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ABSTRACT 

We report on the de novo design of a biologically active amyloidogenic 

peptide that inhibits VEGFR2 function and reduces VEGFR2 dependent tumor 

growth in mice xenografts upon intravenous administration. This peptide, 

consisting of a tandem repeat of an amyloidogenic fragment of VEGFR2, forms 

prefibrillar oligomers, protofibrils and mature fibrils, penetrates cells and 

seeds the aggregation of VEGFR2 by direct interaction. Our results therefore 

show that a short amyloidogenic protein fragment can induce the aggregation 

of a protein normally not associated to amyloidosis in a manner that 

recapitulates key biophysical and biochemical characteristics of natural 

amyloids. In addition we find that amyloid toxicity is observed only in cells that 

both express VEGFR2 and are dependent of VEGFR2 for survival. Thus rather 

than being generic, amyloid toxicity here appears to be both protein specific 

and conditional, i.e. determined by VEGFR2 loss-of-function in a biological 

context where target protein function is essential. 

 

INTRODUCTION 

Amyloid aggregation of proteins is driven by short amyloidogenic sequence 

segments within a protein chain (1, 2) that have the potential to self-assemble into -

sheet ribbons to form the characteristic cross-beta structured spine of amyloid 

structures (3, 4). It has been showed that most proteins do in fact possess such 

amyloidogenic sequence segments (5, 6). Still, only about 30 human proteins are 

known to be involved in amyloid-associated diseases (7, 8). Moreover it is still not 

clear what determines amyloid toxicity in these diseases (8, 9). Here we investigate 

whether an endogenously expressed protein that possesses amyloidogenic potential 

but aggregates neither under normal nor pathological conditions, can be induced to 

do so by seeding with a peptide consisting of an amyloidogenic fragment of its own 

sequence. The use of amyloidogenic fragment peptides is motivated by the 

observation that aggregation of disease–associated amyloidogenic proteins can be 

seeded by such peptides in vitro (10, 11) and that truncations of amyloid proteins 

have been associated with increased seeding potential in vivo (12, 13). Moreover it 

has been shown that amyloidogenic peptides and proteins are generally much more 

efficient at seeding aggregation of homotypic sequences (14-16) although examples 
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of cross seeding do exist (17-19). Indeed, seeding of protein aggregation in vitro 

appears to work universally, and fits with the structural model of aggregation as the 

addition of new strands to a growing amyloid fibril (8). This imparts sequence 

specificity to the seeding process as the incorporation of non-homologous sequences 

into the highly ordered in-register stacking of identical side chains in the fibril core is 

likely to be energetically disfavoured (13, 20, 21). The seeding concept appears to 

hold true both in cell culture and in vivo, even for non-prion aggregation-associated 

peptides and proteins, which have hence been called prionoids (22). As a target 

protein we choose VEGFR2 as the function of this protein is well characterized. To 

ensure efficient seeding we designed an amyloidogenic peptide termed vascin 

consisting of a tandem repeat of an amyloidogenic sequence segment in the VEGFR2 

signal peptide.  

We find that vascin is a bona fide amyloidogenic peptide that forms mature 

cross-beta fibrils along with prefibrillar intermediates including soluble oligomers 

and protofibrils. Moreover we find that the peptide is able to enter cells and reach 

the cytoplasmic compartment and specifically induce the aggregation of endogenous 

VEGFR2 thereby inhibiting its function in Human vein endothelial cells (HUVEC) in 

vitro and reducing VEGFR2-dependent tumor progression in vivo.   

It remains unclear what determines amyloid toxicity in amyloid diseases and 

whether cell death results from a consequence of direct amyloid toxicity (gain-of-

function) or whether it is a consequence of loss-of-function (23, 24). However, our 

detailed understanding of real amyloid disease models is often insufficient to address 

these questions directly. Indeed for many disease associated amyloidogenic proteins 

–such as the A peptide in Alzheimer disease (25) and -synuclein in Parkinson 

disease (26)- we still have insufficient understanding both of their physiological role 

as well as the cellular interactions of the amyloid conformation in disease (26, 27). 

We do however have a better understanding of the structural and biochemical 

characteristics that are common to most amyloid diseases. These features include the 

cross-beta structural organization of the spine of the amyloid fibrils formed by short 

segments of the sequence, the population of prefibrillar intermediates including 

soluble oligomers and protofibrils, and the capacity of amyloids to seed aggregation 

of the native conformation. While our artificial amyloid model recapitulates these 
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key structural and biochemical features of natural amyloids, it is also simple enough 

to investigate the relationship between protein loss-of-function and amyloid toxicity.  

