining valid in different phase transitions.

The objective of this work is to introduce a new approach to predict Ms in systems

undergoing the phase transitions: face–centred cubic (FCC)⇔body–centred cubic (BCC),

FCC⇔hexagonal closed packed (HCP) and BCC⇒HCP. The approach is based on deter-

mining the driving force for athermal martensite formation including energy terms of the

transformation strains and lattice distortions by substitutional and interstitial atoms. The

model has no adjustable parameters and it is able to predict Ms and As in Fe–, Ti–based

alloys, as well as the hysteresis cycle (Ms, Mf , As, Af ) in Co–based alloys.

Martensite forms by the coordinated movement of atoms resulting in homogeneous shear-

ing of the austenite and forming a new crystal structure without variations in chemical

composition. The lattice correspondence between the austenite and martensite phases are

nearly parallel to the most densely packed planes and their corresponding directions. This

leads to the orientation relationships between the FCC, BCC, and HCP phase transitions to

be∗: {111}FCC||{110}BCC||{0001}HCP and 〈110〉FCC||〈111〉BCC||〈1120〉HCP.

The phenomenological theory of martensite crystallography dictates that the transfor-

mation strain γT consists of two components; a (Bain) strain distorting homogeneously the

parent structure, and a lattice invariant strain δ aiding in producing the correct shape of the

martensitic structure. For the FCC⇒BCC transition the transformation strain is computed

by rotating the FCC unit cell, expanding two principal axes and compressing the remaining

axis to correspond with the BCC unit cell [8]. Additional shearing of δ =
|
√
2aγ−

√
3aα′ |

aγ
along

〈110〉FCC is needed to achieve the correct shape. This is illustrated in Figure 1(a), showing

atoms in (111)FCC||(110)BCC (red) shuffle by δaγ√
2
[110]FCC (orange arrows) to reach the cor-

∗These are idealised relations, however they have shown sufficient accuracy with experiments when deter-
mining various crystallographic parameters [5–7].
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rect BCC shape (green). The principal strains to compute γT are [8]: η1 =
1√
2
aγ(1− δ√

2
)−aα′

1√
2
aγ(1− δ√

2
)

,

η2 =
1√
2
aγ(1+

δ√
2
)−aα′

1√
2
aγ(1+

δ√
2
)

and η3 =
1√
2
aγ−aα′
1√
2
aγ

. The transformation strain is: γT =
√
η21 + η22 + η23.

The principal strains of the BCC⇒FCC transition are computed by similar rotations and by

shearing
δaα′√

3
[111]BCC the lattice, with δ =

|
√
2aγ−

√
3aα′ |

aα′
.
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Figure 1: Schematic representation of the atomic displacements in BCC⇔FCC, FCC⇔HCP

and BCC⇔HCP transitions and their orientation relationships.

Burgers [9] followed a similar argument to compute γT in the BCC⇒HCP transition.

This is illustrated in Figure 1(b), where BCC atoms shear δ =
|
√
3aβ−2aα|
aβ

along 〈111〉BCC to

achieve the correct shape of the HCP lattice (blue atoms). The shifting of
δaα′√

3
[111]BCC in

the BCC axes is included in the computation of the principal (Bain) strains [10].

The FCC⇒HCP transformation strain is obtained by shearing atoms δ = 1
6
〈112〉 [11–14].

Two of the principal strains (η1 and η2) are obtained by rotating and expanding [100]FCC and

[010]FCC in correspondence with [1010]HCP and [1120]HCP [14]. As for η3, the [111]FCC axis

is expanded by δ to lie parallel to [0001]HCP, as schematically shown in Figure 1(c) (orange

arrows). This results in its magnitude increasing to aγ

√
(1 + 1

6
)2 + (1 + 1

6
)2 + (1− 2

6
)2 =

aγ

√
19
6

and η3 is [14]: η3 =
2
3

√
19
6
aγ−cε

2
3

√
19
6
aγ

. The HCP⇒FCC transition has been argued to occur

by the reverse process with analogous principal strains [13,14].

