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Abstract

In this paper we propose to use Polya urn processes to model the emer-

gence of conformity in an environment where people interact with each

other sequentially and indirectly, through a common physical facility. Ex-

amples include rewinding video tapes, erasing blackboards, and switching

headlights, etc. We find that a minimum amount of imitation is able to

generate a maximum level of conformity. We then reinterpret the result

in a group imitation setup, and show that as long as groups imitate each

other with positive probabilities, they will end up with the same popula-

tion composition, irrespective of the initial conditions, and the imitating

probabilities.
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1 Introduction

Everyday we give and receive numerous small courtesies. When we leave a
building we hold the door for the person closely behind us. When we check out
a video tape from a public library, we find that the tape is already rewound for
us by the last borrower. When we arrive at a classroom to give a lecture, the
blackboard is cleaned by the last instructor, and after we finish our lecture, we
clean the board for whoever is the next instructor. In each of these examples,
our everyday experience seems to suggest that there exists a prevalent pattern
of behavior, or a norm, in which most people do the same thing most of the
times. Such experience is so commonplace that we often take it for granted. But
it is not obvious how a norm in these contexts can ever be established, for the
following reasons. 1. There is no policing from a central authority. 2. People
are anonymous. We do not know who the last borrower of a video tape is, or
who is going to be the next instructor. We often interact with strangers, whom
we do not even see. Hence a punishment/reward scheme that targets specific
individuals is not feasible. 3. People behave very naively. The payoffs at stake
are rather small, and people do not spend their scarce computational resources
in petty things like whether I should erase the board. Instead, they simply
respond to their past experience in some very mechanical way. For example,
the more they observe other people do something in the past, the more likely
they will do the same thing. 4. People are different in many ways. They come
from different backgrounds, which endow them with different propensities to
do one thing or another. They observe different things. They respond to their
observations in different ways, some people may be more insulating from other
people’s influences, while other people might be more conforming. In one word,
we have a population of simple-minded, heterogeneous, and anonymous agents
who live in the absence of a regulating authority. How could order emerge in
such an environment?

In this paper we propose to look at such problems through the lens of Polya
urn processes. The simplest possible example of a Polya urn process is the
following. Imagine an urn that contains a red ball and a blue ball initially.
Then randomly draw a ball from the urn, look at its color, put it back together
with another ball of the same color. Then repeat this procedure. The question
is, does the fraction of, say, red balls, converge in the long run? If so, where does
it converge to? It turns out that the fraction of red balls converges almost surely,
but it could converge to any point in the unit interval with equal probability
(Johnson and Kotz, 1977; Chung et al., 2003). Put it another way, if we run
the process on 1,000 computers independently, then after a while we will find
that all the processes will settle down, but the 1,000 processes will settle down
around 1,000 different points in the unit interval.

The above example, simple as it is, possesses two interesting properties. 1.
A definite pattern is able to emerge spontaneously. 2. Ex ante it is hard to
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predict which pattern will emerge. We believe that these properties are also
shared by the formation of a social norm. This is why we propose to use Polya
urn processes to study the formation of norms.

In the economics literature, the Polya process has been applied to the prob-
lem of industry location (Arthur 1987). The idea is that there is an initial
distribution of firms across different regions. Each firm is then equally likely
to "spin off" new firms. New firms stay in their parent region. The limiting
regional pattern of an industry is thus determined by initial conditions and
historical random events. Recently, Skyrms and Pemantle (2000) model the dy-
namics of network formation as a Polya urn process. In their benchmark model
a finite number of agents decide with whom to interact in each period. The
more agent A has visited agent B in the past, the more likely A will visit B
in the future. Formally, such a reinforcement scheme is reduced to a Polya urn
process.

The general theme of all these applications is about the spontaneous emer-
gence of order. This paper puts the theme in yet another concrete context.
Consider a finite number of people interacting with each other sequentially and
indirectly, through a common physical facility, a blackboard, for example. Each
agent observes what the immediate predecessor does, and then chooses her own
action according to her experience in the past, which consists of her observation
of other people’s choices, and her own choices. We assume that agents behave
very naively. They simply respond to their past experience in a monotonic
and probabilistic way. Our concern is whether a pattern will emerge in such a
system, and if so, what kind of pattern will emerge?

The rest of the paper is organized as follows. Section 2 introduces the model.
Section 3 presents the main result of conformity, which is reinterpreted in a
group imitation setup in Section 4. Section 5 concludes.

