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Abstract
Background: The Anglia Menorrhagia Education Study (AMES) is a randomized controlled trial
testing the effectiveness of an education package applied to general practices. Binary data are
available from two sources; general practitioner reported referrals to hospital, and referrals to
hospital determined by independent audit of the general practices. The former may be regarded as
a surrogate for the latter, which is regarded as the true endpoint. Data are only available for the
true end point on a sub set of the practices, but there are surrogate data for almost all of the
audited practices and for most of the remaining practices.

Methods: The aim of this paper was to estimate the treatment effect using data from every
practice in the study. Where the true endpoint was not available, it was estimated by three
approaches, a regression method, multiple imputation and a full likelihood model.

Results: Including the surrogate data in the analysis yielded an estimate of the treatment effect
which was more precise than an estimate gained from using the true end point data alone.

Conclusions: The full likelihood method provides a new imputation tool at the disposal of trials
with surrogate data.

Background
The Anglia Menorrhagia Education Study (AMES) [1,2] is
a randomized controlled trial which tested the effective-
ness of an "academic detailing" education package [3] in
primary care and hospital gynaecology units to improve
the management of women with menorrhagia (excessive
menstrual bleeding). Here we are concerned with the first

phase of this trial and only consider data from primary
care.

The general practice was the unit of randomization and
the primary outcome measure of interest was the propor-
tion of referrals of women with menorrhagia to hospital.
In this part of the trial, data were collected in two ways.
Firstly the doctors in the practices in the study were asked
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to keep a record of consultations for menorrhagia, with
outcome of consultation, on supplied data sheets. We
refer to this as the reported data. Secondly, an audit of
52% of the practices was performed after the trial was
over. This was performed in order to have an objective
measure of referral which did not depend on a busy prac-
titioner reporting. 52% of the practices was considered
enough for sufficient power having seen the reported data.
The reported data was only recorded for one year post-
intervention, whereas one-year pre-intervention data was
also available for the audited part of the trial. Total num-
bers of patients seen and patients referred for the reported
and audits phase are given in Table 1. This paper is con-
cerned with combining the reported and audited data
from the primary care part of the trial. The reported data
may be regarded as a surrogate for the audited data. There
were 54 practices randomized to receive the education
package and 46 to control. In the reported part of the
study, 76 practices returned at least one data sheet (40
intervention, 36 control). The rest either returned no data
sheets (5 practices) or no data sheets for menorrhagia (19
practices). It is conceivable that the surrogate reported
endpoint data is missing because of some property of the
practice which is related to the practice's likelihood of
referring a patient, although this is unlikely to make a
material difference to the results. No attempt is made to
impute this missing reported data. 52 practices were cho-
sen at random to be audited (27 intervention, 25 control).
Of the practices audited, 50 also supplied reported data
(26 intervention, 24 control). Hence partial data on the
true endpoint and partial data on a surrogate are
available.

In analysis, one might simply exclude those practices
which do not have audited data. On the other hand, it is
reasonable to suppose that some information, albeit less
reliable, is contained in the reported data. Surrogate end-
points have been used in a variety of studies, notably in
trials of cancer screening [4]. A criterion frequently used to

assess the usefulness of a surrogate variable is the Prentice
criterion [5], which stipulates that the effect of the treat-
ment on the true endpoint is entirely attributable to its
effect on the surrogate. Begg and Leung [6] point out that
even if this holds, the absolute magnitude of the effect on
the true endpoint may be different from the magnitude of
the effect on the surrogate. Begg and Leung also contend
that it is more important that the surrogate be strongly
correlated with the true endpoint. It is therefore desirable
to estimate the effect of the surrogate on the true end-
point, even if only surrogate information is available. In
our case, we have true audited endpoint data on 52 of the
100 study practices. Of these 50 out of 52 (96%) also have
surrogate reported endpoint data. Of the remaining 48
practices, 26 (54%) provided surrogate data only and 22
(46%) provided no data at all. From this information, it is
possible in principle to estimate the relationship between
the surrogate and the true outcome, and therefore the trial
results for all 78 practices providing surrogate or true end
point data or both. In this paper we are using the surrogate
variable to strengthen inference about the true endpoint.
In this case the surrogate variable is known as an auxiliary
variable [7].