Our results show that vascin amyloids are not inherently toxic but that the 

emergence of amyloid toxicity is dependent on biological context. Vascin is not toxic 

to cells that do not express VEGFR2 or to cells expressing VEGFR2 but that are not 

dependent on VEGFR2 function. However when introduced in VEGFR2 dependent 

cells we find association of vascin amyloid toxicity and VEGFR2 loss-of-function. Our 

model system therefore demonstrates that amyloidogenic protein fragments can 

induce aggregation of non amyloidogenic proteins and that under these conditions 

amyloid gain of function is a phenotypic effect resulting from cell context specific 

loss-of-function.  

 

RESULTS 

Design of vascin, an amyloidogenic peptide derived from a VEGFR2 fragment 

We analyzed the VEGFR2 receptors from mouse and human using the statistical 

thermodynamics algorithm TANGO (28) (Suppl Fig 1A). Since we envisaged testing 

the sequence ultimately in a mouse model, we opted for maximal compatibility with 

this version of the protein. Moreover, the two homologs share 84% sequence identity 

overall and 90% in the tango regions. To derive peptide sequences that are likely to 

form amyloid structure in isolation, but also have a high potential for forming soluble 

oligomers (29), we devised a strategy (30, 31) that makes use of a sequence feature 

of functional amyloids and yeast prions, which often contain several aggregation 

prone segments (APR) (32) closely connected by disordered regions (33). Hence we 

placed two ARPs in a peptide, separated by a rigid Pro-Pro linker, mimicking these 

repeat patterns. In order to maintain colloidal stability and solubility of the sequence, 

we supercharged the peptides by flanking the APRs with either negatively charged 

aspartate or positively charged arginine residues. Given the length limitations 

imposed by the efficiency of solid phase peptide synthesis, this design scheme 

imposes a length limitation on the APRs of 7 amino acids. Hence we selected 10 such 

high scoring sequences (Suppl Table 1) and generated the 38 peptide sequences 

listed in table 2, which explore both tandem repeats of the same APR as well as 

fusions of different APRs (Suppl Table 2). Peptides were screened for their ability to 

inhibit VEGF signalling in Hek293 cells transfected with mouse VEGFR2. To this end, 
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cells were treated overnight with an apparent concentration of 20 M peptide 

(assuming 100% synthesis efficiency) and ERK phosphorylation was determined 

after stimulation for 5 min with 50 ng/mL VEGF (Suppl Fig 1B). At this 

concentration, we observed inhibition only with 2 peptides (B8 and B12). The effect 

was most pronounced with the peptide B8, which was based on a tandem repeat of 

the first high scoring aggregation prone region in the sequence that derives from the 

signal peptide and has the sequence L6AVALWF12 (Supplementary Figure 2A), 

resulting in the sequence DLAVALWFDPPDLAVALWFD (pI = 3.38, M.W. = 2272.15 

Da). We termed this peptide vascin (Supplementary Figure 2B), obtained additional 

material by solid phase peptide synthesis followed by HPLC purification 

(Supplementary figure 2B), and confirmed its identity by mass spectrometry 

(observed mass: 2272.4, supplementary figure 2D). 

 

Vascin forms soluble beta-structured oligomers that mature into amyloid 

fibrils  

To determine the amyloidogenic nature of the peptide, vascin was dissolved 

to a final concentration of 300 M in 1% (w/v) ammonium bicarbonate in ddH2O. 

After 24 hours incubation Transmission Electron Microscopy (TEM) revealed typical 

amyloid fibrils of about 10 nm in width consisting of protofilaments of 4-5 nm 

(Figure 1A-D and Supplementary Figure 3). Additionally, vascin fibrils bind amyloid 

sensor dyes, including Thioflavin-T and the amyloid specific oligothiophene  h-HTAA 

(34) displaying the characteristic emission spectra of beta amyloids (Figure 1E). X-

ray diffraction of aligned bundles of vascin fibrils confirmed their cross-beta nature, 

with characteristic diffractions at 4.7 and 10.0 Å (Figure 1F). Together these data 

confirm the amyloidogenic nature of vascin. In order to follow amyloid formation 

kinetics we filtered dissolved 300 M vascin 1% (w/v) ammonium bicarbonate in 

ddH2O through a 0.2 m regenerated cellulose filter and monitored particle size 

distribution using electrospray ionisation-mass spectrometry linked to ion mobility 

spectrometry (ESI-IMS-MS)(35) (Figure 1G) and  Dynamic Light Scattering (DLS) 

(Figure 1H). At time zero, the MS showed a mixture of monomers and multimers up 

to X (Figure 1G), whereas the particle sizes visible in the DLS ranged from 5-100 nm 

(assuming linear polymer particles). After 6 h particles reached sizes over 1 m 

(Figure 1H). This indicates that the filtered vascin solution contains soluble 
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oligomeric aggregates already at time zero. The fact that no lag phase was observed 

in the DLS autocorrelation function (Supplementary Figure 4A & B) further suggests 

that these soluble oligomers are able to directly proceed to amyloid fibril formation. 

