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Abstract

Background: Primitive endoderm is a cell lineage segregated from the epiblast in the blastocyst and gives rise to
parietal and visceral endoderm. Sox/ is a member of the SoxF gene family that is specifically expressed in primitive
endoderm in the late blastocyst, although its function in this cell lineage remains unclear.

Results: Here we characterize the function of Sox/ in primitive endoderm differentiation using mouse embryonic

stem (ES) cells as a model system. We show that ectopic expression of Sox7 in ES cells has a marginal effect on
triggering differentiation into primitive endoderm-like cells. We also show that targeted disruption of Sox7 in ES

forced expression of Gataé.

from ES cells.
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cells does not affect differentiation into primitive endoderm cells in embryoid body formation as well as by

Conclusions: These data indicate that Sox/ function is supplementary and not essential for this differentiation

Background

Mouse blastocysts at E4.5 consist of three cell types: epi-
blast, primitive endoderm and trophectoderm. The epi-
blast is composed of pluripotent cells that give rise to all
embryonic lineages in later developmental stages [1]. In
contrast, both primitive endoderm and trophectoderm
form extra-embryonic parts such as the yolk sac and pla-
centa, respectively. Primitive endoderm differentiates into
two types of endoderm after implantation. One is the par-
ietal endoderm (PE) that migrates along the mural troph-
ectoderm and covers its inner surface to form the Reichert
membrane. The other is the visceral endoderm (VE) that
covers the outer surface of epiblast and extraembryonic
ectoderm derived from trophectoderm. PE cells show
mesenchymal cell-like characteristics such as stellate
morphology, weak cell adhesion and rapid migration
ability. In contrast, VE cells show typical epithelial
morphology with tight cell adhesion.
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Transcription factors (TFs) have pivotal roles in deter-
mining cell fates in developmental processes. In pre-
implantation embryos, the Gata family zinc-finger tran-
scription factor, Gata6, appears to be the primary TF that
determines primitive endoderm fate as it is expressed at
the earliest time point (E2.5) [2] among the primitive
endoderm-specific TFs, and Gata6-null embryos fail to
form functional visceral endoderm [3]. In addition, recent
reports showed that Gata6 deficient blastocyst-stage em-
bryos fail to form primitive endoderm before implantation
[4, 5]. The family member Gata4 is co-expressed in the
primitive endoderm [6] and possibly shares function with
Gata6. Gata4-null embryos die around E9.5 with both
primitive and definitive endoderm and heart defects [7, 8].
However, chimeric complementation of the extraembry-
onic lineage with wild type cells, allows contribution of
Gata4-null ES cells to cardiac and definitive endoderm
cell lineages without abnormality [9], suggesting that its
importance in proper extraembryonic endoderm develop-
ment is limited. In addition, the involvement of the group
F Sox family members, Sox7 and Sox17, is suggested by
their expression in the primitive endoderm [10, 11] as well
as the inability to derive extraembryonic endoderm (XEN)
stem cells from Sox17-null blastocysts [11]. Sox17-null
embryos show a defect in the primitive endoderm lineage

© 2015 Kinoshita et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://

creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12861-015-0079-4&domain=pdf
mailto:niwa@kumamoto-u.ac.jp
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/

Kinoshita et al. BMC Developmental Biology (2015) 15:37

only in the diapause situation [10, 12]. These findings sug-
gest that their roles are not in the formation, but rather
the maturation to PE and VE. Sox7-null embryos have re-
cently been reported to have a lethality phenotype before
E14.5 with heart development failure [13], further suggest-
ing a redundant role in primitive endoderm development.
Detailed analyses of the expression patterns of these four
transcription factors in wild-type and mutant embryos
supports a model of sequential Gata6 — Sox17 —
Gatad — Sox7 transcription factor activation within the
primitive endoderm lineage [10], although the precise
function of Sox7 in this process is unclear.

