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ABSTRACT 60 

At any given moment, we experience a perceptual scene as a single whole and yet we may 61 

distinguish a variety of objects within it. This phenomenon instantiates two properties of 62 

conscious perception: integration and differentiation. Integration to experience a collection of 63 

objects as a unitary percept, and differentiation to experience these objects as distinct from each 64 

other. Here we evaluated the neural information dynamics underlying integration and 65 

differentiation of perceptual contents during bistable perception. Participants listened to a 66 

sequence of tones (auditory bistable stimuli) experienced either as a single stream (perceptual 67 

integration) or as two parallel streams (perceptual differentiation) of sounds. We computed 68 

neurophysiological indices of information integration and information differentiation with 69 

electroencephalographic and intracranial recordings. When perceptual alternations were 70 

endogenously driven, the integrated percept was associated with an increase in neural 71 

information-integration and a decrease in neural differentiation across frontoparietal regions, 72 

whereas the opposite pattern was observed for the differentiated percept. However, when 73 

perception was exogenously driven by a change in the sound stream (no bistability) neural 74 

oscillatory power distinguished between percepts but information measures did not. We 75 

demonstrate that perceptual integration and differentiation can be mapped to theoretically-76 

motivated neural information signatures, suggesting a direct relationship between 77 

phenomenology and neurophysiology. 78 

 79 

Keywords: phenomenal consciousness, bistable perception, information integration, information 80 

differentiation, EEG, auditory streaming 81 
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 90 

INTRODUCTION 91 

Phenomenologically, conscious experience does not only depend on the external information we 92 

receive from the environment, but also on internal information that is independent of sensory 93 

stimulation. This dissociation between external stimulation and conscious experience is observed in 94 

several visual and auditory perceptual illusions in which two or more internally driven percepts 95 

alternate under unchanging external stimulation (Sterzer et al. 2009). Moreover, conscious 96 

experience cannot be divided into discrete independent components (i.e., it is perceptually 97 

integrated), but it can contain an assortment of events and objects (i.e., it is perceptually 98 

differentiated) (Tononi et al. 2016). Thus, while integration is the property of experiencing a 99 

collection of objects as a unitary percept, differentiation is the property of experiencing these 100 

objects as distinct from each other. What are the neural markers of the integration and 101 

differentiation of internally driven perceptual contents? We propose that integration and 102 

differentiation of internally driven percepts can be neurophysiologically investigated during auditory 103 

bistability. During the particular form of auditory bistability employed here, an invariant sequence of 104 

tones is experienced as forming either an integrated percept (one stream) or a differentiated 105 

percept (two streams) (Snyder et al. 2012) (Figure 1).  106 

Neurophysiologically, conscious experience is thought to require the joint presence of information 107 

integration and information differentiation (Fahrenfort et al., 2012; Oizumi et al. 2014; Tononi et al. 108 

2016; Fahrenfort et al., 2017). In particular, the emergence of conscious percepts is believed to 109 

involve the integration of information coming from frontal and parietal brain areas to form a 110 

phenomenologically unified whole (Dehaene and Changeux 2011; Dehaene et al. 2014; Tononi et al. 111 

2016). Therefore, a reasonable assumption is that the integrated percept (one stream, in the case of 112 

this experiment) should be associated with correspondingly higher neural information integration 113 

(NII). Recently, NII has been empirically measured in a direct manner by computing the amount of 114 

information shared between long-distance EEG signals, and it has been used to discriminate 115 

between vegetative and minimally conscious patients (King et al. 2013; Sitt et al. 2014). This NII 116 

measure can detect non-oscillatory coupling between signals as compared to classical measures of 117 

neural oscillatory integration (NOI) such as phase synchronization. In the case of auditory bistability, 118 

we expect higher neural information integration for the perceptually integrated (one-stream) 119 

percept compared to the perceptually differentiated (two-stream) percept, as the former would 120 

require information about tones of two different frequencies to form a single, integrated percept.   121 
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Complementary to NII, empirical indices of neural information differentiation (NID) have been used 122 

to separate levels of consciousness by estimating the degree of compressibility of EEG signals (Casali 123 

et al. 2013; Sitt et al. 2014; Schartner et al. 2015, 2017). For instance, a decrease in NID has been 124 

observed in patients in vegetative states compared to minimally conscious states (Sitt et al. 2014), 125 

showing that differentiation of neural information is associated with a cognitively more advanced 126 

state of consciousness, as clinically defined. On the other hand, the only study providing a 127 

preliminary indication that neurophysiological differentiation might be related to perceptual 128 

processes is an fMRI study (Boly et al. 2015), showing that NID was highest when participants 129 

watched a coherent movie, intermediate when scenes were scrambled, and minimal for ‘TV noise’. 130 

However, it is unclear whether neurophysiological differentiation was specifically related to 131 

conscious awareness since factors such as low-level visual processing, expectations and top-down 132 

attention might have influenced the differences observed between conditions. During auditory 133 

bistability, we can specifically evaluate perceptual differentiation directly since what is changing is 134 

not the stimulus itself but how it is subjectively experienced. If the neural information associated 135 

with a conscious percept is highly differentiated, NID is expected to be high since information should 136 

be less compressible. In contrast, neural differentiation is expected to be low if EEG signals are 137 

processing information in a stereotypical way because information is highly redundant (easily 138 

compressed). Following this rationale, we expect that the differentiated (two-stream) percept 139 

should be associated with higher neural information differentiation. 140 

In addition, there is ample and rapidly growing evidence that endogenous or 'ongoing' brain activity 141 

in the gamma band (30-70 Hz) is neither meaningless nor random but instead carries functional 142 

information largely determining the way incoming stimuli are interpreted (Engel et al. 2001, 2013; 143 

Varela et al. 2001; Freeman 2015). For instance, studies of the visual system have shown that neural 144 

oscillatory integration (NOI) in the gamma band is involved in the alternation between visual 145 

conscious percepts (Doesburg et al. 2005; Hipp et al. 2012). Thus, drawing upon these results and a 146 

wealth of previous research that has identified gamma band activity as relevant for conscious 147 

perception (Melloni et al. 2007; Engel et al. 2013; Levy et al. 2015), here we analyse information and 148 

oscillatory dynamics of ongoing activity in the gamma band. However, we specifically evaluate the 149 

theoretical prediction (Koch et al. 2016) that information dynamics (NII and NID) but not oscillatory 150 

dynamics (NOI) of ongoing activity underpin phenomenological integration and differentiation. 151 

By measuring high-density scalp EEG and intracranial EEG (iEEG) in humans, we tested the 152 

hypothesis that during the formation of internally driven percepts, conscious experience goes along 153 

with neurophysiological indices of information processing. Specifically, we predicted that the 154 

perceptually integrated content would correspond to high frontoparietal neural information 155 
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integration in the gamma band and conversely, the perceptually differentiated content would be 156 

associated with high neural information differentiation within frontal and parietal regions. 157 

Materials and Methods 158 

Healthy participants and patient 159 

Twenty-nine right-handed healthy participants (14 males; mean ± SD age = 21.30 ± 2.2 years) and 160 

one left-handed epileptic patient (female; 29 years) gave written informed consent to take part in 161 

the experiment. The study was approved by the institutional ethics committee of the Faculty of 162 

Psychology of Universidad Diego Portales (Chile) and the Institutional Ethics Committee of the 163 

Hospital Italiano de Buenos Aires, Argentina, in accordance with the Declaration of Helsinki. The 164 

patient suffered from drug-resistant epilepsy from the age of 8 years and was offered surgical 165 

intervention to alleviate her intractable condition. Drug treatment at the time of implantation 166 

included 600 mg/d oxcarbazepine, 200 mg/d topiramate, and 750 mg/d levetiracetam. Computed 167 

tomography (CT) and magnetic resonance imaging (MRI) scans were acquired after insertion of 168 

depth electrodes. The patient took part in the current study one day before the surgery. She was 169 

attentive and cooperative during testing, and her cognitive performance before and one week after 170 

the implantation was indistinguishable from healthy volunteers. The patient was specifically 171 

recruited for this study because she was implanted with electrodes covering frontal and parietal 172 

regions (Table 1). Healthy participants and the epileptic patient performed the task with eyes closed 173 

in a dimly lit room.  174 

Stimuli and experimental conditions  175 

There were two experimental conditions. In the endogenous condition (bistability), we used a 176 

bistable auditory tone sequence (Carlyon et al. 2001; Gutschalk et al. 2005; Pressnitzer and Hupé 177 

2006). Participants listened to a repeating pattern of three tones (ABA), each group of which was 178 

followed by a silence ('-'); the pattern is experienced either as a one-stream percept or as a two-179 

stream percept (Figure 1A). The frequency of the A tone was 587 Hz and that of the B tone was 440 180 