Three approaches are considered. A regression method,
multiple imputation and a full likelihood model. The
regression method is a three stage process. Firstly, the
observed audited data is modelled as a function of the cor-
responding reported data and general practice characteris-
tics. Secondly, the missing audited data is generated using
the parameter estimates from this modelling. Thirdly, a
random effects model is fitted to assess the effectiveness of
the intervention. This model also includes a term that
denotes whether the true endpoint was observed or esti-
mated. Multiple imputation generates several realisations
of the missing audited data, given the observed data. Each
of these imputed data sets is then used to generate an
estimate of the effectiveness of the intervention. Finally
each of these estimates is combined to give an overall

Table 1: Reported and audited outcome data

Trial phase Audited Pre-intervention Post-intervention
Intervention Control Intervention Control

Patients seen 307 209 418 237
Referrals 56 39 80 63
Number of practices 27 25 27 25

Reported

Patients seen NA NA 381 215
Referrals NA NA 93 92
Number of practices NA NA 40 36
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estimate of the true outcome effect. The full likelihood
model generates an imputation of the missing audited
data from the reported and audited data, and performs the
randomized trial comparison simultaneously. In all these
approaches, we are assuming the audit data is missing at
random (MAR) [8] i.e. the missing audit data mechanism
is only dependent on observed reported data (and also
observed practice characteristics in the regression
method). The exception to this is in the first of two multi-
ple imputation approaches used. The missing data is gen-
erated solely from the observed audit outcome data. This
is a missing completely at random (MCAR) mechanism as
the reason an audit outcome is missing is assumed not to
depend on any other observed or missing values. MAR
and MCAR both assume the reasons for missing data do
not depend on knowing unobserved data. A final type of
missing mechanism, not assumed in this paper, is not
missing at random (NMAR). Here the reason for missing
audit data depends on unrecorded missing values. Data
that are MCAR and MAR are sometimes referred to as
"ignorable" because estimation of the model parameters
is valid even if one does not estimate the parameters of the
missing data mechanism. However, data this is NMAR is
referred to as "non-ignorable" because estimates of model
parameters are invalid if one does not estimate the param-
eters of the missing data mechanism. Date available are
summarised in Table 1. General practice characteristics are
shown in Table 2 by trial arm.

The aim of this paper is to estimate the treatment effect
using data from every practice in the study. Where the true
endpoint is not available, it is estimated via a surrogate by
three approaches, a regression method, multiple imputa-
tion and a full likelihood model.

Methods
Since our endpoint was referral of individual patients, but
the unit of randomization was general practice, all models
assessing the treatment effect incorporated a random

effects component for practice, to take account of this
cluster randomization [9]. Logistic regression is used in all
the analysis. If r, the number of referrals is 0; or if r = n, the
number of patients seen, this causes problems with some
of the methods used. When this occures r is replaced by r
+ 0.5 and n is replaced by n + 1 [10]. For consistency all
analysis are performed on the same data set, regardless of
whether this change is necessary for a particular analysis.

Regression models
For the 26 practices which were not audited, but for which
we had reported data, our aim was to predict what audit
data (pre and post intervention numbers of patients seen
and referred) would have come from these practices had
they been audited. We used the post intervention reported
data to predict both the pre and post intervention audited
data. We also included practice characteristics in this pre-
diction. Log linear regression models were fitted, where
the audited data is a function of the reported data and the
practice characteristics. Then estimated parameters from
these models were used to estimate the missing values
from the audited data. Finally, the overall effect of inter-
vention was estimated by a random effects logistic regres-
sion model, where an extra random effect was included to
add extra variance from the observations that were esti-
mated and not observed.