In addition to XEN cells, embryonic stem (ES) cells
derived from pre-implantation stage epiblast provide a
powerful tool to analyze the functions of transcription
factors in determining cell fates. We have previously re-
ported that forced expression of either Gata4 or Gata6
in ES cells triggers their differentiation to primitive
endoderm cells that exhibit the characteristics of XEN
cells in their morphology, gene expression patterns and
their ability to contribute to PE after blastocyst injection
[14, 15]. Shimoda et al. reported that over-expression of
Sox17 in ES cells was not able to induce differentiation
but rather facilitated the differentiation of the primitive
endoderm that spontaneously differentiated toward PE
and VE cells on the surface of an ES cell aggregate, em-
bryoid body (EB). [16]. They also reported that Sox17-
null ES cells showed a defect in maturation of PE and
VE in EBs, suggesting a role for SoxI7 in late stages of
extraembryonic endoderm development. A similar defect
was observed in EBs made with Gata4-null ES cells [17,
18]. Therefore, in vitro differentiation systems of ES cells
are regarded as good models of primitive endoderm
differentiation, and allow the assessment of the gene
function involving in the process [19].

Here we report the function of Sox7 in the context of
differentiation of primitive endoderm cells derived from
ES cells. We find that inducible expression of Sox7 causes
marginal differentiation of ES cells towards primitive
endoderm, and that Sox7-null ES cells normally generate
primitive endoderm cells in EBs and differentiate to XEN
cells by the activation of Gata6. These results indicate that
Sox7 function is not essential for either differentiation to
primitive endoderm or for maturation to PE or VE.

Results

Parallel up-regulation of Sox7, Sox17 and Gata4 is triggered
by the artificial activation of Gataé6 in ES cells

We previously reported that artificial induction of Gata6
transcriptional activity using a chimeric transgene com-
posed of full-length mouse Gata6 and human glucocortic-
oid receptor ligand-binding domain (G6GR), induces
homogeneous differentiation of mouse ES cells into XEN-
like cells when their nuclear localization is induced with

Page 2 of 11

dexamethasone (Dex) [15]. To investigate the sequential
activation of other TFs expressed in the primitive endo-
derm during mouse development, we first performed
qPCR analysis along the time-course of differentiation
after addition of Dex to the medium. Sox7 and Sox17, as
well as the endogenous Gata6, started to be up-regulated
within 2 hours after addition of Dex while Gata4
remained at the basal level (Fig. 1). At 24 hours after the
addition of Dex, all 4 of these TFs were dramatically up-
regulated as well as other TFs such as Hnf3b/Foxa2 and
Snail (Fig. 1). These data suggested that both Sox7 and
Sox17 could be direct targets of Gata6 in mediating its
function of triggering differentiation toward primitive
endoderm.

Forced expression of Sox7 in ES cells shows marginal
impact on differentiation to XEN-like cells

Since the assessment of the effect of overexpression of
Sox17 in mouse ES cells has been reported by several
groupes [11, 16, 20—22], here we focused on the function
of Sox7. We applied a tetracycline (Tc)-inducible gene
expression system with Cre-mediated cassette-exchange
[23], the Rosa-tet system, for the induction of Sox7
transgene in ES cells. We previously confirmed that this
system provides a moderate level of homogeneous trans-
gene expression from the G{ROSA)26Sor locus upon
withdrawal of Tc, which was sufficient for Gata6 to in-
duce differentiation to the primitive endoderm [23]. As a
result, we found that Sox7 over-expression using this
system cannot make ES cells differentiate completely
(Fig. 2a, b). Despite the total expression level of Sox7
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Fig. 1 Up-regulation of extraembryonic endoderm-associated
transcription factor genes after induction of Gata6GR. The expression
levels of extraembryonic endoderm-associated transcription factor
genes were estimated by qPCR analysis in 5G6GR ES cells carrying
Gata6GR after Dex treatment and the relative expression levels
normalized by Gapdh were shown along the time course. The level
of expression of each transcript in EB3 ES cells cultured without LIF