Hz (5 semitones difference). The duration of each tone was 120 ms. The silence ('-') that completed 181 

the ABA… pattern was also 120 ms long, thus making both the set of A tones and the set of B tones 182 

isochronous (Pressnitzer and Hupé 2006). Participants were instructed to press a button with one 183 

hand when perceiving that the one-stream percept had fully changed into two streams and a second 184 

button with the other hand when perceiving that the two-stream percept had fully changed into one 185 

stream (Figure 1A, middle panel).  186 
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In the exogenous condition (control), participants listened to repeating patterns of three (ABA) or 187 

two (AB) tones, each group of which was separated by one ('-') or two periods of silence ('--') 188 

respectively.  In both cases the A and B tones had the same parameters (frequencies and duration) 189 

and the silence had the same duration as in the endogenous condition (ABA- pattern). In the 190 

exogenous condition blocks of each pattern (ABA- and AB--) were constructed to last 4-8 seconds 191 

before changing to the other pattern. This suppressed the effect of endogenous bistability, such that 192 

ABA- was most often perceived as one stream, whereas AB-- was largely perceived as two streams.  193 

As in the endogenous conditions, participants were instructed to press a button with one hand when 194 

perceiving that ABA- had fully changed into AB-- and another button with the other hand when 195 

pattern AB-- had fully changed into ABA-. Importantly, the exogenous condition allowed us to 196 

characterize the dynamics of neural activity specifically related to external changes in the stimuli 197 

(the two alternating patterns) and to contrast them with the dynamics of internal neural activity 198 

elicited by the endogenous condition (bistability). The endogenous and exogenous conditions used 199 

physically similar stimuli, with the latter sometimes having one fewer A tone. Because the analysis 200 

windows were not time-locked to the stimuli, but rather to responses (see “Analysis of ongoing 201 

neural activity”), differences in the evoked responses to specific tones are unlikely to account for the 202 

observed pattern of results.  203 

In order to match both conditions as closely as possible, the exogenous condition was always 204 

preceded by the endogenous condition. By designing the experiment in this manner, we were able 205 

to quickly calculate the number of both types of alternations during the endogenous conditions on a 206 

participant-per-participant basis. Based on this individual calculation, we structured the subsequent 207 

exogenous condition based on the number of switches of the endogenous condition. Similarly, the 208 

pattern of alternation (i.e. stimuli sequence) in the exogenous conditions was defined based on the 209 

first switch observed during the endogenous condition (i.e. the sequence started either with a one-210 

stream stimulus or with a two-stream stimulus). This procedure was meant to control for differences 211 

in the number of alternations and for differences in the sequence of alternations between 212 

conditions.   213 

Electroencephalography (EEG) recordings, pre-processing and analysis  214 

EEG signals were recorded with 128-channel HydroCel Sensors using a GES300 Electrical Geodesic 215 

amplifier at a sampling rate of 500 Hz using the NetStation software. During recording and analyses, 216 

the electrodes’ average was used as the reference electrode. Two bipolar derivations were designed 217 

to monitor vertical and horizontal ocular movements. Following Chennu et al (Chennu et al. 2014), 218 

data from 92 channels over the scalp surface were retained for further analysis. Channels on the 219 
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neck, cheeks and forehead, which reflected more movement-related noise than signal, were 220 

excluded. Eye movement contamination, cardiac and muscle artefacts were removed from data 221 

before further processing using an independent component analysis (ICA) (Delorme and Makeig 222 

2004). All conditions yielded at least 91% of artefact-free trials. Trials (-2500 to 0 ms relative to a 223 

button press) that contained voltage fluctuations exceeding ± 200 μV or transients exceeding 224 

± 100 μV were also excluded. The EEGLAB MATLAB toolbox was used for data pre-processing and 225 

pruning (Delorme and Makeig 2004). MATLAB open source software FieldTrip (Oostenveld et al. 226 

2011) and customized scripts were used for calculating Neural Information Integration (NII), Neural 227 

Information Differentiation (NID), Neural Oscillatory Integration (NOI) and Neural Oscillatory Power 228 

(NOP) measures. No filtering was performed during the pre-processing stage.  229 

Intracranial electroencephalography (iEEG): recordings and pre-processing  230 

Stereo-electroencephalography (SEEG), an intracranial electroencephalography (iEEG) recording 231 

technique in which depth electrodes are inserted in the brain of epileptic patients, were obtained 232 

from semi-rigid, multi-lead electrodes implanted in a single patient. The electrodes had a diameter 233 

of 0.8 mm and consisted of 5, 10 or 15 contact leads that were 2-mm wide and 1.5-mm apart (DIXI 234 

Medical Instruments). The electrode shafts were implanted in different regions of the frontal, 235 

temporal, central and parietal cortices and subcortical structures. For the purposes of the current 236 

study, iEEG recordings were analysed from the left orbitofrontal cortex (OF), left middle frontal gyrus 237 

(MFG), left superior parietal lobe (SPL), left primary motor cortex (MC) and left posterior insular 238 

cortex (PIC) (Table 1). Each electrode located in grey matter was re-referenced to an electrode of the 239 

same electrode shaft located in white matter (Li et al., 2018). Following this procedure, we 240 

preserved the limited number of electrodes in SPL (2 electrodes), OF (3 electrodes) and MFG (3 241 

electrodes) that would have been reduced in number using a bipolar reference (N-1). MNI 242 

coordinates of the depth electrodes were obtained from MRI and CT images using SPM (Friston 243 

2006) and MRIcron (Rorden and Brett 2000) software. The recordings were sampled at 1024 Hz and 244 

down-sampled to 500 Hz for further analysis. The exact MNI coordinates and cortical regions of the 245 

selected electrodes are reported in Table 1. Open-source BrainNet Viewer software was used for 246 

visualization of selected electrodes (Xia et al. 2013). 247 

Analysis of ongoing neural activity 248 

A classical experimental approach for studying endogenous, or “ongoing” activity in the EEG related 249 

to internal fluctuations during cognitive tasks is by analysing the EEG window before the onset of 250 

motor responses when participants report internal changes. This approach has been used for 251 

studying neural signatures of conscious awareness, such as in bistable perception (Parkkonen et al. 252 
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2008), binocular rivalry (Doesburg et al. 2005; Frässle et al. 2014) and intrusions of consciousness 253 

(Noreika et al. 2015). Here, ongoing EEG and iEEG activity (not time-locked to stimuli) preceding the 254 

onset of each response (button press), and presumed to span the change in perception, was 255 

analysed in terms of connectivity (NII and NOI) and complexity (NII). 256 

Window size selection was based on the following procedure. First, we calculated the mean reaction 257 

time in the exogenous condition (M = 1342 ms; SD = 101 ms). Second, in the endogenous condition, 258 

we calculated the minimum inter-switch duration such that windows would not overlap after EEG 259 

data epoching (the minimum window size was 2500 ms; epoching from -2500 to 0 ms relative to 260 

button press). Third, as the mean RT in the exogenous condition (1342 ms) was approximately half of 261 

the window size of the endogenous condition (2500 ms), we selected a window of analysis of 2500 262 

ms for both conditions (from -2500 to 0 ms relative to button press) (Figure 1, lower panel). 263 

Importantly, this window included the onset of the exogenous auditory patterns ('ABA-' and 'AB--'). 264 

The same procedure was repeated for the intracranial patient (reaction times in the exogenous 265 

condition: M = 1380 ms, SD = 79 ms; window size in the endogenous conditions: 2500 ms). 266 

For statistical analyses (see below), two time windows of 500 ms were selected based on the 267 

exogenous condition. A window after the change between auditory percepts (after-change window 268 

(AC)) was defined based on the mean reaction time at the group level (from -1342 to -842 ms). A 269 

second time window was defined at the epoch onset (before-change window (BC); from -2500 to -270 

2000 ms). The rationale behind the latencies of both time windows was to select a priori the periods 271 

when both externally driven percepts remained perceptually stable. Windows were not selected 272 

using a data-driven approach (see Supplementary Figure 1). The same window lengths and latencies 273 

were used for the endogenous condition (Figure 1).  274 

Neural oscillatory power (NOP): spectral power 275 

In order to derive our measure of neural oscillatory power, we first band-pass filtered the raw signal 276 

using a 6th order Butterworth filter. Spectral power was estimated by calculating the square of the 277 

envelope obtained from the absolute value of the Hilbert transform after filtering. This procedure 278 

provides the instantaneous power emission which reflects the strength of local synchronization. The 279 

frequency bands were defined as follows: theta (4–7 Hz), alpha (8–12 Hz), beta (15–25 Hz), gamma 280 

(30–60 Hz), following the canonical frequency-band classification (e.g. Li et al., 2018). 281 

Phase synchronization 282 
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We quantified phase coherence between pairs of electrodes as a measure of dynamical linear 283 

coupling among signals oscillating in the same frequency band. Phase synchronization analysis 284 

proceeds in two steps: (i) estimation of the instantaneous phases and (ii) quantification of the phase 285 

locking.  286 

 287 

 288 

Estimation of the instantaneous phases 289 

To obtain the instantaneous phases φ of the neural signals, we used the Hilbert transform approach 290 