Firstly, we fitted log linear regression models of audit data
on reported data and practice characteristics. Randomiza-
tion group status was included in the practice
characteristics vector in the pre-intervention regression, as
reported data, the crucial independent variable, is only
observed after the intervention, and the relationship
between reported behaviour after intervention and true
behaviour before intervention may be modified by the
effect of the intervention (e.g. a reduction in referral rates
after intervention in the groups receiving the interven-
tion). On the other hand, in the post-intervention regres-
sion, the reported and audited data are observed post-

Table 2: General practice characteristics

All audited patients All patients with reported data
Practice characteristic Intervention Control Intervention Control

Mean list size 6974 5167 6965 5314
Fund-holding 7/27 26% 4/25 16% 11/40 28% 6/36 17%
Has branch surgeries 15/27 56% 16/25 64% 17/40 43% 24/36 67%
Rural 10/27 37% 7/25 28% 16/36 44% 9/36 25%
Has drug dispensing facilities1 0.34 0.42 0.32 0.44
Male partners1 0.63 0.77 0.67 0.76
Has trainees 15/27 56% 9/25 36% 15/40 38% 9/36 25%
Partners on obstetric list1 0.92 1.00 0.89 0.99

1 = characteristic is measured as a mean proportion
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intervention, so the effect of intervention is already
included. The following models are fitted for the 50 prac-
tices that were audited and which returned at least one
reported data form:

nb and na denote the number of women presenting with
menorrhagia before and after intervention from the
audited data respectively; nr denotes the corresponding
number from the post-intervention reported data. rb, ra

and rr are the corresponding number of referrals from the
pre- and post-intervention audited and post-intervention
reported data respectively. p2 is the vector of the eight prac-
tice characteristics given in table 2, and p1 this same vector,
but also including the randomization group of the
practice.

The values of α, β and γ are used to generate fitted values
for the 76 practices which have reported data. A full data
set can now be constructed for all 78 practices with any
data at all. For the 52 practices with observed audited
data, this is used, and the fitted values are ignored. Plots
of observed data verses fitted values for the 50 practices
that supplied both audited and reported data are shown
in Figure 1. This is to gauge visually how well the reported
data predicts the audited. For the 26 practices which only
had reported data, the fitted audit values are used. This
data is then used in fitting the following random effects
model:

Where nijkl and rijkl are the number of women presenting
with menorrhagia, and the number of women referred in
practice i, from intervention group j (0 = control, 1 = inter-
vention), in study period k (0 = pre-, 1 = post-interven-
tion). This comes from observed audited data where
available (l = 0), and fitted audited data where it is missing
(l = 1). πijkl denotes the true underlying probability of
being referred. R, T and E are dummy variables: R00 = R01
= R10 = 0 (control group and intervention group pre-inter-

vention), R11 = 1 (intervention group post-intervention),
T0 = 0 (pre intervention), T1= 1 (post intervention) and E0
= 0 (observed), E1 = 1 (estimated). β is used to denote the
log odds ratio of being referred in an intervention practice
post intervention compared to a control practice or inter-
vention practice pre intervention. In this model we allow
a variation in trend for each practice γi, around an average
trend for all practices µ1. There is a common intercept for
each practice, within trial arm, at the point (Tk - 0.5). δi is
a random effect that is "switched off" for the practices that
have observed audited values and "switched on" for the
practices that use estimated audited values. In this way
extra variability is allowed in the model for the practices
that have estimated audit information.

Multiple imputation
Methodology
Multiple imputation using auxiliary variables can be used
to strengthen the true endpoint [11]. In our case we use an
approximate Bayesian bootstrap method. Each practice's
audited data is regarded as a single data point. The basic
method is to take bootstrap re-samples of the known
audited data and from these, take smaller bootstrap sam-
ples to simulate the missing data. Underlying this is the
theory that we are sampling from a scaled multinomial
distribution as an approximation to a Dirichlet posterior
distribution [12]. Thus the data has to be expressible as a
realisation of a discrete categorical variable, which in this
case holds, albeit with a large number of possible
realisations.

