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Abstract
We consider the hardness of approximation of optimization problems from the point of view of
definability. For many NP-hard optimization problems it is known that, unless P = NP, no
polynomial-time algorithm can give an approximate solution guaranteed to be within a fixed
constant factor of the optimum. We show, in several such instances and without any complexity
theoretic assumption, that no algorithm that is expressible in fixed-point logic with counting
(FPC) can compute an approximate solution. Since important algorithmic techniques for approx-
imation algorithms (such as linear or semidefinite programming) are expressible in FPC, this
yields lower bounds on what can be achieved by such methods. The results are established by
showing lower bounds on the number of variables required in first-order logic with counting to
separate instances with a high optimum from those with a low optimum for fixed-size instances.
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1 Introduction

Twenty years ago, the PCP theorem [4] transformed the landscape of complexity theory. It
showed that if P 6= NP then not only is it impossible to efficiently solve NP-hard problems
exactly but for some of them it is also impossible to approximate the solution to within a
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7:2 Definable Inapproximability

constant factor. Consider for instance the problem MAX 3SAT. Here we are given a Boolean
formula in 3CNF and we are asked to determine m∗, the maximum number of clauses that
can be simultaneously satisfied by an assignment of Boolean values to its variables. It is a
consequence of the PCP theorem that there is a constant c < 1 such that, assuming P 6= NP,
no polynomial-time algorithm can be guaranteed to produce an assignment that satisfies at
least cm∗ clauses, or indeed determine the value of m∗ up to a factor of c. The proof of the
PCP theorem introduced sophisticated new techniques into complexity theory such as the
probabilistically checkable proofs that gave the theorem its name. Over the years, stronger
results were proved, improving the constant c and, by reductions, proving inapproximability
results for a host of other NP-hard problems.

A structural theory of hardness of approximation was introduced by Papadimitriou
and Yannakakis [23] who defined the class MAX SNP of approximation problems, with a
definition rooted in descriptive complexity theory. They showed that for every problem in
this class, there is a constant d such that a polynomial-time algorithm can find approximate
solutions within a factor d of the optimum. At the same time, for all problems that are
MAX SNP-hard, under approximation-preserving reductions defined by [23], there is a
constant c such that no polynomial-time algorithm can approximate solutions within a
factor c. This makes it a challenge, for each MAX SNP-complete problem, to determine
the exact approximation ratio that is achievable by an efficient algorithm. In some cases,
this has been pinned down exactly. For instance, for MAX 3SAT we know that there is a
polynomial-time algorithm that will produce an assignment satisfying 7/8 of the clauses in
any formula but, unless P = NP, there is no polynomial-time algorithm that is guaranteed
to produce a solution within 7/8 + ε of the optimal, for any ε > 0 [16]. Another interesting
case is MAX 3XOR, where we are given a formula which is the conjunction of clauses,
each of which is the XOR of three literals. Here, satisfiability is decidable in polynomial
time as the problem is essentially that of solving a system of linear equations over the
two-element field. However, determining, for an unsatisfiable system, how many of its clauses
can be simultaneously satisfied is MAX SNP-hard, and the exact approximation ratio that
is achievable efficiently is known: unless P = NP, no polynomial-time algorithm can achieve
an approximation ratio bounded above 1/2 [16].

To give a problem of another flavour, consider minimum vertex cover, the problem of
finding, in a graph G, a minimum set S of vertices such that every edge is incident on a
vertex in S. Let vc(G) denote the size of a minimum size vertex cover in G. There are
algorithms that are guaranteed to find a vertex cover no larger than 2vc(G) (this being
a minimization problem, the approximation ratio is expressed as a number c ≥ 1). It has
been proved, by means of rather sophisticated reductions starting at the PCP theorem, that,
unless P = NP, no polynomial-time algorithm can achieve a ratio better than 1.36 [14]. Very
recent results announced in [20] improve this lower bound to

√
2. It is conjectured that

indeed no such algorithm could achieve a ratio of 2− ε for arbitrarily small ε > 0 but, as of
our current knowledge, the right threshold constant could be somewhere between

√
2 and 2.

We approach these questions on the hardness of approximability from the point of view
of definability. Our aim is to show that the tools of descriptive complexity can be brought
to bear in showing lower bounds on the definability of approximations and that these
definability lower bounds have consequences on understanding commonly used techniques in
approximation algorithms.

A reference logic in descriptive complexity is fixed-point logic with counting, FPC. The
class of problems definable in this logic form a proper subclass of the complexity class P.
However, FPC is very expressive and many natural problems in P are expressible in this logic.
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For instance, any polynomial-time decidable problem on a proper-minor closed class of graphs
is expressible in FPC [15]. Also, problems that can be formulated as linear programming
or semidefinite programming problems are in FPC [2, 9, 13]. At the same time, for many
problems we are able to prove categorically, i.e., without complexity theoretic assumptions,
that they are not definable in FPC. Among these are NP-complete problems like 3SAT,
graph 3-colourability and Hamiltonicity (see [11]). We can also prove that certain problems
in P are not in FPC, such as 3XOR.

A particularly interesting class of problems are the optimization problems known as
MAX CSP or constraint maximization problems, where we are given a collection of con-
straints and the problem is to find the maximum number of constraints that can be sim-
ultaneously satisfied. When it comes to finding exact solutions, definability in FPC turns
out to be an excellent guide to the tractability of such problems. It is known that each
such problem is either in P and definable in FPC or it is NP-complete and provably not
definable in FPC [12]. We would like to extend such results also to the approximability of
such problems. This paper develops the methodology for doing so.

For MAX 3SAT, we prove, without any complexity theoretic assumption, that no
algorithm expressible in FPC can achieve an approximation ratio of 7/8 + ε. The question
seems ill-posed at first sight as FPC is a formalism for defining problems rather than expressing
algorithms. We return to the precise formulation shortly, but first note that there is a sense
in which FPC can express, say the ellipsoid method for solving linear programs [2]. This is
the basis for showing that many commonly used algorithmic techniques for approximation
problems, such as semidefinite programming relaxations, are also expressible in FPC. Thus,
on the one hand, reductions from MAX SNP-hard problems show inapproximability by any
polynomial-time algorithm, assuming P 6= NP. On the other hand, our results show, without
the assumption, inapproximability by the most commonly used polynomial-time methods.

Undefinability of a class of structures C in FPC is typically established by showing
that structures in C cannot be distinguished from structures not in C in Ck – first-order
logic with counting and just k variables – for any fixed k. In the terminology of [13], C has
unbounded counting width. On the other hand, hardness of approximation for a maximization
problem is typically established by showing that every class that includes all instances with
an optimum m∗ and excludes all instances with an optimum less than cm∗, is NP-hard.
Our method combines these two. We aim to show that any class separating instances with
an optimum m∗ from instances with an optimum less than cm∗ has unbounded counting
width. In general, we not only show that counting width is unbounded, but establish stronger
bounds on how it grows with the size of instances, as such bounds are directly tied to
lower bounds on semidefinite programming hierarchies [13]. This methodology poses new
challenges for Spoiler-Duplicator games in finite model theory. Such games are typically
played on pairs of structures that are minimally different. In the new setting, we need to
show Duplicator winning strategies in games on pairs of structures that differ substantially,
on some numeric parameters.

The PCP theorem is the fons et origo of results on hardness of approximation. It
established the first provably NP-hard constant gap between the fully satisfiable instances
of MAX 3SAT, i.e., those in which all clauses can be satisfied, and the less satisfiable
ones, those where no more than 1− ε0 can be satisfied, for some explicit ε0 > 0. The gap
between 1 and 1− ε0 was then amplified and also transferred to other problems by means of
reductions. For us, the starting point is the problem MAX 3XOR. We are able to establish
a definability gap between the satisfiable instances of this and instances in which little more
than 3/4 of the clauses can be satisified. The methods for establishing this initial gap are
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7:4 Definable Inapproximability

very different from that for the PCP theorem. We construct a k-locally satisfiable instance
of MAX 3XOR which, by a random construction is at the same time highly unsatisfiable.
We can then combine this with a construction adapted from [6] to obtain a gap that defeats
any fixed counting width. With such an initial gap in hand, we can then amplify the gap and
transfer it to other problems by means of reductions, just as in classical inapproximability.
Our reductions have to preserve FPC definability and we mostly rely on first-order definable
reductions. Indeed, many of the reductions used in the classical theory of approximability
turn out to be first-order reductions but this requires close examination and proof.

By expressing the long-code reductions from [16] in first-order logic and composing them
with our initial gap, we show optimal hardness for MAX 3SAT and MAX 3XOR. For the
first, we show that FPC cannot achieve an approximation ratio of 7/8 + ε, even on satisfiable
instances, and for the second it cannot achieve an approximation ratio of 1/2 + ε. These
match known algorithmic lower bounds and are provably tight. For the vertex cover problem,
direct reductions from these show that FPC cannot give an approximation better than 7/6.
This can be improved, using the reduction of [14] to 1.36 and the details of this may be found
in the full version of this paper [8]. It is possible that this could be improved to

√
2 using

the recent breakthrough of [20] but we leave this to future work.

