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Abstract
The pair correlation function of charge stabilized colloidal particles under strongly sheared conditions is studied using the
analytical intermediate asymptotics method recently developed in Banetta and Zaccone (Phys. Rev. E 99, 052606 (2019) to
solve the steady-state Smoluchowski equation for medium to high values of the Péclet number; the analytical theory works
for dilute conditions. A rich physical behaviour is unveiled for the pair correlation function of colloids interacting via the
repulsive Yukawa (or Debye-Hückel) potential, in both the extensional and compressional sectors of the solid angle. In the
compression sector, a peak near contact is due to the advecting action of the flow and decreases upon increasing the coupling
strength parameter Γ of the Yukawa potential. Upon increasing the screening (Debye) length κ−1, a secondary peak shows
up, at a larger separation distance, slightly less than the Debye length. While this secondary peak grows, the primary peak
near contact decreases. The secondary peak is attributed to the competition between the advecting (attractive-like) action
of the flow in the compressions sector, and the repulsion due to the electrostatics. In the extensional sectors, a depletion
layer (where the pair-correlation function is identically zero) near contact is predicted, the width of which increases upon
increasing either Γ or κ−1.

Keywords Self-assembly · Properties · Rheological · Colloids · Fluids · Plasma physics · Complex fluids ·
Microhydrodynamics

Introduction

The microstructure, that is the spatial arrangement, of
interacting colloidal particles embedded in a viscous
liquid is an important problem in physical chemistry with
many applications ranging from emulsions, polymerization
processes in aqueous phase, to atmospheric science and
consumers products. The single quantity which provides
all the information about the microstructure of a colloidal
suspension is the pair correlation function g(r, t) that is the
probability to find N particles in positions r = (r1, ..., rN)
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at time t [1, 2]. This is the solution to the stochastic N-body
Smoluchowski equation:

∂

∂t
g(r, t) =

N∑

i,j=1

∇ri · DBr ·
[
−βKint

i + ∇rj g(r, t)
]
, (1)

where DBr is the microscopic diffusion matrix which
describes the influence of the medium on particles moving
under Brownian dynamics , Kint

i is the force acting on
the i-th particle due to the pair-wise interactions with the
other N − 1 particles, and β = 1/kBT with kB being the
Boltzmann constant and T the absolute temperature.

Equation 1 has been adopted to study the influence
of Brownian motion and inter-particle interactions on
the micro-structure of colloidal suspensions [3] or dusty
plasmas [4]. However, considerable less information and
understanding are available for colloidal systems that are
subject to a laminar shear flow, in spite of the great of
importance of this situation for industrial applications [5],
complex plasmas [6] and atmospheric science [7].

Earlier numerical work on this problem has been focused
on scenarios where the Reynolds number is sufficiently
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low that possible inertial effects acting on the particles
are negligible; the systems which fulfill this condition can
be described numerically using Stokesian dynamics, which
accounts for the role of hydrodynamic interactions between
the particles. The hydrodynamic interactions, in turn, arise
due to the (incompressible) liquid medium being displaced
by the particles motion.

At the level of theory, Eq. 1 can be modified to account
for contributions due to the presence of a flow field [3]. In
general, it is important to be aware that the microstructure
of a colloidal suspension is dependent on two parameters:
the volume fraction φ occupied by the particles of radius a,
φ = 4/3πa3N , and the relative importance of Brownian-
and shear-induced effects, which is described by the Péclet
number [11]

Pe = a2γ̇

D0
= 6πηγ̇ a3

kBT
. (2)

The starting point has been the pioneering paper by
Batchelor and Green [9] who derived an analytic solution
of the two-body the Smoluchowski equation (i.e. Eq. 1
with N = 2) under shear flow for hard spheres. The pair
correlation function (pcf), i.e. the probability of finding a
particle at a certain position r with respect to a reference
particle placed at the origin of the spherical frame, was
evaluated for the limiting case of infinite Péclet number.

Later theoretical work [10, 11] evidenced the character-
istic shear-induced distortion of the pcf, with an asymmetric
distribution of the probability of finding particles around the
reference particle, in the solid angle. If we are in a situation
where the shear flow pushes the particles towards each other
(compression sectors), then the pcf features an accumula-
tion peak whose magnitude depends on the Péclet number.
On the other hand, in the sectors of solid angle where the
shear tends to separate the particles from each other, the pcf
takes values which are much lower next to the surface of the
reference particle.

The distortion of the pcf at finite Pe has also been proved
by computational simulations of colloidal suspensions using
Stokesian dynamics (SD) [12, 13]: even at high packing
fractions φ, the microstructure presents an accumulation
peak in the compression sectors and lower values in
the extensional ones. In recent years, new analytical
formulations for the two-body Smoluchowski equation have
been derived including many body effects to describe the
microstructure of more concentrated systems for both hard-
spheres [14] and interacting soft spheres [15], but the
solution of the equation in spherical coordinates is fully
numerical. As a consequence, an analytical framework
which describes the micro-structure of complex interacting
particles under shear flow is still lacking.