2 The Model

There are I players. Each player has an urn, with unlimited capacity. Initially
player i has Ri > 0 red balls and Bi > 0 blue balls. Let Ni = Ri + Bi be the
total number of balls in player i’s urn initially. The I players make decisions
sequentially and repeatedly. The order of moves is fixed to be 1, 2, .., I, 1, 2, ..I,
and so on. Each player observes the decision made by his immediate predecessor.
There are two actions to choose, the red action and the blue action. When it is
player i’s turn to move, player i chooses the red action with probability identical
to the fraction of red balls in his urn, and the blue action with the remaining
probability. If player i chooses the red action, then he adds γi ≥ 0 red balls to
his urn, and player i+ 1 adds γ′i+1 > 0 red balls to her urn. The rules are the
same if player i chooses the blue action.
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The model has a simple interpretation. We think of each player’s urn as
his "memory". The red balls and blue balls correspond to his experiences with
the red action and the blue action. The initial configuration (Ri, Bi) represents
player i’s "prior", or background. Without any experience of other people’s
choices or his own choices, player i will play the red action with probability
Ri
Ni

. The parameters γi and γ
′
i try to capture the idea of habit formation and

imitation, respectively. Thus if player i chooses the red action, he reinforces
this experience by adding γi red balls to his urn. At the same time, player i’s
choice is observed by player i+ 1, hence player i+ 1 reinforces this experience
by adding γ

′

i+1 red balls to her urn. We allow γi to be zero, but require γ′i to
be strictly positive, so that the society is minimally "connected" in some sense,
nobody is completely autistic.

Our model is rather special in several ways. First, the order of moves is
fixed. This may be appropriate for the erasing blackboard example, but not
appropriate for the video tape example, where borrowers arrive randomly, and
some borrowers may arrive more frequently than others. Second, there is no
"forgetting" in our model. What happens a long time ago has the same impact
on one’s behavior as what happens most recently. In reality, however, people
tend to discount what they do or what they observe in the distant past relative
to their recent experience. Third, the two actions are symmetric. There are no
preferences and no intrinsic benefits or costs attached to them. This is again,
oversimplifying. It is certainly costly to erase the board after a long lecture,
and some people certainly derive some satisfaction from doing this anyway.
Realism is compromised in exchange for analytical tractability. With the above
simplifications, we show in the next section that in the long run, the players’
behavior in terms of the probability with which to choose a certain action must
be the same, even if they come from different backgrounds, and the ways they
form habit or imitate others are different, so long as the society is minimally
"connected". Thus the weakest "connectivity" suffices to generate the strongest
"conformity".

3 Conformity

For ease of exposition, let one round be such that everybody has moved once,
and the balls have been added to the urns according to the rules of the model.
We illustrate this by an example in which I = 3. In the first round, player 1
moves first. Suppose player 1 chooses the red action, then he adds γ1 red balls
to his own urn, and γ′2 red balls to player 2’s urn. Now player 2 moves, suppose
player 2 chooses the blue action, then he adds γ2 blue balls to his own urn, and
γ′3 blue balls to player 3’s urn. Then player 3 moves and chooses, say, the blue
action, as a result player 3 adds γ3 blue balls to his own urn, and γ′1 blue balls
to player 1’s urn. This completes the first round. Hence after the first round,
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player i has Ni+γi+γ
′
i balls in his urn. In general, after the nth round, player

i has Ni + n (γi + γ′i) balls in his urn.

For i = 1, 2, .., I, let xin denote the fraction of red balls in i’s urn at the

beginning of the nth round. Let xn =
(
xin
)I
i=1

. We are interested in the
limiting behavior of xn. Does it converge? If so, where does it converge to?
The following proposition answers these questions.

Proposition 1 There exists a random vector x, such that (a) xn converges to

x almost surely, and (b) The support of x is contained in the diagonal of [0, 1]I .

Proof: See the Appendix. �

The proposition says two things. First, the process always settles down.
The sample paths along which the process diverges can be neglected. Second,
the probabilities with which people choose a certain action are the same in the
limit, even if different people have different background and different γ and γ

′

’s.
We are not able to show that the support of the limiting distribution is actually
identical to the diagonal, not just contained in it. But computer simulations
suggest that this seems to be true. We report a simulation result below to
illustrate Proposition 1.

PUT FIGURE 1 AND FIGURE 2 HERE.

Both simulations begin with the same parameters: I = 3, γ1 = 6, γ2 = 5,
γ3 = 10, γ

′
1 = 4, γ

′
2 = 3, γ

′
3 = 5, R1 = 5, R2 = 2, R3 = 1, B1 = 3, B2 = 8, and

B3 = 7. In both cases the system converge, but it converges to two different
points.

The proof of Proposition 1 is based on a theorem in Arthur, Ermoliev, and
Kaniovski (1984), hereafter referred to as the AEK theorem. Arthur, Ermoliev,
and Kaniovski (1984) studies the following problem.

Consider an urn containing balls of I colors. Initially there are γ balls in
the urn. At the beginning of round n, a ball of color i is added to the urn

with probability qin (xn), where xn =
(
xin
)I
i=1

is the vector that summarizes the
fraction of each color at the beginning of round n. After some manipulation,
the law of motion of the process (xn)n can be written as follows.

xin+1 = xin +
1

n+ γ

(
qin (xn)− x

i
n

)
+

1

n+ γ

(
βin (xn)− q

i
n (xn)

)
, (1)

where
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βin (xn) =

{
1 with prob. qin (xn)
0 with prob. 1− qin (xn)

.