2 Preliminaries

We use F2 to denote the 2-element field. For any positive integer n, let [n] := {1, . . . , n}.

Logics and games. We assume familiarity with first-order logic FO. All our vocabularies
are finite and relational, and all structures are finite. For a structure A, we write A to
denote its universe. We refer to fixed-point logic with counting FPC but the definition is
not required for the technical development in this paper. Here, it suffices to consider the
bounded variable fragments of first-order logic.

For a fixed positive integer k, we write Lk to denote the fragment of first-order logic
in which every formula has at most k variables, free or bound. We also write ∃Lk,+ for
the existential positive fragment of Lk. This consists of those formulas of Lk formed using
only the positive Boolean connectives ∧ and ∨, and existential quantification. FOC is the
extension of first-order logic with counting quantifiers. For each natural number i, we have
a quantifier ∃i where A |= ∃ixφ if, and only if, there are at least i distinct elements a ∈ A
such that A |= φ[a/x]. While the extension of first-order logic with counting quantifiers is no
more expressive than FO itself, the presence of these quantifiers does affect the number of
variables that are necessary to express a query. Let Ck denote the k-variable fragment of
FOC in which no more than k variables appear, free or bound.

For two structures A and B, we write A ≡Ck B to denote that they are not distinguished
by any sentence of Ck. All that we need to know about FPC is that for every formula φ
of FPC there is a k such that if A ≡Ck B then A |= φ if, and only if, B |= φ. We also write
A Vk B to denote that every sentence of ∃Lk,+ that is true in A is also true in B. While ≡Ck

is an equivalence relation, Vk is reflexive and transitive but not symmetric. These relations
have well established characterizations in terms of two-player pebble games. The relation
Vk is characterized by the existential k-pebble game [21] and ≡Ck by the k-pebble bijective
game [17]. Rather than review the definitions here, we refer the reader to the sources.

For undirected graphs, the relation ≡C2 has a simple combinatorial characterization
in terms of vertex refinement (see [19]). For any graph G, there is a coarsest partition
C1, . . . , Cm of the vertices of G such that for each 1 ≤ i, j ≤ m there exists δij such that each
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v ∈ Ci has exactly δij neighbours in Cj . Let H be another graph and D1, . . . Dm′ be the
corresponding partition of H with constants γij . Then G ≡C2 H if, and only if, m = m′ and
there is a permutation h ∈ Symm such that |Ci| = |Dh(i)| and δij = γh(i)h(j) for all i and j.

Let C be a class of structures and for any n ∈ N, let Cn denote the structures in C with
at most n elements. The counting width of C [13] is the function k : N→ N where k(n) is
the smallest value such that for any A ∈ Cn and any B 6∈ C, we have A 6≡Ck(n) B. Note that
k(n) ≤ n. Because A 6≡C1 B whenever A and B have different numbers of elements, k(n) is
also the smallest value such that Cn is a union of ≡Ck(n) -classes. In particular, it follows that
the counting width of C is the same as that of its complement. For k : N→ N, we say that
two disjoint classes C and D are Ck-separable if whenever A ∈ Cn and B ∈ Dn, then we have
A 6≡Ck(n) B. Equivalently C and D are Ck-separable if there is a class E of counting width at
most k such that C ⊆ E and D ⊆ E.

Interpretations. Consider two signatures σ and τ . A d-ary FO-interpretation of τ in σ is a
sequence of first-order formulas in vocabulary σ consisting of: (i) a formula δ(x); (ii) a formula
ε(x, y); (iii) for each relation symbol R ∈ τ of arity k, a formula φR(x1, . . . , xk); and (iv) for
each constant symbol c ∈ τ , a formula γc(x), where each x, y or xi is a d-tuple of variables.
We call d the dimension of the interpretation. If d = 1, we say that the interpretaion is
linear. We say that an interpretation Θ associates a τ -structure B to a σ-structure A if there
is a map h from {a ∈ Ad | A |= δ[a]} to the universe B of B such that: (i) h is surjective
onto B; (ii) h(a1) = h(a2) if, and only if, A |= ε[a1, a2]; (iii) RB(h(a1), . . . , h(ak)) if, and
only if, A |= φR[a1, . . . , ak]; and (iv) h(a) = cB if, and only if, A |= γc[a]. Note that an
interpretation Θ associates a τ -structure with A only if ε defines an equivalence relation on
Ad that is a congruence with respect to the relations defined by the formulae φR and γc. In
such cases, however, B is uniquely defined up to isomorphism and we write Θ(A) = B. It is
also worth noting that the size of B is at most nd, if A is of size n. But, it may in fact be
smaller. We call an interpretation p-bounded, for a polynomial p, if |B| ≤ p(|A|), and say
the interpretation is linearly bounded if p is linear. Every linear interpretation is linearly
bounded, but the converse is not necessarily the case.

For a class of structures C and an interpretation Θ, we write Θ(C) to denote the class
{Θ(A) | A ∈ C}. We mainly use interpretations to define reductions between classes of
structures. These allow us to transfer bounds on separability, by the following lemma, which
is established by simply composing formulas. The details may be found in Appendix A.

I Lemma 2.1. Let Θ be a p-bounded interpretation of dimension d and let t be the maximum
number of variables appearing in any formula of Θ. If C and D are two disjoint classes of
structures such that Θ(C) and Θ(D) are Ck-separable, then C and D are Cdk(p(n))+t-separable.

When we wish to define a reduction from a class C by a first-order interpretation, it
suffices to give an interpretation Θ for all structures in C with at least two elements (or,
indeed, at least k elements for any fixed k). This is because we can define an arbitrary map on
a finite set of structures by a first-order formula, so we just need to take the disjunction of Θ
with the formula that defines the required interpretation on the structures with one element.
With this in mind, we define the method of finite expansions which gives us interpretations Θ
that take a structure A with universe A to a structure with a universe consisting of l labelled
disjoint copies of S for some definable subset S of A. Note that Θ would not, in general, be
linear, but it is linearly bounded.

So, fix a value l, and let t be the least integer such that l ≤ 2t. In a structure A with
at least two elements, we say that a t+ 1-tuple of elements (a1, . . . , at+1) codes an integer
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7:6 Definable Inapproximability

i ∈ [2t] if b1 · · · bt is the binary representation of i− 1 and bj = 1 if, and only if, aj+1 6= a1.
For each i, we can clearly define a formula γi(y) with t+ 1 free variables that defines those
tuples that code i. Now, for any formula σ(x), let δ(x, y) be the formula σ(x) ∧

∨
i≤l γi(y)

and let ε(x1, y1, x2, y2) be the formula x1 = x2 ∧
∨
i γi(y1) ∧ γi(y2). In other words, δ picks

out those t+ 2 tuples (s, a) where s satisfies σ and a codes an integer in [l], and ε identifies
distinct tuples which have the same s and the same integer l. An interpretation using these
can be seen to yield a structure with l disjoint copies of the set of elements of A satisfying σ.

3 The Basic Gap Construction

The problems 3SAT and 3XOR both ask to decide if a formula consisting of the conjunction
of Boolean constraints each on exactly three Boolean variables is satisfiable. In 3SAT the
constraints are disjunctions of literals on three distinct variables. In 3XOR the constraints
are parities of three distinct variables. Both problems are known to have unbounded counting
width [6]: the class of satisfiable instances cannot be separated in Ck, for bounded k, from the
class of unsatisfiable ones. Our aim is to show that this result can be strengthened to show
that the class of satisfiable instances is not Ck-separable (for constant or, indeed, moderately
growing values of k) from the class of instances that are highly unsatisfiable, meaning that
no assignment to the variables can satisfy more than a fraction s of the constraints for some
fixed s ∈ (0, 1). In this section, we give a basic construction for 3XOR, based on that in [6],
that establishes this for any s > 3/4, with a lower bound on the value of k that is linear in
the number of variables in the system.

3.1 Systems of constraints
Let Γ be a finite set of relations over a finite domain D, also called a constraint language.
Let I = {c1, . . . , cm} be a collection (multi-set) of constraints, each of the form R(xi1 , . . . , xik ),
where R is a k-ary relation in Γ, and xi1 , . . . , xik are k distinct D-valued variables from a set
x1, . . . , xn of n variables. For c ∈ [0, 1], we say that the system I is c-satisfiable if there is
an assignment f : {x1, . . . , xn} → D that satisfies at least cm constraints; i.e., that satisfies
(f(xi1), . . . , f(xik )) ∈ R for at least cm constraints R(xi1 , . . . , xik ) from I. Note that, as we
are counting the number of satisfied constraints, multiplicities matter and this is why we
have multi-sets rather than sets of constraints.

