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Abstract

We develop the spline-DCS model and apply it to trade volume prediction,

which remains a highly non-trivial task in high-frequency finance. Our application

illustrates that the spline-DCS is computationally practical and captures salient

empirical features of the data such as the heavy-tailed distribution and intra-day

periodicity very well. We produce density forecasts of volume and compare the

model’s predictive performance with that of the state-of-the-art volume forecasting

model, named the component-MEM, of Brownlees et al. (2011). The spline-DCS

significantly outperforms the component-MEM in predicting intra-day volume pro-

portions.

Keywords: order slicing; price impact; robustness; score; VWAP trading

JEL Classification: C22, C51, C53, C58, G12

1 Introduction

A key objective of execution algorithms in high-frequency trading is to minimize the price

impact of a given order by slicing it into smaller transaction sizes and spreading the timing

of transactions throughout the day. This reduces the risk of slippage in price, which is

the difference between the expected price of a trade and its actual traded price. Accurate

intra-day volume prediction can help investors optimize the size and the timing of orders

in this sense since the level of market liquidity and trade intensity change throughout

the day. It also helps investors achieve the execution price of transactions for the day

to be near the Volume-Weighted Average Price (VWAP) benchmark.2 It is a measure

widely-used for a range of purposes, such as assessing the performance of a given trading

1Nuffield College and the Department of Economics, Oxford University. Email:
ryoko.ito@economics.ox.ac.uk. I would like to thank Andrew Harvey for his thoughtful comments
and guiding my research. I would also like to thank Jamie Walton and Zhangbo Shi for giving me the
opportunity to undertake this project. I am also grateful to Philipp Andres, Michele Caivano, Adam
Clements, Oliver Linton, Donald Robertson, Mark Salmon, Stephen Thiele, and the participants of the
Score Workshop in 2013 at Tinbergen Institute, especially Andre Lucas, for their helpful comments.
Finally, I would like to thank the Institute for New Economic Thinking at the Oxford Martin School,
the International Monetary Fund, the Cambridge Trust, the Royal Economic Society, the Keynes Fund,
and the Stevenson Fund (of the Faculty of Economics at Cambridge University) for providing various
forms of funding.

2For a given asset class or an order, it is the average transaction price weighted by the size of each
transaction.
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strategy in minimizing the price impact, or as a guarantee to clients that their orders will

be executed at the VWAP target.

Despite the importance of volume prediction in high-frequency trading, it remains a

highly non-trivial task due to the statistically complex features of trade volume. Until the

seminal work by Brownlees et al. (2011), there had been no well-established methodology

for forecasting high-frequency trade volume. Brownlees et al. (2011) introduced the com-

ponents multiplicative error model (MEM), and showed that the model can outperform

some of the existing common methods for volume prediction.

We introduce the spline-DCS model and use it to forecast high-frequency trade volume

of popular assets in the equity and foreign currency exchange (FX) markets. We show

that the model captures salient empirical features such as intra-day periodic patterns,

autocorrelation, and heavy-tail, and outperforms the component-MEM in minimizing

the slicing loss function proposed by Brownlees et al. (2011) for assessing the optimality

of trading strategies in achieving the VWAP target. The performance of our model is

robust to the choice of sampling frequency and sampling period.

The spline-DCS is an extension of the dynamic conditional score (DCS) model, which

is a new observation-driven model formally introduced by Creal et al. (2011, 2013) and

Harvey (2013).3 The time-varying parameter in DCS is driven by the score of the con-

ditional distribution of the data. Recent empirical studies find that the score driven

models capture heavy-tails well and outperform existing common forecasting method-

ologies including GARCH-type models of comparable specifications in a range of litera-

ture.4 DCS is also extended to time-varying copula functions, non-negative distributions,

and multivariate distributions in applications including inflation forecasting in macroe-

conomics, forecasting value-at-risk, modeling credit or sovereign-default risk, modeling

mixed-measurement and mixed-frequency panel data, and dynamic location modeling.5

Key aspects of our analysis can be summed up in two. First, we produce both density

and level forecasts of volume using the spline-DCS and illustrate the model’s practicality

and good in-sample and out-of-sample performance in the context of both equity and FX.

The estimation results are robust to the choice of initial parameters, sampling frequency,

and sampling period. The sampling frequency we consider ranges between 30 seconds

and 10 minutes, which is high in the volume prediction literature.

Second, we highlight the computational and practical appeal of the spline-DCS that

stem from the use of the method of maximum likelihood (ML) and the spline. A typi-

cal analysis in high-frequency finance deals with a very large set of data, which makes

3It is also called the generalized autoregressive score (GAS) model.
4See, for instance, Harvey and Sucarrat (2014), Janus et al. (2014), Harvey and Lange (2015), Gao and

Zhou (2016), Lucas and Zhang (2016), Creal et al. (2011), Avdulaj and Barunik (2015), and Salvatierra
and Patton (2015).

5See, for instance, Creal et al. (2014), Harvey and Luati (2014), Lucas et al. (2014), and Caviano and
Harvey (2014), as well as the above references.
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forecasting computationally very intensive. But the spline-DCS is found to be remark-

ably easy and quick to estimate, even when the sample size is large. With the sample

size of our data ranging between about 5,000 and 20,000, the spline-DCS was estimated

in about 5 minutes, as opposed to hours for the component-MEM (hereafter, c-MEM),

which was estimated by the generalized method of moments (GMM). This feature of the

spline-DCS means that the model can be regularly re-estimated at little computational

cost. The c-MEM model is an observation-driven model akin to GARCH. The periodic

component adopts the Fourier series, which is commonly used to approximate intra-day

periodic patterns. The periodic component of the spline-DCS is a cubic spline function;

it falls in the category of smoothing splines, which are successfully applied to model-

ing regular patterns in electricity demand, money supply, and yield curves.6 The spline

beautifully captures smooth intra-day periodic patterns with few parameters, and is esti-

mated simultaneously with all other components of the model by ML. Our spline in this

paper assumes that the pattern of periodicity is the same every day. Ito (2013) challenges

this standard assumption in the literature using the spline-DCS with a dynamic spline,

which allows the pattern of periodicity to evolve, and show some empirical merit of this

generalization.

The plan of this paper is as follows. Section 2 describes the characteristics of our

data and motivates the construction of our model. Section 3 describes the spline-DCS

and the estimation method. Sections 4 and 5 report the in-sample and out-of-sample

results for the spline-DCS. Section 5.2 compares the predictive performance of competing

models. Section 5.3 discusses the aforementioned computational and practical aspects of

the spline-DCS. Section 6 concludes.

2 Data characteristics

The equity trade volume we consider is the number of shares of IBM stock traded on

the New York Stock Exchange (NYSE) during the market opening hours (9.30am-4pm

in the New York local time) between Monday 28 February and Friday 31 March 2000,

which includes 25 trading days and no public holidays. In order to explore the sensitivity

of our model to the choice of sampling frequency, we consider two sampling frequencies

for IBM of 30 seconds and 1 minute. There are 780 observations per trading day if the

aggregation interval is 30 seconds, and 390 observations if 1 minute. We refer to the

aggregated series as IBM30s if the aggregation interval is 30 seconds, and IBM1m if 1

minute. IMB30s aggregates to IBM1m over any 1-minute interval.

We also consider the trade volume of two of the most popular currency exchange pairs

6See, for instance, Harvey and Koopman (1993), Hendricks et al. (1979), Harvey et al. (1997), Hyn-
dman et al. (2005), Bowsher and Meeks (2008) and Jungbacker et al. (2014).
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Figure 1. IBM30s on Wednesday 22 March 2000 between 9.30am and 4pm (in the New York
local time).