Recently, a theory based on intermediate asymp-
totics expansions has been developed, which analytically

describes the micro-structure of a dilute suspension of par-
ticles. The work has been validated by comparison with
numerical simulation data of hard spheres from Stokesian
dynamics [13] and it has been found out that the predic-
tions are valid for semi-dilute conditions (φ up to 0.2) under
strongly simple sheared conditions [16]. The reason for this
is a cancellation of errors between the neglect of the tangen-
tial contribution to the lubrication forces acting on Brownian
motion and the absence of many-body interactions. The the-
ory has then been used to obtain the first prediction of the
pair correlation function of attractive Lennard-Jones parti-
cles in shear flow. Here, we extend this methodology to the
description of the microstructure of charge stabilized col-
loids interacting through the screened Coulomb (Yukawa or
Debye-Hückel) potential, under simple shear flow.

Model

We start from considering the steady state two-body (N =
2) limit of Eq. 1, which can describe dilute and semi-dilute
suspensions up to φ ∼ 0.20:

∇ · DBr ·
[
−βKintg(r) + ∇g(r)

]
= 0. (3)

It is important to notice that we have written Eq. 3 as a
function of r = r2 − r1 = (r, θ, φ), the relative position of a
second particle with respect to the reference particle placed
at the center of the spherical frame.

Brownian contributions

Before moving on to considering the contribution from
shear flow, it is important to define each term in Eq. 3. To
model the microscospic diffusion matrix DBr, we need to
consider the effect of the presence of a viscous medium
between the particles. If the particles get closer and closer to
each other, the squeezing of the fluid between them causes a
repulsive effect called lubrication force which opposes their
further approach [12, 17]; we will consider their effect by
adopting the following constitutive equation for DBr:

DBr = 2D0

⎡

⎣
G(r) 0 0
0 H(r) 0
0 0 H(r)

⎤

⎦ = 2D0 DBr, (4)

where D0 is the diffusion coefficient of an isolated particle
and G(r) a parametrized function which approximates the
rigorous solution for the lubrication force component of the
hydrodynamic interactions [16, 18] along the line of centres,
meanwhile H(r) is its equivalent relative to the tangential
directions with respect to the motion of the colloids; in the
calculations we will consider only the contribution of the
lubrication forces along the radial directions, which means
H(r) = 0.
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Finally, the conservative interaction force Kint is given
by Kint = (−∇U(r), 0, 0), where U(r) is the interaction
potential between two particles.

Shear-induced contributions

We can model the influence of an external flow field through
the introduction of an extra term in Eq. 3 [3]:

0 = ∇·DBr·
[
−βKintg(r) + ∇g(r)

]
+∇·Dsh·

[
−βKshg(r)

]
,

(5)

where Dsh is the microscopic diffusion matrix relative to to
the disturbance of the flow field around the particles due
to the application of a shear stress. Here, Ksh is the (non-
conservative) drag force according to Fig. 1, which in our
two-body description is directly proportional to the relative
velocity v(r):

Ksh = ζv(r). (6)

In particular, ζ = 6πηa is the Stokes drag coefficient,
which depends on the particle radius a and the viscosity of
the liquid medium η.

We will model Dsh in the simplest way possible and
consider the presence of the effects of the reflective flow
from one particle to the other in the definition of the relative
velocity:

Dsh = D0I, (7)

where D0 is the mutual diffusion coefficient between the
particles; from the resolution of the creeping flow equations,
it is possible to introduce v(r) as [19, 20]
⎧
⎪⎪⎨

⎪⎪⎩

vr = γ̇ r(1 − A(r)) sin2 θ sinφ cosφ;
vθ = γ̇ r(1 − B(r)) sin θ cos θ sinφ cosφ;
vφ = γ̇ r sin θ

(
cos2 φ − B(r)

2
cos(2φ)

)
.

(8)

Fig. 1 Schematic illustration of a pair of interacting particles subject to
a simple shear flow where v = (0,0,γ̇ x); the spherical reference frame
has been taken as described in [19]

It is important to highlight that the relative velocity between
the particles is the superposition of two effects: one is due
to the motion of the fluid because of the applied shear, the
second is a reflected flow from one particle to the other,
a distortion of the flow field around one particle due to
the presence of the other. The latter contribution to v(r)
is represented by A(r) and B(r), hydrodynamic functions
derived from a rigorous resolution of the Stokes equations
for incompressible fluids [8, 20]; more information about
these terms can be found in the Appendix B.

The Smoluchowski equation for the pcf g(r) then
becomes

2D0∇ · DBr ·
(
−βKintg(r) + ∇g(r)

)
+

−D0∇ · (βζv(r)g(r)) = 0. (9)

which will be the starting point for the mathematical
evaluation of the pcf g(r) in the following.