More formally suppose we have a vector of discrete data Y,
that contains observed values Yobs and missing values Ymis.
Y can take values d1...dK with probabilities θ = (θ1,..., θK)
respectively. Rubin [13] defines a Bayesian bootstrap
implementation. A Dirichlet prior distribution is defined
for θ, from a non-informative prior. One realisation, θ*,
of θ is drawn from its posterior. Finally the components of
Ymis are independently drawn from d1...dK, such that the P

(drawing dk) = k = 1...K. This gives one imputation of

the complete data Y. The process is repeated M times to get
M multiple imputations.

The Bayesian bootstrap imputation is complicated to
implement as it requires sampling from a Dirichlet
distribution, followed by taking a weighted sample from
the possible values the components Y can take. There is a
simple approximation to the Bayesian bootstrap method,
also defined by Rubin [13] which is easier to compute in
practice.

Suppose Yobs and Ymis is of length n0 is of length n1. The
approximate Bayesian bootstrap imputation is as follows:
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• Draw n1 components, with replacement, from Yobs. Call

this vector .

• Draw n0 components, with replacement from . This

sample is the imputed Ymis.

In this way the approximate Bayesian bootstrap method
draws θ from a scaled multinomial distribution rather

then a Dirichlet posterior as in the Bayesian bootstrap
case.

Suppose we wish to estimate β from the data. M different
point estimates of β, and its variance will be estimated
from each of the imputed data sets, and we call these

. Rubin [14] gives the following rule for com-

bining these estimates into a single estimate. The com-
bined point estimate is the average of the M point
estimates from the imputed data:

Plots of observed versus fitted values for the 50 practices that supplied audited and reported dataFigure 1
Plots of observed versus fitted values for the 50 practices that supplied audited and reported data. The observed values corre-
spond to the audited information recorded, the fitted values correspond to the audited information that is predicted from the 
reported data via the regression model. Lines with a zero intercept and a gradient of one are plotted to gauge agreement 
between observed and fitted values.
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Variance of  comes from two sources. The within-impu-

tation variance, which is the average of the variances of the

:

and the between-imputation variance, which is the vari-

ance of the estimates of :

The total variance is defined as:

T = W + (1 + M-1)B  (6)

Inferences about β can be gained from the approximation:

Where the degrees of freedom of the t distribution is given
by:

So β is estimated by  and the CI given by:

where  is the upper  point of the t-distribution

on v degrees of freedom. Further details of the basics of
multiple imputation are available from Schafer [15].

Application to the AMES data set
Let a be the fraction of missing information for a scalar
estimator. Rubin [14] calculates that the relative efficiency
(on the variance scale) of a point estimate based on M
imputations compared to one based on an infinite
number of imputations is approximately:

In this case a = 26/78 = 1/3 (52 practices have audited data
and we impute for the 26 that have this data missing) so
if we set M = 5 the s.e. of the estimate will be √ (1 + 1/15)
= 1.033 times as large as the estimate with M → ∞.

We are only interested in imputing the missing audited
data, as ultimately this is considered the most accurate,
and the pre-intervention data can be used in the model-
ling. The missing audit data always comes in groups of
four for each practice: the number of women presenting
with menorrhagia and the number of referrals both pre
and post intervention. The theory outlined above is for
imputation of missing data in a vector. We identify the
audited data for each practice (i.e. row of the data) with an
element of a vector Y. That is to say, each element of Y
contains the audited data for one practice. In this way data
is always imputed per practice and not individually for
each field.

The approximate Bayesian bootstrap imputation was then
performed on the data. A random sample of 52 rows was
taken with replacement from the 52 rows of complete
data. From this a random sample of 26 rows was taken
with replacement. This, along with the original 52 com-
plete rows forms an imputed data set. This process was
independently repeated five times, and these five data sets
are each analysed.