Table 1 shows the values of the principal strains and the resulting transformation strains.
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The lattice constants have been obtained from [7, 15–18]; these are for Fe aγ = 0.357 nm

and aα = 0.287 nm; for Ti, aβ = 0.328 nm, aα = 0.295 nm and cα = 0.468 nm; and for Co,

aγ = 0.35 nm, aε = 0.25 nm and cε = 0.406 nm.

Table 1: Transformation strain and ∆GT in different phase transitions.

Transition η1 η2 η3 γT |∆GT | (J/mol) Exp (J/mol)

FCC⇒BCC
1√
2
aγ(1+

δ√
2
)−aα′

1√
2
aγ(1+

δ√
2
)

1√
2
aγ(1− δ√

2
)−aα′

1√
2
aγ(1− δ√

2
)

1√
2
aγ−aα′
1√
2
aγ

0.24 (Fe) 1255 1000–1250 [19–21]

BCC⇒FCC
aα′ (1+

δ√
3
)−

√
2

2
aγ

aα′ (1+
δ√
3
)

√
2aα′ (1−

δ√
3
)−
√

3
2
aγ

√
2aα′ (1−

δ√
3
)

√
2aα′ (1+

δ√
3
)−
√

3
2
aγ

√
2aα′ (1+

δ√
3
)

0.17 (Fe) 500

BCC⇒HCP
(1+ δ√

3
)aβ−aα′

(1+ δ√
3
)aβ

(1− δ√
3
)
√
2aβ−

√
3aα′

(1− δ√
3
)
√
2aβ

(1+ δ√
3
)
√
2aβ−cα′

(1+ δ√
3
)
√
2aβ

0.1014 (Ti) 130 150 [3]

FCC⇒HCP
1√
2
aγ−aε
1√
2
aγ

1√
2
aγ−aε
1√
2
aγ

2
3

√
19
6
aγ−cε

2
3

√
19
6
aγ

0.026 (Co) 18 35 [22]

HCP⇒FCC
√
2aε−aγ√
2aε

√
2aε−aγ√
2aε

cε− 2
3

√
19
6
aγ

cε
0.027 (Co) 18.8

The chemical driving force for athermal martensite, ∆Gγ⇒α′
, is the difference of the Gibbs

energy between the austenite and the martensite. ∆Gγ⇒α′
has been the subject of extensive

investigations in binary and multicomponent alloys combining the CALPHAD (Calculation

of phase diagrams) approach and experimental data [21,23,24]; in this context, martensite is

treated as supersaturated ferrite in Fe [24], and supersaturated α in Ti and Zr [7]. ∆Gγ⇒α′

has been rationalised as the sum of the strain energy resulting from the lattice distortions

accompanying the transformation, ∆GT , and distortions in the lattice produced by substi-

tutional, ∆Gsubs, and/or interstitial atoms, ∆Gint. If thermal activation is not considered

∆Gγ⇒α′

Ms is [25, 26]:

∆Gγ⇒α′

Ms = ∆GT + ∆Gsubs + ∆Gint. (1)

∆GT can be considered as the elastic strain energy in a (atomic–scale) region undergoing

shape changes; such energy has been estimated by Eshelby [27]. His approach is based on

determining the pressure induced by inserting an inclusion within an isotropic matrix and
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the strain energy equals:

Estrain = −2

9

(1 + ν)

(1− ν)
µ∆V ε2, (2)

where µ is the shear modulus, ν is the Poisson’s ratio, ∆V is the volume under deformation

and ε is the dilatational strain. Equation 2 is employed to estimate the strain energy produced

by local atomic displacements. ∆V is proportional to the molar volume of the principal

component [8]: ∆V = 1
2
Vm, where the 1

2
term accounts for the effective volume expansion

occurring in a shear plane [28]. The dilatational strain can be related to γT using the

Schmidt relation in a single crystal [29], ε = 1
2
γT , as the shear transformation follows the

closest–packed directions. Combining these results, ∆GT is:

∆GT = −(1 + ν)µVm
36(1− ν)

γ2T . (3)