Formulation of themathematical problem

First, we make Eq. 9 dimensionless through:
{

∇̃ = σ∇,

K̃
int = βKint,

(10)

where σ = 2a is the hard-core particle diameter.
The velocity v(r) can be expressed as:

v(r) = γ̇ σ ṽ(r̃). (11)

The same can be done with the interaction potential which
becomes Ũ (r̃) and Eq. 9 can be rewritten as

2 ∇̃ · D̃Br ·
(
−K̃

int
g(r̃) + ∇̃g(r̃)

)
+

−∇̃ ·
(
4
6πηγ̇ a3

kBT
ṽ(r̃)g(r̃)

)
= 0. (12)

Recalling the Péclet number already introduced in Eq. 2 we
can write

∇̃ · D̃Br ·
(
−K̃

int
g(r̃) + ∇̃g(r̃)

)
+

−2Pe∇̃ · (
ṽ(r̃)g(r̃)

) = 0. (13)

Equation 13 is to be solved perturbatively. A perturbative
method is based on the introduction of a small perturbation
parameter ε, by definition much smaller than unity, which
simplifies the analytical treatment of the partial differential
equation (PDE) of interest [21–23]. Focusing on situations
where the effect of shear flow is substantial, we fix:

ε = 1

Pe
. (14)
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Applying Eq. 14 to Eq. 13 we obtain:

ε
[
∇̃ · D̃Br ·

(
−K̃

int
g(r̃) + ∇̃g(r̃)

)]
+

−2 ∇̃ · (
ṽ(r̃)g(r̃)

) = 0. (15)

Starting from Eq. 15, we apply the linearity of the
divergence operators obtaining:

ε
[
∇̃ ·

(
D̃
Br · ∇̃g(r̃)

)
− ∇̃ ·

(
D̃
Br · K̃int

)
g(r̃)

]
+

−2
(
ṽ · ∇̃g(r̃) + g(r̃)∇̃ · ṽ

)
= 0. (16)

It is important to remember that ṽ is the relative velocity
between the particles, so its divergence can assume not
null values, even if the fluid is incompressible. Next, we
introduce a useful approximation that was proposed in [24]
(see also [14]) in order to make the 3D problem analytically
solvable. The approximation consists in applying an angular
average, denoted as 〈· · · 〉, over a certain portion of solid
angle to Eq. 16.

ε
[
∇̃ ·

(
D̃
Br · ∇̃〈g(r̃)〉

)
− ∇̃ · D̃Br ·

(
K̃

int〈g(r̃)〉
)]

+
−2

(
〈ṽ · ∇̃g(r̃)〉 + 〈g(r̃)∇̃ · ṽ〉

)
= 0. (17)

Since we have neglected the tangential contribution of the
lubrication forces acting on the Brownian motion, we can
apply the angular average directly on the pcf when it comes
to the section of Eq. 17 related to the Brownian contribution;
a more detailed explanation about it has been proposed in
Appendix A.

This procedure can be taken, for example, over the
extensional sectors only, or over the compression sectors,
thus leading to the pcf separately averaged in extension
and in compression (see the Appendix B). The result is the
following spherically-averaged solution g(r̃) over a certain
region (either extensional or compressional) which now
depends on the radial coordinate only:

ε
[
∇̃ ·

(
D̃
Br · ∇̃g(r̃)

)
− ∇̃ · D̃Br ·

(
K̃

int
g(r̃)

)]
+

−2
(
〈ṽ · ∇̃g(r̃)〉 + 〈g(r̃)∇̃ · ṽ〉

)
= 0. (18)

Moreover, we use a weak-coupling approximation between
flow field and particle concentration field also introduced in
[24]; we suppose that the velocity and the pair correlation
function are weakly correlated, so that:

〈ṽ · ∇̃g(r̃)〉 + 〈g(r̃)∇̃ · ṽ〉 ≈ 〈ṽ〉 · ∇̃g(r̃) + g(r̃)〈∇̃ · v〉. (19)
A general flow field can be separated into compressional
(downstream) and extensional (upstream) regions: in the
former regions the particles are pushed toward each other
by the flow, so the relative velocity between the two
particles is negative; instead, in the extensional sectors,
the particles move away from each other, leading to
a positive radial velocity. Within this methodology, the

actual relative velocity and the flow field divergence
are replaced with their angular-averaged values within
compressional and extensional regions. The angular average
is necessary to reduce the original PDE (which is soluble
only numerically,and even then poses some computational
challenges) to an ODE which is analytically soluble. The
price to pay for having analytical solutions is that it is not
possible to produce deformed contour plots to highlight the
angle dependent pcf.

Averaged velocities

Now, we will consider two coefficients which are the
result of the average procedure,: αc for the compressional
(downstream) and αe for the extensional (upstream) zone,
which are explicitly introduced and defined in Appendix A.
The two coefficients define the influence of the angular
coordinates on the radial relative velocity and the flow field
divergence as shown in Eq. 20:

⎧
⎨

⎩

〈ṽ〉i = αi(1 − A(r̃))r̃,

〈∇̃ · v〉i = αi

(
3(B(r̃) − A(r̃)) − r̃

dA(r̃)

dr̃

)
(20)

with i = c for the compressional sector and i = e for the
extensional sector. The corresponding values of αc and αe

are derived in Appendix A.

Lubrication forces

The difference between compressional and extensional
quadrants is also reflected in the modelling of the
lubrication forces through the fitting function G(r̃). If
the particles are getting closer to each other as in the
compression sectors, then the squeezing of the liquid
between them creates a force which opposes the mutual
approach [25]. In this case we model G(r) through a
polynomial [18, 26] which is a polynomial fit to the rigorous
solution to the Stokes equation for the specific case of two
particles approaching each other [17]:

Gc(r̃) = 6h2 + 4h

6h2 + 13h2 + 2
; (21)

where h = r̃ − 1 is the surface to surface distance between
the particles.

