
GPUs – Cheap Supercomputing

Graham Pullan (Engineering)
Cambridge Many-Core Workshop
28 October 2008

Coming up...

• My background
• CPUs and GPUs
• GPU models: old and new
• An example
• Alternative devices
• Conclusions

Part 1: My background

Turbomachinery

Engine calculation

Courtesy Vicente Jerez
Fidalgo, Whittle Lab

Part 2: CPUs and GPUs

Was Moore right?

Source: Intel

Feature size

Source: Intel

Clock speed

Source: Tom’s Hardware

What to do with all these transistors?

Parallel computing

Multi-core chips are either:

– Instruction parallel
(Multiple Instruction, Multiple Data) – MIMD

or

– Data parallel
(Single Instruction, Multiple Data) – SIMD

Today’s commodity MIMD chips: CPUs

Intel Core 2 Quad
• 4 cores
• 3. GHz
• 45nm features
• 820 million transistors
• 12 MB on chip memory

Today’s commodity SIMD chips: GPUs

NVIDIA 8800 GTX
• 240 cores 1.3 GHz
• 65nm features 1400 million transistors
• 1GB on board memory

CPUs vs GPUs

CPUs vs GPUs

Transistor usage:

Source: NVIDIA

Graphics pipeline

GPUs and scientific computing

GPUs are designed to apply the
same shading function

to many pixels simultaneously

GPUs and scientific computing

GPUs are designed to apply the
same function

to many data simultaneously

This is what most scientific computing needs!

Part 3: Programming methods

3 Generations of GPGPU (Owens, 2008)

3 Generations of GPGPU (Owens, 2008)

• Making it work at all:
– Primitive functionality and tools (graphics)
– Comparisons with CPU not rigorous

3 Generations of GPGPU (Owens, 2008)

• Making it work at all:
– Primitive functionality and tools (graphics)
– Comparisons with CPU not rigorous

• Making it work better:
– Easier to use (higher level)
– Understanding of how best to do it

3 Generations of GPGPU (Owens, 2008)

• Making it work at all:
– Primitive functionality and tools (graphics)
– Comparisons with CPU not rigorous

• Making it work better:
– Easier to use (higher level)
– Understanding of how best to do it

• Doing it right:
– Stable, portable, modular building blocks

GPU – Programming for graphics

Application specifies geometry – GPU
rasterizes

Each fragment is shaded (SIMD)

Shading can use values from memory
(textures)

Image can be stored for re-use

Courtesy, John Owens, UC Davis

GPGPU programming (“old-school”)

Draw a quad

Run a SIMD program over each
fragment

Gather is permitted from texture memory

Resulting buffer can be stored for re-use

Courtesy, John Owens, UC Davis

NVIDIA G80 hardware implementation

• Now view GPU as massively parallel co-processor
• Set of (16) SIMD MultiProcessors (8 cores)

NVIDIA G80 hardware implementation

Divide 128 cores into

16 Multiprocessors (MPs)

•Each MP has:
–Registers
–Shared memory
–Read only constant
cache
–Read only texture
cache

NVIDIA’s CUDA programming model

• Hardware supports many thousands of active threads
• Threads are lightweight:

– Little creation overhead
– “instant” switching
– Efficiency achieved through 1000’s of threads

• Threads are organised into blocks (1D, 2D, 3D)
• Blocks are further organised into a grid

Kernels, grids, blocks and threads

Kernels, grids, blocks and threads

• Organisation of threads and blocks is key abstraction

Kernels, grids, blocks and threads

• Organisation of threads and blocks is key abstraction
• Software:

– Threads from one block may cooperate:
• Using data in shared memory
• Through synchronising

Kernels, grids, blocks and threads

• Organisation of threads and blocks is key abstraction
• Software:

– Threads from one block may cooperate:
• Using data in shared memory
• Through synchronising

• Hardware:
– A block runs on one MP
– Hardware free to schedule any block on any MP
– More than one block can reside on one MP

Kernels, grids, blocks and threads

CUDA implementation

• CUDA implemented as extensions to C

• CUDA programs:
– explicitly manage host and device memory:

• allocation
• transfers

– set thread blocks and grid
– launch kernels
– are compiled with the CUDA nvcc compiler

Part 4: An example – Lattice Bolzmann
CFD

Solution procedure

Can be viewed as a particle method:

Collide – particles interact

Stream – particles move from site to site

BCs – inlet, exit, solid wall, etc.

CPU code: main.c

/* Memory allocation */
f0 = (float *)malloc(ni*nj*sizeof(float));
...