In-sample (3 weeks) Out-of-sample (2 weeks)

Window # From To From To
1 Mon 06-Jan-14 Sun 26-Jan-14 Mon 27-Jan-14 Sun 09-Feb-14
2 Mon 27-Jan-14 Sun 16-Feb-14 Mon 17-Feb-14 Sun 02-Mar-14
3 Mon 17-Feb-14 Sun 09-Mar-14 Mon 10-Mar-14 Sun 23-Mar-14
4 Mon 10-Mar-14 Sun 30-Mar-14 Mon 31-Mar-14 Sun 13-Apr-14
5 Mon 31-Mar-14 Sun 20-Apr-14 Mon 21-Apr-14 Sun 04-May-14
6 Mon 21-Apr-14 Sun 11-May-14 Mon 12-May-14 Sun 25-May-14
7 Mon 12-May-14 Sun 01-Jun-14 Mon 02-Jun-14 Sun 15-Jun-14
8 Mon 02-Jun-14 Sun 22-Jun-14 Mon 23-Jun-14 Sun 06-Jul-14
9 Mon 23-Jun-14 Sun 13-Jul-14 Mon 14-Jul-14 Sun 27-Jul-14
10 Mon 14-Jul-14 Sun 03-Aug-14 Mon 04-Aug-14 Sun 17-Aug-14
11 Mon 04-Aug-14 Sun 24-Aug-14 Mon 25-Aug-14 Sun 07-Sep-14
12 Mon 25-Aug-14 Sun 14-Sep-14 Mon 15-Sep-14 Sun 28-Sep-14
13 Mon 15-Sep-14 Sun 05-Oct-14 Mon 06-Oct-14 Sun 19-Oct-14
14 Mon 06-Oct-14 Sun 26-Oct-14 Mon 27-Oct-14 Sun 09-Nov-14
15 Mon 27-Oct-14 Sun 16-Nov-14 Mon 17-Nov-14 Sun 30-Nov-14
16 Mon 17-Nov-14 Sun 07-Dec-14 Mon 08-Dec-14 Sun 21-Dec-14

Table 1. Sub-sampling windows for the FX trade volume data. The overall sampling period
between Mon 6 Jan and Sun 21 Dec 2014 is split into sixteen sub-sample windows.

in FX: euro-dollar (EURUSD) and dollar-yen (USDJPY).7 The definition of volume here

is the traded units of the left hand currency (e.g. euro for EURUSD and dollar for

USDJPY), which is priced in the units of the right hand currency of the same pair (e.g.

the US dollar for EURUSD and yen for USDJPY).8 The sampling frequency we consider

here is 10 minutes. We have 144 observations per trading day for the FX data. For a given

sampling frequency, the sample size per day for the FX data is more than 3 times larger

than for the equity data. This is because FX transactions take place 24 hours during

the weekdays and so the data is collected 24 hours every day. The sampling period is

between Monday 6 January and Sunday 21 December 2014, which is split into sixteen

rolling sub-sample windows for the in-sample and out-of-sample analysis. See Table 1.

Figure 1 gives a snapshot of the equity data. The volume fluctuates a lot throughout

the day. There is a diurnal U-shaped pattern in trading activity. Morning transactions

7We have more recent and larger samples for the FX data compared to the equity data. This is
simply due to the data availability, as we did not have access to more recent volume data for equity at
the level of sampling frequency we desired to study. We study both the equity and FX data to illustrate
the usefulness of our model in these two disperate applications.

8For confidentiality reasons, we divided the original FX trade volume series by some arbitrarily chosen
constant number to hide the actual level of volume. This pre-estimation transformation only shifts the
intercept parameter, ω, (defined in Section 3) of the dynamic equation.
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Series Obs. Mean S.D. Skew Max. Max-99% Q Zero freq.

IBM30s 19,500 10,539 26,071 29 1,652,100 1,591,073 0.47%
IBM1m 9,750 21,297 39,114 18 1,652,100 1,532,175 0.06%

Series Obs. Mean S.D. Skew Max Max-99%Q Zero freq.

EURUSD (10 mins) 50,112 136 316 9.5 10,017 8,668 2.1%
USDJPY (10 mins) 50,112 121 250 8.8 7,379 6,322 2.0%

Table 2. Sample statistics of IBM trade volume (top) and EURUSD and USDJPY trade
volume (bottom). Sampling period is Mon 28 Feb - Fri 31 Mar 2000 for IBM and Mon 6 Jan -
Fri 19 Dec 2014 for the FX data. The skewness statistics must be interpreted with care as the
theoretical skewness may not exist.

Window 1 2 3 4 5 6 7 8

EURUSD (10 mins) 0.1% 0.1% 0.6% 0.8% 2.6% 2.2% 2.2% 2.1%
USDJPY (10 mins) 0.2% 0.0% 0.4% 0.9% 1.9% 2.4% 2.1% 1.9%

Window 9 10 11 12 13 14 15 16

EURUSD (10 mins) 2.7% 1.9% 1.8% 1.3% 1.0% 0.8% 0.3% 0.7%
USDJPY (10 mins) 2.7% 1.9% 1.5% 1.3% 0.9% 0.7% 0.4% 0.0%

Table 3. The percentage of samples for each window that are zero-valued. The sixteen sub-
sample windows are listed in Table 1.

are driven by overnight news. The activity level bottoms out at around 1pm, but picks

up again in the afternoon as traders re-balance their positions before the market closes.

(See Hautsch (2012, p.41).)

Figure 2 shows that the FX trade volume also exhibits intra-day periodic patterns.

The intra-day percentage distribution of volume appears to have a bimodal pattern for

EURUSD and a trimodal pattern for USDJPY. Volume peaks at around 8am and again

at around 2pm, but stays low in the evening in GMT. For USDJPY, volume peaks also at

around 1am in GMT. These modes come roughly when trading activity in major markets

around the world is high for the day.9 The patterns here are very different from the

U-shaped one for the equity data because the dynamics of the equity data is dominated

by the overnight effect, whereas the dynamics of the FX data is dominated by the timing

of peaks in trade intensity around the world.

Figure 3 shows that the FX volume also fluctuates a lot throughout the day. On Friday

5 September 2014, there is an extreme spike in USDJPY volume at around 1.30pm in

GMT. A similar spike was observed for EURUSD. They coincide with the release of non-

farm payroll data in the US, which is one of the most important events in FX. This

highlights the importance of the announcement effect (see, for instance, Andersen and

9In GMT outside the daylight saving period, trading is very active in London between 8am and 4pm,
in New York between 1pm and 9pm, and in Tokyo between 11pm and 7am. However, trading is not
restricted to these hours; for instance, many traders in London trade between 7am and 5pm in the
London local time. For EURUSD, volume is particularly high between 1pm and 4pm when the active
period in London and New York overlaps. The London and New York markets attract high volume since
the bid-ask spread tends to be tighter there for popular currency pairs than in Asia.
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Figure 2. The percentage of total day volume attributed to each intra-day bin. The x-axis is
intra-day hours in GMT on Monday. The series are obtained by computing the average trade
volume at each intra-day bin on Mondays, and dividing it by the total trade volume of that
weekday. The series sum to 100% each day. This uses the data between Monday 6 January and
Friday 19 December 2014.

Figure 3. The percentage of total day volume of USDJPY attributed to each intra-day 10-
minute bin. The series sum to 100% in each picture. Left: Monday 1 September 2014. Right:
Friday 5 September 2014. Each day covers the 24-hour period (in GMT). Intra-day time on the
x-axis.

Bollerslev (1998) and Lo and Wang (2010)).

Figure 4 suggests that the empirical distributions exhibit fat-tails. The size of the

upper-tail is also suggested by the difference between the maximum and the 99% sample

quantile in Table 2. The right column of Figure 4 shows the dynamic structure of our data.

The autocorrelation decays slowly for IBM30s. The autocorrelation of the FX data peaks

at the 144th lag, reflecting daily periodicity. Our data contains a non-negligible number

of zero-valued observations. (See Table 2.) Table 3 shows the percentage of samples for

each sub-sampling window that are zero-valued for the FX data. These numbers can be

compared with the estimated parameter value of p (defined in Section 3), which is the

probability mass of zero-valued observations in the spline-DCS model.

The discussion so far suggests that our model needs a periodic component to capture

the intra-day periodic patterns. The non-periodic component should allow for highly per-

sistent dynamics. This can be captured by a combination of autoregressive components.