for 120 hours was set at 1.0. Error bars indicate standard deviation (n = 3)
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Fig. 2 Effect of Sox/ overexpression in ES cells. (a, b) ES cells carrying tetracycline-inducible Sox7 transgene at the modified Rosa26 locus are
cultured for 4 days with (a) or without (b) tetracycline in the presence of LIF. Scale bar =200 um. (c) gPCR analysis of day 4 Sox7 expressing
cells. Results are relative expression level to embryo-derived XEN cells and normalised to Gapdh. Two independent experiments by different
clones (RTS7-8 and —9) are shown. Error bar represents standard deviation from triplicates
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being about ten times higher than that of embryo de-
rived XEN cells, these cells do not express comparable
amount of primitive endoderm-associated TFs such as
Gata4, Gata6, Sox17 and Foxa2, and maintain the ex-
pression levels of pluripotency-associated genes (Oct3/4,
Sox2 and Nanog) at high levels (Fig. 2c). These data indi-
cate that the impact of Sox7 overexpression in driving the

primitive endoderm differentiation program is quite mar-
ginal, that is much weaker than Gata6.

Sox7 is not essential for the generation of primitive
endoderm in ES cells

Gain-of-function analysis of Sox7 in ES cells suggested
that it has a marginal impact on determining primitive
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endoderm fate compared to Gata6. To test whether it
plays a physiological role in this process, we generated a
Sox7-null ES cell line by gene targeting. The targeting
vector was designed to remove the entire coding se-
quence spanning two exons. The first allele knockout
clone was generated by the introduction of Sox7 KO
vector into EB3 ES cells followed by genotyping using
Southern blot (Fig. 3a, b). Then one heterozygous clone,
termed S7mtl, was selected with a high-dose of puro-
mycin to obtain homozygous cells by a spontaneous
gene conversion event [24] (Fig. 3¢c). As a result, we suc-
cessfully established two Sox7-null ES cell lines (S7N4
and S7N7).

These Sox7-null ES cells were morphologically normal
and continued self-renewal in a manner similar to the
parental EB3 ES cells. We then tested their ability to
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differentiate to extraembryonic endoderm by embryoid
body (EB) formation assay. The EBs generated in a hang-
ing drop culture of Sox7-null ES cells for 5 days were
morphologically similar to those of parental ES cells and
possessed the extra-embryonic endoderm layer at the
surface (Fig. 4a-f). Next, we measured the expression of
marker genes in these EBs by qPCR. During differenti-
ation, Sox7 was up-regulated in EBs derived from het-
erozygous S7mtl, but not in those derived from Sox7-
null ES cells, S7N4 and S7N7 (Fig. 4g), confirming loss
of Sox7 in these mutant cell lines. When the expression
levels of VE and PE marker genes were tested in these
EBs, we found that all of them were properly expressed
in EBs from Sox7-null ES cells at day 5, as they were in
EBs from EB3 ES cells, indicating normal generation of
PE and VE in the absence of Sox7 (Fig. 4h). Next, we
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(See figure on previous page.)

Fig. 4 Differentiation of Sox7-null ES cells by EB formation. (a-c) Gross morphology of EBs at day 5 in each genotype indicated. Scale bar in C is
200 pum. (d-f) EBs in (a-c) were sectioned and stained with hematoxilyn and eosin. Scale bars are 100 um. (g) Time course gPCR analysis of Sox/
expression in Sox7-null clones (N4 and N7) and their parental heterozygote line (mt1) duirng EB formation. The relative expression levels normalized
to Gapdh were shown with the error bar for standard deviation (n = 3). (h) gPCR analysis of gene expression in EBs at day 6. The relative expression levels
normalized to Gapdh were shown with the error bar for standard deviation (n = 3). VE genes are marked in orange and PE genes are marked in blue.
(i-k) VE fractions of EBs at day 7 were analyzed by FACS. Dead cells were eliminated by PI staining and living cells were separated by the staining
with anti EpCam-PE and anti DpplV-APC. Double-positive fraction was indicated with its proportion (%). (I) gPCR analysis of VE fractions collected by

deviation (n=3)

FACS. Relative expression levels to S7mt1 parental line are presented. Expression levels were normalized to Gapdh with the error bar for standard

J

assessed the proportion of VE by FACS analysis for cell
surface markers (Dpp4 and Epcam) that are expressed in
VE but not in definitive endoderm [25]. We found that
the proportion of the double positive fraction of Dpp4
and Epcam cells was similar in EBs of Sox7-null ES cells
(Fig. 4i-k). We then collected this double positive frac-
tion and analyzed the marker gene expression pattern.
As shown in Fig. 41, the expression level of the extraem-
bryonic endoderm markers that we examined (which
also include PE markers such as Thbd, Sparc and tPa)
were not affected in both genotypes. These data show
that the extraembryonic endoderm differentiation was
almost completely unaffected by the deletion of Sox7.