In order to probe the secondary structure of these soluble aggregates we monitored 

the same aggregation kinetics using Fourier Transform Infrared Spectroscopy (FT-

IR). The spectrum at time zero was dominated by maxima near 1630 and 1690 cm-1 

(Figure 1I), characteristic of -sheet structure. Over the following 6 h the intensity of 

these peaks increased markedly while the center of the peaks shifted gradually to 

1622 and 1692 cm-1, respectively (Figure 1I&J). These peaks were quite narrow and 

regions outside the peaks showed very little absorption, suggesting that most of the 

peptide sequence is involved in -structured hydrogen bonding. FT-IR kinetics 

therefore indicate that vascin largely adopts a -structured conformation upon 

solubilization in 1% bicarbonate and that these species mature into amyloid fibrils 

over time. Finally we measured binding to 8-Anilino-1-naphthalenesulphonic acid 

(ANS) during vascin amyloid formation (Supplementary Figure 4C), revealing high 

binding of this dye at time zero.  The latter is a typical feature of interaction-prone 

cytotoxic prefibrillar oligomers that present a high degree of solvent exposed 

hydrophobic surface (36). The binding of ANS increased over time, suggesting 

hydrophobic surfaces stay exposed upon fibril formation. Given that the above 

observations were made at 300  M peptide where the signal to noise ratio for 

biophysical characterisation is optimal, we also verified that vascin readily formed 

amyloid fibrils at the lower concentration of 30 M (Supplementary Figure 5). 

Compared to vascin a scrambled version of the peptide (Supplementary Note 1) 

formed small soluble aggregates with hydrodynamic radii smaller than 100 nm by 

Dynamic Light Scattering, DLS (Supplementary Figure 6A&B) that exhibited a non-

fibrillar morphology via TEM (Supplementary Figure 6C), and displayed marginal 

affinity for the amyloid sensor dyes with no specific emission spectrum for amyloid 

fibers (Figure 1E). Similar observation were made with  a vascin variant in which 

proline mutations were introduced to break the beta-sheet propensity of the APRs in 

vascin (Supplementary Note 2, Supplementary Figure 7). In contrast, a version of 

vascin based on the human sequence (hVascin, DLAVALWLDPPDLAVALWLD), 

containing a single mutation of Phe to Leu at position 7 of the APR, displayed similar 

amyloid formation as the original mouse sequence (Supplementary Figure 8). 
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In conclusion the biophysical characterization above confirms that vascin is 

an amyloidogenic peptide that readily forms -structured soluble oligomeric 

aggregates that mature into cross- structured amyloid fibrils in a broad 

concentration range.  

 

Vascin inactivates VEGFR2 in human vein endothelial cells by inducing its 

aggregation 

As vascin is an amyloidogenic peptide derived from a VEGFR2 fragment we 

investigated whether vascin displays biological activity towards VEGFR2 in cultured 

cells. First, we monitored cellular uptake of vascin using carboxyfluorescein labelled 

vascin (CF-vascin) in human vein endothelial cells (HUVEC). We observed cellular 

uptake during the first hour of incubation as small vesicles or inclusions that 

contained diffuse homogeneous peptide (Figure 2A). Moreover, these inclusions 

were positive for the amyloid sensor dye pFTAA (Figure 2B&C), showing that the 

peptide remains in an amyloid-like conformation inside the cells. Co-staining for the 

ER protein Calnexin reveals that the peptide is on the cytoplasmic side of the ER 

(Figure 2D), where it partially overlaps with staining for ribosomes (Figure 2E). 

Proximity ligation (Duo-Link) using antibodies against VEGFR2 and the 

carboxyfluorescein-label on the peptide (Figure 2F), quantified by image analysis 

from high content microscopy demonstrated direct interaction between vascin and 

VEGFR2 (Figure 2G).  This result was further confirmed by two color direct 

stochastic optical reconstruction microscopy (dSTORM) super-resolution 

imaging(37) using 0.5µM of Alexa647 labeled vascin and Alexa568 labeled VEGFR2 

(Figure 2H&I).  