Let S denote the simplex contained in [0, 1]I , Arthur, Ermoliev, and Kan-
iovski (1984) prove the following theorem.

Theorem (Arthur, Ermoliev, and Kaniovski (1984)) Let {qn} be contin-
uous functions. If there exists a continuous function q : S −→ S, a sequence of
constants {an}, and a function v : S −→ R, such that

(a) supx∈S ||qn (x)− q (x) || ≤ an, and
∑∞
n=1 an/n <∞.

(b) B = {x ∈ S|q (x) = x} contains a finite number of components.

(c) (i) v is twice differentiable.
(ii) v (x) ≥ 0, ∀x ∈ S.
(iii) < q (x)− x, vx (x) >< 0, ∀x ∈ S\B.

Then xn converges to a point inB or to the border of a connected component.

It turns out that the problem of I colors with one urn is not that different
from the problem of two colors with I urns. In the proof of Proposition 1, We
first write the problem in the form as in the AEK theorem, then we prove that
the conditions required by the theorem are met in our problem. In particular,
we construct a Lyapunov function v required by the AEK theorem.

Proposition 1 suggests that an arbitrary level of imitation suffices to generate
the highest level of conformity, but it says nothing about where the system
conforms to. However, if one of the players, say player 1, is a confederate
seeded by some outside planner (e.g., the school headmaster who would like all
her teachers to erase the board), and player 1 always plays the red action, then
applying the same techniques as in Proposition 1, one can show that eventually
everybody conforms to the red action.

4 Group Imitation

In this section we explore a different interpretation of the conformity result in the
previous section. Instead of having individuals interacting with each other, and
each individual ending up with the same probabilities to choose certain actions,
we now consider groups interacting with each other, and ask whether all the
groups end up with the same population composition, i.e. whether the fractions
of the population who choose certain actions are the same across all groups.
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We then examine the limiting distribution of the population composition and
compare it with that of the isolated groups.

Imagine there are I groups, located on a circle. Initially, group i has Ri
people who choose the red action, and Bi people who choose the blue action. In
each period, a new person arrives at each and every group. Consider the person
who arrives at group i. She samples a group at random, then turns into the same
color as the person she samples and becomes a member of group i. Suppose she
samples group i with probability γi, group i− 1 with probability γ′i, and group
i + 1 with probability γ′′i , where γi + γ′i + γ′′i = 1. Assume for simplicity that
the new arrivals do not interfere with each other, i.e. new arrivals are never
sampled by other new arrivals before they become members of a group, and two
new arrivals could sample the same person.

The first question we ask is, is the population composition the same across
all groups in the long run? We first provide the answer when I = 2, then we
partially generalize the result to any number of groups.

Let xin denote the fraction of red people in group i at the beginning of period
n. Let xn =

(
xin
)
i
.

Proposition 2 For all Bi > 0, Ri > 0, γi > 0, γ′i > 0, i = 1, 2, xn
converges almost surely. In the limit, the two groups have the same population
composition.

Proof: See the Appendix. �

When there are more than two groups, constructing a Lyapunov function is
not so easy. We have the following partial extension of the two group result.

Proposition 3 Fix any (Bi, Ri)
I
i=1. If for all i, γ

′′
i = γ′i+1, then all groups

will have the same population composition in the limit with probability one.

Proof: See the Appendix. �

If we interpret red people as, for example, religious people, and blue people
as atheists, then the above propositions predict that geographically neighboring
areas should have similar proportion of religious people relative to atheists. But
how is the common proportion distributed? We do not have a closed form
solution, but we report some simulation findings here. For simplicity, assume
that there are only two groups and Bi = Ri = 1, for i = 1, 2. If the two
groups are isolated, namely γ1 = γ2 = 1, then we come back to the standard
Polya urn processes, and we know that the composition in the two groups are
i.i.d. uniform over [0, 1]. Now imagine the two isolated groups merge into one
large group, with 2 red people and 2 blue people initially. We know that the
limiting distribution of the population composition in the large group is the beta
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distribution with α = β = 2 (Johnson and Kotz (1977)). The question is, what
is the limiting distribution when two small groups interact with each other? If
γ1 = γ2 =

1
2 , then the two small group case is similar to the one large group

case, with only one difference: in the two group case, two people arrive at a time
and they do not interfere with each other; in the one group case, one person
arrives at a time. Intuitively, the distribution in the two group case should
be less scattered than beta (2, 2), because after any history, extreme outcomes
realize with smaller probability in the two group case. Simulation suggests that
there is nothing special about γ1 and γ2 being

1
2 . As long as they are equal, the

limiting distribution is the same. However, we do not have a proof. We report
the simulation result below, and state the conjecture.