We think of a system I = {c1, . . . , cm} over the constraint language Γ as a finite structure
in two ways. In the first encoding, the universe is the disjoint union of x1, . . . , xn and
c1, . . . , cm. The vocabulary includes binary relations E1, E2, . . . such that Ei(x, c) holds if the
constraint c has arity at least i and x is the ith variable in c. The vocabulary also includes
a unary relation ZR for each relation R in Γ such that ZR(c) holds if c is an R-constraint:
a constraint of the form R(xi1 , . . . , xik ) for some variables xi1 , . . . , xik , where k is the arity
of R. In the second encoding, the universe is just the set of variables x1, . . . , xn, and the
vocabulary includes a k-ary relation symbol R for each k-ary relation R in Γ, such that
R(xi1 , . . . , xik ) holds if this is one of the constraints in the collection c1, . . . , cm. Note that
in this second encoding the collection of constraints is treated as a set. In particular, the
multiplicity of constraints is lost, which could affect its c-satisfiability.

The constraint language Γ is also encoded as a finite structure in two ways. In the first
encoding the domain is D≤r = D ∪D2 ∪D3 ∪ · · · ∪Dr, where r is the maximal arity of a
relation in Γ. The relations E1, E2, . . . are interpreted by the projections: Ei(b, (b1, . . . , bk))
holds for b ∈ D and (b1, . . . , bk) ∈ Dk if, and only if, i ≤ k and b = bi. The relations ZR are
interpreted by the relation R itself as a unary relation over the universe: ZR((b1, . . . , bk))
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holds if k is the arity of R and (b1, . . . , bk) belongs to R. In the second encoding, the universe
is just D, and the relation symbol R is interpreted by R itself. Where it causes no confusion,
we do not distinguish between a constraint language Γ and the structure that encodes it,
and similarly between an instance I and its encoding structure.

It is easily seen that, in both encodings as finite structures, a system I over Γ is satisfiable
if, and only if, there is a homomorphism from the structure that encodes I to the structure
that encodes Γ. We say that the system is k-locally satisfiable if I Vk Γ.

For 3SAT, the constraint language is denoted Γ3SAT. It has domain D = {0, 1} and the
relations are the eight relations R1, . . . , R8 ⊆ {0, 1}3 defined by the eight possible clauses on
three variables. For 3XOR, the constraint language is denoted Γ3XOR. It also has domain
D = {0, 1} and the relations are the two relations R0, R1 ⊆ {0, 1}3 defined by the two
possible linear equations x+ y + z = b with three variables over F2 = {0, 1}. Accordingly,
3XOR instances can be identified with systems of linear equations Ax = b over F2.

3.2 Gap construction
We now focus on 3XOR and hence on systems of linear equations over F2. A starting point
for us is the following construction which allows us to convert any k-locally satisfiable system
of equations into a pair of systems that are ≡Ck -indistinguishable. See [1, Prop. 32] for a
related construction, which is inspired by the proof in [6] that satisfiability of systems of
linear equations over F2 is not invariant under ≡Ck for any k.

For any instance I of 3XOR we define another instance G(I) of 3XOR which has two
variables x0

j and x1
j for each variable xj of I. For each equation xj + xk + xl = b in I,

we have eight equations in G(I) given by the eight possible values of a1, a2, a3 ∈ {0, 1} in
xa1
j + xa2

k + xa3
l = b+ a1 + a2 + a3. We now establish some properties of this construction.

I Lemma 3.1. For any instance I of 3XOR and any c, s ∈ [0, 1], the following hold:
1. if I is c-satisfiable, then G(I) is c-satisfiable,
2. if I is not s-satisfiable, then G(I) is not (1/2 + s/2)-satisfiable.

Proof. In Appendix B. J

If I is the system Ax = b, then the homogeneous companion of I is the system Ax = 0,
which we denote I0. Since any homogeneous system is satisfiable, the system G(I0) is
satisfiable for any I by Lemma 3.1. We show that, despite this, as long as I is locally
satisfiable, then G(I) is hard to distinguish from its homogeneous companion G(I0).

I Lemma 3.2. For any instance I of 3XOR and any k, if I is k-locally satisfiable, then
G(I) ≡Ck G(I0).

Proof. In Appendix B. J

To apply this construction to get a gap, we need the following fact. Entirely analogous
claims have been known and proved in the context of the proof complexity of propositional
resolution; indeed, our proof builds on the methods for resolution width [10], and their
relationship to existential pebble games from [5, 7].

In the proof, we need the notion of a graph G that is a bipartite unique-neighbour expander
graph with parameters (m,n, d, s, e) where m,n, d and s are integer parameters with s < n

and e is a positive real number. What this means is that G is a bipartite graph with parts U
and V with m and n vertices respectively; each u ∈ U has exactly d neighbours in V ; and
for every A ⊆ U with |A| ≤ s we have |∂A| ≥ e|A|, where |∂A| denotes the set of vertices in
V that are unique neighbours of A; i.e., they are neighbours of a single vertex in A.
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7:8 Definable Inapproximability

I Lemma 3.3. For every ε > 0 there exist an integer c > 0 and a γ > 0 such that for every
sufficiently large integer n there is an instance I of 3XOR with n variables and cn equations
such that I is not (1/2 + ε)-satisfiable and I is k-locally satisfiable for k ≤ γn.

Proof. Fix ε > 0 and let c > 1/ε2. Let n ≥ 2 be sufficiently large that we can construct a
graph G that is a bipartite unique-neighbour expander graph with parameters (cn, n, 3, αn, e)
for a fixed α > 0. For the existence of such graphs with these parameters see [26, Chaper 4].
For each b = (bu : u ∈ U) ∈ {0, 1}U , we produce an instance I of 3XOR by introducing
one variable xv for each v ∈ V , and one equation eu : xv1(u) + xv2(u) + xv3(u) = bu for
each u ∈ U . We claim that there is at least one choice of b ∈ {0, 1}U that makes I be not
(1/2 + ε)-satisfiable. We also show that every choice of b ∈ {0, 1}U gives that I is k-locally
satisfiable for k ≤ γn with γ = eα/9.

I Claim 3.4. There exists b ∈ {0, 1}U such that system I is not (1/2 + ε)-satisfiable.

Proof. We prove that such a b exists by the probabilistic method: a random b ∈ {0, 1}U
has a good chance of making I be not (1/2 + ε)-satisfiable. For each assignment f : {xv :
v ∈ V } → {0, 1} and each u ∈ U , let Xf,u be the indicator random variable for the event
that f(xv1(u)) + f(xv2(u)) + f(xv3(u)) = bu; i.e., for the event that f satisfies the equation
xv1(u) + xv2(u) + xv3(u) = bu. The probability of this event is 1/2, and all such events, as
u ranges over U , are mutually independent. Thus, setting Xf =

∑
u∈U Xf,u, we have that

Xf is a binomial random variable with expectation E[Xf ] = m/2. By Hoeffding’s inequality,
the probability that Xf − E[Xf ] ≥ t is at most e−2t2/m. In particular, the probability that
Xf ≥ (1/2+ε)m is at most e−2ε2m. By the union bound, the probability that some f satisfies
Xf ≥ (1/2 + ε)m is at most 2ne−2ε2m. Since m = cn and c > 1/ε2 this probability is at most
2ne−2n and so approaches 0 as n grows. Indeed, it is less than 1/2 for all values of n ≥ 2.
Thus, for any large enough n there exists a b such that I is not (1/2 + ε)-satisfiable. J

I Claim 3.5. For every b ∈ {0, 1}U , every set of at most αn equations from I is satisfiable.

Proof. For each A ⊆ U , let eA be the set of equations that are indexed by vertices in A, and
let vA be the set of variables that appear in eA. We prove, by induction on t ≤ αn, that if
A ⊆ U and |A| = t, then there exists an assignment that sets all the variables in vA and that
satisfies all the equations in eA. For t = 0 the claim is obvious. Assume now that 1 ≤ t ≤ αn
and let A be a subset of U of cardinality t. Then |∂A| ≥ e|A| > 0. Let v0 be some element
in ∂A and let u0 ∈ A be the unique neighbour of v0 in A. The induction hypothesis applied
to B = A \ {u0} gives an assignment g that sets all the variables in vB and satisfies all the
equations in eB . The assignment g may assign some of the variables of the equation eu0 , but
not all, since v0 is not a neighbour of any vertex in B. Let f be the unique extension of g
that first sets all the variables in vA \ (vB ∪ {xv0}) to 0, and then sets xv0 to the unique
value that satisfies the equation eu0 . This assignment sets all the variables in vA and satisfies
all the equations in eA. The proof is complete. J

I Claim 3.6. For every b ∈ {0, 1}U and k ≤ γn, the instance I is k-locally satisfiable.