As with the analysis of the audit data before, we wish to
get an estimate of the odds of being referred in the inter-
vention group compared to the control group. We fit the
model:

Where the variable definitions are the same as those used
in equation 2.

This imputation assumes that the missing audit data is
missing completely at random (MCAR) [8] as all the miss-
ing data comes from the same distribution and pays no
attention to the reported data when imputing the missing
data. As the number of patients reported to have been
seen and referred to hospital may be informative for the
audited values, then it is desirable that the imputation
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process includes the reported data in the estimation of the
missing audited data. The missing audit data is now
assumed to be missing at random. To do this, the data set
was stratified by reporting behaviour. Six strata were
defined by the total number of patients reported to have
been seen (either ≤ 6 or ≥ 7), and the proportion of
patients reported to have been referred, ([0,0.15),
[0.15,0.4), [0.4,1.0]). These categories were chosen as the
median number of patients reported to have been seen
was 6.5 and the 33rd and 66th percentiles of the proportion
of patients reported to have been referred were 0.15 and
0.4. Within each strata the missing data were then
imputed from the observed data.

52 practices have observed audited data. In the stratified
imputation only 50 of these can be used to sample from,
as two of these practices have no reported data on which
to stratify.

Full likelihood model
The previous two methods used a two-stage procedure
where firstly missing data was imputed and then the treat-
ment effect estimated. Here a method is proposed that
performs both these stages simultaneously. Consider the
following model:

Note that this model uses only the post-intervention data

and does not use the practice characteristics data. Here 

and  denote the number of women presenting with

menorrhagia and the number of referrals in practice i in

treatment group j from the audited data.  and  are

the corresponding numbers from the reported data.  is

assumed to be the true underlying audited probability of

referral, and  the true underlying surrogate (i.e.

reported) probability of referral. A Directed acyclic graph
of this model is given in Figure 2. The model was fitted
using MCMC sampling [16].

Neither the audited data nor the reported data is com-
plete. Of the 78 practices included in this model, 76 have
reported data and 52 have audited data (50 have both).
Because of the nature of the MCMC sampler used in the
model fitting, at each iteration the observed values and
the current imputed values of  and  were used to
estimate φa and φr respectively; in turn φa and φr then
impute another set of missing values of  and .

For each practice the logit true audited probability of refer-

ral, logit( ), is modelled as a linear function of treat-

ment group. Thus β1 is an estimate of the log odds of
referral in the intervention group compared to the con-
trol. Each practice as allowed to have a different underly-
ing probability of referral via the random effect γi, thus
making adjustments for the cluster randomized nature of
the design.

The reported data was considered to be a surrogate for the
audited data. In this model the logit surrogate probability

of referral, logit( ), was assumed to be a linear function

of the logit audited probability of referral logit( ). As

missing audit data is dependent on reported data alone
then it is assumed to be missing at random.

In MCMC sampling, at every iteration an estimate of every
parameter is obtained. This means that missing data
imputation and the randomized trial comparison were
performed simultaneously and not in a two stage process.

Model fitting
The regression models given in equation 1, that are used
to generate missing values, were fitted using Splus [17].
The random effects model given in equation 2, to estimate
the odds of referral in an intervention practice compared
to a control, was fitted using BUGS [18]. The approximate
Bayesian bootstrap imputed data sets were generated
using Splus; the separate log odds ratios for each imputed
data set calculated from equation 11 were fitted using
BUGS; and the overall multiple imputed estimate was
generated by code written in Splus. The full likelihood
model was fitted using BUGS.

Where BUGS was used to estimate parameters, prior dis-
tributions that are locally almost uniform were chosen,
with variances at least two orders of magnitude larger than
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the posterior variances of the corresponding nodes. These
priors are considered to be non informative. The model
fitting for the full likelihood model was achieved with the
BUGS code in the Appendix. Convergence was assessed by
the methods of Geweke [19], Raftery & Lewis [20], and
Heidelberger & Welch [21], using the BOA package [22].