(Foster et al. 2016). The analytic signal ξ(t) of the univariate measure x(t) is a complex function of 291 

continuous time t defined as:  292 

(1) ���� �  ���� � 	����� �  
�����������   293 

where the function xh(t) is the Hilbert transform of x(t): 294 

(2)  ����� �  �

	
�. �.  � 
���

���


�

��
�� 295 

P.V. indicates that the integral is taken in the sense of Cauchy principal value. Sequences of digitized 296 

values give a trajectory of the tip of a vector rotating counterclockwise in the complex plane with 297 

elapsed time.  298 

The vector norm at each digitizing step t is the state variable for instantaneous amplitude aξ(t). This 299 

amplitude corresponds to the length of the vector specified by the real and imaginary part of the 300 

complex vector computed by Pythagoras’ law and is equivalent to the magnitude of the observed 301 

oscillation at a given time and frequency point. 302 

(3) 
���� �  ������ � 	�� ���� 303 

and the arctangent of the angle of the vector with respect to the real axis is the state variable for 304 

instantaneous phase φx(t).  305 

(4) �
��� �  
���� �
����


���
 306 

The instantaneous phase φx(t) of x(t) is taken equal to φξ(t). Identically, the phase φy(t) is estimated 307 

from y(t). This phase is thus the angle of the vector specified by the real and imaginary components. 308 
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For a given time and frequency point, it corresponds to a position inside the oscillation cycle (peak, 309 

valley, rising, or falling slope). 310 

The instantaneous phase, although defined uniquely for any kind of signal to which the Hilbert 311 

transform can be applied, is difficult to interpret physiologically for broadband signals. For this 312 

reason, a standard procedure is to consider only narrow-band phase synchronization by estimating 313 

an instantaneous phase for successive frequency bands, which are defined by band-pass filtering the 314 

time series (Le Van Quyen et al. 2001). Thus, for each trial and electrode, the instantaneous phase of 315 

the signal was extracted at each frequency of the interval 1- 60 Hz (in 1-Hz steps) by computing the 316 

Hilbert transform using a zero phase shift non-causal finite impulse filter.  317 

Neural oscillatory integration (NOI): weighted phase lag index (wPLI)  318 

Phase synchronization is often calculated from the phase or the imaginary component of the 319 

complex cross-spectrum between the signals measured at a pair of channels. For example, the well-320 

known Phase Locking Value (PLV) (Lachaux et al. 1999) is obtained by averaging the exponential 321 

magnitude of the imaginary component of the cross-spectrum. However, such phase coherence 322 

indices derived from EEG data are affected by the problem of volume conduction, and as such they 323 

can have a single dipolar source, rather than a pair of distinct interacting sources, producing spurious 324 

coherence between spatially disparate EEG channels. The Phase Lag Index (PLI), first proposed by 325 

Stam et al (Stam et al. 2007) attempts to minimize the impact of volume conduction and common 326 

sources inherent in EEG data, by averaging the signs of phase differences, thereby ignoring average 327 

phase differences of 0 or 180 degrees. This is based on the rationale that such phase differences are 328 

likely to be generated by volume conduction of single dipolar sources. However, despite being 329 

insensitive to volume conduction, PLI has a strong discontinuity in the measure, which causes it to be 330 

maximally sensitive to noise.  331 

The Weighted Phase Lag Index (wPLI) (Vinck et al. 2011) addresses this problem by weighting the 332 

signs of the imaginary components by their absolute magnitudes. Further, as the calculation of wPLI 333 

also normalises the weighted sum of signs of the imaginary components by the average of their 334 

absolute magnitudes, it represents a dimensionless measure of connectivity that is not directly 335 

influenced by differences in spectral or cross-spectral power. For these reasons, we employed the 336 

wPLI measure to estimate connectivity in our data. The wPLI index ranges from 0 to 1, with value 1 337 

indicating perfect synchronization (phase difference is perfectly constant throughout the trials) and 338 

value 0 representing total absence of synchrony (phase differences are random). For each trial and 339 
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pair of electrodes, wPLI was estimated using a 500 ms sliding window with 2 ms time step, i.e. with a 340 

96% overlap between two adjacent windows.  341 

Neural information integration (NII): weighted symbolic mutual information (wSMI)  342 

In order to quantify the coupling of information flow between electrodes we computed the 343 

weighted symbolic mutual information (wSMI) (King et al. 2013; Sitt et al. 2014). This measure 344 

assesses the extent to which two signals present joint non-random fluctuations, suggesting that they 345 

share information. wSMI has three main advantages: (i) it allows for a rapid and robust estimation of 346 

the signals' entropies; (ii) it provides an efficient way to detect non-linear coupling; and (iii) it 347 

discards spurious correlations between signals arising from common sources, favouring non-trivial 348 

pairs of symbols. For each trial, wSMI is calculated between each pair of electrodes after the 349 

transformation of the EEG and iEEG signals into a sequence of discrete symbols defined by the 350 

ordering of k time samples separated by a temporal separation τ (King et al. 2013). The symbolic 351 

transformation depends on a fixed symbol size (k = 3, that is, 3 samples represent a symbol) and a 352 

variable τ between samples (temporal distance between samples) which determines the frequency 353 

range in which wSMI is estimated (Sitt et al. 2014). In our case, we chose τ = 32 and 6 ms to isolate 354 

wSMI in alpha (wSMIα) and gamma (wSMIγ) bands respectively. The frequency specificity f of wSMI is 355 

related to k and τ as: 356 

 357 

f = 1000 / (τ * k) 358 

 359 

As per the above formula, with a kernel size k of 3, τ values of 32 and 6 ms produced a sensitivity to 360 

frequencies below and near to 55 Hz (gamma range) and 10 Hz (alpha range), respectively, with 361 

these two frequency values used as low-pass filters in order to avoid aliasing artifacts (King et al., 362 

2013) 363 

 364 

wSMI was estimated for each pair of transformed EEG and iEEG signals by calculating the joint 365 

probability of each pair of symbols. The joint probability matrix was multiplied by binary weights to 366 

reduce spurious correlations between signals, as confirmed by simulations and empirical data in the 367 

original wSMI publication (King et al., 2013). The weights were set to zero for pairs of identical 368 

symbols, which could be elicited by a unique common source, and for opposite symbols, which could 369 

reflect the two sides of a single electric dipole. wSMI is calculated using the following formula: 370 

 371 
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 372 

where x and y are all symbols present in signals X and Y respectively, w(x,y) is the weight matrix and 373 

p(x,y) is the joint probability of co-occurrence of symbol x in signal X and symbol y in signal Y. Finally, 374 

p(x) and p(y) are the probabilities of those symbols in each signal and k is the number of symbols - 375 

used to normalize the mutual information (MI) by the signal's maximal entropy. Temporal evolution 376 

of wSMI was calculated using a 500 ms sliding window with 2 ms time step, i.e. with a 96% overlap 377 

between two adjacent windows.  378 

 379 

In order to further address possible volume conduction issues in our scalp EEG analyses, we 380 

compared wSMI with the non-weighted versions of the metric (Symbolic Mutual Information; SMI), 381 

computing both metrics as a function of Euclidean inter-electrode distance (Supplementary Figure 382 

7). For distances below 5 cm, wSMI quickly dropped toward zero, as expected given that the 383 

weighted version of this measure was designed to eliminate common source artifacts and to provide 384 

higher spatial selectivity (King et al., 2013) (Supplementary Figure 7, upper row). In contrast, the 385 

unweighted version of the metric (SMI) exhibited the highest values below 5 cm, typically produced 386 

by common source artifacts (Supplementary Figure 7, lower row). These analyses further confirm 387 

that the differences observed in our data are most likely due to a non-spurious spatial relationship 388 

between electrode pairs.  389 

 390 

Neural information differentiation (NID): Kolmogorov-Chaitin complexity (K complexity) 391 

Kolmogorov-Chaitin complexity quantifies the algorithmic complexity (Kolmogorov 1965; Chaitin 392 

1974) of an EEG signal by measuring its degree of redundancy (Sitt et al. 2014; Schartner et al. 2015, 393 