Co-immunoprecipitation of VEGFR2 from lysates of vascin-treated cells was 

performed with PEG-biotin labeled peptide again demonstrating direct interaction 

between vascin and VEGFR2 (Figure 3A). To investigate the consequences of the 

interaction between vascin and VEGFR2 on the aggregation status of the receptor, we 

determined the difference in distribution of VEGFR2 between soluble and insoluble 

lysate fractions of HUVECs treated with 20 µM of vascin. Upon vascin treatment we 

could observe a clear redistribution of full length and partially degraded VEGFR2 

towards the insoluble fraction whereas this was not the case upon treatment with 

scrambled vascin (Figure 3B). In addition, the induced insoluble VEGFR2 displays 
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partial resistance to the ionic detergent SDS, a hallmark of amyloid-like aggregation 

(Figure 3C). To confirm that vascin mediated aggregation of VEGFR2 in HUVECs 

leads to its loss function we determined the dose response curve of vascin on 

VEGFR2 autophosphorylation and ERK phosphorylation (MSD ELISA assay) after 

stimulating HUVECs for 5 min with 1.3 nM VEGF. HUVECs displayed a clear dose 

responsive inhibition by vascin with an IC50 of 6.8 +- 0.5 M for receptor 

autophosphorylation and 8.3 +- 0.4 M for ERK phosphorylation (Figure 3D&E). The 

human version of vascin did show similar inhibition, which was not observed using 

the scrambled or proline controls (Figure 3F). Using fluorescence-activated cell 

sorting (FACS) and immunofluorescence microscopy we observed a concomitant 

reduction in the surface expression of VEGFR2 in HUVECs, but not of the unrelated 

cell-surface protein CD29 (Figure 3G & Supplementary Figure 9), confirming loss of 

VEGFR2 function in HUVECs. Together these data show that vascin is internalized by 

HUVECs and reaches the cytoplasmic compartment where it directly binds to 

VEGFR2 and localizes with ribosomes, resulting in the functional inactivation 

through aggregation of VEGFR2. This effect seemed to be specific as indicated by the 

CD29 result. Moreover, we observed no effect of vascin on EGF signalling in HeLa 

cells, which do not endogenously express VEGFR2 but the functionally homologous 

EGF receptor ErbB2. Treatment of this cell line with 20 M vascin showed no 

inhibition of ERK phosphorylation in resonse to stimulation with EGF, showing that 

the effect is specific to VEGFR2 (Figure 3H). To test if known amyloidogenic proteins 

were affected by vascin, we investigated the effect of adding vascin to solutions of the 

Alzheimer -peptide 1-42 (A, Figure 3I) or the human Prion protein (PrP, Figure 3J). 

The mean lag time for spontaneous conversion of Aβ1-40 was 350 minutes whereas 

addition of preformed Aβ fibrils decreased the lag time to 130 minutes. Addition of 

B8 fibril variants did not lead to significant decrease of fibrillation lag times other 

than for B8 Scr3 where the significance level in a paired T-test was p>0,03. The mean 

lag time for spontaneous conversion of HuPrP23-231 was 1100 minutes. The 

conversion rate upon addition of preformed HuPrP90-231 fibrils was shortened to 

135 minutes whereas addition of preformed B8 fibril variants did not lead to 

significant alteration of lag time. 
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Vascin reduces VEGFR2-dependent tumor growth in mice 

To establish the effect of vascin in vivo we turned to a functional angiogenesis model 

that is sensitive to inhibition of VEGFR2 in vivo and used a subcutaneous B16 

melanoma syngenic tumor model in C57BL/6 inbred mice. Tumor growth of this line 

is strongly reduced by VEGFR-specific inhibition approaches, such as the tyrosine 

kinase inhibitor PTK 787/ZK 222584 (38), providing a sensitive phenotypic readout 

for the anticipated effect of vascin. To assess if vascin administration would be 

tolerated by C57BL/6 mice we first performed a dose-escalation study by daily tail 

vein injections in two six-week-old, inbred C57BL/6 mice, starting from 1 mg/kg to 

10 mg/kg, which corresponded to the highest stock concentration of the peptide that 

we could reach with the available material. No adverse effects to the basic 

physiological and behavioral parameters of the animals was apparent across this 

concentration range, including body weight, food and water consumption, home cage 

activity and locomotion. To test the effect of vascin on tumor growth, B16 cells were 

injected subcutaneously in the right dorsal flank of eight-week-old C57BL/6 mice. 