It is necessary to recall that the proposed function is valid
for the scenario where the particles are approaching. On
the other hand, if they are moving away from each other,
lubrication forces assume a different form that we could not
find across the literature so, for simplicity, we decided to
neglect them by imposing

Ge(r̃) = 1. (22)

764 Colloid Polym Sci (2020) 298:761–771



Final formulation

With the above specifications, we arrive at the following
form for the dimensionless Smoluchowski equation:

ε

[
1

r̃2

d

dr̃

(
r̃2Gi(r̃)

dgi(r̃)

dr̃

)
+ 1

r̃2

d

dr̃

(
r̃2Gi(r̃)

dŨ

dr̃

)
gi(r̃)

+Gi(r̃)
dŨ

dr̃

dgi(r̃)

dr̃

]
− 2

(
〈ṽ〉i dgi(r̃)dr̃

+ gi(r̃)〈∇̃ · v〉i
)

= 0. (23)

Finally, we put the equation in the following final form
which is the most convenient for the perturbative treatment:

ε

[
Gi(r̃)

(
d2gi
dr̃2

+ 2

r̃

dgi
dr̃

)
+ dGi

dr̃

dgi
dr̃

+ gi
dŨ

dr̃

dGi

dr̃

+Gi
dŨ

dr̃

dgi
dr̃

+ Gi

(
2

r̃

dŨ

dr̃
+ d2Ũ

dr̃2

)
gi(r̃)

]
+

−2

(
〈ṽ〉i dgidr̃

+ gi〈∇̃ · v〉i
)

= 0. (24)

We briefly recall that, since ṽ is influenced not only
by the motion of the sheared fluid, but also by the
hydrodynamic disturbance between the particles modelled
through functions A and B, its divergence assumes not null
values even if the fluid is incompressible, as it can be seen in
Eq. 20. Since Eq. 24 is a second order differential equation,
we need two boundary conditions (BCs). The first one is the
usual far-field BC:

gi(r̃ → ∞) = 1. (25)

The second BC constrains the radial flux to be null when the
two particles are in direct contact:

Gi(r̃c)

(
dg

dr̃

)
(r̃c) +

(
Gi(r̃c)

dŨ

dr̃
− 2Pe〈ṽ〉i

)
gi(r̃c) = 0,

(26)

where r̃c is a value of radial distance sufficiently close to
the reference particle; in our calculations we take r̃c =
1 + 5 × 10−5.

From inspection of Eq. 24 it can immediately be seen
that the perturbation parameter is linked to the highest order
derivative of the ordinary differential equation (ODE). This
means that we are dealing with a singular perturbation
problem that must be solved by the application of boundary
layer theory [21–23].

The approach consists of the evaluation of two different
power series related to two different regions of the radial
coordinate domain: the outer layer (in this case farther
away from the reference particle), where the solution is
slowly changing with r̃ , and the inner region (closer to the
reference particle), usually called boundary layer, where the

solution is steeply and very rapidly changing with the radial
coordinate [21].

Solutionmethod

The solution to the boundary-layer problem is a combina-
tion of two power series in ε. The first one is named outer
solution and provides the approximate form of the pcf in the
outer layer where the solution varies slowly with r̃:

gout
i (r̃) = gout

0,i (r̃) + εgout
1,i (r̃), (27)

where gout
0,i is the leading order term, while gout

1,i is the first
order term.

The second power series is called inner solution and
provides the solution in the inner layer of the domain where
the solution varies dramatically with respect to variations
in r̃ . The first step towards building the power series in the
inner layer is the application of a change of variable, called
inner transformation, to Eq. 24:

ξ = r̃ − r̃c

δ(ε)
(28)

where δ(ε) is the order of magnitude of the width of the
inner layer, the small section where the solution varies
quickly.

Formally, it is necessary to write the inner solution as
a power series in δ(ε). Using the method of dominant
balancing as proposed in [16], it has been shown that δ(ε) ∼
ε. Hence, it is possible to write the power series in the inner
layer as:

gin
i (ξ) = gin

0,i(ξ) + εgin
1,i(ξ). (29)

Solution evaluation

Following the same steps reported in [16] we arrive at the
following forms for the zero-th and first order terms in the
outer layer:

gout
0,i = 1

1 − A(r̃)
exp

[∫ ∞

r̃

(
3(B − A)

r̃(1 − A)

)
dr̃

]
, (30)

gout
1,i = −gout

0,i

∫ ∞

r̃

1

2〈ṽ〉i

{
Gi

[
Y 2 + dY

dr̃
+

(
2

r̃
+ dŨ

dr̃

)
Y (r̃)

+d2Ũ

dr̃2
+ 2

r̃

dŨ

dr̃

]
+ dGi

dr̃

(
Y + dŨ

dr̃

)}
dr̃ , (31)

where Y = −〈∇̃ · v〉i/〈ṽ〉i.
Following again the same steps reported in [16] for the

zero-th and first order terms in the inner layer, we find the
following expressions:

gin
0,i = C1+C0

∫ ξ

0
exp

[(∫ ξ

0
2
〈ṽ(ε = 0)〉i
G(ε = 0)

dξ ′
)]

dξ ′ (32)
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gin
1,i(ξ) = C3 +

∫ ξ

0

{
C2 −

∫ ξ

0

[(
2

(ξ ′ε + r̃c)
+ W(ξ ′) + Gr,i

G

)

×dgin
0,i

dξ ′ − 2
〈∇̃ξ ′ · ṽ(ξ ′)〉i

G(ξ ′)
gin
0,i(ξ

′)
]

× exp

(∫ ξ

0
−2

〈ṽ(ξ ′)〉i
G(ξ ′)

dξ ′
)

×dξ ′} exp
(∫ ξ

0
2
〈ṽ(ξ ′)〉i
G(ξ ′)

dξ ′
)

dξ ′, (33)

where W = (dŨ/dξ)/δ and Gr,i = δ−1(dGi/dξ).