Proof. If I is satisfiable, then Duplicator certainly has a winning strategy and there is
nothing to prove. Assume then that I is unsatisfiable and let I ′ be a minimally unsatisfiable
subsystem; a subset of the equations of I that is unsatisfiable and every proper subset of
it is satisfiable. For each equation eu : xv1(u) + xv2(u) + xv3(u) = bu of I, let Fu be the four
clauses {x(a1)

v1(u), x
(a2)
v2(u), x

(a3)
v3(u)} with a1, a2, a3 ∈ F2 with a1 + a2 + a3 = bu, where z(a) stands
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for the negative literal ¬z if e = 0 and the positive literal z if e = 1. Let F be the 3CNF
formula that is the union of all the Fu as u ranges over U . Observe that F is an unsatisfiable
3CNF. We intend to apply Theorem 5.9 from [10] to it.

Let A be the collection of all Boolean functions fu : {0, 1}V → {0, 1} defined by

fu(xv : v ∈ V ) = xv1(u) + xv2(u) + xv3(u) + bu mod 2,

for u ∈ U . Each function in A is sensitive in the sense of Definition 5.5 from [10], and
compatible with F in the sense of Definition 5.3 from [10]. Moreover, if A0 ⊆ A is the
set of functions that corresponds to the minimally unsatisfiable subsystem I ′ of I, then its
cardinality m0 satisfies m0 > αn by Claim 3.5. It follows that the expansion e(A) in the
sense of Definition 5.8 from [10] is at least eαn/3. By Theorem 5.9 in [10], every resolution
refutation of F requires width at least eαn/3, and hence at least 3k since k ≤ γn = eαn/9.
By Theorem 2 in [7], Duplicator has a winning strategy for the existential 3k-pebble game
played on the structures F and the constraint language Γ3SAT of 3SAT, in the second
encoding discussed in Section 3.1. We use this winning strategy to design a winning strategy
for Duplicator in the existential k-pebble game played on I and Γ3XOR.

While playing the game on I, Duplicator plays the game on F on the side and keeps the
invariant that each pebbled variable in the game on I is also pebbled in the side game, and
each pebbled equation in the game on I has its three variables pebbled in the side game.
Whenever a new variable is pebbled in the game on I, Duplicator pebbles the same variable
in the side game, and copies the answer from its strategy on it. Whenever a new equation
is pebbled in the game on I, Duplicator pebbles its three variables in the side game, and
answers the pebbled equation accordingly from its strategy. Since at each position of the
game on I there are no more than k pebbles on the board, at each time during the simulation
the side game has no more than 3k pebbles on the board. This shows that the simulation
can be carried on forever and the proof is complete. J

This completes the proof of Lemma 3.3. J

We can now prove our first two gap theorems.

I Theorem 3.7. For any ε > 0, if C is the collection of 3XOR instances that are satisfiable
and D is the collection of 3XOR instances that are not (3/4 + ε)-satisfiable, then C and D

are not Ck-separable for any k = o(n).

Proof. By Lemma 3.3, there is a family of systems (Sk)k≥1 with O(k) variables and equations
such that Sk is k-locally satisfiable but not (1/2 + 2ε)-satisfiable. Let I1

k = G(Sk) and
I0
k = G(S0

k). Note that, by Lemma 3.1, the system I0
k is satisfiable and I1

k is not (3/4 + ε)-
satisfiable. However, I0

k ≡Ck I1
k by Lemma 3.2. Since each of I0

k and I1
k has two variables for

each variable in Sk and eight equations for each equation in Sk, they also have O(k) variables
and equations and the result follows. J

I Theorem 3.8. For any ε > 0, if C is the collection of 3SAT instances that are satisfiable
and D is the collection of 3SAT instances that are not (15/16 + ε)-satisfiable, then C and D

are not Ck-separable for any k = o(n).

Proof. Consider again the reduction Θ from 3XOR to 3SAT given by translating each
equation into a conjunction of four clauses. Thus x + y + z = d translates into the four
clauses {x(a), y(b), z(c)} with a, b, c ∈ F2 with a+ b+ c = d, where z(e) stands for the negative
literal ¬z if e = 0 and the positive literal z if e = 1. This is easily defined in first-order logic.
As the set of variables in I is the same as in Θ(I), it is linearly bounded. We claim that
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applying Θ to Theorem 3.7 with ε reset to ε/4 gives the theorem through Lemma 2.1. First,
it is clear that if I is a 3XOR instance that is satisfiable, then Θ(I) is also satisfiable. Now,
suppose that I is a system of m equations that is not (3/4 + ε/4)-satisfiable, and let g be
an assignment of truth values to the variables X of Θ(I). Applied to I, the assignment g
falsifies at least (1/4− ε/4)m of the equations. For each equation, g must falsify at least one
of the four corresponding clauses in Θ(I). Thus, g falsifies at least (1/4− ε/4)m clauses in
Θ(I) and so satisfies at most 4m− (1/4− ε/4)m = (15/16 + ε) · 4m of the 4m clauses. J

4 Amplifying the Gap

In this section we show that certain reductions from the theory of inapproximability can be ex-
pressed as FO-interpretations, allowing us to derive optimal and unconditional undefinability
results that match the optimal NP-hardness results from [16].

4.1 Parallel repetition
An instance I of the LABEL COVER problem is given by two disjoint sets of variables U
and V with domains of values A and B, respectively, a predicate P : U ×V ×A×B → {0, 1},
and an assignment of weights W : U × V → N. If all the non-zero weights W (u, v)
are equal, then the instance is said to have uniform weights. If for all u ∈ U the sums
W (u) :=

∑
v∈V W (u, v) of incident weights are equal, then the instance is called left-regular.

A right-regular instance is defined analogously in terms of W (v) :=
∑
u∈U W (u, v). The

instance is a projection game if for every (u, v) ∈ U × V with W (u, v) 6= 0 it holds that for
every a ∈ A there is exactly one b ∈ B satisfying P (u, v, a, b) = 1. It is called a unique game
if |A| = |B| and it is a projection game both ways: from A to B, and from B to A. The
instance is said to have parameters (m,n, p, q) if |U | = m, |V | = n, |A| = p and |B| = q. Its
domain size is p+ q.

A value-assignment for an instance I is a pair of functions f : U → A and g : V → B. The
weight v(f, g) of the value-assignment (f, g) is the total weight of the pairs (u, v) ∈ U × V
satisfying the constraint P (u, v, f(u), g(v)) = 1; i.e.,

v(f, g) =
∑

(u,v)∈U×V

W (u, v)P (u, v, f(u), g(v)). (1)

For c ∈ [0, 1], we say that the instance is c-satisfiable if there is a value-assignment whose
weight is at least c ·W0, where W0 =

∑
(u,v)∈U×V W (u, v) is the maximum possible weight.

We call it satisfiable if it is 1-satisfiable.
The bipartite reduction takes an instance I of 3XOR and produces a projection game

instance L(I) of LABEL COVER defined as follows. The sets U and V are the set of
equations in I and the set of variables in I, respectively. The weight W (u, v) is 1 if v is
one of the variables in the equation u, and 0 otherwise. The domains of values associated
to U and V are A = {(a1, a2, a3) ∈ F3

2 : a1 + a2 + a3 = 0} and B = F2, respectively. The
predicate P associates to the pair (u, v), where u is the equation v1 + v2 + v3 = b and v = vi
for i ∈ {1, 2, 3}, the set of pairs ((a1, a2, a3), a) ∈ A×B satisfying a = ai + b. In other words,
P (u, v, (a1, a2, a3), a) = 1 if, and only if, v appears in the equation u, and if u is v1+v2+v3 = b

and v = vi, then the (partial) assignment {v1 7→ a1 + b, v2 7→ a2 + b, v3 7→ a3 + b}, which
satisfies the equation v1 + v2 + v3 = b by construction, agrees with the (partial) assignment
{vi 7→ a}. Clearly, this defines a projection game.



A. Atserias and A. Dawar 7:11

I Lemma 4.1. For every instance I of 3XOR and every c, s ∈ [0, 1], the following hold:
1. if I is c-satisfiable, then L(I) is c-satisfiable,
2. if I is not s-satisfiable, then L(I) is not (s+ 2)/3-satisfiable.
Moreover, L(I) is a left-regular projection game that has uniform weights.