Results
Table 3 shows the results of the three methods, together
with the results obtained when using a random effects
logistic regression model on the audited data alone. All
methods showed a reduction in the odds of referral of
around 30%. The greatest precision was achieved by the
full likelihood model.

Table 4 shows the correlation between the audited and
reported data for the number of referrals, the total number
of patients seen and the proportion of referrals for all
post-intervention data where both are available. These
correlations are quite low, which helps to explain why the
gains in precision of the estimated treatment effect are
moderate when the reported data are used.

Discussion
These results show reasonable agreement with regard to
the point estimate. The educational package reduced the

Directed Acyclic Graph of the full likelihood modelFigure 2
Directed Acyclic Graph of the full likelihood model. In the graph circles represent unknown parameters and rectangles repre-
sent observed data. Dashed arrows represent deterministic dependence and solid arrows represent stochastic dependence. A 
dashed rectangle represents data that is partially observed, and is imputed (so a parameter) for missing values.

Table 3: Odds of being referred in an education practice compared to a control: comparison of the various modelling strategies used.

Method set Point estimate CI s.e. (log OR)

Audited data only 0.73 (0.47,1.08) 0.212
Regression 0.68 (0.42,1.01) 0.218
Unstratified imputation 0.74 (0.45,1.02) 0.203
Stratified imputation 0.75 (0.45,1.05) 0.212
Full likelihood 0.68 (0.44,0.91) 0.188

na

group j
practice i

R

γa

α1 τβ1

n

β2

r

rµ

a

ap

rr

r

α

p r

rφ φaτ 2 ra

Table 4: The correlation between the audited and reported data 
for the number of referrals r, the total number of patients seen n 
and the proportion of referrals r/n, for all the post-intervention 
data where both are available.

r n r/n

0.17 0.36 0.30
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proportion of women who are referred to hospital by
around 30%. Some of this benefit may be artificial, due to
increased diagnostic activity in the intervention group.

These results differ from those previously reported [2,9],
as when performing the analysis using audited data alone,
women were excluded who had post coital bleeding,
pelvic mass, or bleeding between periods. As these exclu-
sion criteria could not be applied to the surrogate reported
data, they were not applied in the analysis reported here.

In all the modelling strategies used we have attempted to
impute missing data from surrogate data and assess the
effect of intervention. Each strategy has used different
methods for imputing data, and for adjusting the variance
of the outcome measure to allow for the fact that this data
is estimated rather than observed.

The regression models attempt to account for extra varia-
tion, caused by using imputed values, by adding a random
effect in the regression model which estimated the out-
come measure. However, a weakness in this model is that
the estimated values are artificially too good.

The fitted values will all lie on hyper-planes defined by the
estimated parameters from model 1, whereas the
observed values used when these are available will all lie
around these planes, but will never lie exactly on them.
The regression models used to estimate the missing values
are therefore giving the exact values that one would expect
and do not allow for random variation in the realised val-
ues. Extra variation is allowed in the model for these val-
ues by inclusion of an additional random effect. However,
there is an element of a "self fulfilling prophecy" where
the regression model 2 that estimates the outcome meas-
ure is based on data that will fit the model better at the
estimated points.

A further problem with this method is that it is possible in
general for r to be larger than n. This did not happen in

this case as 1 > 3 and 2 > 4. An alternative model-

ling strategy to protect against this could be to estimate
the number of events n and the probability of a positive
outcome π from the surrogates. Then estimate the number
of positive outcomes as nπ.

The imputation models do not have these problems, as
the missing audited data is imputed from the observed
audited data. The stratified method is to be preferred as
this generates data which is more likely to have occurred
for the practice that the missing data is being imputed for.
The results from the imputation methods give estimates of
the effect of intervention and s.e. of the log odds ratio in
between the other two methods. It should be noted that
the formulas used to estimate this standard error have

been shown to be inconsistent in certain settings [23]. The
stratification goes some way towards imputing missing
values which are appropriate for the practice, but it is still
quite a blunt tool. An alternative method which could be
considered is derived by Shafer [12]. Multiple imputation
of multivariate categorical data under log linear models
could be used. This method is based on the EM algorithm,
where the likelihood function used for imputing the miss-
ing values can include a number of covariates. In this case
the reported data, along with the practice characteristics
could be used in the imputation process. An elegant appli-
cation of the EM algorithm in estimation of missing data
is given by Longford et al [24].