Integration constants evaluation

To summarize, we have evaluated two different power
series gin and gout which describe the behaviour of the
solution in two different adjacent sections of the integration
domain, the inner (or boundary) layer and the outer layer,
respectively. The final step to obtain the analytical solution
of Eq. 24 is the evaluation of the integration constants
C0, C1, C2 and C3 present in the inner solution; the full
procedure is summarized in Fig. 2.

Since we have four unknown parameters we need four
equations to determine them: the first one will be the
condition of zero flux at the reference particle surface,
Eq. 26, while the other three can be obtained from the so-
called patching procedure [21]. The general principle is as
follows. We start from two solutions which share a common
border: if one of the two is known and the other has n

constants to be evaluated, it is necessary to apply a condition
of continuity of order n − 1.

This principle is suitable for our case since we know
the full behaviour of the outer solution and we have three
remaining conditions to be fixed in order to find the three
remaining constants. Hence, we need to fix a second order
continuity condition between gout and gin at their shared
border, that is r̃ = r̃c+ε. After having obtained the complete
structure of the inner solution, we need to group together all
the terms which multiply the same integration constant.

Fig. 2 Block diagram with the fundamental steps for the evaluation of
the integration constants of gin(r̃)

Finally, it is possible to evaluate all the integration
constants by solving the following linear system which
arises from the patching procedure,
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

gout
i (r̃ = r̃c + ε) = gin

i (r̃ = r̃c + ε)

dgout
i (r̃ = r̃c + ε)

dr̃
= dgin

i (r̃ = r̃c + ε)

dr̃
d2gout

i (r̃ = r̃c + ε)

dr̃2
= d2gin

i (r̃ = r̃c + ε)

dr̃2

(34)

together with the application of Eq. 26; from the solution of
this linear system we evaluate the four integration constants
C0, C1, C2 and C3 as functions of the Péclet number which
will lead to the final form of gin.

Results

Since we are interested in studying the micro-structure
of charge-stabilized particles, we implement the screened-
Coulomb Debye-Hückel (or Yukawa) interaction potential
with the addition of an hard-sphere wall which is epxressed
by infinte values of Ũ (r̃) if r̃ < r̃c:

⎧
⎨

⎩

Ũ (r̃) = ∞ r̃ < r̃c;
Ũ (r̃) = (Z∗e)2

4πεrε0σkBT

exp(−κr̃)

r̃
= Γ

exp(−κr̃)

r̃
r̃ > r̃c,

(35)

where Z∗ is the effective charge, e the electron charge, εr

the medium relative dielectric permittivity, ε0 the dielectric
permittivity of vacuum, and κ the dimensionless Debye
screening parameter in units of σ−1. The inverse of κ is
the Debye length κ−1 (with units of σ ), which is the length
scale within which the interactions are non-negligible. In a
colloidal suspension, κ is a function of the ionic strength.
The parameter Γ is known as the coupling constant and
controls the strength of the (screened) Coulomb repulsion.

The analytical approach has been validated in a
parameter-free comparison with numerical simulations data
of hard spheres in [16].

In the next section we present predictions of the pcf in the
compressing and the extensional sectors at different values
of Péclet numbers (in the regime Pe � 1) and upon varying
the control parameters of the DH potential (i.e. κ and Γ ).

High Péclet numbers

In Fig. 3 we present the locally averaged pcf for both
compression and extensional sectors at Pe = 1000. In this
case the interactions play a completely negligible role in
both the compressing and extensional regions where only
the interplay between the flow field and lubrication forces
determines the pcf. In this limit, the solution is strongly
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Fig. 3 Effect of the repulsive DH potential on the pair correlation function in the compressing gc(r̃) and extensional quadrants ge(r̃) of a strongly
sheared suspension (Pe = 1000)

dominated by the outer layer, which, in turn, is totally
dominated by the hydrodynamics.

In Fig. 3a the pcf in the compression sectors is shown.
We observe a two orders of magnitude increase of the pcf
near the surface of the reference particle, because the strong
compressing effect of the flow field in these regions pushes
the particles towards each other. On the other hand, in
the extensional sectors, as shown in Fig. Fig. 3b, the flow
field tends to flatten the pcf out to unity (homogeneous
concentration): this makes sense because the particles are
not influenced by the inter-particle interactions, since the
shear induced effects are three orders of magnitude more
dominant than the Brownian-induced ones; nor are they
influenced by lubrication forces since these take place when
the fluid between the particles is squeezed, which happens
in the compression quadrants only. Only a comparatively
much smaller maximum is seen in the extensional sectors,
which is due to the competition between the action of
the flow, which tends to push particles away from each
other, and the effect of the hydrodynamic disturbances due
to the relative motion of the particles, as encoded in the
hydrodynamic functions A(r̃) and B(r̃).