Proof. Let m be the number of equations in I, so L(I) has exactly 3m pairs (u, v) of unit
weight. Such pairs are called constraints. For proving 1, let h be an assignment for I that
satisfies at least cm of the m equations in I. For each equation u in I, say v1 + v2 + v3 = b,
define f(u) = (h(v1) + b, h(v2) + b, h(v3) + b) if h satisfies v1 + v2 + v3 = b, and define
f(u) = (0, 0, 0) otherwise. For each variable v in I, define g(v) = h(v). Each equation in I
gives rise to exactly three constraints in L(I), and if the equation is satisfied by h, then all
three constraints associated to it in L(I) are satisfied by (f, g). Thus (f, g) satisfies at least
3cm of the 3m constraints in L(I), so L(I) is c-satisfiable. For proving 2, let (f, g) be an
assigment for L(I) that satisfies at least (s+ 2)m of the 3m constraints in L(I). For each
variable v in I, define h(v) = g(v). Let t be the number of equations of I that are satisfied
by h. In terms of t, the assignment (f, g) satisfies at most 3t+ 2(m− t) of the 3m constraints
of L(I). Thus t ≥ sm, so I is s-satisfiable. J

The parallel repetition reduction takes an instance I of LABEL COVER, and a positive
integer t ≥ 1, and produces another instance R(I, t) of LABEL COVER defined as follows.
Let U and V be the sets of variables in I and letW : U×V → N be the weight assignment. The
sets of variables of R(I, t) are U t and V t. For u = (u1, . . . , ut) ∈ U t and v = (v1, . . . , vt) ∈ V t,
the weight W (u, v) is defined as

∏t
i=1 W (ui, vi). If A and B are the domains of values

associated to U and V , then the domains of values associated to U t and V t are At and Bt
respectively. For u = (u1, . . . , ut) ∈ U t, v = (v1, . . . , vt) ∈ V t, a = (a1, . . . , at) ∈ At and
b = (b1, . . . , bt) ∈ Bt, the predicate P (u, v, a, b) is defined as

∏t
i=1 P (ui, vi, ai, bi). Observe

that this definition guarantees that if I is a projection game, then so is R(I, t).

I Theorem 4.2 (Parallel Repetition Theorem [24, 18]). There exists a constant α > 0 such
that for every instance I of LABEL COVER with domain size at most d ≥ 1, every s ∈ [0, 1]
and every t ≥ 1 the following hold:
1. if I is satisfiable, then R(I, t) is satisfiable,
2. if I is not s-satisfiable, then R(I, t) is not (1− (1− s)3)αt/d-satisfiable.
Moreover, if I is a projection game, left-regular, right-regular, or has uniform weights, then
so is R(I, t).

Although it is the case that the bipartite and the parallel repetition reductions are both
FO-interpretations, we do not need to formulate this. Instead, we show the FO-definability
of the composition of these reductions with the long-code reductions that we discuss next.

4.2 First long-code reduction
The first long-code reduction that we consider takes a projection game instance I of
LABEL COVER and a rational ε ∈ [0, 1] and produces an instance C(I, ε) of 3XOR
defined as follows. Let U and V be the sets of variables of sizes m and n, respectively,
with associated domains of values A = [p] and B = [q], let W : U × V → N be the weight
assignment, let P : U ×V ×A×B → {0, 1} be the predicate of I, and for each (u, v) ∈ U ×V
with W (u, v) 6= 0 and each a ∈ A let πu,v(a) be the unique value b ∈ B that satisfies
P (u, v, a, b) = 1. The existence of such a function πu,v : A → B is guaranteed from the
assumption that I is a projection game. The set of variables of C(I, ε) includes one variable
u(a) for each u ∈ U and a ∈ Fp−1

2 , and one variable v(b) for each v ∈ V and b ∈ Fq−1
2 ,
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for a total of m2p−1 + n2q−1 variables. Before we are able to define the set of equations
of C(I, ε) we need a piece of notation. For a vector z = (z1, . . . , zd) ∈ Fd2 of dimension
d ≥ 2, we write S(z) = zd and F (z) = (z1 + S(z), . . . , zd−1 + S(z)). Note that S(z) is
a single field element, and F (z) is a vector of dimension d − 1. With this notation, the
set of equations of C(I, ε) includes W (u, v) ·Mq · εD · (1 − ε)q−D copies of the equation
v(F (x)) + u(F (y)) + u(F (z)) = S(x) + S(y) + S(z) for each (u, v) ∈ U × V , each x ∈ Fq2 and
each y, z ∈ Fp2, where M is the denominator of ε = N/M reduced to lowest terms, D is the
number of positions i ∈ [p] such that zi 6= xπ(i) + yi, and π = πu,v if W (u, v) 6= 0.

I Theorem 4.3 (Håstad 3-Query Linear Test [16]). For every s, ε ∈ [0, 1] with ε > 0 and s > 0
and every projection game instance I of LABEL COVER, the following hold:
1. if I is satisfiable, then C(I, ε) is (1− ε)-satisfiable,
2. if I is not s-satisfiable, then C(I, ε) is not (1/2 + (s/ε)1/2/4)-satisfiable.

The proof of Theorem 4.3 follows from Lemmas 5.1 and 5.2 in [16]. There are notational
differences that may obscure this and a detailed explanation is provided in Appendix C.

Next, by composing Lemma 4.1, Theorem 4.2, and Theorem 4.3 with the appropriate
parameters we get the following:

I Theorem 4.4. For every s, ε ∈ [0, 1] with 0 < s < 1 and ε > 0, there is an FO-interpretation
Θ that maps instances of 3XOR to instances of 3XOR in such a way that, for every 3XOR
instance I the following hold:
1. if I is satisfiable, then Θ(I) is (1− ε)-satisfiable,
2. if I is not s-satisfiable, then Θ(I) is not (1/2 + ε)-satisfiable.

Proof. First we define Θ(I) and then check that this definition is an FO-interpretation. In
anticipation for the proof, let t be a large enough integer so that the following inequality
holds:

(1− (1− (s+ 2)/3)3)αt/6 ≤ 16ε3, (2)

where α is the constant in Theorem 4.2. Such a t exists because s < 1 and ε > 0. Apply the
bipartite reduction to I to obtain the instance I ′ = L(I) from Lemma 4.1. Observe that the
domain size d of I ′ is |A|+ |B| = 6. Next apply the parallel repetition reduction to I ′ with
parameter t to obtain a new instance I ′′. Finally apply the long-code reduction to I ′′ with
parameter ε to obtain the system I ′′′. The parameters were chosen in a way that the system
I ′′′ satisfies properties 1 and 2, through Theorem 4.3.

It remains to argue that I ′′′ can be produced from I by an FO-interpretation. To define
I ′ from I there is no difficulty at all: the FO-interpretation is even linear. To define I ′′ from
I ′ we note that t is a constant, and that the weights W (u, v) of I ′ are 0 or 1, so again there
is no difficulty. In this case the FO-interpretation has dimension t, and it is nt-bounded. To
define I ′′′ from I ′′ we note that the domain sizes p and q of the instance I ′′ are constants,
indeed p = 4t and q = 2t. This means that there are |U | · 2p−1 variables of type u(a), and
|V | · 2q−1 variables of type v(b), and these are constant multiples of |U | and |V |, respectively.
Such domains are FO-definable by the method of finite expansions (see Section 2). Finally,
since the weights W (u, v) of I ′′ are still zeros or ones and both ε and q are constants, the
multiplicities of the equations of I ′′′ are also constants, and hence FO-definable. J

4.3 Second long-code reduction
The second long-code reduction takes a projection game instance I of LABEL COVER and
a rational δ ∈ [0, 1] and produces an instance D(I, δ) of 3SAT defined as follows. Before we
define D(I, δ), let us define an intermediate instance D′(I, ε) of 3SAT that takes a different
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parameter ε ∈ [0, 1]. Let U , V , m, n, A, B, p, q,W , P , and πu,v(a) be as in the first long-code
reduction. The set of variables of D(I, ε) is defined as in the first long-code reduction: a
variable u(a) for each u ∈ U and each a ∈ Fp−1

2 , and a variable v(b) for each v ∈ V and each
b ∈ Fq−1

2 . We also use the folding notation F (z) and S(z) from the first long-code reduction.
Now the instance D′(I, ε) includes W (u, v) ·Mq · εD · (1 − ε)E−D ·H copies of the clause
{v(F (x))(S(x)), u(F (y))(S(y)), u(F (z))(S(z))} for each (u, v) ∈ U × V , each x ∈ Fq2 and each
y, z ∈ Fp2, where M is the denominator of ε = N/M reduced to lowest terms, E is the number
of positions i ∈ [p] with xπ(i) = 1 and D is the number of positions i ∈ [p] with xπ(i) = 1 and
zi 6= yi for π = πu,v if W (u, v) 6= 0, while H ∈ {0, 1} is the indicator for the event that in
each position i ∈ [p] with xπ(i) = 0 we have zi 6= yi. Finally, to define the instance D(I, δ),
set t = dδ−1e and ε1 = δ, and εi+1 = δ712−35εi for i = 1, . . . , t− 1, and let the instance be⋃t
i=1 D

′(I, εi).

I Theorem 4.5 (Håstad 3-Query Disjunction Test [16]). There exists s0 > 0 such that for
every s ∈ [0, 1] with 0 < s < s0 and every projection game instance I of LABEL COVER
the following hold:
1. if I is satisfiable, then C(I, ε) is satisfiable,
2. if I is not s-satisfiable, then C(I, ε) is not (7/8 + log2(1/s)−1/2)-satisfiable.
For the proof of Theorem 4.5, see Lemmas 6.12 and 6.13 in [16]. As in the first long-code
reduction, some explanation is needed for seeing this.