The presence of a non-negligible number of zero-valued observations can be captured by

decomposing the distribution of the data to place a discrete probability mass at zero.
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Figure 4. The empirical frequency distribution (top), the empirical cumulative distribution
function (middle), and the sample autocorrelation (bottom). IBM30s (left), IBM1m (center
left), EURUSD (center right), and USDJPY (center right). The sampling period is Mon 28 Feb
- Fri 31 Mar 2000 for the equity data and Mon 6 Jan - Fri 19 Dec 2014 for the FX data. The
200th lag corresponds approximately to 1.5 hours prior for IBM30s, 3 hours prior for IBM1m,
and 1.4 days prior for the FX data.

3 The spline-DCS model

We divide each trading day into I ∈ N>0 intra-day bins. T ∈ N>0 and H ∈ N>0 denote the

number of in-sample and out-of-sample days, respectively. yt,τ denotes the observation

of trade volume at the τ -th intra-day bin on the t-th trading day. We set yt,I = yt+1,0 for

all t ∈ N>0, so that τ = 1 is the location of the first aggregated observation each day. We

denote in-sample estimates by ·̂ and forecast quantities by ·̃. We use the set notations,

ΨT, I = {(t, τ) ∈ {1, 2, . . . , T} × {1, 2, . . . , I}} and ΨT,I>0 = {ΨT, I : yt,τ > 0}. The set of

all information available at time (t, τ) ∈ ΨT, I is denoted by Ft,τ . Any variable at time

(t, τ) = (1, 1) is constant. The model is given by:

yt,τ = εt,τ exp(λt,τ ), εt,τ ∼ i.i.d. F (ε;θ), λt,τ = ω + µt,τ + ηt,τ + st,τ + et,τ ,

µt,τ = µt,τ−1 + κµut,τ−1, ηt,τ = η
(1)
t,τ + η

(2)
t,τ , et,τ = φeet,τ−1 + κ>e dt,τ ,

η
(1)
t,τ = φ

(1)
1 η

(1)
t,τ−1 + φ

(1)
2 η

(1)
t,τ−2 + κ(1)

η ut,τ−1 + κ(1)
η,asign(−rt,τ−1)(ut,τ−1 + νξ),

η
(2)
t,τ = φ

(2)
1 η

(2)
t,τ−1 + κ(2)

η ut,τ−1 + κ(2)
η,asign(−rt,τ−1)(ut,τ−1 + νξ),

dt,τ = (dt,τ,1, . . . , dt,τ,m), dt,τ,i = 1l{type i event at time (t,τ)}, i = 1, . . . ,m.

(1)

for (t, τ) ∈ ΨT,I and ω ∈ R. The non-periodic components are µt,τ and ηt,τ . et,τ is the

event component. The periodic component, st,τ , is defined first in Section 3.1. Then we

7



define the distribution function, F (·; ·), and the score variable, ut,τ . Then we define the

rest of the components.

3.1 The cubic spline

The periodic component, st,τ , captures the pattern of intra-day periodicity. The notations

and specification follow Poirier (1973) and Harvey and Koopman (1993). We refer to the

version of the spline studied here as the static (cubic) spline, which assumes that the

pattern of periodicity does not change over time. This is a standard assumption in the

existing literature.10 Some of the technical details are omitted in the following sections,

but we give the complete mathematical construction in Appendix B of the supplementary

material.

3.1.1 Static daily spline

The cubic spline is termed a daily spline if the periodicity is complete over one trading

day. The static daily spline assumes that the shape of intra-day periodic patterns is the

same every day. The daily spline is a continuous piecewise function of time and connected

at k+ 1 knots for some k ∈ N>0 such that k < I. The coordinates of the knots along the

time axis are denoted by τ0 < · · · < τk, where τ0 = 1, τk = I, and τj ∈ {2, . . . , I − 1} for

j = 1, . . . , k − 1. The set of the knots is also called mesh. The y-coordinates (height) of

the knots are denoted by γ = (γ0, . . . , γk)
>. The static daily spline (st,τ = sτ ) is defined

as

sτ =
k∑
j=1

1l{τ∈[τj−1,τj ]} zj(τ) · γ, τ = 1, . . . , I, (2)

where zj : [τj−1, τj]
k+1 → Rk+1 for j = 1, . . . k is a (k + 1)-dimensional vector of

deterministic functions that conveys all information about the polynomial order, con-

tinuity, and zero-sum conditions of the spline. The zero-sum condition and setting

γk = −
∑k−1

i=0 w∗iγi/w∗k ensure that the parameters in γ are identified. See Appendix

B of the supplementary material for the derivation of zj(τ) and w∗ = (w∗0, . . . , w∗k)
>.

For the equity data, we capture the overnight effect that arises from the regular

overnight market closure by relaxing the periodicity condition of the spline, and allowing

for a discrepancy in the spline between the end and the beginning of any two consecutive

trading days (i.e. (τk, γk) 6= (τ0, γ0)). The definition of zj(τ) given above is this case,

and it is different from the one defined by Harvey and Koopman (1993). See Appendix

B.1 of the supplementary material. Harvey and Koopman (1993) impose the periodicity

condition, since their hourly electricity demand data is collected 24 hours a day. The

spline we use for the FX data maintains the periodicity condition (i.e. (τk, γk) 6= (τ0, γ0)),

and it is defined in Appendix B.2 of the supplementary material. (2) is the version for

10Ito (2013) challenges this assumption by introducing a generalized spline-DCS specification with
the dynamic version of the cubic spline. The empirical merit of such a generalization in high-frequency
finance is illustrated in the paper.
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the equity data and capture the overnight effect.

3.1.2 Location of daily knots and overnight effect

The location of knots, τ1, . . . , τk−1, and the size of k depend on the empirical shape of

periodicity and the number of intra-day observations. Increasing k does not necessarily

improve the fit of the model, and using too many knots deteriorates the speed of com-

putation. We give tips on how to select the location and the number of knots in Section

5.3.

For the FX data, based on the empirical observations we made in Section 2 and from

Figure 2, we find that placing knots along the intra-day time axis (in 24-hour format) at

1hr, 2hr, 3.30hr, 5hr, 6hr, 7hr, 8hr, 9.30hr, 11hr, 12hr, 13hr, 14hr, 15hr, 16hr, 17.30hr,

19hr, 20hr, 21hr, 22hr, 23hr, and 24hr works well. The period between Friday 10pm and

Sunday 10pm is treated as the regular weekend period of missing data. Although there

is no decisive moments on Friday and Sunday at which transactions end and begin for

the week, we omit data points over the above weekend period for simplicity. Then, in

the static daily spline for FX, we impose the periodicity condition on the knots at Friday

10pm and Sunday 10pm.

For the equity data, we find that placing knots along the intra-day time axis (in 24-

hour format) at 9.30hr, 11hr, 12.30hr, 14.30hr, and 16hr works well. The shape of the

spline up to 12.30pm captures the busy trading hours in the morning, between 12.30pm

and 2.30pm captures the quiet lunch hours, and after 2.30pm captures any acceleration

in trading activities before the market closes. There is little to no improvement in the

goodness of fit of the model to the data when the number of knots per day increases from

these specifications.

3.2 Distribution: dealing with zero-valued observations

The cumulative distribution function (c.d.f.), F : R≥0 → [0, 1], with the constant param-

eter vector θ of a standard random variable X ∼ F is defined as

PF (X = 0) = p ∈ (0, 1), PF (X > 0) = 1− p, PF (X ≤ x|X > 0) = F ∗(x;θ∗).

for any x > 0. F ∗ : R≥0 → [0, 1] is the c.d.f. of some conventional standard continuous

random variable with the time-invariant parameter vector θ∗. We write θ = (θ∗>, p)>

and use the notations, f and f ∗, to denote the probability density function (p.d.f.) of F

and F ∗, respectively.