This equation depends only on the magnitude of γT , and it can be applied to different

metallic systems. Table 1 shows the magnitude of ∆GT computed at Ms in FCC⇔BCC for

Fe, BCC⇒HCP for Ti and FCC⇔HCP for Co. Vm and ν have been obtained from [30];

in Fe, these are 7.09 cm3/mol and 0.29, respectively; for Ti, Vm = 10.64 cm3/mol and

ν =0.32; and for Co, Vm = 6.6 cm3/mol and ν = 0.31. Temperature and composition

also affect the driving force via the shear modulus. For Fe, µ = (8.068 +
∑

i
dµ
dxi
xi
)(

1 −

0.48797( T
TC

)2 + 0.12651
(
T
TC

)3
)
× 1010 Pa, was obtained from [31], where TC = 1043 K is

the Curie temperature, and dµ
dxi

are constants dictating the contribution of element i to µ;

values of different elements can be found in [31]. In Ti, µ variations with temperature were

obtained from Young moduli measurements in [32]: µ = 1
2(1+ν)

(119.4 − 0.07193(T − 273))

GPa, whereas for Co, µ = 3(1−2ν)
2(1+ν)

(19.509− 0.001T − 3× 10−6T 2)× 1010 Pa is computed from

Bulk moduli measurements in [33]. No systematic reports for µ variations with composition

in Ti or Co were found in the literature, thus normalised linear mixtures with composition

were adopted, as suggested in [34]: 1
µ

(
µ +

∑
i(µi − µ)xi

)
, where µ is the modulus of Ti or
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Co, and µi is the modulus of element i obtained from [30]. The model predictions are in

very good agreement with reported experimental estimations (also shown in Table 1). For

the FCC⇒HCP transformation, Cotes, et al. [22] have fitted |∆Gγ⇒ε
T | in γ−Fe to be ∼ 35

J/mol†; the elastic and lattice constants of γ−Fe and Co are similar, thus |∆GT | in Co should

have the same order of magnitude. These results demonstrate that equation 3 successfully

predicts the driving force for martensite nucleation in pure elements using γT as input.

Eshelby has also derived an expression for the elastic strain energy resulting from random

distributions of solute atoms embedded within the matrix [35]: −2
9
(1+ν)
(1−ν)µ∆Viε

2
ixi, where xi

is the atom fraction of alloying element i, εi is the strain induced by solute atom i and ∆Vi

is the distorted volume. The dilatation strain produced by substitutional atoms is given by

the difference between atomic radii [36]: εi =
ra−ra,i
ra

, where ra is the atomic radius of the

main component and ra,i is the atomic radius of element i. The strain induced by interstitial

atoms depends on their location in the lattice. For instance, C and N atoms prefer to occupy

the octahedral sites in the BCC lattice of Fe. The strain induced by an interstitial atom in

Fe is estimated as the difference between the largest atom radius fitting in an octahedral site

without distorting the lattice, 0.15ra [8], and the radius of C or N: εj =
ra,j−0.15ra

0.15ra
, where

j =C, N.

∆Vi for substitutional atoms is approximated by the volume of a replaced atom,
(
4
3
πr3aNa),

whereas for interstitial atoms it represents the dilatation volume of occupied interstitial sites,(
4
3
πr3a,jNa). Additionally, when both substitutional and interstitial atoms are added they will

likely interact, due variations in the local atomic radii in the lattice [37,38], therefore inducing

a second–order component in the lattice distortion energy. If C and N are considered in the

BCC lattice, there are 12 possible interstitial sites having the smallest interstices (0.15ra)

between atoms in a unit cell, whereas there are 8 possible sites for substitutional atoms to

lie adjacent to these interstitial sites, thus there are 12 × 8 = 96 possible combinations for

†The authors estimated the driving force in Fe–Mn–Si and this value represents the extrapolation of ∆GT

to γ–Fe.
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a substitutional atom to interact with an interstitial atom within an unit cell. ∆Vj,i in this

case will be considered as the product of the dilatation volume of an interstitial atom and the

possible configurations for an interstitial to interact with a substitutional with concentration

xi: ∆Vj,i = 96xi
(
4
3
πr3a,jNa). The lattice strain is similar to the one for pure interstitial

distortions (εj), however considering a substitutional atom adjacent to an octahedral site:

εj,i =
ra,j−(0.65ra−0.5ra,i)

(0.65ra−0.5ra,i) . Second–order interactions between substitutional atoms of different

species are also possible, but they will not be considered in this work and multicomponent

alloys with relatively low solute concentrations are explored only. This can be extended in

future work.