In Figure 3, we simulate two interacting groups, imitating each other with
equal probabilities, ranging from 1 to 0.25, and compare the frequency distri-
butions with the beta distribution β (2, 2). All the four distributions seem to be
more centered than the beta distribution, but it is hard to distinguish among
themselves.

Let λ (γ) denote the limiting distribution of of the common composition of
the two groups, which imitate each other with probabilities γ1 = γ2 = γ.

Conjecture: λ (γ) does not depend on γ.

PUT FIGURE 3 HERE.

5 Conclusion

In this paper we first propose to use Polya urn models to study the conformity of
individual behavior. We show that conformity is able to emerge spontaneously
at the aggregate level from very simple behavioral rules at the individual level.
The emerging behavioral pattern is however, impossible to predict ex ante.
Random events that happened early on play an important role in shaping future
outcomes. We then reinterpret the conformity result in a group imitation setup.
We show that as long as groups imitate each other with positive probabilities,
they will end up with the same population composition, irrespective of the initial
conditions, and how small the imitating probabilities are.

The model developed here can potentially serve as a building block to con-
sider more interesting problems. There are no payoffs in the current model, and
no intrinsic differences between the red action and the blue action. Suppose
the red action is intrinsically better than the blue action, and an agent is not
reinforced by how many times he chooses one action, but how many times he
chooses one action with a satisfactory payoff. Does imitation prevent the agents

8



from learning which action is better? Another element that is missing in the
model is forgetting. In our model, things happening in the distant past have
the same influence over decision making as things happening recently. A more
plausible assumption is that people discount their past experience by a discount
factor δ. For example, a ball added ten periods ago is counted as δ10 balls,
compared to a ball added today. If people forget, and if they forget at different
rates, do we still have the conformity result? If so, what does the support of
the limiting distribution look like? In the one person case, once discounting is
added, the person will always settle down with either action deterministically.
Only extreme points remain in the support (Skyrms and Pemantle (2000)). Is
this also true in our model?

6 Appendix

Proof of Proposition 1: Fix n and xn. Fix i ∈ {1, 2, .., I}. Let ∆i (n, xn)
denote the number of red balls added to i’s urn in round n, given xn being the
fractions of red balls at the beginning of round n. Then,

xin+1 =

(
1

Ni + n (γi + γ
′
i)

)(
xin (Ni + (n− 1) (γi + γ

′
i)) +∆i (n, xn)

)

= xin +

(
1

Ni + n (γi + γ
′
i)

)(
−xin (γi + γ

′
i) +∆i (n, xn)

)
.

By definition,

∆i (n, xn) =






0 with prob. P ((i− 1)B ∩ iB|n, xn)
γi with prob. P ((i− 1)B ∩ iR|n, xn)
γ′i with prob. P ((i− 1)R ∩ iB|n, xn)
γi + γ′i with prob. P ((i− 1)R ∩ iR|n, xn) .

where P ((i− 1)B ∩ iB|n, xn) is the probability that player i − 1 chooses the
blue action and player i also chooses the blue action, conditional on the round
being the nth round and the fractions of red balls at the beginning of round n
being xn. The other probabilities have similar interpretations.

Let

βin (xn) :=
1

γi + γ′i
∆i (n,xn) .

Then

xin+1 = xin +

(
γi + γ

′
i

Ni + n (γi + γ
′
i)

)(
βin (xn)− x

i
n

)
.
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Let

qin (xn) :=
1

γi + γ
′
i

E(∆i (n, xn)),

where E(∆i (n, xn)) denote the expectation of ∆i (n, xn), conditional on fixed
n and xn.

Then

xin+1 = xin+

(
γi + γ

′
i

Ni + n (γi + γ
′
i)

)(
qin (xn)− x

i
n

)
+

(
γi + γ

′
i

Ni + n (γi + γ
′
i)

)(
βin (xn)− q

i
n (xn)

)
.

(2)

Definition: Let {fn}n be a sequence of functions, each mapping [0, 1]I

into [0, 1]I . Let {fn}n have a pointwise limit f . We say that fn converges to
f reasonably rapidly if there exists a sequence of positive constants {an}, such

that supx∈[0,1]I ||fn (x)− f (x) || ≤ an, and
∞∑

n=1

an/n <∞.

Lemma 1 (1) For any i, for any x ∈ [0, 1]I ,

qin (x) −→ qi (x) =
γi

γi + γ
′
i

xi +
γ′i

γi + γ
′
i

xi−1,

and (2) qn converges to q reasonably rapidly, where qn (·) :=
(
qin (·)

)
i
,

and q (·) :=
(
qi (·)

)
i
.

Proof of Lemma 1:

(1) By definition of qin (x), it suffices to show that

E∆i (n, x) −→ γixi + γ
′
ixi−1.

Consider the conditional probability P ((i− 1)B ∩ iB|n, x). If i = 1,
then we show that

P (IB ∩ 1B|n, x) −→ (1− x1) (1− xI) .