/* Main loop */
Stream (...args...);
Apply_BCs (...args...);
Collide (...args...);

GPU code: main.cu

/* allocate memory on host */
f0 = (float *)malloc(ni*nj*sizeof(float));

/* allocate memory on device */
cudaMallocPitch((void **)&f0_data, &pitch,

sizeof(float)*ni, nj);

cudaMallocArray(&f0_array, &desc, ni, nj);

/* Main loop */
Stream (...args...);
Apply_BCs (...args...);
Collide (...args...);

CPU code – collide.c

for (j=0; j<nj; j++) {
for (i=0; i<ni; i++) {

i2d = I2D(ni,i,j);
/* Flow properties */

density = ...function of f’s ...
vel_x = ... “
vel_y = ... “

/* Equilibrium f’s */
f0eq = ... function of density, vel_x, vel_y ...
f1eq = ... “

/* Collisions */
f0[i2d] = rtau1 * f0[i2d] + rtau * f0eq;
f1[i2d] = rtau1 * f1[i2d] + rtau * f1eq;
...

}
}

GPU code – collide.cu – kernel wrapper

void collide(... args ...)
{
/* Set thread blocks and grid */

dim3 grid = dim3(ni/TILE_I, nj/TILE_J);
dim3 block = dim3(TILE_I, TILE_J);

/* Launch kernel */
collide_kernel<<<grid, block>>>(... args ...);

}

GPU code – collide.cu - kernel

/* Evaluate indices */
i = blockIdx.x*TILE_I + threadIdx.x;
j = blockIdx.y*TILE_J + threadIdx.y;
i2d = i + j*pitch/sizeof(float);
/* Read from device global memory */
f0now = f0_data[i2d];
f1now = f1_data[i2d];

/* Calc flow, feq, collide, as CPU code */

/* Write to device global memory */
f0_data[i2d] = rtau1 * f0now + rtau * f0eq;
f1_data[i2d] = rtau1 * f1now + rtau * f1eq;

CPU / GPU demo

Part 5: Alternatives to NVIDIA

NVIDIA Tesla S1070

• 4 Tesla C1060 GPUs

per card:

• 4 GB

• 1 TFLOP (SP)

• 90 GFLOP (DP)

• 200 W

AMD Firestream 9250

• 1GB

• 1 TFLOP (SP)

• 200 GFLOP (DP)

• 200 W

ClearSpeed e710

• 2 GB

• 96 GFLOP (DP)

• 25 W

IBM PowerXCell8i

• up to 32 GB

• 200 GFLOP (SP)

• 102 GFLOP (DP)

• 92 W

Too much choice!

• Each device has
– different hardware characteristics
– different software (C extensions)
– different developer tools

• Standardisation – in some form – is needed

Part 6: Conclusions

Conclusions

• Many science applications fit the SIMD model
• GPUs are commodity SIMD chips
• Good speedups (10x – 100x) can be achieved

Conclusions

• Many science applications fit the SIMD model
• GPUs are commodity SIMD chips
• Good speedups (10x – 100x) can be achieved

• GPGPU is evolving:
1. Making it work at all (graphics APIs)
2. Doing it better (high level APIs)
3. Doing it right (portable, modular building blocks)

Conclusions

• Many science applications fit the SIMD model
• GPUs are commodity SIMD chips
• Good speedups (10x – 100x) can be achieved

• GPGPU is evolving:
1. Making it work at all (graphics APIs)
2. Doing it better (high level APIs)
3. Doing it right (portable, modular building blocks)

www.many-core.group.cam.ac.uk

	GPUs – Cheap Supercomputing�
	Coming up...
	Part 1: My background
	Turbomachinery
	Engine calculation
	Part 2: CPUs and GPUs
	Was Moore right?
	Feature size
	Clock speed
	What to do with all these transistors?
	Parallel computing
	Today’s commodity MIMD chips: CPUs
	Today’s commodity SIMD chips: GPUs
	CPUs vs GPUs
	CPUs vs GPUs
	Graphics pipeline
	GPUs and scientific computing
	GPUs and scientific computing
	Part 3: Programming methods
	3 Generations of GPGPU (Owens, 2008)
	3 Generations of GPGPU (Owens, 2008)
	3 Generations of GPGPU (Owens, 2008)
	3 Generations of GPGPU (Owens, 2008)
	GPU – Programming for graphics
	GPGPU programming (“old-school”)
	NVIDIA G80 hardware implementation
	NVIDIA G80 hardware implementation
	NVIDIA’s CUDA programming model
	Kernels, grids, blocks and threads
	Kernels, grids, blocks and threads
	Kernels, grids, blocks and threads
	Kernels, grids, blocks and threads
	Kernels, grids, blocks and threads
	CUDA implementation
	Part 4: An example – Lattice Bolzmann CFD
	Solution procedure
	CPU code: main.c
	GPU code: main.cu
	CPU code – collide.c
	GPU code – collide.cu – kernel wrapper
	GPU code – collide.cu - kernel
	CPU / GPU demo
	Part 5: Alternatives to NVIDIA
	NVIDIA Tesla S1070
	AMD Firestream 9250
	ClearSpeed e710
	IBM PowerXCell8i
	Too much choice!
	Part 6: Conclusions
	Conclusions
	Conclusions
	Conclusions
	www.many-core.group.cam.ac.uk