Starting from three days post tumor injection and until day 17, mice were treated 

daily by intravenous delivery of 10 mg/kg vascin (N=10) or scrambled vascin as the 

negative control (N=10). Another negative control group received intravenous 

delivery of the vehicle (50 mM Tris pH7.5, N=10) and the positive control group 

(N=5) received the kinase inhibitor PTK787 orally (75mg/kg). Tumor growth was 

similar in animals treated with scrambled vascin or vehicle, and markedly reduced in 

animals that received the PTK inhibitor. In the vascin treated group tumor growth 

was significantly inhibited compared to the negative controls over the entire 

experiment (ANOVA with Tukey post-hoc) and up to day 14 to a similar extent than 

the PTK treated group (Figure 4A). 

In order to exclude overall toxicity effects of vascin on tumor growth, we executed a 

short term toxicology study in which we treated groups of 5 mice daily with 10 

mg/kg of vascin (group A), scrambled (group B) or vehicle (50 mM Tris pH 7.5) for 

14 days (the same duration as the tumor growth experiment). Gross examination at 

necropsy did not reveal any macroscopic changes (Supplementary Figure 10A). 

Concerning organ weights (Supplementary Figure 10B), hematology (Supplementary 

Figure 10C) and clinical chemistry (Supplementary Figure 10D), no statistically 

significant differences were observed among groups. Also no significant variations 
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were observed among the experimental groups in terms of lesion spectrum, 

frequency and severity. In addition, we examined brain sections from all the animals 

for amyloid deposition and associated astrogliosis. Thioflavin-S-positive deposits in 

the neuroparenchyma were not detected (Supplementary Figure 11 A, B & C) and co-

staining with GFAP (glial fibrillary acidic protein) did not show any morphological 

evidence of astrogliosis, in sharp contrast to the positive control (Supplementary 

Figure 11D), for which we employed a transgenic Alzheimer disease mouse model 

that has marked amyloid deposition throughout the cortex and hippocampus (39).  

 In order to demonstrate the arrival and presence of B8-FITC at the tumor site, 

two groups of tumor-bearing mice were injected i.v. with B8-FITC or vehicle (PBS, 

negative control) and imaged with whole-body fluorescence imaging. Because the 

melanin-expression by the tumors strongly absorbs light hampering the in vivo 

detection of fluorescence, tumors were isolated and imaged ex vivo. The resulting 

fluorescence images showed strong green fluorescence emission for tumors isolated 

from B8-FITC-injected mice, whereas no fluorescence could be detected from tumors 

isolated from vehicle-injected control mice (Supplementary Figure 12A), supporting 

the presence of B8-FITC at the tumor site based on macroscopic FITC-fluorescence 

measurements.  To further verify the presence of B8-FITC inside the tumor tissue 

with microscopic resolution, we additionally examined the presence of fluorescently 

tagged B8 with fibered confocal fluorescence microscopy (FCFM) on tumor samples 

from the same mice.  Inserting the fibre-optical probe inside the tumor tissue sample 

of vehicle-injected control mice did not show any fluorescence signal, whereas the 

tumor samples of B8-FITC-injected mice were clearly positive for green fluorescence 

(Supplementary Figure 12 B). To quantify B8 in B16 tumors, the specific light 

absorption by melanomas was calibrated through the addition of different known 

quantities of B8-FITC to series of tumor tissue dilutions and compared to a standard 

curve of fluorescence intensity for a dilution series of pure B8-FITC.  Both were 

found to be linear in a large concentration range and for two different fluorescence 

imaging modalities, thereby cross-validating the results (Supplementary Figure 13A 

& B). The tumor-specific fluorescence attenuation was then used to estimate the 

concentration of B8-FITC in tumors isolated from B8-FITC-treated mice, which was 

established to be 26.4 ± 10.5 M, a concentration that is well above the IC50.  
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Taken together these data are consistent with a direct inhibitory activity of vascin on 

VEGFR2 function in vivo in the same manner that was observed in cells. 