Sox7-null ES cells can differentiate into XEN-like cells

As we showed above, Sox7 is quickly up-regulated by
the activation of G6GR in ES cells (Fig. 1). To test the
function of Sox7 in Gata6-induced differentiation toward
XEN-like cells, we firstly introduced the G6GR expres-
sion cassette into S7mtl (+/-) line (termed S7mtGl1)
and obtained Sox7-null ES cells from this parental line
by high-dose puromycin selection (Fig. 3c). When these

ES cells were cultured with Dex, they differentiated into
XEN-like cells as efficiently as the parental S7mtG1 ES
cells (Fig. 5a, b). Western blot analysis confirmed the
proper induction of Sox17, Gata4 and Gata6 without Sox7
in these XEN-like cells (Fig. 5c). Therefore, the morpho-
logical differentiation to primitive endoderm triggered by
Gata6 does not require the function of Sox7.

Sox7 is not required for induction of primitive endoderm-
specific gene expression profile by Gata6

To clarify the gene expression profile of Sox7-null XEN-
like cells, we performed DNA microarray analysis. The
results were analysed using the NIA array analysis tool
[26]. Firstly, we identified differentially expressed genes
(more than two fold, FDR < 0.05) before and after Dex
treatment in Sox7 (+/-) cells carrying GatabGR (IN1)
(Fig. 6a). Then, these genes were analysed in Sox7 (-/-)
cells carrying Gata6GR (IN6) to examine the differences
(Fig. 6b, ¢ and d). Comparison of 668 probes upregu-
lated in Sox7 (+/-) confirmed that 86.7 % of them (579
probes) were also up-regulated in Sox7 (—/-) cells. This
includes important TFs such as Gata4, Foxa2 and Sox17

-

Fig. 5 Differentiation of Sox/-null ES cells by Gata6GR. (a, b) The morphology of XEN-like cells induced by the activation of Gata6GR with Dex
treatment for 4 days in Sox7 (+/-) (a) and Sox7 (—/-) (b) ES cells. Scale bars are 200 um. (c) Western blot analysis of the expressions of the
extraembryonic endoderm-associated transcription factors in XEN-like cells with or without Sox/
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Fig. 6 Microarray analysis of XEN-like cells with or without Sox”. (a, b) Scatter plots showing gene expression of ES cells (in X-axis) and XEN-like
cells (in Y axis). The value is mean of log intensity from three replicates. Probes more than 2 fold change with FDR < 0.05 are shown. (c, d) Venn
diagram showing the number of the probes which are over-lapped with each genotype. (e, f) Scatter plots created from the gene list (Additional
file 2) identified in (c) and (d), respectively. Each probes was plotetted according to their gene symbol and Sox7 (+/-) specific are shown in red
and Sox7 (—/—) are in blue. Greens in (f) show probes expresssed more than 3 fold. The value in both axis is mean of log intensity from three rep-
licates. (g) The result of GO term analysis of biological process by using Sox7 (+/-) 79 probes in (c). Top four from the lowest p-value GO terms
are shown. IN1-D: Sox7 (+/—) ES cells; INT + D: Sox7 (+/—) XEN-like cells; IN6-D; Sox7 (—/—) ES cells; IN6 + D; Sox/ (—/—) XEN-like cells

as well as extraembryonic-endoderm genes such as Fst,
Sprac and Thbd (Expression patterns of chosen extraem-
bryonic endoderm genes are shown in Additional file 1:
Figure S1). However, 69.4 % of the probes (1311 probes)
which were highly expressed in Sox7 (-/-) XEN-like
compared to ES cells were not enriched in Sox7 (+/-)
XEN-like cells (Fig. 6¢) and only 61.7 % of down-
regulated probes (1644 probes) in Sox7 (+/-) overlapped
with Sox7 (-/-) (Fig. 6d). This suggests that loss of Sox7
has little effect on the induction of extraembryonic
endoderm genes, but its loss affects the magnitude of
the down-regulation of ES-associated genes or hyper in-
duction of extraembryonic endoderm-associated genes
in this process.