2017). Algorithmic complexity of a given EEG sequence can be described as the length of shortest 394 

computer program that can generate it. A short program corresponds to a less complex sequence. K 395 

complexity was estimated by quantifying the compression size of the EEG using the Lempel-Ziv zip 396 

algorithm (Lempel and Ziev 1976).  397 

Algorithmic information theory was introduced by Andreï Kolmogorov and Gregory Chaitin as an 398 

area of interaction between computer science and information theory. The concept of algorithmic 399 

complexity or Kolmogorov-Chaitin complexity (K complexity) is defined as the shortest description of 400 

a string (or in our case a time series X). That is to say, K complexity is the size of the smallest 401 

algorithm (or computer program) that can produce that particular time series. However, it can be 402 

demonstrated by reductio ad absurdum that there is no possible algorithm that can measure K 403 
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complexity (Chaitin 1995).  To sidestep this issue, we can estimate an upper-bound value of K 404 

complexity(X). This can be concretely accomplished by applying a lossless compression of the time 405 

series and quantifying the compression size. Capitalizing on the vast signal compression literature, 406 

we heuristically used a classical open-source compressor gzip (Salomon 2004) to estimate K 407 

complexity(X). It is important to standardize the method of representation of the signal before 408 

compression in order to avoid non-relevant differences in complexity.  Specifically, to compute K 409 

complexity(X): 410 

1. The time series were transformed into sequences of symbols. Each symbol represents, with 411 

identical complexity, the amplitude of the corresponding channel for each time point. The 412 

number of symbols was set to 32 and each one corresponds to dividing the amplitude range 413 

of that given channel into 32 equivalent bins.  Similar results have been obtained with 414 

binning ranging from 8 to 128 bins (Sitt et al. 2014).  415 

2. The time series were compressed using the compressLib library for Matlab, this library 416 

implements the gzip algorithm to compress Matlab variables. 417 

3. K complexity(X) was calculated as the size of the compressed variable with time series 418 

divided by the size of the original variable before compression. Our premise is that, the 419 

larger the size of the compressed string, the more complex the structure of the time series, 420 

thus potentially indexing the complexity of the electrical activity recorded at a sensor. 421 

For each trial and channel, K complexity was estimated using a 500 ms sliding window with 2 ms 422 

time step, i.e. with a 96% overlap between two adjacent windows. 423 

EEG electrode cluster analysis and epoch correction  424 

For the hypothesis-driven analyses, canonical bilateral frontal (n=26), parietal (n=18), and temporal 425 

(n=12) electrode clusters were selected for spectral power, complexity (K-complexity) and 426 

connectivity analysis (wPLI and wSMI) (Supplementary Figure 14). In the case of spectral power and 427 

complexity analysis, values within frontal and parietal electrode clusters were averaged per 428 

condition and participant. In the case of frontoparietal wPLI, wSMI, we calculated the mean 429 

connectivity that every electrode in the frontal cluster shared with every electrode in the parietal 430 

cluster. In order to evaluate long-distance interactions between frontal and parietal electrodes, 431 

values between pairs of frontal electrodes and between pairs of parietal electrodes were discarded. 432 

Similarly, in the case of temporotemporal connectivity analyses, we calculated the mean 433 

connectivity that every electrode in the right-temporal cluster shared with every electrode in the 434 

left-temporal cluster, discarding connectivity values within pairs of right-temporal electrodes and 435 

pairs of left-temporal electrodes. This procedure allowed us to specifically test the role of long-436 
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distance interactions (frontoparietal and temporotemporal) during the endogenous and exogenous 437 

conditions. Spectral power, K complexity, wSMI and wPLI values of the corresponding regions of 438 

interest were averaged per condition and participant. For the exploratory analysis, connectivity 439 

between pairs of frontal and pairs of parietal electrodes were analysed separately. In a similar 440 

manner as for the hypothesis-driven analysis, connectivity (wSMI) between frontotemporal and 441 

temporoparietal electrodes were analysed, within-cluster pairs were excluded.  442 

Since during the endogenous condition there was no true baseline period because we do not know 443 

precisely when the spontaneous changes were initiated, after transforming data into complexity (K 444 

complexity), connectivity (wPLI and wSMI) and spectral power time series, and creating the 445 

corresponding electrode clusters, we subtracted the mean values between -2500 and -700 ms from 446 

each data point per epoch and condition. Motor-related activity in the gamma band has been 447 

reported ~-200 ms before the button press during auditory bistable perception (Basirat et al. 2008). 448 

Thus, although it is common to analyse response-evoked activity by normalizing epochs using the 449 

mean of the entire window including the time of the motor response (Doesburg et al. 2005; Fesi and 450 

Mendola, 2014; de Jong et al., 2016), we used a more conservative approach by baseline correcting 451 

each epoch from -2500 to -700 ms relative to the button press in order to avoid possible 452 

contamination due to motor-related artefacts. In order to make both conditions comparable, we 453 

performed the same procedure separately on the endogenous and exogenous conditions. 454 

Statistical analysis  455 

For statistical analysis of wSMI (NII), K complexity (NID), wPLI (NOI) and spectral power (NOD) on the 456 

scalp EEG (29 participants) and iEEG data (1 patient), we performed repeated-measures ANOVA 457 

(RANOVA) using 3 within-participant factors: condition (endogenous, exogenous), window (before 458 

change, after change), and direction (one- to two-stream, two- to one-stream). Bonferroni 459 

correction was computed for post hoc comparisons, and Bayes Factors of the null and alternative 460 

hypothesis are reported (Masson 2011; Jarosz and Wiley 2014). Statistical analyses were performed 461 

using Statistical Product and Service Solutions (SPSS, version 20.0, IBM), MATLAB 2018b and open-462 

source statistical software JASP (JASP Team (2017), version 0.8.1.1).  463 

 464 

RESULTS 465 

Twenty-nine healthy participants and one patient implanted with intracranial electrodes listened to 466 

a repeating pattern of three tones followed by a temporal gap. This flow of sounds is experienced 467 

either as a one-stream percept (perceptual integration) or as a two-stream percept (perceptual 468 
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differentiation) (Figure 1A, upper panel). Perception tends to alternate between these alternatives 469 

every few seconds (Pressnitzer and Hupé 2006). Participants were asked to press a button as they 470 

perceived that the one-stream percept had fully changed into the two-stream percept, and a second 471 

button when perceiving the two-stream percept had fully changed into the one-stream percept 472 

(Figure 1A, middle panel). As an experimental control task, we used a condition where the stimuli 473 

were physically manipulated (varying the length of the silence between tones) in order to generate 474 

two externally-driven alternating percepts (exogenous condition). Participants had to perform the 475 

same task as in endogenous condition. This control allowed us to establish the extent to which 476 

neural activity in the endogenous condition was specific to internally driven perceptual switches. It 477 

also allowed us to measure typical reaction times to percept changes with known onset times (in the 478 

control task), in order to determine suitable time windows for analysis. Furthermore, the exogenous 479 

condition allowed us to control for top-down attention in the absence of bistability by creating 480 

externally driven switches between percepts as opposed to the internally driven ones (induced 481 

endogenously).  482 

Behavioural results 483 

In the endogenous condition, inter-switch duration (ISD) distributions were approximated well 484 

with a gamma distribution (P<0.001; Figure 1B), typically reported during bistable perception 485 

dynamics (e.g. Parkkonen at al., 2008). Inter-switch duration (ISD) histograms exhibited similar 486 

distributions for the one- to two-stream percept and the two- to one-stream percept, with an 487 

average dominance duration of 3.75 ± 0.0412 and 3.78 ± 0.0419 seconds respectively (Figure 1B). 488 

No significant differences were observed between distributions (t1,28 = 0.204; P = 0.910; Bayes 489 

factor (Bf) in favour of the null = 46.19), suggesting that both directions of perceptual change 490 

exhibit similar cognitive demand during internally-driven perception.  491 

Similarly, in the case of the exogenous condition, discrimination of the two auditory sequences 492 

showed behavioural equivalence as no differences were found in reaction times (RT) between 493 

the one- to two-stream percept and the two- to one-stream percept (t1,28 = 0.204; P = 0.840; 494 

Bayes factor (Bf) in favour of the null = 4.97).  495 

Neural information integration (NII) during the endogenous and exogenous conditions 496 

We first investigated the dynamics of neural information integration in the gamma range (NIIγ). We 497 

compared activity during a 500-ms window before a perceptual change with activity after the 498 

change (Figure 1A, lower panel; and see Materials and Methods). This approach contrasts with many 499 

previous studies of auditory bistability (Gutschalk et al., 2005; Hill et al., 2012; Szalardy et al., 2013; 500 
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Billig et al. 2018; Sanders et al. 2018), where the analysis windows are time-locked to the stimulus, 501 

and allowed us to concentrate on both stable and transition periods of bistable experience. 502 

Response-locked analyses focused on how ongoing neural activity relates to perception. A repeated-503 

measures ANOVA (RANOVA; see Materials and Methods) revealed a significant triple interaction 504 

between condition (endogenous, exogenous), window (before change, after change), and direction 505 

(one- to two-stream, two- to one-stream) for NIIγ (F1,28 = 5.73, P = 0.024, )�
�= 0.16, Bayes factor (Bf) 506 

in favour of the alternative = 2.73). Bonferroni's post hoc test revealed higher NIIγ in the one-stream 507 

compared to the two-stream percept in the before-change (BC) window (P = 0.009, )�
�  = 0.21, Bf in 508 

favour of the alternative = 6.42) (Figure 2A, C). Interestingly, ~1 s later in the after change (AC) 509 

window, NIIγ again showed higher values for the one-stream than the two-stream percept (P = 510 