 

Amyloid toxicity is conditional to VEGFR2 dependence of cells 

We determined loss of VEGFR2 function and vascin amyloid toxicity in several 

cell lines. CellTiter Blue cytotoxicity assays (Figure 4B) revealed that in HUVECs loss 

of function of the receptor (IC50 of 6.8 +- 0.5 M for receptor autophosphorylation 

and 8.3 +- 0.4 M for ERK phosphorylation) goes hand in hand with cytotoxicity. On 

the other hand in HEK293 or U2OS cells neither 2.5-100 M of vascin or its 

scrambled counterpart were found to be toxic to either (Figure 4C and D). Upon 

transfection of VEGFR2 in HEK293 we observed that, after VEGF stimulation, ERK 

phosphorylation was inhibited upon treatment with 20 M vascin (Supplementary 

figure 14A) which induced the aggregation of the VEGFR2 as evidenced on the 

fractionation assay (Supplementary figure 14B). However, no noticeable toxicity of 

vascin to HEK293 cells was observed in the range of 2.5 - 100 M (Figure 4E). This 

demonstrates that vascin is not toxic to HEK293 cells in the absence of VEGFR2 but 

also that aggregation of transiently expressed VEGFR2 in these lines does not affect 

cell viability. Similar observations were made with U2OS cells transfected with 

VEGFR2 (Figure 4F). Thus vascin does not display generic amyloid toxicity and the 

aggregation of VEGFR2 by vascin is in itself also not toxic. Finally, as neurons are 

thought to be particularly sensitive to aggregate toxicity we also compared them 

with primary cortical neurons, which do not express VEGFR2. Although with these 

neurons we observed significant toxicity upon peptide treatment (Figure 4G), 

CellTiter Blue reaction levels were similar for the vascin and its scrambled non-

amyloid variant, suggesting that the toxicity was not amyloid-specific but rather 

reflects the high sensitivity of these cultures, which also resulted in a large variability 

in the assay. To control for this we turned to human iPSCs differentiated to a cortical 

neuronal phenotype, which was verified using q-RT-PCR for genes specific for this 

cell type (Supplementary Figure 15). In these cultures we observed a lack of amyloid-

specific toxicity, although there is 10% toxicity associated with administration of 

both vascin and the scrambled peptide. 

 Together these data suggest that amyloid toxicity is not dependent on cell 

type or even on target protein aggregation but that amyloid toxicity is mainly 
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determined by the biological context in which the target protein is inactivated by 

aggregation. As HUVEC survival is dependent on VEFGR2 function, its molecular loss 

of function by aggregation translates in gain of toxic phenotype. 

 

DISCUSSION 

About thirty amyloidogenic proteins are known to contribute to human disease. 

These diseases include neurodegenerative diseases such as Alzheimer’s or 

Parkinson’s disease but also organ-specific and systemic amyloidosis such as 

diabetes mellitus type-2 or light chain amyloidosis(7). Although the 

pathophysiological profiles of these diseases are disparate, involving the aggregation 

of different proteins, affecting distinctive cell types or tissues and having very 

different progression rates, they also share common structural, biochemical and 

biological features suggesting that amyloids might also have similar modes of 

interaction with cellular components(8). Although amyloids of different proteins 

have been shown to interact with lipids(40), proteins(41) and nucleic acids(42), it is 

currently unclear which of these interactions are relevant for disease. While some 

amyloid interactions are rather unspecific, e.g. with biological lipids(43) other 

amyloid interactions are highly specific(20). The most prominent of these is the self-

interaction of amyloidogenic sequences during amyloid fibril formation which 

includes both amyloid nucleation and fiber elongation(44, 45). Proteome wide 

studies using amyloid prediction algorithms suggest that most proteins possess 

amyloidogenic sequence segments within their structure even though they do not 

form amyloid under normal conditions(5, 6). Given the sequence specificity of 

amyloid seeding this suggests that amyloid aggregation should be specifically 

inducible in non-amyloid associated proteins by exposing them to amyloid seeds 

consisting of amyloidogenic peptides derived from their own sequence. 

 

Here we demonstrate that aggregation of endogenously expressed VEGFR2 

can be induced under physiological conditions by exposing it to vascin, a peptide 

consisting of a tandem repeat of an amyloidogenic sequence in its signal peptide. We 

find that vascin possesses all attributes of natural amyloids including cross-beta 

structure, the population of amyloid precursor aggregates, and the ability to reach 

the cytoplasmic compartment of cells, confirming that the signal peptide of VEGFR2 
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possesses a genuine amyloidogenic sequence. In addition we find that vascin is able 

to induce VEGFR2 aggregation by direct interaction with VEGFR2. As vascin is 

targeting the VEGFR2 signaling peptide, seeding of VEGFR2 aggregation is likely to 

be co-translational as suggested by ribosomal colocalization of vascin in the 

cytoplasm and the occurrence of partial VEGFR2 degradation along with its 

aggregation. This results in VEGFR2 inactivation in vitro but also in vivo where it 

inhibits VEGFR2 dependent tumor growth upon intravascular administration. Both 

the aggregation as well as the inhibition of VEGFR2 is specific. Indeed, scrambled 

vascin does not interact with VEGFR2, nor does it provoke VEGFR2 aggregation or 

inhibition. In addition, whereas vascin suppresses cell surface presentation of VEFR2, 

it does not affect trafficking of other receptors such as CD29. Finally, vascin-induced 

VEGFR2 aggregation is not inherently toxic as it does not affect the viability of 

VEGFR2 overexpressing HEK293 cells. Together these findings show that VEGFR2, a 

protein not associated with amyloid disease, can be specifically induced to aggregate 

in the presence of specific amyloid seeds that are derived from its own sequence. 