The previous analysis is extended to multicomponent systems by considering linear combi-

nations of the strain energies in different substitutional/interstitial elements. This is possible

if it is assumed that they do not interact, as Eshelby’s description is based on non–interacting

point defects [35]. The resulting strain energies due to alloying additions in multicomponent

alloys are:

∆Gsubs = −8π(1 + ν)

27(1− ν)
r3aµNa

∑
i

ε2ixi

∆Gint = −8π(1 + ν)

27(1− ν)
µNa

∑
j

r3jε
2
jxj −

768π(1 + ν)

27(1− ν)
µNa

(∑
i,j

r3jε
2
j,ixixj

)
, (4)

The driving force at Ms in different alloys can be obtained combining equations 3 and 4.

Figure 2(a) shows the model predictions (lines) and experimental data (points) of Ms in Fe–

X (X=Ni, Mn, Cr, Co); additional results for As in Fe–Mn are shown in the figure (dashed

line). The experimental data were obtained from [1, 24, 39]. The thermodynamic software

Thermocalc is employed to compute ∆Gγ⇒α′
using TCFe8, a commercial database released by

Thermo-Calc Software AB and it includes thermodynamic data for multi-component systems

of steels/Fe–alloys. The free energy of martensite is considered as supersaturated ferrite in

agreement with previous studies using the CALPHAD approach [24]. The values of the
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atomic radii have been obtained from [30]. Ms is obtained when ∆Gγ⇒α′
equals equation

1, whereas for As the driving force ∆Gα′⇒γ is considered. MATLAB scripts for computing

the driving force in the systems under study are included as supplementary material. The

model agreement with experiments is remarkable in both cases, as the predictions differ only

by up to ±50 ◦C for the conditions tested. However, Ms in Fe–Mn are more scattered. This

can be due to the possible formation of (HCP) ε–martensite occurring at higher manganese

contents and lowering the transformation temperature [39] or due to a different solid solution

exponent in equation 4. Figure 2(b) shows additional results for Ms in Fe–C (blue) and

Fe–N (red) along with experimental data for Fe–C obtained from [5, 40]; the model shows

very good agreement for the compositional range under consideration, as the predictions

lie within ±30 ◦C of experiments, although Ms predictions in Fe–C are slightly lower with

C≥ 0.6 wt%; this can be due to transitions in martensite morphology from laths to plates [5].

Additional results in the Fe–Si–C system are shown in order to highlight second–order effects

described by equation 4. Experimental data obtained from [41–45] are also shown (dots)

for Si additions of 1 (green), 1.5 (orange) and 2 (violet) wt%‡. The model shows very good

results, confirming second–order interactions between Si and C, as the slope of Ms with

increasing carbon changes when increasing Si content. Other authors have reported similar

slope variations in Fe-Cr-C [24].

‡In some cases the experiments contain other alloying additions, such as Cr and Mn, and the experimental
Ms is extrapolated by removing the alloying effects of these elements using the results from (a).
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Figure 2: Ms/As variation with composition in steels with (a) substitutional and (c) inter-

stitial alloying elements.

Figure 3(a) shows Ms predictions and experimental results in Ti–X (X=Fe, V, Mo, Nb,

Zr) obtained from [3, 7, 46, 47]. TTTi3 database is used to obtain the driving force for

BCC⇒HCP, ∆Gβ⇒α; this is a commercial database optimised for multi-component Ti–based

alloys and it has been released by Thermotech Ltd. The model shows excellent agreement in

all cases, although in Ti-Fe and Ti-V the predicted Ms is higher than the experimental data

when Fe≥ 3 wt% and V≥ 7 wt%, respectively. This can be due to different solid solution

exponents in equation 4 for these elements or due to deviations in the computed free energies;

for instance, the BCC phase in Ti–V is not stable in equilibrium when V ≥ 3 wt% [7].