0.026, )�
�= 0.15, Bf in favour of the alternative = 2.49) (Figure 2A, C). These findings suggest that the 511 

phenomenologically integrated percept consistently involved a higher level of gamma 512 

neurophysiological integration than the phenomenologically differentiated one.  513 

Interestingly, while NIIγ discriminated between conscious percepts during the endogenous condition 514 

(Figure 2A), it did not do so in the exogenous condition (BC: P = 0.561; Bf in favour of the null = 5.12 515 

and AC: P = 0.349, Bf in favour of the null = 3.26; Bonferroni-corrected post hoc tests) (Figure 2B), 516 

suggesting that frontoparietal NIIγ may be specifically indexing endogenously generated percepts. 517 

Furthermore, no differences were observed in the mean level of NIIγ between endogenous and 518 

exogenous conditions (main effect of condition: P = 0.248, Bf in favour of the null = 2.12) or between 519 

windows (main effect of window: P = 0.918, Bf in favour of the null = 3.59), indicating that the 520 

overall amount of information sharing within the frontoparietal network was similar across 521 

conditions. This index of information integration was hence sensitive to endogenously driven 522 

perceptual changes and may specifically underlie the formation of conscious auditory percepts. 523 

In order to establish the specific role of frontoparietal signals, we computed inter-hemispheric NIIγ 524 

between temporal electrodes. RANOVA found no reliable triple interaction in temporotemporal NIIγ 525 

(F1,28 = 1.51, P = 0.228, Bf in favour of the null = 2.02) (Figure 2D, E), implying relatively specific 526 

involvement of frontoparietal networks in the emergence of endogenous auditory percepts. Finally, 527 

and in addition to NIIγ, we investigated whether neural information integration in the alpha band 528 

(NIIα) dissociates between auditory percepts, as alpha activity has been previously related to 529 

perceptual bistability (Flevaris et al., 2013; Handel and Jensen, 2014). However, the ability of 530 

frontoparietal NII to track and distinguish between different endogenous percepts seems to be 531 

specifically related to the gamma range since RANOVA revealed no triple interaction between 532 

percepts in frontoparietal NIIα (F1,28 = 1.01, P = 0.321, Bf in favour of the null = 2.48) (Figure 2F).  533 
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Finally, we performed post hoc exploratory analysis in order to further investigate NIIγ differences 534 

between other electrode regions (i.e. frontofrontal, parietoparietal, temporoparietal and 535 

frontotemporal pairs of electrodes). RANOVA revealed no triple interaction (condition x window x 536 

direction) between these electrode clusters (Supplementary Figure 2). Similarly, we explored 537 

differences between these pairs of electrodes in other canonical frequency bands (theta: NIIθ, alpha: 538 

NIIα, and beta: NIIβ). RANOVA revealed no significant triple interaction (condition x window x 539 

direction) for the same groups of electrodes for theta (NIIθ: Supplementary Figure 3), alpha (NIIα: 540 

Supplementary Figure 4) and beta bands (NIIβ: Supplementary Figure 5). These exploratory results 541 

further support the specific role of NIIγ in discriminating between internally-driven conscious 542 

percepts.  543 

 544 

Neural information differentiation (NID) during the endogenous and exogenous conditions 545 

We next investigated the dynamics of neural information differentiation (NID) within frontal and 546 

parietal electrodes during bistable perception (Figure 3). The RANOVA revealed a significant triple 547 

interaction between condition (endogenous, exogenous), window (before change, after change), 548 

and direction (one- to two-stream, two- to one-stream) for NID (P = 0.013, )�
�= 0.19, Bf in favour of 549 

the alternative = 4.57). Bonferroni's post hoc test revealed higher NID in the two- compared to the 550 

one-stream percept in the BC window (P = 0.011, )�
�= 0.20, Bf in favour of the alternative = 5.41) 551 

(Figure 3A) and a similar pattern in the AC window, showing higher values for two streams than for 552 

one stream (P = 0.016, Bf in favour of the alternative = 3.88, )�
�= 0.19) (Figure 3A). These results 553 

show that the differentiated percept exhibits higher neurophysiological differentiation than the 554 

integrated one.  555 

As was the case for NIIγ, post hoc comparisons showed no NID dependence on percept in the 556 

exogenous condition (B.C: P = 0.366, Bf in favour of the null = 2.66; A.C: P = 0.174, Bf in favour of the 557 

null = 1.68) (Figure 3B). Furthermore, no differences were observed in the mean level of NID 558 

between endogenous and exogenous conditions (main effect of condition: F1,28 = 1.39, P = 0.248, Bf 559 

in favour of the null = 2.12) or between windows (main effect of window: F1,28 = 0.15, P = 0.228, Bf in 560 

favour of the null = 3.53), indicating that the overall information differentiation within the 561 

frontoparietal network was similar across conditions. Finally, no triple interaction (condition x 562 

window x direction) was observed for NID between temporal electrodes (right and left hemispheres) 563 

(F1,28 = 3.59, P = 0.069; Bf in favour of the null = 0.86) (Figure 3C, D). In agreement with the NII 564 

results, this index of information complexity dissociated endogenous percepts. However, NID 565 

showed the opposite pattern compared to NII in terms of the direction of the effects between one 566 
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and two streams, suggesting that NID is capturing a different but complementary aspect of neural 567 

information dynamics associated with conscious percepts.  568 

Consistent with the analysis of NII, we explored NID differences between other electrode regions 569 

(i.e. frontofrontal, parietoparietal, temporoparietal and frontotemporal pairs of electrodes). 570 

RANOVA revealed no triple interaction (condition x window x direction) between these electrode 571 

clusters (Supplementary Figure 6). 572 

Neural information integration (NII) in human intracortical recordings 573 

In order to validate these findings in a similar manner as elsewhere (Canales-Johnson et al. 2015), 574 

we repeated the experiment in a patient implanted with intracranial electrodes for epilepsy surgery. 575 

We benefited from the high spatial resolution of intracranial recordings, allowing us to directly test 576 

the hypothesis that it is information-sharing specifically between frontal and parietal areas that 577 

differentiates between the two auditory percepts. We computed NIIγ on intracranial 578 

electroencephalography (iEEG) recordings between the superior parietal lobe (SPL) and middle 579 

frontal gyrus (MFG), and between SPL and the orbitofrontal cortex (OF) (Table 1) obtained from the 580 

intracranial patient performing the same task as above (Figure 4A-C and Supplementary Figure 8). 581 

Taking the SPL-MFG and SPL-OF pairs of electrodes together, and as for the healthy participants, the 582 

RANOVA showed a triple interaction between condition (endogenous, exogenous), window (before 583 

change, after change), and direction (one- to two-stream, two- to one-stream) for NIIγ (F1,56 = 45.19, 584 

P < 0.001, )�
�= 0.42, Bf in favour of the alternative > 100). Simple effects within the BC window 585 

showed higher NIIγ for the one- compared to the two-stream percept in the endogenous (F1,56 = 586 

44.79, P < 0.001, )�
�= 0.25, Bf in favour of the alternative > 100) (Figure 4B) but not the exogenous 587 

condition (F1,56 = 0.25, P = 0.517, Bf supporting the null = 4.34) (Figure 4C). In the case of the AC 588 

window, the one-stream percept again showed higher NIIγ than the two-stream percept in the 589 

endogenous (F1,56 = 42.83, P < 0.001, )�
�= 0.10, Bf supporting the alternative = 5.10) (Figure 4B) but 590 

not in the exogenous condition (F1,56 = 1.40, P = 0.731, Bf in favour of the null = 4.89) (Figure 4C).  591 

In order to further test the frontoparietal specificity of the NIIγ modulation, we computed NIIγ 592 

between SPL and MFG with two unrelated – as per our hypothesis - cortical areas: motor cortex 593 

(MC) and posterior insular cortex (PIC) (Supplementary Figure 9). No triple interaction was observed 594 

for NIIγ between SPL-MC, SPL-PIC, MFG-MC nor MFG-PIC, further confirming the spatial specificity of 595 

the intracortical NIIγ results. 596 

Furthermore, no differences were found between these percepts in the same iEEG recordings within 597 

the alpha band (NIIα) (F1,56 = 0.03, P = 0.853, Bf in favour of the null = 7.24) (Figure 4F, G). Individual 598 
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SPL-MFG and SPL-OF pairs for NIIγ and NIIα 

are depicted in Supplementary Figure 8 and 599 

Supplementary Figure 10, respectively. Finally, and in agreement with the scalp EEG results, a 600 

further iEEG exploratory analysis revealed no triple interaction (RANOVA: condition x window x 601 

direction) between SPL-MFG and SPL-OF electrodes in the theta (NIIθ: Supplementary Figure 11), nor 602 

beta (NIIβ: Supplementary Figure 12) bands.  603 

 604 

Neural information differentiation (NID) in human intracortical recordings 605 

Next, we investigated NID dynamics on iEEG signals in the intracranial patient within SPL, MFG and 606 