Next, we re-plotted these differentially expressed genes
to identify genes which are significantly up- or down-
regulated in Sox7 (-/-) XEN-like cells (Fig. 6e, f and
Additional file 2). We confirmed that 79 probes out of
89 identified in Fig. 6¢ are under-expressed in Sox7
(-/-) XEN-like cells (plotted in red in Fig. 6e), and that
the 74 probes out of 1017 probes identified in Fig. 6d
are more than 3 fold higher in Sox7 (-/-) XEN-like cells
than in Sox7 (+/-) XEN-like cells (plotted in green in
Fig. 6f). Among the Sox7 (+/-) specific 89 probes, we
could identify 22 genes which are not upregulated in
Sox7 (-/-) XEN-like cells (by visual inspections with the
threshhold value in Sox7 (-/-) XEN-like cells of 2.1,
expresssion profile of these are shown in Additional file
3: Figure S2). These data suggest that Sox7 function is
not required for the induction of most of the extra-
embryonic endoderm-specific genes although it may in-
volve in the down-regulation of the ES-associated genes.
What is the nature of the 79 genes that fail to be up-
regulated in Sox7 (-/-) XEN-like cells? When we per-
formed GO term analysis for these 79 genes, we found
that the significantly-enriched GO terms (P < 0.01) were
blood vessel development, and vasculature development,
confirming that the expression of the extraembryonic
endoderm genes was not affected in the absence of Sox7.

Discussion

Primitive endoderm is the second cell lineage segregated
in mouse development and is essential for proper em-
bryonic development. A recent report proposed a three
step mechanism to direct differentiation of primitive

endoderm [27]. The first step is the initiation of Gata6
expression in the blastomeres of morula in a Fgf4-
dependent manner at E2.5-E3.0. The second step is the
competition between Nanog and Gata6 to establish their
reciprocal expression in epiblast and primitive endo-
derm, respectively, in the early blastocyst at E3.0-E3.5.
The third step is the maturation of primitive endoderm
by induction of Gata4 and Sox17 in a Fgf4-dependent
manner in the late blastocyst at E3.5-E3.75. It was also
reported that Sox7 is up-regulated in primitive endo-
derm of the late blastocyst following the up-regulation
of Sox17 and Gata4 [10], suggesting its role in finalizing
the maturation step. Here we demonstrated that the
function of Sox7 is dispensable for both differentiation
and maturation of primitive endoderm in an ES cell
model system.

In human ES cells, it was shown that Sox7 overexpres-
sion induces primitive endoderm differentiation [28].
However, here we showed that the inducible overexpres-
sion of Sox7 is not sufficient to trigger rapid differenti-
ation toward primitive endoderm, although the inducible
expression of Gata6 with the same system is sufficient
[23]. These data are consistent with the scenario where
Gatab acts as a trigger of differentiation toward primitive
endoderm whereas Sox7 acts later on. In the case of
Sox17, several reports indicated that its forced expression
in mouse ES cells causes their differentiation to primitive
endoderm as well as XEN-like cells [11, 16, 20-22]. How-
ever, in these instances, the effect of Sox17 is limited to
the induction of endoderm marker genes without a mor-
phological differentiation event or gradual induction of
differentiation to XEN-like cells after 12 days [22], and
none of them demonstrated comparable activity of Sox17
to induce rapid differentiation to XEN-like cells within
4 days as in the cases for Gata4 and Gata6. Although we
have not tested the ability of Sox7 to induce gradual differ-
entiation, the previous data for Sox17 and the data pre-
sented in this manuscript for Sox7, suggest that the
function of SoxF family member as a trigger of differenti-
ation is distinct from that of Gata factors.