Intermediate Péclet numbers (Pe=10)

For colloidal suspensions experiencing weaker shear rates,
the interaction potential plays a non-negligible role in
determining the microstructure in both the compress-
ing and extensional quadrants. Furthermore, the interplay

between interaction potential, flow field and hydrody-
namic(lubrication) interactions give rise to new phenomena.

Compressing quadrants

Results for the pcf in compression sectors are reported
in Fig. 4. In the compression sectors, where the particles
are pushed towards each other by the flow, we observe
an accumulation peak with values of gc(r̃) bigger than
unity near contact, which means that we have an increased
probability of finding particles near the reference one.

In Fig. 4a the contribution of the repulsive DH interaction
causes the peak of the pcf to decrease with the increase
of the coupling parameter Γ , which controls the repulsion
strength. Clearly, the screened-Coulomb DH repulsion
opposes a resistance to the approach of the particles and it
has been shown in [15] that the conservative interactions
play a dominant role, also over the lubrication forces, in the
determination of the peak at contact.

As a consistency check, we see that as Γ goes to
zero or κ goes to infinity, the microstructure of repulsive
interacting particles gets closer to the hard-sphere limit,
a clear evidence of the good reliability of the presented
method.

In Fig. 4b we present results for the pcf in the
compressional sectors, this time upon varying the Debye
screening parameter κ . Increasing κ means decreasing the
Debye screening length κ−1, which sets the length scale for
the decay of the DH repulsion. A new effect is predicted

Fig. 4 Effect of the repulsive DH potential on gc(r̃) at low values of the Péclet number (Pe = 10): a Effect of varying the coupling parameter Γ

with κ = 2 fixed, b Effect of varying the Debye parameter with Γ = 50 kept fixed
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Fig. 5 Effect of the repulsive DH interaction on ge(r̃) at low values of the Péclet number (Pe = 10): a Effect of varying the coupling parameter Γ

with κ = 2 fixed, b Effect of varying the Debye parameter κ with Γ = 40 kept fixed

here for the first time: as the Debye length decreases, a
secondary maximum appears for κ = 1.5 (in units of σ ) at
a position r = 1.4σ , which is slightly less than the Debye
length (1 + κ−1)σ ≈ 1.67σ . This effect can be interpreted
as a local ”accumulation” of particles advected by the flow
towards the electrostatic repulsive wall. If the Debye length
is too short compared to the primary accumulation peak, this
effect cannot be seen.

Extensional quadrants

Now we focus our attention on Fig. 5 where we present the
pcf in the extensional quadrants. First of all, we notice that
there is no peak or increased probability of finding particles
near the surface of the reference particle, which has been
seen also for hard spheres [11]. This result is physically
meaningful since the flow field causes the particles to move
away from each other.

On the other hand, and this is a new effect seen here for
the first time, the synergy between the (locally extensional,
”repulsive-like”) flow and the screened-Coulomb interac-
tion leads to a depletion layer near contact, within which
the probability of finding a particle is identically zero. The
width of the depletion layer increases with the increase of
either the strength of the repulsion, controlled by Γ , or
the range of the repulsion, controlled by κ−1. Also in this
case, if we decrease the Debye length κ−1, or decrease
Γ , the micro-structure tends to approach the behaviour of
hard-spheres.

Conclusion and future steps

In this work we presented an analytical theory of the pair
correlation function of charge-stabilized colloids in shear
flow, using the intermediate-aymptotics solution method to
the Smoluchowski equation that was recently developed
in [16]. The theory has been built on a series of hypothesis:

1. The tangential contribution of the lubrication forces
with respect to the line of centres acting on Brownian
motion has been neglected;

2. Integral average over two different domains of the
solid angle: compressing quadrants, where the particles
approach each other, and extensional regions, where
they fade away from each other;

3. Decoupling approximation: the average of the scalar
product is sufficiently close to the scalar product of the
averages.

The method yields the locally averaged pair correlation
function for the compression and extensional sectors of the
solid angle. In the compression sectors, an accumulation
peak near contact is visible, which can be lowered upon
increasing the repulsion parameters of the Debye-Hückel
potential. As the Debye length increases (and becomes
larger than the particle diameter σ ) a secondary maximum
appears which is due to the competition between the
advecting action of the flow (pushing particles against
each other, hence attractive-like) and the effect of screened
electrostatic repulsion. The secondary maximum occurs
at separations comparable to the Debye length. In the
extensional sectors, instead, no accumulation peak is
visible, due to the action of the flow that tends to move
particles away from each other in the extensional sectors.
Instead, the occurrence of a depletion layer, where the pair
correlation function is identically zero, is predicted. The
width of the depletion layer increases upon increasing either
the charge repulsion strength or the Debye length.