Besides the notational differences that were already pointed out in the first long-code
reduction, the second long-code reduction adds the following. First, the constants 71 and 35
in the definition of εi+1 come from setting c = 1/35 in the definition of Test F3Sδ(u) in [16].
According to Lemma 6.9 in [16], this is an acceptable setting of c. Second, the constant
s0 > 0 in Theorem 4.5 is meant to be chosen small enough so as to ensure that, for each s
satisfying s < s0, we have 2−64δ−2/25 < 2−dδ−1 log2(δ−1) for δ = 8 log2(1/s)−1/2/5, where d is
the constant hidden in the asymptotic O-notation of Lemma 6.13 in [16]. Such an s0 exists
because N log2(N) = o(N2) as N → +∞. With this notation, Lemma 6.12 in [16] gives
point 1, and Lemma 6.13 in [16] with δ = 8 log2(1/s)−1/2/5 gives point 2 in Theorem 4.5.

By composing Lemma 4.1, Theorem 4.2, and Theorem 4.5 with the appropriate parameters
we get the following:

I Theorem 4.6. For every s, ε ∈ [0, 1] with 0 < s < 1 and ε > 0, there is an FO-interpretation
Θ that maps instances of 3XOR to instances of 3SAT in such a way that, for every 3XOR
instance I the following hold:
1. if I is satisfiable, then Θ(I) is satisfiable,
2. if I is not s-satisfiable, then Θ(I) is not (7/8 + ε)-satisfiable.

Proof. First we define Θ(I) and then check that this definition is an FO-interpretation. Let
t be a large enough integer so that the following inequality holds:

(1− (1− (s+ 2)/3)3)αt/6 ≤ min{2−1/ε2
, s0} (3)

where α is the constant in Theorem 4.2 and s0 > 0 is small enough as in Theorem 4.5. Such
a t exists because s < 1 and ε > 0 as well as s0 > 0. Apply the bipartite reduction to I
to obtain the instance I ′ = L(I) from Lemma 4.1. Observe that the domain size d of I ′ is
|A|+ |B| = 6. Next apply the parallel repetition reduction to I ′ with parameter t to obtain
a new instance I ′′. Finally apply the second long-code reduction to I ′′ to obtain the system
I ′′′. The parameters were chosen so that the system I ′′′ satisfies properties 1 and 2, through
Theorem 4.5. As in the proof of Theorem 4.4 this reduction is FO-definable. J
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4.4 Optimal gap inexpressibility
We are ready to state the main results of this section. Composing Theorem 3.7, Theorem 4.4,
and Lemma 2.1 we get the following.

I Theorem 4.7. For each ε > 0, there is a δ > 0 such that if C is the collection of 3XOR
instances that are (1− ε)-satisfiable and D is the collection of 3XOR instances that are not
(1/2 + ε)-satisfiable then C and D are not Ck-separable for any k = o(nδ).

Composing Theorem 3.7, Theorem 4.6, and Lemma 2.1 we get the following.

I Theorem 4.8. For each ε > 0, there is a δ > 0 such that if C is the collection of
3SAT instances that are satisfiable and D is the collection of 3SAT instances that are not
(7/8 + ε)-satisfiable then C and D are not Ck-separable for any k = o(nδ).

A statement similar to Theorem 4.8 can be obtained from applying the standard reduction
from 3XOR to 3SAT to Theorem 4.7 as in Theorem 3.8. However, this would only show
that the class of 3SAT instances that are (1− ε)-satisfiable is Ck-inseparable from the class
of instances that are not (7/8 + ε)-satisfiable; note that Theorem 4.8 states the stronger claim
that this is the case for the class of fully satisfiable instances, instead of the (1− ε)-satisfiable
ones. A natural question to ask is whether the (1− ε) in Theorem 4.7 could be improved to 1.
This would, however, require different techniques since there is a polynomial-time algorithm
that separates the satisfiable instances of 3XOR from the unsatisfiable ones.

On the other hand, 7/8 + ε bound in Theorem 4.8 and the 1/2 + ε bound in Theorem 4.7
are optimal. Every instance of 3SAT is 7/8-satisfiable, and every instance of 3XOR is
1/2-satisfiable. Thus, the algorithms that achieve these approximation ratios are trivial and
expressible in FPC.

It is also worth comparing the statement of Theorem 3.8 to that of Theorem 4.8. While
the latter has the stronger bound on the approximability ratio (7/8 rather than 15/16) the
former gives the stronger lower bound on the counting width. One significance of the lower
bounds on counting width is that they provide bounds on the number of levels of semidefinite
programming hierarchies such as Lasserre hierarchy needed to solve a problem. Thus, it is
known [13, 9] that if a constraint maximization problem can be solved using t levels of the
Lasserre hierarchy, its counting width is at most O(t). Thus, it is an immediate consequence
of our results that approximation algorithms obtained through o(nδ) levels of the Lasserre
hierarchy cannot achieve an approximation ratio for 3SAT and 3XOR better than the trivial
7/8 and 1/2 respectively. These lower bounds on Lasserre relaxations are already known
(see [25]) but our results provide a systematic explanation in terms of definability.

5 Vertex Cover

We investigate gap inexpressibility results for the vertex cover problem VC on graphs. Recall
that a set X ⊆ V of vertices in a graph G = (V,E) is a vertex cover if every edge in E has
at least one of its endpoints in X. If the graph comes with a weight function w : V → R+,
then the weight of X is the sum of the weights of the vertices in X. If the weights of the
vertices are omitted in the specification of the graph, then all the vertices are assumed to
have unit weight. The problem of finding the minimum weight vertex cover in a graph is a
classic NP-complete problem.

In the following we write vc(G) for the weight of a minimum weight vertex cover, and
vc(G) := vc(G)/W0, where W0 :=

∑
v∈V w(v). Analogously, we write IS(G) for the weight

of a maximum weight independent set, and isd(G) := IS(G)/W0. Clearly vc(G) = 1− isd(G)
holds for all weighted graphs.
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The standard reduction that proves the NP-completeness of the vertex cover problem
(see, e.g. [22, Thm. 9.4]) takes an instance I of 3SAT with n variables and m clauses and
gives a graph G with 3m vertices in which the minimum vertex cover has size exactly 2cm,
if cm is the maximum number of clauses in I that can be simultaneously satisfied. It is also
easy to see that this reduction can be given as an FO-interpretation. This interpretation
is linearly bounded and therefore it follows from Theorem 4.8 and Lemma 2.1 that for any
ε > 0, there is a δ > 0 such that the collection of graphs G with vc(G) ≤ 7/12 + ε and the
collection of graphs G with vc(G) ≥ 2/3− ε cannote be separated in Ck for any k = o(nδ).
This has the consequence that no approximation algorithm for the vertex cover problem
expressible in FPC can achieve an approximation ratio better than 8/7.

We can improve on this by considering instead the so-called FGLSS reduction from 3XOR
to vertex-cover, which we describe next.

I Theorem 5.1. There is a linearly-bounded first-order reduction G that takes an instance I
of 3XOR with m equations to a graph G(I) with 4m vertices so that if m∗ is the maximum
number of equations of I that can be simultaneously satisfied, then vc(G) = 4m−m∗.

Proof. For each equation x+ y + z = b in I, G(I) has a 4-clique of vertices, each labelled
with a distinct assignment of values to the three variables that make the equation true. In
addition, we have an edge between any pair of vertices that are labelled by inconsistent
assignments. It is easily seen that the largest independent set in G(I) is obtained by taking
an assignment g of values to the variables of I that satisfies m∗ equations and, for each
satisfied equation, selecting the vertex in its 4-clique that is the projection of g. This yields
an independent set of size exactly m∗ and the result follows. J

From this, and Theorem 3.7, we immediately get the following result.

I Corollary 5.2. For any ε > 0, if C is the collection of graphs G with vc(G) ≤ 3/4 and D

is the collection of graphs G with vc(G) ≥ 13/16− ε then C and D are not Ck-separable for
any k = o(n).

Similarly, combining Theorem 5.1 and Theorem 4.7 yields the following corollary.

I Corollary 5.3. For any ε > 0, there is a δ > 0 such that, if C is the collection of graphs G
with vc(G) ≤ 3/4 + ε and D is the collection of graphs G with vc(G) ≥ 7/8− ε then C and D

are not Ck-separable for any k = o(nδ).

These two corollaries are incomparable. While the latter yields the stronger approximation
ratio (7/6 rather than 13/12), the former gives the stronger lower bound on k.

Better lower bounds on the approximation ratio are known under the assumption that
P 6= NP. One such lower bound was achieved by Dinur and Safra [14] who showed that,
under this assumption, no polynomial-time algorithm for approximating vertex cover can
achieve an approximation ratio better than 1.36. In the full version of this paper [8] we argue
that this reduction is also an FO-interpretation, so we get the same inapproximability ratio
for algorithms that are expressible in FPC, giving a strengthening of Corollary 5.3.