The distribution, F , captures the probability mass of zero-valued observations. The

unconditional n-th moment of X is well-defined as long as it is well-defined for F ∗ because

E[Xn] = (1 − p)
∫∞

0
xnf ∗(x)dx. F ∗ is chosen parametrically, and the quality of its fit

to the empirical distribution of data is tested using the standardized observations ε̂t,τ ≡
yt,τ/ exp(λ̂t,τ ). The properties of this type of distributions are studied formally in Hautsch

et al. (2014). This decomposition technique is akin to the ones studied by McCulloch
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and Tsay (2001) and Rydberg and Shephard (2003).

ut,τ is the score of the conditional distribution of the data given by

ut,τ = ∂ log (exp(−λt,τ )f ∗(εt,τ ;θ∗)) /∂λt,τ for all yt,τ > 0. Here, exp (−λt,τ ) f ∗(εt,τ ;θ∗) =

f ∗y (yt,τ ;θ
∗, λt,τ ) is the likelihood of a single positive observation. We set ut,τ = infs∈Ω ut,τ (s)

whenever yt,τ = 0.

Our choice of F ∗(·;θ∗) is GB2, which is found to capture the empirical distribution of

the data well. It nests or relates to several well-known distributions including log-logistic,

Burr, Pareto, and Weibull. (See Appendix A of the supplementary material and Kleiber

and Kotz (2003).) In this case, f ∗y (yt,τ ;θ
∗, λt,τ ) is

log(ν)− νξλt,τ + (νξ − 1) log(yt,τ )− logB(ξ, ζ)− (ξ + ζ) log ((yt,τ exp (−λt,τ ))ν + 1) ,

where θ∗ = (ν, ξ, ζ)> > 0 are the shape parameters and B(·, ·) is the beta function. Then

the score is ut,τ = ν(ξ + ζ)(yt,τ exp (−λt,τ ))ν/ ((yt,τ exp (−λt,τ ))ν + 1) − νξ for yt,τ > 0,

and we set ut,τ = −νξ whenever yt,τ = 0. GB2 is formally defined in Appendix A.1 of

the supplementary material.

p may change throughout the day because the probability of observing a trade must

change with the level of trading activity. Rydberg and Shephard (2003) and Hautsch et al.

(2014) independently study decomposition models that allow p to change over time. A

natural extension of our model would also consider this generalization. However, in the

context of this paper, we assume p to be constant for simplicity. This is inconsequential

for us as the fraction of zero-valued observations is small.

3.3 Non-periodic components

The stationary component is ηt,τ . ηt,τ consists of two stationary components, η
(1)
t,τ and η

(2)
t,τ .

This structure allows us to capture highly persistent dynamics similar to long memory.11

η
(1)
t,τ and η

(2)
t,τ are stationary if −φ(1)

1 + φ
(1)
2 < 1, φ

(1)
2 > −1, 0 < φ

(1)
1 + φ

(1)
2 < 1, and

0 < φ
(2)
1 < 1 (see, for instance, Harvey (1993, p.19)). The non-stationary component,

µt,τ , captures the slowly changing movements that is non-periodic. The estimation results

in Section 4 suggest that this component can do a good job in capturing the low-frequency

dynamics of our data.

The role of each component is such that µt,τ should be less sensitive to changes in

ut,τ−1 than η
(1)
t,τ , which should be, in turn, less sensitive than η

(2)
t,τ . That is, we should

typically expect |κµ| < |κ(1)
η | < |κ(2)

η | (although this condition is not imposed during

the estimation). Moreover, the scale of trade volume should increase in the wake of

positive news. Thus we would expect κµ > 0. We set η
(1)
1,1 = η

(2)
1,1 = 0 as we have

11A generalization of ηt,τ is ηt,τ =
∑J
j=1 η

(j)
t,τ , where η

(j)
t,τ = φ

(j)
1 η

(j)
t,τ−1+φ

(j)
2 η

(j)
t,τ−2+· · ·+φ(j)

m(j)η
(j)

t,τ−m(j) +

κ
(j)
η ut,τ−1 for (t, τ) ∈ ΨT, I , j = 1, . . . , J , and J ∈ N>0. We assume that m(j) ∈ N>0 and η

(j)
t,τ is stationary

for all j = 1, . . . , J . J = 2 works well for our application.
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E[η
(1)
t,τ ] = E[η

(2)
t,τ ] = 0.12 Since E[µt,τ ] = µ1,1, we assume µ1,1 = 0 so that ω is identified.

The identification conditions of the parameters in st,τ are as laid out in Section 3.1.

3.3.1 Asymmetric effect

For the equity data, analogously to the well-documented leverage effects in equity return

volatility, we can test for asymmetric effects in volume related to the direction of price

change by testing the significance of the coefficients, κ
(1)
η,a and κ

(2)
η,a. κ

(1)
η,a > 0 (or κ

(1)
η,a < 0)

gives an increase (decrease) in the scale of volume when price falls (i.e. when the return,

rt,τ , which is the log-difference in price, is negative). We use the sign function to capture

the asymmetric effect of price change in both the positive and negative directions. That

is, the sign function with κ
(i)
η,a > 0 (or κ

(i)
η,a < 0) gives a decrease (increase) in the scale

of volume when price increases for i = 1, 2. How to model leverage effects in the DCS

models is discussed in Harvey (2013).

In FX, testing for the asymmetric effect or its interpretation is less straight forward

than equity. For instance, a fall in the price of the US dollar per euro is an increase in

the price of euro per dollar. A sudden sizable strengthening of one currency does not

necessarily trigger panic reactions or asymmetric effects, unless the change was against

a strong market-wide expectation. Thus, we set κ
(i)
η,a = 0 for i = 1, 2 for the FX data for

simplicity.

3.3.2 Announcement effect

The event component, et,τ , captures the effect of anticipated macroeconomic events. Its

dynamics are assumed to be deterministic. Any deviation of market response from the

deterministic pattern at each event is assumed to be captured by other non-deterministic

components. We set e1,1 = 0. et,τ reverts to zero if |φe| < 1.

Since there are many events per day that can impact our FX data, we categorize

events by the anticipated size of the impact using the information provided in the Forex

Economic Calendar by DailyFX (www.dailyfx.com) as a benchmark. Then we assign a

dummy variable (dt,τ,i, i = 1, . . . ,m) to each category. The small events tabulated in

Table 4 include scheduled releases of retail sales data, manufacturing data, home sales

data, and various indicators of house prices. The intermediate events include some central

bank announcements and other data releases (e.g. GDP data, employment figures, and

consumer price data) in relevant currency areas. The release of US non-farm payroll

data on the first Friday of each month is assigned its own category since it is the most

important event for the dollar. The elements of dt,τ are ordered by the anticipated size of

the impact. The size of m varies across the sub-sample windows. The first element of dt,τ

correspond to the event category with the largest anticipated impact for that window. If

multiple events of the same category occur simultaneously, they are treated as one event

12With the asymmetry terms, this assumes that rt,τ and yt,τ are independent for any (t, τ) ∈ ΨT,I ,
and E[rt,τ ] = 0.
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Currency EURUSD USDJPY

Event category Count Frequency (%) Count Frequency (%)
Small 1024 93% 543 90%

Intermediate 65 6% 51 8%
US non-farm payroll 12 1% 12 2%

Table 4. Event schemes between Monday 6 January - Sunday 21 December 2014.

of that category.

For the equity data, events that matter include the company’s quarterly or annual

earnings and dividend announcements, the earnings and dividend announcements by the

competitors (e.g. Accenture, Hewlett-Packard, and Microsoft), and important news in

the technology industry. To our knowledge, IBM did not make any earnings or dividend

related announcements during the sampling period. We could not find the exact timing

of news releases in intra-day hours for all of the companies mentioned here. Due to

information limitation, we exclude the event component, et,τ , for the equity data for

simplicity.