In future work some predictions from the theory, such as
the presence of a depletion layer in extensional quadrants,
can be confirmed experimentally by evaluating the structure
factor, and the pcf through the appropriate Fourier-
transform, of known repulsive systems under consistent
sheared conditions. Moreover, this methodology will be
applied to low-Peclet number conditions, where the inter-
particle interactions play the most dominant role. Across
the literature there is already experimental evidence related
to the spatial arrangement of this type of systems under
weakly sheared conditions which can be utilized as a
possible validation [27]. Furthermore, this analytical theory
can serve as the starting point for predictions of viscosity
and rheology of sheared colloidal suspensions, as well as
in systems such as plasmas and dusty plasmas [28]. In the
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case of colloidal systems, this approach could be combined,
in future work, with Mode-Coupling Theory [29–33] to
arrive at predictions of dynamics and rheological response
of interacting colloidal particles under strong shear flows;
also, it could be used to predict and model controlled
self-assembly of nanoparticles using shear flow [34].
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Appendix A: Mathematical formalism

Let’s focus or attention on the Brownian contribution to
Eq. 16:

∇̃ ·
(
D̃
Br · ∇̃g(r̃)

)
− ∇̃ ·

[(
D̃
Br · K̃int

)
g(r̃)

]

= ∇̃ ·
(
D̃
Br · ∇̃g(r̃)

)
− ∇̃ ·

(
D̃
Br · K̃int

)
g(r̃)

−
(
D̃
Br · K̃int

)
· ∇̃g(r̃) (36)

Expressing all the components and the divergence
operator we obtain, respectively

∇̃ ·

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

G(r)
∂g(r̃)
∂r̃

H(r)

r̃

∂g(r̃)
∂θ

H(r̃)

r̃ sin θ

∂g(r̃)
∂φ

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

− ∇̃ ·

⎡

⎢⎢⎢⎢⎢⎢⎣

−G(r̃)
dŨ

dr̃

0

0

⎤

⎥⎥⎥⎥⎥⎥⎦
g(r̃) +

−

⎡

⎢⎢⎢⎢⎢⎢⎣

−G(r̃)
dŨ

dr̃

0

0

⎤

⎥⎥⎥⎥⎥⎥⎦
·

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂g(r)
∂r̃

1

r̃

∂g(r)
∂θ

1

r̃ sin θ

∂g(r)
∂φ

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(37)

and

1

r̃2

∂

∂r̃

(
r̃2G(r̃)

∂g(r̃)
∂r̃

)
+ H(r̃)

r̃2 sin θ

[
∂

∂θ

(
sin θ

∂g(r̃)
∂θ

)

+ ∂2g(r̃)
∂φ2

]
+ 1

r̃2

∂

∂r̃

(
r̃2G(r̃)

∂Ũ

∂r̃

)
g(r̃) + G(r̃)

dŨ

dr̃

∂g(r̃)
∂r̃

(38)

If we neglect the lubrication forces acting on tangential
directions we end up with

1

r̃2

∂

∂r̃

(
r̃2G(r̃)

∂g(r̃)
∂r̃

)
+ 1

r̃2

∂

∂r̃

(
r̃2G(r̃)

dŨ

dr̃

)
g(r̃)

+G(r̃)
dŨ

dr̃

∂g(r̃)
∂r̃

. (39)

Since every contribution from the angular coordinates
disappeared it is possible to apply the angular average
directly on the pcf on this portion of Eq. 17.

Appendix B: Angular averaging

In this section we describe the procedure where we describe
the angular averaging procedure with which we evaluate 〈ṽ〉
and 〈∇̃ · ṽ〉. We start the procedure from Eq. 40

⎧
⎪⎪⎨

⎪⎪⎩

ṽr = r̃(1 − A(r̃)) sin2 θ sinφ cosφ

ṽθ = r̃(1 − B(r̃)) sin θ cos θ sinφ cosφ,

ṽφ = r̃ sin θ

(
cos2 φ − B(r̃)

2
cos(2φ)

) (40)

whereA(r̃) andB(r̃) are functions representing the effect of
the hydrodynamic disturbance along the radial and angular
coordinate, respectively. Their values can be taken from
the literature [8] and, in order to use them in the present
analytical calculations, they are fitted through the following
algebraic expressions [35]:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A(r̃) = 113.2568894

(2r̃)5
+ 307.8264828

(2r̃)6
+

−2607.54064288

(2r̃)7
+ 3333.72020041

(2r̃)8

B(r̃) = 0.96337157

(2r̃ − 1.90461683)1.99517070
+

− 0.93850774

(2r̃ − 1.90378420)2.01254004
.

(41)

Our goal is to evaluate the average radial velocity in the
area where the particles are approaching each other, which
means the ensemble of angular coordinates ṽr < 0.
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It is found that the above mentioned condition is satisfied,
for r̃ > 0, ∀θ ∈ [0, π ], φ ∈ [π/2, π ] and φ ∈ [3π/2, 2π ].
Now we apply the angular average obtaining:

〈ṽ〉c = r̃(1 − A(r̃))
1

4π

[∫ π

0
sin2(θ) sin θdθ

×
(∫ π

π/2
sin(φ) cos(φ)dφ +

∫ 2π

3π/2
sin(φ) cos(φ)dφ

)]
. (42)

Through this procedure we can obtain

αc = − 1

3π
. (43)

To find the upstream region we need to impose ṽr > 0,
which is given by ∀θ ∈ [0, π ], φ ∈ [0, π/2] and φ ∈
[π, 3π/2]. Applying the same procedure seen before for αc

we obtain:

〈ṽ〉e = r̃(1 − A(r̃))
1

4π

[∫ π

0
sin2(θ) sin θdθ×

×
(∫ π/2

0
sin(φ) cos(φ)dφ +

∫ 3π/2

π

sin(φ) cos(φ)dφ

)]
, (44)

and, as a consequence

αe = 1

3π
. (45)

From this point onward we will consider the compressional
case only; the extensional one can be derived in a
straightforward manner by replacing αc with αe.