OF (Figure 4D, E). Again, RANOVA showed a triple interaction between (endogenous, exogenous), 607 

window (before change, after change), and direction (one- to two-stream, two- to one-stream) (F1,56 608 

= 24.96, P < 0.001, )�
�= 0.25, Bf in favour of the alternative = 10.02). In agreement with the scalp EEG 609 

results, a simple effects analysis within the BC window showed higher NID for the 610 

phenomenologically differentiated percept compared to the phenomenologically integrated percept 611 

in the endogenous (F1,56 = 19.08, P < 0.001, )�
�= 0.42, Bf in favour of the alternative > 100) (Figure 612 

4D) but not in the exogenous condition (F1,56 = 1.92, P = 0.171, Bf in favour of the null = 1.94) (Figure 613 

4E). In the case of the AC window, the two-stream percept again showed higher NID than the one-614 

stream percept in the endogenous (F1,56 = 10.57, P = 0.003, )�
�= 0.28, Bf in favour of the alternative = 615 

20.15) (Figure 4D) but not in the control (exogenous) condition (F1,56 = 0.25, P = 0.615, Bf in favour of 616 

the null = 4.82) (Figure 7E). These findings demonstrate strong convergent evidence between scalp 617 

EEG and direct cortical recordings, further supporting the hypothesis that phenomenology goes 618 

along with neurophysiology of conscious percepts, specifically indexed by frontoparietal ongoing 619 

activity. Individual SPL-MFG and SPL-OF pairs for NID are depicted in Supplementary Figure 13.  620 

Neural oscillatory integration (NOI) in the endogenous and exogenous conditions 621 

We next evaluated the theoretical prediction that information dynamics but not oscillatory dynamics 622 

of brain activity underpins the emergence of internally-driven percepts (Koch et al. 2016). Thus, we 623 

investigated whether neural oscillatory integration (NOI) of ongoing activity might also capture the 624 

dynamics of auditory bistability. Specifically, we investigated whether frontoparietal gamma phase 625 

synchronization (Weighted Phase-Lag Index (wPLIγ)) could differentiate between endogenous 626 

percepts. Unlike for NIIγ, RANOVA revealed no triple interaction between condition (endogenous, 627 

exogenous), window (before change, after change), and direction (one- to two-stream, two- to one-628 

stream) for NOIγ (F(1,28) = 0.12, P = 0.726, Bf in favour of the null = 3.58) (Figure 5A,B). However, a 629 

weak interaction between condition (endogenous, exogenous) and window (before change, after 630 

change) was found (F(1,28) = 4.22, P = 0.049, Cohen's d = 0.77, Bf in favour of the alternative = 1.50) 631 
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(Figure 5C,D). Bonferroni's post hoc test showed that NOIγ significantly decreased in the AC window 632 

compared to the BC window in the endogenous (P = 0.016, )�
�= 0.17, Bf in favour of the alternative = 633 

3.73) (Figure 5C) but probably not in the exogenous condition (P = 0.236, Bf in favour of the null = 634 

2.04) (Figure 5D).  635 

Furthermore, the same null result for NOIγ between directions was observed in the intracranial 636 

patient (RANOVA (condition x window x direction): F(1,56) = 0.12; P = 0.726, Bf in favour of the null = 637 

4.73) (Figure 5E,F). As with the scalp EEG, the intracranial patient showed an interaction between 638 

condition and window (F(1,56) = 13.51, P = 0.001, )�
�= 0.19, Bf in favour of the alternative = 68.09) in 639 

NOIγ , showing a decrease in phase synchrony in the AC window compared to the BC window only in 640 

the endogenous condition (Bonferroni’s post hoc test in endogenous condition: P = 0.001, )�
�= 0.18, 641 

Bf in favour of the alternative = 53.48; and exogenous condition: P = 0.147, Bf in favour of the null = 642 

1.92) (Figure 5G,H) between SPL and MFG-OF electrodes. These findings suggest that oscillatory 643 

integration does not index the identity of auditory percepts but may relate to percept stability: 644 

phase synchrony maxima occur in the BC window (before the end of a stable percept) and phase 645 

synchrony minima in the AC window (just at the onset of percept stability).  646 

Neural oscillatory power (NOP) in the endogenous and exogenous conditions 647 

We finally performed an exploratory analysis aiming at investigating the neural differences during 648 

exogenously-driven perception. In order to evaluate the neural response on electrodes sensitive to 649 

auditory perturbations, we analysed the neural oscillatory power (NOI) in the same gamma band as 650 

previous analyses but focusing on the temporal and parietal electrodes. In the exogenous condition 651 

we expected higher gamma spectral power during the integrated (‘ABA-’) as compared to the 652 

differentiated (‘AB--’) pattern since the former contains one more tone than the latter, potentially 653 

eliciting a greater neural response. RANOVA revealed an interaction between condition 654 

(endogenous, exogenous), window (before change, after change) and direction (one- to two-stream, 655 

two-to one-stream) for NOP (F(1,28) = 4.30, P = 0.047, )�
�= 0.13, Bf in favour of the alternative = 4.67) 656 

(Figure 6). Bonferroni's post hoc test revealed differences in the exogenous condition in line with our 657 

prediction. NOP was higher in the one- compared to the two-stream percept in the BC window (F(1,28) 658 

= 6.37, P = 0.001, )�
�= 0.032, Bf in favour of the alternative = 6.45) (Figure 6) and a similar pattern 659 

held in the AC window, with larger values for one stream than for two streams (P = 0.001, Bf in 660 

favour of the alternative = 7.88, )�
�= 0.002) (Figure 6B). No differences in NOP were observed 661 

between conscious percepts in the endogenous condition (B.C: P = 0.845, Bf in favour of the null = 662 

8.13; P = 0.453, Bf in favour of the null = 6.17) (Figure 6A). These results suggest that spectral power 663 

within temporal and parietal electrodes is sufficient for indexing conscious percepts when these are 664 
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externally-driven, that is, when the two patterns (i.e. integrated and differentiated) were physically 665 

present in the auditory stimuli. 666 

 667 

DISCUSSION 668 

Here we demonstrate that frontoparietal information dynamics dissociate alternative conscious 669 

percepts during internally but not externally driven percepts. By studying the neural dynamics (EEG 670 

and direct cortical recordings) of theoretically-motivated information metrics, we show that 671 

empirically tractable measures of neural information integration and neural information 672 

differentiation map auditory percepts experienced either as perceptually integrated (one-stream) or 673 

differentiated (two-stream), respectively. Furthermore, phase synchronization of oscillatory gamma 674 

activity in the frontoparietal network does not differentiate between auditory percepts, nor does 675 

the information between temporal networks. Finally, when perception was driven externally (no 676 

bistability, control condition) by a change in the sound stream, neural oscillatory power 677 

distinguished between percepts but information measures did not. 678 

Neural correlates of consciousness and the instantiation of meaningful signatures of information 679 

integration and differentiation. 680 

Our results expand the understanding of the neural correlates of consciousness (NCC) (Koch et al. 681 

2016) in several ways. First, our experimental findings directly support information-based theories of 682 

consciousness (Dehaene and Changeux 2011; Dehaene et al. 2014; Tononi et al. 2016); in their 683 

current instantiation, the Integrated Information Theory (IIT) (Tononi et al. 2016) and the Global 684 

Neuronal Workspace Theory (GNWT) (Dehaene and Changeux 2011) of consciousness both 685 

emphasize the role of information exchange in generating conscious percepts. Although both 686 

theories conceptualize information differently, their proposed empirical indices are based on the 687 

classical Shannon-entropy information framework. Using these measures of information dynamics, 688 

our results show convergent evidence supporting both GNWT and IIT predictions by demonstrating a 689 

role of neural information in the emergence of contents of consciousness. However, the 690 

interpretation of these results in light of the IIT and GNWT is somewhat different. 691 

The GNWT provides a framework for evaluating the process of becoming aware of a percept (i.e. the 692 

conscious access for a stimulus), specifically in our case the experience of perceiving one or two 693 

auditory streams. Of the proposed key features of neural processing that the GNWT supports is the 694 

modulation of frontoparietal networks when gaining conscious awareness. This is why we set out to 695 

test the frontoparietal network at the electrode level (EEG) and the intracranial cortical level (iEEG). 696 
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In its original conception, the GNWT did not specifically proposed integration measures that would 697 

be neural signatures of gain of conscious awareness. Later on, however, in a landmark paper Gaillard 698 

et al in 2009 showed connectivity and granger-causality calculations that signalled the access to 699 

consciousness in a masking paradigm in intracranial patients (Gaillard et al., 2009). Echoing the need 700 

to better define what a putative measure of brain integration is, we searched for those measures 701 

that could be used to assess integration information and differentiation in the time dynamics of the 702 

stream of consciousness of the current task.  703 

Although most of IIT’s empirical work has been focused on finding proxy measures for distinguishing 704 

levels of consciousness (e.g. wakefulness versus sleep), recent efforts have been put in investigating 705 

perceptual integration and differentiation at the first-person, phenomenological level using time-706 

resolved experimental paradigms (Boly at al., 2015). We think that this current framework allows for 707 

testing the concepts of integration and differentiation in the context of the study of the first-person, 708 

content of consciousness (i.e. hearing one-stream vs two-stream stimuli) rather than on the study of 709 

the third-person, state of consciousness (e.g. being awake vs being asleep). We believe our study 710 

substantially improves this approach for three main reasons. First, the repertoire of conscious 711 

contents is controlled (i.e. one vs two auditory streams). Second, the physical stimulation remains 712 

constant while perception does not. Finally, our EEG/iEEG information metrics possess higher 713 

temporal resolution than those used in fMRI studies, allowing the finely-grained characterization of 714 

the phenomenology of conscious contents.    715 

It is in this respect that we think that concepts taken from both theoretical frameworks (GNWT and 716 