There may be multiple reasons why large scale amyloidosis is not observed under 

natural conditions despite the likely prevalence of potentially amyloidogenic 

sequences in many proteins. First, most amyloidogenic sequences are buried in 

globular protein domains, which is probably the main protective factor against 

amyloidosis(46). Moreover, most misfolded proteins will be actively degraded in the 

cell before they have the opportunity to aggregate(47). Secondly, even in unfolded or 

intrinsically disordered proteins most amyloidogenic sequences are generally still 

sufficiently protected from aggregation by structural mechanisms such as 

gatekeeping(48) (i.e. the inhibition of aggregation by charged residues adjacent to 

the amyloidogenic segment) and entropic bristles(49) (i.e. unstructured protein 

segments that entropically prevent the association of amyloidogenic sequences). 

Finally interaction with molecular chaperones will also contribute to the inhibition of 

aggregation(50). The reason why vascin can overcome these potential protective 

mechanisms is not yet clear but might reside in its design:  Vascin comprises a 

tandem repeat of an amyloidogenic sequence, which exacerbates the aggregation 

propensity of this sequence and leads to the formation of soluble and stable 

oligomeric aggregates, and these are likely to provide efficient sites for seeding. 

Incidentally, yeast prions often consist of peptide sequence repeats(32) and the 
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stability of soluble oligomers consisting of tandem peptide repeats recently allowed 

their structure solvation by X-ray crystallography(29).  

The toxic gain-of-function observed in many amyloid-associated diseases 

remains poorly explained. This is mainly due to the impossibility to relate loss-of-

function effects to the aggregation process of a given protein. Indeed for many 

amyloid proteins, especially in neurodegeneration, the functional role of the affected 

protein is often complex and not entirely understood(25, 26), which makes it difficult 

to unequivocally identify loss-of-function effects. In addition the interactions of 

amyloid with cellular components in disease is also not clarified so that again gain-

of-toxic function is not directly tractable at the molecular level. The availability of our 

artificial amyloid model provides an opportunity to study the relationship between 

amyloid toxicity and specific protein loss-of-function. Indeed while recapitulating 

essential amyloid features our model also allows to monitor the effect of amyloidosis 

on a functionally well-characterized protein. Moreover, the use of a VEGFR2 

fragment allows assessing amyloid toxicity independently of VEGFR2 function.  

Our results demonstrate that using this setup vascin does not display generic 

toxic properties but rather to the contrary. Vascin gain-of-function is specific (i.e. it is 

dependent on the presence of VEGFR2) but also conditional (i.e. VEGFR2 needs to be 

expressed in the cell but the cell also needs to be dependent on VEGFR2 for its 

survival/proliferation). Indeed in VEGFR2 dependent HUVECs vascin toxicity and 

VEGFR2 loss-of-function correlate in a dose-responsive manner whereas this is not 

the case in VEGFR2 expressing HEK293 cells. Together these results therefore 

illustrate how amyloid toxicity can result from a conjunction of protein specific and 

cell dependent protein loss-of-function.  
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Figure Legends 

 

Figure 1 – Biophysical characterization of the amyloids formed by vascin. (A-D) 

Transmission Electron Microscopy image of 300 M vascin in 1% (w/v) NH4CO3 after 

24h incubation at room temperature and negatively stained with 2% (w/v) uranyl 

acetate. (E) Tinctorial analysis of fibrils of 40 M vascin in 1% (w/v) NH4CO3 after 

18h incubation at room temperature. (F) Fiber x-ray diffraction pattern of fibrils 

formed in 300 M vascin in 1% (w/v) NH4CO3. (G) ESI–IMS–MS Driftscope plot of the 

vascin monomer (1) through to the heptamer (7) present two minutes after diluting 

the monomer to a final peptide concentration of 100 μM in in 1% (w/v) NH4CO3. ESI–

IMS–MS Driftscope plots show the IMS drift time versus mass/charge (m/z) versus 

intensity (z, square-root scale). (H) Histogram of size distribution of particles 

calculated from the DLS data recorded during vascin aggregation. using a linear 

polymer as particle model. (E) Fourier Transform Infrared Spectrum (FTIR) of 300 

M vascin in 1% (w/v) NH4CO3 at t= 5 min (red) and t=24h (blue). (J) Time 

progression of the intensity of the absorbtion peak in the FTIR spectrum in panel E 

around 1628 cm-1. 