There are straightforward polynomial-time algorithms that yield a vertex cover in a graph
with guaranteed approximation ratio 2. It is conjectured that no polynomial-time algorithm
can achieve an approximation ratio of 2− ε for any ε > 0. It would be interesting to prove a
version of this conjecture for algorithms expressible in FPC, and without the assumption
that P 6= NP. This could be established by a strengthened version of Corollary 5.3 with
better ratios. We next show that we can at least do this for the special case of k = 2.
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I Theorem 5.4. For any ε > 0, if C is the collection of graphs G with vc(G) ≤ 1/2 and D

is the collection of graphs G with vc(G) ≥ 1− ε then C and D are not C2-separable.

Proof. Let (Gn)n∈N be a family of 3-regular expander graphs on n vertices, so that the largest
independent set in Gn has size o(n). For the existence of such graphs see [26, Chapter 4]. It
follows that the smallest vertex cover in Gn has size n− o(n). Hence, we can choose a value
m such that G2m has no vertex cover smaller than 2m(1− ε).

Let Hm be a 3-regular bipartite graph on two sets of m vertices. Now, each part of a
bipartite graph is a vertex cover, so Hm has a vertex cover of size m. However, it is known
that G ≡C2 H holds for any pair G and H of d-regular graphs with the same number of
vertices, for any d. Thus, G2m ≡C2 Hm and the result follows. J

Essentially, Theorem 5.4 tells us that no algorithm that is invariant under ≡C2 can
determine vc(G) to an approximation better than 2, and Corollary 5.3 tells us that no
algorithm that is invariant under ≡Ck for constant or even slowly growing k can determine
vc(G) to an approximation better than 7/6. A legitimate question at this point is whether
there is any algorithm that is invariant under ≡Ck , such as one expressible in FPC would
be, that does achieve an approximation ratio of 2. The natural polynomial-time algorithms
that give a vertex cover with size at most 2vc(G) are not expressible in FPC. Indeed, we
cannot expect a formula of FPC to define an actual vertex cover in a graph G as this is not
invariant under automorphisms of G. We can only ask for an estimate of the size, i.e. of
vc(G), and this we can get up to a factor of 2. For this, it turns out that k = 2 is enough,
showing that the lower bound of Theorem 5.4 is tight:

I Theorem 5.5. For any δ, if C is the collection of graphs G with vc(G) ≤ δ and D is the
collection of graphs G with vc(G) > 2δ then C and D are ≡C2-separable.

The proof of Theorem 5.5 can be found in Appendix D.

6 Conclusions

This paper introduces a new method for studying the hardness of approximability of op-
timization problems by showing that the approximation cannot be defined in a suitable
logic such as FPC. This is done by showing that no class of bounded counting width can
separate instances of the problem with a high optimum from those with a low one. This
raises a number of new challenges in the application of this method. A clear demonstration
of the power of this method would be to derive a lower bound stronger than one for which
NP-hardness is known. For instance, can we improve, in the context of inexpressibility, on the
1.36-inapproximability for vertex cover from the NP-hardness result of Dinur and Safra [14]?
In other words, can show that the class of graphs that have a vertex cover of density δ is not
Ck-separable from the class of graphs that do not have a vertex cover of density cδ, for some
δ ∈ (0, 1) and some constant c greater than 1.36? If this were achieved for unbounded k,
it would have major consequences in the study of semidefinite programming hierarchies of
relaxations of vertex cover. And this applies, indeed, to any optimization problem for which
the exact inapproximability factor is not known, including MAX CUT, sparsest cut, etc.
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A Proof of Lemma 2.1

Proof of Lemma 2.1. Let A ∈ Cn and B ∈ Dn be two structures. Then, since Θ(A) and
Θ(B) have size at most p(n), there is a formula φ ∈ Ck(p(n)) such that Θ(A) |= φ and
Θ(B) 6|= φ. We compose φ with the interpretation Θ to obtain φ′. That is to say, we replace
every relation symbol by its defining formula, including replacing all occurrences of equality
by ε, and we relativize all quantifiers to δ. Note that this involves replacing quantification
over elements with quantification over tuples. It is well known that a counting quantifier over
tuples ∃ix can be replaced by a series of counting quantifiers over single elements without
increasing the total number of variables. Then A |= φ′ and B 6|= φ′. It is also easy to check
that φ′ has at most dk(p(n)) + t variables. The multiplicative factor d comes from the fact
that every variable in φ is replaced by a d-tuple and the additive t accounts for any other
variables that may appear in the formulas of Θ. J

B Proofs Omitted from Section 3.2

Proof of Lemma 3.1. For proving 1, let h : {x1, . . . , xn} → {0, 1} be an assignment of values
to the variables of I that satisfies at least cm of the m equations in I. Define the assignment
g on the variables of G(I) by g(xa) = g(x) + a. For each equation e satisfied by h, all eight
equations arising from e are satisfied by g and so g satisfies at least 8cm of the 8m equations
in G(I).

For proving 2, suppose g is an assignment of values in {0, 1} to the variables xai in G(I).
Let h : {x1, . . . , xn} → {0, 1} be the assignment defined by h(xj) = g(x0

j ). We claim that if
ei is an equation xj +xk +xl = b in I that is not satisfied by h then at least four of the eight
equations in G(I) arising from ei are falsified by g. To see this, consider two cases. First,
suppose that g(x0

t ) = g(x1
t ) for some t ∈ {j, k, l}. Without loss of generality, we assume t = j.

Then consider the four pairs of equations

x0
j + xa1

j + xa2
k = bi + a1 + a2,

x1
j + xa1

j + xa2
k = bi + a1 + a2 + 1

obtained by taking the four possible values of a1 and a2. Since g(x0
j ) = g(x1

j ), if one equation
in a pair is satisfied by g the other is necessarily falsified. Thus, at least four equations
are falsified. For the second case, suppose that for each t ∈ {j, k, l} occurring in ei we
have g(x0

t ) 6= g(x1
t ). But then, since we assume that h falsifies ei, it follows that g falsifies

x0
j + x0

k + x0
l = b and hence it falsifies all eight equations arising from ei. In either case, g

falsifies at least four of the equations arising from ei.
Now, suppose that g satisifes at least (1/2 + s/2) · 8m of the 8m equations in G(I). We

claim that h satisfies at least sm equations in I. Suppose for contradiction that h falsifies a
proportion ε > 1− s of the equations. By the above argument, then g falsifies at least 4εm
of the equations in G(I). But 4εm > (1/2− s/2) · 8m contradicting the assumption that g
satisfies at least (1/2 + s/2) · 8m equations. J

Proof of Lemma 3.2. We describe a strategy for Duplicator in the bijective k-pebble game
played on G(I) and G(I0), given a strategy in the existential k-pebble game on I and
Γ = Γ3XOR.

Suppose we have a position in the existential k-pebble game on I and Γ with pebbles
on x1, . . . , xk′ , for some k′ ≤ k in I, and corresponding pebbles on v1, . . . , vk′ ∈ {0, 1} in Γ.
Suppose further that this is a winning position for Duplicator, i.e. she has a strategy to play
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forever from this position. Then, we claim that the position in the bijective game where the
pebbles in G(I) are on xa1

1 , . . . , x
ak′
k′ , for some a1, . . . , ak′ ∈ {0, 1} and the matching pebbles

in G(I0) are on xa1+v1
1 , . . . , x

ak′+vk′
k′ is a winning position in the bijective game on these two

structures. To see this, note first that, if xr+xs+xt = bi is an equation in I, for 1 ≤ r, s, t ≤ k′,
then by assumption that the position is winning in the existential game, vr + vs + vt = bi.
Hence, xar

r + xas
s + xat

t = bi is an equation in G(I) if, and only if, xar
r + xas

s + xat
t = 0 is

an equation in G(I0) if, and only if, xar+vr
r + xas+vs

s + xat+vt
t = vr + vs + vt is an equation

in G(I0), but this last equation is xar+vr
r + xas+vs

s + xat+vt
t = bi. Thus, the map from

xa1
1 , . . . , x

ak′
k′ to xa1+v1

1 , . . . , x
ak′+vk′
k′ is a partial isomorphism. To see that Duplicator can

maintain the condition, suppose Spoiler moves the pebble on xaj . By assumption, Duplicator
has a response in the existential game whenever Spoiler moves the pebble from xj to xl.
This response defines a function f from the variables in x to {0, 1}. We use this to define
the bijection taking xal to xa+f(xl)

l . This is a winning move in the bijective game. J

C Deriving Theorem 4.3 from [16]

The proof of Theorem 4.3 follows from Lemmas 5.1 and 5.2 in [16]. In order too see this,
we need to explain how our notation matches the one in [16]. Besides the obvious and
minor correspondance between multiplicative and additive notation for F2, with −1↔ 1 and
+1↔ 0, there are three other noticeable differences between the statement of Theorem 4.3
and the statements of Lemmas 5.1 and 5.2 in [16].