3.4 The estimation method

All of the parameters of the model are estimated by ML. The joint log-likelihood function

given by F (·;θ) for the set of observations (yt,τ )(t,τ)∈ΨT,I is

logL = A log(1− p) + (T × I − A) log(p) +
∑

(t,τ)∈ΨT,I>0

log f ∗y (yt,τ ;θ
∗, λt,τ ),

where A = |ΨT,I>0|. It is easy to check that the ML estimator (MLE) of p is p̂ =

(T × I −A)/(T × I). How to compute analytical standard errors is outlined in Appendix

D of the supplementary material. We simulate the asymptotic distribution of MLE in

the spline-DCS and check its large-sample behavior in Appendix C of the supplementary

material. The results suggest consistency and validate standard statistical inference for

model selection using t-statistics of this estimator at our sample sizes.

4 In-sample estimation results

For the FX data, using GB2 as the error distribution (F ∗) achieved a good fit to the

empirical distribution of the data. Burr, which is a special case of GB2 with ξ = 1,

was found to fit the empirical distribution of the equity data well.13 Figure 5 illustrates

the impressive fit of GB2. The empirical c.d.f. of non-zero ε̂t,τ appears to overlap the

theoretical c.d.f. of GB2(ν̂, ξ̂, ζ̂) or Burr(ν̂,ζ̂). The closeness of the fit can be also checked

by inspecting the the probability integral transform (PIT) of non-zero ε̂t,τ computed

under the assumption that it is from F ∗(·; θ̂
∗
). The empirical c.d.f. of the PIT values lies

13 GB2 did not fit the equity data well since the discreteness of volume due to market microstructure
dominated the empirical distribution when the sampling frequency is as high as 1 minute. Restricting
distribution parameters and testing nested distributions worked.
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Figure 5. Fitting Burr to IBM30s over 28 February - 31 March 2000 (left) and GB2 to the
trade volume of EURUSD (middle) and USDJPY (right) in Window 1. The empirical c.d.f.
of positive ε̂t,τ plotted against the theoretical c.d.f. of Burr(ν̂, ζ̂) or GB2(ν̂, ξ̂, ζ̂) (top). The

empirical c.d.f. of the PIT values of positive ε̂t,τ when F ∗(·; θ̂
∗
) is Burr(ν̂, ζ̂) or GB2(ν̂, ξ̂, ζ̂)

(bottom). The spline-DCS with the static daily spline was used.

along the diagonal, indicating that the PIT values are close to being standard uniformly

distributed (denoted by U [0, 1]). The results are remarkably similar for IBM1m and other

sampling windows for the FX data. The Kolmogorov-Smirnov statistics in Table 5 are

outside the 5% rejection region for most cases under the null that the distribution is the

estimated Burr or GB2. The model is robust to the choice of sampling frequency and

sampling period. The computing time for the ML estimation to converge in all of these

cases were generally short (about 5 minutes).

The gamma distribution, which is a more popular non-negative distribution in finance,

is a special case of the generalized gamma disribution (GG), and GG is a limiting case

of GB2 for when ζ is large. Gamma and GG did not fit the empirical distribution of the

data well compared to GB2. This is consistent with the estimated ζ (reported in Table

7), which is far from being large. Since νζ is the (upper) tail-index of GB2, its estimate,

which is far from being large, suggest that our data is heavy-tailed (see Table 7). Since a

gamma distribution cannot be heavy-tailed, GB2 may be preferred for heavy-tailed data.

Burr and GB2 are flexible since they have two to three shape parameters ((ν, ξ, ζ) for

GB2 with ξ = 1 for Burr). Also see Harvey (2013, p.12, p.189). In Table 7, we have

2 < ν̂ζ̂ < 3 for IBM1m and IBM30s, implying that only the first and second moments

exist and that the theoretical skewness does not exist under the assumption that F ∗ is

Burr. For the FX data, 3 < ν̂ζ̂ < 4, so that the moments up to the third exist. (See

Appendix A.1 of the supplementary material for the existence of moments.)

Figure 6 shows the estimated daily spline, ŝt,τ , for IBM30s. The spline beautifully
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IBM30s IBM1m

1.01 1.27

Window 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

EURUSD 1.22 1.23 0.96 1.22 1.32 0.99 1.14 0.95 0.82 1.00 0.83 1.329 0.74 0.85 0.86 0.68
USDJPY 1.53* 1.31 1.326 1.40* 0.84 0.63 1.41* 1.02 0.98 1.28 1.41* 1.02 1.16 1.22 0.82 1.23

Table 5. Kolmogorov-Smirnov statistics computed under the null that positive ε̂t,τ comes

from F ∗(·; θ̂
∗
) being either Burr(ν̂, ζ̂) for the equity data or GB2(ν̂, ξ̂, ζ̂) for the FX data. * 5%

significance. ** 1% significance.
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Figure 6. ŝt,τ for IBM30s from market open to close (left). ŝt,τ for the EURUSD volume
(middle, the in-sample window 2) and the USDJPY volume (right, the in-sample window 13).
The spline-DCS with the static daily spline. Intra-day hours in the NY local time for IBM30s
and in GMT for FX along the x-axes.

captures the intra-day U-shaped pattern in the equity data. The height of the spline at

4pm is different from that at 9.30am, reflecting the overnight effect. Figure 6 also shows

the estimated spline for the FX data. The spline successfully captures the bimodal and

trimodal patterns we saw in the data in Section 2. ŝt,τ is smooth in all of these cases.

The spline-DCS captures the dynamics of the data well. Figure 7 shows that the

estimation residuals, ε̂t,τ , and the score, ût,τ , exhibit little to no signs of serial correlation.

For the FX data, the results are similar for other sampling windows. However, the

large sample size makes the Ljung-Box statistics sensitive to small departures from zero

autocorrelation. This can be seen in the statistics reported in Table 6, which pick up

statistically significant autocorrelation.14

In Table 7, we have κ̂
(2)
η > κ̂

(1)
η > κ̂µ > 0, which means that η

(2)
t,τ is more sensitive to

changes in ut,τ−1 than η
(1)
t,τ , which is, in turn, more sensitive than µt,τ . The stationarity

conditions for η
(1)
t,τ and η

(2)
t,τ outlined in Section 3.3 are satisfied by φ̂

(1)
1 , φ̂

(1)
2 , and φ̂

(2)
1 . We

have |φ̂e| < 1 so that êt,τ reverts to zero after an event. The estimates of the probability

mass at zero are consistent with the sample statistics in Tables 2 and 3 (e.g. p̂ = 0.0047

for IBM30s). For the equity data, the estimated asymmetry term, κ̂
(2)
η,a, in η

(2)
t,τ is negative

and statistically significant, reflecting the tendency of volume to decrease when price

falls. Brownlees et al. (2011) found that the sign of their asymmetry term was positive

14Note that the sample autocorrelation of ût,τ may exhibit stronger serial correlation than that of ε̂t,τ ,
because the score weighs down (and thus it is robust to) the effect of large-sized observations.
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Figure 7. The sample autocorrelation of trade volume (top), ε̂t,τ (middle), and ût,τ (bottom).
IBM30s (left), IBM1m (left center), EURUSD (Window 1, right center), and USDJPY (Window
6, right). The spline-DCS with the static daily spline. The 95% confidence interval is computed
at ±2 standard errors.

so that volume on average increases when price falls. κ̂
(1)
η,a was found to be statistically

insignificant for both IBM1m and IBM30s, suggesting that there is no asymmetry effect

in the lower frequency component, η
(1)
t,τ .

5 Out-of-sample performance

5.1 One-step ahead forecasts: model stability

We use the predictive c.d.f. based on one-step ahead forecasts to assess the stability of

the estimated model and the quality of the forecasts. We introduce the following set

notations:

ΨH = {(t, τ) ∈ {T + 1, . . . , T +H} × {1, . . . , I}} , ΨH,>0 = {ΨH : yt,τ > 0} .

We recursively update λt,τ given a new out-of-sample observation, yt,τ , without re-estimating

the model to obtain one-step ahead forecasts, (λ̃t,τ )(t,τ)∈ΨH . Then, we compute F ∗(ε̃t,τ ; θ̂
∗
),

where ε̃t,τ = yt,τ/ exp(λ̃t,τ ) for (t, τ) ∈ ΨH,>0. This should be standard uniformly dis-

tributed.

