GPUs — Cheap Supercomputing

Graham Pullan (Engineering)
Cambridge Many-Core Workshop
28 October 2008

My background

e CPUs and GPUs

e GPU models: old and new
 An example

o Alternative devices

e Conclusions

Part 1. My background

Turbomachinery

Engine calculation

Courtesy Vicente Jerez
Fidalgo, Whittle Lab

Part 2: CPUs and GPUs

Was Moore right?

Transistors

10
B 1965 Actual Data 2G G

10°4 @ 1975 Projection
1084 B Memory
2\ Microprocessor

ltanium™
Pentium® 4
Pentium® 111

. Pentium’ |l
Pentium

107_
1064
105..

1 04..
1034

i486™

102_
101-
100

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010
Source: Intel

Feature size

Feature Size
(microns)

100 7 Human hair

10 -

Red blood cell

0.1 4 AIDS virus

0.01] | |] 1] | |] 1
'60 '65 '70 '75 '80 '85 '90 '95 ‘00 '05 "10
Source: Intel

Clock speed

CPU-Frequency 1993 - 2005
AMD and Intel

£

g !
g 2000

o |

g

Source: Tom’s Hardware

What to do with all these transistors?

Parallel computing

Multi-core chips are either:

— Instruction parallel
(Multiple Instruction, Multiple Data) — MIMD

or

— Data parallel
(Single Instruction, Multiple Data) — SIMD

Today’s commodity MIMD chips: CPUs

Intel Core 2 Quad

e 4 cores

e 3. GHz

e 45nm features

e 820 million transistors
e 12 MB on chip memory

Today’s commodity SIMD chips: GPUs

SESTOARNART T rEs g e .

NVIDIA 8800 GTX

e 240 cores 1.3 GHz
e 65nm features 1400 million transistors

 1GB on board memory

CPUs vs GPUs

Release date

400 -
2
< 300
a
O
"_: 200
©
]
. i
100 -
: A - CPUJD
o) =l o L 1
2003 2004 2005 2006 2007

CPUs vs GPUs

Transistor usage:

== I

- -_

=

== I

-

Cew o
CPU GPU

Source: NVIDIA

Graphics pipeline

GPUs and scientific computing

GPUs are designed to apply the
same shading function
to many pixels simultaneously

GPUs and scientific computing

GPUs are designed to apply the
same function
to many data simultaneously

This is what most scientific computing needs!

Part 3. Programming methods

3 Generations of GPGPU (Owens, 2008)

3 Generations of GPGPU (Owens, 2008)

e Making it work at all:
— Primitive functionality and tools (graphics)
— Comparisons with CPU not rigorous

3 Generations of GPGPU (Owens, 2008)

e Making it work at all:
— Primitive functionality and tools (graphics)
— Comparisons with CPU not rigorous
« Making it work better:
— Easier to use (higher level)
— Understanding of how best to do it

3 Generations of GPGPU (Owens, 2008)

e Making it work at all:
— Primitive functionality and tools (graphics)
— Comparisons with CPU not rigorous
« Making it work better:
— Easier to use (higher level)
— Understanding of how best to do it
e Doing it right:
— Stable, portable, modular building blocks

GPU - Programming for graphics

Courtesy, John Owens, UC Davis

Application specifies geometry — GPU
rasterizes

Each fragment is shaded (SIMD)

Shading can use values from memory
(textures)

Image can be stored for re-use

GPGPU programming (“old-school”)

Draw a quad

Run a SIMD program over each
fragment

m . ﬁ Resulting buffer can be stored for re-use

Courtesy, John Owens, UC Davis

Gather is permitted from texture memory

NVIDIA G80 hardware implementation

 Now view GPU as massively parallel co-processor
o Set of (16) SIMD MultiProcessors (8 cores)

¥
¥

Thread Execution Manager

©NVIDIA Corporation 20082008

NVIDIA G80 hardware implementation

Device

Multiprocessor N

Multiprocessor 2

Multiprocessor 1

Proc1 Proc2 ---

Proc M

Divide 128 cores into

16 Multiprocessors (MPs)

*Each MP has:
—Reqisters
—Shared memory

—Read only constant
cache

—Read only texture
cache

NVIDIA’'s CUDA programming model

« Hardware supports many thousands of active threads
 Threads are lightweight:

— Little creation overhead

— “Instant” switching

— Efficiency achieved through 1000’s of threads
 Threads are organised into blocks (1D, 2D, 3D)
* Blocks are further organised into a grid

Kernels, grids, blocks and threads

Host Device
Grid 1
Kernel 1 Block Block Block
(0, 0) (1,0) (2,0)
Block .~ Block " Block
(0, 1) (1,1) Vo (2,1)
" Grid 2
Kernel 2 ——~—>»
Voo o | |

- Block (1, 1)

Kernels, grids, blocks and threads

e QOrganisation of threads and blocks is key abstraction

Kernels, grids, blocks and threads

e QOrganisation of threads and blocks is key abstraction
e Software:
— Threads from one block may cooperate:
e Using data in shared memory
e Through synchronising

Kernels, grids, blocks and threads

e QOrganisation of threads and blocks is key abstraction
e Software:
— Threads from one block may cooperate:
e Using data in shared memory
e Through synchronising
e Hardware:
— A block runs on one MP
— Hardware free to schedule any block on any MP
— More than one block can reside on one MP

Kernels, grids, blocks and threads

CUDA implementation

« CUDA implemented as extensions to C

« CUDA programs:
— explicitly manage host and device memory:
e allocation
o transfers
— set thread blocks and grid

— launch kernels
— are compiled with the CUDA nvcc compiler

Part 4. An example — Lattice Bolzmann

CFD

Solution procedure

Collision

|

Advection

l

Boundary
Conditions

Can be viewed as a particle method:

Collide — particles interact

Stream — particles move from site to site

BCs — inlet, exit, solid wall, etc.

CPU code: main.c

/* Memory allocation */
O = (float *)malloc(ni*nj*sizeof(float));

/* Main loop */

Stream (...args...);
Apply BCs (...args...);
Collide (...args...);

GPU code: main.cu

/* allocate memory on host */
O = (float *)malloc(ni*nj*sizeof(float));

/* allocate memory on device */

cudaMal locPi1tch((void **)&Ff0 data, &pitch,
sizeof(float)*ni, nj);

cudaMal locArray(&f0_array, &desc, ni, nj);

/* Main loop */

Stream (...args...);
Apply BCs (...args...);
Collide (...args...);

CPU code — collide.c

for (J=0; J<nj; j++) {
for (i=0; i<ni; i++) {
12d = 12D(n1,1,}3);

/* Flow properties */

density = ...function of f’s ...
vel x = ... “
vel y = __.
/* Equilibrium f’s */
fOeq = ... function of density, vel x, vel y ...
fleq =
/* Collisions */
fO[12d] = rtaul * fO[12d] + rtau * TOeq;
fl[12d] = rtaul * fl][12d] + rtau * fleq;
+
+

GPU code — collide.cu — kernel wrapper

void collide(... args ...)

{
/* Set thread blocks and grid */

dim3 grid = dim3(ni/TILE_I1, nj/TILE_J);
dim3 block = dim3(TILE_I, TILE J);

/* Launch kernel */
collide _kernel<<<grid, block>>>(... args ...);

GPU code — collide.cu - kernel

/* Evaluate indices */

1 = blockldx.x*TILE 1 + threadldx.x;
J = blockldx.y*TILE J + threadldx.y;
12d = 1 + j*pitch/sizeof(float);

/* Read from device global memory */
fOnow = fO _data[i12d];

flnow = fl1l data[i12d];

/* Calc flow, feq, collide, as CPU code */
/* Write to device global memory */

fO_dataJi12d] = rtaul * fOnow + rtau * f0eq;
Tl dataJi12d] = rtaul * flnow + rtau * fleq;

CPU / GPU demo

Part 5: Alternatives to NVIDIA

NVIDIA Tesla S1070

* 4 Tesla C1060 GPUs
per card:

4 GB

1 TFLOP (SP)

90 GFLOP (DP)

200 W

AMD Firestream 9250

« 1GB
1 TFLOP (SP)

. 7z » 200 GFLOP (DP)
e ; « 200 W

ClearSpeed e710

" E ClearSpeed @

F':w*..‘-. FE R Raapre v
.r||| = K L]

-2 GB
- 96 GFLOP (DP)
« 25 W

IBM PowerXCell8i

e up to 32 GB
« 200 GFLOP (SP)
« 102 GFLOP (DP)
e 92 W

Too much choice!