Let IB denote the event that "out of NI + (n− 1) (γI + γ
′
I) + γ′I balls, in

which xI (NI + (n− 1) (γI + γ
′
I)) + γ

′
I balls are red, a blue ball is chosen in I’s

urn".

Let IB denote the event that "out of NI + (n− 1) (γI + γ
′
I) + γ′I balls, in

which xI (NI + (n− 1) (γI + γ′I)) balls are red, a blue ball is chosen in I’s urn".
Then,
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P (IB)P (1B|n,x) ≤ P (IB ∩ 1B|n, x) ≤ P
(
IB
)
P (1B|n, x) .

But

P (1B|n, x) = 1− x1,

P (IB) = 1−
xI (NI + (n− 1) (γI + γ

′
I)) + γ

′
I

NI + (n− 1) (γI + γ
′
I) + γ

′
I

,

and

P
(
IB
)
= 1−

xI (NI + (n− 1) (γI + γ
′
I))

NI + (n− 1) (γI + γ
′
I) + γ

′
I

.

Hence

P (IB) −→ 1− xI ,

and

P
(
IB
)
−→ 1− xI .

By the sandwich theorem,

P (IB ∩ 1B|n, x) −→ (1− x1) (1− xI) .

Similarly,

P (IB ∩ 1R|n, x) −→ x1 (1− xI) ,

P (IR ∩ 1B|n, x) −→ (1− x1)xI ,

and

P (IR ∩ 1R|n, x) −→ x1xI .

Therefore,

E∆1 (n, x) −→ γ1x1 + γ
′
1xI .

If i > 1, then we show that

P ((i− 1)B ∩ iB|n,x) −→ (1− xi−1) (1− xi) .

Let (i− 1)B denote the event that "out ofNi−1+(n− 1)
(
γi−1 + γ

′
i−1

)
+γ′i−1

balls, in which xi−1
(
Ni−1 + (n− 1)

(
γi−1 + γ

′
i−1

))
+ γ′i−1 balls are red, a blue

ball is chosen in i− 1’s urn".
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Let (i− 1)B denote the event that "out ofNi−1+(n− 1)
(
γi−1 + γ

′
i−1

)
+γ′i−1

balls, in which xi−1
(
Ni−1 + (n− 1)

(
γi−1 + γ

′
i−1

))
balls are red, a blue ball is

chosen in i− 1’s urn".

Similarly, Let iB denote the event that "out of Ni + (n− 1) (γi + γ
′
i) + γ′i

balls, in which xi (Ni + (n− 1) (γi + γ
′
i))+γ

′
i balls are red, a blue ball is chosen

in i’s urn".

Let iB denote the event that "out of Ni + (n− 1) (γi + γ
′
i) + γ′i balls, in

which xi (Ni + (n− 1) (γi + γ
′
i)) balls are red, a blue ball is chosen in i’s urn".

Then

P
(
(i− 1)B

)
P (iB) ≤ P ((i− 1)B ∩ iB|n, x) ≤ P

(
(i− 1)B

)
P
(
iB
)
.

But

P
(
(i− 1)B

)
= 1−

xi−1
(
Ni−1 + (n− 1)

(
γi−1 + γ′i−1

))
+ γ′i−1

Ni−1 + (n− 1)
(
γi−1 + γ

′
i−1

)
+ γ′i−1

,

P
(
(i− 1)B

)
= 1−

xi−1
(
Ni−1 + (n− 1)

(
γi−1 + γ

′
i−1

))

Ni−1 + (n− 1)
(
γi−1 + γ

′
i−1

)
+ γ′i−1

,

P (iB) = 1−
xi (Ni + (n− 1) (γi + γ

′
i)) + γ

′
i

Ni + (n− 1) (γi + γ
′
i) + γ

′
i

,

and

P
(
iB
)
= 1−

xi (Ni + (n− 1) (γi + γ
′
i))

Ni + (n− 1) (γi + γ
′
i) + γ

′
i

.

Hence

P
(
(i− 1)B

)
−→ 1− xi−1,

P
(
(i− 1)B

)
−→ 1− xi−1,

P (iB) −→ 1− xi,

P
(
iB
)
−→ 1− xi.

Again, by the sandwich theorem,

P ((i− 1)B ∩ iB|n,x) −→ (1− xi−1) (1− xi) .

Similarly,

P ((i− 1)B ∩ iR|n,x) −→ (1− xi−1)xi,
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P ((i− 1)R ∩ iB|n, x) −→ xi−1 (1− xi) ,

and
P ((i− 1)R ∩ iR|n,x) −→ xi−1xi.

Therefore
E∆i (n, x) −→ γixi + γ

′
ixi−1.

(2) In order to show that the conditional expectations converge reasonably
rapidly, it suffices to show that the conditional probabilities converge reason-
ably rapidly. But by the proof of part (1), it is easy to see that, for example,
P (IB) converges to 1 − xI reasonably rapidly, hence it is easy to show, again
by a sandwich argument, that P (IB ∩ 1B|n, x) converges to (1− x1) (1− xI)
reasonably rapidly. This completes the proof of Lemma 1.