 

Figure 2 – Vascin directly interacts with VEGFR2 in cells (A) Cellular distribution 

of carboxyfluorescein-labeled vascinK11 (CF-vascinK11) (green) at 1 M in HUVEC cells. 

(B) Overlay between the fluorescence of CF-vascinK11 (2,5 M green) and the 

amyloid specific dye pFTAA (5 M, red). Overlap is shown as yellow colouring. (C) 

Equivalent image as B for the Proline mutant of vascin. (D) HUVEC cells treated for 4 

hours with CF-vascinK11 (green) at 2.5 M and co-immunostained for the ER-specific 

marker calnexin (red). (E) HUVEC cells treated for 4 hours with CF-vascinK11 at 5.0 

M (green) and co-immunostained for the ribosomal protein S6 (red). (F) Proximity 

ligation (Duo-Link) between CF-vascinK11 at 5 M and VEGFR2 performed in HUVEC 

cells treated for 4 hours with peptide. For panels A, D, E and F the nuclei are stained 

with DAPI in blue. (G) Quantification of the Duo-Link signal by high content 

microscopy of HUVEC cells treated with vascin as depicted in (E). For each condition 

about 1000 cells were analyzed and the average fluorescence intensity per cell is 

shown. (H) dSTORM image of HUVEC cells treated for 4 hours with 0.5 M Alexa647 
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labeled vascinK11 (purple) and co-immunostained for VEGFR2 (green). Scale bar is 1 

m. (I) Magnification of image in G where arrowheads indicate the interaction of 

vascin and VEGFR2. Scale bar is 1 m.  

 

Figure 3 – Vascin knocks down VEGFR2 activity. (A) Western blot analysis for 

VEGFR2 co-immunoprecipitation in HUVEC cells treated for 4 hours with 20 M 

biotin-PEG labeled vascin. (B) Western blot analysis of the partitioning of VEGFR2 

between the soluble and insoluble fraction of HUVEC cells treated with 20 M vascin. 

(C) Western blot analysis of the SDS-gradient extraction of the soluble and insoluble 

fraction of HUVEC cells treated with 20 M vascin. (D) Dose-response curve of the 

effect of 2.5-100 M vascin on VEGF stimulation of VEGFR2 autophosphorylation in 

HUVEC cells. (E) Dose-response curve of the effect of 2.5-100 M vascin on VEGF 

stimulation of ERK phosphorylation in HUVEC cells. (F) VEGFR2 

autophosphorylation and ERK phosphorylation in HUVEC cells treat with 20 M 

vascin, human vascin (h.vascin), scrambled vascin and proline mutant vascin (Pro). 

(G) Quantification by Fluorescence Activated Cell Sorting (FACS) of the fraction of 

cells that display VEGFR2 and CD29 on the cell surface upon treatment with vascin or 

scrambled vascin at 20 M. (H) Quantification of ERK phosphorylation level as 

determined by MSD assay upon EGF stimulation of Hela cells treated with 20 M 

vascin or its scrambled version. (I) Lag phase of the aggregation kinetics of the 

Alzheimer -peptide 1-40 observed with Thioflavin T fluorescence in the presence of 

1% molar fraction of homotypic seeds, or the equivalent amount of seeds of vascin, 

human vascin, scrambled vascin or the proline mutant vascin. (J) Equivalent 

experiment to panel I for the human Prion protein (PrP). 

 

Figure 4 – In vivo effect of Vascin and cell-type dependent cytotoxicity. (A) 

Tumor growth curves of subcutaneously inject B6 melanoma cells in C57BL6 mice 

treated with daily intravenous injections of 10 mg/kg vascin or its scramble. As a 

positive control we used the inhibitor of the VEGFR2 tyrosine kinase activity 

PTK787. (B-H) Dose dependent toxicity of vascin or its scrambled version tested 

from 2.5 M – 100 M by the CellTiter Blue assay on (B) HUVEC cells. (C) HEK293 

cells. (D) U2OS cells. (E) HEK293 cells transiently overexpressing VEGFR2. (F) U2OS 
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cells transiently overexpressing VEGFR2. (G) Cortical primary neuron cells from 

mouse and induced pluripotent stem cells (iPSCs) after a neuronal differentiation 

protocol. 