Figure 8 shows the empirical c.d.f. of F ∗(ε̃t,τ ; θ̂
∗

) for IBM30s and EURUSD in the

out-of-sample window 1. The forecast horizons go up to H = 20 days ahead for the

equity data, and up to H = 12 days ahead for the FX data. The length of the out-of-
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ε̂t,τ ε̂2t,τ ût,τ

Window ρ̂1 ρ̂day Q1 Qday p-val1 p-valday ρ̂1 ρ̂day Q1 Qday p-val1 p-valday ρ̂1 ρ̂day Q1 Qday p-val1 p-valday
1 0.120 -0.033 31.048 169.116 0.000 0.000 0.080 -0.010 13.961 53.550 0.000 1.000 0.029 -0.031 1.855 155.616 0.173 0.002
2 0.147 -0.018 46.998 188.952 0.000 0.000 0.125 -0.006 33.870 43.940 0.000 1.000 0.007 -0.003 0.101 298.334 0.750 0.000
3 0.187 -0.002 74.982 277.065 0.000 0.000 0.094 -0.006 18.854 68.910 0.000 0.999 0.044 -0.002 4.139 233.940 0.042 0.000
4 0.079 -0.009 13.309 142.910 0.000 0.016 0.069 0.000 10.271 92.462 0.001 0.872 0.004 -0.016 0.037 196.560 0.847 0.000
5 0.069 -0.023 10.246 150.444 0.001 0.005 0.037 -0.009 2.862 84.197 0.091 0.963 0.024 -0.009 1.252 178.331 0.263 0.000
6 0.080 0.009 13.494 157.383 0.000 0.002 0.177 0.008 65.872 191.092 0.000 0.000 0.002 0.001 0.006 183.804 0.936 0.000
7 0.050 -0.001 5.387 130.444 0.020 0.089 0.007 0.007 0.095 16.065 0.758 1.000 0.008 -0.035 0.144 137.420 0.705 0.039
8 0.099 -0.030 20.931 163.575 0.000 0.000 0.156 -0.014 51.776 192.510 0.000 0.000 0.001 -0.022 0.003 133.777 0.957 0.047
9 0.223 -0.019 104.555 268.999 0.000 0.000 0.388 0.003 317.345 361.753 0.000 0.000 0.017 -0.035 0.625 151.152 0.429 0.004

10 0.092 0.030 18.075 174.686 0.000 0.000 0.050 0.016 5.386 201.496 0.020 0.000 0.044 0.024 4.172 150.216 0.041 0.005
11 0.131 -0.017 36.784 182.354 0.000 0.000 0.047 -0.002 4.613 16.008 0.032 1.000 0.012 -0.036 0.326 166.686 0.568 0.000
12 0.084 -0.006 14.891 161.028 0.000 0.001 0.038 -0.002 3.075 98.504 0.079 0.755 0.036 0.000 2.780 188.838 0.095 0.000
13 0.088 -0.024 16.557 171.534 0.000 0.000 0.017 -0.006 0.613 206.254 0.434 0.000 0.018 -0.036 0.732 141.613 0.392 0.017
14 0.128 -0.033 34.979 201.509 0.000 0.000 0.045 -0.004 4.436 29.458 0.035 1.000 0.008 -0.008 0.139 169.272 0.709 0.000
15 0.188 -0.022 75.888 195.670 0.000 0.000 0.090 -0.002 17.539 23.249 0.000 1.000 0.008 -0.022 0.127 170.162 0.721 0.000
16 0.082 -0.036 12.476 129.013 0.000 0.082 0.060 -0.011 6.660 25.878 0.010 1.000 0.025 -0.033 1.160 265.047 0.281 0.000

Table 6. Residual analysis for the spline-DCS with the static daily spline fitted to the trade
volume of EURUSD. Ql is the Ljung-Box statistic to test the null of no autocorrelation up to
the l-th lag.
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Figure 8. The empirical c.d.f. of F ∗(ε̃t,τ ; θ̂
∗

) from one-step ahead forecasts. Left: IBM30s up
to 20 out-of-sample days ahead (between 3 - 23 April 2000). Right: EURUSD trade volume up
to 12 out-of-sample days ahead of window 1. Computed using the theoretical c.d.f. of Burr(ν̂, ζ̂)
for IBM30s and GB2(ν̂, ξ̂, ζ̂) for EURUSD. The spline-DCS with the static daily spline is used.

sample windows for the FX data is two weeks as tabulated in Table 1. The results are

similar for IBM1m, and other out-of-sample windows of EURUSD and USDJPY. The

distribution of the PIT values is roughly U [0, 1] for this extended out-of-sample period.

The estimated model appears to capture the out-of-sample empirical distribution well,

although the non-negligible deterioration in the quality of the fit for some of the cases

are reflected in the Kolmogorov-Smirnov statistics in Table 8.

Figure 9 shows the sample autocorrelation of one-step ahead ε̃t,τ and ũt,τ for EURUSD

in the out-of-sample window 1. The results are similar for the equity data, as well as other

out-of-sample period of EURUSD and USDJPY. The one-step ahead forecasts appear to

capture the out-of-sample dynamics well over an extended out-of-sample period.

5.2 Model comparison

We use the FX data to compare the out-of-sample predictive performance of the spline-

DCS and the c-MEM defined in Appendix F of the supplementary material. For the

FX data, we do not include asymmetry terms or overnight dummies of the type used by

Brownlees et al. (2011), but we include an event component to be comparable with the

spline-DCS. Brownlees et al. (2011) estimate the c-MEM by the generalized method of
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Variable IBM30s IBM1m USDJPY EURUSD
Window — — 2 3

ν 1.632 (0.016) 2.229 (0.033) 1.738 (0.018) 2.002 (0.019)
ξ — — 1.738 (0.069) 1.369 (0.048)
ζ 1.484 (0.045) 1.143 (0.044) 2.062 (0.085) 1.501 (0.059)
ω 9.172 (0.199) 9.774 (0.178) 5.521 (0.095) 4.232 (0.068)
κµ 0.006 (0.001) 0.007 (0.002) 0.010 (0.003) 0.006 (0.003)

φ
(1)
1 0.554 (0.134) 0.391 (0.091) 0.570 (0.017) 0.582 (0.016)

φ
(1)
2 0.414 (0.133) 0.555 (0.093) 0.373 (0.017) 0.363 (0.016)

κ
(1)
η 0.049 (0.007) 0.047 (0.008) 0.059 (0.007) 0.070 (0.007)

φ
(2)
1 0.690 (0.041) 0.610 (0.057) 0.438 (0.083) 0.369 (0.114)

κ
(2)
η 0.092 (0.008) 0.067 (0.008) 0.094 (0.009) 0.080 (0.010)

κ
(2)
η,a -0.004 (0.004) -0.008 (0.003) — —
p 0.0047 (0.0005) 0.0006 (0.0003) 0.000 (0.000) 0.006 (0.002)
γ0 1.197 (0.066) 1.119 (0.064) (omitted) (omitted)
γ1 0.061 (0.041) 0.066 (0.041) (omitted) (omitted)
γ2 -0.419 (0.036) -0.392 (0.036) (omitted) (omitted)
γ3 -0.216 (0.037) -0.244 (0.037) (omitted) (omitted)
φe — — 0.807 (0.047) 0.504 (0.108)
κe,1 — — 2.739 (1.024) 0.998 (0.021)
κe,2 — — 2.457 (1.094) 0.645 (0.097)
κe,3 — — 1.424 (0.021) 1.707 (1.208)

Table 7. The estimated parameter values for the spline-DCS with the static daily spline. The
analytical standard errors here uses the outer-product of the first derivative of the joint log-
likelihood (see Appendix D of the supplementary material). The coefficients of st,τ are omitted
here for the FX data to save space. Burr (GB2 with ξ = 1) is estimated for the IBM data due
to the considerations given in Footnote 13. For the FX data, results for other sampling windows
are given in Appendix E of the supplementary material.