The proof of the AEK theorem is based on Theorem 7.3 in Nevelson and
Hasminskii (1976). Nowhere in the proof of the AEK theorem requires that the
qn functions be probability functions. Hence the AEK theorem still holds if we
replace S by [0, 1]I everywhere in the statement of the theorem. By Lemma 1,
condition (a) of the AEK theorem is satisfied. Also by Lemma 1,

q (x)− x =






l1 (xI − x1)
·
·

lI (xI−1 − xI)




 ,

where li =
γ′
i

γ
i
+γ′

i

.

Hence B = diagonal of [0, 1]I , and B contains only one component, which is
B itself. Moreover, the boundary of B is also B itself, since every neighborhood
of every point along the diagonal contains both points in B and points not in
B. Therefore, to establish the proposition it suffices to construct a Lyapunov
function v.

Before we give the general construction, we illustrate the idea in a simple
example, where I = 3, and γi = γ′i = 1, i = 1, 2, 3.

In this case

q (x)− x =




1
2 (x3 − x1)
1
2 (x1 − x2)
1
2 (x2 − x3)



 .

We need to find a function v (x) which is twice differentiable and non-
negative, and the inner product between vx (x) and (q (x)− x) is strictly nega-
tive at every non fixed point of q, and zero at every fixed point of q.
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Such v is easy to find. Let

v (x) =
1

4

(
x21 + x

2
2 + x

2
3

)
−
1

2
(x1x2 + x1x3 + x2x3) +A,

where A is some positive number to make sure that v is non-negative. Then

vx (x) =




1
2x1 −

1
2x3 −

1
2x2

1
2x2 −

1
2x1 −

1
2x3

1
2x3 −

1
2x2 −

1
2x1





=




1
2x1 −

1
2x3

1
2x2 −

1
2x1

1
2x3 −

1
2x2



−




1
2x2
1
2x3
1
2x1





: = (a)− (b)

This v function works because < q (x)− x, (a) >≤ 0, with equality only at
fixed points of q, and < q (x) − x, (b) >= 0 for all x. This is going to be the
general approach as well: we construct v as a quadratic function so that vx (x)
can be written in two parts, (a) and (b), such that < q (x)− x, (a) >≤ 0, with
equality only at fixed points of q, and < q (x)− x, (b) >= 0 for all x.

In general, let

v (x) =
I∑

i=1

ai
x2i
2
−

∑

1≤i<j≤I

bijxixj +A.

Since x ∈ [0, 1]I , we can always choose A large enough to make sure that v is
nonnegative. Hence conditions c(i) and c(ii) are trivially satisfied. It remains to
be shown that there exist ai and bij such that condition c(iii) is also satisfied.

Let b12 = a2, b23 = a3, b34 = a4, ..., bI−1I = aI , and b1I = a1, then

vx (x)

=






a1 (x1 − x6)
a2 (x2 − x1)
a3 (x3 − x2)

·
·

aI (xI − xI−1)






−






a2x2 + b13x3 + b14x4 + b15x5 + ..+ b1I−3xI−3 + b1I−2xI−2 + b1I−1xI−1
a3x3 + b24x4 + b25x5 + b26x6 + ......+ b2I−2xI−2 + b2I−1xI−1 + b2IxI
a4x4 + b35x5 + b36x6 + b13x1 + .........+ b3I−1xI−1 + b3IxI + b13x1

·
·

a1x1 + b2Ix2 + b3Ix3 + b4Ix4 + .....+ bI−4IxI−4 + bI−3IxI−3 + bI−2IxI−2






: = (a)− (b).
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On the other hand,

q (x)− x =






l1 (xI − x1)
l2 (x1 − x2)
l3 (x2 − x3)

·
·

lI (xI−1 − xI)






:= (c),

where li =
γ′
i

γ
i
+γ′

i

.

We will show that there exist (ai)
I
i=1 and (bij)i<j , all strictly positive, such

that (b) · (c) = 0, for all x ∈ [0, 1]I .

When we take the inner product of (b) and (c), we obtain C2I =
I(I−1)
2! terms

of cross products between xi and xj . Letting the coefficient of each term be
zero, we obtain C2I equations. Notice that we also have C2I unknowns, I a’s and
(C2I − I) b’s. We write these equations out as follows.

xIx1 : lIa1 = l2b2I

x1x2 : l1a2 = l3b13

x2x3 : l2a3 = l4b24

x3x4 : l3a4 = l5b35

x4x5 : l4a5 = l6b46

·

·

xI−1xI : lI−1aI = l1b1I−1

x1x3 : (l1 + l3) b13 = l2a3 + l4b14

x1x4 : (l1 + l4) b14 = l2b24 + l5b15

x1x5 : (l1 + l5) b15 = l2b25 + l6b16 (3)