In order to show that the model does not depend of the database choice, additional cal-

culations in both ends of Fe-Ti and Co–Fe have been performed using SSOL5, a commercial

database produced by the Scientific Group Thermodata Europe, which includes thermody-

namic databases for many binary and ternary alloys. Fig 3(b) shows Ms predictions using

SSOL5 (solid) and predictions using databases optimised for Fe, Ti and Co alloys (dotted).

TCNi8 is used for Co; this is a commercial database optimised for superalloys, including

Co–rich alloys, and it has been released by Thermo-Calc Software AB. For Fe-Ti, the calcu-

lations were computed up to Ti=1.5 wt%, as this is the limit for austenite formation [48].

The predictions using different databases are practically identical, showing that the model is
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consistent, irrespective of the database choice.
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Figure 3: (a) Ms variation with composition in binary Ti alloys. (b) Comparison of Ms

predictions in Fe-Ti and Fe-Co using different thermodynamic databases.

These results showed that it is possible to predict Ms if the driving force is known using

the CALPHAD approach. However, in practice in multicomponent systems it is more efficient

to predict Ms using their nominal composition only. Ms predictions for Fe and Ti (Figs. 2

and 3) are fitted to polynomial approximations as a function of the alloying content (in wt%).

Additional calculations are performed in Fe–X–C with X=Ni, Mn, Cr, Co, Si, Mo, Ti, each

element up to 5 wt% or the γ–formation limit, and C≤ 0.5 wt%, and in Ti–Cr with Cr≤ 10

wt%, giving:

MFe
s = 543− (347C− 4C2)− (10.4Ni + 0.5Ni2)− (28.8Mn− 0.26Mn2) + (9.7Co− 0.2Co2)

−(15.5Cr− 0.58Cr2) + (4Si− 0.22Si2)− (1.3Mo + 0.3Mo2) + (4Ti− 0.38Ti2)

−C
(
27Ni + 27Mn + 20Co + 15Cr + 35Si + 12Mo + 90Ti)

MTi
s = 840− (95Fe− 2.5Fe2)− (42.5V− 1.3V2)− (32.8Mo− 0.0015Mo2)

−(18Nb− 0.048Nb2)− (6.2Zr + 0.032Zr2)− (51Cr− 1.9Cr2) (5)

The linear coefficients for steels are very close to values fitted by other authors in low–
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alloy steels [2]. Moreover, the present predictions are expected to be more accurate, as

second–order interactions between C and substitutional atoms are included. For instance,

the experimental Ms in 53 steels reported in [43] were reproduced using equation 5 obtaining

a correlation coefficient of R2 = 0.95. However, equation 5 may not be valid for higher

alloying content.

The martensite finish temperature upon further cooling has been rationalised as the point

where the strain energy from the transformation is fully released [49,50]. In cobalt alloys, the

transformation is generally accepted to be crystallographically reversible and symmetric [4,

13], as |∆Gγ⇒ε| ≈ |∆Gε⇒γ|. This implies that the driving force at Mf includes an additional

∆GT term in ∆Gγ⇒ε
Ms , in order to release the transformation energy at Ms [22, 51], i.e.:

∆Gγ⇒ε
Mf = ∆Gγ⇒ε

Ms + ∆GT = 2∆GT + ∆Gsubs + ∆Gint. (6)

A similar argument is followed for the driving force of Af to lead: ∆Gε⇒γ
Af = ∆Gε⇒γ

As + ∆GT .