Figure 9. The sample autocorrelation of one-step ahead ε̃t,τ (left) and ũt,τ (right) of EURUSD
for up to 12 out-of-sample days ahead of window 1. The spline-DCS with the daily spline is
used.

moment (GMM) in order to allow for a greater flexibility in the distribution of the error

term. We adopt their GMM estimation strategy. The in-sample estimation method and

results are given in Appendix G of the supplementary material.

Since the proposed GMM in the c-MEM can be used to forecast the level of volume

(hereafter, level forecasts), but not the density, the performance of the competing models

are compared using their level forecasts. We produce forecasts over each out-of-sample

window listed in Table 1. The loss functions we consider are the daily mean absolute

errors (MAE), the daily root mean squared errors (RMSE), and the daily slicing loss
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IBM30s IBM1m

3.05** 1.18

Window 1 2 3 4 5 6 7 8 9 10 11 12

EURUSD 1.35* 2.03** 1.51* 1.13 0.67 1.45* 1.57* 1.38* 0.94 1.12 1.51* 4.65**
USDJPY 3.39** 1.21 1.42* 1.332 1.34* 1.35* 2.00** 1.86** 0.96 1.60* 2.01** 7.10**

Window 13 14 15 16

EURUSD 0.96 1.17 1.51* 10.02**
USDJPY 2.09** 1.95** 0.68 1.56*

Table 8. Kolmogorov-Smirnov statistics computed under the null that positive ε̃t,τ comes from

F ∗(·; θ̂
∗
) being either Burr(ν̂, ζ̂) for the equity data or GB2(ν̂, ξ̂, ζ̂) for the FX data. Windows

are out-of-sample. * 5% significance. ** 1% significance.

given by

LMAE
(
(yT+h,τ , ỹT+h,τ )

I
τ=1

)
= (I)−1

I∑
τ=1

|yT+h,τ − ỹT+h,τ | ,

LRMSE
(
(yT+h,τ , ỹT+h,τ )

I
τ=1

)
=

√√√√(I)−1

I∑
τ=1

(yT+h,τ − ỹT+h,τ )
2,

Lslicing
(
(yT+h,τ , ỹT+h,τ )

I
τ=1

)
= −

I∑
τ=1

wT+h,τ log ŵT+h,τ ,

where wT+h,τ is intra-day volume proportion, for h = 1, . . . , H and τ = 1, . . . , I.

Intra-day volume is highly volatile and the value of the daily loss functions are typically

dominated by large errors. Thus, we consider not only RMSE, but also MAE, since RMSE

is sensitive to extreme observation points. These metrics can be used to assess the quality

of forecast volume dynamics. The conditional first moment is theoretically optimal in the

sense of minimizing RMSE. The conditional median is theoretically the optimal predictor

if the loss function is MAE. The slicing loss is developed by Brownlees et al. (2011)

to evaluate VWAP trading strategies. It is a common term determining the ranking

of models by the negative multinomial log-likelihood loss and the Kullback-Leibler loss.

The forecast slicing weights, ŵT+h,τ , are computed under the Dynamic VWAP replication

strategy outlined by Brownlees et al. (2011).15

The daily MAE and RMSE are computed using one-step ahead volume forecasts. The

Dynamic VWAP updates Static-VWAP, which is one-day ahead intra-daily volume fore-

casts, throughout the day using new intra-day data. These loss functions are computed

for each h = 1, . . . , H of each out-of-sample window.

With the spline-DCS, formulae for one-step ahead volume forecasts are (conditional)

15We do not consider the VWAP-tracking MSE discussed in Bialkowski et al. (2008) as we did not
have the price data. Brownlees et al. (2011) prefer the slicing loss, which is less noisy.
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Figure 10. Diebold-Mariano statistics from Table 9.

mean forecasts,

ỹT+h,τ ≡ E[yT+h,τ |FT+h,τ−1] = exp(λ̃T+h,τ )

∫ ∞
0

xf(x; θ̂)dx, (3)

and (conditional) median forecasts,

ỹT+h,τ ≡ exp(λ̃T+h,τ )Q0.5(θ̂), where P
(
εT+h,τ ≤ Q0.5(θ̂)|FT+h,τ−1

)
= 0.5, (4)

for h = 1, . . . , H and τ = 1, . . . , I. Since the error distribution is fully given by GB2,

the median and the first moment of F (ε; θ̂) can be computed analytically. The mean

forecasts are used for the MSE and the median forecasts for the MAE. With the c-

MEM, we produce mean forecasts only given the minimal GMM assumption for the error

distribution.

The proportion forecasts for the Dynamic VWAP utilizes the multi-step predictor of

volume given by ỹt,τ = E [εt,τ ]E [exp(λt,τ )|FT,I ] for (t, τ) ∈ ΨH , but continuously updates

this quantity with new intra-day trade data. See Brownlees et al. (2011). Note that

this moment quantity is evaluated analytically for the spline-DCS since the moment

generating function (m.g.f.) of ut,τ exists.

Table 9 and Figure 10 show Diebold-Mariano statistics computed from the resulting

loss function values. The results based on RMSE are marginally in favor of the c-MEM,

as test statistics are in a statistically significantly positive region more frequently. The

results based on MAE are marginally in favor of the spline-DCS. These results reflect

the fact that the spline-DCS is more robust to large-sized observations than the c-MEM,

and that RMSE penalizes models for occasionally throwing up large errors more severely

than MAE. In the interest of VWAP replication strategies, the spline-DCS outperforms

the c-MEM in minimizing the slicing loss function.

5.3 Discussions

We found MLE in the spline-DCS fast and easy to compute. With the FX data and the

same convergence tolerance, the optimization procedure for the spline-DCS converged

in about 5 minutes. This is a very attractive feature in high-frequency finance since a

typical forecasting exercise deals with a very large sample size, which generally makes

estimation computationally intensive.
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MSE:

Window 1 2 3 4 5 6 7 8 9 10

EURUSD 2.10** 3.50*** 2.35** -0.67 -3.12*** 2.22** 0.87 1.39 1.76* 2.61***
USDJPY -1.00 1.07 2.73*** -1.46 -1.00 2.83*** -1.10 1.36 1.90* 3.02***

Window 11 12 13 14 15 16

EURUSD -1.05 -0.97 2.65*** 1.44 1.47 6.41***
USDJPY 2.57** 2.99*** -0.94 2.21** 0.85 -3.27***

MAE:

Window 1 2 3 4 5 6 7 8 9 10

EURUSD -0.06 5.13*** -1.63 -3.61*** -3.72*** -1.75* -1.54 -0.01 -0.34 -0.62
USDJPY -0.87 -1.20 -1.88* -2.27** -1.42 0.61 -5.07*** 1.21 -1.45 -0.27

Window 11 12 13 14 15 16

EURUSD -1.72* -2.12** -0.26 0.81 4.60*** 8.16***
USDJPY 3.77*** 1.00 -1.83* 1.70* -2.69*** -6.00***

Slicing loss:

Window 1 2 3 4 5 6 7 8 9 10

EURUSD -1.26 -3.03*** -1.58 -0.95 -2.81*** -0.96 -1.99** -1.05 0.88 -2.29**
USDJPY -2.59*** -4.38*** -2.51** -3.98*** -1.30 -1.42 -2.88*** -0.63 -4.11*** -2.19**

Window 11 12 13 14 15 16

EURUSD 0.57 -2.81*** 1.05 -1.73 -1.50* -4.78***
USDJPY -0.43 -1.80* -3.49*** -1.71 -1.20 -3.67***

Table 9. Diebold-Mariano statistics to test the null of equal predictive ability against the
alternative of different predictive ability, which is a two-sided test with * 10% significance, **
5% significance, and *** 1% significance. Negative values are in bold font. If the alternative is of
a one-sided test, a statistically significant negative (positive) value is in favor of the spline-DCS
(c-MEM).

When we were specifying the spline component, increasing the number of knots did

not necessarily improve the quality of the fit of the model to the data. We found two

rules of thumb that worked well in determining the location and the number of knots to

improve the quality of approximation. The first is to place one knot approximately every

1 hour to 1.5 hours. The second is to place relatively more knots when trade intensity

changes fast. Such hours correspond to the first and last trading hour of the NYSE for

the equity data, and the hours before and after the volume peaks for the FX data. It is

useful to sketch how a piecewise function of cubic polynomials can fit the data.