Next we consider the divergence of the flow field, which
can be written in spherical coordinates as

∇̃ · ṽ
= 1

r̃2

∂

∂r̃

(
r̃2ṽr

)
+ 1

r̃ sin(θ)

∂

∂θ
(sin θvθ ) + 1

r̃ sin θ

∂

∂φ

(
vφ

)
. (46)

Adopting the correlations in Eq. 40, we can evaluate the
divergence as

∇̃ · ṽ =
[
3(B(r̃) − A(r̃)) − r̃

dA

dr̃

]
sin2 θ sinφ cosφ. (47)

Finally, we apply the integral average previously seen for
〈v〉i and we obtain:

〈∇̃ · ṽ〉i = αi

[
3(B(r̃) − A(r̃)) − r̃

dA

dr̃

]
, (48)

with i = c,e for compression (c) and extension (e),
respectively.
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6. Löwen H, Hansen JP, Roux JN (1991) Brownian dynamics and
kinetic glass transition in colloidal suspoensions. Phys Rev A
44:1169–1181

7. Falkovich G, Fouxon A, Stepanov MG (2002) Acceleration of rain
initiation by cloud turbulence. Nature 419:151–154

8. Batchelor GK, Green JT (1972) The determination of the bulk
stress in a suspension of spherical particles to order c2. J Fluid
Mech 56:401–427

9. Batchelor GK, Green JT (1972) The hydrodynamic interaction of
two small freely-moving spheres in a linear flow field. J Fluid
Mech 56:375–400

10. Blawzdziewicz J, Szamel G (1993) Structure and rheology of
semidilute suspension in shear flow. Phys Rev E 48:4632

11. Brady JF, Morris JF (1997) Microstructure of strongly sheared
suspensions and its impact on rheology and diffusion. J Fluid
Mech 348:103–139

12. Brady JF, Bossis G (1988) Stokesian dynamics. Ann Rev Fluid
Mech 74:111–157

13. Morris JF, Katyal B (2002) Microstructure from simulated
Brownian suspension flows at large shear rate. Phys Fluids
14:1920–1937

14. Nazockdast E, Morris JF (2012) Microstructural theory and the
rheology of concentrated colloidal suspensions. J Fluid Mech
713:420–452

15. Nazockdast E, Morris JF (2012) Effect of repulsive interactions
on structure and rheology of sheared colloidal dispersions. Soft
Matter 8:4223–4234

16. Banetta L, Zaccone A (2019) Radial Distribution Function
of Lennard Jones Fluids in shear flows from intermediate
asymptotics. Phys Rev E 99:052606

17. Brenner H (1961) The slow motion of a sphere through a viscous
fluid towards a plane surface. Chem Eng Sci 6:242–251

18. Honig EP, Roebersen GJ, Wieresema PH (1971) Effect of
hydrodynamic interaction on the coagulation rate of hydrophobic
colloids. J. Coll. Interface Sci. 36:97

19. Adler PM (1981) Interaction of unequal spheres. I. Hydrody-
namic interaction: colloidal forces. J Colloidal Int Sci 84:461–
473

20. Lin CJ, Lee KJ, Sather NF (1970) Slow motion of two spheres in
a shear field. J Fluid Mech 43:35–57

21. Bender CM, Orszag SA (1999) Advanced mathematical methods
for scientists and engineers I: Asymptotic methods and perturba-
tion theory. Springer Science & Business Media, New York

22. HinchJ (1991) Perturbation methods. Cambridge University Press,
Cambridge

770 Colloid Polym Sci (2020) 298:761–771



23. Van Dyke M (1975) Perturbation methods in fluid mechanics,
(Parabolic Press Stanford

24. Zaccone A, Wu H, Gentili D, Morbidelli M (2009) Theory of
activated process under shear with application to shear-induced
aggregation of colloids. Phys Rev E 80:051404

25. Batchelor GK (1976) Brownian diffusion of particles with
hydrodynamic interaction. J Fluid Mech 74:1–29

26. Ness C, Zaccone A (2017) Effect of hydrodynamic interactions on
the lifetime of colloidal bonds. Ind Eng Chem Res 56:3726–3732

27. Nosenko V, Ivlev AV, Morfill GE (2012) Microstructure of a
liquid two-dimensional dusty plasma under shear. Phys Rev Lett
108:135005

28. Ott T, Bonitz M, Stanton LG, Murillo MS (2014) Coupling
strength in Coulomb and Yukawa one-component plasmas. Phys
Plasmas 21:113704

29. Fuchs M, Ballauff M (2005) Flow curves of dense colloidal
suspensions: Schematic model analysis of the shear-dependent
viscosity near the colloidal glass transition. J Chem Phys
122:094707

30. Banchio AJ, Bergenholtz J, N’agele G (1999) Viscoelasticity and
generalized Stokes-Einstein relations of colloidal dispersions. J
Chem Phys 111:8721–8740

31. Ballauff M, Brader JM, Egelhaaf SU, Fuchs M, Horbach J,
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