IIT) are useful to explain some cognitive process that we believe are at play in bistable perception. 717 

We do not claim that this unifies the theories, but that it is possible to make use of parts of them to 718 

frame results that can help understanding the neural signatures of contents of consciousness. An 719 

important caveat of this conceptualization is that the theoretical argumentations from GNWT and IIT 720 

do not make explicit predictions about the possible differences between internally and externally 721 

driven contents of consciousness, while we explicitly test this difference. 722 

Our results suggest a differential role of information integration vs. information differentiation in the 723 

emergence of conscious percepts from those proposed before. According to IIT, the neural activity 724 

associated with conscious percepts should reflect the joint presence of neurophysiological 725 

integration and neurophysiological differentiation. Under this theoretical framework, integration is 726 

expected – in principle – to be paralleled by differentiation of neural activity. Contrary to this 727 

prediction, our results show dissociation between neurophysiological integration and 728 

neurophysiological differentiation of frontoparietal ongoing activity. Interestingly, while the 729 
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phenomenologically integrated percept (one-stream) showed a relative increase in NII and relative 730 

decrease in NID, the perceptually differentiated percept (two-stream) exhibited the opposite 731 

pattern, that is, a decrease in NII and increase in NID. Together, these dissociated patterns suggest 732 

that each measure is instead directly associated with the phenomenology of internally-driven 733 

conscious percepts: whereas information integration of neural activity is capturing 734 

phenomenological integration (one-stream percept), information differentiation may be capturing 735 

phenomenological differentiation (two-stream percept).  736 

Neural signatures of the emergence of internally- and externally-driven conscious contents.  737 

We have demonstrated a potential mechanistic role of information integration and differentiation in 738 

the formation of endogenous percepts. Why do information metrics capture the neural dynamics of 739 

internally-driven conscious percepts? Coordination in the brain has been classically studied by 740 

computing phase synchronization between neural oscillations (Uhlhaas et al. 2009; Engel et al. 741 

2013). Synchronization is a highly-ordered form of neural coordination that primarily captures the 742 

linear (or proportional) phase relationship between signals at specific frequencies (phase-locking). 743 

Thus, a mechanism of coordination-by-synchrony captures only certain regimes of neural 744 

coordination that are periodic. However, brain dynamics exhibit both a tendency to integrate 745 

information (synchronization) and a tendency for the components to differentiate information 746 

(independent function) (Dehaene and Changeux 2011; Tognoli and Kelso 2014; Tononi et al. 2016). 747 

During auditory bistability, conscious percepts typically alternate continuously without becoming 748 

locked into any one percept for long periods. We propose that underlying this dynamical process are 749 

ensembles of neurons that are repeatedly assembled and disassembled, and that this non-trivial 750 

dynamic might be instantiated by a mechanism of coding-by-information that captures complex, 751 

nonlinear patterns of neural activity and not merely simple proportional associations between 752 

neural signals. In fact, we have recently shown that wSMI (NII) performs better at capturing highly 753 

non-linear interactions than wPLI (NOI) between long-distance neural signals by using realistic brain 754 

simulations (Imperatori et al., 2019).  755 

Contrasting the emergence of internally-driven conscious percepts, the two auditory sequences 756 

presented during the exogenous conditions were distinguished by a difference in spectral power in 757 

the gamma band. The difference was observed mainly in the temporoparietal electrodes and the 758 

direction of the effect is consistent with the idea that an extra tone in the sequence elicited a higher 759 

neural response, i.e. that the ABA- sequence showed higher gamma power than the AB-- sequence. 760 

Thus, contrary to the information-theory metrics, we suggest that the spectral gamma power 761 

response is linearly (or proportionally) related to the physical characteristics of the stimulus itself 762 
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(exogenous condition), and not to the internal interpretation of the bistable sequence, as no 763 

differences were observed in the endogenous condition. Hence for the exogenous condition, while 764 

the report is the same (one or two streams), the neural signatures point a different process in the 765 

brain when the nature of the contents differs. 766 

Conscious auditory percepts and ongoing neural activity. 767 

The frontoparietal patterns of neural information are a manifestation of the interaction between the 768 

external stimulation and endogenous, ongoing brain activity, as opposed to activation purely 769 

imposed by the auditory stimuli. Thus, NII and NID patterns do not merely reflect stimulus-driven 770 

neural activity but rather the intrinsic coordination of endogenous frontoparietal neural activity. 771 

Indeed, in the endogenous condition of our study, internally generated changes in neural activity 772 

were associated with changes in conscious percepts in the complete absence of any change in the 773 

auditory stimuli. In line with our results, recent studies in the visual system have shown that long-774 

distance integration of ongoing oscillations reflects internally coordinated activity associated with 775 

conscious perception (Hipp et al. 2012; Engel et al. 2013; Helfrich et al. 2016). Here, by directly 776 

measuring the amount of information integration and information differentiation contained in the 777 

ongoing neural activity, we demonstrate a functional role of information dynamics in the emergence 778 

of auditory conscious percepts. Our approach provides a framework for examining whether this 779 

relationship between neural and perceptual integration and differentiation generalizes, for example 780 

to the perception of ambiguous stimuli in other sensory modalities, or across modalities. 781 

Although the pioneering electrophysiological studies supporting the active role of ongoing activity in 782 

perception and cognition date from the 70’s (Freeman 1976, 2000), over the last decade ongoing 783 

brain activity has been mainly studied in the context of “resting state networks” (Fox and Raichle 784 

2007). In these recent studies, fluctuations in ongoing activity between spatially segregated 785 

networks (brain regions) are correlated when a participant is not performing an explicitly defined 786 

task. In the present study, by taking advantage of the high temporal resolution of EEG and direct 787 

cortical recordings, we show that patterns of neural information are transiently coordinated during 788 

the active discrimination of internally generated auditory percepts. Furthermore, our results also 789 

allowed us to differentiate the contribution of information in frequency-space, showing that gamma 790 

but not alpha NII differentiates auditory percepts during bistable perception. 791 

Auditory bistable perception and frontoparietal activity. 792 

Our results also suggest a fruitful new approach to conceptualizing and investigating bistable 793 

auditory perception. We demonstrate that the dynamics of auditory endogenous percepts can be 794 
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associated with long-distance coordination of neural activity. For the ABA- patterns presented here, 795 

while both one-stream and two-stream percepts depend on the integration of tones over time, the 796 

latter also requires integration across tone frequency. We argue that this additional integration may 797 

draw on, or be reflected in, an increase in information sharing in ongoing frontoparietal neural 798 

activity. Additionally, maintenance of two distinct perceptual streams of sounds was associated with 799 

more differentiated neural patterns than when a single stream was perceived. How these findings 800 

relate to previous demonstrations of greater stimulus-locked activity in auditory cortex (Gutschalk et 801 

al. 2005; Hill et al. 2011; Szalardy et al. 2013; Billig et al. 2018; Sanders et al. 2018) and greater BOLD 802 

response in intraparietal sulcus (Cusack 2005; Hill et al. 2011) for two streams is presently unclear. 803 