A main objection to ML is that it requires the error distribution to be fully defined. A

non-parametric approach may be preferred if no parametric distribution can reasonably

describe the empirical distribution of the data. This does not seem to be the case in our

application. With a suitable distribution, our model gives more insight into the overall

shape of the distribution, the degree of dispersion, and the size of the tail. Quantile fore-

casts or moment forecasts of different orders can be also produced from density forecasts.
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All of these features are useful for volume prediction and risk analysis.

6 Concluding remarks

This paper developed the spline-DCS model for forecasting the dynamics of high-frequency

trade volume with intra-day periodic patterns. We showed that it captures salient features

of the high-frequency data. Our estimation results are robust to the choice of sampling

frequency and sampling period. The out-of-sample analysis showed that the estimation

results are stable, and that our model outperforms the c-MEM in minimizing the slicing

loss function. The ease of computation is an important advantage of the spline-DCS.

Burr and GB2 achieved a very good fit to the empirical distribution of the data. The

estimated parameter values indicated that our data is heavy tailed.

The pattern of periodicity was assumed to be the same every day in this paper.

Ito (2013) challenges this standard assumption by introducing the spline-DCS with a

dynamic spline, and show that the model can improve on the version with the static

spline in minimizing the slicing loss function.

The object of our empirical analysis is trade volume, and, as such, this study also

contributes to the literature dedicated to the analysis of market activity and intensity.

The spline-DCS can be applied to model other variables such as asset returns using

a suitable distribution such as Student’s t. We studied the movements of volume in

complete isolation from price, which is ultimately not satisfactory as return volatility

and volume dynamics must interact. A natural extension is to construct multivariate

intra-day DCS that jointly models return volatility and volume.

References

Andersen, T. G. and Bollerslev, T. (1998), “Deutsche Mark-Dollar Volatility: Intraday

Activity Patterns, Macroeconomic Annoucements, and Longer Run Dependencies,”

Journal of Finance, 53, 219–265.

Avdulaj, K. and Barunik, J. (2015), “Are Benefits From Oil-Stocks Diversification Gone?

New Evidence From a Dynamic Copula and High Frequency Data,” Energy Economics,

51, 31–44.

Bialkowski, J., Darolles, S., and Le Fol, G. (2008), “Improving VWAP Strategies: A

Dynamic Volume Approach,” Journal of Banking and Finance, 32, 1709–1722.

Bowsher, C. G. and Meeks, R. (2008), “The Dynamics of Economic Functions: Modelling

and Forecasting the Yield Curve,” Journal of the American Statistical Association, 103,

1419–1437.

Brownlees, C. T., Cipollini, F., and Gallo, G. M. (2011), “Intra-Daily Volume Modelling

and Prediction for Algorithmic Trading,” Journal of Financial Econometrics, 9, 489–

518.

21



Caviano, M. and Harvey, A. C. (2014), “Time-Series Models With an EGB2 Conditional

Distribution,” Journal of Time Series Analysis, 35, 558–571.

Creal, D. D., Koopman, S. J., and Lucas, A. (2011), “A Dynamic Multivariate Heavy-

Tailed Model for Time-Varying Volatilities and Correlations,” Journal of Business and

Economic Statistics, 29, 552–563.

— (2013), “Generalized Autoregressive Score Models with Applications,” Journal of Ap-

plied Econometrics, 28, 777–795.

Creal, D. D., Schwaab, B., Koopman, S. J., and Lucas, A. (2014), “Observation-Driven

Mixed-Measurement Dynamic Factor Models With An Application To Credit Risk,”

The Review of Economics and Statistics, 96, 898–915.

Gao, C.-T. and Zhou, X.-H. (2016), “Forecasting VaR and ES Using Dynamic Conditional

Score Models and Skew Student Distribution,” Economic Modelling, 53, 216–223.

Harvey, A. C. (1993), Time Series Models, Harvester: Wheatsheaf, 2nd ed.

— (2013), Dynamic Models for Volatility and Heavy Tails: With Applications to Financial

and Economic Time Series, Econometric Society Monograph, Cambridge University

Press.

Harvey, A. C. and Koopman, S. J. (1993), “Forecasting Hourly Electricity Demand Using

Time-Varying Splines,” Journal of the American Statistical Association, 88, 1228–1236.

Harvey, A. C., Koopman, S. J., and Riani, M. (1997), “The Modeling and Seasonal

Adjustment of Weekly Observations,” Journal of Business & Economic Statistics, 15,

354–68.

Harvey, A. C. and Lange, R.-J. (2015), “Volatility Modeling with a Generalized t-

Distribution,” Cambridge Working Papers in Economics CWPE1517, University of

Cambridge.

Harvey, A. C. and Luati, A. (2014), “Filtering With Heavy Tails,” Journal of the Amer-

ican Statistical Association, 109, 1112–1122.

Harvey, A. C. and Sucarrat, G. (2014), “EGARCH Models With Fat Tails, Skewness and

Leverage,” Computational Statistics and Data Analysis, 76, 320–338.

Hautsch, N. (2012), Econometrics of Financial High-Frequency Data, Springer: Berlin.

Hautsch, N., Malec, P., and Schienle, M. (2014), “Capturing the Zero: A New Class of

Zero-Augmented Distributions and Multiplicative Error Processes,” Journal of Finan-

cial Econometrics, 12, 89–121.

Hendricks, W., Koenker, R., and Poirier, D. (1979), “Residential Demand for Electricity,”

Journal of Econometrics, 9, 33–57.

Hyndman, R. J., King, M. L., Pitrun, I., and Billah, B. (2005), “Local Linear Forecasting

Using Cubic Smoothing Splines,” Australian and New Zealand Journal of Statistics,

47, 87–99.

Ito, R. (2013), “Modeling Dynamic Diurnal Patterns in High Frequency Financial Data,”

Cambridge Working Papers in Economics CWPE1315, University of Cambridge.

22



Janus, P., Koopman, S. J., and Lucas, A. (2014), “Long Memory Dynamics For Multi-

variate Dependence Under Heavy Tails,” Journal of Empirical Finance, 29, 187–206.

Jungbacker, B., Koopman, S. J., and van der Wel, M. (2014), “Smooth Dynamic Factor

Analysis With Application to the US Term Structure of Interest Rates,” Journal of

Applied Econometrics, 29, 65–90.

Kleiber, C. and Kotz, S. (2003), Statistical Size Distributions in Economics and Actuarial

Sciences, Wiley: New York.

Lo, A. W. and Wang, J. (2010), “Stock Market Trading Volume,” in Handbook of Fi-

nancial Econometrics, eds. Aı̈t-Sahalia, Y. and Hansen, L., North-Holland: New York,

vol. 2.

Lucas, A., Schwaab, B., and Zhang, X. (2014), “Conditional Euro Area Sovereign Default

Risk,” Journal of Business and Economic Statistics, 32, 271–284.

Lucas, A. and Zhang, X. (2016), “Score-Driven Exponentially Weighted Moving Averages

and Value-At-Risk Forecasting,” International Journal of Forecasting, 32, 293–302.

McCulloch, R. E. and Tsay, R. S. (2001), “Nonlinearity in High-Frequency Financial

Data and Hierarchical Models,” Studies in Nonlinear Dynamics and Econometrics, 5,

1–17.

Poirier, D. (1973), “Piecewise Regression Using Cubic Spline,” Journal of the American

Statistical Association, 68, 515–524.

Rydberg, T. H. and Shephard, N. (2003), “Dynamics of Trade-By-Trade Price Move-

ments: Decomposition and Models,” Journal of Financial Econometrics, 1, 2–25.

Salvatierra, I. D. L. and Patton, A. J. (2015), “Dynamic Copula Models and High Fre-

quency Data,” Journal of Empirical Finance, 30, 120–135.

23


	CWPE1606- Coversheet new
	Paper_RI005_CWPE1606

