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Part 1: My background



Turbomachinery



Engine calculation

Courtesy Vicente Jerez
Fidalgo, Whittle Lab



Part 2: CPUs and GPUs



Was Moore right?

Source: Intel



Feature size

Source: Intel



Clock speed

Source: Tom’s Hardware



What to do with all these transistors?



Parallel computing

Multi-core chips are either:

– Instruction parallel
(Multiple Instruction, Multiple Data) – MIMD

or

– Data parallel
(Single Instruction, Multiple Data) – SIMD 



Today’s commodity MIMD chips: CPUs

Intel Core 2 Quad
• 4 cores
• 3. GHz
• 45nm features
• 820 million transistors
• 12 MB on chip memory



Today’s commodity SIMD chips: GPUs

NVIDIA 8800 GTX
• 240 cores 1.3 GHz
• 65nm features 1400 million transistors
• 1GB on board memory



CPUs vs GPUs



CPUs vs GPUs

Transistor usage:

Source: NVIDIA



Graphics pipeline



GPUs and scientific computing

GPUs are designed to apply the 
same shading function

to many pixels simultaneously



GPUs and scientific computing

GPUs are designed to apply the 
same function

to many data simultaneously

This is what most scientific computing needs!



Part 3: Programming methods



3 Generations of GPGPU (Owens, 2008)
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3 Generations of GPGPU (Owens, 2008)

• Making it work at all:
– Primitive functionality and tools (graphics)
– Comparisons with CPU not rigorous

• Making it work better:
– Easier to use (higher level)
– Understanding of how best to do it

• Doing it right: 
– Stable, portable, modular building blocks



GPU – Programming for graphics

Application specifies geometry – GPU 
rasterizes

Each fragment is shaded (SIMD)

Shading can use values from memory 
(textures)

Image can be stored for re-use

Courtesy, John Owens, UC Davis



GPGPU programming (“old-school”)

Draw a quad

Run a SIMD program over each 
fragment

Gather is permitted from texture memory

Resulting buffer can be stored for re-use

Courtesy, John Owens, UC Davis



NVIDIA G80 hardware implementation 

• Now view GPU as massively parallel co-processor
• Set of (16) SIMD MultiProcessors (8 cores)



NVIDIA G80 hardware implementation

Divide 128 cores into 

16 Multiprocessors (MPs)

•Each MP has:
–Registers
–Shared memory
–Read only constant 
cache
–Read only texture 
cache



NVIDIA’s CUDA programming model

• Hardware supports many thousands of active threads
• Threads are lightweight:

– Little creation overhead
– “instant” switching
– Efficiency achieved through 1000’s of threads

• Threads are organised into blocks (1D, 2D, 3D)
• Blocks are further organised into a grid



Kernels, grids, blocks and threads
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Kernels, grids, blocks and threads

• Organisation of threads and blocks is key abstraction
• Software:

– Threads from one block may cooperate:
• Using data in shared memory
• Through synchronising

• Hardware:
– A block runs on one MP
– Hardware free to schedule any block on any MP
– More than one block can reside on one MP



Kernels, grids, blocks and threads



CUDA implementation

• CUDA implemented as extensions to C

• CUDA programs:
– explicitly manage host and device memory:

• allocation
• transfers

– set thread blocks and grid
– launch kernels
– are compiled with the CUDA nvcc compiler



Part 4: An example – Lattice Bolzmann
CFD



Solution procedure

Can be viewed as a particle method:

Collide – particles interact

Stream – particles move from site to site

BCs – inlet, exit, solid wall, etc.



CPU code: main.c

/* Memory allocation */
f0 = (float *)malloc(ni*nj*sizeof(float));
...

/* Main loop */
Stream (...args...);
Apply_BCs (...args...);
Collide (...args...);



GPU code: main.cu

/* allocate memory on host */
f0 = (float *)malloc(ni*nj*sizeof(float));

/* allocate memory on device */
cudaMallocPitch((void **)&f0_data, &pitch, 

sizeof(float)*ni, nj);

cudaMallocArray(&f0_array, &desc, ni, nj);

/* Main loop */
Stream (...args...);
Apply_BCs (...args...);
Collide (...args...);



CPU code – collide.c

for (j=0; j<nj; j++) {
for (i=0; i<ni; i++) {

i2d = I2D(ni,i,j);
/* Flow properties */

density = ...function of f’s ...
vel_x = ...   “
vel_y = ...   “

/* Equilibrium f’s */
f0eq = ... function of density, vel_x, vel_y ...
f1eq = ...     “

/* Collisions */
f0[i2d] = rtau1 * f0[i2d] + rtau * f0eq;
f1[i2d] = rtau1 * f1[i2d] + rtau * f1eq;
...

}
}



GPU code – collide.cu – kernel wrapper 

void collide( ... args ...)
{
/* Set thread blocks and grid */

dim3 grid = dim3(ni/TILE_I, nj/TILE_J);
dim3 block = dim3(TILE_I, TILE_J);

/* Launch kernel */
collide_kernel<<<grid, block>>>(... args ...);

}



GPU code – collide.cu - kernel

/* Evaluate indices */
i = blockIdx.x*TILE_I + threadIdx.x;
j = blockIdx.y*TILE_J + threadIdx.y;
i2d = i + j*pitch/sizeof(float);
/* Read from device global memory */
f0now = f0_data[i2d];
f1now = f1_data[i2d];

/* Calc flow, feq, collide, as CPU code */

/* Write to device global memory */
f0_data[i2d] = rtau1 * f0now + rtau * f0eq;
f1_data[i2d] = rtau1 * f1now + rtau * f1eq;



CPU / GPU demo



Part 5: Alternatives to NVIDIA



NVIDIA Tesla S1070

• 4 Tesla C1060 GPUs

per card:

• 4 GB

• 1 TFLOP (SP)

• 90 GFLOP (DP)

• 200 W



AMD Firestream 9250

• 1GB

• 1 TFLOP (SP) 

• 200 GFLOP (DP)

• 200 W



ClearSpeed e710

• 2 GB

• 96 GFLOP (DP)

• 25 W 



IBM PowerXCell8i

• up to 32 GB

• 200 GFLOP (SP)

• 102 GFLOP (DP)

• 92 W



Too much choice!

• Each device has 
– different hardware characteristics
– different software (C extensions)
– different developer tools

• Standardisation – in some form – is needed



Part 6: Conclusions
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