However, the involvement of neural circuits extending beyond sensory regions in parsing the 804 

auditory environment is not surprising given that attention switching (Billig and Carlyon 2016), 805 

linguistic knowledge (Billig et al. 2013), and predictability (Winkler and Schröger 2015) have been 806 

shown to affect auditory streaming. 807 

These findings provide convergent evidence about the role of frontoparietal networks in the 808 

dynamics of formation and maintenance of internally-driven conscious contents. Research in visual 809 

bistability has focused on characterizing content-related activity predominantly in local brain areas 810 

or networks (Sterzer et al. 2009). Of those few studies that have expanded their scope to associative 811 

cortices and wider networks, one has recently proposed mechanistic accounts on visual percepts 812 

using multivariate pattern analysis (MVPA) of fMRI data (Wang et al. 2013). The results showed 813 

differential patterns of BOLD activity in high-order frontoparietal regions between visual percepts 814 

during bistable perception. The present study complements these results by showing a role for the 815 

frontoparietal network in indexing percepts in the auditory modality. Furthermore, the temporal 816 

resolution of our EEG and iEEG data enabled us to characterize the fine-grained temporal dynamics 817 

of neural information integration associated with specific auditory percepts within the frontoparietal 818 

network. These results represent convergent evidence towards a possible general mechanism of 819 

information integration underlying the emergence of the contents of consciousness under invariant 820 

stimulation. 821 

In conclusion, we have presented experimental evidence that conscious percepts may be supported 822 

by different neural mechanisms depending on whether they are internally or externally driven. We 823 

have highlighted the stark contrast between fleeting endogenous percepts, where neural integration 824 

and differentiation parallel the corresponding integrated and differentiated percepts, and those that 825 

are externally triggered, for which no differences between information-theory measures were 826 

observed. However, when conscious percepts are driven by changes in the external stimulation, 827 

fluctuations in spectral power are sufficient for indexing perceptual integration and differentiation. 828 
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Importantly, the conceptual mapping between phenomenology and the neurophysiology that we 829 

have highlighted here should be considered as a fruitful approach for measuring the different 830 

dimensions of phenomenology in an experimentally testable manner. In light of some of the main 831 

current theoretical frameworks of conscious perception -IIT and GNWT- we provide additional 832 

experimental scaffolding to further understand what we have in mind at any given time.  833 

 834 

 835 

 836 

 837 

 838 

 839 

 840 

 841 

FIGURES 842 

 843 
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Figure 1. Experimental design and analysis of ongoing brain activity. (A) Top row: Phenomenology 844 

(reported experience) during auditory bistability. Participants listened to a series of tones of two 845 

different frequencies separated by a temporal gap (see Experimental Procedures). Tones are 846 

experienced either as one stream (phenomenologically integrated percept; orange blocks 847 

surrounded by one ellipse) or as two streams (phenomenologically differentiated percept; green 848 

blocks surrounded by two ellipses). Perceptual transitions occur either in the one-stream to two-849 

stream direction (blue arrows and blue background) or in the two-stream to one-stream direction 850 

(red arrow and red background). Middle row: behavioural responses during the task. Participants 851 

pressed one button when perceiving that one stream had fully changed into the two-stream percept 852 

(blue button) and another button when perceiving that two streams had fully changed into the one-853 

stream percept (red button). Bottom row: dynamical analyses and windows of interest for EEG and 854 

iEEG signal analyses. Ongoing activity in during both transitions was calculated using a sliding 855 

window procedure over a fixed time window locked to the onset of the button press. Window size 856 

was calculated based on the mean reaction times (RT) in the exogenous condition (1342 ms), and 857 

the minimum duration between responses that guaranteed no overlap between epochs (2500 ms) 858 

(see Materials and Methods). (B) Left panel: Inter-switch duration histograms for the one- to two-859 

stream perceptual stable period and for the two- to one-stream perceptual stable period (Right 860 

panel).  861 

 862 
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 874 

 875 

 876 

Figure 2. Frontoparietal NII
 

dissociates alternative endogenous percepts during bistable 877 

perception. Neural dynamics of NIIγ for transitions from the two-stream to the one-stream percept 878 

(red line) and from the one-stream to the two-stream percept (blue line) for the endogenous (A) and 879 

exogenous (control) conditions (B). Purple dashed line marks the mean reaction time (1342 ms) of 880 

the exogenous (control) condition. Auditory percepts were directly compared in two windows of 881 

interest: the before-change (BC) and the after-change (AC) windows. (C) Connectivity topographies 882 

for the BC and AC windows for transitions from the two-stream to the one-stream percept (left 883 

panel) and from the one-stream to the two-stream percept (right panel) averaged over participants 884 

in the endogenous condition. Red areas on the scalp indicate regions of interest (frontal and parietal 885 

electrodes, see Experimental Procedures). The height of an arc connecting two nodes indicates the 886 

strength of the NII link between them. Values are time-locked to the button press (0 ms) and 887 

baseline corrected between -2500 and -700 ms relative to button press (see Materials and 888 

Methods). Statistical analyses (bottom row) were computed on two pre-defined 500 ms windows: a 889 

BC window (-2500 to 2000 ms) and an AC window (-1342 ms to -842 ms). The onset of both windows 890 

was defined based on a control (exogenous) condition in which the stimuli physically change to 891 

generate two different percepts (see Experimental Procedures). Shaded bars (top row) and error 892 

bars (middle row) represent s.e.m. (D, E) Temporotemporal NII in the endogenous and exogenous 893 
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conditions. (F, G) Frontoparietal NII in the alpha band (NIIα) during endogenous (F) and exogenous 894 

(G) conditions.  895 

 896 

 897 

 898 

Figure 3. Frontoparietal NID dissociates alternative endogenous percepts during bistable 899 

perception. Neural dynamics of NID from the two-stream to the one-stream percept (red line) and 900 

from the one-stream to the two-stream percept (blue line) for the endogenous (A) and exogenous 901 

(control) conditions (B). (C, D) Temporotemporal NID dynamics for the endogenous (C) and 902 

exogenous (control) conditions (D). Purple dashed line marks the mean reaction time (1342 ms) of 903 

the exogenous (control) condition. Statistical analysis was performed as described in Figure 2. 904 

Shaded bars (top row) and error bars (bottom row) represent s.e.m.   905 

 906 
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 907 

Figure 4. Frontoparietal NII and NID in intracranial recordings. (a) Electrodes were implanted in the 908 

left superior parietal lobe (SPL), left middle frontal gyrus (MFG) and left orbitofrontal cortex (OF) 909 

(Table 1). Representative pair of electrodes (SPL-MFG) showing NIIγ and NID of transitions from the 910 

two-stream to the one-stream percept (red line) and from the one-stream to the two-stream 911 

percept (blue line) in the endogenous (B, D) and exogenous (C, E) conditions, respectively. (F, G) 912 

Frontoparietal NII in the alpha band (NIIα) in intracranial recordings for the endogenous (F) and 913 

exogenous condition (G). Purple dashed line marks the mean reaction time (1380 ms) of the 914 

exogenous (control) condition of the intracranial data. Statistical analyses were performed as 915 

explained in Figure 2. Shaded bars represent s.e.m.   916 
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 917 

 918 

Figure 5. Frontoparietal NOI in the endogenous and exogenous conditions. Dynamics of ongoing 919 

NOIγ from the two-stream to the one-stream percept (red line) and from the one-stream to the two-920 

stream percept (blue line) for the endogenous (A) and exogenous (B) conditions. Ongoing NOIγ 921 

during transitions in both directions in the endogenous (C) and exogenous (D). Statistical analyses 922 

were performed as described in Figure 2. Shaded bars represent s.e.m.  (E-H) Frontoparietal NOI in 923 

the alpha band (NOIγ) in intracranial recordings. Ongoing NOIγ during transitions in both directions 924 

(E, F) in the endogenous (C) and exogenous (D). Statistical analyses were performed as described in 925 

Figure 2. Error bars represent s.e.m. 926 
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 937 

Figure 6. Temporoparietal NOP in the gamma range dissociates alternative exogenous percepts. 938 

Neural dynamics of NOP from the two-stream to the one-stream percept (black line) and from the 939 

one-stream to the two-stream percept (purple line) for the endogenous (A) and exogenous (control) 940 

conditions (B). Purple dashed line marks the mean reaction time (1342 ms) of the exogenous 941 

(control) condition. Statistical analysis was performed as described in Figure 2. Shaded bars (top 942 

row) and error bars (bottom row) represent s.e.m.   943 
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Table 1. Coordinates and anatomical loci of intracranial electrodes analysed 952 

Electrode MNI Coordinates Cortical region (gyrus) 

1 -26; -44; 62 Left Superior Parietal Lobe 

2 

3 

-28; -44; 62 

-30; -44; 62 

Left Superior Parietal Lobe 

White Matter 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

-14; 32; 40 

-17; 32; 40 

-20; 32; 40 

-12; 32; 40 

-8; 32; -10 

-11; 32; -10 

-14; 32; -10 

-16; 32; 10 

-26; -28; 62 

-13; -28; 62 

-40; -8; 4 

-40; -30; 4 

Left Middle Frontal Gyrus 

Left Middle Frontal Gyrus 

Left Middle Frontal Gyrus 

White Matter 

Left Orbitofrontal Cortex 

Left Orbitofrontal Cortex 

Left Orbitofrontal Cortex 

White Matter 

Left Primary Motor Cortex 

White Matter 

Left Posterior Insular Cortex 

White Matter 

Note: Electrodes are depicted in Figure 4 and Supplementary Figures 8 to 13. SPL = Superior Parietal 953 

Lobe. MFG = Middle Frontal Gyrus. OF = Orbitofrontal Cortex. MC = Motor Cortex. PIC = Posterior 954 

Insular Cortex. 955 

 956 
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