Recently, Sox7 KO mice were generated to test its role
in congenital diphragmatic hernia (CDH) development
[13]. It was shown that, Sox7 null embryos died between
E10.5 and E14.5, and that null embryos were indistin-
guishable from WT embryos at E8.5 stage. This result
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clearly shows that in vivo Sox7 depletion does not affect
the formation of extramebryonic endoderm tissues
which supply developemental signals as well as nutrients
to the embryo. It is consistent with our observations in
vitro using Sox7-null ES cells, in which Sox7 is dispens-
able for differentiation of extraembryonic endoderm by
EB formation and by artificial activation of Gata6. In the
analyses of gene expression induced by Gata6, we found
that the extraembryonic endoderm-associated genes
were properly up-regulated in the absence of Sox7, indi-
cating that Sox7 is not required for establishment of the
extraembryonic endoderm-associated gene expression
profile. Only 79 genes were activated in wild-type but
not in Sox7-null XEN-like cells, but the GO term ana-
lysis revealed that these genes are enriched for vascula-
ture development. This is an interesting coincidence,
given the finding that Sox7 is expressed in vascular
endothelial cells in later development and Sox7-null em-
bryos showed failure of yolk sac remodeling with signs
of vascular failure [13]. This suggests an indispensable
role of Sox7 in vascular development both in vivo and in
vitro.

Dispensability of the Sox7 function in extraembryonic
endoderm development might be due to the functional
overlap with similar genes. Sox7 belongs to the group F
Sox family that includes Sox17 and Sox18 as the other
members. It was reported that these three group F Sox
family genes could have overlapping function. The loss
of either Sox17 or Sox18 does not affect the extraembry-
onic endoderm development, as is the case for the loss
of Sox7 [12, 29]. Interestingly, the analysis of knockout
mice demonstrated the overlapping function of SoxI17
and Sox18 in early cardiovascular development [30], and
Hosking et al. presented that the effect of the loss of
Sox18 in vascular development is compensated by Sox7
and Sox17 in particular genetic backgrounds, in which
these genes are up-regulated in Sox18-null embryos al-
though they are never expressed in wild-type embryos
[29]. In primitive endoderm, Sox17 showed an overlap-
ping expression pattern with Sox7, and Niimi et al. re-
ported that both Sox7 and Sox17 activate the PE-
specific enhancer of the Lamal gene, suggesting their
overlapping function [31]. The comprehensive analysis
of the group F Sox family members will be required to
reveal their precise function in extraembryonic endoderm
development.

Conclusions

Sox7 was considered to be an important molecule for
primitive endoderm differentiation because of its re-
stricted expression pattern. However, this ES cell based
study shows that Sox7 (—/-) ES cells can differentiate into
primitive endoderm lineage by spontaneous EB differenti-
ation and Gata6-mediated XEN-like cell conversion. These
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results show that Sox7 is dispensable for this lineage con-
version event.

Materials and methods

All experiments were performed according to the guide-
lines of RIKEN, Center for Developmental Biology with
the approval of the RIKEN, Center for Developmental
Biology institutional review board.

Cell culture

All ES cell lines and XEN cell line used in this study were
maintained in GMEM (Sigma-Aldrich) supplemented
with 10 % FCS, 1x NEAA, 1 mM Sodium Pyruvate, 10*M
2-mercaptoethanol, and 1,000 U/ml of LIF on gelatin
coated dish. EB3 cell line was used to target Sox7 locus.
After the electroporation, selection was performed in the
presence of 1.5 pg/ml of puromycine. High dose puromy-
cine selection was performed at 22.5 pg/ml. Gata6-GR in-
duced differentiation experiments were performed in the
presence of 100 pM Dex with ES medium containing LIF.
EB formation was performed in hanging drop culture at
the concentration of 5,000 cells per drop without LIF.

Plasmid vectors and introduction into ES cells

For Cre-recombinase mediate casette exchange, we
cloned Sox7 ¢cDNA into pZhc vector (http://www.cdb.ri-
ken.jp/pcs/protocol/vector/vector_top.html). Lipofection
was done by TransIT-LT1 (Mirus). In Rosa-tet system,
1.6 pg of pZhc-Sox7 plasmid are cotransfected with
0.4 pg pCAGGS-Cre in 6-well plates and selceted clones
in the presence of 20-40 pg/ml of Zeocin. Following
drug selection, clones were chosen by the FACS analysis
of Venus expression level when Tc was withdrawed.
Gata6-GR is cloned into pPBCAG-cHA-IN vector and
introduced 1.6 pg of them into ES cells by lipofection
with 0.4 pg of pCAG-PBase. Sox7 targeting vector was
constructed by the method described before [32] with
PDONR-PGK-pacATK. Targeting vector was designed
for future casette exchange, so drug resistance casette
was flanked with JoxP and lox2272 [33]. Oligo nucleo-
tides sequence retrieving the targeting arm from BAC
are A:5'- TTAGGGAAAGGAACATGGATCCTAAGTC
TATGTCTCCAAATGGAGGGTCACAACTTTTCTAT