The first difference is that Theorem 4.3 applies to arbitrary projection game instances
of LABEL COVER, while the statements in [16] are phrased only for the special cases of
the problem that result from applying parallel repetition to a suitable bipartite reduction
applied to a 3SAT instance. We chose to formulate Theorem 4.3 in this more general and
modular form because this is what the proofs of Lemmas 5.1 and 5.2 in [16] show, and also
because this is how more recent expositions of these results are presented (see, e.g., [3]).

The second difference is that the conclusion of our statement is phrased in terms of the
c-satisfiability of a 3XOR instance, while the statements of Lemmas 5.1 and 5.2 in [16]
are phrased in terms of the acceptance rate of a probabilistic test that has the following
form: given access to certain tables Au and Av, with F2 entries {Au(x)}x∈I and {Av(y)}y∈J
for certain index sets I and J , respectively, choose a random 3-variables parity test on the
Au(x) and Av(y) entries under a specially designed distribution, and check if it is satisfied.
This difference is only notational and minor: our instance of XOR is built by viewing the
Au(x) and Av(y) entries as variables u(x) and v(y), and assigning weight to each 3-variable
parity equation on these variables proportionally to the probability that it is checked by the
probabilistic test on the Au and Av tables. With this change, c-satisfiability of the instance
translates into the probability of acceptance of the test being at least c, and vice-versa.

The third difference in the notation is that our variables u(x) and v(y), and the corres-
ponding entries Au(x) and Av(y) of the tables Au and Av, are indexed by Fp−1

2 and Fq−1
2

instead of the more natural Fp2 and Fq2, respectively. This is due to the fact that we imple-
ment the operations of folding over true and conditioning upon h from [16] directly in our
construction. In other words, our tables Au and Av are what [16] calls AW,h,true and AU,true,
respectively. Folding over true as in AU,true is achieved for Av through the notation S(z) and
F (z) defined above: we chose to partition Fp2 into 2p−1 pairs of the form (z, 0), (F ((z, 1)), 1),
as z ranges over Fp−1

2 , and view an arbitrary Av : Fp−1
2 → F2 as representing the function

A′v : Fp2 → F2 defined by A′v(z) = Av(F (z)) + S(z) for every z ∈ Fp2. It is straightfoward to
see that A′v is folded over true, in the definition of [16], by construction.
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Conditioning upon h as in AW,h,true for Au is achieved through the same mechanism as
folding over true with the additional observation that the operation of conditioning upon h
is necessary only if the instance of LABEL COVER fails to satisfy the property that for
every (u, v) ∈ U × V and every a ∈ A there is at least one b ∈ B that satisfies the predicate
P (u, v, a, b). When this is the case, one defines h = hu,v : A → {0, 1} as the predicate
indicating if a given a has at least one b that satisfies P (u, v, a, b), and conditions the table
Au upon h. In our case we do not require this since the given instance of LABEL COVER
is a projection game instance, and, in particular, for every a there is exactly one b, and hence
at least one b, such that P (u, v, a, b) = 1; i.e., h = hu,v is the constant 1 predicate. It should
be added that the reason why we can assume that I is a projection game instance is that our
bipartite reduction is designed in such a way that the values a in A are partial assignments
that always satisfy the corresponding constraints u in U . In constrast, in [16] the values
are taken as arbitrary truth assignments to the variables of a collection of clauses, and not
all such assignments satisfy all the clauses. Our exposition is again more modular and also
matches more recent expositions of the results in [16] (again, see, e.g., [3]).

With this notational correspondance, it is now easy to see that Lemma 5.1 in [16] gives
the first claim in Theorem 4.3, and Lemma 5.2 in [16] applied with δ = (s/ε)1/2/4 gives the
second claim in Theorem 4.3.

D Proof of Theorem 5.5

The proof of Theorem 5.5 proceeds through a series of lemmas.

I Lemma D.1. If G is a d-regular graph on n vertices, for any d ≥ 1, then vc(G) ≥ n/2.

Proof. Let S be any set of vertices in G. Then the number of edges incident on vertices in
S is at most d|S|. Since the number of edges in G is dn/2, if S is a vertex cover d|S| ≥ dn/2
and so |S| ≥ n/2. J

Let G be a graph and C1, . . . , Cm be the partition of the vertices of G given by vertex
refinement. So, there are constants δij such that each v ∈ Ci has exactly δij neighbours in
Cj . Since the graph is undirected, the number of edges from Ci to Cj is the same as in the
other direction and so δij |Ci| = δji|Cj |, for all i and j. Also, δij = 0 if, and only if, δji = 0.

Let X = {i | δii = 0} and Y = {i | δii > 0}. Consider the undirected graph XG with
vertices X and edges {(i, j) | δij > 0}. Consider the instance (XG, w) of weighted vertex
cover obtained by taking the graph XG and giving each vertex i the weight w(i) = |Ci|.
Let pG denote the value of the minimum weighted vertex cover of this instance. Also, let
qG =

∑
i∈Y |Ci|. Finally, define vG = pG + qG.

I Lemma D.2. If G ≡C2 H then vG = vH .

Proof. The value vG is determined entirely by the sizes of Ci in the vertex refinement of G
and the corresponding values of δij . Since G ≡C2 H, these values are the same for H. J

I Lemma D.3. vc(G) ≤ vG.

Proof. Let Z ⊆ X be a minimum-weight vertex cover in (XG, w). Take the set S ⊆ V (G)
defined by S =

⋃
i∈Y ∪Z Ci. Note that the sets Y and Z are disjoint,

∑
i∈Y |Ci| = qG by

definition, and
∑
i∈Z |Ci| = pG by construction. So S has exactly vG vertices. We claim that

S is a vertex cover in G. Let e be any edge of G with endpoints in Ci and Cj . If either i or
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j is in Y , then the corresponding endpoint of e is in S since Ci ⊆ S for all i ∈ Y . If both i
and j are not in Y then both are in X and δij > 0. Thus, since Z is a vertex cover for the
graph XG then one of i or j must be in Z and again at least one endpoint of e is in S. J

For the proof of the next lemma, we need the notion of a fractional vertex cover of a
graph G = (V,E). This is a function f : V → [0, 1] satisfying the condition that for every
(u, v) ∈ E, f(u) + f(v) ≥ 1. It is known that if f is a fractional vertex cover of G, then∑

v∈V f(v) ≥ vc(G)/2 (see [27, Thm. 14.2]). More generally, suppose we have an instance of
weighted vertex cover, i.e. G along with a weight function w : V → N where vc(G,w) is defined
as the value of the minimum weighted vertex cover. Then

∑
v∈V f(v)w(v) ≥ vc(G,w)/2.

I Lemma D.4. vG ≤ 2vc(G).

Proof. Let S be any vertex cover of G. Let UX =
⋃
i∈X Ci and UY =

⋃
i∈Y Ci and note that

these sets are disjoint. We claim that |S ∩ UX | ≥ pG/2 and |S ∩ UY | ≥ qG/2, and therefore
|S| = |S ∩ UX |+ |S ∩ UY | ≥ vG/2, establishing the result.

First, consider S ∩ UY . Note that for any i ∈ Y , the subgraph of G induced by Ci is
δii-regular. Since δii > 0 by definition of Y , by Lemma D.1 we have |S ∩ Ci| ≥ |Ci|/2 and
therefore |S ∩ UY | ≥ qG/2.

Secondly, consider the function f : X → [0, 1] defined by f(i) = |S ∩ Ci|/|Ci|. We claim
that this is a fractional vertex cover of the graph XG. To verify this, we need to check that
f(i)+f(j) ≥ 1 whenever δij > 0. There are δij |Ci| edges between Ci and Cj . Each element of
S∩Ci can cover at most δij of these edges and similarly each element of S∩Cj covers at most
δji of them. Thus, since S is a vertex cover |S ∩ Ci|δij + |S ∩ Cj |δji ≥ δij |Ci|. Substituting
for δji using the identity δij |Ci| = δji|Cj | gives |S ∩ Ci|δij + |S ∩ Cj |δij |Ci|/|Cj | ≥ δij |Ci|.
Now dividing through by δij |Ci| gives f(i) + f(j) ≥ 1.

Thus, we have that the weighted vertex cover instance (Xg, w) admits the fractional
solution f whose total weight is∑

i∈X
f(i)|Ci| =

∑
i∈X
|S ∩ Ci| = |S ∩ UX |.

Since pG is the value of the minimum weight vertex cover of (Xg, w), we have |S∩UX | ≥ pG/2,
as was to be shown. J

Proof of Theorem 5.5. Suppose for contradiction that there is a G ∈ C and H ∈ D such that
G ≡C2 H. Since G and H must have the same number of vertices, we have 2vc(G) < vc(H).
But, by Lemma D.4 we have vG ≤ 2vc(G), by Lemma D.3 we have vc(H) ≤ vH and by
Lemma D.2 we have vG = vH , giving a contradiction. J
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