·

·

x1xI−1 : (l1 + lI−1) b1I−1 = l2b2I−1 + lIa1

x2x4 : (l2 + l4) b24 = l3a4 + l5b25

x2x5 : (l2 + l5) b25 = l3b35 + l6b26

·

15



·

x2xI : (l2 + lI) b2I = l3b3I + l1a2

·

·

xI−2xI : (lI−2 + lI) bI−2I = lI−1aI + l1b1I−2

System (3) is a system of C2I equations with C2I unknowns. Notice that
all the C2I unknowns are displayed on the l.h.s. of the system. We claim that
every term on the l.h.s. of system (3) shows up exactly once on the r.h.s., and
since the two sides have the same number of terms, this implies that if we add
up all the C2I equations, we obtain an identity, which in turn, implies that the
coefficient matrix of system (3) is singular.

To see that every term on the l.h.s. of system (3) shows up exactly once on
the r.h.s., consider ai first. When we take the inner product between (b) and (c),
ai shows up twice, once in the coefficient of xixi−1, and once in the coefficient of
xixi−2. The coefficient of both terms is li−1ai, but the signs are opposite. Hence
li−1ai appears once on both sides of system (3). Now consider bij . When we
take the inner product between (b) and (c), bij shows up four times, twice in the
coefficients of xixj , once in the coefficient of xixj−1, and once in the coefficient
of xi−1xj . The coefficient of xixj is (li + lj) bij , the coefficient of xixj−1 is ljbij ,
and the coefficient of xi−1xj is libij . Again, (li + lj) bijxixj shows up negative
in the inner product, while ljbijxixj−1 and libijxi−1xj show up positive in the
inner product. Hence libij shows up once on both sides of (3), and so does ljbij .

Since system (3) is a homogenous system with singular coefficient matrix,
it has a non-zero solution. Next we show that the system has a non-zero and
non-negative solution. We prove a more general result in Lemma 2. The a’s
and b’s in Lemma 2 are just for notational convenience. They are different from
the a’s and b’s outside Lemma 2.

Lemma 2 Consider the n−variate linear homogeneous system of equations,

a1x1 = b12x2 + ...+ b1nxn

a2x2 = b21x1 + ...+ b2nxn

·

·

anxn = bn1x1 + ...+ bnn−1xn−1

If ∀j, aj ≥ 0; ∀i, j, bij ≥ 0; and ∀j,
∑
i�=j bij = aj , then ∃x �= 0, and ∀i,

xi ≥ 0, such that x solves the system.
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Proof of Lemma 2: Proof by induction. Lemma 2 holds trivially for n = 2.
Suppose it is true for n > 2, we need to show that it is true for n + 1. With
n+ 1 variables, the system becomes

a1x1 = b12x2 + ...+ b1n+1xn+1

a2x2 = b21x1 + ...+ b2n+1xn+1

·

·

an+1xn+1 = bn+11x1 + ...+ bn+1nxn

If aj = 0, ∀j, then all the coefficients are zero, Lemma 2 is trivially true.
Without loss of generality, assume a1 �= 0. Then x1 =

1
a1
(b12x2 + ..+ b1n+1xn+1).

Substituting it into the rest of the system, then multiplying both sides of the
rest of the system by a1, and rearranging, the rest of the system becomes,

(a1a2 − b21b12)x2 = (b21b13 + a1b23)x3 + ...+ (b21b1n+1 + a1b2n+1)xn+1

(a1a3 − b31b13)x3 = (b31b12 + a1b32)x2 + ...+ (b31b1n+1 + a1b3n+1)xn+1

·

·

(a1an+1 − bn+11b1n+1)xn+1 = (bn+11b12 + a1bn+12)x2 + ...+ (bn+11b1n+1 + a1bn+1n)xn.

By the assumptions on the a’s and the b’s, we are allowed to use the in-
duction hypothesis. Therefore, there exists a non-zero and non-negative vector
(x2, x3, .., xn+1) that solves the above system, hence there exists a non-zero and
non-negative x that solves the original system. This completes the proof of
Lemma 2.

Now we go back to system (3). Notice that each unknown is a positive
linear combination (i.e., linear combination with positive coefficients) of one or
two other unknowns. If we think of each unknown as a node, and think of the
unknowns in the linear combination as each receiving a link from the original
unknown, we obtain the following directed graph from system (3).