ACAAAGTTGGCATTAT-3', B: 5'-CAGGTCAGCGCC
GGCCCCACGAGGCGAAGCCAAGTGACCCGCGTT

CGGCCATAACTTCGTATAGGATACTTTATACGAAG
TTATATGGCAAGTTTGTACA-3’, C: 5'-GAGACCTA
GTATGAATTTAAAAAAAATACTATTTCAAAGGAT

AGAATGGTATAACTTCGTATAATGTATGCTATACG
AAGTTATCCACTTTGTACAAGAA-3" and D:5'-TCC

ATTTTCAAATGCCCTGGTCACCCCAGAGGCCCCA
AGAAGGCAGTTATCAACTTTATTATACAAAGTTG

GCATTAT-3'. Targeting vector was linearised by Pmel
and electroporated at 800 V, 3 pF by Gene pulser (BioRad).


http://www.cdb.riken.jp/pcs/protocol/vector/vector_top.html
http://www.cdb.riken.jp/pcs/protocol/vector/vector_top.html
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Southern Blot

Genomic DNAs were digested with EcoRV and then
transferred to nylon membrane. Sox7 3’ external probe
was amplified with primers 5'-GAAAAGATAGGAATAC
CAG-3" and 5'-AATGCAATCACAGTGAGACT-3’, and
full length pac sequence was used as an internal probe.

FACS analysis

Cells were analyzed and collected by FACS Aria (BD) with
anti-DppIV antibody (R&D) and anti-EpCam antibody
(eBioscience). Dead cells were eliminated by propidium
iodide.

Western blot

Western blot was done as described previously [34]. The
antibodies used were goat anti-Gata4 (Santa Cruz), goat
anti-Gata6 (R&D), goat anti-Sox7 (R&D), goat anti-
Sox17 (R&D) and rabbit anti-Cdk2 (Santa Cruz).

Quantitative RT-PCR

Primers and methods were followed as described previ-
ously [15]. Primers used for Thbd were 5'-CTTCTCCAA
GTCCCTTCACG-3" and 5'- CTGTGTTGCTAGCAG
GTGGT-3', and for Sox”7 cds were 5'-AGATGCTGG
GAAAGTCATGG-3" and 5'-GCTTGCCTTGTTTCT
TCCTG-3".

Microarray analysis and GO term analysis

RNAs are isolated from ES cells and XEN-like cells at day
4. DNA microarray analyses were performed using a Sure-
PrintG3 Mouse GE Microarray 8x60K (Agilent Technolo-
gies). Microarray results were analyzed uisng NIA Array
Analysis Software. Complete array data will be available
on the GEO (NCBI) website. GO term analysis was per-
formed by DAVID (http://david.abcc.ncifcrf.gov) [35, 36].

Availability of supporting data
The results of DNA microarray is available from NCBI

gene expression omnibus, accesion number GSE66971.

Additional files

Additional file 1: Figure S1. The expression pattern of extraembryonic
endoderm genes with or without Sox7 in Gata6 induced XEN-like cells.

Additional file 2: Xlsx file containing the results of DNA microarray
data. Entire gene lists with expression values of Sox7 (+/-) or (-/-) ES
cell and XEN-like cells and gene lists with values used for generating

Fig. 6e and f are included. Sox7 (+/-) ES cells and XEN-like cells are des-
ignated as IN1-D and IN1 + D, Sox7 (—/—) ES cells and XEN-like cells are
designated as IN6-D and IN6 + D respectively.

Additional file 3: Figure S2. Genes which failed to upregulated in Sox7
(=/-) XEN-like cells.
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