The full likelihood model has the desirable property of
performing the imputation and the randomized trial com-
parison simultaneously. Despite not making use of pre-
intervention information, this model achieves the lowest
standard error of the log odds ratio of all the models con-
sidered. The validity of the point estimate is unlikely to be
impaired by the absence of pre-intervention data as the
audited pre-intervention probabilities of referral were
similar in the intervention and control groups. This model
could be improved in principle by including pre-interven-
tion data and practice characteristics. This was tried and
imposed too heavy a burden on the estimation algorithm.

The standard error of the log odds ratio obtained from a
random effects logistic regression on the audited data
alone was 0.212. This was improved upon by the methods
here which estimate the missing audited data, with the
exception of the regression method, which was conserva-
tive, probably due to too much extra variation being add
by the random effect for imputed values. These improve-
ments are due to the added information from the auxiliary
reported variable. The choice of parametric assumptions

γ̂ γ̂ γ̂ γ̂

Table 5: Odds of being referred in an education practice 
compared to a control: results from the individual multiple 
imputations.

Imputation Point estimate 
of OR

s.e.

Unstratified 1 0.70 0.116
2 0.73 0.115
3 0.67 0.108
4 0.85 0.123
5 0.72 0.116

Stratified 1 0.84 0.136
2 0.67 0.108
3 0.71 0.114
4 0.72 0.117
5 0.82 0.137
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used in the generation of missing values would also influ-
ence this gain in precision.

The reported data is strongly related to the audited data.
The relationship of the logit reported probability with the
logit audited probability is

logit (Pr) = 5.44 + 1.09 logit (Pa)  (13)

The 95% credible interval of the estimate of 1.09 is
(0.17,2.02), indicating a significant (p = 0.02)
dependency of surrogate on true endpoint. Thus, while
this surrogate is unlikely to satisfy Prentice's criteria [5], it
does satisfy Begg and Leung's [6].

Conclusion
Using reported data as a surrogate for audited in the full
likelihood model gives a point estimate that is accurate,
and improves the precision of the estimate from that
yielded using audited data alone. Regression type
approaches and the Bayesian bootstrap imputation tech-
nique have already been used in other studies. The full
likelihood approach provides an additional possible strat-
egy in the case where only partial information is available
on the true endpoint.
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Appendix: BUGS code for full likelihood model
model{

for(i in 1 : N){

ref.a [i] ~ dbin(p.a [i], tot.a [i])

tot.a [i] ~ dpois(phi.a)

logit(p.a [i]) <- alpha1 + beta1 * treat [i] + gamma.a [i]

gamma.a [i] ~ dnorm(0, tau.a)

ref.rep [i] ~ dbin(p.rep [i], tot, rep [i])

tot.rep [i] ~ dpois(phi.rep)

lp.a [i] <- logit(p.a [i])

logit(p.rep [i]) <- alpha2 + beta2 * (lp.a [i]- Ip.a.bar)

}

Ip.a.bar <- mean(lp.a[])

tau.a <- l/(s.a*s.a)

s.a <- exp(ls.a)

#PRIORS

phi.a ~ dnorm(0,1.0E-6) I(0,)

phi.rep ~ dnorm(0,1.0E-6) I(0,)

ls.a ~ dunif(-6,6)

a ~ dnorm(0.0,1.0E-6)

b ~ dnorm(0.0,1.0E-6)

c ~ dnorm(0.0,1.0E-6)

d ~ dnorm(0.0,1.0E-6)

#EXTRA VARIABLES

exp.b <- exp(b)

}
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