a2 −→ b13 −→ b14 −→ b15 −→ ... −→ b1I−3 −→ b1I−2 −→ b1I−1
↙ ↙ ↙ ↙ ↙ ↙

a3 −→ b24 −→ b25 −→ b26 −→ ... −→ b2I−2 −→ b2I−1 −→ b2I
↙ ↙ ↙ ↙ ↙ ↙

a4 −→ b35 −→ b36 −→ b37 −→ ... −→ b3I−1 −→ b3I −→ b13
↙ ↙ ↙ ↙ ↙ ↙

a5 −→ b46 −→ b47 −→ b48 −→ ... −→ b4I −→ b14 −→ b24

17



↙ ↙ ↙ ↙ ↙ ↙
· · · · · · · ·
· · · · · · · ·

↙ ↙ ↙ ↙ ↙ ↙
a1 −→ b2I −→ b3I −→ b4I −→ ... −→ bI−4I −→ bI−3I −→ bI−2I

↙ ↙ ↙ ↙ ↙ ↙
a2 −→ b13 −→ b14 −→ b15 −→ ... −→ b1I−3 −→ b1I−2 −→ b1I−1

The pattern of the graph is, except for the leftmost and the rightmost
columns, each node is pointing to the right next node, and the node in the
next row left to it. For example, b14 is pointing to b15 and b24, because when
we take the inner product between (b) and (c), b14, b15, and b24 are the only
unknowns associated with the term x1x4. In general, for every b not in the
first, second and last column, bij is pointing to bij+1 and bi+1j (remember that
I + 1 = 1 and bij = bji = ∂2v/∂xi∂xj), because when we compute the inner
product between (b) and (c), the only unknowns associated with the term xixj
are bij , bij+1 and bi+1j . For every b in the second column, bij is pointing to
bij+1 and aj , for the same reason. For the leftmost column, each a points to the
right next node, following directly from system (3). Each node in the rightmost
column should also point to two nodes, but we consider only one of them, which
suffices for our purposes. Finally, we copy the first row after the last row to
indicate the cyclic property of the graph. We can imagine that it is drawn on a
cylinder.

By Lemma 2, there exists a non-negative, non-zero solution to system (3).
We fix this solution. It is easy to see from the graph that if any unknown is 0,
then to keep non-negativity, all the other unknowns must also be 0, which is im-
possible since we begin with a non-zero solution. Therefore all the unknowns in
this non-zero and non-negative solution must be strictly positive, which is what
we need for the Lyapunov function. This completes the proof of Proposition
1. �

Proof of Proposition 2: We follow the same steps as in the proof of
Proposition 1. For i = 1, 2, let Ni = Bi+Ri. Let ∆i (n,xn) denote the number
of red people added to group i in period n, given the composition profile xn at
the beginning of period n. Then

∆i (n, xn) =
0 with prob. γi

(
1− xin

)
+ γ

′

i

(
1− xjn

)

1 with prob. γix
i
n + γ

′
ix
j
n.

Hence
E∆i (n, xn) = γix

i
n + γ

′
ix
j
n,

where the expectation is conditional on n and xn.

Let
qin (x) := E∆i (n, xn) ,
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then
qin (x) = qi (x) = γix

i + γ
′

ix
j .

Hence

q (x) =

(
q1 (x)
q2 (x)

)
=

(
γ1x1 + γ

′
1x2

γ2x2 + γ
′
2x1

)
.

Hence

q (x)− x =

(
γ′1 (x2 − x1)
γ′2 (x1 − x2)

)
.

Let

v (x) =
1

2
x21 +

1

2
x22 − x1x2,

and the rest of the proof follows from the AEK theorem. �

Proof of Proposition 3: For notational simplicity, consider I = 3. Fol-
lowing the same definitions and steps as in the proof of Proposition 2, we have

q (x)− x =




γ′1 (x3 − x1) + γ

′′
1 (x2 − x1)

γ′2 (x1 − x2) + γ
′′
2 (x3 − x2)

γ′3 (x2 − x3) + γ
′′
1 (x1 − x3)



 .

First we show that (x1, x2, x3) solves q (x)−x = 0 if and only if x1 = x2 = x3.

The if part is trivial. To prove the only if part, suppose by way of contra-
diction that x1 �= x2. Then it must be that x1 �= x3, and x2 �= x3. Now let
x1 − x2 = a, x2 − x3 = b, x3 − x1 = c, we have

γ′1c = γ′′1a
γ′2a = γ′′2b
γ′3b = γ′′3c.

If a > 0, then c > 0, and b > 0, but this means that x1 > x2 > x3 > x1,
contradiction.

Now let

v (x) =
1

2

(
x21 + x

2
2 + x

2
3

)
.

We have

(q (x)− x) · vx (x)

=




γ′1x3 + γ

′′
1x2 − (γ

′
1 + γ

′′
1)x1

γ′2x1 + γ
′′
2x3 − (γ

′
2 + γ

′′
2)x2

γ′3x2 + γ
′′
3x1 − (γ

′
3 + γ

′′
3)x3








x1
x2
x3





= − [(γ′′1x1 − γ
′
2x2) (x1 − x2) + (γ

′′
2x2 − γ

′
3x3) (x2 − x3) + (γ

′′
3x3 − γ

′
1x1) (x3 − x1)] .

Hence if
γ′′1 = γ′2, and γ

′′
2 = γ′3, and γ

′′
3 = γ′1,

then the rest of the proof follows from the AEK theorem. �
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