 Each device has
— different hardware characteristics
— different software (C extensions)
— different developer tools

e Standardisation — in some form — Is needed

Part 6: Conclusions

Conclusions

Many science applications fit the SIMD model
GPUs are commodity SIMD chips
Good speedups (10x — 100x) can be achieved

Conclusions

 Many science applications fit the SIMD model
« GPUs are commodity SIMD chips
 Good speedups (10x — 100x) can be achieved

e GPGPU is evolving:
1. Making it work at all (graphics APIs)
2. Doing it better (high level APIs)
3. Doing it right (portable, modular building blocks)

Conclusions

 Many science applications fit the SIMD model
« GPUs are commodity SIMD chips
 Good speedups (10x — 100x) can be achieved

e GPGPU is evolving:
1. Making it work at all (graphics APIs)
2. Doing it better (high level APISs)
3. Doing it right (portable, modular building blocks)

Www.many-core.group.cam.ac.uk

J UNIVERSITYOF 8 00 YEARS
y CAMBRIDGE 1209-2009

many-core.group

University of Cambridge * many-core, group

Many-core computing devices have large numbers of processors (cores)
on a single chip. Such configurations are attractive because they can
achieve a greater performance (calculations per second) far a given
armount of electrical power than their single-core cousins, CRUs are
heading down this route with dual-core and quad-core processors now
commonplace, However, accelerator add-on cards or chips are also
available today which have over 100 cores; of these, the araphics
processing unit (GPU) is the most widespread.

many-core.group is a site where researchers at Cambridge University
who are using many-core devices to accelerate their scientific
applications can show their results and describe their experiences.

2008 University of Cambridge
Inforrnation provided by rany-core.group

Search Q]

Contactus | A-F | Email & phone search

Events

29 Cct 2008
Many-core Computing Workshop, Cambridge

15-21 MHow 2008
Super Computing 2008, Austin, Texas

15-16 Jan 2009
Mumerical Accuracy and Reliability workshop at Queen’s

University Belfast

-~ On this site:

~» GRGPU
~» People

~» Projects
- Contact

	GPUs – Cheap Supercomputing�
	Coming up...
	Part 1: My background
	Turbomachinery
	Engine calculation
	Part 2: CPUs and GPUs
	Was Moore right?
	Feature size
	Clock speed
	What to do with all these transistors?
	Parallel computing
	Today’s commodity MIMD chips: CPUs
	Today’s commodity SIMD chips: GPUs
	CPUs vs GPUs
	CPUs vs GPUs
	Graphics pipeline
	GPUs and scientific computing
	GPUs and scientific computing
	Part 3: Programming methods
	3 Generations of GPGPU (Owens, 2008)
	3 Generations of GPGPU (Owens, 2008)
	3 Generations of GPGPU (Owens, 2008)
	3 Generations of GPGPU (Owens, 2008)
	GPU – Programming for graphics
	GPGPU programming (“old-school”)
	NVIDIA G80 hardware implementation
	NVIDIA G80 hardware implementation
	NVIDIA’s CUDA programming model
	Kernels, grids, blocks and threads
	Kernels, grids, blocks and threads
	Kernels, grids, blocks and threads
	Kernels, grids, blocks and threads
	Kernels, grids, blocks and threads
	CUDA implementation
	Part 4: An example – Lattice Bolzmann CFD
	Solution procedure
	CPU code: main.c
	GPU code: main.cu
	CPU code – collide.c
	GPU code – collide.cu – kernel wrapper
	GPU code – collide.cu - kernel
	CPU / GPU demo
	Part 5: Alternatives to NVIDIA
	NVIDIA Tesla S1070
	AMD Firestream 9250
	ClearSpeed e710
	IBM PowerXCell8i
	Too much choice!
	Part 6: Conclusions
	Conclusions
	Conclusions
	Conclusions
	www.many-core.group.cam.ac.uk