Figure 4 shows the model predictions and experimental data for Ms, Mf , As and Af in Co–X

(X=Si, Ni, C) undergoing FCC⇔HCP (γ ⇔ ε) transitions; experiments were obtained from

[52–54]; C is assumed to occupy octahedral sites in the FCC lattice, hence εC ≈ ra,C−0.41ra,Co

0.41ra,Co

[8]. The TCNi8 database is used for the calculations. The model has good agreement in

all cases, showing that it is able to predict the transformation temperature hysteresis, with

discrepancies up to 50◦C.
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Figure 4: Transformation temperature hysteresis in Co–based alloys with alloying content.

The solid lines represent the predicted Ms/As, whereas the dashed lines represent Mf/Af .

The solid points represent experimental Ms/Mf , whereas the open points are As/Af .

The model reproduced well the experimental trends of Af , however a generalised de-

scription of the kinetics of this process in other alloys may require more in-depth analysis.

The linear and symmetric approximation for the driving force in Af (equation 6) is based

on having low and similar values of the transformation strains between FCC⇒HCP and

HCP⇒FCC (Table 1). However, in Fe the lattice strain of FCC⇒BCC and BCC⇒FCC are

significantly different, therefore the strain accommodated by austenite formation will not be

enough to finish the transformation process and other effects, such as geometric partitioning,

morphology and thermal activation, would affect the kinetics to reach Af . Nevertheless, Liu

et al. [55] have shown that the HCP⇒FCC transformation is crystallographically reversible,

in the way that for temperatures at and above Af the martensite always returns to the FCC

crystal structure upon the reverse transformation and not all the martensite structure is fully

dissolved. They also observed shape changes and residual stacking faults indicating that the

process is not mechanically reversible. The current approach for Af in Co does not contradict

these results, as it describes the temperature at which the austenite finish transforming but

does not disregard the possibility of having residual crystal defects or retained HCP due to

the autocatalytic nature of martensite.
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The model is valid, in principle, for Ms above room temperature, as athermal effects in

the driving force have been considered only. Ghosh and Olson [25, 26] have argued thermal

and athermal contributions can alter the driving force, however thermal effects are negligible

for Ms above room temperature. The model was shown valid in steels with substitutional

and interstitial additions up to 13 wt% (or the limit for austenite formation) and 0.6 wt%,

respectively; and in binary Ti–X for Zr and Nb additions up to 14 wt% and for Mo, and

V additions up to 10 wt%; above these ranges the martensite morphology may change and

twins can also form [5, 7]. For Co, it was valid for Ni and Si content where no twins are

present [52,53,55]. In addition, the model was not very accurate in various systems, including

Fe–Mn, Ti–Fe, and Ti–V, and the predictions could be improved by modifying the exponent

of the solid solution approximation. Existing approaches by Neelakantan et al. [3] and Ghosh

and Olson [25] incorporated compositional effects in the same form of solid solution hardening

by slip deformation. They used exponents of x1.5i and x0.5
i , respectively, to fit the driving forces

of Ti and Fe alloys, whereas in the present case linear variations were considered. Their

models were accurate, however the coefficients they obtained are empirical and could not

be correlated with the lattice distortions induced by different elements. Moreover, Ghosh

and Olson did not find clear correspondence between the effect of a solute in the driving

force and its solid solution hardening effect by slip. In contrast, the current approach does

not involve fitting parameters, as the solid solution coefficients are expressed in terms of

the lattice distortion strain produced by each element and the same approximation is valid

irrespective of the system, e.g. the approach was successful in predicting Ms in Fe–C (Fig.

2(b)) and Co-C (Fig 4(a)).

The approximation is restricted to systems undergoing the FCC⇔BCC⇔HCP transitions

and additional work is required to account for other phases, variations in martensite mor-

phology and formation of other crystal defects; these features would modify the approach by

adding frictional terms in the driving force due to thermal activation, shape changes, forest

13



hardening and/or twin formation. These modifications can be done in future work.

An analytic approach was defined to predict Ms in metals. The model was validated

in different alloying systems showing that compositional effects not only affect the chemical

driving force, but they also contribute to increasing the net lattice distortions. Complete

transformation temperature hysteresis was predicted in Co–based alloys by only modifying

the underlying transformation strains, showing that the model could aid in designing alloys

with shape memory effects.
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